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1. Introduction

The human heart does not beat at a constant rate, even for a subject in repose. Rather,

there is strong variability of the heart rate. The complexity of this heart rate variability

(HRV) presents a major challenge that has attracted continuing attention. Many of

the explanations proposed are by analogy with paradigms used in physics to describe

complexity, including: deterministic chaos [1]; the statistical theory of turbulence [2];

fractal Brownian motion [3]; and critical phenomenon [4]. They have led to new

approaches and time-series analysis techniques including a variety of entropies [5, 6, 7],

dimensional analysis [8], the correlation of local energy fluctuations on different scales

[9], the analysis of long range correlation [10], spectral scaling [11, 12], the multiscale

time asymmetry index [13], multifractal cascades [14, 15]. All these measures allow one

to describe HRV as a non-stationary, irregular, complex fluctuating process. Depending

on the technique in use there has been a very wide range of conclusions about the

regulatory mechanism of heart rate, ranging from a stochastic feedback configuration

[16] to the physical system being in a critical state [9]. HRV can also be considered in

terms of the interactions between coupled oscillators of widely differing frequencies [17].

Although we now have this huge variety of tools and approaches for the analysis

of HRV, only the last-mentioned has enabled us to understand the origins of some of

the time-scales embedded in HRV. Each time-scale (frequency) in the coupled oscillator

model [17] is represented by a separate self-oscillator that interacts with the others,

and each of the oscillators represents a particular physiological function. The frequency

variations in HRV can therefore be attributed to the effects of respiration (∼0.25Hz),

and myogenic (∼0.1Hz), neurogenic (∼0.03Hz) and endothelial (∼0.01Hz) activity.

HRV also contains a fast (short time-scale) noisy component which forms a noise

background in the HRV spectrum and can be modelled as a white noise source [17].

Its properties are currently an open question, and one that is important for both

understanding and modelling HRV. A practical difficulty in experimental investigations

is the presence of a strong perturbation, respiration, that occurs continuously and exerts

a particulary strong influence in modulating the heart rate. This modulation involves

several mechanisms: via mechanical movements of the chest, chemo-reflex, and couplings

to neuronal control centres [18]. Spontaneous respiration gives rise to a complex non-

periodic signal, and this complexity is inevitably reflected in HRV [19]. So, in order to

understand the properties of the fast noise, one would ideally remove the respiratory

perturbation and consider the residual HRV which would then reflect fluctuations of the

intrinsic dynamics of the heart control system.

Consideration of the intrinsic activity of the heart control system on short-time

scales is important for general understanding of the function of the cardio-vascular

system, leads potentially to diagnostics of causes of arrhythmia involving problems with

neuronal control [20], and can be a benchmark for modeling HRV. In this paper we

present the results of an experimental study of the intrinsic dynamics of the heart

regulatory system and discuss these results in the context of modelling the fast noise
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Figure 1. RR-intervals for (a) normal (spontaneous) and (b) intermittent respirations.

Respiration signals (arbitrary units) are shown by dashed lines.
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Figure 2. (a) An ECG signal and (b) the corresponding HRV (RR intervals) signal.

In (a) the R-peaks are marked by ◦ ; the ECG signal is shown in arbitrary units.

component. A number of open problems are identified.
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2. Experimental results

We analyse the dynamics of the control system in the absence of explicit perturbations

by temporarily removing the continuing perturbations caused by respiration [figure 1(b)].

To do so, we perform experiments involving modest breath-holding (apnœa) intervals.

Note that during long breath-holding the normal state of the cardiovascular system is

significantly modified [21]. The idea of the experiments came from the observation that

spontaneous apnœa occurs during repose. Apnœa intervals of up to 30 sec were used,

enabling us to avoid either anoxia or hyper-ventilation [21].

Respiration-free intervals were produced by intermittent respiration, involving an

alternation between several normal (non-deep) breaths and then a breath-hold following

the last expiration, as indicated by the dashed line in figure 1(b). The respiratory

amplitude was kept close to normal to avoid hyper-ventilation, and there were relatively

long intervals of apnœa when the heart dynamics was not perturbed by respiration. It

is precisely these intervals that are our main object of analysis. The durations of both

respiration and apnœa intervals were fixed at 30 sec.

Measurements were carried out for 5 relaxed supine subjects, and they were

approved by Research Ethics Committee of Lancaster University. Note that the

measurements presented have been selected from a larger number of measurements to

form a set recorded under almost identical conditions of time and duration, with the

subjects avoiding either coffee or a meal for at least 2 hours beforehand. They were 4

males and 1 female, aged in the range 29–36 years, non-smokers, without any history

of heart disease. We stress that the aim of the current investigation was exploratatory:

to study typical behaviour of the internal regulatory system; we have not performed a

large-scale trial of the kind widely used in medicine when a large number of subjects

is necessary because of the need for subsequent statistical analysis of the data. The

electrocardiogram (ECG) and respiration signals were recorded [17] over 45-60 minutes.

The ECG signals were transformed to HRV by using the marked events method for

extraction of the RR-intervals which are shown in figure 2.

Figure 1 shows RR-intervals found for the different types of respiration. It is

evident that respiration changes the heart rhythm very significantly. Immediately

after exhalation (b), there is an apnœa interval where the heart rhythm fluctuates

around some level. These fluctuations correspond to the intrinsic dynamics of the heart

control system. It is clear from (a) that heart rate is continuously perturbed during

normal respiration, whereas in (b) one can distinguish an interval of intrinsic dynamics

corresponding to apnœa. Thus, the jth interval of apnœa is characterized by the time

series {RRi}; here i = 1, 2 . . . labels the ith RR-interval. Finally, we form a set {RRi}
j

for analyses by considering the set as realizations of a random walk and analyzing their

dynamical properties as such.

To reveal dynamics additional to RR-intervals, the differential increments ∆RRi =

RRi+1−RRi were analyzed. The differences between RR-intervals and their increments

are illustrated in figure 3. Each apnœa time-series {RRi}
j exhibits a trend that is
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Figure 3. (a) RR-intervals and (b) increments ∆RR corresponding to apnœa intervals

are shown. For convenience of presentation, the difference between a given value and

the first value of each jth apnœa interval is drawn in each case: R̃R
j

i = RR
j
i − RR

j
1

and ∆R̃R
j

i = ∆RR
j
i −∆RR

j
1
.

describable by the slope a of a linear function RRi ∝ aj i, where i is a heart beat number

and j marks jth apnœa interval. The trend can be characterized by the distribution of

slopes P (a) shown in figure 4 (a). For all measurements the distributions are broad and

their mean values differ from zero. Thus the non-stationary nature of HRV on short

time-scales is clearly apparent. Note, that the distributions p(a) for the increments

∆RR are significantly narrower [figure 4 (b)] and that they are very well fitted to a

normal distribution; however, the mean values of the slopes differ from zero.

Because the dynamics of RR-intervals is evidently non-stationary, we have applied

detrended fluctuation analysis (DFA) [10] for estimation of the scaling exponents β

for the apnœa sets {RRi}
j . In doing so, we adapted the DFA method [10] for short

time-series and used non-overlapped windows (see Appendix for details). Because the

time-series were short, time windows of length 4–15 RR-intervals were used to calculate

β. For all measured subjects, this procedure yielded values of β lying within the range

β ∈ (1.3 : 1.7), with a mean value of 1.45. If RR-intervals in the sets {RRi}
j are

replaced by realizations of Brown noise (the integral of white noise) keeping same lengths

of apnœa intervals, then the calculation gives β = 1.46±0.07. Additionally, a surrogate

analysis was performed for each subject by random shuffling of the time indices i of

RRi-intervals, to confirm the importance of time-ordering of the RR-intervals. For

each realization (set {RRi}
j), 100 surrogate sets were generated, 100 values of β were
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Figure 4. Distributions of trend slopes P (a) of the sets (a) {RRi}
j and (b) {∆RRi}

j.

obtained, and the mean value βs was calculated. Values of βs for the surrogate sets

lie in the same limits as those for the original sets, but with a small bias between β,

calculated using original sets, and βs (see the Appendix for values of β and βs). It means

that one can see a correlation between RR-intervals, but that it is weak. Summarizing

the DFA results, we can claim that the scaling exponent β is similar to that for free

diffusion of a Brownian particle, but there is nonetheless some correlation between the

RR-intervals. We also applied aggregation analysis [19] in a similar manner and arrived

at qualitatively the same conclusion. Note that in the contrast to the initial idea of the

DFA and aggregation analyses, which were used for revealing long-range correlations

in time series, we have used these approaches to analyse the diffusion velocity because

they can cope with trends. Long-range correlations cannot be revealed in the described

measurements.

To estimate the strength of the correlation, stationary time-series of the increments

{∆RRi}
j were considered. The autocorrelation function ρ(k) was calculated

ρ(k) =
1

(M − 1)σ

N∑

j=1

mj
−k∑

i=1

R̂R
j

i R̂R
j

i−k; (1)

M =
N∑

j=1

(mj − k), σ =
1

M − 1

N∑

j=1

mj
−k∑

i=1

(
R̂R

j

i

)2

.

Here R̂R
j

i = ∆RRj
i−〈∆RRj〉; the brackets 〈〉 denote calculation of the mean value; i and

j correspond to the heart beat number and apnœa interval respectively, k = 0, 1, . . .,

mj is the number of increments ∆RR in the jth apnœa; N is the total number of

apnœa intervals. Figure 5 presents examples of autocorrelation functions. One of

them has pronounced oscillations. An approximation of ρ(k) by the function ρa(k) =

exp(−γk) cos(2πΩk) demonstrates that oscillations occur with frequency near 0.1 Hz,

presumably corresponding to myogenic processes [17] or (perhaps equivalently) to the
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Figure 5. Examples of the autocorrelation function ρ(k) (a) with and (b) without

an oscillatory component. The crosses indicate ρ(k) calculated on the basis of the

increments ∆RR. The solid line corresponds to the approximating curve ρa(k) =

exp(−γk) cos(2πΩk).

Mayer wave associated with blood pressure feedback [22, 23]. Further investigations via

the parametrical spectral analysis for each apnœa interval show that these oscillations

are of an on-off nature, i.e. observed for parts of the apnœa intervals, and not in all

of the measurements as can be seen in figure 5 (b). Examples of apnœa intervals

with and without oscillations are shown in figure 6. When an oscillatory component is

present then its contribution to ρ(k) is much weaker than the contribution of the noisy

component. The latter is characterized by a very short memory as demonstrated by fast

decay of ρ(k).

The properties of ∆RR can also be characterized by the probability density function

P (∆RR) shown in figure 7 (a). Figure (b) shows the probability density function P (RR)

of RR-intervals for comparison. Following [24], the α-stable distribution has been widely

used to fit the distribution of increments ∆RR, and strongly non-Gaussian distributions

were observed [24]. We perform a similar fitting applying special software [25]. Since

the distributions P (∆RR) are almost symmetrical, our attention was concentrated on

the tails, which were characterized by a stability index α ∈ (0, 2]. The case of α = 2

corresponds to a Gaussian and, if α < 2, the tails are wider than Gaussian. Fitting to

our results yields a stability index α ∈ (1.8 : 2), and the goodness-of-fit test (modified

KS-test taking into account the weight to the tails [25]) supports the fitting. Note that,

although the autocorrelation function ρ(k) cannot be used for the theoretical description

of an α-stable process [26], ρ(k) is nonetheless applicable for finite time-series.

If we consider the same length of realization using a Gaussian random variable

instead, we find α = 1.99 ± 0.01. It means that the calculations of α are very robust.
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Figure 6. Examples of apnœa intervals with (a) and without (b) oscillation of HRV.

The circles correspond to the values of the increments ∆RRi and the solid lines

connecting points are guides to the eye. The dashed lines in figure (a) are added

to reveal oscillations. The middle and upper ∆RRi time-series are shifted by 0.1 and

0.2 (sec) accordingly.

In addition we carried out a stability test and it too supported the fitting results. The

obtained values of α ∈ (1.8 : 2) differ significantly from the previously reported values

α ∈ (1.5 : 1.7) for 24h time-series of RR-intervals [24].

ombining all the results, we conclude that the short-time dynamics of RR-intervals

can be described as a stochastic process with stationary increments. This type of

stochastic processes was discussed by A. N. Kolmogorov [27] and applied to the

description of a number of different problems (see e.g. [28, 29, 30] for further details).

So, HRV during apnœa interval cab be presented in the following form

RRi = RRi−1 +∆RRi, (2)

where ∆RRi is a stationary discrete time stochastic process. Note that the DFA

calculation excludes a linear trend, which is taken into account in Eq. (2) as non-

zero mean value of the increments, µj = 〈∆RRi〉j; in general case, µj is a random

function of jth apnœa interval. If one represents RR-intervals as a sum of the linear

trend and a random component:

RRi = µj i+ ξi, (3)
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Figure 7. (Color online) Normalized probability density functions (a) P (∆RR) of

increments of RR-intervals and (b) P (RR) of RR-intervals. In (a) the full (blue) and

dashed (red) lines are Gaussian and stable distributions, respectively, fitted to the

data. The insets show the same distributions plotted with logarithmic ordinate scales;

the circles correspond to P (∆RR). The stable distribution in (a) is characterized by

α = 1.86. In (b) the full (blue) line is a Gaussian distribution fitted to the data.

then ξi corresponds to the non-stationary process (2) with zero mean value of increments.

In other words, the superimposed random component of HRV during apnœa intervals

is described by a non-stationary random process.

Increments ∆RRi are characterized by a random α-stable process of short memory,

with a weak intermittent oscillatory component of frequency ∼ 0.1 Hz. In the zeroth

approximation the increments can safely be represented by an uncorrelated Gaussian

random process but, in the next approximation, a weak correlation must be included,

allowing for an intermittent oscillatory component, and for weak non-Gaussianity of

the distribution of increments ∆RR. These additions reveal, on the one hand, that

the previously reported observation of a non-Gaussian distribution of increments [24]

is a property of the intrinsic heart rate regulatory system, but on the other hand,

that the scaling ranges of the stability index α differ significantly in the presence

or absence of external perturbations (including respiration) acting on the regulatory

system. Consequently an explanation of the scalings reported in [24, 10] should include

analyses of the effect of external perturbations and respiration, and not an analysis of

heart rate alone.

3. Discussion

3.1. Non-stationarity of RR-intervals during apnoea

The results presented indicate that there is no firm set point for the heart control system,

and that the heart rhythm exhibits diffusive behaviour. The slowest dynamics can be

described by a linear trend during apnœa intervals and its presence can be treated as

a slow regulatory/adaptation component of the control system. The presence of the
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slow time-scales is an established property of HRV [31] and their presence, even in the

absence of the respiratory perturbation, can be interpreted as an expected property.

On short time-scales of order several seconds, HRV shows a diffusive dynamics too.

It can be interpreted in two ways. One possibility is that the control system does not

firmly trace the base (slow) rhythm, because in case of tracing, short time-fluctuations

should “jump” around the base rhythm and, consequently, be stationary. Such a picture

corresponds to zero action of the control system if the heart rate is in a “safe” (for the

whole cardiovascular system) interval, e.g. RR ∈ [RRlow : RRhigh]. Another possible

explanation could be that the control system is tracing the base rhythm but the short-

time fluctuations have a non-stationary character. It is natural to expect that there

could be other possible explanations, and additional investigations are needed to reach

an understanding of the diffusive dynamics on short-time scales.

In section 2 it is suggested that we should consider the non-stationarity and diffusive

dynamics of RR-intervals within the framework of a stochastic process with independent

increments. It allows one to consider RR-intervals as realizations of the so-called auto-

regressive process that is widely used in time-series analysis [32]. It means that the

direct spectral estimation of RR-intervals, currently used as one of the basic techniques

[31], is not applicable here and that one must use the theory of stochastic processes

with stationary increments for their spectral decomposition [30]. If in the presence

of respiration, the short-time stochastic component of HRV preserves non-stationarity

then spectral estimation based on RR-intervals is not correct, and increments must be

used instead. Note, that the properties of short-time fluctuations in the presence of

respiration are far from being completely understood.

3.2. Non-Gaussianity and correlations of increments ∆RR

The theories of both stochastic processes with stationary increments and of auto-

regressive analysis place some limitations on the analysed time-series. The first approach

requires the existence of finite second-order momenta, whereas the second approach

assumes uncorrelated statistics of increments. Formally, however, non-Gaussianity of the

increments distribution means that the second-order momenta do not exist [26], but non-

Gaussianity can still be incorporated into the auto-regressive description [33]. And vice

versa, the presence of correlations in the increments dynamics requires a modification of

the standard auto-regressive approach, and it is one that can be incorporated naturally

into the general theory. In the current investigation we ignore these issues. We calculate

the auto-correlation function and use model (2), because the finite length of the time-

series guarantees the existence of the second-order momenta, and the simplicity of (2)

means that the inclusion of the correlations is a trivial extension.

Our consideration has the formal character of time-series analysis because we do not

incorporate any preliminary information about the possible dynamics of RR-intervals.

The analysis is based on the use of a set of relatively short time-series, a fact that defines

our choice of simple statistical measures. One cannot exclude the possibility that the use
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of other approaches to such data might provide additional insight into HRV dynamics.

For example, the fractional Brownian motion approach [19, 34] and the theory of discrete

non-stationary non-Markov random process [35] represent different paradigms, which are

based on assumptions about the origin of the data. Note, that despite a long history of

developing the approaches and their applications, the approaches of fractional Brownian

motion and of stable random process are not standardized tools, whereas the approach of

non-Markov random process is not so popular. There is no definite recipe for choosing

a set of measures which can uniquely specify (or provide a good description of) the

properties of a renewal (discrete time) stochastic process.

3.3. Modelling

Another way of attempting to understand the results is to try to reproduce the observed

data properties from an appropriate model. In the context of our experiments, the

modelling should consist of a simulation of the electrical activity of sinoatrial node

(SAN) where the heart beats are initiated. For modelling, one option is to use a bottom-

up approach, which is currently a very popular technique within the framework of the

complexity paradigm. In fact, available SAN cellular models allow one to incorporate

many details of physiological processes like the openings and closures of specific ion

channels [36]. However, despite the complexity of the models (40–100 variables) many

important features are still missed. For example, the fundamentally stochastic dynamics

of ion channels is represented by equations that are deterministic. Heterogeneity of the

SAN cellular locations and intercell communications are among other important open

issues [37, 38].

An alternative option is the top-down approach using integrative phenomenological

models. In contrast to detailed cell models, a toy model of the heart as a whole unit can

be developed. It is known that an isolated heart, and a heart in the case of a brain-dead

patient [39] demonstrate nearly periodic behaviour. So, it is reasonable to assume that

the observed HRV is induced by the neuronal heart control system, which is a part of

the central nervous system. The control system includes a primary site for regulation

located in the medulla [40], consisting of a set of neural networks with connections to the

hypothalamus and the cortex. The control is realized via two branches of the nervous

system: the parasympathetic (vagal) and the sympathetic branches. Although many

details of the control system are still missing [41, 20], it is currently accepted that the

vagal branch operates on faster time scales than the sympathetic one, and that each

branch has a specific co-operative action on the heart rate and the dynamics of SAN

cells.

Let us consider an integrate-and-fire (IF) model as a model of a SAN cell in the

leading pacemaker. These cells are responsible for initiating the activity of SAN cells

and, consequently, that of the whole heart [38]. The dynamics of the IF model describes

the membrane potential U(t) of the cell by the following equations

dU

dt
=

1

τ
if U(t) < Ut (4)
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U(t) = Ur, t∗ = t if U(t) = Ut and
dU

dt
> 0, (5)

Here 1/τ defines a slope of integration, Ut is the threshold potential, Ur is the resting

(hyperpolarization) potential; the time t∗ corresponds to the cell firing, and it is the

difference between two successive firings that determines the instantaneous heart period

or RR-interval, RRi = t∗i − t∗i−1. It is known [40] that increasing sympathetic activity

with a combination of decreasing vagal activity leads to an increase in the heart period,

and vice versa. Direct stimulation of the sympathetic branch leads to an increase of

the integration slope 1/τ and a lowering of the threshold potential Ut, whereas vagal

activation has the opposite effects, and additionally, lowers the resting potential Ur.

Thus, the neuronal activities can be taken into account as modulations of the parameters

of the IF model (4). For reproducing HRV during apnœa, therefore, it is enough to

present any of the parameters τ , Ut or Ur as a stochastic variable of the form (2),

for example, Ut(t
∗

i ) = Ut(t
∗

i−1) + ξi, where ξi are random numbers having the stable

distribution.

However, the use of more realistic (than IF) models with oscillatory dynamics, for

example Fitzhugh-Nagumo [42] or Morris-Lecar [43] models, makes the reproduction of

the experimental results a more difficult but interesting task. Currently it is unclear

whether it is possible to obtain a stable distribution of increments by consideration

of the Gaussian type of fluctuations alone, or whether one should use fluctuations

characterizing by a stable distribution. This point demands further investigation.

4. Conclusion

In summary, our experimental modification of the respiration process reveals that the

intrinsic dynamics of the heart rate regulatory system exhibits stochastic features and

can be viewed as the integrated action of many weakly interacting components. Even on

a short time scale (less then half a minute) the heart rate is non-stationary and exhibits

diffusive dynamics with superimposed intermittent ∼ 0.1 Hz oscillations. The intrinsic

dynamics can be described as a stochastic process with independent increments and

can be understood within the framework of many-body dynamics as used in statistical

physics. The large number of independent regulatory perturbations produce a noisy

regulatory background, so that the dynamics of the regulatory rhythm is close to classical

Brownian motion. However there are indications of non-Gaussianity of increments

and weak but important correlations on short time-scales. The reproduction of these

features, especially the non-Gaussianity property, is an open problem even in simple toy

models.

These results are important both for understanding the general principles

of regulation in biological systems, and for modeling cardiovascular dynamics.

Furthermore, the results presented may possibly lead to a new clinical classification

of states of the cardiovascular system by analysing the intrinsic dynamics of the heart

control system as suggested in [20].
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Table A1. Data for each subject. 〈RR〉 is the mean heart rate during apnœa. J

is the total number of apnœa intervals. β is the DFA scaling exponent calculated for

the apnœa set {RRi}
j. βs is the mean value of the DFA scaling exponent calculated

for surrogate data, which were generated by random shuffling of the time indices i

of RRi-intervals. b is the scaling exponent of the aggregation analysis. γ and Ω

correspond to the values of parameters for the function ρa(k) = exp(−γk) cos(2πΩk)

which approximates the autocorrelation function ρ(k). α is the stability index of the

distribution P (∆RR).

Subject 〈RR〉 (sec) J β βs b γ Ω α

S1 1.01 45 1.39 1.47 1.86 0.81 0.17 1.83

S2 0.77 46 1.46 1.44 1.83 0.21 0.09 1.95

S3 1.10 47 1.43 1.53 1.96 1.01 0.22 1.79

S4 0.75 47 1.58 1.60 1.91 0.15 0.08 1.90

S5 0.91 60 1.42 1.48 1.82 0.28 0.13 1.86
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Appendix

Some details of the measurements and calculations are summarized in this section.

The ECG was measured by standard limb (Einthoven) leads and the respiration

signal was measured by a thoracic strain gauge transducer. The signals were digitized

by a 16-bit analog-to-digital converter with a sampling rate of 2 kHz. The ECG and

respiration signals were recorded over 45-60 minutes and time locations of R-peaks in

the ECG signals were defined and time intervals between two subsequent R-peaks (the

so called RR-intervals) are used to form HRV signal.

Respiration-free intervals were produced by the intermittent respiration, involving

an alternation between normal breaths and apnœa intervals. The durations of both

normal breaths and apnœa intervals were fixed at 30 sec. The respiration signal

was used to identify apnœa intervals. Finally, the set of time-series of RR-interval

{RRi}
j was formed for each subject; here i = 1, 2 . . . labels the ith RR-intervals, and

j = 1, 2 . . . labels the jth interval of apnœa. For each interval of apnoea, time series

of the differential increments ∆RRi = RRi+1 − RRi were produced and they also form

a set {∆RRi}
j for each subject. The number of RR-intervals in each apnœa interval

is different, depending on the heart rate of the subject. The total number of apnœa

intervals also differ for each subject. The mean heart rate 〈RR〉 during apnœa intervals

and the total number J of intervals for each measured subject are presented in table

A1.

For the application of the DFA and aggregation analyses we adapted the approaches

described in [10] and [19], respectively, to treat the available sets of short time series
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{RRi}
j .

The DFA exponent β was calculated in the following way. First, the initial set

{RRi}
j was transformed to another set {y(k)}j by the following expression:

y(k) =

k∑

i=1

RRi, (A.1)

where k = 1 . . .Mj and Mj is the number of RR-intervals for jth apnoea interval.

For each length n = 4, . . . 15 of time window a set of linear trends {yn(k)}j was

calculated (see [10] for details), where yn(k) = k · anm + bnm, m = 1, . . . ⌊Mj/n⌋,

⌊x⌋ = max{n ∈ Z|n ≤ x} is the floor function of x. Then a set of scaling function

{F̃ (n)}j was calculated for each value of n by use of the expression

F̃ (n) =

Nj∑

k

[y(k)− yn(k)]2, (A.2)

where Nj = ⌊Mj/n⌋ · n. Further the scaling functions F (n) were calculated as

F (n) =

√√√√ 1

N − 1

J∑

j=1

F̃j(n), (A.3)

where J is the number of apnoea intervals for the given subject, N =
∑J

j=1
Nj. Finally,

the scaling exponent β was determined as a slope of the function log[F (n)] ∝ β log(n)

(see figure A1 (a)). The values of β for the different subjects are shown in table A1.

The aggregation analysis consists of three steps and the final result is the scaling

exponent b. The first step is the creation of a set of aggregated time series {zm(k)}
j for

different m = 1, . . . 10:

zm(k) =
k+m∑

i=k

RRi, (A.4)

where k = 1, . . .Mj −m. Then a realization zm(k) was formed from the set {zm(k)}
j:

zm(k) = {zm(k)}
j = {zm(k)}

1, . . . {zm(k)}
J . The second step includes the calculation

of the mean value µ(m) and variance σ(m) of the time-series zm(k):

µ(m) =
1

M

M∑

k=1

zm(k), σ(m) =
1

M − 1

M∑

k=1

[zm(k)− µ(m)]2 , (A.5)

where M is the whole length of time series zm(k). The slope b of the function

log[σ(m)] ∝ b log[µ(m)] was calculated in the third step (see figure A1 (b)). The values

of b for each subject are shown in table A1.

To verify the robustness of the calculations of exponents β and b we have performed

calculations with the same number of RR-intervals as well as the same structure of

apnœa intervals but by using realizations of Brown noise generated by computer. In

other words, in the procedures described above we replaced {RRi}
j by {Wi}

j, where

Wi = Wi−1 + 0.2 · ξi for i = 2, · · ·Mj , W1 = RR1, and ξi are random numbers having

the normal distribution with mean zero value and unit variance; the numbers ξi are
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Figure A1. (a) The scaling function F (n) (circles) and its approximation (dashed

line) by F (n) ∝ nβ (β = 1.39) are shown. (b) The dependence (circles) of the variance

σ(m) on the mean value µ(m) for m = 1, . . . 10 and its approximation (dashed line)

by σ(m) ∝ µ(m)b (b = 1.82) are shown.

different for different jth intervals of apnœa. We performed 100 calculation of β and b

for different sets {Wi}
j for each subject. Theoretical values of β and b for the Brown

noise are β = 1.5 and b = 2 correspondingly. The calculations with Brown noise gave

β = 1.46 ± 0.07 and b = 1.84 ± 0.04. Here data were merged for all subjects and are

presented in the form of a mean value ± its standard deviation. It means that there is a

systematic error related to the length and data structure, a general error of calculation

in respect to the theoretical values for β is 0.15 and for b is 0.2. However the standard

deviations of the calculated values are rather small and, consequently, we can conclude

that our calculations of β and b are robust.
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