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Abstract. We present a Bayesian framework for parameter inference in noisy, non-stationary, non-
linear, dynamical systems. The technique is implemented intwo distinct ways:
(i) Lightweight implementation: to be used for on-line analysis, allowing multiple parameter esti-
mation, optimal compensation for dynamical noise, and reconstruction by integration of the hidden
dynamical variables, but with some limitations on how the noise appears in the dynamics ;
(ii) Full scale implementation: of the technique with extensive numerical simulations (MCMC),
allowing for more sophisticated reconstruction of hidden dynamical trajectories and dealing better
with sources of noise external to the dynamics (measurements noise).
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Developing earlier works [1, 2], we consider the following an M-dimensional time-
seriesY = {yn ≡ y(tn)} (tn = nh), representingN observations of the system

ẋ(t) = f(x|c)+
√

Dξ (t), y(t) = g(x|b)+
√

Mη(t). (1)

The first eq.s(1) defines theL-dimensional underlying stochastic dynamics (with
white uncorrelated noise source) and the second one defines the observed variable
Y (with an extra observational noise source). Our task is to infer the unknown
model parameters, their time variations, the noise intensities and X -trajectory:
M = {c(t),b(t),D,M,{xn}}.

The form of the likelihood depends on the approximations of the theory. For an Euler
approximation of the dinamicsxn+1 = xn +hf(x∗n|c)+

√
hDξ n, with x∗n = (xn+1+xn)/2,

the minus log-likelihood functionS = − lnℓ(Y |M ) can be written as: (see [3, 1])

S =
N
2

ln |D|+ h
2

N−1

∑
n=0

{

∂ (f(xn)|c)k

∂xk
.+[ẋn − f(x∗n|c)]T D−1 [ẋn − f(x∗n|c)]

}

+
N
2

ln |M|+ 1
2

N

∑
n=1

[yn −g(xn|b)]T M−1 [yn −g(yn,xn|b)]+(L+M)N ln(2πh),

(2)

whereẋn = xn+1−xn
h and summation overk is implicit in the term∂ (f(xn)|c)k

∂xk
.
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Let us assume for a moment thatX is given. In this case, by the parameterising the
vector fieldf(x∗n|c) = U(x∗n)c ≡ Unc, linearly in respect of its parameters, and assuming
a multivariate normal prior PDF forc, the posterior is also normal, and its mean is given
by [3]:

cpost =

(

h
N−1

∑
n=0

UT
n D−1Un

)−1(

h
N−1

∑
n=0

[

UT
n D−1 ẋn −

1
2

L

∑
l=1

∂Ulm(x)

∂xl

])

,

〈D〉 =
h
N

N−1

∑
n=0

[ẋn −Un c] [ẋn −Un c]T .

(3)

The obtained result holds uniquely in presence of additive noise (D constant). If this was
not the case, then an extra parameterisation of the noise should have been employed, and
heavy approximation and assumptions made in order to make the problem algebraically
treatable.

WhenX is not observable, a global optimization technique should,in general, be
employed. In the next two following sections two example will be discussed. In the first
one, a ‘lightweight’ implementation will be used and the useof global optimization will
be avoided. In the second example the most probable state forthe dynamical space will
be obtained thanks to an MCMC techinique.

LIGHTWEIGHT IMPLEMENTATION

In our first example, we decode the parameters of a system of neurons modelled by an
L-dimensional system of FitzHugh-Nagumo (FHN) oscillators[5]:

v̇ j = −v j
(

v j −α j
)(

v j −1
)

−q j +η j +
√

Di j ξ j, (4)

q̇ j = −β q j + γ j v j ; 〈ξ j(t)ξi(t
′)〉 = δi jδ (t − t ′), (5)

yi = Xi j v j . i, j = 1, . . . ,L. (6)

wherev j models the membrane potentials andq j are slow recovery variables. Parame-
tersηi control the potential threshold for the self-excited dynamics, controlling the firing
rate, and they will be considered as time-varying parameters. We assume that neitherv j
nor q j are read directly (i.e. ‘hidden’ variables), but that the measurements are made
through anunknown measurement matrixX in eq.(6). Our tasks are to: (i) reconstruct
coefficients appearing in Eq.(4-5); (ii) reconstruct the mixing matrixX ; (iii) reconstruct
the hidden variablesq j; (iv) perform tasks (i)-(iii) taking into account that someparam-
eters might have explicit time dependence. We assume no measurement noise in eq.(6):
indeed in such systems the measurement noise is often negligible and in this way we can
avoid global optimization and better estimate the performance of the Bayesian inference
itself. Following [2], a convenient way to treat this problem is by integration of the slow
recovery variableqi and to substitute it into the top equation in eq.(4), and consequently
in eq.(6) we obtain the explicit form for the dynamics of the readout variable:

ẏi = η̃i + α̃i jy j + b̃ik1k2 yk1yk2 + c̃ik1k2 yk1y2
k2

+e−β t q̃i −
∫ t

0 eβ (t−τ)γi j y jdτ +
√

D̃i jξ j(t), (7)



where parameters of the gtransformed dynamics in eq.(7) arefunction of the original
parameters and the matrixX . This explicit dependence is given in [2]. Although the
number of base functionsNφ for the mixed dynamic is much larger than the number
of polynomial terms in eq.s(4-5) the inferencial algorithmexibits good performances
and high speed in inferring parameters even when few of them are explicetelly time
dependent. Some results are presentented on Fig. 1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4

η
1

t (s)

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2
q 1

t (s)

(c)

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

η 1

t (s)

(c)

10-5

100

105

 0  0.5  1  1.5

<
 λ

 >

t (s)

FIGURE 1. Inference ofη1 andη2 from eq.(4) for a 2-FHN system, while smoothly varying in the
presence of noise. No prior knowledge of the model parameters is assumed. (a) The inferred values of
η1 (dashed red lines) are compared with their true values (fullblue lines); here the ability in detecting
continuous evolution of the control parameters in the adiabatic limit is demonstrated. (b) The recontructed
time-trace of the hidden coordinateq1(t). (c) Typical convergence of the control parametersη j as
functions of the measurement timet; qualitative behaviour of the biggest eigenvalues of the covariance
matrix is given in the box. In [2] a detailed discussion is presented.

MCMC IN AN ECOLOGICAL SYSTEMS

In ecological problems the emphases are on the off-line recovery of hidden population
dynamics. We therefore consider a general MCMC approach. We consider an example
of predator-prey dynamics, also considered in [6, 7, 8], where the cycling dynamics of
the vole population in Finnish Lapland can be modelled by thefollowing equations for
the fluctuating densities of rodentsN and their predatorsP (weasels, foxes, owls, and
others). Dynamical inference method cannot be applied “as is” to the model of autors
of [6, 7, 8] because: (i) the noise terms are multiplicative;(ii) the predator trajectory
is hidden; and (iii) the prey dynamics is measured together with some measurement
noise. If the first problem can be overcome by making anad hoc change of variables,
the second and third problem are more complex and can be solved in different ways
accordingly to the approximations that one can introduce. In this respect, some ways
has been investigated in [4]. Here, the aim is to show how an MCMC techinique can
be employed for the reconstruction of the hidden dynamical sample. In particular it is
very useful to analyse what happen in a one-dimensional approximation. For a detailed
discussion of how to reduce to this system and what are the approximations involved see
[4, 8, 7]. The resulting one-dimesional systems consideredhas the form:

ẋ1 = r (1− e1sin(2πt +ψ0))− r̃ex1 − gex1

e2x1 +h2 −
az−1

ex +d
+ rσnξn(t), (8)

z = e−s1t− s2
2π cos(2πt)

(

c0 + s3

∫ t

t0

dτ
n(τ)

es1τ+
s2
2π cos(2πτ)

)

, (9)

y(t) = x1(t)+σobsη(t). (10)



where the only observable isy(t). For the sake of simplicity we assume the noise
intensities to be fixed and introduce an abbreviated vector of the unknown parame-
ters M̃ = {c,{xk}}. The MCMC algorithm can be briefly summarized as follows:

(i) Take an initial guess forM̃ (0) = {c(0),{x(0)
k }}; (ii) Sample a trajectory from

p(xk|xk−1,xk+1,M̃ ,D,σobs,yt) for k = 0, ...,K using Gibbs sampler with Metropolis-
Hastings (M-H) steps; (iii) Sample model parameters fromp(M̃ |{xt},D,σobs,{yt})
using M-H algorithm; (iv) Repeat steps (ii)-(iv) until convergence is achieved.
A graphical results is summarised on Fig.2.

FIGURE 2. Inference parameters from eq.(8); (a) Typical evolution ofthe solution of the optimization
problem starting from some initial values and descending the hyperplane of the cost function defined by
the posterior minus-log-likelihood; (b) Results of the MCMC calculations: convergence of the unknown
predator trajectories from an initial guess (solid black line at the bottom of the figure) to the actual
trajectory (solid blue line at the top of the figure) is shown by dashed red lines. The arrow indicates
the direction of convergence as a function of number of iterations.

CONCLUSIONS

We have considered the problem of dynamical inference in presence of noise and pro-
vided different approaches for a fast implementation (on-line applications), investigating
the boundaries of the resolution for slowly varying parameters; and for more computa-
tionally demanding problem of global reconstruction with the heavy use of MCMC for
discovering the latent state variables for the extreme caseof missing data.
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