
 
 

Birkbeck ePrints: an open access repository of the 
research output of Birkbeck College 

http://eprints.bbk.ac.uk
 

 
Plagianakos V.P.; Magoulas G.D. and Vrahatis M.N. 
(2006). Distributed computing methodology for 
training neural networks in an image-guided 
diagnostic application. Computer Methods and 
Programs in Biomedicine 81 (3) 228-235.  
 
This is an author-produced version of a paper published in Computer Methods 
and Programs in Biomedicine (ISSN 0169-2607). This version has been peer-
reviewed but does not include the final publisher proof corrections, published 
layout or pagination. 

All articles available through Birkbeck ePrints are protected by intellectual 
property law, including copyright law. Any use made of the contents should 
comply with the relevant law. Copyright © 2006 Elsevier Ireland Ltd. 

 
 
Citation for this version: 
Plagianakos V.P.; Magoulas G.D. and Vrahatis M.N. (2006). Distributed 
computing methodology for training neural networks in an image-guided 
diagnostic application. London: Birkbeck ePrints. Available at: 
http://eprints.bbk.ac.uk/archive/00000503
 
 
 
 
Citation for the publisher’s version: 
Plagianakos V.P.; Magoulas G.D. and Vrahatis M.N. (2006). Distributed 
computing methodology for training neural networks in an image-guided 
diagnostic application. Computer Methods and Programs in Biomedicine 81 
(3) 228-235.  
 

 
 

http://eprints.bbk.ac.uk
Contact Birkbeck ePrints at lib-eprints@bbk.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/6874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/
http://eprints.bbk.ac.uk/archive/00000503
http://eprints.bbk.ac.uk/
mailto:lib-eprints@bbk.ac.uk


Distributed Computing Methodology for

Training Neural Networks in an Image–guided

Diagnostic Application

V.P. Plagianakos a,c, G.D. Magoulas b, M.N. Vrahatis a,c,∗

aComputational Intelligence Laboratory, Department of Mathematics,
University of Patras, GR-26110 Patras, Greece

bSchool of Computer Science and Information Systems, Birkbeck College,
University of London, Malet Street, London WC1E 7HX, United Kingdom

cUniversity of Patras Artificial Intelligence Research Center–UPAIRC

Abstract

Distributed Computing is a process through which a set of computers connected by
a network is used collectively to solve a single problem. In this paper, we propose a
distributed computing methodology for training neural networks for the detection of
lesions in colonoscopy. Our approach is based on partitioning the training set across
multiple processors using a Parallel Virtual Machine. In this way, interconnected
computers of varied architectures can be used for the distributed evaluation of the
error function and gradient values, and, thus, training neural networks utilizing
various learning methods. The proposed methodology has large granularity and low
synchronization, and has been implemented and tested. Our results indicate that the
Parallel Virtual Machine implementation of the training algorithms developed leads
to considerable speedup, especially when large network architectures and training
sets are used.

Key words: Distributed computing, parallel implementations, parallel virtual
machine–PVM, backpropagation training, image–guided diagnosis and surgery

∗ Corresponding author
Email addresses: vpp@math.upatras.gr (V.P. Plagianakos),

gmagoulas@dcs.bbk.ac.uk (G.D. Magoulas), vrahatis@math.upatras.gr
(M.N. Vrahatis).

Preprint submitted to Computer Methods and Programs in Biomedicine



1 Introduction

Distributed systems allow the deployment and utilization of heterogeneous,
network–connected computing resources and offer the potential to analyze,
share and manage medical imaging information in more flexible and intelligent
ways, with a view to making evidence–based decisions, recognizing patterns
and generating new hypotheses on–line [1]. The emergence of grid protocols
in conjunction with distributed computing offers CPU and data handling ca-
pabilities to users and could provide decision support in clinical diagnosis [2].
Minimally invasive, image–guided diagnostic procedures and surgery are par-
ticularly benefited from advanced software and hardware infrastructures [3,4].
In this context, the integration of navigation systems with high tracking ac-
curacy and manoeuvrability, real–time services, such as analysis of imaging
data and classification, parallelization of computational methods, detection
of similarities with data stored in collaborating sites, comparison of patient’s
images against the norm, information sharing, and e–collaboration with other
experts would definitely increase the efficiency of typical diagnostic procedures
and surgeries [3–8].

Towards this direction, this paper investigates the use of a distributed comput-
ing methodology for an image–guided diagnostic scheme that employs Multi–
Layer Perceptrons (MLPs) for the detection of lesions in colonoscopy images
and video sequences. To this end, we propose a way to partition the train-
ing set across multiple processors and we evaluate the speed performance
of the distributed scheme with respect to a single processor implementation.
The proposed distributed computing methodology utilizes the Parallel Virtual
Machine–PVM [9–11] software tools and libraries.

2 Background

In medical practice, minimally invasive techniques, such as computed tomogra-
phy, ultrasonography, confocal microscopy, computed radiography, magnetic
resonance imaging, or endoscopy are now permitting visualization of previ-
ously inaccessible regions of the body. Their objective is to increase expert’s
ability in identifying malignant regions and decrease the need for interven-
tion while maintaining the ability for accurate diagnosis. Furthermore, it is
possible to examine a larger area, study living tissue in vivo – possibly at a
distance [12] – and, thus, minimize the shortcomings of biopsies, such as a
limited number of tissue samples, a delay in diagnosis, infection, perforation,
and discomfort for the patient.

Colorectal cancer is the second leading cause of cancer–related deaths in the

2



United States [13,14]. Screening is the current and most suitable prevention
method for early detection and removal of colorectal polyps. If such polyps re-
main in the colon can possibly grow into malignant lesions. Colonoscopy is the
most accurate screening technique for detecting polyps, also allowing biopsy
of lesions and resection of most of the polyps [15]. Colonoscopic diagnosis is a
particular challenging area, involving the extraction and interpretation of pat-
terns from complex medical video sequences under variable perceptual con-
ditions (resolution change, shadings, shadows, lighting condition variations,
reflections etc.), hypothesis generation, and reasoning in relation to previous
experiences of the medical experts [4,16–18]. When one considers that abnor-
malities are hard enough to diagnose, the problem is exaggerated greatly when
the physicians do not know what they are looking for.

The use of intelligent approaches for the detection of lesions in colonoscopy
has to meet a number of challenges [4,18]: the time varying nature of the
process, changes in the perceptual direction of the physician, variations in
the diffused light conditions. For example, though one can use bright lights,
the effect in a tight organ is that light tends to diffuse which leads to some
areas being clearly lit and others not so; thus potentially hiding abnormalities.
Relating to diffused light and the restrictive nature of the organ, it is easily
possible for shadows to appear, restricting further what is visible. Shadows
can be caused by the endoscope itself, different sections and abnormalities
themselves. Lastly, the limited manoeuvrability of the endoscope causes the
views at which abnormalities are visible to be far from ideal; a bad view can
easily exaggerate the noise present within the image and hide abnormalities.

In most of these cases, training examples or explicit knowledge are not able
to capture all possible variations of the environment. Collaboration among
experts, estimations of similarities with data held in remote sites, and fast
analysis of imaging data can definitely increase the efficiency of the procedure.

3 Computational methods

Automatic detection of lesions in colonoscopy is subject to uncertainties due to
inaccurate measurements and lack of precise modelling of lesion image charac-
teristics (this is especially true for small size lesions) [19]. Given a colonoscopy
image, the “true” features associated with the physical surface properties of
the tissue are not exactly known to the system developer. Usually, one or more
feature–extraction models [4,16,20] are used to provide values for each feature’s
parameters. The findings are then used to infer the correct interpretation.

In this work, we combine texture segmentation with neural networks for the
automatic detection of lesions in colonoscopy images and video sequences.

3



The following subsections describe the various computational methods and
principles that we have considered in developing our approach.

3.1 Texture Classification

Texture plays an important role in the characterization of regions in digital
images. It carries information about the microstructure of the regions and
the distribution of the grey levels. Texture is an inherent property of any
image and of medical images in particular, given that the tissue itself carries
a dominant textural appearance.

The classification of image regions within colonoscopy images can be treated as
a texture classification problem by exploiting the textural characteristics of the
corresponding regions for the discrimination between lesions and normal tis-
sue samples. Automated classification and identification of colonic carcinoma
using microscopy images have been proposed by [21], but the use of clinical
endoscopy video frames for the identification of colonic tumors has been con-
sidered only in limited instances [4,17,18,22,23]. Along this line of research,
this paper makes use of texture information for the detection of malignant
regions in colonoscopy images by employing some quantitative description of
a texture.

Among a large variety of texture models, e.g. structural [24], statistical [25–
27] and random process [28], this work uses statistical measurements based on
second order statistics [27]. These statistical descriptors have been estimated
using the method of cooccurrence matrices applied to each region of an image.
This method evaluates a series of matrices that describe the spatial variation
of grey level values within a local area.

In our experiments we have used the image data management facilities of
CoLD [4] to compute four cooccurrence matrices for each sample area with a
displacement of one pixel and angles of 0, 45, 90, 135 degrees. In this way, four
features have been computed on each matrix to produce a 16-dimensional fea-
ture vector describing each tissue sample, namely the angular second moment,
correlation, inverse difference moment, and entropy, as defined by Haralick [27]
(see [4] for details).

4



3.2 Training MLPs Using Back–propagation Algorithms

Let us consider an MLP whose l-th layer contains Nl neurons, l = 1, . . . ,M .
Batch learning is realized by minimizing the error function E defined by:

E =
1

2

P∑
p=1

NM∑
j=1

(
yM

j,p − tj,p
)2

, (1)

where
(
yM

j,p − tj,p
)2

is the squared difference between the actual output value
at the j-th output layer neuron for the pattern p and the target output value,
and p is an index over input–output pairs. The function E also provides the
error surface over the weight space.

The minimization of function E corresponds to updating the weights by epoch,
and requires a sequence of weight vectors {wk}∞k=0, where k indicates epochs.
Successful training implies that {wk}∞k=0 converges to the point w? that mini-
mizes E. The gradient–based Back–Propagation (BP) training algorithm min-
imizes the error function using the steepest descent method with constant,
heuristically chosen, learning rate.

Several BP algorithms with adaptive learning rate have been proposed in order
to accelerate the training phase. In this work we consider the standard batch
BP and four other methods of this class and investigate their performance in
a distributed architecture.

The first BP variant that will be considered was proposed in [29,30]. It is a
simple, heuristic, strategy for accelerating the BP algorithm that is based on
the use of a momentum term (BPM). The second method was suggested by
Vogl [31]. It increases the convergence of the BP by adapting the learning
rate at each epoch, in such a way that monotone decrease of the error is
enforced (VMRZA). To this end, Vogl et al. proposed to start training with
a small learning rate and increase it by multiplying it with 1.05, if successive
epochs reduce the error, or rapidly decrease it by multiplying it with 0.7, if a
significant error increase occurs.

Another approach is based on the use of nonmonotone strategies for adapt-
ing the learning rate, i.e. deterministic adaptive training algorithms in which
error function values are allowed to increase at some epochs [32]. This ap-
proach exploits the accumulated information with regard to previous error
function values and provides the ability to handle large learning rates. Addi-
tionally, it alleviates problems generated by poor selection of the user–defined
learning parameters, such as decreased rate of convergence, or even diver-
gence and premature saturation [33]. Along this line, we investigate the use of

5



the recently proposed NonMonotone Back–Propagation with Variable Step-
size (NMBPVS), [32], which exploits the local shape of the error surface by
estimating the Lipschitz constant at each epoch, and setting the learning rate
accordingly. Lastly, the NonMonotone Barzilai and Borwein BP algorithm
(NMBBP), which uses an adaptive learning rate that is calculated by a two–
point approximation to the secant equation [34,35], is applied.

4 A Distributed Architecture

Parallel processing, i.e. the method of having many small tasks with the aim of
solving one large problem, has emerged as a key enabling technology in mod-
ern computing [36]. The past several years have witnessed an ever–increasing
acceptance and adoption of parallel processing both for high–performance sci-
entific computing, and for more “general–purpose” applications, as a result of
the demand for higher performance, lower cost, and sustained productivity.
This worldwide acceptance has been facilitated by two major developments:
(a) Massively Parallel Processors (MPPs), and (b) the widespread use of Dis-
tributed Computing.

This section gives a brief introduction to distributed computing and describes
in detail the methodology of our distributed architecture.

4.1 Distributed Computing and the Parallel Virtual Machine

Distributed Computing is a process whereby computers connected by a net-
work are used collectively to solve a single problem [36]. The combined com-
putational resources of several general–purpose workstations, interconnected
with a high–speed local area network, may exceed the power of a single high
performance computer.

The most critical factor in parallel processing is the high cost of the hardware.
Large MPPs typically cost more than $10 million. In contrast with MPPs,
distributed computing allows users running their problems on a local set of
existing computers with a very little cost. Even building a PVM using ded-
icated computers has a reduced cost. The cost of a 15–node system is less
than $10,000 due to the use of Beowulf–style nodes [37,38]. It must be noted
that when using Beowulf nodes only the master node needs hard disk, video
display, monitor and keyboard. The cost of materials for the PVM topology
used in our experiments is exhibited in Section 4.2 below.

The Parallel Virtual Machine is a de facto standard message passing inter-

6



face. It is an integrated set of software tools and libraries that emulates a
general–purpose, flexible, heterogeneous concurrent computing framework on
interconnected computers of varied architectures [9]. PVM is designed to link
computing resources and provide users with a parallel platform for running
their computer applications, irrespective of the number of different computer
architectures and their locations. Notice that once built, the PVM can be used
for any CPU intensive computational task [10,11]. PVM is capable of harness-
ing the combined resources of typically heterogeneous networked computing
platforms to deliver high levels of performance and functionality.

The PVM system uses the message–passing model to allow programmers to
exploit the distributed computing across a wide variety of computer architec-
tures, including MPPs. PVM’s key concept is that it makes a collection of
computers to appear as one large virtual machine, hence its name [9].

4.2 PVM–based Training Methodology

The general use of an MLP consists of a training phase followed by a clas-
sification phase. The training phase, usually, involves an unconstrained opti-
mization procedure of the BP class, and consists of the following steps:

(1) Presentation to the MLP of all the training sets (patterns) and compu-
tation of the activations of the network.

(2) Computation of the error function based on the activations (usually the
sum of squared differences between the actual and the desired output).

(3) Computation or approximation of the gradients of the error function at
a point in the weight space.

(4) Adaptation of the weights of the MLP according to the training algorithm
used.

Training can be very time consuming, as a feasible minimizer in the high–
dimensional weight space is sought, and, in general, the error function pos-
sesses complicated surface with multitudes of local minima and broad flat
regions adjoined to narrow steep ones. On the other hand, the classification of
an unknown test vector is extremely fast, since it requires only the propagation
of the test vector through the neural network.

In the algorithm model shown above, Steps 1, 2 and 3 can be easily performed
in parallel, if the training set is partitioned across multiple processors. On
the other hand, Step 4 is better performed using only one processor, after
the partially evaluated error function and gradient values are sent to it and
accumulated.

7



Although MLPs have been widely used in many application areas, real world
problems demand an increasing amount of computational resources. However,
not many neural network researchers have access to a high performance par-
allel machine [39]. On the other hand, most of the researchers have access to
networked workstations which can be easily used in a distributed computing
architecture [40].

Below, we construct a parallel procedure that uses the well known master–
slave computational model [9]. Our implementation is based on partitioning
the training set across multiple processors on the slave nodes. This results in
the distributed evaluation of the error function and gradient of the MLP. The
following subsections describe the algorithms for the master and slave nodes
and provide details for our implementation.

4.2.1 The Algorithm of the Master Node

At the beginning of the procedure, the master node adds the slave nodes
to the PVM, spawns the slave tasks, partitions the initial training set into
subsets (one for each slave node), and sends the network architecture and the
partitions of the training set to the slaves. Then, receives from each slave node
the corresponding portion of the error function and gradient, and accumulates
them to find the complete error function and gradient values.

Note that the error function values are sent to the master only if the employed
training algorithm uses them; otherwise only the partial gradient values are
communicated. Finally, the weights are updated (any batch training algorithm
can be used for this task), and the new weights are sent to the slave nodes for
the next epoch. When the termination condition is fulfilled, the master node
sends termination signals to the slaves and shuts the PVM down. Below, a
high level description of the algorithm that runs on the master is presented.

Procedure master

\* Spawn slave procedures *\

InitializeAllSlaves;

\* Load patterns, initialize weights

and MLP architecture *\

InitializeMLP;

\* Divide up the training set among the slaves *\

PartitionTrainingSet;

For slave := 1 to numOfSlaves do

\* Send MLP architecture to slave *\

SendMLP;

\* Send training subset to slave *\

SendPatterns;

8



Repeat

For slave := 1 to numOfSlaves do

\* Receive error function values from slaves *\

RcvPartialErrorFunction;

\* Receive gradient values from slaves *\

RcvPartialGradient;

\* Calculate the error function value over

the entire training set *\

AccumulateErrorFunction;

\* Calculate the gradient vector *\

AccumulateGradient;

\* Calculate the new weight vector *\

AdaptWeights;

For slave := 1 to numOfSlaves do

\* Send the new weight vector to slaves *\

SendWeights;

\* Check the termination condition *\

Unitl TerminationCondition;

\* Kill the slave processes *\

ShutDownSlaves;

\* Kill the PVM *\

ShutDownPVM;

The process of receiving the partial error function and gradient values can be
realized in a synchronous or an asynchronous mode. When the synchronous
mode is selected the master is forced to communicate with the slaves in a
specific order. On the other hand, in asynchronous mode the communications
are performed in a first–come, first–serve basis. Obviously, the asynchronous
mode is the preferred one, since the master does not have to wait for a slower
slave, but instead can continue gathering information from the other slaves.

4.2.2 The Algorithm of the Slave Nodes

Each slave node initially receives the MLP architecture and a subset of the
training set. Then, it calculates the partial error function and gradient values
by means of a forward and a backward pass, and sends these values to the
master node. Finally, the master node sends the updated weights for the next
epoch. Below, we provide a high level description of the algorithm running on
the slave.

procedure slave

\* Receive MLP architecture from master *\

RcvMLP;

9



\* Receive training subset from master *\

RcvPatterns;

Repeat

\* Calculate partial error function values *\

CalculatePartialErrorFunction;

\* Calculate partial gradient values *\

CalculatePartialGradient;

\* Send error function values to master *\

SendPartialErrorFunction;

\* Send gradient values to master *\

SendPartialGradient;

\* Receive new weight vector from master *\

RcvWeights;

Until ShutDown;

4.3 Implementation Details

In this work, the combination of texture segmentation and neural networks
is employed for the automatic detection of lesions in colonoscopy images and
video sequences. The overall procedure is illustrated in Figure 1.

Fig. 1. Illustration of proposed methodology for image–guided diagnosis.

Below, we provide technical details and cost estimates for the PVM imple-
mentation. The setup of the PVM is relatively easy with the use of existing
workstations. In the PVM system used in our experiments, 15 slaves and one
master node were connected using a 100 Mbps Ethernet switch. A daemon
process running in the background of each node forms the Parallel Virtual
Machine. The daemons are responsible for spawning the tasks (program ex-
ecution) on the host machines, the synchronization, and the communication
between the tasks.

10



The cost of materials for the 15-node system is shown in Table 1. The total
price for the entire system is less than $10,000 (prices as of early 2004). It must
be noted that only the master node needs hard disk, video display, monitor
and keyboard. This is possible because of the use of Beowulf–style nodes. Ad-
ditional information about the Beowulf Project and further details for parallel
computer systems, can be found on the WWW at: http://www.beowulf.org.

Table 1
Cost of materials for a 15-node Parallel Virtual Machine (prices as of 2004).

Quantity Item Unit price Total

15 Intel Pentium 4
2.8Ghz processor and
appropriate mother-
board

$500 $7,500

15 512 MB of SDRAM $40 $600

15 10/100 Mbps Ethernet
network interface card

$10 $150

15 Tower case with 300
Watt power supply
and fans

$45 $675

1 10/100 Mbps Ethernet
24–port Switch

$330 $330

16 Ethernet cables $5 $80

1 Master computer
with Intel Pentium 4
3.06Ghz, 512 MB of
RAM, 10/100 Mbps
Ethernet network
card, 60 GB hard disk,
video display, mouse,
monitor, keyboard

$650 $650

16 Linux Operating Sys-
tem

$0 $0

TOTAL $9,985

The operating system used in our implementation was Linux, which is the
most common operating system for individual nodes of Beowulf–style parallel
computer systems. Another reason for choosing Linux is that it is open–source
(its source code is provided) and free; no licence is required.

11



5 Experimental Results

The proposed distributed computing methodology was applied for the detec-
tion of malignant regions in colonoscopic video sequences. The aim of the
experiment was to perform a low level test of the system and explore the
applicability of our methodology in a real life diagnostic task.

Textures from normal and abnormal tissue samples were randomly chosen from
four frames of the same video sequence, which exhibited resolution change, dif-
ferent perceptual direction of the physician, different diffused light conditions,
and were used for training the MLP to discriminate between malignant and
normal regions using the distributed architecture. No pre–filtering of the im-
ages, or post–processing of the results were applied as the aim was only to
test the PVM–methodology and not to optimize the classifier.

The training set was generated by applying the cooccurrence matrices method
described in previous section. More specifically, the endoscopic images were
separated into windows of size 16 × 16 pixels with 8 pixels overlap. Then
the cooccurrence matrices algorithm was used to gather information regard-
ing each pixel in an image window [4,17]. The 16-dimensional feature vectors
created for each window was used as the input of an MLP with 16 inputs,
30 hidden nodes, and 2 outputs (540 weights and 32 biases); this MLP ar-
chitecture had been found to perform very well in preliminary experiments.
The MLP was trained to discriminate between normal and abnormal image
regions using 1200 randomly selected patterns from four video frames. The
training procedure stopped when the MLP exhibited 3% misclassifications on
the entire training set.

Using the PVM–based training methodology, the following algorithms were
implemented:

• the Back–Propagation (BP),
• the momentum BP (MBP) [29],
• the adaptive BP (VMRZA) [31],
• the Non–Monotone BP with Variable Stepsize (NMBPVS) [41],
• the Non–Monotone Barzilai–Borwein back–Propagation NMBBP [41].

The algorithms were tested using the same initial weights, initialized by the
Nguyen–Widrow method [42], and received the same sequence of input pat-
terns. The weights of the MLP were updated only after the entire set of pat-
terns to be learned was presented and processed in parallel.

Table 2 summarizes the performance of the algorithms for simulations that
reached solution. The reported parameters are: min the minimum number of
epochs, mean the mean value of epochs, max the maximum number of epochs,

12



s.d. the standard deviation, and succ. the simulations succeeded out of 100
trials.

As is the case with all practical neural network training, the aim is to train
the MLPs to achieve a balance between the ability to respond correctly to
the input data used for the training (memorization) and the ability to give
correct responses to input that is similar, but not identical, to that used in
training (generalization). To this end, to test the generalization performance
of the trained MLPs, approximately 16,000 test patterns were created. This
test set constitutes the whole image region in each of the four frames and
contains normal and abnormal samples. In Table 3, the average generalization
capability of the algorithms on the test set is exhibited.

Table 2
Results of the proposed distributed implementation of the training algorithms.

Algorithm min mean max s.d. succ.

BP 7697 8505 9314 1143 20%

BPM 5685 8500 9315 952 32%

VMRZA 453 734 1055 249 99%

NMBBP 261 374 515 129 100%

NMBPVS 263 656 955 227 100%

Table 3
Generalization of the distributed implementation of the training algorithms.

Algorithm Generalization (%)

BP 78.1%

BPM 78.1%

VMRZA 79.1%

NMBBP 83.9%

NMBPVS 85.1%

Finally, we have tried to determine the average speedup achieved by employ-
ing the proposed distributed implementation, relative to a single processor
utilization. Several factors can influence the speedup, such as the local area
network load and the CPU load due to system or other users’ tasks. Never-
theless, the speedup results indicate that when using more than three slave
nodes the combined processing power of the PVM overbalances the overhead

13



due to its initialization and process communication, and a speedup is always
possible. In Figure 2 the speedup versus the number of processors is plotted.

Fig. 2. The speedup achieved by the proposed distributed implementation versus
the number of processors used in the simulation.

Thus, the speedup is considerable and worth the minimal effort of developing
the PVM implementation of the learning algorithm, although it is not anal-
ogous to the number of slaves used. Obviously, this was expected due to the
overhead introduced by the local area network and the PVM itself.

6 Conclusions and future plans

Research in computing, imaging and miniaturization has made minimally in-
vasive surgery practical and has opened up new areas of research for diagnosis
and treatment. An increasing need for large computing resources is appear-
ing in hospitals for image–guided diagnosis and surgery, simulation of medical
treatments and surgeries, advanced medical imaging applications, and acces-
sibility of large amounts of data in heterogeneous formats from distributed
sources. Distributed computing can facilitate the deployment of these ad-
vanced medical applications.

In this paper, the combined computational resources of several general purpose
workstations, interconnected with a local area network have been exploited to
implement neural network learning algorithms in a distributed architecture
for image–guided diagnosis of lesions in colonoscopy video sequences. Each
workstation of the proposed distributed architecture handles intensive com-
putational tasks efficiently, without the use of frequent process synchroniza-
tion. Furthermore, the PVM performance in the experiments was stable and
predictable.

Simulation results have shown that speedups are always possible and justify
the extra effort of parallelizing the learning algorithm, especially when large
MLP architectures and large training sets are used. Our experience is that the

14



speedup achieved does not affect the generalization performance of the neural
networks with respect to the single classifier implementation.

Acknowledgments

The authors gratefully acknowledge the contribution of Dr S. Karkanis (De-
partment of Informatics and Computer Technology, Technological Educational
Institute of Lamia, Greece) and Dr D. Iakovidis (RTD–Image Group, Depart-
ment of Informatics and Telecommunications, University of Athens, Greece)
in the acquisition of the data and Mr. N. Nousis for his valuable comments
and helpful suggestions on earlier drafts of this paper.

The authors would like to thank the European Social Fund, Operational Pro-
gram for Educational and Vocational Training II (EPEAEK II), and par-
ticularly the Program PYTHAGORAS for funding the above work. Dr V.P.
Plagianakos and Prof. M.N. Vrahatis acknowledge the financial support of the
University of Patras Research Committee through a “Karatheodoris” research
grant.

References

[1] C. Giess, A. Mayer, H. Evers, and H.P. Meinzer, Medical Image Processing and
Visualization on Heterogenous Clusters of Symmetric Multiprocessors using
MPI and POSIX Threads, in Proc. of IPPS/SPDP 98, pp. 233–237, (Orlando,
1998).

[2] V. Breton, R. Medina, and J. Montagnat, DataGrid, Prototype of a Biomedical
Grid, Methods of Information in Medicine, 42 (2003) 1–5.

[3] K. Cleary, M. Clifford, M. Freedman, J. Zeng, S.K. Mun, V. Watson, and
F. Henderson, Technology improvements for image–guided and minimally
invasive spine procedures, IEEE Transactions on Information Technology in
Biomedicine, 6 (2002) 249–261.

[4] D.E. Maroulis, D.K. Iakovidis, S.A. Karkanis, D.A. Karras, CoLD: A versatile
detection system for colorectal lesions in endoscopy video-frames, Computer
Methods and Programs in Biomedicine, 70 (2003) 99–186.

[5] S. Delp, P. Loan, C. Basdogan, and J.M. Rosen, Surgical simulation: An
emerging technology for training in emergency medicine, Presence, 6 (1997)
147–159.

[6] A.M. Eldeib, M.N. Ahmed, A.A. Farag and C.B. Sites, A Web based System
for Surgical Planning and Simulation, Proc. of SPIE, 3517 (1998) 273–283.

15



[7] A.A. Farag and C.B. Sites, Virtual Endoscopy: Modeling the Navigation in
3D Brain Volumes,in Proc. of the International Conference on Biomedical
Engineering, (Egypt, 2002).

[8] U. Kuhnapfel, H.K. Cakmak, and H. Maab, Endoscopic surgery training using
virtual reality and deformable tissue simulation, Computers & Graphics, 24
(2000) 671–682.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked
Parallel Computing, (MIT Press, Cambridge, 1994).

[10] V.P. Plagianakos and M.N. Vrahatis, Parallel Evolutionary Training Algorithms
for “Hardware–Friendly” Neural Networks, Natural Computing, 1 (2002) 307–
322.

[11] V.P. Plagianakos, G.D. Magoulas, and M.N. Vrahatis, Evolutionary training
of hardware realizable multilayer perceptrons, Neural Computing and
Applications, (2006) in press.

[12] P.M. Delaney, G.D. Papworth, and R.G. King, Fibre optic confocal imaging
(FOCI) for in vivo subsurface microscopy of the colon, eds. V.R. Preedy
and R.R. Watson, Methods in disease: Investigating the gastrointestinal tract,
(Greenwich Medical Media, London, UK, 1998).

[13] American Cancer Society, Cancer facts and figures, American Cancer Society,
Atlanta, Georgia, publication no.5008.00, (2000).

[14] S. Parker, T. Tong, S. Bolden, and P. Wingo, Cancer Statistics, CA Cancer
Journal for Clinicians, 47 (1997) 5–27.

[15] D. Rex, R. Weddle, D. Pound, K. O’Connor, R. Hawes, R. Dittus, J. Lappas,
and L. Lumeng, Flexible sigmoidoscopy plus air contrast barium enema versus
colonoscopy for suspected lower gastrointestinal bleeding, Gastroenterology, 98
(1990) 855–861.

[16] S.A. Karkanis, D.K. Iakovidis, D.A. Karras and D.E. Maroulis, Computer Aided
Tumor Detection in Endoscopic Video using Color Wavelet Features, IEEE
Transactions in Information Technology in Biomedicine, 7 (2003) 141–152.

[17] S.A. Karkanis, G.D. Magoulas, and N. Theofanous, Image recognition and
neuronal networks: Intelligent systems for the improvement of imaging
information, Minimally Invasive Therapy & Allied Technologies, 9 (2000) 225–
230.

[18] G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis, Neural Network-based
Colonoscopic Diagnosis Using On-line Learning and Differential Evolution,
Applied Soft Computing, 4 (2004) 369–379.

[19] C.K. Kwoh, Probabilistic reasoning from correlated objective data, Ph.D.
Thesis, (Imperial College, London, UK, 1995).

16



[20] C.G. Looney, Pattern recognition using neural networks, (Oxford University
Press, Oxford, UK, 1997).

[21] A.N. Esgiar, R.N.G. Naguib, B.S. Sharif, M.K. Bennett, and A. Murray,
Microscopic image analysis for quantitative measurement and feature
identification of normal and cancerous colonic mucosa, IEEE Trans. Inform.
Technol. Biomed., 2 (1998) 197–203.

[22] S.A. Karkanis, G.D. Magoulas, D.K. Iakovidis, D.A. Karras, and D.E. Maroulis,
Evaluation of textural feature extraction schemes for neural network–based
interpretation of regions in medical images, in Proc. of the IEEE International
Conference on Image Processing (ICIP), pp. 281–284, (Thessaloniki, Greece,
2001).

[23] S.A. Karkanis, G.D. Magoulas, D.K. Iakovidis, D.E. Maroulis, and
N. Theofanous, Tumor recognition in endoscopic video images, in Proc. of the
26th EUROMICRO Conference, pp. 423–429, (Maastricht, Netherlands, 2000).

[24] J.G. Daugman, Complete discrete 2D Gabor transforms by neural networks
for image analysis and compression, IEEE Trans. Acoustic, Speech and Signal
Processing, 36 (1988) 1169–1179.

[25] C.H. Chen, A study of texture classification using spectral features, in Proc. of
the International Conference on Pattern Recognition, pp. 1074–1077, (Munich,
Germany, 1982).

[26] C.C. Gotlieb and K. Kreyszig, Texture descriptors based on cooccurrence
matrices, Computer Vision, Graphics and Image Processing, 51 (1990) 70–86.

[27] R.M. Haralick, Statistical and structural approaches to texture, IEEE Proc., 67
(1979) 786–804.

[28] G.R. Cross and A.K. Jain, Markov random field texture models, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5 (1983) 25–39.

[29] R.A. Jacobs, Increased rates of convergence through learning rate adaptation,
Neural Networks, 1 (1988) 295–307.

[30] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning internal
representations by error propagation, eds. D.E. Rumelhart and J.L. McClelland,
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, pp. 318–362, (MIT Press, Cambridge, Massachusetts, 1986).

[31] T.P. Vogl, J.K. Mangis, J.K. Rigler, W.T. Zink, and D.L. Alkon, Accelerating
the convergence of the back–propagation method, Biological Cybernetics, 59
(1988) 257–263.

[32] V.P. Plagianakos, G.D. Magoulas, and M.N. Vrahatis, Deterministic
Nonmonotone Strategies for Effective Training of Multi–Layer Perceptrons,
IEEE Transactions on Neural Networks, 13 (2002) 1268–1284.

[33] Y. Lee, S.-H. Oh and M.W. Kim, An analysis of premature saturation in
backpropagation learning, Neural Networks, 6 (1993) 719–728.

17



[34] J. Barzilai and J.M. Borwein, Two point step size gradient methods, IMA
Journal of Numerical Analysis, 8 (1998) 141–148.

[35] V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis, Automatic adaptation
of learning rate for backpropagation neural networks, ed. N.E. Mastorakis,
Recent Advances in Circuits and Systems, pp. 337–341 (World Scientific,
Singapore, 1998).

[36] C. Leopold, Parallel and Distributed Computing: A Survey of Models,
Paradigms and Approaches, (John Wiley & Sons, 2000).

[37] The Beowulf Project, http://www.beowulf.org, last accessed 15/06/2004.

[38] T.L. Sterling, J. Salmon, D.J. Becker, and D.F. Savarese, How to build a
Beowulf: A Guide to Implementation and Application of PC Clusters, (MIT
Press, Cambridge, 1999).

[39] L. Coetzee and E.C. Botha, An analysis of coarse–grain parallel training of a
neural net, Network: Computation in Neural Systems, 6 (1995) 73–91.

[40] D. Anguita, A. Boni, and G. Parodi, A case study of distributed high–
performance computing system for neurocomputing, Journal of Systems
Architecture, 46 (2000) 429–438.

[41] V.P. Plagianakos, M.N. Vrahatis, and G.D. Magoulas, Nonmonotone Methods
for Backpropagation Training with Adaptive Learning Rate, in Proc. of the
IEEE International Joint Conference on Neural Networks (IJCNN’99), pp.
2219–2223, (Washington D.C., 1999).

[42] D. Nguyen and B. Widrow, Improving the learning speed of 2–layer neural
network by choosing initial values of the adaptive weights, in Proc. of the IEEE
First International Joint Conference on Neural Networks, pp. 21–26, (1990).

18


	ADP2D.tmp
	Magoulas3.pdf

