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Abstract

State space models are a flexible class of Bayesian model that can be used to

smoothly capture non-stationarity. Observations are assumed independent given

a latent state process so that their distribution can change gradually over time.

Sequential Monte Carlo methods known as particle filters provide an approach to

inference for such models whereby observations are added to the fit sequentially.

Though originally developed for on-line inference, particle filters, along with re-

lated particle smoothers, often provide the best approach for off-line inference.

This thesis develops new results for particle filtering and in particular develops a

new particle smoother that has a computational complexity that is linear in the

number of Monte Carlo samples. This compares favourably with the quadratic

complexity of most of its competitors resulting in greater accuracy within a given

time frame.

The statistical analysis of extremes is important in many fields where the largest

or smallest values have the biggest effect. Accurate assessments of the likelihood of

extreme events are crucial to judging how severe they could be. While the extreme

values of a stationary time series are well understood, datasets of extremes often

contain varying degrees of non-stationarity. How best to extend standard extreme
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value models to account for non-stationary series is a topic of ongoing research.

The thesis develops inference methods for extreme values of univariate and mul-

tivariate non-stationary processes using state space models fitted using particle

methods. Though this approach has been considered previously in the univariate

case, we identify problems with the existing method and provide solutions and

extensions to it. The application of the methodology is illustrated through the

analysis of a series of world class athletics running times, extreme temperatures

at a site in the Antarctic, and sea-level extremes on the east coast of England.
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Chapter 1

Introduction

While much of statistics is concerned with typical behaviour, it is often the most

extreme values that have the biggest impact. Examples range from flooding to

financial crashes, hurricanes and world records. Quantifying how unlikely these

events are is key to predicting when they might happen again as well as how severe

or remarkable they could be.

To answer these questions and more, extreme value theory provides a collection

of models and modelling approaches for analysing the largest or smallest values of

a dataset. The models are typically justified by asymptotic theory that considers

the distribution of the most extreme values of an infinite sample. By assuming

these to hold for a finite sample, approximate models for the extreme values of

a series can be obtained while the distribution of the underlying sample remains

unknown.

Since extreme values by definition occur infrequently, datasets of extreme values

are often collected over a period of time so arise as a time series. While this gives

an opportunity for the most extreme events to be observed, it often adds diffi-

culties to modelling as the distribution of extreme values may change over time.

The extremes of independent or stationary sequences are fairly well understood,

1



CHAPTER 1. INTRODUCTION 2

particularly of univariate series. However, the extreme values of non-stationary se-

quences are less understood with many recent papers proposing alternative models

to capture the non-stationarity.

State space models have received much recent attention as a flexible class of non-

linear models for general time series. Observations are assumed to be conditionally

independent given a hidden state process which captures the non-linearity and non-

stationarity present in the series. A Bayesian model is typically constructed where

inference about the observations is obtained by integrating out the hidden process.

As with most complex Bayesian models, the integrals required to apply the model

are intractable in general. Monte Carlo methods are typically used to overcome

these intractabilities by sampling possible state values and parameters from the

model to approximate the integrals with finite sums. For this, Markov Chain

Monte Carlo (MCMC) is often used to sample from the joint distribution of the

entire hidden state process given all the observations. However, MCMC often

struggles with this as the states are frequently highly correlated and the dimension

of the sample space grows with the number of observations.

Particle filters and related sequential Monte Carlo methods provide an alternative

class of algorithms for fitting state space models. Originally developed to estimate

the current value of the state on-line as observations arrive, particle methods are

being increasingly applied off-line as an alternative to MCMC. By incorporating

observations into the fit sequentially, particle methods sample one state at a time

rather than sampling the whole process at once thus reducing the dimension of

each sample.

In this thesis we use state space models to capture non-stationarity in extreme

value time series. This allows smooth non-linear trends to be incorporated into an

extreme value analysis through a Bayesian model that accounts naturally for the

uncertainties involved. As well as models for the extremes of a univariate series, we

also consider bivariate models which allow the dependencies between the extremes
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of two variables to be studied.

We fit the models with sequential particle algorithms that we tailor to modelling

extreme values. The use of sequential algorithms allows long datasets in particular

to be fitted although this need not be the case. Through the course of improving

particle methods for the modelling of extremes, we provide many new results that

can be used with more general state space models.

The thesis is structured as follows. In Chapter 2 we review relevant literature

within the fields of particle filtering and extreme value theory. We begin by defining

the state space model before introducing basic particle filters that can be used for

their inference. After listing their flaws we describe many enhancements to the

basic filter that enable it to be applied more efficiently. We also review methods

of estimating parameters in the model as well as extensions of the particle filter

to perform smoothing, both of which will be useful when it comes to modelling

extremes.

Following from Section 2.3 we present results from univariate extreme value theory.

We start by considering the extremes of IID random variables before extending

the results to dependent and non-stationary sequences. We then provide a sim-

ilar review of multivariate extreme value theory which considers the extremes of

components of multivariate variables as well as the dependencies between them.

In Chapter 3 we provide new results in particle filtering, focusing on aspects of

particle methods that will aid our subsequent application to the analysis of extreme

values. Section 3.1 begins with a study on re-sampling, an important step in most

particle filters, with a new method for selecting when one should or should not re-

sample. In Section 3.2 we present a new particle smoothing algorithm with linear

computational complexity that compares favourably with the quadratic complexity

of most particle smoothers. Finally, in Section 3.3 we construct an Expectation-

Maximisation (EM) algorithm that uses our new smoothing algorithm to estimate

fixed parameters in the model.
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We begin our analysis of extreme values using state space models in Chapter 4. In

this chapter we consider the extreme values of univariate time series, presenting

our models through a couple of example analyses. Our first example looks at the

women’s 3000m running event with the aim of estimating the probability of an

extreme world record. A state space model is used to smoothly account for the

clear non-linear trend present in the series of historical annual records. For our

second example we study a series of daily temperature measurements from the

Antarctic peninsula made over a period of 44 years. Examining the upper and

lower extremes of the series requires us to account for the dependence between

neighbouring measurements as well as the separation of the trend in the bulk of

the data to that in the extremes.

In our final chapter we jointly model the extreme values of a pair of related series.

This allows us to study the dependence between the extreme values of one vari-

able to the other as well as the connection between the non-stationary trends in

each component. We begin by extending the women’s 3000m analysis by drawing

connections with the women’s 1500m race. By exploiting these connections we

can obtain a better estimate of our target tail probability. We conclude the the-

sis with a bivariate analysis of sea-levels at pairs of sites along the eastern coast

of England. By making use of the state space approach, we allow the extremal

dependence between two sites to vary smoothly over time to ask whether such a

change is significant.



Chapter 2

Literature review

2.1 Particle Filtering

In this section we introduce the state space model used throughout this thesis and

describe the filtering problem. We review the limitations of the Kalman Filter

before describing particle filtering in detail. See Doucet et al. (2001) for a good

introduction to particle filters and their applications.

2.1.1 State space model

State space models provide a flexible framework to handle non-linear time series.

These models assume a time-series with observations Yt that are conditionally

independent given a hidden process Xt. We assume throughout this thesis that

Xt is a real-valued Markov chain. Formally the model is given by a state equation

and an observation equation, which can be represented in terms of conditional

5
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distributions

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ ft(·|xt), (2.1)

Yt|{X1:t = x1:t, Y1:t−1 = y1:t−1} ∼ gt(·|xt), (2.2)

where we use the notation that x1:t = (x1, . . . , xt), and similarly for y1:t. The

state Xt and observations Yt may both be multidimensional and the state and

observation densities ft and gt are typically arbitrary.

We assume for simplicity that the observations are observed at times 1, 2, . . . al-

though this is really just shorthand for observation times t1, t2, . . .. We will usually

assume the state and observation densities are constant over time and remove t

from the notation. We will be working with a Bayesian state space model which

is completed through specifying a prior distribution π(x0) for X0. Alternatively,

some authors specify the prior for X1. A graph representing the model is shown

in Figure 2.1.

The Markov form of the state (2.1) means that if Xt is known at time t, neither the

history of the state nor the sequence of currently available observations provide

any additional information about the future of the series. Similarly, no additional

information about Yt is obtainable if Xt is known. Some sequential Monte Carlo

algorithms introduced in later sections work with more general models than this

but these are not considered here.

0 1

t−1

t−1 t

t
1

X X

YYY

X X

Figure 2.1: General form of the state space model showing the conditional inde-
pendences that exist between the observations Yt and the hidden states Xt.
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2.1.2 Kalman Filter

When the observations are arriving sequentially we are often interested in the

current value of the state Xt given all the available data. For this filtering prob-

lem, interest lies in estimating the posterior distribution p(xt|y1:t). This can, in

principle, be calculated recursively using

p(xt|y1:t) ∝ g(yt|xt) p(xt|y1:t−1)

= g(yt|xt)

∫
f(xt|xt−1)p(xt−1|y1:t−1) dxt−1. (2.3)

Thus the filtering density is obtained, up to proportionality, by multiplying the

likelihood g(yt|xt) by the one-step prediction density p(xt|y1:t−1). However, for

most models, solving (2.3) analytically is impossible.

An important exception of this is the Kalman Filter of Kalman (1960). Closed form

expressions for the filtering density exist if both the state density f(xt|xt−1) and

the observation density g(yt|xt) are linear-Gaussian and the prior is also Gaussian.

Put simply, the state space model can have the following form:

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ N (Fxt, Q),

Yt|{X1:t = x1:t, Y1:t−1 = y1:t−1} ∼ N (Gxt, R),

X0 ∼ N (µ0,Σ0),

(2.4)

where both the dimensions df of the state vector Xt and dg of the observation

vector Yt are arbitrary. The matrices F (df × df ), Q (df × df ), G (dg × df ), R

(dg×dg), Σ0 (df×df ) and vector µ0 (df ) are all arbitrary except that, as covariance

matrices, Q, R and Σ0 must be positive semi-definite. When these conditions are

met, the filter densities are all Gaussian with means and covariance matrices that

can be calculated using only matrix operations.

The Kalman Filter equations for recursively calculating p(xt|y1:t) ∼ N (µt,Σt) are
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Algorithm 2.1: Kalman Filter.

For t = 1, 2, . . ., assume the filter at time t− 1 is N (µt−1,Σt−1). Then

1. Predict: Set µt|t−1 = Fµt−1 and Σt|t−1 = FΣt−1F
′ +Q.

2. Update: Set zt = yt −Gµt|t−1, St = GΣt|t−1G
′ +R and Kt = Σt|t−1G

′S−1
t

and then the filter at time t is N (µt,Σt) with

µt = µt|t−1 +Ktzt and Σt = (I −KtG)Σt|t−1.

given in Algorithm 2.1. The first step of each iteration produces a vector µt|t−1 and

matrix Σt|t−1 which are the mean and variance of the prediction density p(xt|y1:t−1).

If the observation yt is missing, this density is also the filter density since it uses

all the information available at time t. It is therefore very easy to account for

missing data with the Kalman Filter. It is also easy to make predictions of future

states by repeating the prediction step k more times to give p(xt+k|y1:t).

Extensions

The biggest disadvantage of the Kalman Filter is its reliance on the linear-Gaussian

forms of the state and observation densities. Many methods have been proposed

to extend the Kalman Filter to non-linear and non-Gaussian cases.

The Extended Kalman Filter (EKF) is a commonly used alternative to the Kalman

Filter which allows the state and observation equations to be non-linear while still

assuming Gaussian distributions throughout. It works by linearising the model

with first-order Taylor approximations so that the standard Kalman Filter equa-

tions can be used. If the model equations are highly non-linear the approximations

made will lead to error which can cause the filter to diverge. See Jazwinski (1973)

and Anderson and Moore (1979) for details.

Other extensions include the Gaussian sum filter of Alspach and Sorenson (1972)

which allows non-Gaussian distributions by approximating them by Gaussian mix-

tures. The Unscented Kalman Filter (UKF) of Julier et al. (1995) aims to im-
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prove on the EKF when the state and observation equations are highly non-linear.

Finally, the Ensemble Kalman Filter (EnKF) of Evensen (1994) propagates an

ensemble of state vectors to avoid calculating the covariance matrix. This is par-

ticularly useful when the dimension of Xt is large in which case the Kalman Filter

equations can be slow.

While these extensions all aim to modify the Kalman Filter to allow non-linearity

or non-Gaussianity, they all do so by making approximations which only hold true

when the model is linear-Gaussian. They can therefore fail for models that are far

removed from linear-Gaussian by giving bad estimates of the position as well as

the covariances.

2.1.3 Basic particle filters

We would like to extend the Kalman Filter to arbitrary f and g without making

linear-Gaussian approximations. Since arbitrary models no longer give Gaussian

filtering densities, a more thorough approach is achieved by targeting the whole

pdf rather than just the mean and covariances. Since the calculation of these

densities is intractable in general, we resort to Monte Carlo methods. They have

the potential of approximating the target densities with errors that can be made

negligible by increasing the Monte Carlo sample size.

For general Bayesian models, Markov Chain Monte Carlo (MCMC) is widely used

to draw approximate samples from complex distributions. Since the target den-

sity is typically required in closed form (up to proportionality), standard MCMC

methods cannot be used to sample from p(xt|y1:t) whose form is unknown. How-

ever, MCMC methods may be applied to sample draws from the joint smoothing

distribution

p(x0:t|y1:t) ∝ π(x0)
t∏

s=1

f(xs|xs−1) g(ys|xs) (2.5)

which then marginally give the filter distribution.
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While in principle this provides a solution to extending the Kalman Filter to

arbitrary densities, it is often inappropriate, especially when the observations are

arriving sequentially. In this case we will typically wish to estimate p(xt|y1:t) as

the data arrive but (2.5) provides no simple way to recursively update draws using

MCMC alone. Berzuini et al. (1997) and others show how MCMC draws may

be updated using alternative Monte Carlo methods such as importance sampling

to approximate the filter densities for a few time steps. However, these methods

often deteriorate with time and it becomes necessary to rejuvenate the sample by

rerunning MCMC from scratch. To do this, the whole path X0:t must be sampled

and so the complexity of this step increases with t making MCMC impractical for

sequential inference.

Sampling Importance Re-sampling filter

Sequential Monte Carlo algorithms, known generically as particle filters, have been

proposed to overcome the restrictions imposed by the Kalman Filter. While Hand-

schin and Mayne (1969) and Handschin (1970) were the first to use Monte Carlo

methods for non-linear filtering, their methods only estimate the mean and co-

variance of the filtering density p(xt|y1:t). Gordon et al. (1993) were the first to

propose the following method which allows the state density f(xt|xt−1) and the

likelihood g(yt|xt) to be non-linear and non-Gaussian. Rather than approximating

the filter distributions as Gaussian they use a swarm of possible draws to repre-

sent the intractable densities. These particles are then updated sequentially as

the new observations arrive. The resulting algorithm, which was independently

proposed by Kitagawa (1996), is known as the Bayesian bootstrap or the Sampling

Importance Re-sampling (SIR) filter.

The basic idea is to represent all densities involving the state Xt by the discrete
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distribution made of Monte Carlo samples {x(i)
t }N

i=1

p(xt) '
1

N

N∑
i=1

δ(xt − x
(i)
t ),

where δ(·) is the Dirac delta function. Integrals made with respect to this density

are then approximated by sample means of the form

Ep(h(Xt)) =

∫
h(xt) p(xt) dxt '

1

N

N∑
i=1

h(x
(i)
t ). (2.6)

This means that properties of the distribution such as the expected value are

approximated by that of the sample. It can be shown using the weak law of large

numbers that these approximations become exact as N →∞.

The SIR filter has three stages for each time step t. If we assume we enter step

t with a sample {x(i)
t−1} approximating p(xt−1|y1:t−1), we first create a new sample

{x̃(i)
t } which approximates the one-step predictive distribution p(xt|y1:t−1). This

is achieved by sampling a new particle x̃
(i)
t from the state density f(xt|x(i)

t−1) once

for each i. If the observation yt is missing, these particles represent the filter

distribution for this time step and we can move to step t+ 1.

If, however, the new observation yt is available, we next use it to weight each of our

new particles with the likelihood g(yt|x̃(i)
t ). This can be shown to be the appropri-

ate importance weight for approximating p(xt|y1:t) by a sample from p(xt|y1:t−1).

We finally use these weights as probabilities with which to re-sample the predictive

particles. The re-sampled draws {x(i)
t } then represent a sample approximating our

target distribution p(xt|y1:t).

The algorithm is summarised in Algorithm 2.2. Its computational complexity is

O(N) where N is the number of particles. The easiest way to initialise the method

is to begin with a sample from the prior one step before the first observation as

this can be thought of as a filter distribution too. Alternatively, we can begin with

a sample from p(x1) if this is possible and go straight to the weight stage of the
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Algorithm 2.2: Sampling Importance Re-sampling filter.

1. Initialisation: Sample {x(i)
0 } from the prior π(x0).

2. For t = 1, 2, . . .

(a) Predict: Sample x̃
(i)
t ∼ f(.|x(i)

t−1) once for each i.

(b) Weight: Assign each particle x̃
(i)
t the weight

w
(i)
t ∝ g(yt|x̃(i)

t )

and normalise them to sum to 1.

(c) Re-sample: Sample xt N times from the discrete distribution with

support {x̃(i)
t } and probability masses {w(i)

t }.

algorithm.

Unlike the Kalman Filter, the SIR filter has very few requirements to satisfy for

it to be applied. It requires only that

1. the prior π(x0) (or p(x1)) can be sampled from,

2. the state distribution f(xt|xt−1) can be sampled from,

3. the form of the likelihood g(yt|xt) is known up to a normalising constant.

While the algorithm is simple in design, it can perform poorly over time as Gordon

et al. (1993) acknowledge. This is especially true when there is a big difference

between the significant regions of the state space in p(xt|y1:t−1) and g(yt|xt). When

this is the case the weights w
(i)
t will be very uneven and few of the predictive

particles x̃
(i)
t will be re-sampled, effectively wasting the others and reducing the

effective sample size.

Weighted particles

While the SIR filter uses re-sampling to create a set of unweighted particles, many

sequential Monte Carlo algorithms which output weighted samples have been pro-
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posed. Each Monte Carlo sample x
(i)
t is given a weight w

(i)
t that becomes the

probability mass placed on the sample in the discrete approximation of the den-

sity. Integrals made with respect to this density are then approximated analogously

to (2.6) by weighted means of the form

Ep(h(Xt)) =

∫
h(xt)p(xt) dxt '

N∑
i=1

h(x
(i)
t )w

(i)
t .

One early example of this is the sequential imputation method of Kong et al. (1994).

When applied to our state space model1, their method amounts to sequentially

sampling x
(i)
t ∼ p(xt|x(i)

t−1, yt) and weighting with w
(i)
t ∝ p(yt|x(i)

t−1)w
(i)
t−1, where the

weights are normalised to sum to 1. Thus, rather than re-sampling each time step,

the weights are incrementally updated using the previous step’s weighted particles.

For sequential imputation to be applied, however, the densities p(xt|xt−1, yt) and

p(yt|xt−1) must be known, which is often not the case.

More generically, the Sequential Importance Sampling (SIS) method of Doucet

(1998) and Liu and Chen (1998) allows an arbitrary sampling distribution to be

chosen and then accounted for by the importance weight. If particles are propa-

gated through the state equation, the SIS differs from the SIR filter only in the

lack of re-sampling.

Re-sampling has its advantages and disadvantages. By incrementally updating

the weights rather than re-sampling, the weights become increasingly uneven; this

ultimately leads to all the mass being placed upon a single particle, wasting the

others. Re-sampling the particles using the current weights as probabilities pro-

duces multiple copies of useful particles while losing ones with little or no weight.

This allows future particles to be sampled from the useful ones giving a greater

sample overall. However, since re-sampling is a random process, it introduces

noise so that estimates from re-sampled particles are initially worse than before

1Sequential imputation is one example of a sequential Monte Carlo algorithm that can be
applied to a wider class of models than we consider here.
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re-sampling.

Liu and Chen (1995) looked at the problem of deciding when to re-sample by using

the effective sample size defined in Kong et al. (1994) as

ESS(wt) :=

(
N∑

i=1

w
(i)2
t

)−1

. (2.7)

As the name suggests, this gives a measure of the operational strength of the

sample. It takes its maximum value of N when the weights are all even and its

minimum value of 1 when all the mass is placed on a single point. We can therefore

think of a weighted sample as roughly comparable with an unweighted one with

sample size ESS(wt). We note, however, that the ESS is only meaningful for

independent samples and should therefore only be applied to importance weights

before re-sampling; after re-sampling we have ESS(wt) = N whereas the post re-

sampling estimates are initially worse due to the extra Monte Carlo error induced.

Liu and Chen (1995) therefore suggest calculating ESS(wt) every time step from

the incremental weights and re-sampling if it falls below a predetermined threshold.

However, while the threshold should clearly lie between 1 and N , it is unclear what

exact value it should take for a given model.

2.1.4 Auxiliary particle filter

Throughout this thesis we will work with the Auxiliary SIR (ASIR) filter of Pitt

and Shephard (1999a). If we assume that at time t− 1 we have weighted particles

{(x(i)
t−1, w

(i)
t−1)}N

i=1 approximating p(xt−1|y1:t−1) we can use the filter recursion (2.3)

to write our target at time t as

p(xt|y1:t) ' c g(yt|xt)
N∑

i=1

f(xt|x(i)
t−1)w

(i)
t−1, (2.8)
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where c is a normalising constant. In this approach we aim to approximate

c g(yt|xt) f(xt|x(i)
t−1)w

(i)
t−1 (2.9)

by

q(xt|x(i)
t−1, yt) β

(i)
t ,

where q(·|xt−1, yt) is a distribution we can sample from and {β(i)
t }N

i=1 are normalised

weights which sum to 1. We then use a combination of re-sampling and importance

sampling to generate a weighted sample approximating (2.8).

The algorithm is shown in Algorithm 2.3. A key feature of the method is the

augmentation of the state space by the auxiliary variable ji. This allows the final

weights w
(i)
t to be even if q and β

(i)
t are chosen so that (2.9) is well approximated.

Since the auxiliary variable is nothing but a label selecting a particular particle

x
(i)
t−1, sampling the jis with the initial weights {β(i)

t } amounts to re-sampling the

Algorithm 2.3: Auxiliary particle filter.

1. Initialisation: Sample {x(i)
0 } from the prior π(x0) and set w

(i)
0 = 1/N for

all i.

2. For t = 1, 2, . . .

(a) Optionally re-sample: Calculate the re-sampling weights {β(i)
t } and

compare ESS(βt) with a predetermined threshold uN :

i. If ESS(βt) < uN , re-sample by using the {β(i)
t } as probabilities

to sample N indices j1, ..., jN from {1, ..., N}.
ii. If ESS(βt) ≥ uN , do not re-sample by resetting β

(i)
t = 1 and

ji = i for all i.

(b) Propagate: Sample the new particles x
(i)
t independently from

q(·|x(ji)
t−1, yt).

(c) Re-weight: Assign each particle x
(i)
t the corresponding importance

weight

w
(i)
t ∝

g(yt|x(i)
t ) f(x

(i)
t |x

(ji)
t−1)w

(ji)
t−1

q(x
(i)
t |x

(ji)
t−1, yt) β

(ji)
t

and normalise them to sum to 1.
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particles before they are propagated. By re-sampling first we propagate useful

particles multiple times while leaving behind particles which would lead to small

weights. This gives an evenly weighted sample of unique particles rather than the

duplicates achieved by re-sampling at the end.

As before, the re-sampling step is optional and can be omitted by setting ji = i

and removing β
(i)
t from the weight (by setting β

(i)
t = 1) thus propagating each

particle x
(i)
t−1 once. This eliminates the extra noise from re-sampling but gives

uneven weights. In this form the algorithm is essentially the SIS algorithm applied

to our state space model. As with SIS, the effective sample size may be used to

decide when to re-sample but, since the initial weights {β(i)
t } are used to re-sample,

the decision should be based upon ESS(βt) rather than ESS(wt).

To obtain evenly weighted particles after re-sampling, (2.9) must be well approx-

imated. Optimally this is achieved by setting q(xt|xt−1, yt) = p(xt|xt−1, yt) and

β
(i)
t ∝ p(yt|x(i)

t−1)w
(i)
t−1 as in sequential imputation in which case we say the filter is

adapted . However, these densities are often intractable although good approxima-

tions of them can give almost even weights.

Pitt and Shephard (1999a) offer some advice on the selection of q and β
(i)
t includ-

ing Taylor expanding to second-order log g(yt|xt), so long as it is concave in xt, to

produce a Gaussian proposal density when the state is Gaussian. If the log likeli-

hood is not concave a first-order Taylor expansion may be of use. The re-sampling

weights β
(i)
t can then be approximated by p(yt|x̂(i)

t )w
(i)
t−1 where x̂

(i)
t is some likely

value of f(xt|x(i)
t−1). The simplest choice of proposal is q(xt|xt−1, yt) = f(xt|xt−1)

and β
(i)
t = w

(i)
t−1 which gives the SIR filter.

2.1.5 Enhancements

Numerous modifications and enhancements have been proposed for the particle

filter. We focus here on those that will be of most use to us in this thesis.
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Improved initialisation

The standard practice in Bayesian statistics of representing prior uncertainty by

prior densities with large variances can cause problems with particle filters. By

initialising the algorithm by sampling from a sparse prior it is likely that most

of the particles are so far away from the target distribution that they are given

negligible weights or are lost by re-sampling. With very uncertain priors this often

leaves just one particle with any mass after the first time step.

This problem may be overcome by sampling the first time step p(x1|y1) ∝ p(x1) g(y1|x1)

separately. This can be done with importance sampling but other authors have

suggested MCMC. If the first observation does not provide enough information

to restrict the distribution of all components of the state, it may be necessary to

sample the first few time steps simultaneously to initialise the algorithm.

Stratified re-sampling

Re-sampling at every time step is not the best strategy because the re-sampling

process introduces extra variation. Liu and Chen (1995) showed that particles

need not be sampled independently (termed multinomial sampling as the number

of re-sampled particles follow a multinomial distribution) and that producing a

more stratified sample reduces the additional variance. In particular, they pro-

pose residual sampling of the particles {x(i)} with weights {β(i)} which involves

deterministically picking bNβ(i)c copies of x(i) (where byc is the integer part of y)

and sampling the remaining r particles independently from {x(i)} using probabil-

ities γ(i) := (Nβ(i) − bNβ(i)c)/r.

Carpenter et al. (1999) show that the re-sampling noise is minimised by producing

a stratified sample of the indices and give an O(N) algorithm to achieve this.

Bolic et al. (2004) review the complexity of re-sampling algorithms and propose

an improved algorithm for stratified sampling.
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Using stratified sampling in a particle filter makes re-sampling more preferable by

reducing the additional variation accrued whilst increasing the number of useful

particles to propagate. This therefore means that we can re-sample more often by

using a larger ESS threshold.

Rao-Blackwellisation

A further enhancement which can often be used to improve the filter is Rao-

Blackwellisation (also known simply as marginalisation). The idea is that for

some models it is possible to integrate out part of the state analytically. This

enables the integrable part of the state to be represented by a distribution rather

than a specific value which, as the Rao-Blackwell theorem shows, will give less

variable estimates. See Casella and Robert (2001) for an introduction to Rao-

Blackwellisation in general and Liu and Chen (1998) and Doucet et al. (2000) for

applications to particle filtering.

2.1.6 Parameter estimation

We have so far focused on estimating the dynamic state vector Xt given a series of

observations y1:t but in practical applications the model often contains additional

static parameters θ. These may appear in the state transition density f , the obser-

vation density g or even the prior π. When observations are arriving sequentially,

we may want incremental estimates of θ or even the joint distribution p(xt, θ|y1:t).

Alternatively, we may simply require a final estimate of the parameters to use for

off-line inference.

Augmenting the state vector

The simplest way to estimate static parameters is to augment the state vector

with θ and proceed with any particle filter. This naturally provides sequential
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parameter estimates through the filter distribution p(xt, θ|y1:t) but has one major

flaw. Since θ remains constant from one time step to the next, the parameter

space is only explored in the initialisation of the algorithm. Re-sampling therefore

permanently reduces the number of unique θ values which ultimately degrades to

a single particle with which to represent p(θ|y1:t).

Many authors have suggested methods to rejuvenate re-sampled particles, most

of which can also be applied when there are no static parameters. Gordon et al.

(1993) and Liu and West (2001) add noise to the particles which effectively replaces

the static parameters with slowly varying ones. This can lead to errors when too

much noise is added while with too little noise the particles still struggle to explore

the sample space, and so degrade on re-sampling.

Other methods include Fearnhead (1998) and Gilks and Berzuini (2001) who in-

troduce MCMC moves to diversify the sample after re-sampling. Since the MCMC

moves require the closed form joint density p(x0:t|y1:t), the complexity of the moves

increases with t. This is overcome by Fearnhead (2002) with the use of sufficient

statistics when they exist.

Other methods

An alternative method for estimating θ of Storvik (2002) is based on writing the

joint target at time t as

p(x1:t, θ|y1:t) ∝ p(x1:t−1|y1:t−1) p(θ|x1:t−1, y1:t−1) f(xt|xt−1, θ) g(yt|xt, θ).

This justifies sampling θ(i) afresh from p(θ|x1:t−1, y1:t−1) and updating particles

{x(i)
t−1} with a particle filter conditional on {θ(i)}. For its complexity to remain

constant over time, there must be a sufficient statistic T (i) of (x
(i)
1:t−1, y1:t−1) for θ

that can be easily updated recursively.
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When we only require an off-line estimate of the parameters given a block of data

y1:T we may consider maximising the overall model likelihood L(θ) := p(y1:T |θ).

Kitagawa (1996) gave the following estimate for the model likelihood:

L(θ) = p(y1:T |θ) '
T∏

t=1

N∑
i=1

g(yt|x(i)
t|t−1, θ)w

(i)
t−1, (2.10)

where x
(i)
t|t−1 is a predictive particle sampled from the state f(xt|x(i)

t−1, θ) and {(x(i)
t ,

w
(i)
t )} are sampled from a particle filter given θ. In principle, L(θ) may be max-

imised on a grid of θ values although this is only feasible when θ has few dimensions

as each evaluation requires a full run of the particle filter. See Hürzeler and Künsch

(2001) and Pitt (2002) for alternative likelihood based methods.

Poyiadjis et al. (2005) provide a particle method for approximating the derivative

of the filter density with respect to unknown parameters θ. This can then be

used to maximise the likelihood via gradient-based methods. Briers et al. (2004)

and Wills et al. (2008) alternatively propose to maximise the likelihood using

an Expectation-Maximisation (EM) algorithm based upon the repeated use of a

particle smoother (see Section 2.2). To avoid this step, Andrieu et al. (2005)

propose an EM-type algorithm that makes use of the invariant state distribution,

if it exists, to maximise a pseudo-likelihood to give a parameter estimate.
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2.2 Particle Smoothing

This section introduces the smoothing problem and reviews current extensions of

particle filters to smoothing.

2.2.1 Kalman Smoothing

While the filtering problem focuses on estimating the current state given a series

of observations, the corresponding smoothing problem is interested in updating

past values of the state given a block of data. Specifically, we wish to estimate the

smoothing distribution p(xt|y1:T ) for t = 1, . . . , T . In some applications the joint

smoothing distribution p(x1:T |y1:T ) is of interest but we assume for now that we

wish only to review past states individually.

We motivated the filtering problem with the presumption that data were arriving

sequentially and inference was required on-line. To contrast with this, we now

assume that a block of data y1:T has been observed and we need only the final

state estimates given this data. We can in principle use MCMC to draw samples

from the joint smoothing distribution using (2.5) but these often perform poorly

when the state is highly correlated. Also, since the whole path X0:T must be

sampled jointly, the dimension of the MCMC state will be very large if we have a

long time series.

As an alternative to MCMC, we focus on efficient algorithms that are sequential

over time as these will allow us to consider inference for long series with an overall

complexity of O(T ) where T is the number of observations. We also focus on

methods that make use of the sequential algorithms that exist for filtering.

A recursive formula for calculating the marginal smoothing density is given by

p(xt|y1:T ) = p(xt|y1:t)

∫
f(xt+1|xt)

p(xt+1|y1:t)
p(xt+1|y1:T ) dxt+1, for t < T , (2.11)
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where

p(xt+1|y1:t) =

∫
f(xt+1|xt) p(xt|y1:t) dxt.

This allows the target density p(xt|y1:T ) to be calculated backwards in time with

prior knowledge of the filter densities p(xt|y1:t). The recursion begins with p(xT |y1:T )

which is of course both a filter and smoother density. Thus the smoothing densities

may, in principle, be calculated by filtering forwards in time and then smoothing

backwards with (2.11).

As was the case for the filter recursion (2.3), the formula above will be intractable

for general state space models. The linear-Gaussian model of (2.4) is again an im-

portant exception with the Kalman Smoother providing algebraic formulae for the

mean and covariance matrices of the Gaussian smoothing densities (see Anderson

and Moore (1979) for details).

2.2.2 Smoothing while filtering

In its simplest form, particle smoothing can be achieved from a simple extension to

the particle filter as shown by Kitagawa (1996), and we call the resulting algorithm

the Filter-Smoother. As with the filter distribution p(xt|y1:t) in (2.3), we have a

recursive solution for the joint smoothing distribution:

p(x1:t|y1:t) ∝ g(yt|xt) f(xt|xt−1) p(x1:t−1|y1:t−1). (2.12)

By comparing (2.3) and (2.12) it is easy to show that the particle filter steps can be

used to update weighted paths {(x(i)
1:t, w

(i)
t )}N

i=1 approximating p(x1:t|y1:t). Doing

so simply requires keeping track of the inheritance of the newly sampled particle

x
(i)
t . This means that any filtering algorithm can be used and the method inherits

the O(N) computational complexity of the filter making large numbers of particles

feasible.
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While this Filter-Smoother approach can produce an accurate approximation of

the filtering distribution p(xt|y1:t) it gives a poor representation of previous states.

To see this we note that whenever we re-sample the paths {x(i)
1:t−1} (by re-sampling

{x̃(i)
t } in the SIR filter or sampling the auxiliary variables {ji} in the auxiliary filter)

we end up with multiple copies of some paths but lose others altogether. Therefore

the number of distinct particles at any given time decreases monotonically the more

times we re-sample. Also, with multiple copies of some particles, their weights are

effectively added together on a single point so that marginally the weights become

more uneven as we look back in time.

This can be seen in Figure 2.2 which represents ten smoothed paths x
(i)
1:6 showing

how they re-weight filter particles. As you can see, particles which are lost due to

re-sampling receive no weight and particles with many offspring have large weights.

While the filter approximation at time 6 is good, the weights become more uneven

as the number of weighted particles decreases going back in time. This is not

surprising since the particles at times t < 6 are drawn to approximate p(xt|y1:t) so

must be unevenly weighted if they are to represent a different distribution.
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Figure 2.2: Diagram showing how the simple Filter-Smoother re-weights the filter
particles. The arrows represent the dependencies between the particles at time t
and t − 1 due to re-sampling. The size of the particle represents its total weight
as a draw from the smoothed distribution.
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As a final point we note that re-sampling more infrequently can improve this

method of smoothing although there is a limit to how much this can help. Even

with no re-sampling, the approximation to p(xt|y1:T ) will deteriorate as T − t

gets large: with the particle approximation tending to give non-negligible weight

to all but a small subset of particles, and eventually only one particle having a

non-negligible weight.

2.2.3 Forwards-backwards smoothers

The Forward-Backward Smoother of Doucet et al. (2000), as well as the related

algorithms of Hürzeler and Künsch (1998) and Tanizaki (2001), is based around

the backwards recursion (2.11). The unknown densities can be approximated using

filter particles from the current time t and smoother particles from t+ 1 to obtain

p(xt|y1:T ) '
N∑

i=1

δ(xt − x
(i)
t )w

(i)
t|T ,

where

w
(i)
t|T :=

N∑
j=1

f(x
(j)
t+1|T |x

(i)
t )w

(i)
t∑N

k=1 f(x
(j)
t+1|T |x

(k)
t )w

(k)
t

w
(j)
t+1|T (2.13)

and δ(·) is the Dirac delta function.

This approximation can be used to sequentially re-weight the filter particles back-

wards in time so that they represent the marginal smoothing densities. Since the

calculation of each weight is an O(N2) operation, a crude application of the al-

gorithm would be O(N3). However, since the denominator of each summand in

(2.13) does not depend on i, they may be each calculated once and stored to reduce

the overall complexity to O(N2).

While the Forward-Backward smoother only approximates the marginal smooth-

ing densities, the related algorithms of Hürzeler and Künsch (1998) and Godsill

et al. (2004) re-sample paths backwards in time to produce samples from the joint
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smoothing density.

2.2.4 Two-Filter Smoother

The Two-Filter Smoother of Briers et al. (2004) combines samples from a parti-

cle filter with those from a backwards information filter to produce estimates of

p(xt|y1:T ).

Backwards information filter

The backwards information filter produces sequential approximations of the like-

lihood p(yt:T |xt) backwards through time and is based on the following recursion:

p(yt:T |xt) = g(yt|xt)

∫
f(xt+1|xt)p(yt+1:T |xt+1) dxt+1, for t < T . (2.14)

Since p(yt:T |xt) is not a probability density function in xt it may not have a finite

integral over xt in which case a particle representation will not work. The smooth-

ing algorithm in Kitagawa (1996) assumes implicitly that this is not the case but

Briers et al. (2004) propose the following construction which will always give a

finite measure.

They introduce artificial prior distributions γt(xt) to yield the backwards filter

densities

p̃(xt|yt:T ) :∝ γt(xt) p(yt:T |xt). (2.15)

Artificial priors are chosen so that γt(xt) is available in closed form. Briers et al.

(2004) assume the recursive relationship γt(xt) =
∫
f(xt|xt−1)γt−1(xt−1) dxt−1 af-

ter initial specification of γ0(x0) which, if selected to be the prior π(x0), yields

γt(xt) = p(xt) and p̃(xt|yt:T ) = p(xt|yt:T ) for all time steps t. This, however,

restricts the applicability of the method to tractable state models such as the

linear-Gaussian and is not necessary; any choice of γt(xt) will yield a valid back-
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wards filter density to propagate. Also, if the likelihood g(yt|xt) is integrable, we

can instead propagate a particle representation of p(yt:T |xt) by assuming γt(xt) ≡ 1

throughout the following derivation.

Following on from (2.14) the backwards filter is derived via

p̃(xt|yt:T ) ∝ γt(xt)g(yt|xt)

∫
f(xt+1|xt)

p̃(xt+1|yt+1:T )

γt+1(xt+1)
dxt+1

' γt(xt)g(yt|xt)
N∑

k=1

f(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

w̃
(k)
t+1,

where the weighted particles {(x̃(k)
t+1, w̃

(k)
t+1)} approximate p̃(xt+1|yt+1:T ). This is

very similar to the derivation of the forwards filter and as such many filtering

algorithms and enhancements can be modified for this purpose.

For example, an auxiliary backwards filter in the style of Pitt and Shephard (1999a)

can be made by finding a distribution q̃(·|yt, x̃
(k)
t+1) we can sample from such that

q̃(xt|yt, x̃
(k)
t+1)β̃

(k)
t ' γt(xt)g(yt|xt)f(x̃

(k)
t+1|xt)

w̃
(k)
t+1

γt+1(x̃
(k)
t+1)

.

We then proceed analogously to Algorithm 2.3 for t = T, ..., 1 after initialising

the algorithm with particles drawn from γT+1(xT+1). An adapted backwards filter

giving even weights w̃
(k)
t = 1/N is achieved with q̃(xt|yt, x̃

(k)
t+1) = p(xt|yt, x̃

(k)
t+1) and

β̃
(k)
t ∝ p̃(yt|x̃(k)

t+1)w̃
(k)
t+1 where we again use p̃ to denote a distribution which uses

γt(xt) throughout instead of p(xt).

Two-Filter Smoother

Having run a forwards particle filter and a backwards information filter, it is pos-

sible to combine the two to estimate p(xt|y1:T ). The Two-Filter Smoother is based
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upon writing the target density as

p(xt|y1:T ) ∝ p(xt|y1:t−1) · p(yt:T |xt)

∝
∫
f(xt|xt−1) p(xt−1|y1:t−1) dxt−1 ·

p̃(xt|yt:T )

γt(xt)
.

Therefore filter particles {(x(j)
t−1, w

(j)
t−1)} approximating p(xt−1|y1:t−1) and backwards

filter particles {(x̃(k)
t , w̃

(k)
t )} approximating p̃(xt|yt:T ) are used to obtain

p(xt|y1:T ) '
N∑

k=1

δ(xt − x̃
(k)
t )w̃

(k)
t|T ,

where

w̃
(k)
t|T :∝ w̃

(k)
t

γt(x̃
(k)
t )

N∑
j=1

f(x̃
(k)
t |x(j)

t−1)w
(j)
t−1. (2.16)

Thus particles from a forwards filter are used to re-weight those from a backwards

filter so that they represent the target distribution.
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2.3 Univariate Extreme Value Theory

This section gives an overview of univariate extreme value theory focusing on

aspects that will be of use in this thesis. For a more general introduction to the

theory and analysis of extreme values see Embrechts et al. (1997), Coles (2001) or

de Haan and Ferreira (2006) amongst others.

2.3.1 Maxima of IID random variables

Extreme value distributions for maxima

We begin by studying the extremal properties of a sequence of independent and

identically distributed (IID) univariate random variables Y1, . . . , Yn. We present

theory for the maximaMn := max{Y1, . . . , Yn} but can easily obtain corresponding

results for the minima through the identity

min{Y1, . . . , Yn} = −max{−Y1, . . . ,−Yn}.

If the Yis have common distribution function F (y) = P{Yi ≤ y}, we have

P{Mn ≤ y} = P{Y1 ≤ y, . . . , Yn ≤ y} = F (y)n

so that the distribution function of Mn is known if F is known. However, since in

practice we rarely know the exact distribution of a sample, we look for asymptotic

arguments to motivate a distribution for Mn.

Taking the limit as n→∞, Mn → yF where yF := sup{y|F (y) < 1} is the upper

end point of F . The limit distribution of Mn is therefore degenerate and so of no

use for modelling with finite n. However, the same is true for Ȳn := mean{Y1:n}

but, as the Central Limit Theorem shows, linear normalisation within the limit



CHAPTER 2. LITERATURE REVIEW 29

can lead to a non-degenerate distribution (in the case of the Gaussian limit law

under the additional constraint of Var(Yi) <∞). With this in mind, Theorem 2.1,

the Extremal Types Theorem (ETT) of Fisher and Tippett (1928), shows which

distributions are obtainable by linear normalisation of Mn (see Leadbetter et al.

(1983) for details).

Theorem 2.1 (Extremal Types Theorem). Given a sequence {Yn} of IID random

variables, define Mn := max{Y1:n}. If there exist sequences an ∈ < and bn > 0

such that

P

{
Mn − an

bn
≤ y

}
→ G(y) as n→∞,

for a non-degenerate distribution G, then G is either:

Negative-Weibull(µ, σ, α):

G(x) = exp

(
−
[
−
(
y − µ

σ

)]α

+

)
,

Gumbel(µ, σ):

G(y) = exp

(
− exp

{
−
(
y − µ

σ

)})
,

Fréchet(µ, σ, α):

G(y) = exp

(
−
[
y − µ

σ

]−α

+

)
,

for some µ ∈ <, σ > 0 and α > 0, where [y]+ := max{y, 0}.

Figure 2.3 shows the shape of the density functions for the three extremal distribu-

tions. Note that the Negative-Weibull distribution has an upper end point while

the Fréchet has a lower end point.

Generalised Extreme Value distribution

Von Mises (1954) and Jenkinson (1955) identified the Generalised Extreme Value
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Figure 2.3: Probability density functions of the Negative-Weibull(1,1,1) =
GEV(0,1,-1) (—), Gumbel(0,1) = GEV(0,1,0) (---) and Fréchet(-1,1,1) =
GEV(0,1,1) (·−) distributions.

(GEV) distribution which unifies the three limit distributions for linearly nor-

malised maxima. Its cumulative distribution function is given by

G(y) = exp

(
−
[
1 + ξ

(
y − µ

σ

)]− 1
ξ

+

)
, (2.17)

where µ ∈ <, σ > 0 and ξ ∈ <. We interpret the ξ = 0 case to mean the limit as

ξ → 0.

The shape parameter ξ is key to relating the original three extremal distributions

to the GEV form:

• If ξ < 0, GEV(µ, σ, ξ) = Negative-Weibull(µ− σ
ξ
,−σ

ξ
,−1

ξ
).

• If ξ = 0, GEV(µ, σ, ξ) = Gumbel(µ, σ).

• If ξ > 0, GEV(µ, σ, ξ) = Fréchet(µ− σ
ξ
, σ

ξ
, 1

ξ
).

Basic properties of the GEV are summarised in Table 2.1. We note in particular

that the Fréchet distribution (ξ > 0) has a heavy tail with E(X) = ∞ if ξ ≥ 1.

Another important property is max-stability : A distribution F is said to be max-

stable if, for IID random variables Y1, . . . , Yn ∼ F (·), there exist constants An and

Bn > 0 such that An + Bn max{Y1:n} ∼ F (·) or equivalently F n((y − An)/Bn) =
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parameters µ ∈ < σ > 0 ξ ∈ <
cdf G(y) = exp

(
−
[
1 + ξ

(
y−µ

σ

)]− 1
ξ

+

)
pdf g(y) = 1

σ

[
1 + ξ

(
y−µ

σ

)]−(1+ 1
ξ )

+
G(y)

support (−∞, µ− σ
ξ
) if ξ < 0 < if ξ = 0 (µ− σ

ξ
,∞) if ξ > 0

mean µ+ σ
ξ
(Γ(1− ξ)− 1) if ξ < 1 ∞ if ξ ≥ 1

variance σ2

ξ2 (Γ(1− 2ξ)− Γ(1− ξ)2) if ξ < 1
2

∞ if ξ ≥ 1
2

Table 2.1: Properties of the Generalised Extreme Value distribution. Both the
mean and the variance depend on the Gamma function Γ(·).

F (y) for all y. It can be shown that the GEV satisfies this property for all ξ but

also that it is the only class of distributions to do so. This mirrors the convolution

property of the Gaussian distribution which says that the sum of n IID Gaussian

random variables is also Gaussian.

Using the GEV distribution in Theorem 2.1 gives the Unified Extremal Types

Theorem (UETT), Theorem 2.2 below. If, for IID random variables Y1, . . . , Yn ∼

F (·), the normalising sequences that give the GEV limit G exist, we say that F is

in the domain of attraction of G and write F ∈ Dξ.

Theorem 2.2 (Unified Extremal Types Theorem). Given a sequence {Yn} of IID

random variables, define Mn := max{Y1:n}. If there exist sequences an ∈ < and

bn > 0 such that

P

{
Mn − an

bn
≤ y

}
→ G(y) as n→∞, (2.18)

for a non-degenerate distribution G, then G is the cumulative distribution function

of the Generalised Extreme Value distribution for some parameters µ ∈ <, σ > 0

and ξ ∈ <.
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Modelling with the GEV distribution

Theorem 2.2 is used to motivate the GEV model for maxima by assuming the limit

(2.18) holds for a finite n so that

P

{
Mn − an

bn
≤ y

}
= G(y),

for some constants an and bn. Setting z = an + bny this gives

P{Mn ≤ z} = G

(
z − an

bn

)

which is a GEV distribution since an and bn can be absorbed into the location and

scale parameters µ and σ. This therefore justifies modelling the maxima of IID

variables as GEV.

In order to produce multiple observations for a statistical analysis, a series of IID

observations should be split into blocks and the block maxima modelled as GEV.

The choice of block size is important as a larger block gives fewer observations but

is better justified for the GEV limit.

Maximum likelihood is commonly used to estimate the GEV parameters from a

sample as proposed by Prescott and Walden (1980, 1983). Smith (1985) showed

that the regular asymptotic properties of the maximum likelihood estimator such

as asymptotic normality only hold when ξ > −1/2. While this potentially causes

difficulties with estimation, many authors have noted that ξ ≤ −1/2 rarely occurs

in practice. See Coles (2001) for a review of maximum likelihood estimation in

extreme value models.

Coles and Powell (1996) review Bayesian estimation of the GEV parameters. No

conjugate prior for the GEV distribution exists so numerical methods such as

MCMC are commonly used for inference. One advantage of Bayesian estimation

is that it overcomes the regularity constraints of the maximum likelihood estimates
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on ξ. Other methods of parameter estimation include the moment based estimators

of Hosking et al. (1985) and Dekkers et al. (1989).

Since the GEV model is based upon the assumption that a non-degenerate limit

distribution exists, the GEV fit should be checked with methods such as probability-

probability (PP) plots and quantile-quantile (QQ) plots. For cases where a non-

degenerate limit does not exist, a GEV limit is often achieved after the variables

are transformed by a non-linear function such as log. Therefore applying such a

transformation to a dataset may give a better fit.

Extension to r-largest variables

Inference for IID variables with maxima alone is inefficient as most of the data

are discarded. Keeping instead the r-largest values in a block gives more data

which could give better estimates of the parameters. Using arguments similar to

Theorem 2.2, it can be shown that if the r-largest order statistics Yr ≤ . . . ≤ Y1 are

linearly normalised towards a non-degenerate joint distribution, that distribution

will have a joint density function of

g(y1, . . . , yr) = G(yr)
r∏

i=1

g(yi)

G(yi)
for yr ≤ . . . ≤ y1, (2.19)

where g(y) and G(y) are the pdf and cdf respectively of a GEV(µ, σ, ξ) random

variable. For details see Weissman (1978), Smith (1986) and Tawn (1988b).

This result provides a model for the r-largest values that is consistent with the

GEV model for maxima and requires no extra parameters. This therefore allows

additional data values to be used for more precise estimates of µ, σ, and ξ. A

choice must be made on the appropriate value of r before the data is fitted to

balance the efficiency gains of more data with the asymptotic justification of the

model. This choice is typically made by fitting a selection of r values and assessing

the model fit.



CHAPTER 2. LITERATURE REVIEW 34

2.3.2 Point process characterisation

Point process

We begin again by assuming Y1, . . . , Yn are IID random variables with common

distribution function F and that F ∈ Dξ, that is F is in the domain of attraction

of GEV(0, 1, ξ). Define the sequence of point processes on [0, 1]×< by

Pn :=

{(
i

n+ 1
,
Yi − an

bn

)∣∣∣∣i = 1, . . . , n

}
, (2.20)

where an and bn are the same normalising sequences used in Theorem 2.2 to give

a GEV(0, 1, ξ) limit. We consider the limiting process as n→∞.

Clearly, the limiting process is non-degenerate since (Mn−an)/bn → G(y) and the

r-largest values also have a non-degenerate limit. However, the smallest values are

all normalised towards the value

zl := lim
n→∞

yF − an

bn
,

where yF := inf{y|F (y) > 0} is the lower end point of F . Theorem 2.3, due to

Pickands (1971), shows that the limiting process for all large values is a particular

non-homogeneous Poisson process.

Theorem 2.3 (Point process limit). Given a sequence {Yn} of IID random vari-

ables with common distribution function F ∈ Dξ, define a sequence of point pro-

cesses {Pn} by (2.20). Then Pn → P as n → ∞ on the set [0, 1] × (zl,∞) where

P is a non-homogeneous Poisson process with intensity

λ(s, z) = [1 + ξz]
−(1+ 1

ξ
)

+ .

We again interpret the ξ = 0 case as the limit as ξ → 0 which gives the intensity

λ(s, z) = e−z.
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The Poisson process limit says a lot about the asymptotic distribution of extreme

values. Many probabilities of interest may be written in terms of the counting

process N(A) that counts the number of events in a set A ⊂ [0, 1] × (zl,∞) and

has a Poisson distribution with mean given by the integrated intensity

Λ(A) :=

∫∫
A

λ(s, z) ds dz.

For example, the GEV limit of the normalised maxima may be derived from

P

{
Mn − an

bn
≤ y

}
→ P

{
N
(
[0, 1]× (y,∞)

)
= 0
}

= exp
(
−Λ
(
[0, 1]× (y,∞)

))
= exp

(
−[1 + ξy]

− 1
ξ

+

)
.

The distribution of the r-largest order statistics may be derived in a similar way.

Modelling with the point process limit

As before with the GEV limit, we can use this asymptotic result to motivate a

model by assuming it to be true for a finite n, that is Pn = P . Since n is fixed,

an and bn again become location and scale parameters µ and σ respectively. We

can then transform the current process with points (i/(n+1), (Yi−µ)/σ) into the

Poisson process {(i/(n+ 1), Yi)} on [0, 1]× [u,∞) with intensity

λ(s, y) =
1

σ

[
1 + ξ

(
y − µ

σ

)]−(1+ 1
ξ
)

+

,

where u > µ+ σzl is a high threshold.

This suggests the following model: select a threshold u and assume that all Yi > u

are samples from the above Poisson process. A dataset of nu threshold exceedances
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y1, . . . , ynu can then be modelled with the likelihood

p(y, nu|µ, σ, ξ) = p(nu|µ, σ, ξ) p(y|nu, µ, σ, ξ)

∝ exp
(
−Λ
(
[0, 1]× [u,∞)

)) nu∏
i=1

λ

(
i

n+ 1
, yi

)
, (2.21)

where

Λ
(
[0, 1]× [u,∞)

)
=

∫ ∞

u

∫ 1

0

λ(s, y) ds dy =

[
1 + ξ

(
u− µ

σ

)]− 1
ξ

+

.

Note that nu appears as data in the likelihood since the number of exceedances of

u is random.

It should be noted that the previous strategy of modelling block maxima of a

series as GEV(µ, σ, ξ) contradicts the current model which takes these parameters

for the maximum of the whole dataset. This discrepancy may be removed by

making better use of the time component in the point process. If {Yi} is a time

series, the index i corresponds to time and so the current process transforms time

from 1 : n into [0, 1] by taking s = i/(n + 1). Assuming for simplicity we want

annual maxima to be GEV(µ, σ, ξ), we merely need to transform time so that each

year falls into a unit interval.

If we assume our series is observed between times tb and te (measured in years),

this gives a Poisson process {(ti, Yi)} on [tb, te]× [u,∞) with intensity

λ(t, y) =
1

σ

[
1 + ξ

(
y − µ

σ

)]−(1+ 1
ξ
)

+

,

where ti is the time corresponding to variable Yi. A dataset y1, . . . , ynu may then

be modelled with the likelihood

p(y, nu|µ, σ, ξ) ∝ exp

(
−(te − tb)

[
1 + ξ

(
u− µ

σ

)]− 1
ξ

+

)
nu∏
i=1

λ(ti, yi), (2.22)
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which only differs from (2.21) in the additional (te− tb) = ‘number of years’ term.

By exploiting the time component it is now easier to derive time related properties

of the process. For example, the asymptotic distribution of the maximum over k

years of observations, M[0,k], has cdf

P{M[0,k] ≤ y} = P
{
N
(
[0, k]× (y,∞)

)
= 0
}

= exp

(
−k
[
1 + ξ

(
y − µ

σ

)]− 1
ξ

+

)

= G(y)k,

where G is the GEV(µ, σ, ξ) distribution function, so the distribution of the annual

maximum is G.

By using all the data above a threshold rather than just block maxima to estimate

the same three parameters we should expect gains in efficiency with tighter stan-

dard errors. However, the selection of u leads to a trade-off between variance and

bias; by reducing u we include more data but the asymptotic justification for the

model becomes weaker. It is common to fit a dataset with a selection of thresholds

and pick the one with the best model fit.

For examples of modelling with the point process limit see Smith (1989), Embrechts

et al. (1997) or Coles (2001) amongst others. See also Coles and Tawn (1996) for

an example of a Bayesian analysis which incorporates expert information into the

prior to supplement the data.

Generalised Pareto distribution

Davison and Smith (1990) propose a related approach which models the threshold

exceedances and the number of them separately. As with the block maxima model,

it may be derived from the point process.

We begin by showing the survivor function of the excess above the threshold u is
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given by

P{Y − u > y|Y > u} =
P{Y > u+ y}

P{Y > u}

=
Λ
(
[tb, te]× [u+ y,∞)

)
Λ
(
[tb, te]× [u,∞)

)
=

[
1 + ξ

y

σu

]− 1
ξ

+

,

which is the survivor of the Generalised Pareto Distribution (GPD) with scale

parameter σu := σ + ξ(u − µ) and shape parameter ξ. It is important to notice

that the shape parameter is the same as in the GEV for block maxima and that

the GPD limit holds for any threshold u, a property known as threshold stability .

The GPD shares many properties with the GEV distribution, most notably through

the common shape parameter ξ. Pickands (1975) show that the GPD limit is ob-

tained for threshold exceedances if and only if the maxima are in the domain of

attraction of the GEV, with the same ξ. Like the GEV, the GPD is heavy tailed

with ξ > 0 but has an upper bound if ξ < 0. If ξ = 0 the GPD becomes the

exponential distribution with mean σu.

We have already shown that the number of exceedances of u is a Poisson distri-

bution. A sample of threshold exceedances may therefore be fitted by modelling

the number of exceedances, nu, as Poisson(Λ) and the peaks over the threshold,

Yi − u, as IID GPD(σu, ξ). This is often referred to as the Peaks Over Threshold

(POT) approach.

The equivalence of this approach to the point process model above is seen by

writing down the joint likelihood

p(y, nu|Λ, σu, ξ) = p(nu|Λ) p(y|nu, σu, ξ)

∝ Λnu exp(−Λ)
nu∏
i=1

1

σu

[
1 + ξ

(
yi − u

σu

)]−(1+ 1
ξ )

+

,
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which is simply a reparametrisation of the likelihood (2.22). The advantage of the

POT method is that inference about the expected number of observations Λ is

separated from inference about the GPD parameters σu and ξ. One disadvantage,

however, is that σu depends on the threshold u unlike any of the GEV parameters.

For further details and examples of the peaks over threshold method see Davison

and Smith (1990) and Embrechts et al. (1997). See also Pickands (1994) for a

Bayesian analysis with the GPD.

2.3.3 Dependent processes

So far we have considered the extremal properties of an IID sequence Y1, . . . , Yn.

We now relax this condition by assuming the sequence is stationary, that is

P{Yt1 ≤ y1, . . . , Ytk ≤ yk} = P{Yt1+τ ≤ y1, . . . , Ytk+τ ≤ yk},

so that Yt1 , . . . , Ytk and Yt1+τ , . . . , Ytk+τ have the same joint distribution for any k,

t1, . . . , tk and τ .

Maxima of stationary sequences

We again begin by considering the maximum value of the sequence Mn. We know

that if the sequence is independent, the only possible distribution for the lin-

early normalised maxima is GEV. However, we should not expect any stationary

sequence to give a GEV limit. For example, if Y1 ∼ F (·) for an arbitrary distribu-

tion F and Yi = Y1 for all i > 1, the sequence is stationary but the maxima equals

Y1 which has distribution F . We therefore need to impose some extra conditions

to obtain a smaller class of limit distributions.

One such condition is Asymptotic Independence of Maxima (AIM) of O’Brien

(1987) which is one of many conditions that limit the amount of long-range de-
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pendence in the series. A stationary sequence {Yn} is said to have Asymptotic

Independence of Maxima relative to a sequence {cn} (written {Yn} has AIM(cn))

if there exists an o(n) sequence qn > 0, such that

max |P{Mi ≤ cn,Mi+qn:i+qn+j ≤ cn}−P{Mi ≤ cn}P{Mj ≤ cn}| → 0 as n→∞,

where the maximum is taken over all i, j ≥ qn such that i+qn+j ≤ n and Mn:m :=

max{Yn, . . . , Ym} with Mn := M1:n. This causes maxima over separated groups

of points to become increasingly close to being independent as their separation

increases at an appropriate rate.

The AIM condition provides enough long-range independence to ensure the limit

distribution of linearly normalised maxima is GEV as is shown in Theorem 2.4.

For details see Hsing (1987), Hsing et al. (1988) and Leadbetter et al. (1983).

Theorem 2.4 (Unified Extremal Types Theorem for stationary sequences). Given

a stationary sequence {Yn}, define Mn := max{Y1:n}. If there exist sequences

an ∈ < and bn > 0 such that

P

{
Mn − an

bn
≤ y

}
→ H(y) as n→∞,

for a non-degenerate distribution H and if {Yn} has AIM(an + bny), then H is the

cumulative distribution function of the Generalised Extreme Value distribution for

some parameters µ ∈ <, σ > 0 and ξ ∈ <.

Theorem 2.4 therefore justifies modelling maxima of separated blocks as GEV as

long as the separation between blocks is sufficient for the AIM condition to hold.

It is useful to relate the stationary sequence limit H with the corresponding IID

limit G to show how the dependence changes the limit distribution. Recall that

Theorem 2.2 relates the IID limit to the marginal distribution F through F n(an +
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bny) → G(y) as n→∞. Leadbetter et al. (1983) show that

H(y) = Gθ(y),

where θ ∈ [0, 1] is the extremal index defined by

θ := lim
n→∞

P{M2:pn ≤ an + bny|Y1 > an + bny}, (2.23)

for an o(n) sequence pn > 0 and any y. It can be shown that if G is GEV(µ, σ, ξ),

then H is GEV(µ+ σ(θξ − 1)/ξ, σθξ, ξ) so that the presence of dependence in the

series does not change the shape of the distribution.

Several estimators for the extremal index have been proposed. Perhaps the most

intuitive is the runs estimator of Smith and Weissman (1994) which is motivated

by (2.23). This involves first identifying clusters of threshold exceedances of the

threshold u = an+bny by assuming clusters are consecutive runs of points separated

by at least κ = pn observations below u (see Figure 2.4 for an example). The

extremal index θ is then estimated as the reciprocal of the average cluster size.

For other estimators see Leadbetter (1983) and Ferro and Segers (2003).

0 50 100 150 200 250 300

Figure 2.4: Example of a series declustered with the runs method. The clusters
of threshold exceedances are each labelled with a cross (×) on the cluster max-
ima. Clusters were identified as consecutive points separated by at least κ = 4
observations below the threshold u (−−).
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Point process

Having shown that stationary sequences with a long-range independence condi-

tion still give a GEV limit for maxima, we now look at how the point process

characterisation as affected.

Letting Y1, . . . , Yn be a stationary sequence with marginal distribution function

F ∈ Dξ, we again define the sequence of point processes Pn on [0, 1]×< by

Pn :=

{(
i

n+ 1
,
Yi − an

bn

)∣∣∣∣i = 1, . . . , n

}
,

where an and bn are the normalising sequences used for IID variables from F in

Theorem 2.2. We also assume that a long-range asymptotic independence con-

dition similar to AIM(an + bny) holds and consider the limit process P . It can

be shown that, under the appropriate conditions, P is a particular clustered non-

homogeneous Poisson process.

Unlike the limit process for IID variables, multiple points in this process may

occur at the same time, forming a cluster. The cluster maxima themselves form a

non-homogeneous Poisson process with intensity

λ(s, y) = θ[1 + ξy]
−(1+ 1

ξ
)

+ ,

where θ is the extremal index. The distribution of values within a cluster is more

complex but the expected number of exceedances of a threshold u per cluster is

θ−1, whatever the value of u.

This result shows that the cluster maxima may be modelled as Yn was in the

IID case in Subsection 2.3.2 with θ being absorbed into the location and scale

parameters. This means that a dataset must first be declustered and then the

point process or peaks over threshold likelihood may be applied. The presence

of the extremal index in the intensity above shows that there are fewer cluster
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maxima exceedances by a factor of θ than in the IID case.

See Smith (1989) and Davison and Smith (1990) for examples of modelling the

peaks over the threshold after declustering.

2.3.4 Non-stationary processes

In many real world datasets, non-stationarity arises from many sources such as

seasonal effects and long term trends. Attempts have been made to provide a

general extreme value theory for non-stationary sequences (see for example Lead-

better et al. (1983)) but they tend to have limited statistical use. As such, a variety

of statistical techniques may be used to account for non-stationarity by allowing

variation of the parameters of the models that were introduced for extremes of

stationary sequences.

Parametric

The standard approach as outlined in Coles (2001) is to model the parameters

as functions of covariates. This can of course be done with any of the previously

described models. A simple example would be to add a linear trend to the location

parameter of the GEV by modelling annual maxima Yt in year t as GEV(µt, σ, ξ)

where µt := β0 + β1t. Maximum likelihood could then be used to estimate the

parameters β0, β1, σ and ξ. For examples see Smith (1989) and Davison and

Smith (1990).

An alternative approach of Eastoe and Tawn (2009) is to pre-process the whole

dataset to remove the bulk of the non-stationarity and then model the residuals

as before. This is especially useful with the peaks over threshold model where we

are required to select a constant threshold to decide which data values to model;

the non-stationarity of the dataset may cause locally extreme values to fall below

a threshold while locally typical values are above as shown in Figure 2.5. Pre-
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0 50 100 150 200 250 300

Figure 2.5: Example of the selection of peaks over a constant threshold when the
series is non-stationary. The runs method was used with κ = 4 as in Figure 2.4

processing the data has the potential to remove enough of the non-stationarity to

allow a constant threshold through the residuals to select only the data we would

deem to be extreme.

Non-parametric

Hall and Tajvidi (2000) propose a non-parametric method for fitting extreme value

data with a temporal trend. They use a kernel Ki(t) := K((t − ti)/h) to weight

the log likelihood of each observation (ti, yi) and maximise the overall likelihood to

obtain parameter estimates for each t. The standard Gaussian density is typically

chosen for the kernel K with the bandwidth h chosen with cross-validation.

This method produces parameter estimates which vary smoothly over time to fully

account for many types of non-stationarity. It has the disadvantage, however, that

estimates can only be made over the range of the data and so the method cannot

be used for prediction. For examples of this approach see Davison and Ramesh

(2000) and Pauli and Coles (2001).
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Stochastic

Another approach to handling non-stationarity is to allow the parameters to move

stochastically over time. It is this approach which we focus on extending in chap-

ters 4 and 5 of this thesis.

Smith and Miller (1986) present a state space model where observations are trans-

formed to exponential with a rate that varies stochastically over time. More specif-

ically, they assume a model of the form

Xt+1|{X1:t = x1:t, Z1:t = z1:t} = Xtρt+1φt+1,

Zt|{X1:t = x1:t, Z1:t−1 = y1:t−1} ∼ Exponential(xt),

X0 ∼ Gamma(α0, β0),

where ρt+1 is a constant and φt+1 is sampled from a specific Beta distribution. Yt

is observed at each time step t before being transformed with Zt = T (Yt|θ).

The model form is chosen so that the filter and one-step prediction distributions

p(xt|z1:t) and p(xt+1|z1:t) are all Gamma with parameters that can be updated

analytically. The predictive distribution p(zt+1|z1:t) has a Pareto form which is

also tractable. Smith and Miller (1986) show how specific forms of transformation

can be chosen so that extremal data Yt follow a Gumbel or a Weibull distribution

given Xt.

Their particular approach is, by their own admission, confined to a rather narrow

class of models for reasons of tractability although their approach is far removed

from Gaussian distributions and Markov state of the Kalman Filter. Their method

also requires maximum likelihood to estimate the model’s hyper-parameters as well

as the transformation parameter θ.

Gaetan and Grigoletto (2004) overcome the issue of tractability by using particle

filters and smoothers to model a dynamic trend. Their model assumes block
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maxima Yt follow GEV(µt, σt, ξt) where µt, log σt and ξt each follow independent

random walks in the state space. While their model is attractive, their method is

in our opinion let down by their choice of particle methods; see Section 4.1 for a

discussion on this as well as our proposal for an improvement on their model.
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2.4 Multivariate Extreme Value Theory

In this section we describe multivariate extreme value theory and methods. For a

wider review see Resnick (1987), Kotz and Nadarajah (2000) or Beirlant (2004).

2.4.1 Multivariate extreme value distributions

We now study the extremal properties of a sequence {Yn = (Yn,1, . . . , Yn,d)
′} of IID

multivariate random variables with dimension d and common distribution function

P{Y1 ≤ y1, . . . , Yd ≤ yd} = F (y1, . . . , yd). To simplify the presentation, we assume

our variables have marginal distributions that are Fréchet(0, 1, 1) (commonly re-

ferred to simply as Fréchet). This gives F (yj) = exp(−1/yj) for yj > 0 and

P{Mn,j/n ≤ yj} = F (yj) where Mn,j := max{Y1,j, . . . , Yn,j}. This is not restric-

tive since results for arbitrary margins may be obtained by applying the probability

integral transform to each component: if Yj ∼ F (yj) then Yj := G−1(F (Yj)) has

distribution function G(yj).

Componentwise maxima

Unlike the univariate case, there is no natural ordering of a multivariate sample.

We are therefore less certain of what constitutes an extreme value. In specific

applications there may exist a scalar function of Y whose large or small values

are of interest, in which case the univariate techniques of Section 2.3 may be

applied to the transformed variable (see Coles and Tawn (1994)). However, in

more general situations we may be interested in the relationship between large

values of individual components.

We therefore begin by considering the joint distribution of scaled componentwise

maxima. This prompts the following definition: If there exists a non-degenerate
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d-dimensional distribution function G with non-degenerate margins such that

P

{
Mn,1

n
≤ y1, . . . ,

Mn,d

n
≤ yd

}
→ G(y1, . . . , yd) as n→∞,

then G is known as a multivariate extreme value distribution. Since P{Mn,j/n ≤

yj} = F (yj), the margins of G are all Fréchet. Also G is max-stable since

Gn(ny1, . . . , nyd) = G(y1, . . . , yd).

Pickands (1981) shows that G takes the form

G(y1, . . . , yd) = exp
(
−V (y1, . . . , yd)

)
,

with

V (y1, . . . , yd) := d

∫
Sd

max

{
w1

y1

, . . . ,
wd

yd

}
dH(w1, . . . , wd), (2.24)

where Sd := {w ∈ <d
+|
∑d

j=1wj = 1} is the p-dimensional simplex. The spectral

distribution function H is an arbitrary distribution on Sd except that it must

satisfy ∫
Sd

wj dH(w1, . . . , wd) =
1

d
,

that is EH(Wj) = 1/d for all j = 1, . . . , d. Therefore, unlike the univariate case,

there is no finite parametrisation of the multivariate extreme value distribution.

Some authors have proposed parametric forms for the spectral distribution or for

V directly (see Kotz and Nadarajah (2000) for a review). One simple choice is the

multivariate exchangeable logistic distribution of Gumbel (1960) which has

V (y1, . . . , yd) = (y
− 1

α
1 + . . .+ y

− 1
α

d )α, (2.25)

for dependence parameter α ∈ (0, 1]. With α = 1 the components are independent

while a positive association increases as α falls towards 0.

Having assumed up to now the margins are Fréchet, in practice these must be
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estimated from the data. Since we know the appropriate distribution for linearly

normalised maxima is the GEV, we simply replace the Fréchet margins on G with

GEV(µj, σj, ξj) using the probability integral transform.

For more information on multivariate extreme value distributions see de Haan and

Resnick (1977), Pickands (1981) and Resnick (1987).

Point process

As in the univariate case, approaching extreme values via a point process produces

a model that allows more data to be used while giving a multivariate extreme value

distribution for componentwise maxima. Again working with Fréchet margins,

define a sequence of point processes on <d
+ by

Pn :=

{(
Yi,1

n
, . . . ,

Yi,d

n

)∣∣∣∣i = 1, . . . , n

}
.

It was shown by de Haan (1985) that Pn → P on <d
+ \ {0} where P is a non-

homogeneous Poisson process with intensity

λ(y1, . . . , yd) =
d

(
∑
yj)3

h

(
y1∑
yj

, . . . ,
yd∑
yj

)
,

where h(w) := dH(w)/ dw. Note that this is an abuse of notation since the

density h(w) may not exist. The intensity is commonly reparametrised in terms

of pseudo-radial coordinates r :=
∑
yj and wj := yj/r giving a more precise

intensity measure

λ(r, w1, . . . , wd) dr dw =
d

r2
dr dH(w1, . . . , wd).

This parametrisation has the advantage that the range r is independent of the

angular components w.

As in the univariate case, the point process may be used to derive distributions
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of interest when they can be written in terms of the counting process N(A). For

example, the spectral form of the multivariate extreme value distribution may be

derived by noting that

P

{
Mn,1

n
≤ y1, . . . ,

Mn,d

n
≤ yd

}
n→∞−−−→P

{
N
(
A(y1, . . . , yd)

)
= 0
}

= exp
(
−Λ
(
A(y1, . . . , yd)

))
,

where

A(y1, . . . , yd) =
{
z ∈ <d

+

∣∣y1 < z1 or . . . or yd < zd

}
=

{
z ∈ <d

+

∣∣∣∣min

{
y1

z1

, . . . ,
yd

zd

}
< 1

}
.

Switching to pseudo-radial coordinates,

A(y1, . . . , yd) =

{
(r,w) ∈ <+ × Sd

∣∣∣∣min

{
y1

w1

, . . . ,
yd

wd

}
< r

}

so that

Λ
(
A(y1, . . . , yd)

)
=

∫∫
A(y1,...,yd)

λ(r, w1, . . . , wd) dr dw

=

∫
Sd

∫ ∞

min
n

y1
w1

,...,
yd
wd

o d

r2
dr dH(w1, . . . , wd)

= d

∫
Sd

min

{
y1

w1

, . . . ,
yd

wd

}−1

dH(w1, . . . , wd)

= V (y1, . . . , yd). (2.26)

The point process limit may also be modelled directly by using all data with

range r above a threshold u. Having chosen a particular model for the spectral
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distribution H, inference may be performed with the joint likelihood

p(y1, . . . ,ynu , nu|H) = p(nu|H) p(y1, . . . ,ynu |nu, H)

∝ exp
(
−Λ(Au)

) nu∏
i=1

λ(yi),

where Au = {z ∈ <d
+|
∑
zj > u}. For further details as well as examples of

modelling with the point process limit see Coles and Tawn (1991, 1994), Joe et al.

(1992) and de Haan and de Ronde (1998).

2.4.2 Alternative approaches

Limitations of multivariate extreme value distributions

While multivariate extreme value distributions provide a natural generalisation of

the univariate techniques to higher dimensions, they can fail to account for vari-

ables that are near independence. Ledford and Tawn (1996) discuss the limitations

of the above theory for variables that are asymptotically independent.

Sibuya (1960) define variables Y1 and Y2 with common marginal distribution F to

be asymptotically independent if

P{Y1 > y|Y2 > y} → 0 as y → yF , (2.27)

where yF is the upper end point of F defined on page 28. If the limit in (2.27)

is a constant greater than 0 we say the variables are asymptotically dependent. A

multivariate analogue is given by de Haan and Resnick (1977).

When the components of a multivariate variable Y are asymptotically indepen-

dent, the limiting extreme value distribution has a spectral distribution function

H that is degenerate. This causes problems when models are fitted to H as finite

samples from an asymptotically independent variable cannot represent this degen-
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eracy so biases are introduced. Multivariate extreme value distributions also lack

the ability to differentiate between exact and asymptotic independence.

Alternative models

To rectify the deficiencies of the current methods, Ledford and Tawn (1996, 1997,

1998) propose an alternative class of model which naturally incorporates asymp-

totic dependence and independence. Working again with Fréchet marginal dis-

tributions, they show that, under mild regularity conditions, the joint survivor

function takes the form

P{Y1 > t, Y2 > t} ' L(t) t−
1
η for large t,

where η ∈ (0, 1] is the coefficient of tail dependence and L is a slowly varying

function in that it satisfies

L(ty)

L(t)
→ 1 as t→∞,

for any fixed y.

Asymptotic dependence corresponds to η = 1 with various levels of asymptotic

independence given by η ∈ (0, 1). By assuming L(t) to be a constant and setting

T := min{Y1, Y2} so that P{T > t} = P{Y1 > t, Y2 > t}, a sample of T s above a

threshold may be used to estimate η.

An alternative approach is given by Heffernan and Tawn (2004) who assume a

single component Yj is extreme and model the other components conditionally.

We can then consider variables that are extreme in only some components rather

than the previous methods which assume every component is large. As well as

allowing us to consider properties of variables that are only partially extreme, this

also allows more data to be used to provide information about the largest extremes.



Chapter 3

New results in particle filtering

In this chapter we present new research in particle filtering. Though the primary

aim is to overcome difficulties identified with the algorithms when modelling ex-

treme values, the results may all be used in wider applications.

3.1 Choosing when to re-sample

This section looks at the problem of choosing when to re-sample in a particle filter

and proposes a new method that extends the effective sample size thresholding of

Liu and Chen (1995).

3.1.1 Motivation

In Subsection 2.1.3 we reviewed basic particle filters commenting that the re-

sampling step has advantages and disadvantages and is optional. A strategy for

deciding whether to re-sample is given by Liu and Chen (1995) who propose re-

sampling when the effective sample size defined in (2.7) falls below a predefined

threshold. It is unclear, however, what value this threshold should take.

53
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Figure 3.1: Log variances of filter estimates of the state for fixed ESS thresholds
of 0 (◦), 10 (4), 100 (+), 500 (×) and 1, 000 = N (♦).

Liu and Chen (1995) concluded from a simulation study that the choice of threshold

is unimportant as long as it is greater than 1. A small threshold was therefore

preferred to save on computing time. However, this is not always the case as can

be seen in Figure 3.1. This shows logged variances of the filters’ estimates of the

state in the stochastic volatility model (to be defined below in (3.7)) using 1, 000

particles and 100 time steps. The estimates are most variable when we never re-

sample (using a threshold of 0) but they are little better when we use a threshold

set at 10 (1% of N). While a threshold of 100 is much better here, the value of

500 would be preferred, so long as the extra re-sampling adds little to processing

time.

3.1.2 Theory

Working with the auxiliary particle filter given in Algorithm 2.3, our approach

is to choose whether to re-sample or not by looking at the effect this will have

on the variance of a quantity of interest. Thus we will look at the variance of

our estimate of E(h(Xt)|y1:t) given the weighted particles at time t − 1 for a
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known function h. This has been done before by Liu and Chen (1995) for the

sequential imputation algorithm which is a special case of the auxiliary filter with

proposal distribution q(xt|x(i)
t−1, yt) = p(xt|x(i)

t−1, yt) and re-sampling weights β
(i)
t ∝

p(yt|x(i)
t−1)w

(i)
t−1. Despite remarking on the gains of residual sampling, they look only

at multinomial sampling and compare the resulting variances only for extreme

cases. We will calculate similar results for residual sampling and use them to

suggest when to re-sample.

Estimating E(h(Xt)|y1:t)

Given the weighted filter particles {(x(i)
t−1, w

(i)
t−1)}, our estimate for E(h(Xt)|y1:t) is

given by

µ :=
N∑

i=1

h(x
(i)
t )w

(i)
t ,

where w
(i)
t are the normalised weights associated with the particles x

(i)
t at time t.

If we assume that q and β
(i)
t are chosen so that the filter is fully adapted, we have

q(xt|x(i)
t−1, yt) β

(i)
t ∝ g(yt|xt) f(xt|x(i)

t−1)w
(i)
t−1

and so, if the particles are re-sampled at time t, the weights w
(i)
t will equal 1/N

after normalisation. If we do not re-sample, the weights are given by

w
(i)
t ∝

g(yt|xt) f(xt|x(i)
t−1)w

(i)
t−1

q(xt|x(i)
t−1, yt)

and so w
(i)
t = β

(i)
t . Thus, if we do not re-sample the particles, our estimate becomes

µ0 :=
N∑

i=1

h(x
(i)
t )β

(i)
t ,
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where the x
(i)
t are sampled from q(xt|x(i)

t−1, yt). If we do re-sample, this simplifies

further to

µ1 :=
1

N

N∑
i=1

h(x
∗(i)
t ),

where the x
∗(i)
t are sampled from q(xt|x(ji)

t−1, yt) after the indices ji are sampled using

the β
(i)
t s.

Calculation of variances

To simplify notation we define µ(i) and σ2(i) to be the mean and variance of h(Xt)

when Xt is sampled at time t from q(xt|x(i)
t−1, yt). Then, with no re-sampling, the

variance of our estimate, given the weighted particles at t− 1, is given by

Var(µ0) =
N∑

i=1

σ2(i)β
(i)2
t ,

as the x
(i)
t s are sampled independently.

For the re-sampled case, we separate the variance into

Var(µ1) = E(Var(µ1|N)) + Var(E(µ1|N)),

where N = (N1, . . . , NN) are the number of times the particles (x
(1)
t−1, . . . , x

(N)
t−1) are

re-sampled (via sampling the indices ji). Then,

E(µ1|N) =
1

N

N∑
i=1

Eq(h(Xt)|x(ji)
t−1, yt,N)

=
1

N

N∑
k=1

µ(k)Nk,

as Nk of the jis are equal to k. Similarly,

Var(µ1|N) =
1

N2

N∑
k=1

σ2(k)Nk,
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since the x
∗(i)
t s are sampled independently, given N.

To complete the calculation we must use the distribution of N which depends on

how we re-sample. We proceed with residual sampling as this is similar to the opti-

mal stratified sampling but has a distribution that is easier to handle (see Subsec-

tion 2.1.5 where we review different methods of re-sampling). We therefore have

Ni = bNβ(i)
t c + Mi, where M = (M1, . . . ,MN) ∼ Multinomial(r, γ(1), . . . , γ(N))

(where we recall r := N −
∑
bNβ(i)

t c and γ(i) := (Nβ
(i)
t − bNβ(i)

t c)/r).

Defining µr to be our target estimate if we re-sample with residual sampling, we

obtain

E(Var(µr|N)) =
1

N2

N∑
i=1

σ2(i) E(Ni)

=
1

N

N∑
i=1

σ2(i)β
(i)
t ,

since E(Ni) = bNβ(i)
t c+ rγ(i) = Nβ

(i)
t .

In a similar manner we have

Var(E(µr|N)) =
1

N2
Var

(
N∑

i=1

µ(i)Ni

)

=
1

N2

(
N∑

i=1

µ(i)2 Var(Ni) + 2
∑
i<j

µ(i)µ(j) Cov(Ni, Nj)

)

=
r

N2

(
N∑

i=1

µ(i)2γ(i)(1− γ(i))− 2
∑
i<j

µ(i)µ(j)γ(i)γ(j)

)

=
r

N2

 N∑
i=1

µ(i)2γ(i) −

(
N∑

i=1

µ(i)γ(i)

)2


=:
r

N2
Varγ(µ

(i)), (3.1)

defining Varγ(µ
(i)) as the weighted sample variance of the µ(i) = Eq(h(Xt)|x(i)

t−1, yt)

with weights γ(i).
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Hence, putting these together we obtain

Var(µr) =
1

N

(
N∑

i=1

σ2(i)β
(i)
t +

r

N
Varγ(µ

(k))

)
.

If we instead use multinomial sampling, our target estimate, denoted µm, satisfies

the similar formula

Var(µm) =
1

N

(
N∑

i=1

σ2(i)β
(i)
t + Varβ(µ(k))

)
.

Consequently, Var(µm) is likely to be larger than Var(µr) since r < N and Varγ(µ
(k))

should be similar to Varβ(µ(k)).

Choosing when to re-sample

Using the above, we can choose to re-sample only when, for some function of

interest h, we predict that the variance of our estimate will be less if we do re-

sample. Assuming that relative biases will be minimal, this strategy ensures that

the optimal re-sampling decision is made with respect to providing the best filter

estimate of h at the following time step. It is hoped that by minimising only the

variance at the next step, the estimates for all time steps will be optimal, though

this is by no means guaranteed.

Following this strategy, for residual sampling, we should re-sample when

N∑
i=1

(
β

(i)2
t − β

(i)
t

N

)
σ2(i) >

r

N2
Varγ(µ

(k)). (3.2)

As long as we know or can approximate µ(i) and σ2(i) from the sampling distribution

q(xt|x(i)
t−1, yt), we can calculate this at every step to make our decision. This,

however, could require a lot of time to calculate at each step, time which could be

better used by increasing the sample size, so a simplification would be useful.
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In many situations (such as with our first example below, the AR(1) model), σ2(i) =

Varq(h(Xt)|x(i)
t−1, yt) will equal a constant σ2 for all i, or at least approximately so,

which greatly simplifies the left hand side to give

Var(β
(k)
t )σ2 >

r

N3
Varγ(µ

(k)), (3.3)

where we define the sample variance of β
(i)
t as

Var(β
(k)
t ) :=

1

N

N∑
i=1

(
β

(i)
t − 1

N

)2

and Varγ(µ
(k)) is given in (3.1). Since the effective sample size is defined in (2.7)

as ESS(βt) = 1/
∑N

i=1 β
(i)2
t , we can rearrange (3.3) to give an ESS(βt) threshold,

choosing to re-sample when

ESS(βt) < N

(
1 +

r

N

Varγ(µ
(k))

σ2

)−1

. (3.4)

The formula for multinomial sampling is this with r = N and γ = βt, but since r

is less than N we see that the ESS(βt) threshold is higher for residual sampling.

Thus re-sampling is more favourable when using a stratified re-sampling scheme

since the extra variation it adds has been reduced. Also, as noted by Liu and

Chen (1995), if Nβ
(i)
t are all integers so that r = 0 or if µ(k) are also constant, it

is always favourable to re-sample.

Calculating this threshold still requires Varγ(µ
(k)) but there will often be ways this

can be approximated which will still lead to the same re-sampling decision most

of the time. For situations where σ2(i) varies greatly, the optimal threshold (3.2)

may still be used.
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3.1.3 Simulation studies

We will now show how this theory can be used in practice to improve parameter

estimates from the filter.

AR(1) model

We first consider the simple one dimensional autoregressive model given by

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ N (φxt, ν
2)

Yt|{X1:t = x1:t, Y1:t−1 = y1:t−1} ∼ N (xt, τ
2)

and a Gaussian prior for X0. This is a special case of the linear-Gaussian model

(2.4) with F = φ, Q = ν2, G = I and R = τ 2.

The optimal propagation density for the auxiliary filter can be shown to be

q(xt|x(i)
t−1, yt) = N

(
xt

∣∣∣∣∣φx(i)
t−1τ

2 + ytν
2

ν2 + τ 2
,
ν2τ 2

ν2 + τ 2

)
,

with optimal re-sampling weights

β
(i)
t ∝ N (yt|φx(i)

t−1, ν
2 + τ 2)w

(i)
t−1,

where N (x|µ, σ2) is the density of N (µ, σ2) evaluated at x. This gives a filter that

is fully adapted so our theory’s assumptions are valid.

Assuming we are most interested in the value of the state itself, we will choose

whether to re-sample by minimising the variance of E(Xt|y1:t). Therefore, noting

σ2(i) is constant, we should re-sample using residual sampling when ESS(βt) is

below threshold (3.4) which simplifies to

N

(
1 +

r

N

φ2τ 2

ν2(ν2 + τ 2)
Varγ(x

(k)
t−1)

)−1

. (3.5)
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To gain greater insight into how this threshold is affected by the model parameters,

we will approximate Varγ(x
(k)
t−1). We first note that as long as φ2 < 1, the stationary

distribution of the state is X∞ ∼ N (0, ν2/(1 − φ2)). Then, given an observation

y, X∞|{Y = y} has variance ν2τ 2/(ν2 + τ 2(1 − φ2)). We use this as a rough

approximation of Varγ(x
(k)
t−1) ' Var(Xt−1|y1:t−1) assuming that the most recent

observation accounts for most of the variation. This should be true when φ is

small but will hopefully still give a reasonable re-sampling decision when it is not.

This leads to the approximate threshold of

N

(
1 +

r

N

φ2τ 2

ν2(ν2 + τ 2)

ν2τ 2

ν2 + τ 2(1− φ2)

)−1

=
N(k − φ2)

k − (1− r
Nk

)φ2
, (3.6)

where k = (ν2+τ 2)/τ 2. From this we can see that the attractiveness of re-sampling

depends largely on the ratio of system to observation noise and the dependence

between states.

We now compare the performance of the adapted filter when these re-sampling

thresholds and residual sampling are used. We simulated a dataset and ran the

filter 200 times on the same dataset for each re-sampling scheme to measure the

variance of its estimates. As well as estimating E(Xt|y1:t), we compare the filters’

estimate of the upper 2.5% quantile and the posterior probability of the state being

greater than its true value, P{Xt > xt|y1:t}, for each time t. This allows us to see

how the filters perform for a variety of inferences.

Figure 3.2 shows log variances of the posterior expectation estimates of the current

state using ν2 = τ 2 = 1, φ = 0.9 and a N (0, 1) prior for 25 time steps. 1, 000

particles were used and the exact threshold (3.5) and approximation (3.6) are

compared to various fixed thresholds between 0 (never re-sampling) and 1, 000

(always re-sampling). Table 3.1 shows the average state estimate variances over

100 time steps and also those for the quantile and probability estimates.
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Figure 3.2: Log variances of filter estimates of E(Xt|y1:t) for fixed ESS thresholds
of 0 (◦), 250 (4), 500 (+), 750 (×) and 1, 000 = N (♦) as well as exact (∇) and
approximate (�) variable thresholds.

As we can see from the plot, the estimates’ variance increases exponentially with

time if we never re-sample, and re-sampling even occasionally can dramatically

reduce this. Always re-sampling does much better here but using a threshold just

below N seems to be the best fixed strategy. Our new exact threshold seems to

do as well as any fixed threshold and the approximation which avoids calculating

Varγ(x
(k)
t−1) is very similar. From Table 3.1 we can see that, though our method

was constructed around estimating the state, it gives good estimates of the upper

2.5% quantile and P{Xt > xt|y1:t} too, showing it gives an accurate filter for a

variety of uses.

We now look at how the threshold required changes with the amount of dependence

in the model. Table 3.2 compares the average state estimate variances over 100

time steps with the model using ν2 = 100 and 1/100 rather than 1.

With ν2 = 100 there is little dependence between each state so Xt−1 tells us little
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ESS threshold
Var( ˆstate) Var( ˆquantile) Var( ˆprobability)
(×10−4) (×10−3) (×10−4)

0 969.5 130.1 271.8
100 23.2 16.6 6.6
250 12.4 8.9 3.5
500 8.4 5.8 2.4
750 7.1 4.5 2.0
900 6.6 4.3 1.8

1,000 6.8 4.3 1.9
exact 6.7 4.3 1.8

approximate 6.7 4.4 1.9

Table 3.1: Average variances of filter estimates of the current state, upper 2.5%
quantile and probability of exceeding the true state for 100 time steps using various
ESS thresholds. Fixed ESS thresholds are compared to our exact variable threshold
(3.5) and its approximation (3.6).

about the current state Xt. The optimal strategy is therefore to re-sample the

x
(i)
t−1 all the time to sample more particles where the new observation yt tells us

the state is likely to be. As can be seen above, our new thresholds do as well

as this optimal strategy. From the approximate threshold (3.6) we can see that

decreasing φ2 which also reduces the dependence would give the same effect.

Conversely, when ν2 = 1/100 the states are highly dependent so new particles are

proposed near to their parent. This causes the filter to struggle to move about

the state space so re-sampling is less preferable as we lose particles to propagate

forward. The best threshold is therefore somewhere between 0 and N and we can

ESS threshold
ν2 = 100 ν2 = 1/100

Var( ˆstate) (×10−4) Var( ˆstate) (×10−5)
0 13.9 39.1

100 13.9 14.6
250 14.0 9.8
500 13.9 6.8
750 11.7 7.5
900 10.3 8.7

1,000 9.9 13.8
exact 10.0 8.3

approximate 9.9 8.5

Table 3.2: Average variances of filter estimates of the current state over 100 time
steps with ν2 = 100 and ν2 = 1/100.
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see that 500 gave the smallest estimate variance here. Our new thresholds do not

do as well as this but they are still better than most of the fixed thresholds which

we could have chosen.

We have seen with this simple model that the amount of re-sampling required for

the filter to perform well varies with the amount of dependence in the state. Our

new re-sampling strategy follows this and can greatly improve the accuracy of a

filter run with an arbitrarily selected threshold.

Stochastic volatility model

We now look at the stochastic volatility model given by

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ N (φxt, ν
2),

Yt|{X1:t = x1:t, Y1:t−1 = y1:t−1} ∼ N (0, β2ext),

(3.7)

where φ ∈ (0, 1) and ν, β > 0. It provides a way of generalising the Black-Scholes

option pricing model by allowing clustering of the volatility of returns on assets

(see Hull and White (1987) for details).

The implementation of our particle filter is given in Appendix A.2. While Pitt

and Shephard (1999a) show how rejection sampling may be used to produce an

adapted filter, we choose not to do this to contrast with the AR(1) model above.

Since the purpose of fitting this model in practice would be to estimate the volatil-

ity βext/2, we could choose to re-sample by minimising the variance of this rather

than of the state itself. However, to see what difference if any this will make to the

final filter estimates, we will apply our theory with both h(x) = x and h(x) = βex/2

to compare the two approaches.

Firstly, with the aim of minimising the variance of the state estimate, we can use

the optimal inequality (3.2) with the mean and variance of our proposal density
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to decide when to re-sample. Unlike the AR(1) model, this does not reduce to

a threshold of ESS(βt) since the proposal variance for each particle is different.

However, approximating x
(i)
t−1 by E(Xt−1|y1:t−1) in the formula for the variance

gives a constant value σ2 which leads to the threshold (3.4). Varγ(µ
(k)
t ) can be

well approximated by using µ
(i)
t ' φx

(i)
t−1 which leads to

Varγ(µ
(k)
t ) ' φ2 Varγ(x

(k)
t−1) ' φ2 Var(Xt−1|y1:t−1).

This gives us the simple threshold of

N

(
1 +

r

N

φ2 Var(Xt−1|y1:t−1)

σ2

)−1

that depends only on the variance of the filtered state which would often have

been calculated anyway.

Now, to create an alternative re-sampling rule based on the volatility, we need the

mean and variance of h(Xt) = βeXt/2 under q(xt|x(i)
t−1, yt) = N (xt|µ̃(i)

t , σ̃
2(i)
t ). By

noting eXt/2 has a log-normal distribution, these can be shown to be

µ
(i)
t =Eq(h(Xt)|x(i)

t−1, y) = β exp

(
µ̃

(i)
t

2
+
σ̃

2(i)
t

8

)

σ
2(i)
t = Varq(h(Xt)|x(i)

t−1, y) = β2

(
exp

(
σ̃

2(i)
t

4

)
− 1

)
exp

(
µ̃

(i)
t +

σ̃
2(i)
t

4

)
.

Now we can use the optimal inequality (3.2) to decide when to re-sample. This

could, however, be a significant calculation for large N which may be better spent

increasing the sample size so an approximation would be useful.

For this we will start by approximating σ
2(i)
t by a constant σ2

t as we have seen that

this gives us a simpler threshold for ESS(βt). This we do by replacing each x
(i)
t−1 in

the formulae for µ̃
(i)
t and σ̃

2(i)
t by our filter estimate of E(Xt−1|y1:t−1). This leaves

Varγ(µ
(k)
t ) which we would like to write in terms of our filter estimate of the state
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variance. For this we use µ̃
(i)
t ' φx

(i)
t−1 and σ

2(i)
t ' σ2

t to write

µ
(i)
t ' β exp

(
φx

(i)
t−1

2
+
σ̃2

t

8

)

and with the delta method and Varγ(x
(k)
t−1) ' Var(Xt−1|y1:t−1) we obtain

Varγ(µ
(k)
t ) ' Var(Xt−1|y1:t−1)

β2

4
exp

(
φE(Xt−1|y1:t−1) +

σ̃2
t

4

)
.

Putting this together we get a simple threshold of

N

(
1 +

r

N

Var(Xt−1|y1:t−1)

(exp(σ2
t /4)− 1)

)−1

. (3.8)

We will now compare the filter estimates of the volatility βext/2 when our new

re-sampling rules are used. As with the AR(1) model we simulated a dataset and

ran each filter 200 times to measure the variance of their estimates. We use 1, 000

particles with model parameters φ = 0.9720, ν = 0.178 and β = 0.5992 taken from

Pitt and Shephard (1999a).

Table 3.3 shows the average variances of the state and volatility estimates over 100

time steps for our exact and approximate thresholds for the state, our exact in-

ESS threshold Var( ˆstate) (×10−4) Var( ˆvolatility) (×10−5)
0 51.8 87.5

100 7.5 9.0
250 4.5 5.2
500 4.0 4.4
750 3.7 4.1
900 4.8 5.3

1,000 7.5 8.8
exact (state) 4.0 4.4

approx. (state) 4.2 4.7
exact (volatility) 4.4 4.6

approx. (volatility) 6.0 6.9

Table 3.3: Average variances of filter estimates of the state and volatility over 100
time steps.
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Figure 3.3: Log variances of filter estimates of the volatility for fixed ESS thresh-
olds of 500 (◦) and 750 (4) as well as exact variable thresholds for the state (+)
and the volatility (×).

equality and approximate threshold for the volatility and various fixed thresholds.

Figure 3.3 plots the volatility variances over time for a subset of these.

We first notice that none of our methods do as well as a fixed threshold at 75% of

N though both of the exact methods are very close. Also it seems that too many

simplifications were made for the volatility based rule to use only filter estimates

since the variance here is significantly larger. We also note that the filters which

aimed at producing an accurate state gave slightly better volatility estimates than

those aimed at the volatility. While this seems contradictory we recall that our

theory aims at reducing the variance of an estimate at the next time step only so

this does not necessarily give the best estimates over all future times. It may be

that using h(x) = x is sufficient for the filter to run efficiently and thus produce

accurate estimates for any property of interest.
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Bearings-only tracking

Finally we look at the bearings-only tracking problem. Many writers including

Gordon et al. (1993) and Pitt and Shephard (1999a) have implemented particle

filters for simple tracking models but here we most closely follow the formulation

of Fearnhead (1998). To avoid confusion between the x-y plane and the state

and observation vectors, we take xt = (ut, vt, u̇t, v̇t)
′ to be the position and veloc-

ity in Cartesian coordinates of our target at time t. The state density assumes

acceleration is due to white noise and is given by

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ Fxt + ΓN (0, ν2I2), (3.9)

where

F =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


and Γ =



1 0

0 1

1 0

0 1


.

We observe only noisy measurements of the target’s bearing from the origin and

thus we take our likelihood to be

Yt|{X1:t = x1:t, Y1:t−1 = y1:t−1} ∼ N (atan2(vt, ut), τ
2), (3.10)

where

atan2(v, u) :=



tan−1(v/u) v ≥ 0, u > 0

π − tan−1(−v/u) v ≥ 0, u < 0

π/2 v > 0, u = 0

−atan2(−v, u) v < 0

.

Our implementation of the particle filter is given in Appendix A.3. Our proposal
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distribution is a modification of that of Fearnhead (1998) and is based on a change

to polar coordinates (r, α).

Now that the particle filter is defined, we look at choosing when to re-sample. The

obvious choice for a scalar quantity of interest is the range of the particle since the

bearing is observed directly. To apply our theory we therefore need the mean and

variance of the range rt under q. Conditional on αt it can be shown that

Eq(Rt|αt, x
(i)
t−1, yt) = m(i)(αt) := ν

s(i)
t +

(
s
(i)
t +

Φ(s
(i)
t )

φ(s
(i)
t )

)−1


and

Varq(Rt|αt, x
(i)
t−1, yt) = v(i)(αt) := ν2

((
s
(i)
t +

Φ(s
(i)
t )

φ(s
(i)
t )

)(
s
(i)
t + 2

Φ(s
(i)
t )

φ(s
(i)
t )

)
− 1
)

(
s
(i)
t +

Φ(s
(i)
t )

φ(s
(i)
t )

)2 ,

using s
(i)
t defined in (A.4) and with Φ and φ here referring to the cdf and pdf of

N (0, 1) respectively.

To marginalise out αt we use the approximations

Eq(Rt|x(i)
t−1, yt) = Eq(m

(i)(αt)) ' m(i)(µ(i)
αt

)

and

Varq(Rt|x(i)
t−1, yt) = Eq(v

(i)(αt)) + Varq(m
(i)(αt))

' v(i)(µ(i)
αt

) + σ2(i)
αt

(
m(i)′(µ(i)

αt
)
)2

,

where µ
(i)
αt and σ

2(i)
αt are the mean and variance of the bearing respectively. These

are used with the optimal inequality (3.2) to decide whether to re-sample.

A simulated path of length 24 is shown in Figure 3.4. The target passes by

the origin and moves away to the south. An independent normal prior was
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Figure 3.4: Simulated path of an object in the u-v plane over 24 time steps with
the observed noisy bearings made from the origin.

used with means (−0.05, 0.2, 0.001,−0.055)′ and standard deviations (0.05, 0.03,

0.0005, 0.001)′ taken from Pitt and Shephard (1999a). The initial value of the

state was taken to be the mean of the prior with ν = 0.001 and τ = 0.005, also

from Pitt and Shephard (1999a).

Since the bearing is measured accurately, we will judge the performance of the

filters by their estimate of the range. Figure 3.5 compares the variances of these

estimates for filters using various fixed and variable thresholds. It shows how it

is easy to estimate the range when the bearing changes rapidly but harder when

the target moves away. We can see that choosing to minimise the variance of the

range estimate for the next time step causes the filter to perform badly overall,

worse than most fixed thresholds. This is because the range is unobserved so the
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Figure 3.5: Log variances of filter estimates of the range for fixed ESS thresholds
of 100 (◦), 250 (4), 500 (+), 750 (×) and 900 (♦) as well as variable thresholds
for the range (∇), Cartesian position (�), Cartesian velocity (>) and bearing (�).

spread of the overall range density and hence the particles is large. Thus sampling

between them adds a lot of variation to the overall estimate so we rarely want to

re-sample, even if the weights are very uneven.

The SV model above showed that applying the theory to the state rather than

a transformation of it could improve efficiency. However, since the state is now

multidimensional, our theory no longer applies directly as we implicitly assumed

that h(x) was scalar. If we remove this constraint the variance formulae still hold

where µ(i) becomes a vector of expectations and we write Σ(i) as the variance

matrix of h(Xt) under q. Since we now have two variance matrices to compare

and can no longer choose the smallest, we propose minimising the trace of the

variance matrix. Analogously to (3.2), this means we should re-sample when

N∑
i=1

(
β

(i)2
t − β

(i)
t

N

)
tr(Σ2(i)) >

r

N2
tr(Varγ(µ

(k))). (3.11)
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We now use this equation to minimise the variance of estimates of h(xt) = (ut, vt)
′,

the position in Cartesian coordinates. The mean of h(Xt) under q can be estimated

using the means of the range and bearing as

µ
(i)
t =

 µ
(i)
rt cos(µ

(i)
αt )

µ
(i)
rt sin(µ

(i)
αt )

 .

The variance matrix Σ
(i)
t can be estimated by calculating the variance of (rt, αt)

′

and transforming to (ut, vt)
′ with the delta method as follows:

To first construct the variance matrix in polar coordinates we need the covariance

between rt and αt. Dropping the dependence on x
(i)
t−1 and yt from the notation,

we write Covq(R,α) = Eq(f(α)) with f(α) := (α−Eq(α))Eq(R|α) and making a

Taylor approximation of f(α) about Eq(α) we get

Covq(R,α) ' Varq(α)

2
f

′′
(Eq(α)).

We can now approximate the variance in Cartesian coordinates using the delta

method to get

Varq(Ut, Vt) ' ∇g(Eq(Rt, αt))
′ Varq(Rt, αt)∇g(Eq(Rt, αt)),

where

∇g(r, α) =

 cos(α) sin(α)

−r sin(α) r cos(α)

 .

The mean and variance can then be used in (3.11) above to select whether to

re-sample.

Alternatively, we can try to minimise the velocity estimates’ variance by using

h(xt) = (u̇t, v̇t)
′. Since the velocity terms are sampled as the difference in position
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at time t− 1 and t, the variance remains the same and the mean is now given by

µ
(i)
t =

 µ
(i)
rt cos(µ

(i)
αt )− u

(i)
t−1

µ
(i)
rt sin(µ

(i)
αt )− v

(i)
t−1

 .

Finally, we will also compare the results for a filter minimising the variance of

the bearing estimate. This is easiest to apply since the bearing is sampled from a

normal distribution whose mean and variance are already known.

The results using these thresholds can also be seen in Figure 3.5. Table 3.4 below

compares the average variances over the 24 time steps. We can see that using

the Cartesian position gave a slight improvement over using the range but is still

significantly worse than the other fixed thresholds.

Optimising for the velocity, however, gave range estimates comparable with the

best fixed thresholds. This could be because we model acceleration as white noise

which therefore acts first on the velocity of the target rather than its position.

The variance of the velocity is often smaller after re-sampling while that of the

position is larger simply because the spread of possible range values is large and

we are sampling between them. Since the velocity drives the process it is better

to ensure these estimates are most accurate.

ESS threshold Var( ˆrange) (×10−5)
0 88.1

100 6.5
250 3.6
500 2.9
750 3.1
900 3.2

1,000 3.4
range 14.0

Cartesian position 11.1
Cartesian velocity 3.4

bearing 3.1

Table 3.4: Average variances of filter estimates of the range over 24 time steps
using various ESS thresholds.
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As a final note, we can also see that optimising for the bearing estimate gives

very good results. Since the bearing is observed accurately, there is little need

to optimise these estimates for practical purposes but still the differences in the

estimates’ accuracy can be used to guide the re-sampling decision. This probably

performs better than the range or position filters since they are both affected by

the lack of knowledge about the range. Focusing only on variables unrelated to

the unobserved range, we see the bearing gives similar results to the velocity and

the best fixed thresholds confirming the observation made with the SV model that

the choice of h(x) makes little difference within this context.

3.1.4 Conclusion

We have proposed a new method of choosing when to re-sample using the auxiliary

particle filter. Rather than re-sampling when the effective sample size is below a

fixed threshold, we choose to re-sample by minimising the variance of a quantity

of interest. This effectively leads to a threshold which varies with the amount of

information supplied by each observation. We have shown that the quality of filter

estimates is sensitive to the choice of threshold and our method avoids the problem

of selecting this.

Our simulation studies have shown how the optimal threshold changes with the

amount of dependence in the model and our method follows this. When the dimen-

sion of the state is greater than 1 we found that our method can be sensitive to the

choice of quantity of interest. When this is chosen to be an unobserved component

or a transformation of it the filter can re-sample too infrequently. However, when

this is not the case the performance of the filter is comparable to the optimal fixed

thresholds.
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3.2 A sequential smoothing algorithm with lin-

ear computational cost

In this section we propose a new particle smoother for sequentially estimating

p(xt|y1:T ) that aims to improve upon those reviewed in Section 2.2.

3.2.1 Weaknesses of current particle smoothers

In Section 2.2 we reviewed current sequential algorithms that extend the particle

filter to estimate the marginal smoothing densities p(xt|y1:T ). The simplest of

these is the Filter-Smoother which is a simple extension of the particle filter and

therefore shares its O(N) complexity. However, as we show in Subsection 2.2.2,

the smoother’s estimates of p(xt|y1:T ) are increasingly poor as t falls from T to 1.

Both the Forward-Backward and Two-Filter smoothers aim to improve on the

simple Filter-Smoother by removing its dependence on the inheritance paths of

the particle filter. Forward-Backward smoothing does this by re-weighting the

filter particles while Two-Filter smoothing re-weights particles sampled from a

backwards filter. However, both algorithms are O(N2) as the calculation of each

particle’s weight is an O(N) operation. Thus, while variants of these particle

smoothers produce better estimates for a fixed particle number N , far fewer par-

ticles can be used for these algorithms than can for the Filter-Smoother in a fixed

amount of time.

Another advantage of the Filter-Smoother is that it gives draws of the joint smooth-

ing distribution p(x1:T |y1:T ) rather than only the marginal distributions. It is pos-

sible to adapt the Forward-Backward Smoother to also draw samples from the

joint smoothing distribution as shown in Godsill et al. (2004). Their derivation

is similar to that of the Forward-Backward Smoother above and as such share its

complexity. They therefore achieve better samples of the joint distribution than
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the Filter-Smoother for a fixed N but give a slightly worse representation of the

marginal distributions than the Forward-Backward Smoother.

Since the Forward-Backward Smoother and the Filter-Smoother rely on the sup-

port of filter particles we may expect them to approximate p(xt|y1:T ) best for t

close to T where the target is most similar to p(xt|y1:t). Likewise the Two-Filter

Smoother may do best for small t when the backwards filter distribution p̃(xt|yt:T )

is likely to be closest to our target. However, when there is a large discrepancy

between these distributions the particles will be weighted very unevenly as they

will not be located in the right position to represent the smoothed distribution.

Ideally we would like an algorithm which samples particles in the correct position

for the smoothed distribution.

Degeneracy of the Forward-Backward and Two-Filter smoothers

As a final point we note that the Forward-Backward and Two-Filter smoothers’

reliance on the form of the state density causes degeneracy problems with certain

models and filters. Specifically, this happens whenever the state density f(xt|xt−1)

is zero or approximately so for most combinations of possible xt and xt−1. As an

example, consider the simple AR(2) process

zt = φ1zt−1 + φ2zt−2 + εt

with εt ∼ N (0, ν2). The model can be written as a two-dimensional Markov

process by defining the state as xt = (xt,1, xt,2)
′ where xt,1 = zt and xt,2 = zt−1.

This gives the state transition density

f(xt|xt−1) = N (xt,1|φ1xt−1,1 + φ2xt−1,2, ν
2) δ(xt,2 − xt−1,1),

where we write N (z|µ, ν2) for the density of N (µ, ν2) evaluated at z and δ(·) for
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the Dirac delta function. This density is zero whenever the second component

of xt does not equal the first component of xt−1. This means that for two sets of

particles {x(j)
t−1} and {x(i)

t }, f(x
(i)
t |x

(j)
t−1) is likely to be zero unless x

(i)
t was generated

from x
(j)
t−1.

Since the Forward-Backward Smoother relies on comparing particles sampled from

the filter at time t with those at time t + 1, it can be shown that the weight

(2.13) reduces to the effective weight given to each particle by the Filter-Smoother.

However, the situation is worse for Two-Filter smoothing which fails completely

as the forwards and backwards filter particles were sampled independently. With

probability 1, no pairs of forwards and backwards filter particles match and so all

the weights (2.16) will be zero.

The situation is similar whenever the state process is highly dependent as then

there is a near-deterministic relationship between successive states; while the state

transition density f(xt|xt−1) may be non-zero for every combination of xt−1 and xt,

it is likely that f(x
(i)
t |x

(j)
t−1) will be negligible unless x

(i)
t was generated from x

(j)
t−1.

Thus, while it is possible that the Forward-Backward and Two-Filter smoothers

may be extended to avoid degeneracy with exact deterministic relationships, long

range dependence in the state will often cause near-deterministic relationships that

will hinder these algorithms.

3.2.2 New smoothing algorithm

We now describe our new smoothing algorithm which attempts to overcome the

weaknesses of the current methods. Our primary aim is to draw new particles

from the marginal smoothing densities directly rather than re-weight those drawn

from another distribution. We describe the basic idea first, and then look at how

the smoother can be implemented so that its computational cost is linear in the

number of particles.
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We start with a similar derivation to the Two-Filter Smoother given in Subsec-

tion 2.2.4 by writing the target density in terms of a forwards filter and a backwards

information filter. Using the artificial priors γt(xt) and backwards filter densities

p̃(xt|yt:T ) of (2.15), we have

p(xt|y1:T ) ∝ p(xt|y1:t−1) · g(yt|xt) · p(yt+1:T |xt) (3.12)

∝
∫
f(xt|xt−1)p(xt−1|y1:t−1) dxt−1 · g(yt|xt)·∫

f(xt+1|xt)
p̃(xt+1|yt+1:T )

γt+1(xt+1)
dxt+1.

Thus the target smoothing density is the product of a filter term, a backwards

filter term and the observation density g(yt|xt).

These integrals can be approximated using weighted particles {(x(j)
t−1, w

(j)
t−1)} from

a particle filter at time t−1 and {(x̃(k)
t+1, w̃

(k)
t+1)} from a backwards information filter

at time t+ 1 to obtain

p(xt|y1:T ) ' c
N∑

j=1

N∑
k=1

f(xt|x(j)
t−1)w

(j)
t−1 · g(yt|xt) ·

f(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

w̃
(k)
t+1, (3.13)

where c is a normalising constant. Though this formula can be written as the

product of two sums, we write it as a double sum to emphasise that there are

N2 (j, k) pairs. We also note that any filtering algorithm can be used to generate

{x(j)
t−1} and {x̃(k)

t+1} as long as the artificial priors γt+1(xt+1) here are the same ones

used to sample {(x̃(k)
t+1, w̃

(k)
t+1)} in the backwards information filter. As with the

Two-Filter Smoother, we may assume γt+1(xt+1) ≡ 1 throughout if the backwards

filter is selected to approximate p(yt+1:T |xt+1) instead of p̃(xt+1|yt+1:T ).

To sample from this approximation we start by mirroring the auxiliary particle

filter of Pitt and Shephard (1999a) by finding a sampling distribution q̄ and weights
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β̄
(j,k)
t such that

q̄(xt|x(j)
t−1, yt, x̃

(k)
t+1)β̄

(j,k)
t ' f(xt|x(j)

t−1)g(yt|xt)f(x̃
(k)
t+1|xt)

w
(j)
t−1w̃

(k)
t+1

γt+1(x̃
(k)
t+1)

.

Algorithm 3.1 gives the algorithm that results from using the β̄
(j,k)
t s to sample

(j, k) pairs before using q̄ to sample new particles x̄
(i)
t .

Note that the output of Algorithm 3.1 is a set of triples, (x
(ji)
t−1, x̄

(i)
t , x̃

(ki)
t+1), with

associated weights, w̄
(i)
t . These can be viewed as a particle approximation to

p(xt−1:t+1|y1:T ). If our interest solely lies in the marginal p(xt|y1:T ) we just keep

the particles, x̄
(i)
t , and their associated weights, w̄

(i)
t . Alternatively, we can use the

weighted triple to provide the marginal for three time steps and iterate the smooth-

ing stage of our algorithm at every third step only. We compare the efficiencies of

both these methods with the stochastic volatility model in Subsection 3.2.3.

We note that the optimal choice of propagation density is q̄(xt|x(j)
t−1, yt, x̃

(k)
t+1) =

Algorithm 3.1: New O(N2) smoothing algorithm.

1. Filter forwards: Run a particle filter to generate {(x(j)
t , w

(j)
t )}

approximating p(xt|y1:t) for t = 0, . . . , T .

2. Filter backwards: Run a backwards information filter to generate
{(x̃(k)

t , w̃
(k)
t )} approximating p̃(xt|yt:T ) ∝ γt(xt)p(yt:T |xt) for t = T, . . . , 2.

3. Smooth: For t = 1, . . . , T − 1

(a) Re-sample: Calculate the β̄
(j,k)
t s and use them as probabilities to

sample N pairs {(ji, ki)}N
i=1.

(b) Propagate: Sample the new particles x̄
(i)
t independently from

q̄(·|x(ji)
t−1, yt, x̃

(ki)
t+1).

(c) Re-weight: Assign each particle x̄
(i)
t the weight

w̄
(i)
t ∝

f(x̄
(i)
t |x

(ji)
t−1) g(yt|x̄(i)

t ) f(x̃
(ki)
t+1|x̄

(i)
t )w

(ji)
t−1 w̃

(ki)
t+1

q̄(x̄
(i)
t |x

(ji)
t−1, yt, x̃

(ki)
t+1) β̄

(ji,ki)
t γt+1(x̃

(ki)
t+1)

and normalise them to sum to 1.
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p(xt|x(j)
t−1, yt, x̃

(k)
t+1) while the optimal re-sampling probabilities are given by

β̄
(j,k)
t ∝

∫
f(xt|x(j)

t−1) g(yt|xt) f(x̃
(k)
t+1|xt) dxt

w
(j)
t−1 w̃

(k)
t+1

γt+1(x̃
(k)
t+1)

. (3.14)

We do not require our algorithm to generate samples for time T since these are

available from the filter. Similarly, particles for time 1 are available from the

backwards filter if we use γt(xt) = π(xt) for the artificial priors.

Like the Two-Filter Smoother in Subsection 2.2.4, our smoothing step is not se-

quential and can be performed independently for each time t. Also, the compu-

tational complexity of each step is O(N2) which is comparable with all but the

simplest Filter-Smoother. However, as it stands we have N2 β̄
(j,k)
t s to calculate

making it O(N2) in memory also which could mean that it is impractical for even

modest sample sizes.

Making Algorithm 3.1 O(N)

The above smoothing algorithm has a computational cost that is O(N2), that is

quadratic in the number of particles, due to the need to calculate N2 probabilities,

β̄
(j,k)
t . A simple approach to reduce the computational cost of the smoothing

algorithm is to choose these probabilities so that they correspond to choosing

particles at time t− 1 and backward-filter particles at time t+ 1 independently of

each other. Our algorithm will then be O(N) in computational complexity as well

as memory and as such will be much faster for large N . A similar idea is used in

Briers et al. (2005) for inference for graphical models, however we are unaware of

any previous use of this approach within particle smoothing algorithms.

Now the optimal distribution from which to choose the particles at time t− 1 will

be the corresponding marginal distribution of the optimal probabilities for β̄
(j,k)
t ,
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given in (3.14). Marginalising we get:

N∑
k=1

β̄
(j,k)
t ∝

N∑
k=1

∫
f(xt|x(j)

t−1) g(yt|xt) f(x̃
(k)
t+1|xt) dxt

w
(j)
t−1 w̃

(k)
t+1

γt+1(x̃
(k)
t+1)

N→∞−−−→
∫∫

f(xt|x(j)
t−1) g(yt|xt) f(xt+1|xt) dxt

w
(j)
t−1 p̃(xt+1|yt+1:T )

γt+1(xt+1)
dxt+1

∝ p(yt:T |x(j)
t−1)w

(j)
t−1.

Calculating this analytically will be impossible, but it suggests two simple approx-

imations. The first is to sample particles at time t− 1 according to their filtering

weights w
(j)
t−1. However, a better approach will be to sample according to an ap-

proximation of p(yt|x(j)
t−1)w

(j)
t−1, as it includes the information in the observation at

time t. Now, in performing the particle filter we used the auxiliary filter which

sampled particle x
(j)
t−1 with a probability β

(j)
t which is chosen to be an approxima-

tion to p(yt|x(j)
t−1)w

(j)
t−1. Thus we suggest using exactly the same probabilities to

sample the particles within one iteration of our sampling algorithm.

By similar calculations, it can be shown that we should optimally choose the

backward-filter particles at time t+1 with probability proportional to p̃(y1:t|x̃(k)
t+1)w̃

(k)
t+1.

Again, we cannot calculate these exactly, but a simple idea is to use probabilities

that approximate p̃(yt|x̃(k)
t+1)w̃

(k)
t+1. Thus we can simply use the probabilities β̃

(k)
t

that were used in the backward filter, as these were chosen as to be an approxi-

mation to p̃(yt|x̃(k)
t+1)w̃

(k)
t+1.

Algorithm 3.2: New O(N) smoothing algorithm.

Proceed as Algorithm 3.1 but substitute steps 3(a) and 3(c) with

3. (a) Re-sample: Use {β(j)
t } from the filter to sample j1, ..., jN and {β̃(k)

t }
from the backwards filter to sample k1, ..., kN from {1, ..., N}

(c) Re-weight: Assign each particle x̄
(i)
t the weight

w̄
(i)
t ∝

f(x̄
(i)
t |x

(ji)
t−1) g(yt|x̄(i)

t ) f(x̃
(ki)
t+1|x̄

(i)
t )w

(ji)
t−1 w̃

(ki)
t+1

q̄(x̄
(i)
t |x

(ji)
t−1, yt, x̃

(ki)
t+1) β

(ji)
t β̃

(ki)
t γt+1(x̃

(ki)
t+1)

and normalise them to sum to 1.
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We thus obtain a similar algorithm to before, but with particles at time t− 1 and

t+1 sampled independently, and with β̄
(j,k)
t replaced by β

(j)
t β̃

(k)
t in the calculation

of the weight. Thus we have an O(N) version of our smoothing algorithm shown

in Algorithm 3.2. We note that we can speed up the algorithm further as the

probabilities β
(j)
t and β̃

(k)
t (or even the auxiliary variables {ji} and {ki}) can be

saved from the filters to reduce the number of calculations in the smoothing step.

Degeneracy and block smoothing

Algorithms 3.1 and 3.2 overcome the degeneracy problem of the Forward-Backward

and Two-Filter smoothers when there is a deterministic or near-deterministic rela-

tionship between the states at successive time-points, as demonstrated in Subsec-

tion 3.2.1 with the AR(2) model. They will still have degeneracy problems where

there is a deterministic relationship between components of states separated by

two or more time-points. However, it is simple to extend our method so that we

jointly sample a block (xt, . . . , xt+n−1) so that this restriction may be removed (see

Doucet et al. (2006) for an example of block sampling in particle filters).

The block version of our smoother may be derived by following similar arguments

to the original algorithm starting from

p(xt:t+n−1|y1:T ) ∝ p(xt|y1:t−1)

(
t+n−1∏
s=t+1

f(xs|xs−1)

)
·(

t+n−1∏
s=t

g(ys|xs)

)
· p(yt+n:T |xt+n−1).

in place of (3.12). This leads to an algorithm where we sample a block (xt, . . . , xt+n−1)

given filter particles {x(j)
t−1} and backwards filter particles {x̃(k)

t+n}. The same

marginalising argument may be used to give an O(N) version which suggests

re-sampling {x(j)
t−1} with β

(j)
t and {x̃(k)

t+n} with β̃
(k)
t+n−1. The resulting algorithm is

given in Algorithm 3.3.
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Algorithm 3.3: New O(N) block smoothing algorithm.

Run the filter and backwards filter as before in Algorithm 3.1.

3. Smooth: For t = 1, n+ 1, 2n+ 1, . . . , bT−2
n
cn+ 1 ,

(a) Re-sample: Use {β(j)
t } from the filter to sample j1, ..., jN and

{β̃(k)
t+n−1} from the backwards filter to sample k1, ..., kN from {1, ..., N}.

(b) Propagate: Sample new particle blocks x̄
(i)
t:t+n−1 independently from

q̄(·|x(ji)
t−1, yt:t+n−1, x̃

(ki)
t+n).

(c) Re-weight: Assign each particle block x̄
(i)
t:t+n−1 the weight

w̄
(i)
t ∝

∏t+n
s=t f(x̄

(i)
s |x̄(i)

s−1) ·
∏t+n−1

s=t g(ys|x̄(i)
s ) · w(ji)

t−1 w̃
(ki)
t+n

q̄(x̄
(i)
t:t+n−1|x

(ji)
t−1, yt:t+n−1, x̃

(ki)
t+n) β

(ji)
t β̃

(ki)
t+n−1 γt+n(x̃

(ki)
t+n)

,

(where for brevity we define x̄
(i)
t−1 := x

(ji)
t−1 and x̄

(i)
t+n := x̃

(ki)
t+n)

and normalise the weights to sum to 1.

By choosing n sufficiently large such that there is not a deterministic relationship

between components of x
(j)
t−1 and x

(k)
t+n, our approach to smoothing can then be

applied successfully. Sampling particles in a block may also be beneficial when

there is no issue with degeneracy, as by using a larger block size we can reduce

the dependence between the filter and the backwards filter particles which may

improve the efficiency of the algorithm. We demonstrate this in Subsection 3.2.3

by applying the block version of our algorithm to the stochastic volatility model.

3.2.3 Simulation studies

We now compare the efficiency of our new algorithm against the currently available

methods for the linear-Gaussian and the stochastic volatility models.

Linear-Gaussian model

Our first simulation study is based on a model with linear-Gaussian state and ob-

servation models. The specific state model we used is chosen to be the same as for
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our athletics application in Section 4.1. We have a chosen a linear-Gaussian obser-

vation model so that we can compare results of different particle smoothers with

the true smoothing distributions obtained from the Kalman filter and smoother

(see Kalman (1960) and Anderson and Moore (1979)).

Specifically, we consider the model (2.4) on page 7 in two dimensions with

F =

1 1

0 1

 , Q = ν2

1
3

1
2

1
2

1

 , (3.15)

G = (1, 0), R = τ 2.

The state transition distribution, defined by F and Q, is derived in Appendix B.1

from the pair of stochastic differential equations (SDEs):

dXt,1 = Xt,2 dt,

dXt,2 = ν dBt,

(3.16)

and so the first component Xt,1 is the integrated path of the random walk Xt,2. A

noisy observation of the first component is made at each time step. The parameter

ν2 determines the smoothness of the state over time. With a large value of ν2 the

state can move freely and thus follows the observations. When ν2 is small, however,

the model makes a linear fit to the observations.

We compare the two versions of our new algorithm with the simple Filter-Smoother

of Subsection 2.2.2, the Forward-Backward Smoother of Subsection 2.2.3 and the

Two-Filter Smoother of Subsection 2.2.4. We also look at how the relative perfor-

mance of the algorithms is affected by the ratio of the state noise ν2 to observation

noise τ 2. The details of our particle filter, backwards filter and smoothing algo-

rithms for this model are given in Appendix A.1.

To compare the accuracy of our smoothing algorithms’ estimates of Xt,d we esti-
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mate the effective sample size Neff(Xt,d). Motivated by the fact that

E

(
(X̄ − µ)2

σ2

)
=

1

N
,

when X(1), . . . , X(N) IID N (µ, σ2) and X̄ is their sample mean, we take

Neff(Xt,d) = E

(
(x̂t,d − µt,d)

2

σ2
t,d

)−1

, (3.17)

where µt,d and σ2
t,d are the true mean and variance of Xt,d|y1:T obtained from the

Kalman smoother and x̂t,d is the random estimate from a particle smoother. We

can therefore crudely say that the weighted sample produced by our smoother is

as accurate at estimating Xt,d as an independent sample of size Neff(Xt,d). To

estimate the expectation in (3.17) we use the mean value from 100 repetitions of

each algorithm.

We first compare the smoothing algorithms using model parameters of ν2 = τ 2 = 1

with µ0 = (0, 0)′ and Σ0 = I2 for the prior. We generated 20 datasets, each of

length 200, and averaged the effective sample sizes to remove effects caused by a

single dataset.

We chose different numbers of particles for each algorithm to try to reflect the

varying complexities of each method. We started by choosing 10, 000 particles for

the Filter-Smoother and 3, 000 for the O(N) version of our new algorithm since

they then took approximately the same amount of time to run. We would have

liked to scale the O(N2) algorithms to take the same time to run but their speeds

varied greatly. Part of this may be due to how the algorithms are implemented in

R. We therefore fixed the number of particles for these three algorithms at 300.

Algorithm Filter
Forward-

Two-Filter New O(N2) New O(N)
Backward

N 10,000 300 300 300 3,000
Run time (s) 224 688 358 40 255

Table 3.5: Number of particles used and average run time of each algorithm.
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This made the O(N2) version of our new algorithm a lot faster but the other

two methods slower than the Filter-Smoother. The average time taken by each

algorithm per run is shown in Table 3.5.

Figure 3.6 shows how the average effective number of particles for estimating Xt,1

varies through time for the five algorithms considered. The results for Xt,2 (not

shown) are very similar.

We can see that the Filter-Smoother does very well for times close to T = 200 as

this filter has by far the most particles and the filter and smoothing distributions

are similar at this stage of the process. As predicted, however, this algorithm gets

progressively worse as it goes backwards through time. This is not necessarily

the case with the other algorithms whose efficiencies remain roughly constant over

time when averaged over the 20 datasets. Of the two O(N) algorithms we see that

our new method vastly outperforms the Filter-Smoother for all but the final few

time steps, despite taking a similar amount of time to run.

From Figure 3.6 we can also see that the three O(N2) algorithms have near iden-

tical efficiencies for this particular model. This could be because they all have

similar forms in that filter particles are combined, via an O(N2) approximation,
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Figure 3.6: Average effective sample size for each of the 200 time steps using
the filter (◦), Forward-Backward (4) and Two-Filter smoothers (+) as well as the
O(N2) (×) and O(N) versions (♦) of our new algorithm.
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with particles from future time steps sampled backwards in time. We recall that

these were run with the same number of particles N though in our implementation

our new algorithm was faster than the other two here. However, even with this

taken into account, the O(N) version is many times more efficient for even these

modest sample sizes N .

To see how these results are affected by the ratio of the state noise ν2 to the

observation noise τ 2, we repeat the experiment first with ν2 = 100 while keeping

τ 2 = 1. This gives the state freedom to follow the observations which helps the

algorithms to perform well. The results are shown in Figure 3.7a below. Those for

ν2 = 1 and τ 2 = 1/100 gave very similar results.

We see that the accuracy of the Filter-Smoother still diminishes as it progresses

backwards through time but all the other methods are close to their optimal ef-

ficiency of an effective sample size equal to N . This is particularly the case with

our new O(N2) algorithm which outperforms the other O(N2) methods at every

time step. Our new O(N) algorithm, however, is by far the fastest allowing it to

have 10 times as many particles as the slower methods. Its efficiency also suggests

that our choice of re-sampling weights is reasonable.
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(b) ν2/τ2 = 1/100

Figure 3.7: Average effective sample sizes as in Figure 3.6 with different ratios of
the state noise ν2 to the observation noise τ 2.
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We finally repeat the experiment with ν2/τ 2 = 1/100 which makes the state highly

dependent through time and causes all the particle methods to struggle. This can

be seen from the low effective sample sizes in Figure 3.7b. Even though the Filter-

Smoother diminishes at a slightly faster rate than before, it does better than the

other algorithms for a large number of time steps. This is possibly due to the

total accumulation of error in the filter, backwards filter and smoother, each of

which performs badly in this case, which hinder the other methods. Also, because

the state is so highly correlated, the filter weights change little going back in

time so that the degradation of the Filter-Smoother is less, countering the poor

performance of the filter. However, the Filter-Smoother eventually drops below the

accuracy of our O(N) method showing that our O(N) algorithm can give stronger

estimates of the earliest smoothing densities in even the toughest situations.

As a final point, we consider the surprisingly poor performance of our O(N) algo-

rithm at the very earliest and latest time steps, as shown in Figure 3.7b. While,

unfortunately, we can offer no explanation of this, we have verified that it is a gen-

uine feature of our algorithm under extremely high state correlation, at least using

this linear-Gaussian model. Given the good performance of the Filter-Smoother

at the final time steps, it is likely that our O(N) algorithm may be improved by

instead using the Filter-Smoother estimates for the last few steps. Also, if the

artificial priors are chosen as γt(xt) = p(xt), the backwards filter can replace the

filter to produce a backwards Filter-Smoother algorithm that would be expected

to provide better estimates for the earliest time steps. It is likely that this com-

bination of the Filter-Smoother, backwards Filter-Smoother and our new O(N)

algorithm may produce optimal estimates whatever the relative dependencies in

the model.
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Stochastic volatility

For our second simulation study we use the stochastic volatility model given by

(3.7). We consider two issues: Firstly, we investigate whether our algorithm per-

forms better when we use the triples (x
(ji)
t−1, x̄

(i)
t , x̃

(ki)
t+1) as samples from p(xt−1:t+1|y1:T )

iterating the smoother every three time steps instead of keeping only the sampled

particle x̄
(i)
t and iterating at every step. By using the triples the smoothing stage

takes a third of the time so that more particles can be used for higher accuracy.

However, by using re-weighted filter and backwards filter particles we have fewer

distinct samples than we have if we sample all the smoother particles afresh. We

may therefore expect the efficiency to drop, especially when the filter’s densities

differ considerably from their smoother counterparts.

We also look at how sampling particles in blocks as described by Algorithm 3.3

affects the efficiency of our algorithm (see Shephard and Pitt (1997) for an example

of block updating in MCMC with the stochastic volatility model). By choosing

larger block sizes the dependence between the re-sampled filter and backwards filter

particles may be reduced. This is beneficial for our O(N) algorithm since here the

filter particles are matched up independently and so when there is high dependence

most of the pairings will be unlikely and so given a negligible weight. However,

increasing the block size increases the dimension over which the importance weight

applies which could also lead to uneven weights.

For the model parameters we take φ = 0.9720, ν = 0.178 and β = 0.5992 from Pitt

and Shephard (1999b) and use the stationary distribution N (0, ν2/(1−φ2)) for the

prior. This causes high dependence between the states which larger block sizes may

help to overcome. We generate a dataset of length 300 which remains constant over

the simulation. Since in practice this model would be used to estimate the volatility

βext/2, we compare the performance of the smoothers by using the variance of the

volatility estimates and the effective sample size (3.17) for the state over 300

repetitions. However, since the effective sample size requires the true smoother
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mean and variance, we first estimate these using the Filter-Smoother with two

million particles.

For the simulation itself, we compare the Filter-Smoother with multiple versions

of our O(N) algorithm. We first run our algorithm as described by Algorithm 3.2

sampling x̄
(i)
t for t = 2, . . . , T − 1 while discarding the re-sampled filter and back-

wards filter particles. We compare this with a second version that keeps the triples

(x
(ji)
t−1, x̄

(i)
t , x̃

(ki)
t+1), uses these to estimate the smoothing distributions at times t− 1,

t and t+1, and then iterates the smoother every three time steps. We chose 10,000

particles for the Filter-Smoother and scaled N for both versions of our O(N) al-

gorithm so that they all took the same time to run. Details of the forward and

backwards filters as well as our smoother for this model are given in Appendix A.2.

The results are summarised in Table 3.6. We see that by iterating the smoothing

step less often we are able to use nearly twice as many particles overall in the

same amount of time. It is interesting to see that this gain extends to the effective

sample size suggesting that little is lost using re-weighted filter particles. By using

the full output of our algorithm we reduce the variance of the volatility estimates

by almost a half.

To see whether, by using triples, we could have shown even greater results in the

previous linear-Gaussian simulation study, we run the triples version of our O(N)

algorithm on this model (with ν2 = 1). Using N = 4, 324 particles, this ran at the

Algorithm N Neff Var( ˆvolatility) (×10−5)
Filter-Smoother 10,000 786 5.240

New O(N) as Algorithm 3.2 3,780 710 2.790
New O(N) using triples 7,005 1,343 1.550

Table 3.6: Comparison of the Filter-Smoother with two variations of our new
O(N) algorithm: one that samples x̄

(i)
t at every time step and another which uses

the triples (x
(ji)
t−1, x̄

(i)
t , x̃

(ki)
t+1) iterating every three steps. The number of particles is

varied so that each algorithm took the same time to run. The final columns give
the average effective sample size and the average variance of the volatility estimate
over the 300 time steps.
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same speed as the original O(N) algorithm with 3, 000 particles. While the original

method had an overall average effective sample size of 621 (see Figure 3.6), the

triples version obtained 930. This again shows that any loss in efficiency due to re-

sampling filter particles for two of every three time steps is more than compensated

for by the increase in particle numbers. It is likely that this is the best strategy

for any model, at least whenever the marginal smoothing distributions are not too

dissimilar to the forwards and backwards filters.

We now return to the stochastic volatility model and focus on the block sampling

extension of our algorithm given in Algorithm 3.3. Adding to the results of Ta-

ble 3.6 we run our smoother with a selection of larger block sizes, again scaling N

so that they take the same time to run. Since we have just demonstrated the gains

made by using the re-weighted filter and backwards filter particles produced by our

algorithm, we now do the same for larger block sizes. This is done by sampling a

block of size n and extending this with the re-weighted particles to give an overall

block (x
(ji)
t−1, x̄

(i)
t , . . . , x̄

(i)
t+n−1, x̃

(ki)
t+n) of size n + 2. The smoothing step then iterates

every n+ 2 steps rather than every n as reported in Algorithm 3.3.

The results are given in Table 3.7. We see that the number of particles varies with

block size since larger blocks lead to fewer smoothing steps but each step takes

Algorithm Block size N Neff Var( ˆvolatility) (×10−5)
Filter-Smoother - 10,000 786 5.240

New O(N)

3 7,005 1,343 1.550
5 8,055 2,129 0.807
10 9,181 3,488 0.458
20 9,714 4,054 0.367
30 9,547 4,140 0.349
50 8,624 2,515 2.200
100 6,755 334 9.110

Table 3.7: Comparison of the Filter-Smoother with our new O(N) algorithm when
different block sizes are used. The block size reported includes the two re-sampled
particles at either end of the block. The number of particles is varied so that each
algorithm took the same time to run. The final columns give the average effective
sample size and the average variance of the volatility estimate over the 300 time
steps.



CHAPTER 3. NEW RESULTS IN PARTICLE FILTERING 92

longer to run. Despite running two filters as well as a smoothing stage, some runs

of our algorithm have almost as many particles as the Filter-Smoother which is

possible since the Filter-Smoother has the extra overhead of keeping track of each

particle’s history.

Table 3.7 shows that the accuracy of our smoother increases with block sizes greater

than 3, peaking here around 30. We see that this is a vast improvement over

the Filter-Smoother. The accuracy of our smoother diminishes, however, with

very large block sizes as the dimension over which the importance weight applies

becomes too great.
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3.3 EM algorithm for static parameter estimates

In this final section we present an Expectation-Maximisation (EM) algorithm that

can be used for estimating static parameters in the model.

3.3.1 EM algorithm

We often require estimates of parameters θ which, to contrast with the state Xt,

remain constant over time. We review current methods for this in Subsection 2.1.6.

While augmenting the state vector and the method of Storvik (2002) produce

sequential parameter estimates that are updated with the filter, they often require

sufficient statistics of θ to exist for them to work efficiently. Alternatively, direct

maximum likelihood methods require the filter to be run for each θ value in a grid

which can be infeasible when there are many parameters to estimate.

As an alternative strategy, we intend to obtain an estimate of θ from the Expectation-

Maximisation (EM) algorithm of Dempster et al. (1977). A similar method is

proposed by Briers et al. (2004) and Wills et al. (2008). To do this we aim to

maximise the likelihood p(y1:T |θ) by iteratively maximising

Q(θ|θ(n−1)) := E
(
log(p(X0:T , y1:T |θ))

∣∣∣ y1:T , θ
(n−1)

)

to give θ(n).

Estimating observation parameters

If we initially assume the parameters θ only appear in the observation density and

not the prior or state densities, the joint log likelihood can be written as

log(p(x0:T , y1:T |θ)) = log(π(x0)) +
T∑

t=1

log(f(xt|xt−1)) +
T∑

t=1

log(g(yt|xt, θ)).
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We therefore have

Q(θ|θ(n−1)) = const +
T∑

t=1

E
(
log(g(yt|Xt, θ))

∣∣∣ y1:T , θ
(n−1)

)
' const +

T∑
t=1

N∑
i=1

log(g(yt|x(i)
t , θ))w

(i)
t ,

where (x
(i)
t , w

(i)
t ) are weighted particles approximating p(xt|y1:T , θ

(n−1)). Thus we

only require particles from the marginal smoothing densities to estimate the ex-

pectation so any smoothing algorithm can be used.

The EM algorithm therefore proceeds as follows. We start with an initial estimate

of our parameters, θ(0). Then, given our current estimate θ(n−1), we use a smooth-

ing algorithm such as Algorithm 3.2 to generate particles from each marginal

smoothing density p(xt|y1:T , θ
(n−1)). Then we use numerical optimisation (such as

the optim function in R) to maximise Q(θ|θ(n−1)) to give us a new estimate θ(n).

This is summarised in Algorithm 3.4.

The estimates should be monitored so that the algorithm can stop when θ(n) differs

very little from θ(n−1). The model likelihood may also be estimated at every

iteration so that the algorithm can stop when the likelihood reaches a maximum.

This requires little additional work if the likelihood formula of Kitagawa (1996) is

Algorithm 3.4: EM algorithm for fixed parameters in the observation density.

1. Initialisation: Begin with an initial estimate θ(0).

2. For n = 1, 2, . . .

(a) Smooth: Using the current parameter estimates θ(n−1), run a particle

smoother to generate smoothed particles {(x(i)
t , w

(i)
t )} for t = 1, . . . , N .

(b) Maximise: Maximise

Q(θ|θ(n−1)) :=
T∑

t=1

N∑
i=1

log(g(yt|x(i)
t , θ))w

(i)
t

with a numerical optimiser to give new estimate θ(n).
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used since this uses filter particles which will most likely be calculated within the

smooth step of the EM algorithm.

The EM algorithm in general is guaranteed to converge to a local maximum but

this convergence can be slow. Since each iteration requires a complete run of

a particle smoother algorithm and speed is likely to be more of an issue, it is

therefore beneficial to use our O(N) algorithm of Section 3.2. In particular, the

similar methods of Briers et al. (2004) and Wills et al. (2008) use the Two-Filter

and Forwards-Backwards smoothers respectively which both have a complexity of

O(N2) making their methods slower than ours.

Since the EM algorithm converges only to a local maximum, it is advisable to start

the algorithm at multiple starting values. If different final estimates are found, the

model likelihood can be used to choose between them. It may also help to choose

initial parameter estimates that are close to the maximum as unreasonable values

may cause the particle smoother to struggle. It is often possible to use simpler

tractable analyses of the data to get good estimates of the parameter values.

Estimating state parameters

We now relax the restriction placed upon θ and allow unknown parameters to

appear in the prior and particularly the state density. This gives

Q(θ|θ(n−1)) =E
(
log(π(X0|θ))

∣∣∣ y1:T , θ
(n−1)

)
+

T∑
t=1

E
(
log(f(Xt|Xt−1, θ))

∣∣∣ y1:T , θ
(n−1)

)
+

T∑
t=1

E
(
log(g(yt|Xt, θ))

∣∣∣ y1:T , θ
(n−1)

)
'

N∑
i=1

(
log(π(x

(i)
0 |θ)) +

T∑
t=1

log(f(x
(i)
t |x

(i)
t−1, θ)) +

T∑
t=1

log(g(yt|x(i)
t , θ))

)
w

(i)
t , (3.18)
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where (x
(i)
t−1, x

(i)
t ;w

(i)
t ) are weighted pairs of particles approximating p(xt−1, xt|y1:T ,

θ(n−1)). We note that these are available from our algorithm as either (x̄
(i)
t−1, x̃

(ki)
t )

at time t − 1 or as (x
(ji)
t−1, x̄

(i)
t ) at time t but they can also be sampled from the

Filter-Smoother or the joint smoothers of Hürzeler and Künsch (1998) or Godsill

et al. (2004).

We can therefore proceed much as before, using a smoother which produces pairs of

particles and maximising the Q given by (3.18). However, in most cases there will

be different parameters in the prior, state and observation densities so the Q given

by (3.18) may be split into two or three separate components. Each component

can then be maximised separately at each iteration n which reduces the dimension

of the space to maximise over, improving the efficiency of the numerical routines

applied. This is illustrated in Algorithm 3.5 for the case where the prior has no

parameters, and the state and observation densities’ parameter sets are disjoint.

Algorithm 3.5: EM algorithm for fixed parameters in the state and observation
densities.

1. Initialisation: Begin with initial estimates θ
(0)
f for the state and θ

(0)
g for

the observation.

2. For n = 1, 2, . . .

(a) Smooth: Using the current parameter estimates θ
(n−1)
f and θ

(n−1)
g ,

run a particle smoother to generate pairs of smoothed particles
{(x(i)

t−1,t, w
(i)
t )} for t = 1, . . . , N .

(b) Maximise for state: Maximise

Qf (θf |θ(n−1)
f , θ(n−1)

g ) :=
T∑

t=1

N∑
i=1

log(f(x
(i)
t |x

(i)
t−1, θf ))w

(i)
t

to give new state parameter estimate θ
(n)
f .

(c) Maximise for observation: Maximise

Qg(θg|θ(n−1)
f , θ(n−1)

g ) :=
T∑

t=1

N∑
i=1

log(g(yt|x(i)
t , θg))w

(i)
t

to give new observation parameter estimate θ
(n)
g .
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3.3.2 Estimating observed information

One disadvantage of the EM algorithm is that it only gives a point estimate of θ

with no automatic measure of uncertainty. The standard approach is to estimate

the variance of our parameter estimates by inverting the observed information

matrix I(θ|y1:T ). This can be estimated from the method of Louis (1982) which

has

I(θ|y1:T ) = E
(
∇2 log(p(X0:T , y1:T |θ))

∣∣ y1:T , θ
)
−

E
(
∇ log(p(X0:T , y1:T |θ))∇ log(p(X0:T , y1:T |θ))′

∣∣ y1:T , θ
)
, (3.19)

where we use the θ estimate given by the EM algorithm.

Since log(p(x0:T , y1:T |θ)) is available in closed form as

log(p(x0:T , y1:T |θ)) = log(π(x0|θ)) +
T∑

t=1

log(f(xt|xt−1, θ)) +
T∑

t=1

log(g(yt|xt, θ)),

the expectations in (3.19) can be estimated as before using particle pairs from our

smoothing algorithm.



Chapter 4

State space modelling of

univariate extremes

In this chapter we present flexible state space models for the extremes of univariate

time series with non-stationary trends. While the models are presented through

two example analyses, they may be applied to a wide range of problems that

involve extreme value modelling of a non-stationary series. We show how the

particle filters and smoothers presented in previous chapters may be applied to fit

these models.

4.1 Analysis of women’s 3000m running event

4.1.1 Introduction

We first analyse an athletics dataset, shown in Figure 4.2, of the fastest annual

times in the women’s 3000m running event since 1972.

Robinson and Tawn (1995) first studied the fastest times from 1972 to 1992 to

assess whether Wang Junxia’s record in 1993 was consistent with the previous

98
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data. They used the r-smallest order statistics likelihood (see Subsection 2.3.1

for the r-largest model) with a parametric trend to conclude that cutting 16.51s

off the record, though unusual, was not exceptionally so. Smith (1997) outlined

the benefits of a Bayesian analysis for calculating the probability of beating Wang

Junxia’s record given that a new record is set and Gaetan and Grigoletto (2004)

extended this by using particle methods to model a dynamic trend.

As stated in Subsection 2.3.4, Gaetan and Grigoletto (2004) propose a GEV model

whose parameters vary stochastically over years by following random walks in a

state space. They use only the fastest record of each year t and negate the value

so that a GEV(µt, σt, ξt) distribution for maxima is appropriate. They model µt

with either the first-order random walk µt|µt−1 ∼ N (µt−1, ν
2) or the second-order

random walk µt|µt−1, µt−2 ∼ N (2µt−1 − µt−2, ν
2); if the latter is used, the state is

augmented to include µt and µt−1 so that the Markov property can be maintained.

Since they wish σ and ξ to be constant over time, they assume log(σ) and ξ follow

first-order random walks with negligible variances of ν2 = 0.0012.

While Gaetan and Grigoletto (2004) presented an attractive model for the data,

it is our belief that the particle methods they used for their inference are highly

inefficient. Because they use extremely small state variances for log(σ) and ξ, these

parameters are practically constant and therefore, as discussed in Subsection 2.1.6,

their components are only explored in the initialisation of the particle filter. This

is demonstrated in Figure 4.1 which repeats their analysis using the 1000 particles

they suggest is sufficient. While the particle representation looks good in 1973

after a single iteration, we see that after just 6 more steps there are perhaps only

9 distinct ξ values and by 1992 this has fallen further to just 4. While their

method could easily be improved by using a lot more than the 1000 particles they

propose, the speed at which the particle approximation degrades suggests that a

huge number may be required.

We also note that the forward-backward particle smoother of Tanizaki (2001),
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Figure 4.1: The µt and ξt components of 1000 particles from the filter at years
1973, 1979, 1983 and 1992 following the method of Gaetan and Grigoletto (2004).
As time progresses the effective number of distinct ξt values decreases since the
state variation is insufficient to create significantly different values to replace those
lost to re-sampling.

that they propose to provide smooth µt estimates, works poorly with their model

for µ. This is because their choice of second-order random walk creates a partial

deterministic relationship between particles of adjacent years which, as shown in

Subsection 3.2.1, causes forward-backward smoothers to degrade. Even without

the second-order random walk, the constraint of an almost constant value of σt

and ξt provides additional near-deterministic relationships between the particles.
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4.1.2 Dynamic r-smallest order statistics model

We now propose a new model that aims to improve on the deficiencies of the

Gaetan and Grigoletto (2004) approach.

Whereas Gaetan and Grigoletto (2004) used the annual minimum running times,

we use the r-fastest annual times following the initial analysis of Robinson and

Tawn (1995). Large amounts of data are now available on-line (for example

from Track and Field all-time Performances at http://www.alltime-athletics.

com/) from which the five fastest times of different athletes per year is shown in

Figure 4.2. Since the data values within a year are the smallest from a population

of independent running times, the r-smallest extremal order statistics model is

most appropriate. However, since this model arises from the asymptotics of IID

variables, we use only the best record achieved by each athlete within a year and

discard any lesser times. For convenience, we refer to the data as the r-fastest

times per year but we must remember that we mean the r-fastest times from dif-

ferent athletes per year. Following the theory of Subsection 2.3.1, the r-smallest

model fit is equivalent to negating the data values and using the r-largest order

statistics likelihood of (2.19).

To account for the non-stationarity visible in the series, Gaetan and Grigoletto

(2004) used independent random walks for each of the three likelihood parameters

in the state space. However, since they only wished to model non-stationarity in

the location, they chose tiny variances for the other parameters to fix them through

time which ultimately led to their method failing. Referring to other methods of

modelling fixed parameters that we reviewed in Subsection 2.1.6, the method of

Storvik (2002) and the rejuvenation of the sample with MCMC moves are perhaps

the most promising. However, these both require sufficient statistics of σ and ξ

to exist for their methods to be efficient, and for this model they do not. We

therefore propose the simpler strategy of assuming they are fixed and known and

use the EM algorithm of Section 3.3 to estimate them.

http://www.alltime-athletics.com/
http://www.alltime-athletics.com/
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Figure 4.2: Five fastest times for the women’s 3000m race between 1972 and 2007
with Wang Junxia’s time in 1993. The two fastest annual times used for our fit
are coloured black. Also shown is the mean and central 95% probability interval
of the fitted predictive distribution for the fastest time per year.

Since the second order random walk for µ causes degeneracy problems with some

smoothers, we instead adopt the smooth second order random walk given in the

linear-Gaussian simulation study of Subsection 3.2.3. We therefore augment the

state with µ̇, the velocity of µ, giving us the two-dimensional state xt = (µt, µ̇t)
′.

Finally, for the prior we follow Gaetan and Grigoletto (2004) and use an uninfor-

mative normal distribution.

The aim of this analysis is to accurately estimate the probability of a new record

in 1993 beating Wang Junxia’s time of 486.11s (shown as a red circle in Fig-

ure 4.2). For this we need to approximate the marginal smoothing distribution of

µ1993 for which we use our particle smoother of Section 3.2. Since the likelihood

only depends on µt and the prior is Gaussian, we used Rao-Blackwellisation (see

Subsection 2.1.5) to marginalise µ̇t thus improving the accuracy of the particle

methods. Details of this step and the particle algorithms we used to achieve this
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are given in Appendix A.4.

4.1.3 Parameter estimation

For a fixed value of r and ν2 we can estimate the likelihood parameters σ and ξ

using an EM algorithm constructed using our new smoother (see Algorithm 3.4 in

Section 3.3 for details). The EM algorithm for (σ, ξ) was initialised with (σ̂, ξ̂)

which were obtained using the following two-step procedure: We first fit the

negated annual minima (−yt) to a Kalman smoother with the same prior and

state as our model but with Gaussian observations to obtain trend estimates x̂t.

As (−Yt)− x̂t should follow a GEV(0, σ, ξ) distribution approximately, we then ob-

tain maximum likelihood estimates (σ̂, ξ̂) of (σ, ξ) from a GEV fit to the (−yt)− x̂t

data. For this fit and for the maximisation within the EM algorithm we work with

the transformed variable log(σ) as this then spans the whole real line.

Simultaneously estimating ν2 requires particles approximating the joint distribu-

tion p(xt−1, xt|y1:T ) which is possible using our smoother (as our algorithm gives

approximations to p(xt−1:t+1|y1:T ), see Subsection 3.2.2). It is perhaps simpler,

however, to select among a few possible ν2 by maximising the model likelihood

p(y1972:2007|ν2), which we estimate using the formula of Kitagawa (1996) given by

(2.10). Table 4.1 shows a selection of ν2 values with the corresponding EM esti-

mates of σ and ξ and the model likelihood when we take r = 2, using N = 10, 000

particles.

To select the number of observations r to include per year we constructed probability-

ν2 0.5 0.75 1 1.25 1.5 1.75 2
σ 4.36 4.25 4.22 4.15 4.12 4.04 4.01
ξ -0.15 -0.13 -0.13 -0.11 -0.11 -0.09 -0.09

Likelihood (×10−83) 0.41 2.72 3.68 3.50 2.41 1.52 1.02

Table 4.1: Model likelihood with σ and ξ estimates for different values of the
smoothing parameter ν2 and r = 2.
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probability and quantile-quantile plots to assess the model fit. Looking at r =

1, . . . , 5 we concluded that the best fit was obtained from only two observations

per year. As we see from Table 4.1, this leads us to select ν2 = 1 and estimate σ

and ξ to be 4.22 and -0.13 respectively. This fit is shown on Figure 4.2 as the es-

timated mean and central 95% probability interval of the negated annual maxima

from each marginal smoothing distribution.

4.1.4 Results

To estimate the probability of a new record in 1993 beating Wang Junxia’s we use

the r = 2 fastest times from 1972 to 2007 excluding 1993, denoted y1972:2007, to

estimate the predictive distribution of the fastest time in 1993. Given this data

and the parameters σ and ξ, the probability of Y1993, the fastest time in 1993,

beating Wang Junxia’s time of 486.11s is given by

P{Y1993 ≤ 486.11|y1972:2007, σ, ξ}

=

∫
P{−Y1993 > −486.11|µ1993, σ, ξ} p(µ1993|y1972:2007, σ, ξ) dµ1993

=

∫
(1−G(−486.11|µ1993, σ, ξ)) p(µ1993|y1972:2007, σ, ξ) dµ1993

'
N∑

i=1

(1−G(−486.11|µ(i)
1993, σ, ξ))w

(i)
1993,

where G is the GEV cdf and (µ
(i)
1993, w

(i)
1993) are weighted particles approximating

p(µ1993|y1972:2007, σ, ξ). The probability that Y1993 beats Wang Junxia’s time given

it is a new world record is then

P{Y1993 ≤ 486.11|Y1993 ≤ 502.62, y1972:2007, σ, ξ}

=
P{Y1993 ≤ 486.11|y1972:2007, σ, ξ}
P{Y1993 ≤ 502.62|y1972:2007, σ, ξ}

'
∑N

i=1(1−G(−486.11|µ(i)
1993, σ, ξ))w

(i)
1993∑N

i=1(1−G(−502.62|µ(i)
1993, σ, ξ))w

(i)
1993

, (4.1)
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where 502.62s was the world record prior to 1993.

Our analysis estimates the probability of a new record in 1993 beating Wang’s to be

2.16× 10−4. This conflicts with the analysis of Gaetan and Grigoletto (2004) who

showed Wang’s record well within the reach of their boxplots of the conditional

distribution. Apart from our doubts in the accuracy of their results, the main

difference in the two analyses is that Gaetan and Grigoletto (2004) only used data

on the fastest race for years up to 1992. If we repeat our analysis using only the two

fastest times from 1972 to 1992 we obtain a probability estimate of 1.045× 10−2.

While this is a lot larger than before, as no data ahead of 1993 is being used, it

still disagrees with the previous conclusions of Gaetan and Grigoletto (2004).

We also admit that our analysis fails to account for the uncertainty in σ and

ξ which could cause our estimate to be significantly under-estimated. However,

since the attempts of Gaetan and Grigoletto (2004) to account for this lead to poor

performance of the particle methods, a new approach is required. In Fearnhead

et al. (2009) we consider this issue by combining likelihood estimates on a grid with

priors for σ and ξ to produce a Bayesian probability estimate. Fitted using the

data selected from 1972 to 2007, our estimate becomes 1.9 × 10−2 which, though

naturally larger due to increased parameter uncertainty, still shows Wang’s time

to be fairly unlikely.

There are many ways our simple model can be enhanced to improve the probability

estimate. Robinson and Tawn (1995) proposed many extensions including an

additional effect to account for expected increases in performance during Olympic

and World Championship years. Such an effect could be added to our model

via the addition of indicator variables to the state process which then gives us

more parameters to estimate with the EM algorithm. It should be noted that the

women’s 3000m was only a standard discipline at the major championships between

1983 and 1994 before it was replaced by the 5000m so therefore the additional term

should only be applied during these years.
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Our model assumes that times made in successive years are independent given

the trend which is unrealistic since the fastest times are often made by the same

athletes. Without the trend, we could simply remove all but the fastest time

recorded over each athlete’s career, but the non-stationarity in the series makes

this more difficult. One solution would be to subtract the trend from our current fit

and then keep only the fastest trend-adjusted times before re-fitting the modified

dataset. Alternatively, we could allow multiple times per athlete and explicitly

model the dependence across years using multivariate extreme value techniques.

Robinson and Tawn (1995) also proposed a model which linked the 3000m series

with the similar women’s 1500m event. In Section 5.1 we extend this analysis

by jointly modelling dependencies between the two series in the trend and the

extremes to refine our probability estimate.
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4.2 Analysis of Antarctic temperature data

4.2.1 Introduction

We now study the extremal properties of a time series of temperature measure-

ments. We have daily temperatures taken from the Faraday research station on

the Antarctic peninsula from 1st January 1951 through to 31st December 1995 (in

1996 it was handed over to Ukraine and is now known as the Akademik Vernad-

sky Station). The dataset is complete with not one missing value. A plot of the

raw data is given in Figure 4.3 with linear least-squares fits made to the annual

maxima, mean and minima.

1950 1960 1970 1980 1990

−
40

−
30

−
20

−
10

0
10

T
em

pe
ra

tu
re

 (
°°C

)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

Figure 4.3: Raw Faraday temperature series showing annual maxima (×), mean
(4) and minima (◦) with linear least-squares fits.
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The increasing trend in the mean of the process is much studied (see for example

Vaughan et al. (2003)) but the change in the extremes is less well understood.

From Figure 4.3 we see that a linear fit to the minima shows a clear upward trend

at a much faster rate than the mean of the process. The maxima on the other hand

appear to be stationary. However, it is unclear whether these effects are caused by

the overall change in the bulk of the series or by further variation in the extremes.

To attempt to answer this question, we will fit extreme value models with dynamic

trends to the upper and lower extreme values of the series. However, we first

standardise the dataset to remove the overall trend as well as the seasonality

present in the series. We can then differentiate between temperatures that are

extreme only because they fall in the summer or winter and those that are extreme

given the current trend.

4.2.2 Standardising the dataset

Kernel smoothing to remove seasonality

To standardise the data we use kernel smoothing to produce a smooth mean and

variance which we then use to normalise the series. We use a non-parametric

method to account for the variety of factors that cause the seasonality which we

may miss if we attempt a parametric fit. From Figure 4.3 we can see a clear

local trend that follows the seasons but also a possible year-to-year effect that we

attempt to capture. It is also evident that the winters are more variable than the

summers so we produce a smooth variance estimate as well as the mean.

Writing yd,t to denote the Faraday temperature measurement on day d of year t,

we estimate the smoothed mean value on this day by the weighted sum

ŷd,t :=
∑
e,s

ye,swe,s(d, t)
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using weights

we,s(d, t) :∝ φ

(
d− e

b1

)
φ

(
t− s

b2

)
, (4.2)

normalised to sum to 1 (where φ(z) is the pdf of a standard normal variable

evaluated at z). It is assumed that for days near the beginning or end of a year we

wrap around to consecutive years so that d− e is the smallest difference between

days in a year. The amount of smoothing is determined by the bandwidths b1 > 0

and b2 > 0. We similarly smooth the variance using

σ2
d,t :=

∑
e,s

(ye,s − ŷd,t)
2we,s(d, t)

where we use the same weights as the smoothed mean given in (4.2).

To select the bandwidths b1 and b2 to use for both the smoothed mean and variance

we use cross-validation. For a range of different bandwidths, we randomly remove

10% of the data and calculate the smoothed mean ŷd,t at these values. We then

sum the squared difference between the removed data and its smoothed mean

estimate and compare this value with that of other bandwidths choosing that

which minimises the sum of squares.

Figure 4.4 shows the logged sum of squares for a range of b1 and b2 values. The

minimum value is obtained at b1 = 0.88 days and b2 = 0.39 years. The resulting

smoothed mean and variance are displayed in Figure 4.5. We can see that the

smoothed mean still contains a lot of structure but the additional noise in the raw

data is mirrored by the variable standard deviation.

Having smoothed the mean and variance of the series, we can standardise the series

using

zd,t :=
yd,t − ŷd,t√

σ2
d,t

.

This should remove the seasonality and overall trend of the series captured by

the smoothed variables to allow us to study the extremes of the residuals. The



CHAPTER 4. STATE SPACE MODELLING OF UNIVARIATE EXTREMES110

b1 (days)

b
2 

(y
ea

rs
)

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 4.4: Logged sum of squares of the discrepancy between the data removed
for cross-validation and its smoothed estimate for a variety of kernel bandwidths
b1 and b2. The minimum sum of squares is shown as a red cross (×).
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Figure 4.5: Smoothed Faraday temperature series ŷd,t (—) with confidence interval
of ŷd,t − 2σd,t (−−) and ŷd,t + 2σd,t (−−), where σd,t is the smoothed standard
deviation.
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standardised series for 1958 is shown in Figure 4.6.

Declustering to account for temporal dependence

We now focus on modelling the upper and lower extremes of the standardised

dataset. Though de-trended, we still expect an amount of dependence to remain

in the series and therefore, following the theory of Subsection 2.3.3, we should first

decluster the series. We can then model the cluster maxima and minima as if they

are independent observations.

To decluster the standardised series, we use the runs method of Smith and Weiss-

man (1994). This involves selecting a high threshold u and identifying clusters of

threshold exceedances by consecutive runs of points separated by at least κ values

below u. To analyse the lower extremes we simply decluster the upper extremes

of the negated series.
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Figure 4.6: Standardised Faraday temperature series zd,t for t = 1958 with declus-
tered threshold exceedances for the upper and lower tail. The thresholds u are
shown by the dashed lines (- -) and the monthly boundaries by (· · ·).
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We select the threshold u to be the upper 90% quantile of the series and pick the

run length κ by eye, looking to identify independent clusters. As a compromise

between missing clusters by using too large a run length and having multiple

points in a cluster with too small, we chose κ = 7 days for both the upper and

lower extremes. The consequences of this choice can be seen in Figure 4.6 which

identifies the cluster maxima for 1958.

4.2.3 Dynamic point process model

Following the theory of Subsection 2.3.3 we can model the cluster maxima (and

minima) as if they were independent observations. For this we use the point process

model (2.22) as a starting point, choosing to model with the GEV parameters µ, σ,

ξ rather than use the peaks over threshold characterisation (see Subsection 2.3.2).

Mirroring the athletics analysis of Section 4.1, we will allow µ to vary over time

while fixing the remaining GEV parameters.

To construct a state space model for µ the decision of how to discretise the series

into blocks has to be made. Note that this was not an issue with the women’s

3000m analysis since the dataset was given as the fastest times within a year.

Since the temperature series is recorded as daily measurements, we may choose to

allow µ to vary between days. However, we have 45 years of observations so this

would lead to a large computational burden, especially if smoothing estimates are

required since particles then need to be stored for each time step. We also recall

that we are modelling not the time series itself but the cluster maxima of those

values which exceed the threshold u. We therefore have mostly missing data when

a resolution of a single day is used.

Unless we expect µ to vary substantially between days, it is reasonable for us to

assume µ is constant over a block of time. To allow the possibility of comparing

the model fits of various block sizes, we propose a model whose parameters are
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independent of the particular discretisation deployed. Following the point process

model (2.22) of Subsection 2.3.2, we propose the following observation density

g(yt|µt, σ, ξ) for cluster maxima yt,1, . . . , yt,nt in block t:

exp

(
−∆t

[
1 + ξ

(
u− µt

σ

)]− 1
ξ

+

)
nt∏

j=1

[
1 + ξ

(
yt,j − µt

σ

)]−(1+ 1
ξ )

+

, (4.3)

where ∆t is length of time (in years) covered by block t. Note that the number nt

of threshold exceedance cluster maxima varies between blocks and may be 0. By

measuring t in years we ensure that the GEV parameters correspond to a year for

any discretisation we use.

For the state we again adopt the smooth second order random walk with state

xt = (µt, µ̇t)
′ that we used in the women’s 3000m analysis as well as the simulation

study of Subsection 3.2.3. However, we need to extend the stated form to allow

models with different block sizes to be comparable with one another. Since the

model is derived from a pair of stochastic differential equations (3.16) given on

page 84, this goal is achieved by using the distribution of Xt+∆t given Xt where

∆t is now the time between successive blocks. In Appendix B.1 this is shown to

be

Xt+∆t|{Xt = xt} ∼ N (F∆t xt, Q∆t), (4.4)

where

F∆t =

1 ∆t

0 1

 , Q∆t = ν2

 (∆t)3

3
(∆t)2

2

(∆t)2

2
∆t

 . (4.5)

Since we assume µt is constant over the block labelled by t, we take t to be the

time in the centre of the block and therefore ∆t in the state transition is the time

difference between the centres of two successive blocks. This contrasts with ∆t in

the observation density (4.3) which denotes the size of the block t. These two will

be equal as long as the block size remains constant over the series. However, this
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distinction allows us to specify the prior at t = 1951.0 rather than at one time

step before the first to allow the prior to remain independent of the discretisation.

This is achieved by using ∆t/2 in place of ∆t in the state transition for the first

time step since the state has half the distance to travel to get to the centre of the

first block.

For the prior itself, we again choose a Gaussian distribution with large variances

to represent our uncertainty in the parameters. However, since the prior choice

and the form of the state transition determine the a-priori distribution of the state

at future time steps p(xt), we explore the consequences of the prior correlation.

Indeed, it can be shown that selecting an independent prior covariance will not

give independent covariances for future time steps. Instead, the correlation of p(xt)

tends towards that of the state covariance Q∆t (which itself is independent of ∆t)

as t increases.

This prompts us to choose a prior covariance matrix with the same correlation

structure asQ∆t. This, in turn, implies that the prior covariance should be Σ0 = Qc

for some large value of c so that prior uncertainty is still captured. In doing this

we are making the assumption that the a-priori state correlation remains constant

over time. This is similar to the common practice of assuming stationarity by

setting the prior to be the stationary distribution of the state when it exists.

We note that this causes the prior to depend upon the state parameter ν which

must be remembered when it comes to its estimation. We also note that the prior

covariance of Qc implies that p(xt) has covariance Qc+t so that all a-priori state

densities take this form.

We aim with this analysis to judge whether µ varies over time and so we require the

smoothed estimates of µt for every time step. Once again we use our new particle

smoother of Section 3.2 which in turn uses forwards and backwards particle filters.

The similarity of this model to that proposed for the women’s 3000m analysis of

Section 4.1 means that our algorithms implementations are very similar. This is
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summarised in Appendix A.5.

4.2.4 Results

We now apply our model to the threshold exceedance cluster maxima (and min-

ima) we obtained from the standardised dataset. We first chose to discretise the

series into months (setting ∆t = 1/12) as this allows the model to capture any

remaining seasonality whilst not giving too many time steps which would cause

a large computational burden. Before applying our method we must select the

observation parameters σ and ξ as well as the state parameter ν.

In the previous section we used an EM algorithm to estimate σ and ξ conditionally

on ν, although it is also possible to estimate these jointly with Algorithm 3.5.

While in principle we could use the EM algorithm here, it will take a lot longer since

we now have 540 time steps. We therefore estimate the observation parameters by

fitting a simpler model by maximum likelihood.

Specifically, we fit the point process likelihood (4.3) with µt = c0+c1t+c2 sin(2πt)+

c3 cos(2πt). This gives µ a simple trend with seasonal variability which should be

close enough to the smooth µ fit to give good σ and ξ estimates. Implementing

this we obtain σ = 0.02456, ξ = −0.8702 for the upper tail and σ = 0.02870,

ξ = −0.7906 for the lower fit. These significant negative values for ξ give a short

tailed distribution for the threshold exceedances that has an upper bound close to

µ.

Because we wish to compare our variable µ fit with a constant value for µ, we

pick a value of the state parameter ν that gives the trend a reasonable amount of

flexibility. We could, alternatively, use the model to estimate ν but since σ and ξ

were estimated from a simpler model it is likely that the fitted ν value would be

small thus restricting the potential variability of the trend.
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Figure 4.7 shows the fitted µt trend from our state space model when we select

ν = 0.1. We can see from the variability of the µt estimate that this gives the trend

some flexibility to follow the observations but not too much so that we overfit the

data. While the expected value of µt varies considerably, we see that the 95%

probability intervals are wide enough to allow a straight line to be put between

them over large expanses of time.

For the upper tail it is only around 1987 that the fitted µt falls below a potential

constant value of around 1.13. This suggests that the upper extreme temperatures

at Faraday have little additional structure above the overall trend in the bulk of

the data. Any processes bringing about change in the overall trend seem therefore

to have the same effect on the warmest temperatures.

While the variability in the lower trend appears to be no greater than that of

the upper trend, it is harder to place a constant value of µ through the lower

probability intervals. This irregularity in the lower tail can be seen in the original

dataset in Figure 4.3 which shows far greater variability in the lower tail than

the upper tail. Comparing the fitted µt trend with the linear fit of the annual

minimum temperatures, we see that regions of unusually warm winters correspond

well to peaks in the fitted trend with the possible exception of around 1990. Here

the summers were cool so the annual variability was low which absorbed the effect

of the warm summer at normalisation. The greater variability in the lower tail

suggests that the average trend in the bulk of the series is not enough to describe

the distribution of the coldest temperatures.

To better account for the skew in the original dataset, we could repeat the analysis

using data standardised with smoothed median and quartiles rather than the mean

and variance. This should produce a better normalisation and would also lessen

the chance of extremes in one tail affecting the other’s final fit. To achieve this, the

same weights given by (4.2) could be used to smooth over days as well as years.

Given a weighted sample (yi, wi), the p%-quantile could be estimated by first
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ordering the pairs by increasing yi (giving (y(i), w(i)) where y(i) ≤ y(i+1)), and then

selecting the jth ordered sample y(j) where j = arg min
k

∣∣∣p−∑k
i=1w(i)

∣∣∣ . Then,

given first, second and third quartile estimates, Q1,i, Q2,i and Q3,i respectively,

observations above their median Q2,i could be standardised as (yi −Q2,i)/(Q3,i −

Q2,i) and those below as (yi −Q2,i)/(Q1,i −Q2,i). The discontinuity at Q2,i would

not matter since we model only the upper and lower extremes of the standardised

series.

There are many more ways in which our temperature analysis and the dynamic

point process model in general can be improved. We are in particular limited by

the need to pre-process the data to remove the seasonality before the extreme

values are modelled; this separation confines us to looking at the remaining non-

stationarity in the extremes above that in the bulk of the data, restricting the

conclusions that can be drawn on the original scale.

In the athletics analysis of the previous section we were able to model the dataset

directly since it arrived as the r-smallest values in a year and we could assume

that performances within and across years were independent given the trend. The

temperature series, however, arises as raw, dependent data from which indepen-

dent extreme values must be extracted. The usual strategy of thresholding the

series before declustering the threshold exceedances is only appropriate when the

seasonality is removed. It is therefore primarily this step that needs to be modified

for the raw data to be taken into the model.

One way of doing this would be to decluster each block separately with a threshold

that varies with each block (perhaps taking a quantile of the data within a block

rather than for the series as a whole). This would allow the threshold to vary

between blocks following the seasonality of the observations allowing the cluster

maxima in each block to be fitted directly. Inferences could then be drawn on

the original scale to, for example, answer questions about the overall trend in the

extremes of the Faraday series.
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A potential problem with this method is the identifiability of clusters at the edge of

each block. Where two blocks meet with differing threshold values, an observation

considered extreme on one side may not be so on the other. Also, cluster maxima

at the edge of a block may better belong with its neighbour if the cluster itself is

spread between blocks. These issues may be resolved by taking the neighbouring

blocks into account when each block is declustered. Also, if a simple smooth

threshold could be constructed from the data alone then this would be preferable

to a threshold that jumps between blocks.



Chapter 5

State space modelling of bivariate

extremes

In this final chapter we extend the univariate state space models of Chapter 4 to

allow the extreme values of two series to be analysed together. This allows for

joint extremal dependencies to be modelled as well as correlations between the

two trends. While the models are presented for bivariate analyses it is possible to

extended them to higher dimensional problems.

5.1 Pooling athletics data from two events

5.1.1 Introduction

In this section we extend the women’s 3000m analysis of Section 4.1 by jointly

modelling the women’s 1500m running event. By capturing the dependence be-

tween the two series, we aim to improve our estimate of the probability of a new

3000m record in 1993 beating Wang Junxia’s controversial time.

120
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Robinson and Tawn (1995) first considered a joint analysis of the 3000m series

with that of a similar event. The 1500m was chosen as it is run in the same style

as the 3000m unlike shorter sprint events or longer distance races. Their method

consisted of a linkage between the two events, assuming that the annual minima

for the 3000m is roughly twice that of the 1500m with a lag to account for a lag in

development between the two races. By exploiting this relationship, dependencies

between the GEV parameters are introduced.

One problem with this approach is that the times run in the 1500m are assumed to

be independent, given the GEV parameters, of those made in the 3000m. However,

since the events are similar, many athletes will run both events; for example, Wang

Junxia also ran the 1500m in 1993 achieving the second fastest time that year (see

Figure 5.1). With this in mind, Barão and Tawn (1999) extend the analysis of

Robinson and Tawn (1995) by using a joint model based on the bivariate logistic

distribution for the fastest annual times in each series. To account for the non-

stationarity, they used the parametric trend of Robinson and Tawn (1995) for each

series.

While this approach provides a better treatment of the dependence within a year,

little connection is made between the trends of the two series. We therefore aim

to model the joint extremal properties of these two events as well as capturing any

dependence in the overall trend.

5.1.2 Dynamic logistic model with correlated random walks

We now describe our alternative joint model for the 1500m and 3000m series.

Firstly, we consider a joint distribution for the p and q-fastest annual times run

in the 1500m and 3000m respectively. Referring to Section 2.4, we propose a

bivariate extreme value model for the negated series. This takes each series as

the marginal extremes of an underlying paired process where each athlete runs in
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Figure 5.1: Five fastest times for the women’s 1500m and 3000m races between
1972 and 2007. Those made by Chinese athletes are shown in red with Wang
Junxia’s times drawn as circles. Also shown is the mean and central 95% proba-
bility interval of the predictive distribution for the fastest time per year. The two
fastest annual times that were used for this fit are coloured black.
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both the 1500m and the 3000m races. This seems reasonable as many athletes run

both races and those which do not are unlikely to have achieved an exceptionally

fast time if they did. We again make sure that multiple times by the same athlete

within a year are removed to preserve the IID assumption of the underlying annual

process, and for convenience we refer to this dataset as the p and q-fastest times

per year.

To provide a closed-form expression for the joint pdf, we are required to choose

a parametric form for the spectral distribution H or equivalently for V . For this

we pick the bivariate exchangeable logistic model with V given in Fréchet margins

by (2.25) (where we have d = 2). This is chosen for its simplicity as it has a

single dependence parameter α ∈ (0, 1] and the series is possibly too short to allow

a more complex parametrisation. The exchangeability assumption (on common

margins) is also reasonable since the two series are of similar running events as

opposed to two very different measurements.

Using the point process characterisation of Subsection 2.4.1, we can derive the

joint distribution of the p and q-largest variables from the logistic model. This can

then be differentiated multiple times to produce the joint density function. The

marginal distributions should then be transformed from Fréchet to the GEV forms

we know are appropriate for each series. This gives us an overall annual likelihood

g(y1500,y3000|µ1500, σ1500, ξ1500, µ3000, σ3000, ξ3000, α) with marginal parameters µ, σ

and ξ for each series and a dependence parameter α. Details of this derivation are

given in Appendix C.

This joint observation model is consistent with our previous analysis since marginally

the r-largest order statistic likelihood is obtained for each series. We would like

to also propose a consistent model for the state (by marginally giving the same

random walk for µ3000) but would also like to capture possible dependence between

the two series in the trend.

We therefore propose to derive the state model from the following four-dimensional
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stochastic differential equation:

dXt,1 = Xt,3 dt,

dXt,2 = Xt,4 dt,

dXt,3 = ν1500 dBt,1,

dXt,4 = ν3000ρ dBt,1 + ν3000

√
1− ρ2 dBt,2,

(5.1)

where Xt = (µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t)
′ and dBt,j are independent Wiener pro-

cesses. Marginally (µ1500,t, µ̇1500,t)
′ and (µ3000,t, µ̇3000,t)

′ both have the same form

as the SDE (3.16) used in the previous 3000m analysis with the µ variable being

the integrated path of the random walk µ̇. Jointly the random walks µ̇1500 and

µ̇3000 have correlation ρ which will correlate the trends between the two series.

The SDE (5.1) has solution given by

Xt+∆t|{Xt = xt} ∼ N (F∆t xt, Q∆t), (5.2)

where

F∆t =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


, Q∆t =

S (∆t)3

3
S (∆t)2

2

S (∆t)2

2
S∆t

 , (5.3)

with

S :=

 ν2
1500 ν1500ν3000ρ

ν1500ν3000ρ ν2
3000

 .

The proof of this is outlined in Appendix B.2. Measuring time t in years, this

gives us the Gaussian state transition density f(xt+1|xt, ν1500, ν3000, ρ).

For the prior, we once again use a multivariate Gaussian distribution with large

variances to account for our uncertainty in the trend.
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With this model we aim to improve our estimate of the probability of a new

3000m record in 1993 exceeding Wang Junxia’s time. As with previous analyses,

this probability is used as evidence to assess the consistency of this record to the

surrounding data. Referring to Figure 5.1, we see that Wang’s 3000m record was

not the only exceptional time made by a Chinese athlete during the 1990s. Indeed,

many of these Chinese performances caused controversy at the time. We therefore

make two fits to the data: one using all the data except 1993 and another after all

the Chinese records have been removed.

As before, the calculation of this probability requires the smoothing distribution

g(µ3000|y1972:2007), where we use y1972:2007 to generically represent all the data we

are using for the fit. To estimate this distribution, we again use our new particle

smoother of Section 3.2 which makes use of forwards and backwards filters. Since

our observation density only depends upon the µ components of the state, we use

Rao-Blackwellisation to marginalise the µ̇1500 and µ̇3000 components for improved

accuracy. Details of the particle methods implementation is given in Appendix A.6.

5.1.3 Parameter estimation

Before we can calculate the target probability, we must estimate all the parameters

in the model. We have marginal parameters σ, ξ and ν for each series as well as

the correlation ρ between the states and the dependence parameter α. We also

have to select p and q, the number of observations to include each year.

Beginning with p and q, we recall from Subsection 4.1.3 that for the 3000m analysis

we used probability-probability and quantile-quantile plots to select the two fastest

times per year. This gives us q = 2. To select p we did the same for the 1500m

series, both excluding 1993’s data and excluding all Chinese athletes, and found

that using the two fastest times per year fitted best in both cases. We therefore

take p = q = 2 for all years except 1997 where p = 0 when all Chinese athletes are
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removed and 1993 where both sets of observations are taken as missing.

Having chosen which observations to use for each series, we now estimate the

marginal parameters by fitting each series with the marginal model of Section 4.1.

To do this we can estimate σ, ξ and ν jointly with the joint EM algorithm Sec-

tion 3.3. Recall that we have previously estimated these parameters for the 3000m

series excluding 1993 and obtained σ3000 = 4.22, ξ3000 = −0.13 and ν3000 = 1. For

the 1500m series, the EM algorithm gives σ1500 = 2.1792, ξ1500 = −0.1485 and

ν1500 = 0.3831 when we exclude 1993 and σ1500 = 2.0033, ξ1500 = −0.2629 and

ν1500 = 0.3462 when all Chinese athletes are removed.

To estimate the remaining parameters ρ and α we maximise the model likelihood

p(y1972:2007|ρ, α). Using the approximation given by (2.10), we evaluate the like-

lihood on a grid of ρ ∈ [0, 1) and α ∈ (0, 1] values. Figure 5.2 gives a contour

plot of the log likelihood over a subset of these when we fit the model omitting all

ρρ

αα

0.0 0.2 0.4 0.6 0.8 1.0

0.
5
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6
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0

Figure 5.2: Contour plot of the model log likelihood for a range of dependence
parameters ρ and α. The model was fitted with the Chinese athletes removed and
the remaining parameters taken from marginal fits. The maximum value of the
likelihood is displayed as a red cross (×).
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Chinese athletes. We see that the maximum is obtained with α = 0.8 and ρ very

close to 1. This suggests that the model is overparametrised and the trend can be

described by a single random walk. However, rather than restructure the model,

we simply set ρ = 0.99 as this should have a similar effect. When we exclude only

the 1993 values from the dataset, we obtain α = 0.875 and have similar issues with

ρ so again take the value of 0.99 for this parameter.

5.1.4 Results

Now we have selected all the parameters in the model, we run our smoothing

algorithm again to revise our estimate of the probability of a new 3000m record in

1993 beating Wang Junxia’s time. Having run the smoother for 1993, we estimate

this probability as before using the formula (4.1) with the 3000m versions of σ and

ξ.

Using all but the 1993 data we obtain a probability estimate of 1.50 × 10−4 and

excluding the remaining Chinese records in 1997 from the fit we obtain 1.73×10−4.

This second fit is demonstrated in Figure 5.1 through the predictive distribution

of the annual best time. We see that the exclusion of two extreme 1500m records

in 1997 has little effect on the extreme tail for the 3000m series four years earlier

as the extreme probability changes very little. This is despite the large correlation

between the two trends.

Recall that the previous value of our target probability obtained from the marginal

analysis of Section 4.1 was 2.16×10−4. By exploiting dependencies with the 1500m

series we have tightened the distribution of the fastest annual record reducing the

mass in the tails. This adds extra weight to support the hypothesis that Wang

Junxia’s record is inconsistent with the achievements of her fellow athletes.

To further test this claim, our analysis could be repeated with a variety of alter-

native models for the spectral distribution function H such as those reviewed in
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Kotz and Nadarajah (2000). However, with only 36 years of observations we may

not have enough information to justify the use of a dependence model with very

many parameters. Alternatively, other similar events such as the 5000m or the

10000m could be added into the model by mirroring the correlated state and the

multivariate logistic observation model in higher dimensional cases.

If we believe that the Chinese athletes, as claimed, represent an enhanced popu-

lation due to their high-altitude training and alternative diet, we could add their

times to the model with a term that accounts for their potential edge over athletes

of other nationalities. This could be done either as an additive term per event that

indicates the expected reduction in a Chinese running time or as a multiplicative

term indicating the factor by which a Chinese athlete’s time is reduced. We could

then produce revised probability estimates to compare the chances of Chinese and

non-Chinese athletes in 1993 producing Wang’s record.
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5.2 Joint analysis of sea-level data

5.2.1 Introduction

In this final section we consider the variability of extremal dependencies between

sea-level heights at pairs of sites along the eastern English coastline.

We have frequent sea-level data from January 1964 to April 2008 from three sites

along the eastern coast of England (displayed in Figure 5.3). The records up to

1st January 1993 were taken every 60 minutes with later values taken every 15

minutes. Much data is missing as can be seen in Figure 5.4 which displays the

monthly maximum sea-level surges for the months that contain no missing values.

Data is missing due to a variety of causes such as gauges being replaced but also

after a quality assessment has marked a value improbable.

The datasets are freely available from the UK National Tide Gauge Network via

the British Oceanographic Data Centre website (http://www.bodc.ac.uk/). As

well as the raw sea-level readings, surges are provided that are calculated as the

raw sea-level minus the predicted tide. These predictions are calculated from a

database of tidal constants maintained by the Proudman Oceanographic Labora-

tory’s Application Group.

Extreme sea-levels are much studied in the literature with many authors focusing

on sites along the eastern English coastline. Analyses are often centred on the

estimation of upper quantiles of the annual maximum sea-level distribution to aid

the design of coastal defences. Tawn (1992) for example proposes an r-largest

model for the sea-level surges at a single site that incorporates interactions with

the tide level. Multivariate extreme value distributions are used by Tawn (1988a,

1990) and Barão and Tawn (1999) to simultaneously fit the annual maximum sea-

levels at multiple sites while spatial models are proposed by Coles and Tawn (1990)

and Dixon and Tawn (1992).

http://www.bodc.ac.uk/
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● Immingham

● Lowestoft

●
Sheerness

Figure 5.3: Map showing the locations of our sea-level data sources along the
eastern coastline of England.

Many authors assume that after the tide has been subtracted from the recorded

sea-level, the remaining surges form a stationary sequence. Dixon and Tawn (1999)

consider the implications of this and show that a false stationarity assumption can

lead to a significant underestimation of the extremal tail.

Our interest lies in the dependencies between sea-level surges at pairs of sites

and how this changes with time. We see from Figure 5.4 that there is a strong

relationship between the monthly maximum surges; the maximum in February



CHAPTER 5. STATE SPACE MODELLING OF BIVARIATE EXTREMES131

0.
0

1.
0

2.
0

(a) Immingham

0.
0

1.
0

2.
0

(b) Lowestoft

0.
0

1.
0

2.
0

3.
0

1970 1980 1990 2000 2010
(c) Sheerness

Figure 5.4: Monthly maximum sea-level surges for each of the three locations. The
values corresponding to the winter months (Nov–Feb) are shown in blue. Maxima
are only shown for months that contain no missing values.

1989 for example is the largest value in the Immingham and Lowestoft series and

the second largest for Sheerness. By eye there seems to be strong synchronicity

between the location of the largest maxima as well as their size. It is harder,

however, to judge whether these dependencies vary over time.



CHAPTER 5. STATE SPACE MODELLING OF BIVARIATE EXTREMES132

5.2.2 Dynamic logistic model with variable dependence pa-

rameter

In order to find out whether the dependence between extremal sea-levels at a pair of

sites changes with time, we extend the dynamic logistic model of Subsection 5.1.2

allowing the dependence parameter α to vary. This allows us to model the non-

stationarity of each series in such a way that the extremal dependence between

the surges at two sites can evolve smoothly as time progresses. In Appendix C

we outline the derivation of the joint distribution of the p and q-largest variables

from the logistic model. Since this model is derived from the asymptotics of IID

variables, we must first account for the seasonality and dependence present in each

series.

For the Antarctic temperature analysis of Section 4.2 we adjusted for the sea-

sonality by pre-processing the whole series via kernel smoothing. We could do

something similar here to the raw sea-level data but as a simpler strategy we use

the surge values provided which subtract the predicted tide. This does not account

for seasonal variations in the variance, however, as can be seen from Figure 5.4

which shows that the monthly mean surge values are usually larger in the winter.

To account for this extra effect we restrict our analysis to the winter months of

November to February inclusive.

As the sea-levels are measured every 15 or 60 minutes there are clearly high levels

of temporal dependence in each series. Following the theory of Subsection 2.3.3,

each series should be declustered and we can then model the cluster maxima as if

they are independent observations. For the temperature analysis we used the runs

method for declustering since this ties in with the point process model through

the use of the threshold u. However, since we intend on modelling the r-largest

independent observations in each series, we have no need of a threshold for the

model fitting.
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We therefore use the blocks method to decluster each series. This involves se-

quentially selecting the largest value in the series and then removing this and all

neighbouring observations within a radius of size κ. This ensures that the selected

observations are separated by at least κ which should be chosen to be just large

enough to identify individual clusters. We can allow for the change of resolution

from one measurement per 60 minutes to one per 15 by ensuring that κ denotes a

time window around each cluster maxima rather than a number of observations.

Trying a range of values, we select κ = 7 days for all series as this seems to select

the majority of significant peaks while ensuring that they are separate enough to

be deemed independent. The consequences of this choice can be seen in Figure 5.5

for Immingham in 1989.

Having declustered each series, we can now model the p and q-largest cluster

maxima within a given block of time (not to be confused with the blocks used to

decluster the series). To do this we take each month as a block but only allow

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Nov 1988 Dec Jan 1989 Feb Mar

Figure 5.5: Sea-level surges at Immingham during the winter containing January
1989 with the five largest monthly cluster maximum obtained using blocks of radius
κ = 7 days.
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the state to vary across years. This gives us four independent blocks of winter

observations per year, each of which consists of the p and q-largest values at two

given sites. However, since much of the data is missing, we remove a whole month

of observations at a site if there are any missing values there. As we can see in

Figure 5.4 this causes many months to have no data and so we benefit from having

four potential months of data pairs each year.

Our observation density for a given year is therefore the product of four p and q-

largest logistic model densities, one for each of the months of November to Febru-

ary. When data is missing at one of the sites in a given month either p or q will

be 0 and the density reduces to the r-largest density for the other site. If data

is missing at both sites simultaneously that month’s term is removed. Labelling

each winter by the year that begins in the containing January we have 44 years of

observations from 1965 to 2008.

To model any remaining non-stationarity in the location parameters µA and µB we

use the correlated random walk of the previous section derived from the stochastic

differential equation (5.1). This allows each µ to follow a smooth two-dimensional

random walk but also allows these trends to be correlated through the use of

a correlation parameter ρµ. Through estimating ρµ we get an indication of the

connection between the margins at a pair of sites to contrast with α which indicates

the dependence between the extreme values themselves.

To allow the extremal dependence parameter α to vary over time, we add αt to

the state Xt and propose a transition model that is independent of the model for

µ. Since α ∈ (0, 1] we first transform to the real line by defining α∗ := Φ−1(α)

where Φ(·) is the standard Gaussian cdf. While this does not allow α = 1 exactly,

α may be arbitrarily close to 1 given a sufficiently large α∗.

To allow α to vary we could propose a simple random walk for α∗ such as α∗t+1|α∗t ∼

N (α∗t , ν
2
α). However, by allowing α∗t to move away from 0 without restriction, it

could become so far from 0 that αt will be fixed at either 0 or 1 for even modest
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variations in α∗t . This would be particularly likely for sites that have asymptotically

independent surges, ie when αt ' 1.

As an alternative, we propose a conditional model for α∗t+1 given α∗t via a joint

model for α∗t and α∗t+1. Specifically, we assume that (α∗t , α
∗
t+1) follows a standard

bivariate Gaussian distribution with correlation ρα. This implies that α∗t+1|α∗t ∼

N (ραα
∗
t , 1 − ρ2

α) which we take as our transition density. Assuming ρα ∈ (0, 1),

this model ensures that α∗t can always move back towards 0.

We note that α∗ now has a stationary distribution of N (0, 1) which translates to

an uninformative uniform distribution between 0 and 1 for α. We also note that

this model may be generalised to α∗t+∆t|α∗t ∼ N (ρ∆t
α α∗t , 1 − ρ2∆t

α ) which gives a

consistent model that allows time steps of arbitrary length.

We therefore have the combined state Xt = (µA,t, µB,t, µ̇A,t, µ̇B,t, α
∗
t )
′ with a tran-

sition model that may be written as

Xt+∆t|{Xt = xt} ∼ N (F∆t xt, Q∆t), (5.4)

where

F∆t =



1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ρ∆t
α


, Q∆t =


S (∆t)3

3
S (∆t)2

2
0

S (∆t)2

2
S∆t 0

0 0 1− ρ2∆t
α

 , (5.5)

with

S :=

 ν2
A νAνBρµ

νAνBρµ ν2
B

 .

Measuring time t in years, we take ∆t = 1 in the state to allow the trends and

dependence parameter to vary from one winter to the next.
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Note that since we have taken monthly blocks of data without introducing ∆t into

the observation model, the marginal parameters will correspond to a GEV distri-

bution for the monthly maxima rather than the annual maxima. Since the annual

maximum is the largest of the monthly maxima, the monthly parameters may be

transformed to annual by equating the GEV distributions Gann(x) =
∏12

i=1Gi(x),

where Gi is the distribution of the ith monthly maxima. Since we only use the

four winter months where it is likely the largest surges will occur, it may be best

to equate only these four months to a single GEV distribution representing each

winter maxima. We ignore these issues for now since we are only interested in the

dependence between sites.

For the prior, we once again use Qc for some large value of c to construct the prior

covariance as this allows us to account for our uncertainty in the parameters while

assuming a constant correlation structure. However we do this only for the trend

components and their velocities as a compromise for them not having a stationary

distribution. Since α∗t has a stationary distribution of N (0, 1) we take this for its

prior which translates nicely to a non-informative uniform prior for α.

Our aim in this analysis is to fit the declustered surges from pairs of sites with

a particle smoother to study how the smooth distribution of αt varies over time.

For this we use our new smoothing algorithm in its block sampling form which

requires forwards and backwards particle filters. Details of our implementation of

these algorithms are given in Appendix A.7.

5.2.3 Parameter estimation

To see how the amount of dependence between two sites varies with their separation

distance we fit two pairs of sites: Immingham against Lowestoft and Immingham

against Sheerness. Lowestoft is roughly half way between Immingham and Sheer-

ness as can be seen in Figure 5.3. Immingham is chosen for both fits since it has
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the fewest missing values.

To fit each pair of sites we must estimate the marginal parameters for each site as

well as the correlation ρµ between each pair of random walks and the correlation ρα

between successive α∗t s. For this we follow a similar strategy to the joint athletics

analysis in previous section (see Subsection 5.1.3).

We begin by selecting the number of observations p and q to include from each

site per month, when available. For these we select 2 since much data is missing so

we want to maximise the amount of information available and we do not have the

observation density for p or q greater than 2. These could in principle be derived

following a similar derivation to that in Appendix C but the joint distribution

becomes increasingly complex making distributions of larger p and q hard to obtain.

If more observations are required or if the dimension d is greater than 2, the joint

density of all observations with
∑d

i=1 yi > u is easier to derive (see Subsection 2.4.1)

but this is not considered here.

Having selected to use the two largest cluster maxima per month, we first estimate

the parameters σ, ξ and ν for each site. For this we fit the marginal model with

the joint EM algorithm of Section 3.3. The marginal model is the same as used

for the athletics analysis of Section 4.1 except that the data are not negated since

we are now fitting the upper extremes and the single observation density g(y1:r|µ)

is replaced by the product of four such densities, one for each winter month per

year. The parameter estimates we obtained for each site are given in Table 5.1

We once again estimate the dependence parameters by maximising the model like-

Parameter Immingham Lowestoft Sheerness
σ 0.3493 0.4382 0.4935
ξ -0.1243 -0.1896 -0.1617
ν 0.0078 0.0078 0.0043

Table 5.1: Marginal parameter estimates obtained for each site from an EM
algorithm.
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Figure 5.6: Contour plot of the model log likelihood for a range of dependence
parameters ρµ and ρα with data from Immingham and Lowestoft. The maximum
value of the likelihood is displayed as a red cross (×).

lihood p(y1965:2008|ρµ, ρα) using the approximation given in (2.10). The likelihood

is estimated on a grid of values within ρµ, ρα ∈ [0, 1). Figure 5.6 shows the log

likelihood contour for the ρµ and ρα values fitted with data from Immingham and

Lowestoft. The maximum is obtained from ρµ = 0.5 and ρα = 0.9. Similarly with

Immingham and Sheerness we obtain ρµ = 0.1 and ρα = 0.99. We note that the

correlation ρµ between the location parameter trends for each site is greater when

Immingham is compared with Lowestoft which is to be expected since they are

much closer to each other.

5.2.4 Results

We now estimate the marginal smoothing distributions for each pair of sites using

our new parameter estimates. For this we use our block smoothing algorithm

and found that block sizes of around 20 were most efficient. This is in particular
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large enough to cover the periods of missing data present in the Sheerness series.

The fitted distribution of α as well as of each location parameter µ is given in

Figure 5.7 for the Immingham and Lowestoft fit and in Figure 5.8 for Immingham

and Sheerness. Note that small values of α correspond to higher dependence in

the extremes between each series.

Looking first at the fitted location parameters, it is immediately clear that they

vary little from year to year which is a consequence of the small estimates for their

noise parameters ν. In three out of four cases a constant value can be placed be-

tween the 95% probability intervals suggesting the model may be overparametrised

but with the Lowestoft series there is some evidence to suggest that the extreme

surges have been getting worse over the last ten years or so.

Focusing on the dependence parameters α we see that, while there are local varia-

tions especially with the fit containing Lowestoft, the overall dependence remains

fairly stable over time. However, we can see the effect of the differing correlations

between neighbouring years by the greater variability in the fit with Lowestoft.

With this fit you can clearly make out troughs during years of agreement between

the two sites and peaks when large extremes at one site are not accompanied by

similar values in the other. While a smoother fit with larger confidence intervals

could have been made to this α, the fact that this fit had a higher likelihood sug-

gests that, while there is still a strong relationship between neighbouring values,

some years’ observations disagree strongly on the amount of extremal dependence

with those a few years away.

Comparing with the second fit that includes Sheerness, we see that on average α

is lower with the Lowestoft fit indicating the dependence between extreme surges

is greater. This is expected since Immingham is closer to Lowestoft but we may

have predicted this effect to be more pronounced. The comparable overall levels of

α, particularly in the first half of the series, indicate a similar level of dependence

between both pairs of sites which may suggest that the largest surges are often
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Figure 5.7: Smooth joint fit for Immingham and Lowestoft of the two largest clus-
ter maxima during each of the winter months. The fitted smoothing distributions
are shown for the location parameter µ at each site as well as for the dependence
parameter α. Each fit is represented by the estimated mean as well as the central
95% probability interval.
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Figure 5.8: Smooth joint fit for Immingham and Sheerness as in Figure 5.7.
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common to the whole eastern coastline.

While there is no overall trend in the dependence parameter for Immingham and

Lowestoft, with Sheerness there is some evidence suggesting that the extremal

dependence was less during the 1990s than in previous decades. However, the

wide confidence intervals for α in both fits tells of the difficulty in estimating

extremal dependence, which only more data can solve.

Since the fitted location parameters do not differ significantly from a constant, we

could simplify our analysis by assuming each µ is fixed. This might allow us to

better look at the variability of α as it could potentially be masked by the change

in location. However, we expect the consequences of this change to be small since

their fit is already flat.

We currently use data from November to February only to account for seasonality

but if we can appropriately use every month’s data we can expect efficiency gains

with tighter probability intervals. This could be done with an additive sinusoidal

term in the location parameter of each month’s observations that adds to the

annual stochastic trend, although this inevitably gives additional parameters to

estimate. We may also wish to investigate whether it is the scale rather than

location that should be seasonally adjusted.



Appendix A

Implementation of particle filters

and smoothers

In this appendix we give the implementations of the particle filters and smoothers

we use throughout this thesis.

A.1 Linear-Gaussian model

The linear-Gaussian model is defined in (2.4) of Subsection 2.1.2 for arbitrary

design matrices.

To implement the various smoothing algorithms we need to choose propagation

densities for a particle filter, backwards information filter and the smoother itself.

Using auxiliary algorithms throughout, the linear-Gaussian model assumption al-

lows us to calculate the optimal densities and re-sampling probabilities. Using

these we have adapted algorithms giving even weights of 1/N whenever we resam-

ple.

143
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Filter

Writing N (x|µ,Σ) for the density of N (µ,Σ) evaluated at x, it is easy to show

that the optimal filter is given by

q(xt|x(j)
t−1, yt)β

(j)
t = f(xt|x(j)

t−1)g(yt|xt)w
(j)
t−1

= N (xt|µ(j)
t|t−1,Σt|t−1) N (yt|GFx(j)

t−1, R +GQG′)w
(j)
t−1,

where Σt|t−1 = (Q−1 +G′R−1G)−1 and µ
(j)
t|t−1 = Σt|t−1(Q

−1Fx
(j)
t−1 +G′R−1yt). This

is used for each algorithm but we only need to keep track of our trajectories for

the simple Filter-Smoother.

Backwards filter

For the backwards information filter we can use the actual prior γt(xt) = p(xt) =

N (xt|µt,Σt), whose mean and covariance can be calculated sequentially using the

prediction step of the Kalman filter. This gives

p(xt|xt+1) = N (xt|F̃ xt+1 + Q̃Σ−1
t µt, Q̃),

where we define F̃ := ΣtF
′Σ−1

t+1 and Q̃ := ΣtF
′Σ−1

t+1QF
′−1. We then obtain

q̃(xt|yt, x̃
(k)
t+1)β̃

(k)
t = p(xt)g(yt|xt)f(x̃

(k)
t+1|xt)

w̃
(k)
t+1

p(x̃
(k)
t+1)

∝ N (xt|µ(k)
t|t+1,Σt|t+1)·

N (yt|G(F̃ x
(k)
t+1 + Q̃Σ−1

t µt), R +GQ̃G′)w̃
(k)
t+1,

where Σt|t+1 = (Σ−1
t +G′R−1G+F ′Q−1F )−1 and µ

(k)
t|t+1 = Σt|t+1(Σ

−1
t µt+G

′R−1yt+

F ′Q−1x̃
(k)
t+1).
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Smoother

Finally, for our new smoothing algorithm we have

q̄(xt|x(j)
t−1, yt, x̃

(k)
t+1) ∝ f(xt|x(j)

t−1)g(yt|xt)f(x̃
(k)
t+1, xt)

∝ N (xt|µ(j,k)
t|T ,Σt|T ),

where Σt|T = (Q−1+G′R−1G+F ′Q−1F )−1 and µ
(j,k)
t|T = Σt|T (Q−1Fx

(j)
t−1+G

′R−1yt+

F ′Q−1x̃
(k)
t+1). The optimal re-sampling weights can be shown to be

β̄
(j,k)
t ∝ p(x̃

(k)
t+1, yt|x(j)

t−1)
w

(j)
t−1w̃

(k)
t+1

p(x̃
(k)
t+1)

= N


x̃(k)

t+1

yt


∣∣∣∣∣∣∣
F 2

GF

x
(j)
t−1,

Q+ FQF ′ FQG′

GQF ′ R +GQG′


 w

(j)
t−1w̃

(k)
t+1

p(x̃
(k)
t+1)

,

which we can see does not factorise. Therefore, for the O(N) version of our

algorithm we use β
(j)
t and β̃

(k)
t from the filters as outlined in Algorithm 3.2 as this

should be a good approximation of the optimal weights.

A.2 Stochastic volatility

The stochastic volatility model is given by (3.7) of Subsection 3.1.3.

The particle filter, backwards filter and block smoother for the SV model all involve

target distributions of the form

qopt(xt) ∝ N (xt|µ, σ2) g(yt|xt)

∝ exp

(
−(xt − µ)2

2σ2
− xt

2
− y2

t

2β2ext

)
.

Pitt and Shephard (1999a) showed how rejection sampling can be used to sample

from qopt(xt) exactly giving adapted auxiliary algorithms. However, to contrast
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with the linear-Gaussian model above, we sample from an approximation of this

instead.

We therefore consider a second order Taylor expansion of log qopt(xt) about an

estimate of its mode. Setting the first derivative of this to zero and noting that

the solution likely to be close to µ we get

xt = µ+
σ2

2

(
y2

t

β2ext
− 1

)
' µ+

σ2

2

(
y2

t

β2eµ
− 1

)
(A.1)

which we use as our estimate x̂t. This gives a Gaussian approximation with mean

x̂t and variance (
1

σ2
+

y2
t

2β2ex̂t

)−1

(A.2)

which is close to the target qopt(xt).

Filter

For the particle filter our target density satisfies

qopt(xt|x(j)
t−1, yt) β

opt(j)
t ∝ f(xt|x(j)

t−1) g(yt|xt)w
(j)
t−1,

with f(xt|x(j)
t−1) = N (xt|φx(j)

t−1, ν
2). Therefore, following the above, our proposal

distribution q(xt|x(j)
t−1, yt) is Normal with mean and variance given by (A.1) and

(A.2) respectively using µ = φx
(j)
t−1 and σ2 = ν2. We use the proposal mean x̂

(j)
t
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again to approximate the re-sampling weights by

β
opt(j)
t ∝

∫
g(yt|xt) f(xt|x(j)

t−1)w
(j)
t−1 dxt

=Eq

(
g(yt|Xt) f(Xt|x(j)

t−1)w
(j)
t−1

q(Xt|x(j)
t−1, yt)

∣∣∣∣∣x(j)
t−1, yt

)

'
g(yt|x̂(j)

t ) f(x̂
(j)
t |x(j)

t−1)w
(j)
t−1

q(x̂
(j)
t |x(j)

t−1, yt)
. (A.3)

Note that this is the same form as the final weight w
(i)
t in Algorithm 2.3 without the

β
(j)
t term showing that the re-sampling weights may be thought of as a prediction

of the final weights if we do not re-sample.

Backwards filter

For the backwards information filter we again use the actual prior γt(xt) = p(xt) =

N (xt|µt, σ
2
t ), whose mean and variance can be calculated sequentially with the

Kalman filter. We then have target

q̃opt(xt|yt, x̃
(k)
t+1) β̃

(k)
t ∝ p(xt|x̃(k)

t+1) g(yt|xt) w̃
(k)
t+1,

where

p(xt|xt+1) = N
(
xt

∣∣∣∣ φσ2
t

σ2
t+1

xt+1 +
ν2

σ2
t+1

µt,
ν2σ2

t

σ2
t+1

)
.

We therefore proceed as with the forwards filter substituting the form of f(xt|xt−1)

for p(xt|xt+1) and w
(j)
t−1 for w̃

(k)
t+1.
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Block smoother

For our O(N) smoother with inner block size n, our overall target is

q̄opt(xt:t+n−1|x(j)
t−1, yt:t+n−1, x̃

(k)
t+1) ∝ f(xt|x(j)

t−1)

(
t+n−1∏
s=t+1

f(xs|xs−1)

)
f(x̃

(k)
t+n|xt+n−1) ·(

t+n−1∏
s=t

g(ys|xs)

)
w

(j)
t−1 w̃

(k)
t+n

p(x̃
(k)
t+n)

.

As a density in xt:t+n−1, this is

q̄opt(xt:t+n−1|x(j)
t−1, yt:t+n−1, x̃

(k)
t+1) ∝ p(xt:t+n−1|x(j)

t−1) f(x̃
(k)
t+n|xt+n−1)

t+n−1∏
s=t

g(ys|xs)

∝ p(xt:t+n−1|x(j)
t−1, x̃

(k)
t+n)

t+n−1∏
s=t

g(ys|xs),

where the Brownian bridge p(xt:t+n−1|xt−1, xt+n) is a multivariate Normal distri-

bution with mean φΣ(xt−1, 0, . . . , 0, xt+n)′/ν2 and precision matrix

Σ−1 =
1

ν2



1 + φ2 −φ 0 0

−φ 1 + φ2 . . . 0

0
. . . . . . −φ

0 0 −φ 1 + φ2


.

To approximate the target we can sequentially incorporate g(ys|xs) for s = t, . . . , t+

n − 1 into the proposal using the Taylor approximation above. Beginning with

q(xt:t+n−1) = p(xt:t+n−1|x(j)
t−1, x̃

(k)
t+n), we can sequentially separate component s as

q(xt:t+n−1) = q(xs) q(xrs|xs) and update q(xs) with the approximations (A.1) and

(A.2). However, since the variance (A.2) depends on the mean x̂s which varies

over the particles, this strategy requires the calculation and possible storage of N

covariance matrices of size n × n which could be considerable if the block size is

large1. We therefore use the average value of the variance in (A.2) so that each

1N2 matrices are required if the O(N2) algorithm is used.
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particle block is sampled with the same covariance matrix.

Finally, we follow Algorithm 3.3 and use the re-sampling weights β
(j)
t and β̃

(k)
t+n−1

from the filters to re-sample the particles in our block smoother.

A.3 Bearings-only tracking

The bearings-only tracking model is given by (3.9) and (3.10) in Subsection 3.1.3.

To construct the proposal density for our auxiliary particle filter, we first note that

there are only two degrees of freedom in the state so after sampling the position of

a new particle the velocity is determined by u̇t = ut − u
(i)
t−1 and v̇t = vt − v

(i)
t−1. To

sample the position we change to polar coordinates (rt, αt) and write the optimal

proposal density as

qopt(rt, αt|x(i)
t−1, yt) ∝ rt exp

(
−(rt − ρ

(i)
t cos(αt − ψ

(i)
t ))2

2ν2

)
·

exp

(
−(yt − αt)

2

2τ 2
− ρ

(i)2
t sin2(αt − ψ

(i)
t )

2ν2

)
,

where the prior means (u
(i)
t−1+u̇

(i)
t−1, v

(i)
t−1+v̇

(i)
t−1) are also changed to polar coordinates

(ρ
(i)
t , ψ

(i)
t ).

Fearnhead (1998) derive properties of the optimal range distribution conditional

on αt and show how to sample from it exactly using rejection sampling (details of

which are omitted here). We use this method to sample the range but first need

to sample the bearing αt. The optimal bearing density is given by

qopt(αt|x(i)
t−1, yt) ∝ K

(i)
t (αt) exp

(
−(yt − αt)

2

2τ 2
− ρ

(i)2
t sin2(αt − ψ

(i)
t )

2ν2

)
,
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where

K
(i)
t (αt) =

√
2πν2(s

(i)
t Φ(s

(i)
t ) + φ(s

(i)
t )) with s

(i)
t =

ρ
(i)
t cos(αt − ψ

(i)
t )

ν
(A.4)

is the normalising constant of the conditional range distribution (with Φ the cdf

and φ the pdf of a N (0, 1) random variable). To do this we assume αt ' ψ
(i)
t to

justify making the approximations cos(αt−ψ(i)
t ) ' 1− (αt−ψ(i)

t )2/2, log cos(αt−

ψ
(i)
t ) ' −(αt − ψ

(i)
t )2/2 and Φ(s

(i)
t ) ' 1− φ(s

(i)
t )s

(i)−1
t . Using these we get

q(αt|x(i)
t−1, yt) ∝ exp

(
−(αt − ψ

(i)
t )2

2
− (yt − αt)

2

2τ 2
− ρ

(i)2
t (αt − ψ

(i)
t )2

2ν2

)

∝ exp

−1

2

(
ν2 + (ν2 + ρ

(i)2
t )τ 2

ν2τ 2

)(
αt −

ν2yt + (ν2 + ρ
(i)2
t )τ 2ψ

(i)
t

ν2 + (ν2 + ρ
(i)2
t )τ 2

)2


giving us a normal distribution for the bearing.

For the re-sampling weights β
(i)
t we follow the suggestion (A.3) and use the pre-

dicted final weights about the mean of our proposal distribution for rt and αt.

To initialise the algorithm we use standard importance sampling for the first time

step rather than sampling from the prior and propagating the particles forward

as usual. Fearnhead (1998) showed that this can give a large improvement in

efficiency when the prior is flat as the first observation carries a lot of information

and causes only a few distinct prior particles to be propagated.

A.4 Analysis of women’s 3000m running event

For the women’s 3000m analysis of Section 4.1 we use the linear-Gaussian state

model

Xt+1|{X1:t = x1:t, Y1:t = y1:t} ∼ N (Fxt, Q),
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for the two-dimensional state Xt = (µt, µ̇t)
′ with F and Q given in (3.15). The

negated observations yt,1:r are modelled, conditionally on µt, by the r-largest order

statistic likelihood of (2.19).

Adapted auxiliary algorithms for this model will not be possible as the likelihood

in µ is very complex. We therefore approximate the log likelihood l(µt) by a

second-order Taylor approximation about an estimated mode µ̂t which leads to a

normal approximation of the form

g(yt,1:r|µt) ' N
(
µt

∣∣∣∣ µ̂t −
l′(µ̂t)

l′′(µ̂t)
,− 1

l′′(µ̂t)

)∣∣∣∣
At

, (A.5)

where the distribution is restricted to the likelihood’s support of

At := {µt|σ + ξ(yt,i − µt) > 0,∀i} .

In practice, we used the optimize function in R to estimate the mode at each time

step.

To make the algorithms as efficient as possible we use Rao-Blackwellisation to

reduce the variance of our estimates. For this we can marginalise the second

component of the state µ̇t as the likelihood only depends on µt so the distribution

of µ̇t|µt can be updated by using only its mean and variance. This improves the

overall approximation by allowing the second component of each particle to act as

a normal distribution rather than a point mass. We therefore have particles of the

form x
(i)
t = (µ

(i)
t , ṁ

(i)
t , τ

2(i)
t )′, where µ̇t|{µt = µ

(i)
t } ∼ N (ṁ

(i)
t , τ

2(i)
t ).
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Filter

To create a marginalised particle filter it helps to think each particle x
(i)
t−1 as a

kernel approximation to p(µt−1, µ̇t−1|y1:t−1) of the form

φ(i)(µt−1, µ̇t−1) := N (µt−1, µ̇t−1|η(i)
t−1, K

(i)
t−1),

with

η
(i)
t−1 :=

µ
(i)
t−1

ṁ
(i)
t−1

 , K
(i)
t−1 :=

 0 0

0 τ
2(i)
t−1

 .

This leads to the approximation of p(µt, µ̇t|y1:t−1) by

π(i)(µt, µ̇t) :=

∫
f(µt, µ̇t|µt−1, µ̇t−1)φ

(i)(µt−1, µ̇t−1) dµt−1 dµ̇t−1

= N (µt, µ̇t|Fη(i)
t−1, Q+ FK

(i)
t−1F

′).

To create the new particle x
(i)
t we therefore use standard auxiliary particle filtering

with target density

qopt(µt|x(i)
t−1, yt)β

(i)
t = π(i)(µt) g(yt|µt)w

(i)
t−1

to sample µ
(i)
t and then update the mean and variance of µ̇t|{µ = µ

(i)
t } with that of

π(i)(µ̇t|µ(i)
t ). For this we replace the likelihood by the approximation (A.5) to give

us a constrained normal sampling density for µ
(i)
t and approximate the optimal

re-sampling weights with

β
(i)
t '

π(i)(µ̂t) g(yt|µ̂t)w
(i)
t−1

q(µ̂t|x(i)
t−1, yt)

,

where µ̂t is the mean of the sampling density q(µt|x(i)
t−1, yt).
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Backwards filter

For the backwards filter we again start by defining F̃ := ΣtF
′Σ−1

t+1 and Q̃ :=

ΣtF
′Σ−1

t+1QF
′−1, where Σt is the variance of the normal prior at time t. It can

then be shown that p(µt, µ̇t|µt+1, µ̇t+1) is equal to

N


µt

µ̇t


∣∣∣∣∣∣∣F̃
µt+1

µ̇t+1

+ Q̃Σ−1
t

µ̂t

ˆ̇µt

 , Q̃

 ,

where (µ̂t, ˆ̇µt)
′ is the mean of the prior at time t. We then combine this with a

kernel φ(i)(µt+1, µ̇t+1) created from x
(i)
t+1 to give the density

π̃(i)(µt, µ̇t) := N


µt

µ̇t


∣∣∣∣∣∣∣F̃ η(i)

t+1 + Q̃Σ−1
t

µ̂t

ˆ̇µt

 , Q̃+ F̃K
(i)
t+1F̃

′

 .

We now proceed in exactly the same way as with the forwards filter using π̃ instead

of π to sample x
(i)
t .

Smoother

Finally, for our new smoothing algorithm, it can be shown that our target for µ
(i)
t

in this marginalised setting is

q̄opt(µt|x(j)
t−1, yt, x

(k)
t+1) β̄

(j,k)
t = π̄(j,k)(µt) g(yt|µt)w

(j)
t−1 w̃

(k)
t+1,

where

π̄(j,k)(µt, µ̇t) :∝ π(j)(µt, µ̇t) π̃
(k)(µt, µ̇t)

p(µt, µ̇t)
.

This leads us to sample µ
(i)
t as before using π̄(j,k)(µt) in place of π(j)(µt). We can

then calculate the mean and variance of µ̇t|{µ = µ
(i)
t } from π̄(j,k)(µ̇t|µ(i)

t ). The

filter and backwards filter re-sampling weights were used again for the suboptimal

O(N) version of our algorithm.
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For both the filter and the backwards filter the initial step was sampled using

standard importance sampling as the target density is available in closed form and

using it rather than propagating the prior greatly improves the algorithm. We also

used the stratified sampling algorithm of Carpenter et al. (1999) in both the filters

and our new algorithm to reduce the Monte Carlo error of re-sampling. Following

the results of Section 3.1, we compare the effective sample size in (2.7) with a fixed

threshold that is close to N to decide when to re-sample in the filters since this

should give near optimal results.

Since we choose not to include the data from 1993, for this time step in each of

the above algorithms we proceed without the likelihood term g(yt|µt).

A.5 Analysis of Antarctic temperature data

The Antarctic temperature model of Section 4.2 is defined for arbitrary block sizes

characterised by ∆t. The state transition model for Xt = (µt, µ̇t)
′ is given by (4.4)

which depends upon matrices F∆t and Q∆t given in (4.5). In this context, ∆t is

the time difference (in years) between the centre of two adjacent blocks.

The point process observation density g(yt|µt) is given by (4.3) where here ∆t

denotes the size of the block in years. The observations yt = (yt,1, . . . , yt,nt) are

the cluster maxima of the exceedances of the threshold u; it is therefore assumed

that the series is first negated if the smallest values are of interest.

This model is very similar to that of the women’s 3000m analysis of Section 4.1.

Indeed, the athletics model is obtained within the temperature model by setting

∆t = 1 and adjusting the threshold to the r-th largest value in each year. We

therefore only need to adjust the particle methods’ implementation for the women’s

3000m analysis given in Appendix A.4.

This is simply done by replacing F and Q by F∆t and Q∆t and using the point
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process observation density in place of the r-largest one. The derivations in Ap-

pendix A.4 then give us the filter, backwards filter and smoother for our Antarctic

temperature model.

Filter and backwards filter initialisation

Because the number of observations in each block varies it is possible for the first

few blocks at either end of the series to contain no observations. This causes the

filter or backwards filter distribution to be diffuse since the prior is uninformative

and this can cause the filter to collapse to a single point when the first observation

is encountered.

To counter this problem we initialise the particle filter by sampling the first k

time steps jointly as p(x1:k|y1:k). We select k to be just large enough for two sepa-

rate time steps within 1, . . . , k to contain observations, thus providing information

about the velocity µ̇t as well as µt.

The joint distribution p(x1:k|y1:k) is given by

p(x1:k|y1:k) ∝ p(x1:k) p(y1:k|x1:k)

=

(
p(x1)

k∏
t=2

f(xt|xt−1)

)
k∏

t=1

g(yt|xt),

which can be sampled from directly. However, since the observation density does

not depend on µ̇t, we marginalised this component from the filter and should do

the same here. To do this we sample instead p(µ1:k|y1:k) and calculate the mean

and covariance of p(µ̇1:k|µ1:k) = p(µ̇1:k|µ1:k, y1:k) which is possible since p(x1:k) is

available in closed form.

Since k is not very large we may be able to use importance sampling to sam-

ple p(µ1:k|y1:k) but MCMC can, alternatively, be used to make it more robust

to the range of parameter values given by the EM algorithm. We create a sim-
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ple Metropolis algorithm using a multivariate Gaussian distribution to iteratively

sample a block µF
1:k and accept or reject it based on a likelihood ratio.

Specifically, we sample µF
1:k ∼ N (µ

(i−1)
1:k ,Σ) and accept the block by setting µ

(i)
1:k =

µF
1:k with probability

min

{
1,

p(µF
1:k|y1:k)

p(µ
(i−1)
1:k |y1:k)

}
,

setting µ
(i)
1:k = µ

(i−1)
1:k otherwise. For the k × k covariance matrix Σ we choose

τ 2



1 ρ · · · ρ

ρ 1
. . . ρ

...
. . . . . .

...

ρ · · · ρ 1


,

where τ and ρ are tuning constants. We sample the block as one from a correlated

distribution since the µt components are highly correlated, especially when ν is

small.

We use the same procedure sample p(µT−k+1:T |yT−k+1:T ) to initialise the backwards

filter. To reduce the correlation between sampled blocks we thin the sample by

keeping only the mth value and to allow the Markov chain to converge we only

start keeping values after a suitable burn-in period.

A.6 Pooling athletics data from two events

For the joint women’s 1500m and 3000m analysis of Section 5.1 we use the familiar

state model (5.2) with the 4-dimensional state Xt = (µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t)
′.

This depends upon the matrices F∆t and Q∆t given by (5.3) where we set ∆t = 1

to give time steps of a year.

The annual observations yt = (y1500,1, . . . , y1500,p, y3000,1, . . . , y3000,q)t are the negated

p and q-fastest 1500m and 3000m times in year t. The observations we include
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varies between years since we choose to remove certain values from the fit. The

observation density g(yt|µ1500,t, µ3000,t) is given in Appendix C.3 for p and q up to

2.

To construct our particle methods, we once again mirror the 3000m analysis deriva-

tion of Appendix A.4. The only real difference between this and our current model

is that the state has doubled in size and now the observation density depends upon

two of the four components. This allows us to marginalise the remaining two com-

ponents for improved accuracy.

For all three particle algorithms we approximate the log likelihood l(µ1500,t, µ3000,t) :=

log(g(yt|µ1500,t, µ3000,t)) by a second-order Taylor approximation about a mode esti-

mate (µ̂1500,t, µ̂3000,t) obtained numerically. This gives the following approximation

to the observation density:

N


µ1500,t

µ3000,t


∣∣∣∣∣∣∣
µ̂1500,t

µ̂3000,t

−∇2l

µ̂1500,t

µ̂3000,t


−1

∇l

µ̂1500,t

µ̂3000,t

 ,−∇2l

µ̂1500,t

µ̂3000,t


−1

∣∣∣∣∣∣∣
At

,

where the distribution is restricted to the likelihood’s support of

At :=
{

(µ1500,t, µ3000,t)
′
∣∣∣σ1500 + ξ1500(y1500,i,t − µ1500,t) > 0,

σ3000 + ξ3000(y3000,j,t − µ3000,t) > 0,∀i, j
}
.

To marginalise both µ̇1500,t and µ̇3000,t we need to update the distribution of

(µ̇1500,t, µ̇3000,t)|(µ1500,t, µ3000,t) algebraically. In doing so we work with particles

of the form x
(i)
t = (µ

(i)
1500,t, µ

(i)
3000,t, ṁ

(i)
1500,t, ṁ

(i)
3000,t, τ

2(i)
1500,t, τ

2(i)
3000,t, c

(i)
t )′, where

µ̇1500,t

µ̇3000,t


∣∣∣∣∣∣∣
µ(i)

1500,t

µ
(i)
3000,t

 ∼ N


ṁ(i)

1500,t

ṁ
(i)
3000,t

 ,

τ 2(i)
1500,t c

(i)
t

c
(i)
t τ

2(i)
3000,t


 .
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These are then used to construct kernels of the form

φ(i)(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t) := N (µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t|η(i)
t , K

(i)
t ),

where

η
(i)
t :=



µ
(i)
1500,t

µ
(i)
3000,t

ṁ
(i)
1500,t

ṁ
(i)
3000,t


, K

(i)
t :=



0 0 0 0

0 0 0 0

0 0 τ
2(i)
1500,t c

(i)
t

0 0 c
(i)
t τ

2(i)
3000,t


.

Filter

To increment the marginalised particle filter, we begin by constructing the kernel

φ(i)(µ1500,t−1, µ3000,t−1, µ̇1500,t−1, µ̇3000,t−1) from each filter particle x
(i)
t−1 as above. We

use this filter approximation to approximate the prediction density p(µ1500,t, µ3000,t,

µ̇1500,t, µ̇3000,t|y1:t−1) by

π(i)(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t) =

N (µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t|F1η
(i)
t−1, Q1 + F1K

(i)
t−1F

′
1).

New particles x
(i)
t are sampled using the proposal density

q(µ1500,t, µ3000,t|x(i)
t−1,yt) ∝ π(i)(µ1500,t, µ3000,t) ĝ(yt|µ1500,t, µ3000,t),

which is a bivariate Gaussian distribution constrained to be inAt. The marginalised

components are then taken from the mean and covariance of π(i)(µ̇1500,t, µ̇3000,t|

µ
(i)
1500,t, µ

(i)
3000,t).

As before we use an auxiliary algorithm with re-sampling weights of the form

β
(i)
t '

π(i)(µ̂1500,t, µ̂3000,t) g(yt|µ̂1500,t, µ̂3000,t)w
(i)
t−1

q(µ̂1500,t, µ̂3000,t|x(i)
t−1,yt)

,
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where (µ̂1500,t, µ̂3000,t) is the mean of q(µ1500,t, µ3000,t|x(i)
t−1,yt). We initialise the al-

gorithm by using standard importance sampling for the first time step to overcome

the loss in efficiency caused by propagating from a diffuse prior.

Backwards filter

For the backwards filter we once again begin by defining F̃1 := ΣtF
′
1Σ

−1
t+1 and

Q̃1 := ΣtF
′
1Σ

−1
t+1Q1F

′−1
1 , where Σt is the prior variance at time t. We then use a

kernel constructed from the backwards filter particle x̃
(i)
t+1 to create

π̃(i)



µ1500,t

µ3000,t

µ̇1500,t

µ̇3000,t


= N





µ1500,t

µ3000,t

µ̇1500,t

µ̇3000,t



∣∣∣∣∣∣∣∣∣∣∣∣∣
F̃1η

(i)
t+1 + Q̃1Σ

−1
t



µ̂1500,t

µ̂3000,t

ˆ̇µ1500,t

ˆ̇µ3000,t


, Q̃1 + F̃1K

(i)
t+1F̃

′
1


,

where (µ̂1500,t, µ̂3000,t, ˆ̇µ1500,t, ˆ̇µ3000,t)
′ is the prior mean for time t. We then proceed

as the forwards filter, using π̃ in place of π.

Smoother

For the smoother we combine the above filter and backwards filter to define

π̄(j,k)(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t) as proportional to

π(j)(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t) π̃
(k)(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t)

p(µ1500,t, µ3000,t, µ̇1500,t, µ̇3000,t)
.

We then follow a similar strategy as before, using the filters re-sampling weights

to create the O(N) version of our algorithm.
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A.7 Joint analysis of sea-level data

For the sea-level analysis of Section 5.2 we jointly model the upper extreme sea-

levels at a pair of cites, hereby labelled A and B. We use the familiar state model

(5.4) with the 5-dimensional state Xt = (µA,t, µB,t, µ̇A,t, µ̇B,t, α
∗
t )
′ where α∗t :=

Φ−1(αt). The state design matrices F∆t and Q∆t are given in (5.5) where we take

∆t = 1 so that the state parameters vary between years.

We have four sets of independent observations per year arising from each of the

winter months November to February. The observations within a month are the

p-largest cluster maxima from site A and the q-largest from site B. Each month’s

observations are modelled independently by the bivariate logistic model derived

in Appendix C so that the observation density for year t, g(yt|µA,t, µB,t, αt), is

the product of four logistic densities. The datasets have much missing data which

causes either p or q to be 0 or the logistic density to be removed entirely.

The implementation of our particle filter and backwards filter is based on that of

Appendix A.6 for the simpler model with α as a constant. The addition of α∗t to

the state adds an extra component to the sampling distributions but otherwise the

methods remain the same. For example, the log likelihood approximation, used

by each of the particle methods, now becomes

N



µA,t

µB,t

α∗t


∣∣∣∣∣∣∣∣∣∣


µ̂A,t

µ̂B,t

α̂∗t

−∇2l


µ̂A,t

µ̂B,t

α̂∗t


−1

∇l


µ̂A,t

µ̂B,t

α̂∗t

 ,−∇2l


µ̂A,t

µ̂B,t

α̂∗t


−1

∣∣∣∣∣∣∣∣∣∣
At

, (A.6)

where (µ̂A,t, µ̂B,t, α̂
∗
t ) is a mode estimate of the log likelihood l(µA,t, µB,t, α

∗
t ) :=

log(g(yt|µA,t, µB,t, α
∗
t )) and

At :=
{

(µA,t, µB,t, α
∗
t )
′
∣∣∣σA + ξA(yA,i,t − µA,t) > 0,

σA + ξB(yB,j,t − µB,t) > 0,∀i, j
}
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is the likelihood’s support.

As before we use Rao-Blackwellisation to marginalise the two µ̇t components to

improve the overall efficiency of the algorithms. This is done by updating the

distribution of (µ̇A,t, µ̇B,t)|(µA,t, µB,t, α
∗
t ) algebraically while using particles of the

form x
(i)
t = (µ

(i)
A,t, µ

(i)
B,t, ṁ

(i)
A,t, ṁ

(i)
B,t, τ

2(i)
A,t , τ

2(i)
B,t , c

(i)
t , α

∗(i)
t )′.

To gauge the accuracy of the filter and backwards filter as they run, we monitor

the effective sample size using (2.7) for the re-sampling weights β
(j)
t (or β̃

(k)
t ) and

for the final weights w
(i)
t (or w̃

(i)
t ). If ESS(βt) or ESS(wt) is very low there may

be too few particles with significant weights to accurately approximate the filter

distribution so that subsequent steps diverge substantially from the target.

In an attempt to improve the accuracy of each filter, we repeat step t if ESS(wt)

is lower than a predetermined threshold and repeat the previous step if ESS(βt)

is too low. With even very low thresholds we found this strategy can prevent the

filters diverging to effectively a single point. Care must be taken, however, to

ensure the thresholds are not so high that after repeated attempts the filter gets

stuck.

Filter and backwards filter initialisation

As with the temperature analysis implementation in Appendix A.5, we use MCMC

to improve the initialisation of the filters by sampling the first k time steps jointly.

Since the velocity components are marginalised, we use MCMC to sample from

p(µA,1:k, µB,1:k, α
∗
1:k|y1:k) for the filter, and similar for the backwards filter.

Extending the Metropolis algorithm used for the temperature analysis, we se-

quentially propose a block (µA,1:k, µB,1:k, α
∗
1:k)

F and accept it or reject it with a

probability equal to a likelihood ratio. Since the µ and α∗ components are in-

dependent in the state density, we alternate between updating each component

block.
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During a µ update, we sample the proposal µ block

(µA,1, µB,1, . . . , µA,k, µB,k)
F ∼ N ((µA,1, µB,1, . . . , µA,k, µB,k)

(i−1),Σµ),

and accept (µA,1:k, µB,1:k, α
∗
1:k)

(i) = (µF
A,1:k, µ

F
B,1:k, α

∗(i−1)
1:k ) with probability

min

{
1,
p(µF

A,1:k, µ
F
B,1:k, α

∗(i−1)
1:k |y1:k)

p(µ
(i−1)
A,1:k , µ

(i−1)
B,1:k , α

∗(i−1)
1:k |y1:k)

}
,

setting (µA,1:k, µB,1:k, α
∗
1:k)

(i) = (µA,1:k, µB,1:k, α
∗
1:k)

(i−1) otherwise. For the 2k × 2k

covariance matrix Σµ we select



Sµ ρSµ · · · ρSµ

ρSµ Sµ
. . . ρSµ

...
. . . . . .

...

ρSµ · · · ρSµ Sµ


with Sµ =

 τ 2
A τAτBρµ

τAτBρµ τ 2
B

 ,

where τA, τB and ρ are tuning constants. This gives µA,t and µB,t the same corre-

lation ρµ that they have in the state but also allows us to adjust the correlation

between the time steps with ρ.

During an α∗ update we similarly sample α∗F1:k ∼ N (α
∗(i−1)
1:k ,Σα) and accept (µA,1:k,

µB,1:k, α
∗
1:k)

(i) = (µ
(i−1)
A,1:k , µ

(i−1)
B,1:k , α

∗F
1:k ) with probability

min

{
1,

p(µ
(i−1)
A,1:k , µ

(i−1)
B,1:k , α

∗F
1:k |y1:k)

p(µ
(i−1)
A,1:k , µ

(i−1)
B,1:k , α

∗(i−1)
1:k |y1:k)

}
,

setting (µA,1:k, µB,1:k, α
∗
1:k)

(i) = (µA,1:k, µB,1:k, α
∗
1:k)

(i−1) otherwise. For the k × k
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covariance matrix Σα we select

τ 2
α



1 ρ · · · ρ

ρ 1
. . . ρ

...
. . . . . .

...

ρ · · · ρ 1


which uses an additional tuning constant τα.

The same procedure is used to sample p(µA,T−k+1:T , µB,T−k+1:T , α
∗
T−k+1:T | yT−k+1:T )

to initialise the backwards filter. We again use a burn-in period and thinning to

improve the MCMC samples.

Block smoother

We use the block version of our O(N) smoothing algorithm given in Algorithm 3.3

since this improves the performance when the dependence in the state is high.

Recall that in step t the block xt:t+n−1 of size n is sampled given filter particles

x
(j)
t−1 and backwards filter particles x̃

(k)
t+n. Our target density is given by

q̄opt(xt:t+n−1|x(j)
t−1,yt:t+n−1, x̃

(k)
t+1) ∝ f(xt|x(j)

t−1)
t+n−1∏
s=t+1

f(xs|xs−1) ·

f(x̃
(k)
t+n|xt+n−1)

t+n−1∏
s=t

g(ys|µA,s, µB,s, α
∗
s)

∝ p(xt:t+n−1|x(j)
t−1) f(x̃

(k)
t+n|xt+n−1) ·

t+n−1∏
s=t

g(ys|µA,s, µB,s, α
∗
s)

∝ p(xt:t+n−1|x(j)
t−1, x̃

(k)
t+n)

t+n−1∏
s=t

g(ys|µA,s, µB,s, α
∗
s).
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The Brownian bridge p(xt:t+n−1|xt−1, xt+n) is a multivariate Normal distribution

with mean Σ(Q−1
∆tF∆txt−1, 0, . . . , 0, F

′
∆tQ

−1
∆txt+n)′ and precision matrix

Σ−1 =



Q−1
∆t + F ′

∆tQ
−1
∆tF∆t −F ′

∆tQ
−1
∆t 0 0

−Q−1
∆tF∆t Q−1

∆t + F ′
∆tQ

−1
∆tF∆t

. . . 0

0
. . . . . . −F ′

∆tQ
−1
∆t

0 0 −Q−1
∆tF∆t Q−1

∆t + F ′
∆tQ

−1
∆tF∆t


.

Since the observation density does not depend upon µ̇A or µ̇B we update (µ̇A,t, µ̇B,t)|

(µA,t, µB,t, α
∗
t ) algebraically using the Brownian bridge storing only the marginal

in time components in each particle as (ṁ
(i)
A , ṁ

(i)
B , τ

2(i)
A , τ

2(i)
B , c(i))t:t+n−1. We first

sample (µ
(i)
A , µ

(i)
B , α

∗(i))t:t+n−1 from an approximation to

q̄opt((µA, µB, α
∗)t:t+n−1|x(j)

t−1,yt:t+n−1, x̃
(k)
t+1)

∝ p((µA, µB, α
∗)t:t+n−1|x(j)

t−1, x̃
(k)
t+n)

t+n−1∏
s=t

g(ys|µA,s, µB,s, α
∗
s).

To construct our approximation we sequentially incorporate g(ys|µA,s, µB,s, α
∗
s) for

s = t, . . . , t + n − 1 into the proposal using the approximation (A.6). Starting

with q((µA, µB, α
∗)t:t+n−1) = p((µA, µB, α

∗)t:t+n−1|x(j)
t−1, x̃

(k)
t+n), we sequentially sep-

arate the triple indexed at time s using q((µA, µB, α
∗)t:t+n−1) = q((µA, µB, α

∗)s) ·

q((µA, µB, α
∗)rs|(µA, µB, α

∗)s) and multiply q((µA, µB, α
∗)s) by the approximation

ĝ(ys|µA,s, µB,s, α
∗
s).

Putting this all together gives us a 3n dimensional multivariate Normal with up

to 2n restricted components. Although we can sample from this distribution, its

density requires the calculation of an up to 2n dimensional tail probability which

is hard to approximate. We therefore only restrict up to 2 of the 2n possible

components, preferring one for µA and one for µB as then the strong dependence

in the state brings the other components close to their boundaries.



APPENDIX A. IMPLEMENTATION OF PARTICLE METHODS 165

As before, we use the re-sampling weights β
(j)
t and β̃

(k)
t+n−1 from the filters to re-

sample the corresponding particles in our block smoother.



Appendix B

Derivation of state models from

stochastic differential equations

In this appendix we derive a couple of state models that we use throughout the

thesis from a pair of stochastic differential equations (SDEs).

B.1 Integrated random walk

We first consider the two-dimensional stochastic differential equation (3.16) as

used for the linear-Gaussian simulation study in Subsection 3.2.3 and also both

analyses of Chapter 4. It can be written in vector form as

d

Xt,1

Xt,2

 =

0 1

0 0


Xt,1

Xt,2

 dt+

0

ν

 dBt, (B.1)

where Bt is a Wiener process. The first component Xt,1 is therefore the integrated

path of the scaled Wiener process Xt,2.

166
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This model is a linear SDE of the form

dXt =
(
A(t)Xt + b(t)

)
dt+

m∑
i=1

(
Ci(t)Xt + di(t)

)
dBt,i, (B.2)

where {Bt,i}m
i=1 are independent Wiener processes, and with m = 1, b(t) ≡ 0,

C1(t) ≡ 0,

A(t) ≡

0 1

0 0

 and d1(t) ≡

0

ν

 .

The general solution to (B.2) is given by

Xt = Φt,t0

(
Xt0 +

∫ t

t0

Φ−1
s,t0

(
b(s)−

m∑
i=1

Ci(s)di(s)

)
ds+

m∑
i=1

∫ t

t0

Φ−1
s,t0

di(s) dBs,i

)
, (B.3)

where Φt,t0 is the fundamental matrix satisfying Φt0,t0 = I and the homogeneous

SDE :

dΦt,t0 = A(t)Φt,t0 dt+
m∑

i=1

Ci(t)Φt,t0 dBt,i. (B.4)

A solution to (B.4) does not always exist, but if A and Ci are constants and

commute (i.e. ACi = CiA and CiCj = CjCi) then the fundamental matrix is given

by the matrix exponential

Φt,t0 = exp

((
A− 1

2

m∑
i=1

C2
i

)
(t− t0) +

m∑
i=1

Ci(Bt,i −Bt0,i)

)
. (B.5)

For our two-dimensional SDE (B.1), A and C1 are commuting constants and so,

using (B.5), we have

Φt,t0 = exp
(
A(t− t0)

)
=I + A(t− t0),
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since A2 = 0. This gives

Φt,t0 =

1 t− t0

0 1

 with Φ−1
t,t0

=

1 −(t− t0)

0 1

 .

Then, by (B.3), the solution to our SDE is given by

Xt = Φt,t0

(
Xt0 +

∫ t

t0

Φ−1
s,t0

d1(s) dBs

)

=

1 t− t0

0 1

 (Xt0 + νIt,t0) ,

where we define

It,t0 :=

∫ t

t0

(
−(s− t0)

1

)
dBs.

Since the integrand of the Itō integral is non-random, It,t0 is multivariate Normal

with mean 0 and variance given by

∫ t

t0

(
−(s− t0)

1

)(
−(s− t0) 1

)
ds =

∫ t

t0

 (s− t0)
2 −(s− t0)

−(s− t0) 1

 ds

=

 1
3
(t− t0)

3 −1
2
(t− t0)

2

−1
2
(t− t0)

2 t− t0

 .

Putting this together gives the transition distribution

Xt+∆t|{Xt = xt} ∼ N
(
Φt+∆t,txt, ν

2Φt+∆t,t Var(It+∆t,t)Φ
′
t+∆t,t

)
∼ N


1 ∆t

0 1

xt, ν
2

1
3
(∆t)3 1

2
(∆t)2

1
2
(∆t)2 ∆t


 .

For the simulation study of Subsection 3.2.3 and the athletics analysis of Section 4.1

we use unit time steps so set ∆t = 1.
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B.2 Correlated integrated random walks

We now consider the four-dimensional stochastic differential equation (5.1) used

for both models in Chapter 5. Written in vector form, we have

d



Xt,1

Xt,2

Xt,3

Xt,4


=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





Xt,1

Xt,2

Xt,3

Xt,4


dt+



0

0

νA

νBρ


dBt,1 +



0

0

0

νB

√
1− ρ2


dBt,2,

where Bt,1 and Bt,2 are independent Wiener process. This is again a linear SDE

of the form (B.2) and so may be solved using (B.3).

Since A and Ci are commuting constants, the fundamental matrix may be found

by (B.5) which gives

Φt,t0 =



1 0 t− t0 0

0 1 0 t− t0

0 0 1 0

0 0 0 1


.

The solution can then be shown to equal

Xt = Φt,t0 (Xt0 + It,t0 + Jt,t0) ,

where

It,t0 :=

∫ t

t0



−νA(s− t0)

−νBρ(s− t0)

νA

νBρ


dBs,1 and Jt,t0 :=

∫ t

t0



0

−νB

√
1− ρ2(s− t0)

0

νB

√
1− ρ2


dBs,2.

As the vector-valued integrands h(s) are non-random, these Itō integrals are both
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multivariate Normal with zero mean and variances given by

Var

(∫ t

t0

h(s) dBs

)
=

∫ t

t0

h(s)h(s)′ ds.

Noting that It,t0 and Jt,t0 are independent as their generating Wiener processes

are, the final transition distribution can be shown to be

Xt+∆t|{Xt = xt} ∼ N
(
Φt+∆t,txt, Φt+∆t,t(Var(It+∆t,t) + Var(Jt+∆t,t))Φ

′
t+∆t,t

)

∼ N





1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


xt, ν

2

1
3
S(∆t)3 1

2
S(∆t)2

1
2
S(∆t)2 S∆t



,

where

S :=

 ν2
A νAνBρ

νAνBρ ν2
B

 .



Appendix C

Derivation of bivariate logistic

model

In this appendix we derive the joint density of the p and q-largest components

from the bivariate exchangeable logistic model for p and q up to 2. To do this we

derive the cdf then the pdf in Fréchet margins before transforming to the required

GEV marginal form.

To simplify the notation, throughout this appendix we use X and Y to refer to

the first and second components respectively of our bivariate variable (rather than

Y1 and Y2 used elsewhere in the thesis).

C.1 Joint distribution functions in Fréchet mar-

gins

Working initially in Fréchet margins, the bivariate logistic model is defined by

(2.25) which in two dimensions is

V (x, y) = (x−
1
α + y−

1
α )α, (C.1)

171
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where α ∈ (0, 1] is a dependence parameter. V is defined by (2.24) which in two

dimensions is simply

V (x, y) = 2

∫ 1

0

max

{
w

x
,
1− w

y

}
dH(w).

From this we can find H although for our purposes it is easier to work directly

with V .

Following the theory of Subsection 2.4.1, the limit distribution of scaled compo-

nentwise maxima with Fréchet margins is given by

P

{
Mn,X

n
≤ x1,

Mn,Y

n
≤ y1

}
n→∞−−−→ G(x1, y1) = exp(−V (x1, y1)),

where Mn,X is the X componentwise maximum of an IID bivariate logistic sample

of size n. Writing M
(p)
n,X for the p-th largest X component of the sample (and

similarly for Y ) we wish to find G(x2, x1, y2, y1) defined by

P

{
M

(2)
n,X

n
≤ x2,

M
(1)
n,X

n
≤ x1,

M
(2)
n,Y

n
≤ y2,

M
(1)
n,Y

n
≤ y1

}
n→∞−−−→ G(x2, x1, y2, y1),

that is the joint limit distribution of the largest and second largest components of

X and Y (in Fréchet margins).

For this we use the point process representation, mirroring the example derivation

of the multivariate extreme value distribution on page 50. This involves decom-

posing the event
{
M

(2)
n,X/n ≤ x2 , M

(1)
n,X/n ≤ x1, M

(2)
n,Y /n ≤ y2, M

(1)
n,Y /n ≤ y1

}
into

the possible configurations of M
(1)
n,X/n to x2 and M

(1)
n,Y /n to y2 so that the event can

be written in terms of the counting process N(·). The five possible configurations

are shown in Figure C.1. Referring to the region labels in Figure C.1f, we can then
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Figure C.1: Decomposition of the bivariate point process event
{
M

(2)
n,X/n ≤ x2 ,

M
(1)
n,X/n ≤ x1, M

(2)
n,Y /n ≤ y2, M

(1)
n,Y /n ≤ y1

}
in terms of the possible relative posi-

tions of the componentwise maxima M
(1)
n,X/n and M

(1)
n,Y /n to the constants x2 ≤ x1

and y2 ≤ y1. Subfigure (f) provides labels for the regions involved.
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decompose the event as

{
M

(2)
n,X

n
≤ x2,

M
(1)
n,X

n
≤ x1,

M
(2)
n,Y

n
≤ y2,

M
(1)
n,Y

n
≤ y1

}
=

{
N(A ·∪C ·∪D) = 0, N(B) = 1

}
·∪
{
N(A ·∪B ·∪D) = 0, N(C) = 1

}
·∪{

N(A ·∪B ·∪C) = 0, N(D) = 1
}
·∪
{
N(A ·∪C) = 0, N(B) = 1, N(D) = 1

}
·∪{

N(A ·∪B ·∪C ·∪D) = 0
}
,

where we use ·∪ to denote the union of two disjoint sets.

We therefore have

G(x2, x1, y2, y1) =P
{
N(A ·∪C ·∪D) = 0

}
P
{
N(B) = 1

}
+

P
{
N(A ·∪B ·∪D) = 0

}
P
{
N(C) = 1

}
+

P
{
N(A ·∪B ·∪C) = 0

}
P
{
N(D) = 1

}
+

P
{
N(A ·∪C) = 0

}
P
{
N(B) = 1

}
P
{
N(D) = 1

}
+

P
{
N(A ·∪B ·∪C ·∪D) = 0

}
.

Now, since N(A) ∼ Poisson(Λ(A)) where Λ(·) is the intensity measure of the point

process, this can be written as

G(x2, x1, y2, y1) = exp(−Λ(A ·∪C ·∪D)) Λ(B) exp(−Λ(B)) +

exp(−Λ(A ·∪B ·∪D)) Λ(C) exp(−Λ(C)) +

exp(−Λ(A ·∪B ·∪C)) Λ(D) exp(−Λ(D)) +

exp(−Λ(A ·∪C)) Λ(B) exp(−Λ(B)) Λ(D) exp(−Λ(D)) +

exp(−Λ(A ·∪B ·∪C ·∪D))

= exp(−Λ(A ·∪B ·∪C ·∪D))
(
Λ(B) + Λ(C) + Λ(D) + Λ(B)Λ(D) + 1

)
.

We now wish to write this in terms of V (x, y) and hence find the particular form
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for the logistic model. For this we first note that Λ(A) = V (x1, y1) and similarly

Λ(A ·∪B ·∪C ·∪D) = V (x2, y2); the proof of this given in the example on page 50

ending with the final result in (2.26). By writing the other regions in terms of

areas with this shape, we obtain Λ(B) = V (x2, y2)−V (x2, y1), Λ(D) = V (x2, y2)−

V (x1, y2) and Λ(C) = V (x2, y2) − V (x1, y1) − Λ(B) − Λ(D). This gives the final

result

G(x2, x1, y2, y1) = exp(−V (x2, y2)) ·(
V (x2, y2)− V (x1, y1) + (V (x2, y2)− V (x2, y1))(V (x2, y2)− V (x1, y2)) + 1

)
,

(C.2)

where, for our bivariate logistic model, we use V (x, y) given by (C.1).

Note that the joint distribution functions for any subset of the two-largest compo-

nents of X and Y can easily by found from (C.2). For example, the distribution

of the componentwise maxima can be verified by setting x2 = x1 and y2 = y1 in

G(x2, x1, y2, y1) to obtain G(x1, y1) = exp(−V (x1, y1)). Similarly

G(x2, x1, y1) = exp(−V (x2, y1))
(
V (x2, y1)− V (x1, y1) + 1

)
,

and

G(x1, y2, y1) = exp(−V (x1, y2))
(
V (x1, y2)− V (x1, y1) + 1

)
.

Larger joint distributions functions can be obtained by following a similar strategy

as above although the calculation becomes increasingly complicated as the number

of different decompositions of the generating event increases.
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C.2 Joint density functions in Fréchet margins

We now calculate the joint density functions in Fréchet margins by differentiating

the corresponding distribution functions. For the componentwise maxima we have

g(x1, y1) =
∂2

∂x1∂y1

G(x1, y1)

= − ∂

∂x1

[
exp(−V (x1, y1))Vy(x1, y1)

]
= exp(−V (x1, y1))

(
Vx(x1, y1)Vy(x1, y1)− Vxy(x1, y1)

)
, (C.3)

where we use Vx to denote ∂V/∂x and likewise for Vy and Vxy.

We similarly obtain

g(x2, x1, y1) = exp(−V (x2, y1)) ·(
Vx(x2, y1)Vxy(x1, y1) + Vx(x1, y1)Vxy(x2, y1)− Vx(x1, y1)Vx(x2, y1)Vy(x2, y1)

)
,

g(x1, y2, y1) = exp(−V (x1, y2)) ·(
Vy(x1, y2)Vxy(x1, y1) + Vy(x1, y1)Vxy(x1, y2)− Vy(x1, y1)Vy(x1, y2)Vx(x1, y2)

)
,

and

g(x2, x1,y2, y1) = exp(−V (x2, y2)) ·(
Vx(x1, y2)Vx(x2, y2)Vy(x2, y1)Vy(x2, y2)−

Vx(x1, y1)Vy(x1, y1)Vxy(x2, y2)− Vx(x1, y2)Vy(x1, y2)Vxy(x2, y1)−

Vx(x2, y1)Vy(x2, y1)Vxy(x1, y2)− Vx(x2, y2)Vy(x2, y2)Vxy(x1, y1)+

Vxy(x1, y1)Vxy(x2, y2) + Vxy(x1, y2)Vxy(x2, y1)
)
.
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Using the bivariate logistic form of V (x, y) given in (C.1) it can be shown that

Vx(x, y) = −x−(1+ 1
α)(x−

1
α + y−

1
α )(α−1),

Vy(x, y) = −y−(1+ 1
α)(x−

1
α + y−

1
α )(α−1),

Vxy(x, y) =
(
1− 1

α

)
(xy)−(1+ 1

α)(x−
1
α + y−

1
α )(α−2).

These can then be used in the equations above to give the required density func-

tions.

C.3 Transforming densities to GEV margins

The current joint density functions can only be applied to data known to have

Fréchet marginal distributions, in which case M
(1)
n,X/n also has a Fréchet distribu-

tion. For arbitrary variables, we know from Subsection 2.3.1 that if (M
(1)
n,X−an)/bn

has a non-degenerate distribution, it must be GEV(µX , σX , ξX). We can therefore

obtain density functions for variables with arbitrary margins by transforming theX

components with the probability integral transform of Fréchet to GEV(µX , σX , ξX)

(and similarly for the Y components).

To do this we create the transformation tX(x) := F−1(G(x|µX , σX , ξX)), where

F (x) = exp(−1/x) is the Fréchet and G(x|µX , σX , ξX) the GEV(µX , σX , ξX) dis-

tribution functions. Then if XF ∼ Fréchet, XG := t−1(XF ) ∼ GEV(µX , σX , ξX).

Doing the same for Y , we can transform gF (x1, y1), the joint density for compo-

nentwise maxima given in (C.3), from Fréchet to GEV margins using

gG(x1, y1) = gF (tX(x1), tY (y1)) |t′X(x1)| |t′Y (y1)|.
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The remaining joint densities are transformed with

gG(x2, x1, y1) = gF (tX(x2), tX(x1), tY (y1)) |t′X(x2)| |t′X(x1)| |t′Y (y1)|,

gG(x1, y2, y1) = gF (tX(x1), tY (y2), tY (y1)) |t′X(x1)| |t′Y (y2)| |t′Y (y1)|,

and

gG(x2, x1, y2, y1) = gF (tX(x2), tX(x1), tY (y2), tY (y1)) ·

|t′X(x2)| |t′X(x1)| |t′Y (y2)| |t′Y (y1)|.

Referring to the GEV distribution function (2.17), we have

tX(x) =

[
1 + ξX

(
x− µX

σX

)] 1
ξX

+

,

and so

t′X(x) =
1

σX

[
1 + ξX

(
x− µX

σX

)] 1
ξX

−1

+

.

By substituting these into the equations above with the Fréchet densities and

the partial derivatives of V , we can write down the exact densities for the upper

extremes of the bivariate logistic model. These now have the required marginal

distributions and therefore depend upon marginal parameters µX , σX , ξX , µY , σY ,

ξY as well as the dependence parameter α.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal

Events for Insurance and Finance. Springer. 28, 37, 39

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-

geostrophic model using Monte Carlo methods to forecast error statistics. Jour-

nal of Geophysical Research, 99(10):143–10. 9

Fearnhead, P. (1998). Sequential Monte Carlo methods in filter theory. PhD thesis,

University of Oxford. 19, 68, 69, 149, 150

Fearnhead, P. (2002). MCMC, sufficient statistics and particle filters. Journal of

Computational and Graphical Statistics, 11(4):848–862. 19

Fearnhead, P., Wyncoll, D. P., and Tawn, J. A. (2009). A sequential smoothing

algorithm with linear computational cost. To appear in Biometrika. iv, 105



BIBLIOGRAPHY 183

Ferro, C. A. T. and Segers, J. (2003). Inference for clusters of extreme val-

ues. Journal of the Royal Statistical Society, Series B (Statistical Methodology),

65(2):545–556. 41

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency

distribution of the largest or smallest member of a sample. In Proceedings of the

Cambridge Philosophical Society, volume 24, pages 180–190. 29

Gaetan, C. and Grigoletto, M. (2004). Smoothing sample extremes with dynamic

models. Extremes, 7(3):221–236. 45, 99, 101, 102, 105

Gilks, W. R. and Berzuini, C. (2001). Following a moving target - Monte Carlo

inference for dynamic Bayesian models. Journal of the Royal Statistical Society,

Series B (Methodological), 63(1):127–146. 19

Godsill, S. J., Doucet, A., and West, M. (2004). Monte Carlo smoothing for non-

linear time series. Journal of the American Statistical Association, 99(465):156–

169. 24, 75, 96

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Process-

ing, IEE Proceedings F, 140(2):107–113. 10, 12, 19, 68

Gumbel, E. J. (1960). Distributions des valeurs extrèmes en plusieurs dimensions.
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Hürzeler, M. and Künsch, H. R. (1998). Monte Carlo approximations for gen-

eral state-space models. Journal of Computational and Graphical Statistics,

7(2):175–193. 24, 96

Hürzeler, M. and Künsch, H. R. (2001). Approximating and maximizing the like-

lihood for a general state-space model. In Doucet et al. (2001), pages 159–176.

20

Jazwinski, A. H. (1973). Stochastic processes and filtering theory. Academic Press.

8

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or

minimum) values of meteorological elements. Quarterly Journal of the Royal

Meteorological Society, 81(348):158–171. 29



BIBLIOGRAPHY 185

Joe, H., Smith, R. L., and Weissman, I. (1992). Bivariate threshold methods for

extremes. Journal of the Royal Statistical Society, Series B (Statistical Method-

ology), 54(1):171–183. 51

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). A new approach

for filtering nonlinear systems. In Proceedings of the 1995 American Control

Conference, volume 3, pages 1628–1632, Seattle, Washington. 8

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1):35–45. 7, 84

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear

state space models. Journal of Computational and Graphical Statistics, 5(1):1–

25. 10, 20, 22, 25, 94, 103

Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential imputations and

Bayesian missing data problems. Journal of the American Statistical Associ-

ation, 89(425):278–288. 13, 14

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and

Applications. World Scientific. 47, 48, 128

Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences.

Probability Theory and Related Fields, 65(2):291–306. 41

Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983). Extremes and related

properties of random sequences and processes. Springer-Verlag New York. 29,

40, 41, 43

Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in mul-

tivariate extreme values. Biometrika, 83(1):169–187. 51, 52

Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail

regions. Journal of the Royal Statistical Society, Series B (Statistical Methodol-

ogy), 59(2):475–499. 52



BIBLIOGRAPHY 186

Ledford, A. W. and Tawn, J. A. (1998). Concomitant tail behaviour for extremes.

Adv. in Appl. Probab, 30(1):197–215. 52

Liu, J. S. and Chen, R. (1995). Blind deconvolution via sequential imputations.

Journal of the American Statistical Association, 90(430):567–576. 14, 17, 53,

55, 59

Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic

systems. Journal of the American Statistical Association, 93(443):1032–1044.

13, 18

Liu, J. S. and West, M. (2001). Combined parameter and state estimation in

simulation-based filtering. In Doucet et al. (2001), pages 197–224. 19

Louis, T. A. (1982). Finding the observed information matrix when using the

EM algorithm. Journal of the Royal Statistical Society, Series B (Statistical

Methodology), 44(2):226–233. 97

O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. An-

nals of Probability, 15(1):281–291. 39

Pauli, F. and Coles, S. (2001). Penalized likelihood inference in extreme value

analyses. Journal of Applied Statistics, 28(5):547–560. 44

Pickands, J. (1971). The two-dimensional Poisson process and extremal processes.

Journal of Applied Probability, 8:745–756. 34

Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of

Statistics, 3(1):119–131. 38

Pickands, J. (1981). Multivariate extreme value distributions. In Proceedings of

the 43rd Session of the International Statistical Institute, pages 859–878. 48, 49

Pickands, J. (1994). Bayes quantile estimation and threshold selection for the

generalized Pareto family. In Galambos, J., Lechner, J., and Simiu, E., editors,



BIBLIOGRAPHY 187

Extreme Value Theory and Applications, pages 123–138. Kluwer Academic, Dor-

drecht. 39

Pitt, M. K. (2002). Smooth particle filters for likelihood evaluation and max-

imisation. Warwick Economic Research Papers 651, University of Warwick,

Department of Economics. 20

Pitt, M. K. and Shephard, N. (1999a). Filtering via simulation: Auxiliary particle

filters. Journal of the American Statistical Association, 94(446):590–599. 14, 16,

26, 64, 66, 68, 70, 78, 145

Pitt, M. K. and Shephard, N. (1999b). Time-varying covariances: A factor stochas-

tic volatility approach (with discussion). In Bernardo, J. M., Berger, J. O.,

Dawid, A. P., and Smith, A. F. M., editors, Bayesian Statistics 6, pages 547–

570. Oxford University Press. 89

Poyiadjis, G., Doucet, A., and Singh, S. S. (2005). Particle methods for optimal

filter derivative: Application to parameter estimation. In IEEE International

Conference on Acoustics, Speech and Signal Processing, volume 5, pages 925–

928. 20

Prescott, P. and Walden, A. T. (1980). Maximum likelihood estimation of the

parameters of the generalized extreme-value distribution. Biometrika, 67(3):723–

724. 32

Prescott, P. and Walden, A. T. (1983). Maximum likelihood estimation of the

parameters of the three-parameter generalized extreme-value distribution from

censored samples. Journal of Statistical Computation and Simulation, 16(3):241–

250. 32

Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes,

volume 4 of Applied Probability. Springer, New York. 47, 49

Robinson, M. E. and Tawn, J. A. (1995). Statistics for exceptional athletics

records. Applied Statistics, 44(4):499–511. 98, 101, 105, 106, 120, 121



BIBLIOGRAPHY 188

Shephard, N. and Pitt, M. K. (1997). Likelihood analysis of non-Gaussian mea-

surement time series. Biometrika, 84(3):653–667. 89

Sibuya, M. (1960). Bivariate extreme statistics. Annals of the Institute of Statis-

tical Mathematics, 11:195–210. 51

Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases.

Biometrika, 72(1):67–90. 32

Smith, R. L. (1986). Extreme value theory based on the r largest annual events.

Journal of Hydrology, 86:27–43. 33

Smith, R. L. (1989). Extreme value analysis of environmental time series: an appli-

cation to trend detection in ground-level ozone. Statistical Science, 4(4):367–393.

37, 43

Smith, R. L. (1997). Comment on “Statistics for exceptional athletics records”,

by Robinson, M. E. and Tawn, J. A. Applied Statistics, 46(1):123–128. 99

Smith, R. L. and Miller, J. E. (1986). A non-Gaussian state space model and

application to prediction of records. Journal of the Royal Statistical Society,

Series B (Statistical Methodology), 48(1):79–88. 45

Smith, R. L. and Weissman, I. (1994). Estimating the extremal index. Journal

of the Royal Statistical Society, Series B (Statistical Methodology), 56:515–515.

41, 111

Storvik, G. (2002). Particle filters for state-space models with the presence of

unknown static parameters. IEEE Transactions on Signal Processing, 50(2):281–

289. 19, 93, 101

Tanizaki, H. (2001). Nonlinear and non-Gaussian state space modeling using sam-

pling techniques. Annals of the Institute of Statistical Mathematics, 53(1):63–81.

24, 99



BIBLIOGRAPHY 189

Tawn, J. A. (1988a). Bivariate extreme value theory: Models and estimation.

Biometrika, 75(3):397–415. 129

Tawn, J. A. (1988b). An extreme-value theory model for dependent observations.

Journal of Hydrology, 101(1):227–250. 33

Tawn, J. A. (1990). Modelling multivariate extreme value distributions.

Biometrika, 77(2):245–253. 129

Tawn, J. A. (1992). Estimating probabilities of extreme sea-levels. Applied Statis-

tics, 41(1):77–93. 129

Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney,

R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J. (2003). Recent

rapid regional climate warming on the Antarctic Peninsula. Climatic Change,

60(3):243–274. 108

Von Mises, R. (1954). La distribution de la plus grande de n valeurs. In Selected

Papers, volume 2, pages 271–294. American Mathematical Society, Providence,

RI. 29

Weissman, I. (1978). Estimation of parameters and large quantiles based on

the k largest observations. Journal of the American Statistical Association,

73(364):812–815. 33

Wills, A. G., Schön, T. B., and Ninness, B. (2008). Parameter estimation for

discrete-time nonlinear systems using EM. In Proceedings of the 17th IFAC

World Congress, Seoul, South Korea. 20, 93, 95



Index

Adapted filter, 16, 64, 143, 145, 151

Antarctic temperatures, 107–119

Artificial prior distribution, 25, 25–27, 78, 80

Asymptotic independence, 51, 52

Asymptotic Independence of Maxima, 39, 40

Autoregressive model, 59–64, 76, 82

Auxiliary SIR filter, 14–16, 26, 54, 60, 74, 78, 145, 151

Backwards filter, see Backwards information filter

Backwards information filter, 25–26, 75, 78, 80

Bayesian bootstrap filter, see Sampling Importance Re-sampling filter

Bearings-only tracking model, 68–74, 149

Beta distribution, 45

Bivariate exchangeable logistic model, 123, 132, 160, 171–178

Bivariate Gaussian distribution, 135, 158, 168, see also Multivariate Gaussian

distribution

Blocks method of declustering, 133

Clustered non-homogeneous Poisson process, 42

Coefficient of tail dependence, 52

Cross-validation, 44, 109

Declustering

blocks method, see Blocks method of declustering

runs method, see Runs method of declustering

190



INDEX 191

Domain of attraction, 31, 34

Effective sample size, 14, 16, 53–74, 85, 88, 89, 154

Ensemble Kalman Filter, 9

Expectation-Maximisation algorithm, 20, 93–97, 101, 103, 115, 126, 137

Exponential distribution, 45

Extended Kalman Filter, 8

Extremal index, 41, 42

Extremal Types Theorem, 29

Filter-Smoother, 22–24, 75, 77, 84–88, 90, 92

Filtering

distribution, 7

Kalman, see Kalman Filter

particle, see Particle filter

problem, 7, 21

Forward-Backward Smoother, 24, 75–77, 84
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