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Abstract

A recently developed method for the detection of phase synchronization between
several oscillatory processes from one-dimensional signals has been extended to al-
low estimation of synchronization indices. It has been applied to blood pressure
signals from freely moving rats. Each rat underwent four stages: 1) healthy; 2)
healthy but challenged by beta-blockers; 3) with stress-induced myocardial injuries;
4) with the stress-induced injuries challenged by beta-blockers. It is shown that
cardiorespiratory synchronization plays an essential role at each of these stages.

1 Introduction

Synchronization is one of the most fundamental phenomena in the physics of oscillations.
This effect can occur between self-sustained oscillators, i.e. in systems that are nonlinear,
dissipative, and able to produce undamped oscillations, given an external energy supply.
Note that the timescale of the oscillations is not equal to that of the energy supply (which
would make the oscillations forced rather than self-sustained). The motion in such systems
can be periodic, quasiperiodic, chaotic or induced by noise [1]. The oscillators can be
coupled mutually or uni-directionally. In general, synchronization means the adjustment
of basic oscillatory timescale(s) due to coupling. Several manifestations of this effect have
been identified, and they may be substantially different in chaotic systems [2, 3, 4, 5,
6]. In systems whose dynamics is periodic albeit perhaps noise-influenced, however, the
varieties of synchronization are reduced to frequency, or phase synchronization [7]. Phase
synchronization seems to be the most general effect. It can arise in all known kinds of
oscillating system. Introducing individual phases φi(t), i = 1, 2 for each pair of systems
involved in interaction, we may consider the generalized phase difference ∆φ(t), with due
account of the inferred order of synchronization n:m, where n and m are integers [8]:

∆φ(t) =
n

m
φ1(t) − φ2(t). (1)
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It is said that n:m phase synchronization occurs if ∆φ(t) has plateaus of sufficiently
long duration. Phase synchronization between the main heart rhythm and spontaneous
respiration in humans in the relaxed state was established in [9]. It has recently been
shown that cardiorespiratory synchronization can serve as a diagnostic criterion in humans
[10] and dogs [11], and that the order of synchronization can serve as a measure of depth
of anaesthesia in rats [12].

A commonly used method for the detection of n:m phase synchronization is to record
signals from each of the interacting systems, compute phases from each signal, and then
compare them using Eq. (1) [13]. This approach has been applied to the detection of
cardiorespiratory synchronization [9, 12, 14]. However, it often happens that several pro-
cesses with different timescales interact within a larger system, and that only a single
signal is available at the output, e.g. only an electrocardiogram (ECG) without a res-
piration signal. Recently, a general approach was suggested for tackling such situations
[15, 16, 17]. In this paper we apply it to the detection of phase synchronization, or its
absence, between respiration and cardiac rhythm in rats, using the blood pressure signal
alone. We extend the method reported previously in order to compute the synchronization
index first introduced in [18]. We create an algorithm that allows us to find automatically
the synchronization order n:m for which the synchronization index is largest. By analysis
of data from 7 male and 6 female rats, in four different states, we show that synchroniza-
tion plays an essential role in cardiorespiratory interaction in rats, both in the healthy
state and when under the influence of drugs or stress.

2 Experimental data

Experiments were performed on 13 adult Sprague-Dawley rats, 7 males and 6 females.
Each animal was instrumented with an intra-arterial catheter for direct blood pressure
recording. We note that in freely-moving rats it is difficult to make reliable measurements
of respiration because the conventional transducers cannot safely be kept in the same
position.

A series of experiments has been carried out in order to characterize blood pressure
dynamics at rest, and also to observe slow transient processes induced by the intravenous
injection of a nonselective beta-adrenoreceptors blocker, propranolol. All measurements
were made on conscious, freely-moving, rats, and each animal underwent four stages of
data acquisition:

I “Healthy state” at rest (90 minutes)

II “Healthy state”, immediately after a propranolol injection (90 minutes)

III “Unhealthy state”, immediately after being subjected to stress that induced my-
ocardial injuries (30 minutes)

IV “Unhealthy state”, immediately after propranolol injection, that was made 30 min-
utes after stress termination (90 minutes)

Stages (I) and (II) of the measurements took place one day after surgery to implant the
catheter, with stages (III) and (IV) the following day after. By “healthy state” we mean
the one with no sign of cardiovascular disease. By “unhealthy state” we denote significant
but reversible structural and microcirculatory alterations in the myocardium, revealed by
hystological analysis and resembling those observed at the initial stage of myocardial
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ischemia. These injuries were induced by combination of immobilization and intermittent
sound stimuli during two hours.

Injection of the beta-blocker propranolol (concentration 1mg/kg) simulated slow, mono-
tonic, change in some internal parameters influencing the system. Namely, the concen-
tration of beta-blocker in the blood influences the average heart rate and its dynamics in
time. The rate of decrease of propranolol content in blood is much smaller than average
heart rate, except for the very first minutes after injection. Its variation in time is known
from pharmokinetics to be approximately exponential. Thus, by studying how the dy-
namics of cardiovascular system changes in time, we can to a certain extent study how it
depends on the concentration of propranolol.

3 Detecting synchronization: finding the order n:m

and index

The blood pressure signals were typically of the shape shown in Fig. 1(a), and in more
detail in (b). Here and in what follows values of the continuous blood pressure signal x(t)
and its local maxima xmax and minima xmin are given in mm of Hg. Typically, the Fourier
spectrum of the blood pressure signal (Fig. 1 (c)) contains a sharp peak at the frequency
of the average heart rate (AHR) fAHR, a well-defined peak at the average respiration
frequency fresp, their combinations and, possibly, some lower-frequency components. We
are interested in interactions between the cardiac and respiratory processes. To find out
whether they are synchronous, or not, using just the blood-pressure signal, we exploit the
approach recently developed in [15, 16] and applied to human heart rate variability data
in [17, 19]. To quantify the degree of synchronization, if any, we extend this approach so
as to be able to use synchronization index introduced in [18]. In this paper we describe
the technical issues of the approach used, and for theoretical background refer the reader
to [15, 16]. Data-processing took place in the following sequential stages –

1. Extracting discrete data. The first step is to extract from the continuous-time
signal some discrete variables associated with a Poincaré map defined for the system
under study. Typical discrete variables can be threshold-crossing interspike intervals, or
return times Ti, which are the time intervals between successive crossings of the signal
over some threshold level in one direction; successive local minima xmin

i or local maxima
xmax

i (Fig. 1(b), Fig. 1(d)). The clinical significance of these variables is that: Ti are heart
rate variability data; xmin

i is the diastolic, and xmax
i is the systolic, pressure during one

heart beat. We can apply the approach developed to any kind of discrete data, but we
note (see Fig. 1(b), Fig. 1(d)) that the amplitude variables xmin

i and xmax
i often display

more stability compared to the temporal variable Ti. In this paper we will seek possible
phase synchronization between heart rate and respiration through a study of xmin

i .

2. Filtering. Next, the low-frequency floating of average level from discrete data was
reduced in order to concentrate on two higher-frequency processes: the main heart rhythm
and respiration. We use two methods here. The first of these consists of computing the
analogue of the second derivative of the original discrete time series x(i):

xder(i) =
x(i + 1) + x(i − 1) − 2x(i)

2
. (2)

Let us refer to this method as to the method of derivatives. How it works as applied to
xmin

i is illustrated in Fig. 2 (a), where the grey points indicate original data, and black
ones those after filtration and addition of the average value xav.
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The second method is an extension of the well-known detrending technique. A local
average is defined within a temporal window moving along the dataset, which is then
subtracted from each datapoint. The only distinction of our method is that the size of
the temporal window is not constant along the dataset. Namely, one window includes all
points between two successive extrema (maximum and minimum, etc.) of a discrete signal,
including extrema themselves. After the local average is computed within each window,
its value is attributed to the time moment of window beginning. All such averages are
then connected by straight lines by means of linear interpolation. Finally, from each
original datapoint the value of the resultant graph is subtracted. In Fig. 3 (a) grey points
show original data, the thin black line shows the local average, and black points show the
filtered data, to which total average value xav is added for the convenience of comparison.

3. Delay embedding is then applied, and the set of points is plotted in the plane xi+1

vs xi. In Figs. 2 (b) and 3 (b) the delay plots are shown for the same dataset that had
undergone two types of filtering. In both cases, three clouds of points can be observed in
the phase portrait, hinting at 1:3 synchronization.

4. Extracting angles ϕi. On the delay plot (Figs. 2(b) and 3(b)) one defines an angle
ϕi between each phase point and the abscissa axis. The resultant time dependences of
angles are shown in Figs. 2(c) and 3(c). The plots of successive angle versus the previous
one are given in Fig. 2(d) and 3(d). Here, the grey line shows the return function of the
angles map derived in [15, 17]:

φi = arctan (2 cos 2πξ − cot φi−1), (3)

for the rotation number ξ =n:m=1:3.

5. Transforming angles ϕi into relative phase Ψi. This stage is optional, but it
can be used to ensure the rigour of the physical meaning of the obtained synchronization
index. In [16] a relationship was established between angles ϕi of return times map or of
the reconstructed Poincaré map, and the relative phase Ψi introduced in [13]:

tan ϕi =
cos (Ψi + 3Θ

2
)

cos (Ψi + Θ

2
)

= cos Θ − tan (Ψi +
Θ

2
) sin Θ, Θ = 2πξ, (4)

where ξ is rotation number. Note, that Eq. (4) is valid only if the coupling between the
processes under study can be treated as vanishingly small. Knowledge of ϕi allows one
to use Eq. (4) to extract relative phase Ψi, provided that the rotation number ξ, equal to
n:m in the case of synchronization, is known. Thus, one should find the suspected order
of synchronization n:m. This can be done e.g. by computing the Fourier spectrum for the
given sample of data and locating the highest peaks, namely, presumed to be those derived
from heart rate and respiration, as in Fig. 1(c). The closest rational approximation to the
ratio fresp/fAHR can provide one with a guess at the suspected synchronization order n:m.
Note that Eq. (4) cannot be used for ξ = 1 : 2 because the latter produces a singularity.
Fig. 4(a) shows the angles ϕi that are transformed into the relative phase Ψi, which is
shown in Fig. 4(b), with ξ = 1 : 3.

6. Unwrapping the relative phase or angles to obtain n:m phase difference.

The angles ϕi, or relative phase Ψi, fall by construction in the range [−π; π]. We need
to unwrap these variables into the natural interval ] − ∞;∞[ in order to obtain the
conventional phase difference at the time moment ti to which the original discrete variable
like xmin is attributed. The proposed algorithm is as follows. We introduce an integer
k, starting with k = 0, that increases (decreases) by 1 with each phase jump in negative
(positive) direction. To detect a phase jump, we consider two consecutive values, say Ψi−1
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and Ψi, and at each step i estimate the difference between them. If the absolute value
of this difference is larger than π/2, this counts as a phase jump and the value of k is
adjusted accordingly. The unwrapped variable is set to be Ψu

i = Ψi + 2πk. In Fig. 4(c)
the 1:3 phase difference is shown that was obtained from relative phase in Fig. 4(b).

7. Transforming the n:m phase difference into a 1:1 phase difference by setting
Ψ1:1

i = Ψu
i ∗ m − 2πi.

8. Wrapping of 1:1 phase difference into the interval [−π; π] can easily be effected
by repeatedly subtracting 2π from each value of Ψ1:1

i , until the latter falls within the
required interval. Fig. 4(d) illustrates this final stage of data transformation and shows
the 1:1 phase difference wrapped into the interval [−π; π].

9. Computation of synchronization index, by application of the algorithm intro-
duced in [18] to the value of Ψ1:1

i . We introduce a temporal window of length L and
move it along the data in steps of a chosen size. Inside the window, for its starting point
number i, the value of ρ is estimated as:

ρc =
1

L

L
∑

j=1

cos Ψ1:1
i+j−1

ρs =
1

L

L
∑

j=1

sin Ψ1:1
i+j−1, ρ =

√

(ρ2
c + ρ2

s), (5)

ρ being the index of synchronization sought. It is obvious that ρ can vary between 0 and
1, the former meaning absence of synchronization, the latter perfect synchronization, and
values in between implying various intermediate degrees of synchronization. For the noisy
processes that we deal with in real life ρ can never reach 1.

Note, that stages (5)-(7) require a reliable estimate of the synchronization order n:m.
One usually wants to make computations automatically, but a proper guess of n:m often
requires some manual selection of spectral peaks (although this could also be rendered
automatic in principle). To simplify the situation, we form a set of most frequently
encountered synchronization orders with reasonably small numerators and denominators,
and repeat stages (5)-(7) for all of them. We thus obtain a synchronization index for each
synchronization order from each data set.

4 Synchronization indices for rat data

A set of the following rotation numbers was tried for each blood pressure signal:

ξj : 1 : 2, 1 : 3, 1 : 4, 1 : 5, 1 : 6, 2 : 5 (6)

The above numbers are rational approximations of the most frequent ratios of respiration
frequency fresp to average heart rate fAHR estimated from Fourier spectra of the blood
pressure signal. A temporal window of length L = 500 was selected by trial and error.
It is small enough to reflect a ρ close to instantaneous one, and large enough to provide
good averaging for ρ. ρj was estimated within one window for all ξj indicated in Eq. (6),
and the largest ρmax was selected.

In Figs. 5, 6, 7, 8 the horizontal axis is equivalent time. Each different shade marks
a different stage of the experiment, the data for each stage (I), (II), (III) and (IV) being
placed sequentially. For additional clarity, the different stages are separated by vertical
dashed lines. Note, that the time is in fact not continuous here, since there could be
substantial time gap between stages (I) and (II), (II) and (III). The letters “f” and “m”
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to the right of the plots denote female or male rats respectively, and the numbers label
different animals.

In Figs. 5 and 6 the largest synchronization indices ρmax are shown for each rat dataset.
In Figs. 7 and 8 the rotation numbers corresponding to the ρmax are given. One can see
that the synchronization index is generally small, indicating a low degree of synchronism
between heart rate and respiration in rats. An interesting observation is that in conscious
freely-moving rats 1:2 synchronization is quite often encountered in the states considered,
contrary to observations made on humans, for which such a regime is very unnatural.
Namely, at stage (I) order 1:2 prevailed in 5 of 7 male rats, and in 3 of 6 female rats.

In 7 of the 13 animals (4 female and 3 male), development of stress-induced my-
ocardium alterations was accompanied by a decrease in synchronization index. Propra-
nolol administered after stress restored the synchronization index to basal values in female
rats, but not in the males.

It should be noted that although in most rats stress-induced alterations in the my-
ocardium were reversible, there were three animals in which stress induced irreversible
injuries resulting in a near-death state: those marked “f2”, “f5” and “m1”. In these
animals stress caused the synchronization order to be 1:2 most of the time; injection of
propranolol that was intended to cure them in a certain sense, did not change it. In
contrast, for female rats the synchronization index was markedly increased.

5 Conclusions

A method for detecting phase synchronization from one-dimensional data was applied to
the blood pressure signals of conscious freely-moving rats in different states. It allowed us
to detect the presence or absence of synchronization between the cardiac and respiratory
processes. The method was further developed in order to automatically estimate the
synchronization index from the experimental data.

13 animals of both genders were studied, in each of four different states, in order to
reveal how the order and strength of cardiorespiratory synchronization are dependant on
the state of cardiovascular system. There were two steady states: “healthy” and “un-
healthy”, and two long slow transient processes induced by injection of a beta-blocker
into a rat in each of these basic states. It was found out that, in common with hu-
mans, cardiorespiratory synchronization in rats is generally not very strong. However,
the typical synchronization orders seem to be higher than in humans. In particular, 1:2
synchronization – which is untypical in healthy humans at rest – was often encountered
in conscious rats at all stages including rest. It seems that no unique response to stress
and/or drugs could be revealed in rats in terms either of the order n:m, or of the index ρ of
cariorespiratory synchronization. Rather, each animal responded individually to external
influence.
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Figure 1: (a), (b) Blood pressure signal of a rat in mmHg. Filled circles show the positions of extrema
which are instantaneous systolic (maxima) and diastolic (minima) pressures. (a) Interval 20 sec (b)
Interval 4 sec. (c) Fourier power spectrum of signal shown. fAHR and fresp are average heart rate and
respiration frequency, respectively. (d) Discrete variables extracted from signal shown in (a): xmin

i (lower
curve), xmax

i (upper curve), both in mmHg; Ti in seconds (middle curve).
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Figure 2: Illustration of the first filtering technique: derivatives method. (a) Position of original minima
xmin (grey) and filtered data with added average value (black); (b) map of filtered xmin; (c) angles of
the map in (b) versus time; (d) map of angles. Grey line in (d) shows the return function of map (3) for
ξ = 1/3.

10



0 5 10 15 20
t (sec)

90

95

100

105

x im
in

0 5 10 15 20
t (sec)

-π

0

π

ϕ im
in

-4 -2 0 2 4

xmin
i   - xav

min

-4

-2

0

2

4

xm
in

i+
1 

- 
x avm

in

-π 0 π

ϕi+1
min

-π

0

π

ϕ im
in

(a) (b)

(c) (d)

Figure 3: Illustration of the second filtering technique: differences method. (a) Position of original
minima xmin (grey) and filtered data with added average value (black); (b) map of filtered xmin; (c)
angles of the map in (b) versus time; (d) map of angles. Grey line in (d) shows the return function of
map (3) for ξ = 1/3.
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Figure 5: Largest synchronization index versus time for female rats. Details in text.
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Figure 6: Largest synchronization index versus time for male rats. Details in text.
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Figure 7: Rotation number for largest synchronization index versus time for female rats. Vertical axis
is in logarithmic scale. Details in text.
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