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An experimental investigation of nonlinear waves is reported for a system of one-dimensional second sound
waves in superfluid helium within a cylindrical resonator of high Q quality factor. The strong nonlinear
dependence of the wave velocity on amplitude distorts the wave shape and leads to the formation of multiple
harmonics. The restricted geometry of the resonator results in a discrete energy spectrum, where the energy is
transmitted from the driving frequency to the high-frequency edge of the spectrum, where dissipation
occurs—a Kolmogorov-like energy distribution. It is found that the main resonance occurs at the driving
frequency, and that the next few harmonics are approximately sinusoidal, coherent with the driving force, but
that higher harmonics appear to be chaotic and are no longer phase coherent with the drive. For developed
turbulence, the probability density function of the high-frequency harmonics is well approximated by a Gauss-
ian distribution. Thus, the nonlinear acoustic waves exhibit the statistical properties distinctive of weak turbu-
lence, confirming that they can properly be treated in terms of a statistical description.
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I. INTRODUCTION

Turbulence is a far-from-equilibrium state of a nonlinear
physical system whose energy distribution extends over
many degrees of freedom. The most important physical pro-
cess in turbulence is that of energy transformation to heat,
via dissipation, starting from the form of energy that is being
pumped into the system from an external source. The turbu-
lence behavior may be defined by the physical nature of the
processes providing the energy pumping and energy transfor-
mation. In this sense we may distinguish between kinetic,
convectional, and acoustic turbulence. These are described
by similar nonlinear equations, but their driving and inertial
forces are different in nature, and there are different reasons
for the instabilities in the motion of the media, and different
processes of energy transformation. In each case, however,
the dissipative process is the viscosity of the medium. Ki-
netic turbulence in a moving fluid appears when the inertial
effects of motion are greatly dominant over viscous forces—
the situation of high Reynolds numbers. Convective turbu-
lence appears for steady heating of a liquid in a gravitational
field, when the ratio between the Archimedean and viscous
forces becomes large �high Rayleigh numbers�. A similar
situation arises in a medium for which with the dependence
of wave velocity on amplitude becomes nonlinear for waves
of large amplitude. Nonlinear effects then dominate over dis-
sipative processes �high acoustic Reynolds numbers�. This is
the case of acoustic turbulence. It is characterized by steep-
ening of the wave at either front or back, leading to the
formation of wave breakdown and shock waves and to the
creation of high-frequency harmonics of an initially har-
monic driving force.

For turbulence in an incompressible liquid, for example,
kinetic energy is pumped in through external mechanical
forcing and is finally dissipated by viscosity. As suggested by

Richardson �1�, the kinetic energy at first flows in a
dissipation-free manner towards successively smaller length
scales. This is called the inertial interval. The cascadelike
energy transfer process is eventually terminated by viscous
damping, once the Reynolds number approaches unity. On
each length scale it is possible to attribute a frequency to the
corresponding excitation mode.

The process of energy transformation through the inertial
interval is dependent on interactions between the different
modes. These are described as weak, giving rise to weak
turbulence, in cases when the energy exchange �E in the
interaction process is much less than the energy E of each
mode. Strong turbulence is the opposite case, where �E
�E.

From a theoretical point of view, the simplest case is the
turbulence of weakly interacting waves, when there is strong
dispersion of waves in the medium but the mutual interac-
tions of the wave packets are weak, and the phases of the
different waves are consequently random �2,3�. This approxi-
mation allows us to develop a statistical description for a
very wide class of pumping forces. The cascade idea ex-
plains the basic macroscopic manifestation of turbulence:
The mean rate of viscous energy dissipation does not depend
on viscosity at large Reynolds numbers.

The statistics of the velocity fluctuation distribution in
turbulent flows was quantified by Kolmogorov �4,5�, who
derived the “−5 /3 law” for the energy spectrum at interme-
diate scales Ek�k−5/3, within the inertial interval of high
Reynolds number flows. In the ideal case, the energy density
is homogeneous �statistically invariant under translation� and
isotropic �statistically invariant under rotation and reflection�
in the three Cartesian velocity dimensions. One-dimensional
weak turbulence with a constant energy flux P is described
by the relationship �6�

Ek � P1/3k−5/2

in the case of �k= �k�a for a�1, where processes of the type
�k↔�k1

+�k2
+�k3

are significant, amounting to say �15%*victor�efimov@yahoo.co.uk
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of all interactions. They result in a stationary energy flux to
the high-frequency edge of the spectrum where dissipation
occurs. The wave amplitude of weak turbulence in the iner-
tial interval is expected to exhibit statistics close to Gaussian.

One example of weak turbulence is the interaction of
waves on the surface of a fluid �7,8�. The turbulent nature of
the surface waves is very close to the case of acoustic
turbulence—nonlinear dispersive waves propagate along the
fluid surface and form a weak, interacting wave packet sub-
ject to negligible dissipation. The statistical behavior of a
surface wave can be described within the framework of the
random wave theory �9�.

Strong turbulence corresponds to the case where the as-
sumption of weak interaction between harmonic waves does
not apply. The time of interaction between different wave
modes is then comparable to the time of wave propagation
and the waves are cophasal. Intense acoustic waves in media
with high nonlinearity, weak dissipation, and weak �or ab-
sent� dispersion provide typical examples of strong turbu-
lence �10,11�. The propagation of dispersionless nonlinear
waves is described by Burgers’ equation �12� and in a one-
dimensional geometry can be written as

du

dt
+ u

du

dx
= �

d2u

dx2 ,

where � is the coefficient of dissipation. Strong interactions
between the harmonics leads to wave disturbance and the
formation of shock waves �13�. The origin of the traveling
waves is the same—some external force, which in the case of
second sound is a periodic heating by selected shape of sig-
nal from a generator. Theoretical investigation of the ran-
domly forced Burgers’ equation has shown �14� that the ve-
locity gradient should have a probability density function
�PDF� with a power-law dependence on the velocity gradi-
ent. If the system is excited by noise, a statistically average
random signal is to be expected, which subsequently trans-
forms due to the nonlinearity in the wave velocity. Higher
pulses merge with smaller ones during the process of wave
propagation �15�. This reformation drastically changes the
statistically average random distribution to a nonequilibrium
one.

Any harmonic wave launched into a medium with a non-
linear dependence of wave velocity on amplitude must even-
tually transform towards sawtooth waves. Its main dissipa-
tive processes arise though the formation of shocks �16�,
with dissipation acting to smooth the breakdown of the
wave. The extreme case in the transformation of a harmonic
nonlinear wave is a sawtooth shaped wave

u��t��0
2� = u0 + �

n=1

�
1

n�
sin�n�t� .

The energy spectrum of such a wave is similar to the Kol-
mogorov spectrum E���−2, though the component harmon-
ics of this wave are cophasal and the PDF is a flat uniform
distribution. This distribution differs from the case of weakly
interacting wave modes, and the random phases of the sinu-
soidal modes justifies a statistical approach to the wave in-
teractions.

In this paper we report the results of an experimental
study of the statistical behavior of nonlinear second sound
waves in superfluid 4He in a quasi-one-dimensional resona-
tor pumped by a harmonic signal. The resonant conditions
allow us to raise the amplitude of the standing wave suffi-
ciently to facilitate investigation of the influence of nonlin-
earity, but without significant disturbance of the medium by
the net heat flux from the emitter. The standing wave in the
resonator can be described by the sum of two counterpropa-
gating waves periodically pumped by the emitter. Given the
strong nonlinearity of the medium, such waves would adopt
a sawtooth shape as the limiting case of wave transforma-
tion. The PDF of their sum is a nonequilibrium one. In what
follows, we study the PDF of such standing waves in a
high-Q �quality factor� resonator and try to understand how
strongly the different multiple modes in the resonator are
mutually correlated.

II. EXPERIMENTS

The velocity c2 of a second sound wave in He II depends
strongly on its amplitude 	T and can be approximated as

c2 = c20�1 + 
	T� ,

where c20 is the wave velocity at negligibly small amplitude,
	T is the wave amplitude, and 
 is the nonlinearity coeffi-
cient of the second sound velocity.

There are huge advantages in the use of roton second
sound waves in He II for model studies of acoustic turbu-
lence. Within the experimentally convenient temperature
range 2.17–1.5 K the nonlinearity coefficient 
 can be
tuned, just by changing the bath temperature: 
→−� near
the normal-to-superfluid transition T�=2.17 K; 
 passes
through zero at T
=1.88 K; and 
� +2 K−1 at T�1.5 K
�17�. Thus one can study the dynamics of both nearly linear
and strongly nonlinear waves with positive �such as conven-
tional sound� or negative nonlinearity while using exactly the
same experimental techniques. The experiments at T=T
 al-
low us to study the propagation of waves of high intensity
for the case of a cubic nonlinearity. Such possibilities are
unavailable in conventional experiments. Second sound
waves have only a tiny dispersion in the lower frequency
range below 1 MHz. The fact that the velocity of second
sound u20�20 m /s is more than an order of magnitude less
than the velocity of conventional sound in gases and in con-
densed media allows us to increase the time resolution of the
measurements.

Details of the experimental design have been given else-
where �18,19� but, briefly, the resonator was formed from a
quartz tube of diameter �15 mm and length L=70 mm. Its
two ends were capped by a thin film heater and supercon-
ducting Cu+Sn bolometer �20�, respectively. A meander strip
heater provided a spatially uniform heat flux. The bolometer
had a sensitivity of up to �10 V /K. An external magnetic
field was used to adjust the temperature of its maximum
sensitivity. The heater was driven by an external sinusoidal
voltage generator within the frequency range 0.1–100 kHz.
The frequency of the second sound emitted from the heater
�2 times the frequency of the voltage generator� was set
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equal to one of the longitudinal resonant frequencies of the
cavity. It should be borne in mind in what follows that some
radial modes may also have been excited due to small non-
idealities of the cell construction. The resonance correspond-
ing to the eleventh longitudinal mode was of exceptionally
high quality: We note that it coincided closely with the first
Bessel solution, and we suspect that this is no coincidence.
Thus we do not know the precise nature of the mode excited
at the frequency we identify as the eleventh longitudinal
resonance.

The Q factor of the resonator, determined from the widths
of resonances at small heat flux densities, was Q�1000 for
resonant numbers p10, and Q�3000 for 30 p100.
The resonance conditions allow the formation of standing
waves of high intensity �	T up to a few mK� with excitation
levels W�50 mW /cm2. The Mach number can reach M
=
	T�10−4–10−2, and the acoustic Reynolds number, de-
fined �21� as Reac=
c20��	T /�x� /��
	T, can reach a value
up to 100.

III. RESULTS AND DISCUSSION

Given the high Q of the resonator, a sufficiently high sinu-
soidal drive amplitude leads to the formation of multiple
discrete harmonics. Energy is thus transformed, moving from
the driving frequency towards the high-frequency edge of the
spectrum, where it then dissipates due to viscosity and im-
perfections of the resonator, i.e., a Kolmogorov-like cascade
as shown in Fig. 1. Such behavior is a distinctive feature of
turbulent processes.

We determined the statistics of standing waves in the
resonator experimentally at T=2.08 K by analysis of a de-
veloped acoustic cascade with multiple harmonics �22,23�.
The main harmonic comes of course from the excitation by
the driving signal and is cophasal with the pumping excita-
tion. The driving signal may affect the first few higher har-
monics until the mutual interactions of the higher modes
deemphasize the influence of the phase of the pumping sig-
nal. We therefore used a digital filter to eliminate the lower

harmonics and computed the PDF of the rest of the signal.
The resultant changes in shape of the signal are shown in
Fig. 2, the corresponding changes in its PDF are shown in
Fig. 4, and Fig. 3 for those in the filtered spectra.

It is evident that, as expected, the main harmonic is de-
fined by the resonant driving signal and corresponds to a
strongly distorted sine wave. The PDF of its main harmonic
is similar to that of a sine wave. The driving signal also
influences directly the next first harmonics, but fades out for
the higher harmonics. Filtration of the low-frequency har-
monics transforms a PDF from one that is close to that of a
sine wave to the Gaussian-like distribution shown in Fig. 4,
which is characteristic of arbitrary wave fields. The intensity
of noise in the measurement system was an order of magni-
tude less than the random fluctuations in second sound inten-
sity. Although the PDF of the signal was approximately
Gaussian after removal of the lower harmonics, some asym-
metry was visible in all measurements, as shown in Fig. 4.
Its origin is evident in the nonsinusoidal shape of the re-
corded signals as shown, e.g., in Fig. 2�a�. The heating peak
is accompanied by distinctive breakdowns at the front or tail

FIG. 1. Power spectrum of a second sound standing wave show-
ing the amplitudes of the multiple harmonics in developed acoustic
turbulence. The resonator was pumped at frequency fd=5030 Hz
corresponding to the 51st resonance; the driving amplitude from the
generator was UG=5 V at fd /2 �heat flux W=25 mW /cm2�. The
arrows indicate the frequencies below which the initial signal was
cut by digital filtration. The peak at f �2.5 kHz is an artifact cor-
responding to direct electrical pick-up of the driving signal.

FIG. 2. Second sound wave signal before and after low-
frequency filtration. The cavity was excited at its 33rd resonance
with fd=3227 Hz and W=25 mW /cm2. �a� Original signal. �b� Af-
ter removal of the main harmonic. �c� With retention of only the 4th
and higher harmonics. �d� With retention of only the seventh and
higher harmonics.

FIG. 3. Evolution of the PDF of a second sound standing wave
during sequential removal of the lower frequency harmonics. The
number beside each PDF shows the lowest order harmonic that is
retained �so that 0 indicates the PDF of the full original signal, 1
indicates retention of second and higher harmonics after first pro-
cedure of removal, and so on�. The frequencies of the digital cuts
are shown in Fig. 1.
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depending on the sign of the nonlinear coefficient 
. Com-
parable asymmetry was observed for first sound resonances
in closed tubes �24�, as well as for heating and cooling shock
waves in superfluid helium �25� and measurements of the
PDF of capillary surface waves �9�. In the present case, be-
cause the minima in 	T are more rounded than the maxima,
there is a corresponding asymmetry in the PDF. It decreases
for the higher harmonics but does not completely disappear
within the experimentally accessible range.

The extent to which the Gaussian distribution is devel-
oped corresponds to the extent of development of the turbu-
lent energy cascade: The more developed the energy cascade,
the closer the PDF becomes to a Gaussian distribution. Fig-
ure 5�a� shows the PDF after removal of the main harmonic
�circles�, and after removal of both it and the second har-
monic �triangles� which clearly brings it closer to being
Gaussian in shape. Figure 5�b� for a higher excitation exhib-
its Gaussian behavior for all harmonics except the main one.

Second sound waves in helium have an approximately
linear dispersion ratio ��k. The quasi-one-dimensional lon-
gitudinal waves in the resonator have three- and four-wave
interactions. The energy transformation to higher frequencies
�Kolmogorov-like cascade� is the result of three-wave inter-
action: �d+�1→�2, causing the amplitudes of the higher
harmonic to increase towards their equilibrium values.

The increasing amplitudes of the higher harmonics leads
to intensive interactions between the independent modes
within the framework of three-or four-wave processes �d
+�1↔�2 and �d+�1↔�2+�3; there will be similar inter-
actions not involving waves at the driving frequency. Such
processes will lead to substantial mixing of the phases of the
higher frequency modes, which will therefore be less af-
fected by that of the driving force.

We also investigated the effect of increasing the number
of wave interactions by adding an additional excitation to the
system. Pumping the system by two signals from two sepa-
rate sine wave generators launches four waves 2� f1G, 2
� f2G, f1G− f2G, and f1G+ f2G into the resonator. With pump-
ing only at the 31st resonance, a developed cascade was
formed as shown in Fig. 6�a�. The addition of a weak exci-
tation at a lower frequency changes the picture substantially.

The interactions of the resultant four waves give rise to nu-
merous combinational signals, as shown in Fig. 6�b�. Fur-
thermore, interactions between the main and combinational
waves lead to attenuation of the developed turbulent cascade
and change the distribution function within the inertial inter-
val �26�. Suppression of the main turbulent cascade is indi-
cated by a change in the frequency dependence of the spec-
tral maxima from A� f−1.79 in �a� to A� f−2.18 in �b�. This
phenomenon is connected with a redistribution of the energy

FIG. 4. PDF of the higher harmonics plotted in coordinates cho-
sen to reveal a Gaussian distribution: A logarithmic ordinate and a
squared abscissa. A Gaussian would yield two straight lines of equal
but opposite slope. The � points correspond to cutting frequencies
below 15 kHz and the � to cutting below 20 kHz. fd=3227 Hz,
33rd resonance, UG=5 V, W=25 mW /cm2.

FIG. 5. Increasingly Gaussian behavior as turbulent processes
develop. �a� At an excitation of W=9 mW /cm2 after removal of the
main harmonic �, and removal of the main and second harmonics
�. �b� At W=25 mW /cm2. The � are the PDF of the initial signal.
The filled circles show the PDF after removal of the main harmonic,
and the � are the same points with a 5� abscissa expansion. The
cavity was driven at its 11th resonance with fd=1060 Hz.

FIG. 6. Power spectra of second sound signals showing turbu-
lent cascades formed while pumping at one forcing frequency �up-
per figure� and double excitation with two forcings �lower figure�.
The main forcing was at the 31st resonance �U1=7 V; W
=49 mW /cm2� and the additional perturbation at the seventh reso-
nances �U2=2 V; W=4 mW /cm2�. The arrow indicates the position
of the high-pass filter for both parts of the figure. The positions of
the main combination frequencies are indicated.
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flux between a large number of additional interacting combi-
national modes. A similar effect was observed for the system
of surface waves on liquid hydrogen �27�.

The appearance of a set of combinational waves, and the
increasing number of interactions between the different har-
monics, lead to the formation of a Gaussian-like PDF in the
higher spectral range. The result of cutting the spectrum of
the signal below fc=5900 Hz is shown in Fig. 7. Note that
the frequency cut �arrows in Fig. 6� is made below the sec-
ond harmonic of the developed cascade with a single excita-
tion signal.

Finally, we enter two caveats in relation to the above dis-
cussion. First, we note that the resonant frequency of the
forcing signal differs slightly from the frequency of free os-
cillation due to the presence of the small heat flux from the
heater �28�. Thus, the wavelength of the driving signal at
resonance is not exactly equal to the wavelength of the trav-
eling wave corresponding to the eigenfrequency in the cavity
and the integer length of higher harmonics. Correspondingly,
the influence of the phase of the driving force diminishes in
the higher harmonics. The effect is clearly visible for our
so-called “eleventh resonance” �Fig. 5�, which we suspect is
coupled to the first radial resonance �see above�: The fre-
quencies of the fundamental radial mode and higher radial
modes are incommensurate. Second, the differing velocities
corresponding to the different amplitudes of the harmonics in

the cascade mean that the phases and resonant frequencies of
the different modes are slightly different from those ex-
pected.

IV. CONCLUSIONS

The main conclusion is that the removal of low-frequency
components in the signal from turbulent second sound in our
resonator yields probability densities with Gaussian-like dis-
tributions: With successive removal of the lower harmonics,
the strong influence of the driving signal �with cophasal be-
havior� weakens, and the PDF changes from the shape cor-
responding to a sine wave towards a Gaussian distribution,
representing the statistical average of random multiple har-
monics. It was already known that the Kolmogorov-like
power-frequency distribution arising from a high-intensity
pumping signal takes the form Ai��−n, where n�1.5. More
intense driving yields a lower value of the power n, a longer
inertial interval, and relatively larger amplitude of higher
harmonics �23�. We have also found that, under some cir-
cumstances, an inverse energy cascade can exist, carrying
wave energy towards lower frequencies �29�. We have now
shown that, although the driving signal exerts a strong influ-
ence on the first few harmonics in the resonator, this influ-
ence quickly dies out in the higher harmonics where the
PDFs become nearly Gaussian, apparently corresponding to
chaoticlike behavior. Such phenomena are to be anticipated
in wave turbulent systems quite generally but, to our knowl-
edge, have not previously been demonstrated experimentally.

Pumping the system with an additional weak excitation
leads to the formation of numerous combinational waves,
and a partial suppression of the main energy cascade. The
interaction between the combinational waves and the main
driving signal shifts the region with a Gaussian-like PDF
towards lower frequencies. Thus, the form of acoustic turbu-
lence revealed by the experiments apparently exhibits the
features of both strong wave interaction and weak turbu-
lence.
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