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Environmental impact statement: This paper presents advances in a sampling technique that 

allows the co-analysis of anions of P, V, As, Mo, Sb, W, U and sulphide in sediment. Co-

analysis of sediment solutes is particularly valuable as it allows interpretation of geochemical 

processes based on the behaviour of multiple analytes at the same precise time and 

locations. This technique has the ability to provide information on sub-mm scale processes 

within sediment, including in two-dimensions, and also profiling across the sediment-water 

interface. It has potential applications in the monitoring or assessment of the mobility of 

pollution from mine wastes (e.g. As and Sb). The technique can also be adapted for looking 

at the geochemistry of the target elements at the soil-plant root interface.  

Summary 

Previous work used the sampling technique diffusive gradients in thin-films analysed by laser 

ablation mass spectrometry to measure sulphide, P, V and As at a microniche of reactive 
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organic carbon in a freshwater sediment. Here we present new developments of this 

technique. The number of analytes has been extended and we demonstrate the technique 

for depth profiling of analytes in both one and two dimensions. The physical dimensions of 

the cell in the laser ablation unit restrict the maximum length of gel that can be analysed. We 

address this problem by proposing a method for obtaining better data continuity when 

analysing multiple segments of gel from the same probe. 13C is used as the internal standard 

for each gel segment. For the cross standardisation of different gel segments 58Fe signals 

are obtained from ablation of a small piece of standard ferrihydrite gel analysed during the 

same run as the sample gel. As the ferrihydrite gel is a subsection of a much larger gel (i.e. 

the Fe concentration is consistent for all subsection), then any difference in signal can be 

attributed to changes in detector sensitivity and gels across different runs and performed on 

different days can be standardised.   

Introduction 

With recent developments of new sensors there is increasing interest in studying chemical 

processes in sediment at high-resolution. Such measurements allow processes occurring on 

a localised scale to be observed and the effect of these processes on diagenesis of the 

whole system can be reported. Furthermore, co-analysis of multiple sediment solutes is 

particularly valuable as it allows interpretation of geochemical processes based on the 

behaviour of multiple analytes at the same precise time and locations. Two-dimensional 

probes are currently available for trace metals, nutrients, dissolved gases and pH.1 Planar 

optodes have been used to investigate, in two-dimensions and at sub-mm resolution, profiles 

of single components across the sediment water interface (SWI).2 Two components have 

been analysed simultaneously across the SWI using a combination of the sampling 

techniques diffusive gradients in thin-films (DGT) and diffusive equilibration in thin-films 

(DET).3  DGT when deployed in sediment gives a measurement that reflects the porewater 

concentration and the amount of solute that can be re-supplied to the sediment-probe 

interface via diffusion and desorption from the solid phase (CDGT). We have previously 



  
reported the use of a combined silver iodide 

 
ferrihydrite binding phase for the DGT 

technique for the 2D analysis of the anions of P, V, As, and S within sediment.4  Here we 

present new developments of this technique. The number of analytes has been extended to 

additionally include 94Mo, 121Sb, 182W and 238U, and we demonstrate the technique for depth 

profiling of these analytes across the SWI. The physical dimension of the cell in the laser 

ablation unit restrict the maximum length of gel that can be analysed. To overcome this 

problem we propose a method for obtaining better data continuity when analysing multiple 

segments of gel from the same probe.  

Experimental 

Sample collection and gel preparation, deployment, drying and analysis procedures followed 

those previously used.4, 5 The DGT binding phase used was a combined silver iodide 

 

ferrihydrite binding layer capable of binding sulphide and a range of anions.4 To reduce 

blank levels we used ultra-pure reagents to prepare the gels: silver nitrate (Alfa Aesar, 

Premion grade, 99.9995%), sodium hydrogen carbonate (Alfa Aesar, Puratronic grade, 

99.998%),  iron nitrate nonahydrate (Sigma-Aldrich, 99.999+%) and potassium iodide 

(Merck, Suprapur grade, 99.995%). For this work three probes were deployed in individual 

intact sediment cores with temperature controlled flowing overlying water. Cores were 

collected from Esthwaite Water, a freshwater lake in the English Lake District. Post 

deployment preparation of gels for analysis followed previously reported procedures.4 

Briefly, gels dried onto a backing filter (maximum dimensions ~1.8 × 15 cm) were cut into 

~1.5 × 4 cm pieces and mounted onto glass slides with double sided tape. Analysis was 

performed on the upper segment of gel (across the SWI) for all three probes, with one probe 

being selected for the analysis of a larger depth range across three slices. The ablation is 

performed in lines of spots vertically down the gel, with a distance between spots of 500 µm, 

There are typically 22-28 ablation lines on each gel.  



  
Detector counts from laser ablation coupled with inductively coupled mass spectrometry (LA-

ICP-MS) tend to be relatively stable over the time of ablating one gel. However, detector 

peak or background counts do not tend to be equal over a period of days or weeks. In 

laboratories where the ICP-MS is used for aqueous as well as LA samples, the switching of 

dedicated consumables (e.g. torch, cones) and the requirement to re-tune, mean that peak 

detector counts at a given analyte concentration will give large variations between LA runs.   

58Fe has several properties that make it an ideal candidate for use as an internal standard on 

gels. Namely, a very low detector background, high peak signals and a mass within the 

range of the other analytes. However, 58Fe cannot be used to standardise signals across a 

deployed gel, as iron oxides precipitate within the gel at the oxic sub-oxic interface. We use 

a procedure that uses two different analytes for standardisation. 13C (a major component of 

the gel matrix6) is used for internal standardisation of single gel segments. Each ablation 

spot is standardised to 13C based on the average for all ablation spots on the gel segment. 

Due to a relatively low peak to background ratio and high background counts, 13C is not ideal 

for standardisation of data generated on different days and across gel segments. To improve 

continuity when analysing multiple gels, including segments from the same probe, we used a 

procedure that fixes a piece of a standard ferrihydrite gel (~0.5 cm2; a subsection of a much 

larger piece of gel ~1.5 × 15 cm) on the same slide as each segment of deployed gel. As the 

ferrihydrite gel is a subsection of a much larger gel (i.e. the Fe concentration is consistent for 

all subsections), then any difference in signal can be attributed to changes in detector 

sensitivity. An average value from multiple ablation spots on this gel yield data for 

standardising variations in detector signals on different days.   

Results and discussion 

The results of the high-resolution two-dimensional profiling are shown in Figure 1 with 

quantitative data for P, V and As, and qualitative data for 94Mo, 121Sb, 182W and 238U. 

Previous work4 has reported the detection limits for the quantitative analysis so this 



  
discussion is not repeated here. Colorimetric sulphide data were obtained for deployed 

probes, however, results of this type have previously been reported in several studies3, 5, 7 so 

are not included here. The data in Figure 1 shown the potential of the technique for profiling 

in 2D and at sub-mm intervals across the SWI, adding to the toolbox of existing 

techniques.1,3 Quantitative data was obtained for P, V, and As by analysis of standard gels 

prepared for previously reported work4 and using the cross calibration techniques described 

above. Future work should focus on the improvement of calibration procedures to include the 

other analytes.  

Many of the porewater solutes included in this study are generally measured using slicing of 

sediment cores and centrifugation to isolate the solutes. The technique presented here 

allows trends in these analytes to be studied at high-resolution, not only in 2D, but also in 

1D. This technique is particularly valuable in demonstrating heterogeneity in sediment 

systems. However, we also sought to demonstrate how representative, averaged profiles 

could be obtained when data from multiple probes are averaged. This may allow the co-

analysis of vertical profiles of these elements obtained in situ, and at higher resolution than 

other measurement techniques. Data for specific depths on multiple probes can be averaged 

to give 1D vertical profiles of analytes with error bars based on the standard deviations of the 

means (Figure 2). Here we show 1D averaged data, based on three individual deployed 

probes. Multiple probes were deployed to reduce the effects of heterogeneity across 

individual probes.  

Figure 3 presents the results of the cross standardisation testing. Data for P and As are 

presented as they represent analytes with contrasting peak to background count ratios. P 

data show a high level of continuity between the gel segments. The effectiveness of the 

technique can be illustrated by comparing the percent change in the detector counts to the 

calculated concentration across the two gel transitions. From the upper to the central gel, the 

peak area (based on the detector signal) is increased by 39% whereas the corrected 



  
concentration only varies by -6%. For the centre to lower section the changes are -8% and 

3% respectively. This highlights the effectiveness of the procedure. Results for As show 

lower level of continuity, however, data at the transition between the segments are within 

one standard deviation of the mean values. A small amount of instrument drift in the As 

signal may cause this small deviation.   

Our data were obtained from an unpolluted lake in the English Lake District. Several of the 

analytes studied here may be present in mine spoil or smelter wastes.8 This technique could 

be applied to the assessment or monitoring of sites affected by such activities. There has 

also been an increase in interest in the environmental impact of Sb9 and this gel has the 

potential to be used in monitoring of this element. Recently DGT with this binding phase has 

been used for the measurement of phosphate at plant roots.10 The expansion of the number 

of analytes, as presented here, may aid interpretation of biogeochemical processes 

occurring in both soils and sediments. Measurement of additional analytes has no additional 

requirements on the ICP-MS (provided interferences are considered). Therefore, additional 

data can be obtained relatively easily, potentially allowing wider interpretation of the results.  
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Figures 

 

Figure 1. Two dimensional profiles of the anionic species of P, V, As, 94Mo, 121Sb, 182W and 
238U across the sediment water interface (SWI) of a freshwater sediment. The dashed line 
represents the SWI. The data for P, V, and As are presented as CDGT concentrations. Other 
analytes are presented as ICP-MS counts. Ratios between the high and low counts are not 
equal for all analytes. For example the W and U have significantly lower ratios than the other 
analytes.  
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Figure 2. One-dimensional profiles of analytes averaged for 3 ablated gels. For each probe 
the mean counts for each depth were calculated. The average of this value for each of the 
three probes was then determined. The standard deviation, represented by the error bars, 
reflects this variation between the three probes. The P, V, and As data are CDGT 

concentrations; other analytes are based on ICP-MS counts.  
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Figure 3. One-dimensional profiles of As and P for a full depth profile of a single DGT probe. 
The profiles are based on three pieces of gel as the maximum length for the cell in the laser 
ablation unit is 4 cm. The dashed line indicates the transitions between gels. Error bars 
represent one standard deviation from the mean of each averaged depth value (n=22, 23, 
and 13, for sections upper, middle and lower respectively; fewer data were obtained for the 
lower section due to an data recording error on the ICP-MS half way through the analysis).  


