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Phase relationships between two or more interacting processes from one-dimensional time series.
I. Basic theory
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A general approach is developed for the detection of phase relationships between two or more different
oscillatory processes interacting within a single system, using one-dimensional time series only. It is based on
the introduction of angles and radii of return times maps, and on studying the dynamics of the angles. An
explicit unique relationship is derived between angles and the conventional phase difference introduced earlier
for bivariate data. It is valid under conditions of weak forcing. This correspondence is confirmed numerically
for a nonstationary process in a forced Van der Pol system. A model describing the angles’ behavior for a
dynamical system under weak quasiperiodic forcing with an arbitrary number of independent frequencies is
derived.
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[. INTRODUCTION lated neuron$19], or in any situation when a living system
is artificially split into separate subsystems for research pur-

To establish from experimental data whether or not two oposes, usually by means of surgery or drtgsreby disrupt-
more interacting processes are synchronized is an old arifig its natural functional stat¢20—23. However, in practice
important problem. In the absence of noise, the existence dhere are not many opportunities to measure noninvasively
synchronization between two processes in interacting limifeparate signals coming from different interacting processes
cycle oscillators was originally taken to imply that their basic Within a living system: the independent registration of sig-
frequencies of oscillation are related as integer numbers ~ Nals derived from respiration and from cardiac actiyig—
are rationally connectéd1,2], and that their instantaneous 28 is one of the very rare examples.
phases are permanently locked. This definition suggests that It remains an open problem how best to learn from the

the detection of whether or not synchronization exists can b ne-dimensional signal coming from a system, within which

established by computation of the ratio of basic 1‘requencie§everal processes with d|st|nQU|shab[e time scales Iinteract,
Whether or not the processes in question are synchronous. In

in the Fquner spectrum (.Jf th? S|gnal from one of the SUb'Ref. [29] it was suggested that the interaction of processes in
systems mvolyed. _Even in this s[mplest case, howev.er,.th e autonomic regulation of the human cardiovascular sys-
f!nlte observatlor_l time gnd th'e dlscret'eness of the dlgltlzafem could be studied by the application of ideas from ethno-
tion steps used in practice will make it appear tafitfre- ) sicology to univariate time seriéseart rate daa How-
guencies are rationally connected, thereby complicating th@ver, this_approach is tightly linked to the physiological
reliable estimation of their ratio. Furthermore, the noise thatayre of the particular data and cannot be applied in general.
is invariably present in all real macroscopic systems meangnother possibility that has recently been demonstrfBed
that only effective synchronizatiof3] can normally take s to filter a univariate time series to create two “separate”
place, meaning that the phases can remain locked only dugignals that can then be analyzed for synchronization phe-
ing finite time intervals, and that the basic frequencies mayiomena in the usual ways already developed for bivariate
no longer be rationally connectdd]. Serious difficulties time series.
may also arise due to the nonstationarity of experimental In the present paper we propose a more general approach
data. towards detecting the presence or absence of synchronization
In view of these problems, modern techniques for estabbetween two or more interacting processes from univariate
lishing the presence or absence of synchronization are basedperimental data. A preliminary repd@1] introducing the
on the assumption that the behavior of each subsystem camain idea has already been published. The aims of the
be considered separately, and that their individual time seriggresent paper are, first, to give an explicit relation between
can be compared by a variety of techniques., by compu- the new variable introduced for univariate data and the con-
tation of the phase difference between thefhis approach ventional variables used in synchronization theory. Second,
has been justified theoreticall[3—6] and is widely used to we extend the approach to encompass the case of several
detect synchronization, not only in periodic noisy, but also ininteracting processes.
chaotic[7—10] oscillators, and even between stochaktit— In Sec. Il the basic idea of the approach is outlined, ex-
15] processes. Its principal assumption is quite reasonablglicit models for the angles of return times maps are derived
where the system is being forced externally, when one is abl®r an oscillator that is forced either periodically or quasi-
to measure both the forcing and response sigridls or for  periodically, and the relation between the angles and the con-
mutually coupled oscillators of radiotechnicg8,9,17 or  ventional phase difference is established. In Sec. Il the latter
biological [18] origin, or for biological systems such as iso- relation is demonstrated on a model of nonstationary forced
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FIG. 2. (a) Stroboscopic section of a Van der Pol system forced
periodically and influenced by noise in the region of 1:1 effective
synchronization(black pointg. The white point shows the stable
cycle in the noise-free system. Parameter values are given in the
text. (b) Map for angles of return times for the case illustrated by
(@. The thin black line shows the return function of E41) for

é=1.

formed by the unstable manifolds of the saddles as shown in
FIG. 1. () Surface of a two-dimensional torus. The pois ~ Fig. 1(b). To consider the dynamics of the Poincanap,
some origin in whose vicinity the motion occurs. The saddle cycleplace the origin somewhere inside the region bounded by the
SC(dashed lingis that from which the torus was created as a resultclosed curve and introduce the phase angleand phase
of a Hopf bifurcation. The phase trajectory moves along the torugadiusr; [Fig. 1(b)]. At each discrete time momentwhen
surface and makes two kinds of rotation: around the pOintith  the trajectory returns to the Poincasecant surface, the
amplitudeR, and around the cycle SC with amplitude(b) Poin-  phase vector rotates by some angle. It is obvious that for the
caremap for a two-dimensional resonant torus inside the region okynchronous regime there is a discrete number of possible
1:3 synchronization. Arrows show the direction of stable and un+alues of¢; , and for the asynchronous one the angjenay
stable manifolds of saddle equilibrig, is the current angle;; is take any value betwed:n_,n-, 7T] The geometrical meaning
the current amplitudetc) lllustration how the points jump on the  of the rotation number is then the average angle by which the

Poincaresection of a two-dimensional torus. phase vector rotates at each sfgjg. 1(c)],

oscillations and the method is tested. The results are summa- (pi— pi_1)=2mé, ()
rized and discussed in Sec. IV, and conclusions are drawn in )

Sec. V. where(---) means an average over time.

If some general noiséwith large enough tails in its dis-
tribution) perturbs the system, only effective synchronization
Il. ANALYTIC DESCRIPTION FOR THE IDEAL can take placd3]. In terms of the Poincarsection this
NOISE-FREE CASE means that, at every step, noise prevents the phase point
from jumping exactly to the stable point, but makes it jump
instead to the vicinity of the stable point. However, at a
The central idea of the proposed approach is based on theertain moment, a large enough fluctuation may throw the
simple fact that, ifm periodic processes with different fre- phase point outside the region bounded by the two stable
quencies interact weakly enough within a single system, amanifolds of the nearest saddle points, and the phase point
m-dimensional torus exists in its phase spetle The case of then moves along the unstable manifold to another stable
two interacting processes is illustrated by Fige)lshowing  point[Fig. 1(b)]. The latter stage of the dynamics is associ-
a two-dimensional torus as the attracting set. To quantifyated withphase slip Thus, instead of one or a few discrete
motion on this torus, theotation number¢ is introduced as points, one observes one or a few clouds of points smeared
the ratio between the basic frequencies of the interacting osround the stable equilibrium/equilibria, and possibly also
cillators. It specifies how many periods of one oscillator fallthe trace of the unstable manifolds forming the torus. The
within a single period of the other oscillator. latter situation is illustrated by Fig(& where a stroboscopic
If the processes aneot synchronousthe rotation number section is shown for a Van der Pol system under harmonic
is irrational. The phase trajectory then fills the whole torusforcing while affected by Gaussian white noise,
surface and is never closed, and thus its Poincaag is a
closed curve. If the processes agnchronousthe rotation x=Yy; y=e€(1—x%)y— wox+C sinQt+ \/B,u(t). (2
number is rational. In this case, distinct stable and unstable
cycles lie on the torus surface, and the phase trajectory tendidere, the nonlinearity parameter-0.1, eigenfrequency,
towards the stable limit cycle. The Poincanap consists of =1, forcing amplitude C=0.1, forcing frequency Q
one or several stable points belonging to the stable cycle and 1.025, n(t) is a random value with a Gaussian distribu-
an equal number of saddle points belonging to the saddldon, zero average and unity variance, and the noise variance
cycle lying between the stable points on the closed curvé® =0.1. For these parameter values, effective 1:1 synchroni-

A. General idea and experimental observations
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FIG. 3. () Map for angles of return times for the Van der Pol
system under periodic forcing with fixed small amplitude and dif-
ferent values of rotation numbeh) A series of return functions of
map (11) for different values of rotation numberclose to those in
(a). Moving down from the diagonal, the plots sequentially corre-
spond to[according to relatiorf12)]: £&=0.1(and 0.9, £=0.2 (and
0.9, £=0.25 (and 0.73, £=0.3 (and 0.7, £&=0.4 (and 0.6, ¢
=0.5.

(b)
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the other regimes appear not to fall within the synchroniza-
tion tongues. Here and in what follows, the axes of the maps
for angles have the limits—; 7].

B. Derivation of the map for angles of return times map
for two interacting processes

In this subsection we will clarify the physical meaning of
the angles of return times map and will relate it to the con-
ventional phase difference. We will also derive the map de-
scribing the evolution of angles with time.

Consider a very simple case of a forced system, namely, a
periodic self-sustained oscillator with eigenfrequengyand
amplitudeR that is forced harmonically at frequen€y and
amplituder. As a result of the forcing, a two-dimensional
torus is borrfFig. 1(a)]. If the nonlinearity in the oscillator is
weak, its autonomous solution can be approximated by a
sinusoidal function of time, and the oscillator is then called
guasiharmonic. If the harmonic forcing is also weakR,

zation takes place. In Fig(#& black points show the strobo- the solution of the resulting nonautonomous equations can be
scopic map of system with noise, and the white diamond irapproximated by a superposition of: one sine term coming
among the bulk of the black ones shows the position of thdrom the unforced system and describing rotation around
stable cycle in the noise-free system. Here, the agiglean ~ some originO, i.e., oscillations with frequency and ampli-
take any possible values, but those corresponding to the vitudeR [as shown in Fig. ()]; and a second sine term cor-
cinity of stable equilibrium are the most probable. Effectiveresponding to rotation around the saddle cy(&) (the
synchronization manifests itself in a sharp increase in théormer limit cycle of the autonomous system from which the
duration of the time intervals without phase slips. torus was born via a Hopf bifurcatipn.e., oscillations with
According to the Takens theore82] and its extension to the frequency of external forcin@ and amplitude. Thus
noise-affected systefr83], the system’s attractor can be re-
constructed from its one-dimensional time series. Obviously, )
here ¢ is the initial phase shift. Note that frequenay

the Poincarenap can also be restored from the reconstructegv
phase trajectory, being topologically equivalent to that of theCOinCideS with the eigenfrequenay, of the autonomous
system in the absence of synchronization. In the presence of

original system. In Refd.34,35 it is shown that the same
magocna;? dt;? ;er%(;r;s;gurcttﬁg ;rrc]);lle;e(t)l;rg ::aTueri (t)ifrr:g: rsny:;em‘syn(_:hronization, it_ is _shifted in the dire(_:tion defined by_the
'’ forcing. If the oscillations are synchronized by the forcing,
bi=F(di_1). (3)  therotation number of the whole system under consideration,
here denoted a§=Q/w, is equal ton/m, wheren, mare
The technique of plotting such a map has already been apntegers.
plied to reveal determinism in thR-Rintervals of anesthe- Define the return times of the system as the time intervals
tized dogs[36] and in the human heart rate during pacedbetween successive crossings by the sigfgl of a thresh-
respiration[37], and in jet atomizatioh38]. The distinctive old x=0 in one direction. To find the time momerts of
shape of the maps observed in all these works was attributettiese crossings one should solve the transcendental equation
to interaction between the particular processes involved. Hex(t) =0, which in general has no analytic solution. Let us
zel et al. [36] and Suderet al. [37] suggested approximate make use of the fact that the first term is much larger than the
empirical models to describe the dynamics of such maps, bigecond one, and, therefore, that the tirmesf zero crossing
without linking them to the general theory of synchroniza-by x(t) are close to the time§ = wk/w of zero crossing by
tion or developing an analytic description. (Rsinwt). We expand the functior(t) as a Taylor series in

Some typical examples of such a map are shown in Figthe vicinity of t} , considering only the linear term and ne-
3(@) for the noise-free Van der Pol systef® with e=0.1  glecting all the others:

and the small forcing amplitudeé=0.01, for several values
of forcing frequency() varying from 0.25 to 0.9. The basic
frequency of the oscillations is close &= 1, and thus the
rotation numberg are close to the corresponding values of
Q). Note that, foré=1/2, one observes a 1:2 synchronization
that is reflected by the presence of only two points in the
map of Fig. 3a) (the most distant point from the diagonal in
the lower-right part of the picture and the closest point to theNoting that costk=(—1), and in order to consider every
diagonal in the upper-left partand that the whole return second zero crossing so as to register intersections in only
function is not seen here since we removed all transients. Albne direction, we sek=2i,

X(t)=Rsinwt+r sin(Qt+ ¢g), r<R,

wk
+Rw| t— —|coswk
w

Q
x(t)=Rsinwk+r sin(; 7K+ ¢q

=0.

Q w7k Q K
+r t_j co ;77 + oo
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21i 2miQ 2@ 1 tang;+cotg; 4
t_T Rw+rQ cos ” + g | |=—rsin §=Earccosf (10
Thet we seek is théth moment of crossing, and an explicit form of the maf8) for angles; :
0miC) ¢;=arctarf2 cos 2ré—cote;_1). (11
| 2ri
r S'”( + ¢o 2 i Equations(10) and(11) are the final formula$39] connect-
tj=— . - (5) ing two successive angles of the return times map with the
Re+10 co 277'9+¢ ® rotation number¢ in the approximation of a quasiharmonic
0 oscillator under weak harmonic forcing. Note that E#jl)

was quoted earlier as E¢6) of Ref.[31], without detailed
Divide the numerator and denominator of the first term ofjustification.
Eq. (5) by r. SinceR>r, and thus in the denominator the ) . .
first term is much larger than the second one, we neglect the ~ C- Analysis of angles for two interacting processes

second term and thus obtain First, note that, if the amplitude of forcing is much
smaller than the amplitude of natural oscillations in the sys-
r. 2mi tem, the map(3) does not depend on the amplitudes and is
i~ - gosinVi+—, (6)  completely defined by the rotation numhérThe ambiguity

in defining the value of arctan that is periodic with the period
where ¥,= (27 Q/w+ ¢). Denote O =27Q/w=27¢. T Not 2m, implies that the return function in E@L1) is not
Then the expressions for the time momentst;, 1, t;.,, continuous but makes a jump hy at the point¢p=0, thus

t,_, may be written by analogy. The return timésare the being not one-to-one. Moreover, the function arctan itself
dli;flerences between the succeésive times varies between-=/2 and /2. To draw the return function

for angles in a proper way, reflecting its distinct physical
0 2x meaning, we just leave the value éf if ¢;_,=0 and sub-
sin—+ —. tract 7 from ¢; if ¢; _1<<0. When referring to map&ll), or
2 o (19 below, we will assume them to have been extended by
this procedure.
P second, note that the madfl) does not depend on the
initial phase shift¢, between the solution components.
Third, note that the return function of E(L1) is periodic
with respect to the variabl€ with period 1, because the
o cosine function takes equal values for the arguments ar
_ -7 2m*+27¢, or 2ml=27¢ (wherel is an integer if 0<¢
@ ) <1. Denote&* =(1/2m)arccos(cos2¢), so thaté* or (1
21 — &%) is the fractional part of the true rotation number lying
Ti— "o within the interval[0;1]. Then the true rotation numbércan
be expressed vig* as

r o
Ti:ti+1_ti:_2%co \I’i‘f'?

Put the origin into the central point of the return times ma
(T;,Ti;,) found as an average of all valuds which is

equal to Zr/w. Introduce the angle between the current point
and the horizontal axis as follows:

i+1
¢;=arcta

Then tang, is E=E 41, or E=(1—&%)+1. (12)

30

C05<q,_+ Y Thus, from the map for angles onff can be defined. To
|

2 ) select one of the two formulas in EqL2) and findl, the
sino. Fourier spectrum of the original signa(t) can be helpful,
cos(\lfi+ > since for this purpose only a rough estimate of the basic
) frequencies is required. To simplify further consideration, we
will take £ to mean the value of* which in all numerical or
Similarly, we obtain for cots_, real data examples given in this paper coincides with true
rotation number.
o Fourth, it follows from Eq.(11) that (i) if é=1/4, the
cos( N ) return function is the straight ling; = ¢; _, — 7/2 (ii) for any
COtd’ifl:—e sin®. value of ¢ the return function passes through the poiftts
cos( v+ E)

tang;=

()
=cose—tar(\lfi+ >

2

=cose+tar<\lfi+ 9
—a/2) and (;7/2) and touches the line;=¢; _,— 7/2 at
these points.
A series of return functions of Eq11) for several values
Since of & between 0.25 and 0.9 inclusiyéhe same values as in
Fig. 3@] are shown in Fig. &). The results are in good
tan¢; +cot¢;,_,=2 cosO, (9)  agreement with Fig. @), showing that return functions de-
rived theoretically appear to coincide with those obtained
we obtain the following expression for the rotation numéier from a numerical simulation.
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FIG. 4. Map for angles of return times for the periodically FIG. 5. Return function of a classical sine circle map.
forced R®sler system in a chaotic regime. The parameter values are
given in the text. system and the external forcing. A typical return function of

the map(14) is shown in Fig. 5. Let us make a comparison of
Our numerical simulation has demonstrated that closelynap (11) with map (14).

similar angles maps appear in the case when two periodic The formal difference between E@.1) and the sine circle
oscillators are coupled mutually and weakly; they are noimap is the presence of two points at which the distance be-
shown here because they are equivalent to those for thgveen the return function and the diagonal is minimal, in-
forced Van der Pol systeif?) for the same rotation numbers stead of only one such point. An important distinction is that
[Fig. 3(@]. Another useful observation is that even in thethe map(11), unlike map(14), does not depend on the am-
case when a weakly chaotic oscillator is forced periodicallyplitude of forcing and is thus always one-to-one, so no chaos
the map for angles may sometimes look very similar to thatan be described by it. Another important feature is that the
for noise-influenced forced or interacting periodic oscillators.return function of Eq(14) can cross the diagonal, as param-
In Fig. 4 a map for angles of return times is given for theetersK and § are varied, while in the mafil1) it can only
Rossler oscillator{40] in a chaotic regime forced periodi- touch the diagonal at two points wheée=0 or £=1, but
cally. The form of the equations is taken to be afdih] with  never crosses it.

the following parameters values: eigenfrequeney 1; « It is obvious that, wherti) the approximation of a quasi-
=0.2; B=0.2; u=10; and the forcing frequency,=0.3  harmonic oscillator is not valid, and/¢ii) the oscillator is
with amplitudeC=0.5. not being forced harmonically, and/@ii) the amplitude of

To reveal the physical meaning of the angles, return to Egforcing cannot be considered small, the real map will differ
(8). Here, ¥, is the phase of external forcing taken at thefrom that predicted theoretically. However, even where one
time moments Zri/w when the phase of basic oscillations or more of(i)—(iii ) apply, but the torus still exists, the quali-
with frequencyw changes by 2. Note that in generall’; tative picture remains the same, i.e., for the synchronous re-
defines the phase of external forcing up to some constant. fime we will obtain a finite nhumber of points, whereas for
V; is wrapped into the interval—; 7] [which does not the asynchronous one the map will look like a continuous
change the value of taW( +#6/2)], it is by definition the curve.
so-called relative phase introduced in H&b]. Consider the We have, therefore, arrived at a diagnostic criterion for
phase difference between two signaldl(t)=®,(t)  the existence of synchronization, or the lack of it, between
two noise-free interacting processes manifested within a one-

—®d,(t), and the values o¥ at time moments; when the . . :
dimensional signal.

phase of one signal, e.gb,, changes by 2,

q’(t-)zqf- =d,(t)—27i (13) D. Derivation of map for angles for several interacting
' B ' processes
Wrapping of ¥, into the interval [— ;7] implies ¥, We now consider the case when a quasiharmonic oscilla-
=®4(t;). That is, by construction¥'; coincides withw;.  toris being forced, not just by one, but byharmonic signals
Thus, Eq.(8) provides an explicit relation between the anglesWith n independent frequencieQ;, i=1,...n. We sup-

of return times map and the conventional phase difference upose the amplitudé; of each of these signals to be much
to some constant. This relation will be demonstrated by nusmaller tharR. Then, as before, the solution of the resulting
merical simulation of a nonstationary process in Van der Pononautonomous system can be approximated by
system in Sec. Il B.

A classical sine circle majpt2] is usually used to describe

the evolution of phase differenc; :

n

x(H)=Rsinwt+ >, AjsinQ;t+¢?), A<R. (19
=1

V. 1=+ 6+Ksin¥;, (mod 2m), (14)  Here ¢? are the initial phase shifts of the solution compo-
nents. Denote 2();/w=0;. As before, expand Eq.15)
whereK is the effective amplitude of external forcing add into Taylor series in the vicinity off =2xi/w and neglect
is the frequency detuning between the eigenfrequency of thall terms beyond the linear ones,
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" 27 : 9,
x(t):;l A sin(i6j+¢?)+(t—%> tane;=cosO ; + JZZ Bi cos{iej+¢?+?' (co;
n n e
X Rw+j§l AjQ;cogiO;+¢?) [ =0, —cos@l)—jzl sin iej+¢>§’+7’)sinej

-1

17

n 0.
E ,BJ CO{IGJ-HZ)?—I——J)
=1 2

to obtain an approximate expression for the momentf X
the signal’s intersection with the zero axis,

By analogy derive the expression for et ;, sum it with

n
> A;sin(io;+ ¢?) tang;, and obtain an expression far ,
j=1 27i

n

Q. 0+ ¢°
Rw+j21AJQJCO€{|eJ+¢J) ¢i=arctar{2cosel—cot¢il+2

12 2
~— — - sin(i© .+ 0 + —
Rw,—Z‘l A;sin(iO;+ ¢)) + — %

n
O.
JZZ Bi cos(i9j+¢?+ 71 (cos@,——cosel)}

n -1
. ' . 0.
The return times are defined as > ,Zl B cos(|6j+¢?+ 21 } ]
2 1| & o 0
Ti:ti+l_ti:?_% 1‘21 AJ Slr‘(|6j+q§j+6j) (18)

Formula(18) is valid for any number of forcing signals of
small amplitude applied to the quasiharmonic oscil a3

0. It is important to realize that the validity of this formula is

sin—. fully justified by the validity of Eq.(15) describing the be-

2 havior of the phase variabbgt) of a system forced by sev-
eral harmonic signals. In Rg#4] it was shown theoretically
that quasiperiodic motion on andimensional torus is struc-
turally unstable fom= 3. This means that, after such a torus
is born, an arbitrarily small perturbation of the system can

or & 30. Iead. to trajectories on itmdimensipnal'hy_persurface be-
Tiig— — 2 B c05(i91-+¢?+ Tj) coming Lyapun_ov L_Jns_table._Th_us, in prlnC|pIe_, even three-
tand: = w =1 frequency quasiperiodic oscillations cannot exist in real sys-
! 2 n 0.\’ tems affected by noise. However, if the perturbation is
Ti+ o E B cos(i9j+ ¢?+ 71 vanishingly small, then although the trajectories may be un-
=1 stable, the vector flow remains close to the quasiperiodic
one, and formulg18) is valid asymptotically as the pertur-

; ; bation tends to zero.
whereg;= (A;j/A,)[sin(©;/2)/sin®4/2)], B,= 1. Transform . L
the latter expression to rewrite it in a more convenient form,forr';Or forcing by two harmonic signals E(L8) takes the

-2 Ajsinio;+ )
=1

n

:———2 AjCO |9j+¢j+7

v Roi=p

Then tang, is equal to

n
cosO; —le sin( i0)

n

O

tan¢i={ > Bj cos(iej+¢?+?'
=

o. n 0.1t ¢i=arctan, 2 cosO,—cote;_;+28,[cosO,—cosO]
0, il : 0, 9i
+ ¢ +7)smej [,2‘1 B COS{Iej-i—qu +5 }
16 0,)\ *
(16) cos<i61+¢$+ 71)
X + ,
Now add to and subtract from the numerator of Etg) & odi6 +¢0+2
cosO; 3,8, cos(O; + ¢ +6,/2), yielding 20 %27 o
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=0.20102 ... (a random sequence of 0, 1, 2, and 3 after
the first “2”), A;=A,=0.1.

Figure Gc) is an illustration of the case when the two
periodic processes with small amplitudes are synchronized,
with frequencies;=0.3,Q,=0.1 (A;=A,=0.1), with a
corresponding “partial” rotation numbeg,,= 3, while nei-
ther of them is synchronized with the main rhythm with
=1.010 ... (a random sequence of 0 and 1 after decimal
point). The existence of synchronization between the two
processes of small amplitude, and the absence of their syn-
chronization with the main rhythm, is demonstrated by the
presence of a fixed numbéhree in this cageof continuous
nonclosed curves in the map.

Figure Gd) illustrates the case where the other two peri-
odic processes are synchronized, namely, the basic one with

(¢) (d) =1 and that with(); =0.3 (where the overdot on the digit
indicates a recurring decimalA;=0.1). The “partial” ro-

FIG. 6. Phase portraits obtained as the result of iterating mapation numberéy is 3. Here, ,=0.100 ... (a random
(19) for different parameter value$a),(b) no synchronization be- sequence of 0 and 1 after the first “Land A,=A;. Syn-
tween the three processes involvér);(d) partial resonances when chronization with the basic process exhibits itself via the
only two of three interacting periodic processes are synchronoupresence of small closed loops in the map for angles. Here, a

Details are given in the text. thin black line marks the return function of the autonomous
system(11) for é=3.
sin% In general, for the ideal noiseless case, one can decide
A, 2 immediately, just by inspection of the angles map, which of
,Bz:A—l 0, (19 the three periodic processes are synchronous: the presence of
sin7 a fixed number of closed loops in the map reflects synchro-

nization of one of the time scales with small amplitude with
E. Analysis of angles map for three interacting processes the “basic” rhythm, while the presence of a fixed number of
one-dimensional nonclosed curves points to synchronization
between the two processes of small amplitude. The case
when all three rhythms are synchronous is reflected by a
fixed number of points in the map, is thus trivial, and so is
not illustrated here.

Consider Eq(19). Note that for more than two interacting
processes the resulting map for angles depends on the initi
phase shifts;&?. First, one can check that, if the second forc-
ing signal is absent, it coincides with Ed.1). Second, if the
frequency of the second forcing signal tends to zero,(E9).
also tends to coincide with E¢l1). Third, if 8, is not zero,
the map(3) is in fact a nonautonomous system, and the forc- Ill. TESTING THE METHOD ON MODELS WITH NOISE
ing represents a nonlinear function of harmonic terms with
two independent frequencieQ,; and(),, added to a return
function that is similar in form to Eq11). Thus, if the map One of the simplest situations encountered in feape-
for anglesq; is a one-dimensional curver close to itin the ~ cially living) systems is the interaction of two periodic pro-
presence of noigeone can conclude that only two periodic cesses with different time scales. It may, however, be com-
processes with different time scales are involved in the interplicated by nonstationarity and by noise. First, consider a
action. But if the map is far from being a one-dimensionalstationaryprocess in a periodic oscillator with periodic forc-
curve, this implies that there are at least three interactingng under the influence of noisén Fig. 2b) the map for
processes with different time scales. angles of return times is shown for the case of effective 1:1

Examples of what the phase portrait of the nta®) looks  synchronization of Van der Pol system whose stroboscopic
like for four different sets of parameters are shown in Fig. 6.section is given in Fig. @). Here, the upper cloud of points
Denote the “partial” rotation numbers &; , where the in-  on the diagonal corresponds to the smeared stable equilib-
dicesi andj mean the numbers of the processes, and theium of the stroboscopic mapvhite point in Fig. Za)], and
index O signifies the “basic” process of frequeneyFigures  the other points are related to the trace of the unstable mani-
6(a) and @b) illustrate the cases whemone of the three fold. The thin black line plots the return function of méid)
involved periodic processes are synchronized. Erw  for £€=1, and the map points fall on it with high accuracy.
=1.1200@ ... (a random sequence of 0, 1, 2, and 3 after Now let us simulate a typical experimental situation when
the decimal point 0,=0.2,0,=0.11101 ... (a random the interacting processes amenstationary and the nonsta-
sequence of 0 and 1 after the first “1’A;=0.1, A,=0.2, tionarity exhibits itself in a slow random variation of the
while for (b) ®=1.012002 ... (a random sequence of 0, eigenfrequency of oscillations. Consider the Van der Pol os-
1, 2, and 3 after the decimal point,;=0.3, Q, cillator (2) with a randomly varying parametes, which for

A. Two interacting processes
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6m T~ ® A phase of forcing at the moments, that is relative

phase ¥; wrapped into the interval—m;7] is shown
Y and \v/ in Fig. 7(b). The corresponding circle map is shown

&
<
2 : . . in Fig. 7(c). Note, that here by constructioﬁfiz‘lfi
S

E — /D) / =[®(t;)—2mi] (mod 27)=—Ad,/3(mod 2m). In Fig.
(¢

7(d) the anglesp; of return times magp45] are shown and
AN /] their map is given in Fig. (&).
Next, we analyze the behavior of the systesing only
L~ univariate data namely, the variable(t). From Eq.(8) the
relative phase¥} is reconstructed from angle; whose
(e) temporal dependence and map are given in Fi¢f. ahd
/ 7(g), respectively. Note the remarkable correspondence of

FROM BIVARIATE DATA

Figs. 1b) and 7f), and 7c) and 7g), which clearly demon-
® strates that the relatiof8) still holds even for strongly non-

N o~ stationary processes. Another significant observation is that
0 20 400 600 800 maps in Figs. &) and 7g), being in fact classical circle
return number (i) maps(compare with Fig. bare very close to being straight

FIG. 7. Comparison of different methods to detect phase synlines, thereby confirming that the forcing was indeed weak.
chronization for a forced Van der Pol system with slowly and ran-
domly varying eigenfrequency, E(RO). Parameter values are given
in the text. The first two rows of plots were derived frdmivariate
data and arda) the conventional phase differended; between In Ref. [25] a method was suggested to find the rotation
response and forcingb) relative phase¥;; (c) map of relative numberé=n/m of synchronization from relative phase; :
phase?,,, vs ¥;. The third and fourth rows are obtained from the relative phase is extended to the intefM@j27n], the
univariate data: (d) angles of return times mage) map of angles; numbern being found by trial; once is found, the number
(f) angles transformed by means of E8); (g) map of transformed m s given by the number of horizontal stripes in the plat
angles. Note the striking similarity of plots) and(f), and(c) and  versusi. The situation becomes complicated if the process is
(9), respectively. nonstationary and the transition occurs from synchronization

with numeratom; to that withn,, wheren,#n,, etc. Then
) ) ) one has to find all possibla;’s by trial and error and to
small e is approximately equal to the basic frequency of 0S-gstimate all thet; corresponding to each different epoch of
cillations, under external harmonic forcing: synchronization, which can require time and patience.

But we have shown theoretically in Sec. Il C for the ideal
stationary noiseless case, and confirmed by simulation in
D - Sec. Il Afor a non_stationary case, that the relative_ phhse

w=wet — (1), p=——+u(t), (200 can gasﬂy be obtz?uned frpm '.[he angles of return times map,
T T provided that the interaction is weak. Then, in principle, we
) can apply the already developed technique to the angles and
for €=0.1, wp=1, C=0.20=0.3. u(t) is Gaussian white thus estimate the rotation number. However, the angles map
noise [(u(t))=0{u(t)2)=1], 7(t) is colored noise with has a noticeable advantage over the relative phase, namely,
varianceD ,, and correlation timer=200. that the shape of a particular angles map is explicitly defined

The presence or absence of synchronization between selfy the value of the rotation numbér That means that one
oscillations and forcing can easily be detected by the conecan estimate¢ directly from the map without needing to
ventional method for bivariate data, i.e., by plotting the timesearch for the correct valueof the numerator. Equatiofi0)
dependence of the phase difference between the forcing ar@uld be used for the ideal noiseless case, which of course
the response®(t)=®,(t)—3P¢(t), where®(t) is the does not arise in reality. In real life situations one can esti-
phase of forced oscillationéresponse” in the systen{20), mate ¢ as an average over some temporal window,
and ®(t) is the phase of the external forcing. Consider
Ad(t) at the moments when the signak(t) returns to zero 1 S
in one direction, i.e., when the phase of oscillations changes (&)= 5, arecos;, s=(tan¢;+cote;_1), (21
by 2. In the absence of nois®(,=0) a 1:3 phase synchro- m
nization arises, and is detectable through the associated pla-
teau around zero on&d (t) plot over the whole observation where(:--) implies an average over the window. As one re-
time; the corresponding mdg) consists of three pointghis  gime gives way to another, the value @ changes, respec-
case is trivial and is not illustrated heré&or noise variance tively.

D, =0.15 nonstationary oscillations take place in the system The rational rotation number/m describing synchroni-
exhibiting epochs of effective 1:3 phase synchronizationzation should be close to the one defined by @4), which
which are detectable through the presence of plateaus, anke will further refer to as “average rotation number,” though
intervals where phase difference slides sloj#yg. 7(a)]. not precisely equal to ifdue to noise and nonstationayityt

FROM UNIVARIATE DATA

LN

B. Estimation of rotation number from the angles map

x=Yy, y=e(1—x?)y—w?x+CsinQt,
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should be noted that the number of clouds in the angles map i T T T

does not in general allow one to define the rotation number u0-35F

immediately, because it gives only its denominatorThe E 6.3 (a)
same number of clouds will exist for synchronization with £

any n, though the clouds will be placed differently. To find gﬁ.zs_

the numeraton we suggest finding the approximate rotation = 6.21(-) 1 3.0 1 go

number(¢) using formula(21), and then seeking the integer
n closest to the valuen(¢).

However, before applying formul&1) we should check //{
that it is valid under the circumstances in question, i.e., that
the processes under study interaeiakly The most straight-
forward way to check this is to obtain the value(gf from
Eqg.(21), to plot the corresponding return function, and to see
if it fits experimental map for angles well enough. If it does, (b)
we can accept thi&) as an approximation of the true rota-
tion number; but if not, we cannot rely on the value in  FIG. 8. Quasiperiodically forced Van der Pol system with noise
question. (22). All processes are synchronous) Return timesT,;. Local

There is also a straightforward way to estimate the rotamaxima are connected by a thick solid linga),(c) Angles-of-
tion number from the angleg; by using its definition(1).  return-times map fotb) T; and(c) local maxima ofT; . Thin black
However, to do so one needs to be able to extend the discreliges show return functions in Eq11) for (b) §0=1/2 () &1,
angle ¢; in order to make it increase monotonically. In the =1/5.
present paper we use only formyl2l) to estimate the rota-
tion number. S

The rotation numbet¢) for the case of Fig. (&) is ap- dlstlngu.lshmg whether each cIoud_represents a smeared loop
proximated by formulg21) as 0.33327...; the number 3 of OF Consists of several smeared points. .
parallel stripes in Figs.(B), 7(d), 7(f) gives the denominator In view of these problems we sugg_est an exten_smn of our
m; and thus the true value of the rotation number correspondn€thod to remove from consideration the basic rhythm,
ing to the epochs of phase locking§sThe return function there.by enabling us to focus our attentlpn on the sr_nall_er
of map (11) for £=1 fits the plot in Fig. Te) with high amplitude processes. Namely, after detecting synchronization

accuracy and cannot be distinguished from it, thereby con®' Otherwise between the main rhythm and the one of the
firming that the interaction is weak. remaining two, we propose to proceed as follows. Plot the
return timesT; vsi and form a new dataset consisting of all
their local maximaor minima as shown in Fig. &). Now
C. Three interacting processes treat the new data as an independent time series resulting
The situation where mare than two processes with differ_from the interaction of only two processes. One can plot for

. . ) X these data the map of angles and then analyze it by analo
ent time scales interact is one that is often encountered i ith Sec. Il B P 9 y y ay

complex living systems. We, therefore, consider the case o This approach can be realized in application to experi-

three interacting processes in systems affected by Wea\lﬁental data only in cases where the frequency of the basic

noise, which we will take to be Gaussian. It is clear that theprocess is larger than those of smaller amplitude. However,

addition of even weak noise will smear the plots in Fig. 6.this condition is often satisfied in practice, as will be illus-
affecting our ability to detect synchronization between the

different processes. However, the extent of the effect Wi”trated[46] in refation to human_ heart rate variat_)ility data.
differ for different rHythms Ne{mely closed loops as in Fig To demonstrate the workability of this technique, we ap-
; : T “ply it to the Van der Pol system forced quasiperiodically and
6(d) are likely to become hard to distinguish from a large; -
’ L Lo influenced by noise,

number of discrete points; but we will still observe three
isolated clouds of points pointing to synchronization between x=y, (22)
the basic rhythm and the one with smaller amplitude with
rotation numberé=3%. Similarly, the conclusions about the
absence of synchronization between the basic rhythm andy= e(1—x%)y— wox+C; sinQ;t+C, sinQ t+ \/B,u(t)
those with smaller amplitude as illustrated by Figc)6ewill
remain valid even in the presence of noise. for e=0.1, wp=1, C;=C,=0.1, Q,=0.5, 0,=0.1, D

However, noise will definitely prevent one from making =0.00001. The parameters are selected in such a way that
judgments about the fine structure of such plots, thus rendefor all the processes effective synchronization takes place,
ing it almost impossible to establish whether or not the prowith £y,=3% and £,,=%. In Fig. 8@a) the sequence of return
cesses with smaller amplitudes are synchronized with eactimes T; extracted from coordinatg(t), and all its local
other. Fluctuational smearing of the plot in Figich for = maxima, are shown. In Fig(B) the map for angles is shown
example, will prevent one from identifying the number of for T;, which consists of two clouds of pointslack point3
nonclosed curvegbecause two of them are likely to mejge lying on a return function(11) for £é=3 (thin black line,
and smearing of the plot in Fig.(@ will prevent one from  being evidence of 1:2 synchronization between the basic pro-

return number (i)
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only a one-dimensional signal coming from it. The approach

is based on plotting the map of angles of the return times

map, and studying its dynamics. We have revealed an ex-
plicit relation between the angles of return times map and the
phase difference between interacting processes. The validity
of this relation is confirmed also for nonstationary processes
in a model.

Explicit maps have been derived describing the behavior
of the angles-of-return-times map for a system with a limit
cycle forced by an arbitrary number of harmonic signals of

FIG. 9. Quasiperiodically forced Van der Pol system with noisesmall amplitude. The maps obtained appear to describe well
(22). The basic process is synchronous with that with. The  numerically simulated data under appropriate conditions.
process with()3 is not synchronous with either of the other twa). All the formulas describing the angles’ behavior can be
Angles map for return times mafh) Angles map for local maxima  derived not only for the return times map, but also for the
of return times. The thin black lines show return functions of Eq-stroboscopicmap reconstructed from a one-dimensional sig-
(11) for (a) £=1/3, (b) £=0.3. nal by the delay method. Moreover, as numerical simulations

have shown, they also fit well angles of Poincaestions

reconstructed from one-dimensional time series. The reason

for presenting the above discussion in relation to the return
cess and the one with frequen€y,. At this stage, it is times map, rather than for the stroboscopic map, comes back
difficult to decide from looking at the map whether or not theto the reason for writing this paper: to obtain a stroboscopic
smaller amplitude processes are synchronous. Now, plot theection we would need to link ourselves to an external forc-
map for angles for the set of local maximaQf[Fig. 8c)].  ing, or to a signal from interacting partial subsystem, and

One can clearly distinguish five separate clouds of pointshese are by definition absent or unknown in the context of
here, pointing to synchronization between the processes witthe problem posed.

small amplitudes, the denominatarof the rotation number Although the saméor similan formulas should in prin-

being given by the number of clouds. A rough estimate of thesiple be obtainable for the reconstructed Poincamap

rotation number by Eq21) gives 0.212 36 which is close to within the framework of our starting suppositiot®), (15),

5 (the corresponding return function is shown by a thin blackye failed to do so because of the complicated transcendental

line), and so the correct rotation number phas been suc- equations that arise.

cessfuly extracted. Given a one-dimensional time series, we can find the map
Now, apply our technique to the case when only partialor angles by reconstructing either the Poincarghe return

effective synchronization in Eq(22) takes place. Sek  times map. Both of these operations seems equally valid and

=0.1, wy=1, C;=0.3, C,=0.17, 0,=0.333001, Q, should lead to the same results for dynamical systems. How-

=0.1001,D=0.0001. In Fig. ) a map for angles of return ever, in practice, data from medical or biological experi-

times is plotted. Three clouds of points testify to the effectivements are often already presented in the form of return times,

1:3 synchronization between the basic rhythm and forcindike R-R intervals of human electrocardiogram. Moreover,

with frequency(},. The “average rotation number” calcu- the algorithm for extraction of return times can be simpler

lated from this map by use of E(R1) is 0.333 333, which is than that for the Poincarsection, the latter being connected

a very good approximation of. With this, the map for with restoration of the phase portrait in a multidimensional

angles for local maxima of return times shown in Figh)ds ~ phase space and searching for intersection of the phase tra-

rather smeared by noise and displays no effective synchronjectory with a secant hypersurface. Of course, one should

zation between forcings. The average rotation numbedecide for oneself which method is preferable in any particu-

from Eg. (21) is 0.28Q ..., which is close to the actual lar case.

frequency ratio of the processes under consideratign

=0.30059 ... . Thereturn function for the mag1l) with

parameteg= 0.3, shown by a thin black line, seems to fit the V. CONCLUSIONS

map points reasonably well. Based on the results presented above, we arrive at the
Thus, the technique described above seems to be able fQIIowing conclusions.

provide information about synchronization, or its absence, £q o weakly interacting processes, the angles of return

between each consecutivérst with second, second with je5 map can be transformed to a relative phase by means
third) pair of three processes interacting within a nonlinear Eq. (8.

system, even in the presence of noise.

Without noise, when a weak periodic forcing is applied to

a periodic oscillator, the dynamics of angles of return times

IV. SUMMARY AND DISCUSSION does not erend on the a}mplitude of forcing and. is'com-

pletely defined by the rotation number. When a periodic os-

To summarize, we have proposed an approach to the deillator is forced quasiperiodically and weakly, the dynamics

tection of synchronizatiogor the lack of i} between two or of angles is defined not only by partial rotation numbers, but
several processes interacting within a single system, usinglso by the ratios of the forcing amplitudes.
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