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Simple approximation of the singular probability distribution in a nonadiabatically driven system

A. Bandrivskyy! D. G. Luchinsky*? and P. V. E. McClintock
IDepartment of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
2Russian Research Institute for Metrological Service, Ozernaya 46, 119361 Moscow, Russia
(Received 20 December 2001; revised manuscript received 3 April 2002; published 19 August 2002

Singular behavior and the formation of plateaus in the probability distribution in a nonadiabatically driven
system are investigated numerically in the weak noise limit. A simple extension of the recently introduced
logarithmic susceptibility theory is proposed to construct an approximation of the nonequilibrium potential that
is valid throughout whole of the phase space.
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The action of an external periodic force on a stochastic 1t .
system continues to attract intense intefdst4], first, be- Sx.t]=7 [x—K(x,t)]%dt (€)
cause it gives rise to important phenomena in a diversity of o
physical systems including, e.g., las€b$, proteins[6], and
Josephson junctiorf§]. Second, even a quite weak periodic satisfies a variational minimum principle.
excitation can lead to exponentially strong changes in the The family of trajectories that minimize the action func-
probability distributionp(x,t), thus offering the possibility tional (3) covers the coordinate space of the sysi@n In
of using periodic forces to control the syst¢g+11]. general, more than one trajectory arrives to any given point
For many years, analytic theory was restricted either tan the coordinate spadd4,15. Those providing the global
the case of slow drivingadiabatic regimeor to that of fast  minimum of §x,t] define the activation “energy” to reach a
and weak drivingregime of effective heating by the external point x at a moment of time, which plays the role of a
force [12]). It was recently proposed that the interestingnonequilibrium potentiab (x,t) =min x,t] [15]. These tra-
nonadiabatic regime, lying in between these two extremegectories are optimal paths along which the stochastic system
can be treated in terms oflagarithmic susceptibilityLS).  fluctuates with overwhelming probability to a given remote
This approximation is valid in both the underdamp@fiand  state, and they are experimentally observdtig 17. Thus
overdamped 10] limits. However, up to now, most of the an analysis of the probability distribution of the nonadiabati-
discussion has been restricted to the activation “energy’cally driven system in the limit of small noise intensity re-
only, and the range of applicability of the LS approach hasyuires a solution of the variational problef8) with subse-
not been explored yet. quent global minimization of the action on the set of all
In this paper we investigate the validity of the LS approxi- extremal trajectories.
mation over the whole of phase space. Analysis of the non- Use of the LS[9,10] substantially simplifies such an
equilibrium potential in the limit of small noise intensities is analysis. The theory calculates corrections to the activation
perfomed using Monte Carlo simulations. The results areenergy” induced by the nonadiabatic driving. It does so in
compared with numerical integrations of the Fokker-Planckerms of the work done by the external field as the system
equation(FPB), the LS approximation, and the full Hamil- moves along theinperturbedtrajectories in thermal equilib-
tonian theory of fluctuations. In doing so we show that for arium, expressing the result in terms of a linear susceptibility.
moderate amplitude of the driving force, there is a large re-  For the archetypal example of the overdamped Duffing
gion of phase space within which the nonequilibrium poten-oscillator(2) the LS theory provides an analytical solution of
tial is almost flat. Within this region, a condition for appli- the long-standing nonadiabatic escape problem. More re-
cability of the LS does not hold and applying it in the cently this theory was extended to find a complete solution
standard way provides a very poor approximation. We proof the nonadiabatic escape problem including corrections due
pose a simple modification that extends the theory to covefo finite noise intensity. The validity of the theory was veri-

whole of the phase space. _ ~ fied experimentally for escape proces§ds Encouraging
_In the limit of small noise intensity1,9,1Q the probabil-  agreement was obtained, which suggested that the LS might
ity distribution has a WKB13] form be applicable throughout the whole coordinate space of the

system(2) in accordance with its original formulatid®].

We now consider fluctuations that are large but not quite
esufficient to cause escape from a potential well. In principle,
the LS should provide a simple way of estimating their prob-

p(x,t)=z(x,t)e” SxU/D, (1)

In the particular case of one-dimensional motion of a particl
driven by a periodically modulated field(x,t)=—U"(x)

+F(t) and a white Gaussian noig¢t) ability distribution, even for nonadiabatic driving. For the
' sake of definiteness, we consider motion of a Brownian par-
X=K(x,t)+£&(1), (E(1))=0, (£(1)£(0))=2D4(t), ticle in a double-well Duffing potentialU(x)=—x?/2

+x%/4 driven by a periodic forc&(t)=A cos(27/Tt, and a
zero-mean white Gaussian noi§g). This model has been
the action functional used for many physical systentsee, e.g., Ref.18]) includ-
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that the In ofp(x,t) approaches a intriguing singular shape
with a plateau close to the boundary of the basin of attraction
of the quasistable state. It is in good agreement with results
from Hamiltonian fluctuation theory and from the numerical
solution of the FPE.

X \\w\\\\:",oo ‘\\\\\ i .
NSRS \\\\\\Q\\\\w’:&;" AN To calculate lhp(x,t)] using the LS theory we will follow
= \Wm%%”ﬁm _ the original papef10]. The basic assumption of the theory is
50.1\ w&&.«m&m&eﬂ@“\\@ \ that a moderately strong driving field changes only slightly
| N :“ N \\\ “’ \ the unperturbed fluctuational trajectory of the syst@nin
00 thermal equilibrium. If this assumption is valid, tide(x,t)

odooo \\a“ﬂ 9! ‘\\ \““ 5 NN of the nonadiabatically driven overdamped Duffing oscillator
3 s : can be readily found by substitution into E(B) of the
known (see, e.g., Ref.20]) form of the fluctuational trajec-
1 5 tory in thermal equilibrium given bx=U’(x).
x ¢ By neglecting the term proportional #&°(t), ®(x,t) can
be found as a sum of the equilibrium potentialU(x)
FIG. 1. —D In[p(xt)] given by the Monte Carlo simulations in =U(x)—U(—1) and a correction due to the driving force
the low noise intensity limitfor D=0.002). The two bold lines are [9,10]
time sections ofb (x,t) predicted by the formuléd). All the figures
presented in the paper are calculated for the model sy&emith
parameter§ =27 andA=0.1.

CI)(x,t)=AU(x)—Jj Xo(t')F(t")dt’, (4)

ing those considered recently in the context of stochastic
resonanc¢l19]. )

The nonequilibrium potential of this system is defined asvherex,(t’) is the velocity of the particle fluctuating along
®(x,t)=limp_o— D Inp(x,t). It can be measured experimen- the optimal path in th(_armal ethbnun’_n. We see the}t E4; _
tally in the limit of small noise intensity. The error in such expresses the corrections to the logarithm of the distribution
measurements due to the necessarily finite noise inteBsity in terms of usual linear susceptibility. This explains the ori-
is at least of the order ob, so the use of a small noise 9in of the term “logarithmic susceptibility.” The L&(t)=
intensity in such experiments is important. That is why the—X,(i). It does not depend on the external force and it is
measurements are usually complicated by the exponentiallfherefore a fundamental property of the unperturbed equilib-
long observation times needed to build the tails of the distri+ium system.
bution. To overcome this problem we use a modified Monte We note that Eq(4) specifies uniquely the probability
Carlo numerical scheme, of which full details will be pre- distribution for the periodically driven syste) at every
sented elsewherf20]. Here we mention only that the tech- point of the extended coordinate spacet). The results of
nigue has been tested on a number of different systems aride calculations for two time cross sections are shown in
that good agrement was obtained with the results obtaineBigs. 1 and 2. It can be seen from the figures that the LS
using traditional methods for larger noise intensities. Thepredictions coincide with the results of the Monte Carlo
simulation results are compared both with numerical integrasimulations everywhere except in the singular region where
tions of the Fokker-Planck equation corresponding to(By. there is a plateau close to the boundary of attraction men-
and with the predictions of Hamiltonian fluctuation theory, astioned above. The deviation of the LS predictions from the
will be described below. results of simulations in this region is systematic, much

An example of—D In[p(x,t)] obtained by Monte Carlo larger than the noise intensify, and clearly requires expla-
simulation is shown in Fig. 1. It can be seen from the figurenation.

FIG. 2. Two time sections of
d(x,t) for t=1.6 and t=4.1
given by the unmodified LS4)
(dash-dotted ling the full Hamil-
tonian theory(solid line), integra-
tion of the FPE (for D=0.002,
dashed ling Monte Carlo simula-
tions (for D=0.002, dotted ling
and Eq.(4) cutting the action at
the levelSgs (circles.
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FIG. 3. The pattern of optimal paths. A line that starts at a cusp _FIG. 4. The cut nonequilibrium potential given by the modified
point (a circle and approaches unstable periodic orbit is a switchingLS approach: a better approximation, cf. Fig. 1.

line. Thin solid lines are optimal paths for the nonequilibrium sys-__. s . .
tem (2) and dash-dotted line is an optimal path for the correspond-mmed by the topology of the switching line emanating from

ing equilibrium systenfi.e., for Eq.(2) with F(t)=0]. Note that a Cusptpomt "’?”d apfptrrcl)achllx%(_t) ?SymptotltcaII);i_Tr?lti line ¢
equilibrium and nonequilibrium optimal paths that arrive to a sin-S€parates regions of the coordinate space to whic € system
arrives by different optimal fluctuation paths.

ular region of plateau are very different—the original assumption ) e !
gf LS thgeory brgaks down herg g P The region between the switching line and the boundary
of attraction[x,(t)] is a singular plateau with almost con-

To understand the reason for this disagreement, let us costant action. Optimal fluctuation trajectories that arrive in
sider the asymptotically§— 0) exact Hamiltonian theory of this region first move close to the MPEP gnd then_bend _and
large fluctuations in a periodically driven systdsee Refs. MOve away from the boundary of attraction. In this region
[21,29). the basic assumption of the LS theory—that there are only

'I"he solution of the variational problet8) for S[x,t] can small deviations of the fluctuational paths in the periodically
be written in terms of the family of extreme trajectories thatdriven system from those in thermal equilibrium—breaks

satisfies the Hamiltonian equations of motion for coordinaté!OWn- As shown in Fig. 3, an optimal equilibrium path
x and momentunp of the auxiliary Hamiltonian system (dash-dotted lingarrives to the singular plateau region in a

[13,2]] very different way compared to nonequilibrium optimal
' paths. As a consequence the predictions of the LS theory
dx oH deviate strongly from the measured nonequilibrium potential
a=%=K+2p, in this region.

What can be done to improve the LS approximation in
this range? We note, first, that optimal paths reaching the

d_p =_ ﬁ - %_ (5) singular region move very close to the MPEP, thus acquiring
dt X dX a value of action that is approximately the same as that ac-
) . o quired along the MPEPS,~=0.2 for our choice of param-
Along these trajectories the action is given by eters. Second, the action acquired along the optimal path
anywhere in the region betweeq,(t) andx,(t) cannot be
d_S: ﬁ_H: 2 6) larger then the escape “energythe activation “energy).
dt ap P This must mean that the action inside the singular region is

almost equal tdS.s.. We therefore propose that, to improve

Equationg5) and(6) with appropriate initial conditions give the LS approximation in this region, we may cut the surface
a numerical scheme for computing the family of extremegiven by Eq.(4) at the level of the escape acti®gs.
trajectories and multivalued action manifdiix,t]. Its glo- It can be seen from Figs. 2 and 4 that the predictions of
bal minimum is the nonequilibrium potentiél(x,t) [14,15. the LS theory, corrected in the singular region, almost coin-

In Fig. 3, the pattern of optimal paths providing the globalcide with the predictions of the Hamiltonian theory and the
minimum to the action function&R?2] is shown in the region results from numerical integration of the FPE over the whole
betweernxg(t) andx,(t); Xs(t) andx,(t) are the stable and basin of attraction of the stable state, and that they are also in
unstable orbits of the syste(f), respectively. The bold lines very good agreement with the results of the Monte Carlo
(one per period’) emanating fromxg(t) and reaching,(t) simulations[23].
asymptotically are the most probable escape p@tREPS. In conclusion, one of the main results of the paper is the
These are the paths that provide minimum action for thenbservation that the probability distribution may have large,
system to arrive at the boundary of attraction. The singularityessentially flat regions in phase space. This is a purely dy-
in the pattern of optimal paths of the periodically driven namical effect that is not associated with the flatness of any
Duffing oscillator was investigated earlig22]. It is deter-  potential. Its origin is related to switching between different
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types of optimal fluctuational path, and it is a general featuresize that this approach enables one to avoid the necessity of
of optimal paths in periodically driven systems with meta- matching two theories in the region of the singularity, and
stable states. The LS theory, which is a perturbation theorythat it can readily be extended to the case of multiharmonic
does not apply within the flat distribution regions. We haveperiodic driving.

shown, however, that the distribution can still be found using

a simple and intuitively clear LS-based approach, and we This work was supported by the Engineering and Physical
have verified the results through detailed numerical simulaSciences Research Coun@ilK), the Joy Welch TrustUK),
tions, integration of the Fokker-Planck equation, and solutiorthe Russian Foundation for Fundamental Science, and the
of the variational problem for large fluctuations. We empha-INTAS.
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