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Comment on ‘‘Monostable array-enhanced stochastic resonance’’
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Lindner et al. @Phys. Rev. E63, 051107~2001!# have reported multiple stochastic resonances~SRs! in an
array of underdamped monostable nonlinear oscillators. This is in contrast to the single SR observed earlier in
a similar but isolated oscillator. Though the idea that such an effect might occur is intuitively reasonable, the
notation and the interpretation of some of the major results seem confusing. These issues are identified and
some of them are clarified. In addition, comments are made on two possible extensions of the central idea of
Lindner et al.: one of these promises to provide much more striking manifestations of multiple SR in arrays;
the other significantly widens the range of systems in which multiple SRs may be observed.
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In a recent paper@1# Lindner et al. have discussed th
occurrence of stochastic resonance~SR! in an array of
coupled, underdamped, nonlinear, monostable oscillat
They conclude that SR may be manifested at several va
of noise intensity, in contrast to the single value that arise
the case of an isolated oscillator@2,3# or for an array of
overdamped bistable oscillators@4#. As so often happens in
science, this is a case of a very interesting result that
retrospect, seems unsurprising: we note that the coupling
the degeneracy of the eigenfrequencies of the individual
cillators, causing them to split and thus yield additional re
nances, each of which can give rise to SR, of type~a! in the
sense introduced in@2#. Some of the results for power spect
in the absence of driving are potentially important, but th
interpretation, and some of the terminology, seem to us c
fusing. The results on noise-enhanced propagation, w
probably represent the most interesting application, are
presented in an ambiguous way.

The main aim of the present Comment is to address
clarify some of the confusion and to urge the authors of@1#
to remove the remaining ambiguity. In doing so, we disc
the relationship of@1# to the existing understanding of SR,
general, and in monostable underdamped nonlinear osc
tors, in particular, and we point out a possible extension
the authors’ central idea to a system that may be expecte
exhibit a much more dramatic manifestation of arra
enhanced multiple SR. We also generalize the idea of@1# to
encompass a wider range of systems.

The major quantity considered in@1# ~and in what follows
we will mostly use the notation of@1#! is

R@ f D#5
S@ f D#

B@ f D#
, ~1!

whereS@ f D# is the power spectrum of one of the oscillato
in the array in theabsenceof a periodic driving force, and
B@ f D# is some ‘‘smooth background’’ in such a spectru
although an explicit definition ofB@ f D# is absent from the
paper, it follows implicitly from Fig. 1 and has been co
firmed by one of the authors that, when the temperaturT
~i.e., the noise intensity, appropriately normalized! is small or
moderate,B@ f D# in the range of frequencies nearf D is of the
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order of S@ f D50#. This, in turn, is approximately propor
tional to T so thatB}T to a good approximation.

The authors mostly refer to the quantityR as the spectra
response, and they discuss its dependence on noise inte
f D is called the driving frequency. We wish to point ou
however, that the response to a periodic driving force is
proportional either toR or to S, so that its dependence o
noise intensity may differ markedly from that ofR or S. In
reality, it is only theimaginary part of the generalized sus
ceptibility x that is proportional toS @5#, the real part being
related to it by one of the Kramers-Kro¨nig relations@5#.

Let us write this in rigorous terms. If the driving force
sinusoidal, i.e.,ADcos(2pfDt), then the response of the sy
tem may be written in terms of the shift of its generaliz
coordinate~e.g., the coordinate of one of the array oscillato
as in @1#! averaged over the statistical ensemble. In
asymptotic limitAD→0, such a response is proportional
AD and sinusoidal in time@5#:

d^q~ t !&[^q~ t !&AD
2^q&AD50

5ADRe@x~ f D!exp~2 i2p f Dt !#, ~2!

wherex is the generalized~complex! susceptibility@5#. From
the fluctuation-dissipation theorem@5# and one of the
Kramers-Krönig relations@5#, the imaginary and real parts o
x are, respectively,

Im@x~ f D!#5
2p2f D

T
S~ f D!,

Re@x~ f D!#5
4p

T
PE

0

`

d f
f 2S~ f !

f 22 f D
2

, ~3!

whereT is temperature@equivalent tos2/(2048f Dg) in the
notation of@1#, with m51# and P denotes the Cauchy prin
cipal part. In the context of SR, these relations were fi
used in@6#.

If one characterizes the response by the intensityI d
~square! of the d spike at the driving frequencyf D in the
power spectrum of the driven system, which is one of
©2002 The American Physical Society01-1
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most important characteristics of the response~cf. @3,6,7#!,
then it is easily shown@6# that

I d5
1

4
AD

2 ux~ f D!u2. ~4!

The authors of@1# infer a ‘‘distinct SR’’ in their system based
on the fact that the quantityR may drastically increase a
noise intensity changes from zero and passes through ce
optimal values. This occurs because the spectrum in the
sence of driving,S@ f #, has pronounced peaks whose maxim
shift in frequency as noise intensity grows. But, in reali
things are not so simple because, as pointed out above
response to an input signal is not simply proportional toR.

The system’s response to a weak periodic driving force
completely specified by the complex susceptibilityx( f D).
And Eqs.~2! and ~3! show that it is only the imaginary par
of x( f D) that can be maximized through ‘‘tuning’’ by noise
in the range of small temperatures, it differs fromR only by
a temperature-independent factor. The real part ofx( f D) be-
haves differently, and must also be taken into account
simple analysis of Eq.~3! for an isolated Duffing oscillator
~cf. @3#! shows that Im@x( f D)# at the temperatureTm
[Tm( f D) yielding its maximum, and Re@x( f D)# at the same
T are of the same order as Re@x( f D)# at T50. As in @1#, we
are assuming here that the deviation off D from the natural
frequencyf 0 greatly exceeds the friction parameterg, while
being less or of the same order asf 0 : g! f D2 f 0& f 0; and
we also allow for the explicit expression@8# for the spectrum
S@ f # in the Duffing oscillator in the relevant range of fre
quencies and temperatures. Consequently, asT varies, the
maximum possible ratio ofux( f D)u to its value atT50 is not
much larger than unity~cf. @2#, where it was'2.5 for an
oscillator similar to the oscillator used in@1#!. This is in
contrast to the analogous ratio forR@ f D# „and, similarly, for
Im@x( f D)#…, which is typically larger by a few orders o
magnitude~cf. Fig. 3 in @1#!. The situation for arrays shoul
be similar. This inference could readily be checked by p
forming an explicit calculation ofuxu using Eq.~3! and the
spectraS@ f # presented in@1#, and/or backed up by a digita
or analog simulation of the array in the presence of a p
odic driving force.

Lindner et al. @1# comment thatR is ‘‘faithful to the
squared stochastic amplification factor’’~SAF! introduced in
@2#, but we must point out that this is not quite right, for th
reasons discussed above. The SAF is the ratio between
amplitudes of the response in the presence and absen
noise which, in the asymptotic limit of vanishing drivin
amplitude, is equal to the ratio between the absolute va
of the corresponding generalized susceptibilities or, equ
lently, between the square roots of the intensitiesI d of the d
spike. It follows from our analysis above that neither t
SAF, nor its square, behave in just the same way asR.

In @1# R is sometimes referred to~e.g., in captions to Figs
4 and 5! as thesignal-to-noise ratio~SNR!. But R is not an
SNR—at least not in the conventionally accepted sense
being the ratio of a signal at the output~i.e., the difference
between the outputs in the presence and absence of per
driving! to the noise at the output~i.e., the output in the
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absence of periodic driving!. For example, the SNR of@7#,
which is still widely used, relates toI d andS@ f D#:

~SNR!5
I d

S@ f D#
. ~5!

Although there is no single universally accepted definition
the SNR, it is in our view confusing to refer toR as an SNR,
given thatR refers to quantities both of which are measur
in the absenceof driving. Moreover, as shown in@3#, the
conventional SNR~5! exhibits local maxima as a function o
noise only for special classes of systems~see below!; but the
symmetrical monostable Duffing oscillator considered in@1#
does not belong to such a class. So the allusion by Lind
et al. to multiple SNR maxima in their system is potential
misleading.

Section V of@1# treats the interesting and potentially im
portant question of how a signal propagates in the prese
of noise if the array of underdamped oscillators is driv
periodically along one side only. Unlike Secs. III and I
therefore, it deals with the effect of a real periodic drivin
force rather than a virtual one. The signal propagation
discussed in terms of an SNR which evidently differs fro
the R defined by Eq.~1! in the absence of driving; on th
other hand, if we generalize Eq.~1! to include the possibility
of a periodic driving force,R will diverge to infinity at f
5 f D on account of thed function in the power spectrum a
the driving frequency@3,6,7#, as can be seen from Eq.~2!. It
is therefore unclear to us just what is meant by the SNR
Sec. V and, in particular, what is being plotted in Fig. 7. T
general trend of the results looks interesting, however,
could with advantage be clarified by the authors of@1#. Their
research will then become more useful to other scientists

We should perhaps mention two other minor inconsist
cies in the paper that are liable to mar its understandabi
The first relates to confusion between the frequency~recip-
rocal of the period! and the angular or cyclic frequency@9#
~frequency multiplied by 2p): it is obvious from Figs. 1–5
and from Eq.~4! that f means the frequency@cf. also f D in
Eq. ~1!#; but, it follows from the formulas forf 0 and f 1, just
below Eq.~2! and two lines below Eq.~3!, respectively, that
f in Eqs. ~2! and ~3! means the angular frequency. Anoth
inconsistency~or, possibly, a misprint! occurs in the formula
for the angular frequency of the antisymmetric modef 1: the
multiplier of k should be 2 rather than 3.

We end with two forward-looking comments. First, w
suggest that it would probably be fruitful to apply the cent
idea of @1# to an array of zero-dispersion~ZD! @3,10,11,12#
oscillators. Unlike conventional oscillators~e.g., the Duffing
oscillator as in@1#!, the dependence of the frequency
eigenoscillation of a ZD oscillator on its energy,v(E), pos-
sesses one or more extrema, i.e., there are one or more
ergies at whichdv/dE50. This property provides avery
strong enhancement of resonant behavior in the vicinity
the extrema. Manifestations of SR phenomena are there
much stronger than in conventional oscillators, and the ma
mum noise-induced increase of the response~signal! can be
1-2
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far larger~cf. @2#!. Moreover, in contrast to the convention
case, not only may the signal itself increase with noise int
sity, but even the SNR, conventionally defined by~5!, may
undergo significant noise-induced growth@3,12#. Given that
an array of zero-dispersion oscillators provides for the p
sibility of their synchronization, manifestations of SR in a
array of ZD oscillators may be expected to be even stron
than in a single ZD oscillator~such a hypothesis was sug
gested first in@12#!. It also seems very likely that, as in@1#,
the coupling will further increase the number of noise inte
sities at which the SNR exhibits local maxima@13#. There is
a wide variety of ZD oscillators. They may be eith
monostable@e.g., the tilted Duffing oscillator@3,11# or a
SQUID ~superconducting quantum interference device! loop
with a large inductance@12## or multistable~e.g., a SQUID
loop with a small inductance@12#!.

Finally, we comment on a different generalization of t
central idea of Lindneret al. @1#. If their aim is to increase
L.
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the number of ranges of noise intensity where weak SR
curs@i.e., where the signal, but not the SNR~5!, possesses a
local maximum as a function of noise intensity#, then one
may seek this phenomenon in any nonlinear dynamical s
tem of high but finite dimension. In effect, Lindneret al.
increased the number of eigenmodes through the couplin
the array: together with the shift of the maxima in the pow
spectrum as noise varies, this provided formultipleSRs. But,
quite generally, any nonlinear dynamical system of high
mension possesses many eigenmodes; the maxima i
power spectrum may be sensitive to noise intensity, and th
is thus the possibility of multiple SRs as in@1#.
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