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1.1 INTRODUCTION

A characteristic feature of nonlinear science generally, and of nonlinear optics in
particular, is the common necessity of having to make simplifications, and then
approximations in order to solve the equations of even the simplified models. These
considerations applg fortiori to the study of fluctuation phenomena in nonlinear
systems, and thus account for the increasing role being played by analogue and digital
simulations, which enable the behaviour of the model systems to be investigated in
considerable detail.

Several years have now passed since a contribution [1] to an earlier volume in this
series illustrated some of these ideas. It was shown in particular that detailed analyses
of fluctuations in model systems not only provide a deeper understanding of complex
phenomena but often also pave the way to the development of new experimental
techniques and new ideas of technological significance.

In this chapter, we discuss the application of simulation techniques to the study of
fluctuational escape and related phenomanaonlinear optical systems: that s, sit-
uations where a large deviation of the system from an equilibrium state occurs under
the influence of relatively weak noise present in the system. We will be interested
primarily in the analysis of situations where large deviations lead to new nontrivial
behaviour or to a transition to a different state. The topics to be discussed have
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been selected mainly for their own intrinsic scientific net&, but also in order to
provide an indication of the power and utility of the simigatapproach as a means
of focusing on, and reaching an understanding of, the @aspht/sics underlying the
phenomena under investigation; they also provide exangflddferent theoretical
approaches and situations where numerical and analoguéasioms have led to the
development of new experimental techniques and new idespotential techno-
logical significance. Although the different Sections Akee the same general theme
- of fluctuational escape phenomena in model nonlinear ajpdigstems - they deal
with quite different aspects of the subject; each of therhasdfore to a considerable
extent self-contained (with Secs. 1.4 and 1.5 being exaegptibecause they should
be read after Sec. 1.3) and thus can be read almost indegndethe others.
Before considering particular systems, we review brieféygbientific context of the
work and discuss in a general way the significance of escagregohena in nonlinear
optics.

The investigation of fluctuations by means of analog or dig@imulation is
usually found most useful for those systems where the fltiotsof the quantities of
immediate physical interest can be assumed to be due to. ridisdatter perception
of fluctuations goes back to Einstein, Smoluchowski, andgeam [2, 3, 4] and
has often been used in optics (cf. Refs. [5, 6, 7, 8]). In mmdr optics, the
noise can be regarded as arising from two main sources. thRist are internal
fluctuations in the macroscopic system itself. These aresgalise spontaneous
emission of light by individual atoms occurs at random, aadause of fluctuations
in the populations of atomic energy levels. The physicatatteristics of such noise
are usually closely related to the physical charactessifcthe model that describes
the “regular” dynamics of the system, i.e. in the absenceotfen In particular, the
power spectrum of thermal noise and its intensity can beesged in terms of the
dissipation characteristics via the fluctuation-dissgatelations (cf. Ref. [9]) and,
if the dissipation is non-retarded so that the correspandissipative forces (e.g.
the friction force) depend only on the instantaneous vatfeynamical variables,
the noise power spectrum is independent of frequencyheenbise is white. The
model of noise as being white and Gaussian is one of the mostncmly used in
optics because the quantities of physical interest often stwwly compared with
the fast random processes that give rise to the noise, likesean or absorption of
a photon [5, 6, 7, 8]. The second very important source ofensexternal: for
example, fluctuations of the pump power in a laser. The physttaracteristics of
such noise naturally vary from one particular system to laegftits correlation time
is often much longer than that of the internal noise, andffexcts can be large and
sometimes quite unexpected (cf. Ref. [10]).

In general, the fluctuations observed in nonlinear opties kaoth spatialand
temporal, i.e. the variations of the quantities of interestur to a large extent
independently in time and in space. However, in many casesphtial modes in a
system are well-separated: the dynamics of interest igtiséthat of a few dominant
modes. The appearance of such modes is typical for highig@actd passive optical
cavities. In view of recent progress in microelectronicgagtum-dot technology,
semiconductor-laser arrays, etc.), the investigationysfesns with a discrete set
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of spatial structures (modes) is particularly interestamgl important [11]. The
amplitudes and phases of the actual modes (or other apptepharacteristics of a
system that do not depend on coordinates) make a set of glyeymicalvariables,
and the analysis of fluctuations in a system reduces to tlesiigation of the kinetics
of adynamical system

One of the most remarkable phenomena where fluctuatiomalitiens play a key
role is stochastic resonancgSR), a phenomenon in which a weak periodic signal
in a nonlinear system is enhanced by an increase of the amimée intensity; a
stronger definition requires that the signal/naiago (SNR) should also increase.
The SR phenomenon appears to be widespread. After beingluted as a possible
explanation of the earth’s ice-age cycle [12, 13], SR hasegbently been observed
or invoked in a large variety of contexts: see e.g. [14, 1517618] for reviews. SR
has also been extensively investigated in nonlinear dticstems including lasers
[19, 20, 21, 22], passive optical systems [23, 24, 25, 2@] aRrownian particle in an
optical trap [27]. In this chapter, following a brief introcdtion to the SR phenomenon
in an optical bistable system, a new form of optical hetermaly related to stochastic
resonance is described, in which two high-frequency sgyfiaput and reference
signals) are applied to a bistable system. We note that fketeff noise-enhanced
heterodyning was first predicted theoretically and ingedgd in analogue model in
a broad range of parameters [28].These investigationsrmrhade it possible to
observe a noise-induced enhancement of heterodyning iptécabbistable device
[29]. At the same time, noise-induced increase of the SNiRérahan of the signal
only) can occur only in certain classes of nonlinear syst@iks

When it was first discovered, and for some time afterwardss&#ned a rather
mysterious phenomenon and a number of highly sophistithestetical approaches
were proposed (see citations in e.g. the reviews [16, 30332, All these theories
assumed that bistability is an essential prerequisitei®SR phenomenon to occur.
Only some years later was it appreciated [34, 35] that a mimcpler formalism —
linear response theor{l RT) — would suffice to describe what was often the most
interesting limit in practice, where the signal was relaltysmall and the noise was
relatively strong. An analytic theory of the more complezheffects that occur for
stronger signal strengths [34, 36, 37, 38] has also beenajmd and has been
confirmed in considerable detail through analogue eletmxperiments.

The perception of SR as a linear response phenomenon lecihgthowever, to
the realisation that SR can also occur without bistabiity, [39, 40] and to observa-
tion of the phenomenon in an underdamped, monostable,neanloscillator [39].
In fact, it is well-known that the response of a monostab#tesy to signals in certain
frequency ranges can be strongly increased by noise, esjbyuraising the tem-
perature. Examples range from currents in electron tubeptioal absorption near
absorption edges in semiconductors. For underdampedatscs a temperature-
induced shift and broadening of the absorption peaks tuairig” by external driving
due to the oscillator nonlinearity, was first discussed itj;[/éomplete classical and
guantum theories of these effects were given in [42]. Unaieked systems were
also considered in [43].
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Describing SR in terms of a susceptibility is particulardyantageous for systems
that are in thermal equilibrium, or in quasi-equilibrium.duch cases the fluctuation-
dissipation relations [9] can be used to express the subdiptin terms of the
spectral density of fluctuations in the absence of the paririving. This was used
explicitly in the case of noise-protected heterodyningis lirue in general that the
analysis of fluctuations is greatly facilitated by the preseof thermal equilibrium
when the conditions of detailed balance and of the time satesymmetry are
satisfied [44].

However, in many cases the fluctuating systems of interestaafrom thermal
equilibrium. Examples include optical bistable devices][4asers [46, 23], pattern
forming systems [47], trapped electrons which displaydtisity and switching
in a strong periodic field [48, 49, 50], and spatially perodystems (ratchets)
which display a unidirectional current when driven awaynirthermal equilibrium
[51, 52, 53, 54, 55, 56]

A powerful tool for analysing fluctuations in a non-equilion systems is based
on the Hamiltonian [57] theory of fluctuations or alternativon a path-integral
approach to the problem [44, 58, 59, 60, 61, 62]. The analgsjgires the solution
of two closely interrelated problems. The first is the evatraof the probability
density for a system to occupy a state far from the stable siahe phase space. In
the stationary regime, the tails of this probability arecdetined by the probabilities
of large fluctuations.

The other problem is that of th#uctuational pathsalong which the system
moves when a large fluctuation occurs. The distribution ddtfiational paths is a
fundamental characteristic of the fluctuatidynamicsand its understanding paves
the way to developing techniques for controlling fluctuasio Its importance for
gaining insight into the physics of fluctuations from a dym@ahperspective was
recognized almost half a century ago by Onsager and MacHHip A theoretical
understanding, and basic techniques for treating the enophave been developed
since that time; but it was not until recently [60] that thetdbution of fluctuational
paths for large fluctuations was observed in an actual exget, through an analogue
simulation.

A simple qualitative idea behind the theory of large fluciorag in noise-driven
systems is that such fluctuations result from large outbwkhoise that push the
system far from the attractor. The probabilities of largebousts are small, and
will actually be determined by the probability of theost probableutburst of noise
capable of bringing the system to a given state. This pdaticealisation of noise is
just the optimal fluctuational force. Because a realisatigpath) of noise results in a
corresponding realisation of the dynamical variable [@8ye also exists an optimal
path along which the system arrives to a give state with olielmning probability.
From a different perspective, optimal paths were first dbedrfor nonlinear non-
equilibrium Markov systems in [57]. Using another apprqdich analysis of the tails
of the distribution was also done in [64], whereas the apgraiscribed above was
discussed in [65] in the context of escape from a metasttdite sThis approach is not
limited to Markov systems [42]. For systems driven by Orimstéhlenbeck noise,
the problem of optimal paths was discussed in [58, 66, 6768370, 71, 72, 73]; an
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equivalent eikonal formulation was developed in [74, 75,78. The general case
of Gaussian noise was discussed in [78, 79, 80]; see alsalSecFor reviews of
related work on fluctuations in colored noise driven systeess[81, 82].

A brief introduction to the theory of large fluctuations isg in Sec. 1.3 together
with the results of some direct observations of the optinaghg in model systems.
It is very important to note that, following the first obseiigas of optimal paths in
analogue electronic models, fluctuational paths have \ergntly been investigated
in optical systems, including measurements of the so-at@ltehistory probability
distribution (PPD) of the radiation intensity for dropout event in a semiconduc-
tor laser [83], and the time-resolved measurement of ptadn fluctuations in a
semiconductor vertical-cavity surface emitting lase[84

The preliminary analogue and numerical simulations madgogsible to test
fundamental tenets of the theory of large fluctuations, &od to provide an experi-
mental basis on which the theory could advance. At the encof £3 and in Sec.
1.4 we present two examples of recent advances in the thétayge fluctuations.
In the first example, the time evolution of the escape flux @barrier on a short
time scale is considered. It is a problem of of fundamentgdrtance [85] and,
furthermore, of immediate practical interest given that meethods of spectroscopy
with femto-second resolution have recently become aviaif@6]. The technique of
non-stationary optimal paths can be employed to solve tbbl@m and numerical
simulations verify the theoretical predictions. The strikfeature predicted theo-
retically and demonstrated in simulations is that, for aeysinitially at the bottom
of the well, the escape flux over the barrier on times of theeonf a period of
an eigen-oscillation grows in a step-wise manner, provitiatl friction is small or
moderate. If the initial state is not at the bottom of the wék steps at large enough
times transform into oscillations. The step-wise/ostiltg evolution at short times
appears to be a generic feature of a noise-induced flux.

The second example is related to the recent analyticalienl{&6, 87] of the long-
standing problem of escape from a potential well in the presef non-adiabatic
periodic driving. It was shown [56, 87] that, over a broadgarof driving field
magnitudes, the logarithm of the fluctuation probabilitfirear in the field, and
the response can therefore be characterizedlbgaxithmic susceptibilitfLS). We
evaluate the activation energies for escape, with accakentof the field-induced
lifting of the time and spatial degeneracy of instantontikeleation trajectories. The
immediate advantage of the theory is that it provides thetsol of a complicated
theoretical problem in a simple analytic form that des@ittee dependence of the
“activation energy” on both the amplitude and frequencyhefdriving field and can
be extended immediately to a periodic driving field of admgrform.

Analogue experiments and digital simulations confirmed the variation of the
activation energy for escape with driving force parameiemsccurately described
by the logarithmic susceptibility (LS). Experimental data the dispersion are in
guantitative agreement with the theory. And, again, it i®rie@sting to note that,
after the LS was investigated in analogue and numericallabions, it was then
also measured in optical experiments on a sub-micron beowperticle in a bistable
three-dimensional optical trap [88, 89]. This research lessjzes the fundamental
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importance of the logarithmic susceptibility, a new phgsiguantity that relates the
response of the system in the absence of detailed balante ¢bdracteristics in
thermal equilibrium. It yields quantitative agreementhweéperiment and expresses
the corrections to the “activation energy” in a simple imgddorm analogous to that
well-known from linear response theory.

Inthe preceding example, analogue and numerical simuakatiere used to verify
existing theoretical predictions. However, in reality thignificance of analogue
and digital simulations goes far beyond this modest role.e @halogue circuit
combines features of areal physical system and of the ca@nmatdel and an attentive
researcher can very often make important discoveries blysing its behaviour.
Perhaps the most striking example is given in the review hytKg0]: “In discussing
analogue simulations of a rf-biased Josephson junctiafpomeed by Levinsen and
others at Berkley, Levinsen and Sullivan conceived a new dfvoltage standard...”.
From our own experience, examples of theory being led by tladogue simulation
include the discovery of the noise-induced spectral narmgvfR1] and of SR in
monostable systems [31, 39], leading to extensive resdaramany groups and
correspondingly to substantial theoretical progress.

We then report and discuss the results of recent investigaf fluctuational
escape from the basins of attraction of chaotic attrac@#g.(The question of noise-
induced escape from a basin of attraction of a CA has remaimedjor scientific
challenge ever since the first attempts to generalize thssick escape problem to
cover this case [92, 93, 94]. The difficulty in solving theselpems stems from the
complexity of the system’s dynamics near a CA and is relategarticular, to the
delicate problems of the uniqueness of the solution anddhadbary conditions at a
CA. The approach proposed here is based on the analysispithistory probability
distribution. It is shown in particular that both the existe and uniqueness of
solution can be verified experimentally using measuremeits PPD. Moreover,
using this technique and its extension [95] to measure Ihetloptimal paths and the
corresponding optimal fluctuational force, one can idgrti€ initial conditions on
a chaotic attractor and find an approximation to the enegpyv@l control function
of escape from a CA, thus paving the way to exciting new appbas in the field
of nonlinear control. One such application to the energtrag control of escape
from the basin of attraction of CA of a periodically drivenmioear oscillator will
be described. Finally, a fluctuational escape from a Loréinacior, a well-known
system that is of importance in modelling the dynamics of opéical systems, will
be discussed.

The chapter is organized as follows: Sec. 1.2 describesvastigation of the
SR phenomenon and of noise-protected heterodyning in atr@héc circuit and in
an optical bistable device. Sec. 1.3 discusses the reduhgeastigation of optimal
paths for large fluctuations and their relationships to tha@yssis of fluctuations in
real optical systems. Sec. 1.4 presents two examples aftradeances in the theory
of large fluctuations related to the time evolution of theagecflux over a barrier in
a potential system on a short time scale, and to the non-atitadscape problem.
The results of numerical and analogue simulations are coedpaith theory. Sec.
1.5 describes investigations of the escape from a CA andppkcations of these
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results to the solution of the nonlinear optimal controligeon. Finally, in Sec. 1.6,
we summarise the results and consider future perspectives.

1.2 STOCHASTIC RESONANCE AND NOISE-PROTECTED
HETERODYNING

1.2.1 Introduction

The idea of stochastic resonance (SR) was introduced byiB¢rad. [12], and
Nicolis [13], who showed that a weak periodic signal in a mogdr system can be
enhanced by the addition of external noise of appropridaensity; it was demon-
strated subsequently that the same is often true of the Idigimmise ratio (SNR)
as well [19, 96]. Recently the quest for practical applimasi of SR has become
a subject of intensive investigation [97]. An importanttriesion in this respect is
[97, 28] that the frequency of the input signal should be l@mpared to the char-
acteristic frequencies of the system under study. Indeest meestigations of SR to
date [20, 23, 34, 35, 98, 99, 100, 101] (see also [102] andarbes therein) have
related to low-frequency signals driven bistable systehe origin of the SR in such
cases lies in the fact that the low-frequency driving foraaates the probabilities
of fluctuational transition$V,,.,, between the coexisting stable states, and hence the
populations of the states, which gives rise to a compaigtsteong modulation of a
coordinate of the system with an amplitude proportionah®distance between the
stable positions. This mechanism of strong response of afrit bistable system
to an external forcing was first suggested by Debye [103]érctintext of molecules
that have several different equivalent orientations irdsand may reorient between
them. Since the transition probabilities increase shgg{ponentially, for Gaussian
noise) with noise intensity), the efficiency of modulation and the SNR are also
sharply increased. The mechanism is operative providgdhdistationary popula-
tions of the states are nearly equal to each other; and éify&guency of the force is
much smaller than the reciprocal relaxation titpé of the system (see [15]). It was
suggested [28], however, and demonstrated in analogudagions, that a related
phenomenon can occur when a nonlinear system is driven byhigio frequency
signals: if the resultant heterodyne signal is of suffidielotw frequency, both it and
its SNR can be enhanced by the addition of noise.

Here, we use the ideas of SR and heterodyning to demonstrateetv phe-
nomenon ohoise-enhanced optical heterodyningn optically bistable (OB) device
driven by two modulated laser beams at different wavelengiim optical system was
chosen for the investigations for two main reasons. Fiestalise of recent progress
in optical data processing and communication [104, 105]dipdssible applications
of optical bistability in this context [106]: the trend to miturise OB devices and
to reduce their threshold power [107] has highlighted thabfam of controlling the
signal and the SNR in optical systems. Secondly, OB systemsde an opportu-
nity to investigate a wide range of quite general fluctuapbenomena associated
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with coexisting stable states far from thermal equilibriufimus the investigation of
fluctuations in these systems is of fundamental interessaymdficance.

In Sec. 1.2.2 the fluctuations and fluctuational transitiora OB system subject
to white noise are analysed. In Sec. 1.2.3 the phenomendoabfastic resonance in
the OB system is discussed in terms of linear response tlaewkyhe corresponding
experimental results are presented. In Sec. 1.2.4 we disicasry and experimental
results for the new form of optical heterodyning noise-petéd with stochastic
resonance. Finally, Sec. 1.2.5 contains concluding resnark

1.2.2 Fluctuations and fluctuational transitions in an OB sgtem.

1.2.2.1 Theory. A simple model that makes it possible to describe opticahbis
bility in a variety of systems is a plane nonlinear Fabrye®anterferometer, filled
with a medium whose refractive index is intensity depend266]. The “slow"
kinetics of a nonlinear interferometer may be often desctiby a Debye relaxation
equation for the phase gaih of form

b+ 116 — o) = In(t) M(6) + Lt (D), (1.1)

Ir(t) = N(9)I(t), N(¢) = N(¢+2m), M(¢)=M(¢+2m).

Here I, (t) is the intensity of the incident radiation, arg is the phase of the
interferometer in the dark. The functio8(¢) and M (¢) relate the intensities of
the transmitted and intracavity fields to that of the incidigit. The function/,(¢)
corresponds to the intensity of radiation from an additicmarce, which is very
likely to be present in a real device to control the operapioigpt. This description is
valid in a plane wave approximation, provided that we ndghansverse effects and
the intracavity build-up time in comparison with the chaeaistic relaxation time of
nonlinear response in the system. It has been shown thatehgelapproximation
holds for many OB systems with different mechanisms of maarity.

Let us now consider stochastic motion in an OB system. In iggneoise in
an OB system may result from fluctuations of the incident fieldfrom thermal
and quantum fluctuations in the system itself. We shall dmrsihe former. The
fluctuations of the intensities of the input or referencealg give rise respectively
to either multiplicative or additive noise driving the pea8oth types of fluctuations
can be considered within the same approach [108]. Here wastionly the effects
of zero-mean white Gaussian noise in the reference signal:

Let(t) = Lt + AI(t), (AI(t)) =0, (AI({t)AI(0)) = 2D5(t).

In this case, for a constant intensity of the input sigdal(t) = I;, = const, Eq.
(1.1) describes the Brownian motion of the phase a bistable potential

_ B ]
U(g) = %(%dﬂ — ¢¢0) — Lret — Iin/ d¢' M(¢'). (1.2)

0
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Stable states can be found, for example, by graphical soldf the equation
1/7(¢— o) = M(¢)I;, + It for the potential minima [42, 65], and it can be shown
immediately that OB arises only if system is biased by a gefiity strong external
field, i.e. when it is far away from thermal equilibrium. Ifglmoise intensity is weak,
the system when placed initially in an arbitrary state willth an overwhelming
probability, approach the nearest potential minimum anill fiiictuate near this
minimum. Both the fluctuations and relaxation will be chégesised by the relaxation
time of the system,.. So within a time~ 7,. the system forgets about its initial state
and a quasistationary distribution is formed near the stpbsition. It is of Gaussian
shape near its maximum and of width (D7,.)'/2. If the noise intensity is small
compared to the potential barrier height, fluctuationaiditons between the stable
states occur rarely and the probabilitigs,,,, of transitions are given by Kramers’
[109] relation

Wham o exp(—AU, /D). (1.3)

The stationary distribution over the wells is formed ovenaet~ max {W,!} . For
the case of white Gaussian noise this distribution has tHekmewn form of the
Gibbs distribution:

p(6) = Z L exp(~U(6)/D), 7 = / doexp[-U(¢)/D].  (1.4)

For small noise intensities the distribution has sharp maxnear the stable states
and their populations; » are described by the balance equations

w1 = —Wiawi + Warws, w2 =1 —ws. (1.5)

For arbitrary parameters of the system, and w. differ dramatically from each
other, one of them being 1, with the other close to zero. Within a narrow range
of parameters, however, they have the same order of magnétad one can refer
to thekinetic phase transitioetween the two stable states: it is analogous to the
first-order phase transition in an equilibrium system withogential (in the absence
of quantum fluctuations) playing the role of the generalfsed energy of the system
[42, 65, 110]. This is the range of parameters that is of paldr interest in the
present paper.

The model (1.1)-(1.5) describes stochastic motion in a ggr@B system for
white Gaussian noise in the low noise intensity limit. We ragyply this model to the
description of some experimental results on fluctuatiomsfluctuational transitions
in some particular OB devices.

1.2.2.2 Experiment In the experiments we have used two approaches. First, we
have simulated the kinetics of a bistable optical systemértebye relaxation appox-
imation for different forms of potential by means of electimanalogue simulation.
Secondly, we have investigated the kinetics of a doubléycavembrane system
(DCMS) driven by two modulated laser beams at different wawgths. This system

is known to display optical bistability [111].
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Fig. 1.1 Analog circuit used in the heterodyning simulations of [28]

An example of an electronic circuit is shown in Fig. 1.1. Isisnilar to the circuit
used to model an OB system with a dispersive mechanism ofrreanlty [112]. The
circuits were driven by noise from a feedback-shift-registoise generator and in
addition, if necessary, by sinusoidal periodic forces frpair of Hewlett-Packard
Model 3325B frequency synthesizers. In the DCMS used fooftieal experiments

DCsM

D Photodiode

Computer

Amplifier Signal
Generator ®
Amplifier
Signal Noise

Generator Q  —|
Generatdr

Fig. 1.2 Diagram showing the laser setup used in [29]

(see Fig. 1.2), the first resonator is formed by a membransistimg of a thin
film (= 1um thick) of semiconducting GaSe single crystal, separataa &1 plane
dielectric mirror by a metal diaphragra 500um in diameter. The air-filled gap
between the mirror and the membrane-id0pm wide and forms a second resonator.
The incident beam from an argon laser, of wavelength 514 .5omapagating along
the normal to the mirror, provides an input signal. An adudiitil beam of wavelength
488 nm from an argon laser is inclined with respect to the DGMIS and provides
a reference signal. The intensities of the laser beams adellaied by two electro-
optic shutters, to which periodic signals and noise areiegpThe optical bistability
arises because of thermoelastic bending of the membraseddny the 514.5 nm
laser beam: this particular mechanism has been found to fyeetfective for the
investigation of a variety of OB effects [111, 113, The form of the periodic
function M(¢) in (1.1) depends on the mechanism of thermal relaxation hed t
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boundary conditions at the edge of the film; an approximapgession was found
in [111] on the basis of variational analytic approachesettgyed for describing
the thermoelasticity of shells. The phase gairs linear in bending and follows
adiabatically the thermal relaxation of the film, thus emsyithe validity of the

Debye relaxation approximation. Heating of the DCMS by tB8 4m reference
signal is directly proportional to its intensity.

It follows from the above discussion that an indicator of laggbility of the de-
scription of stochastic motion in an OB system is an activatiependence of the
transition probabilitie3V,,,,, on the noise intensity. Using level-crossing measure-
ments (shown to be independent on the level positions), wadan our previous
experiments [108] that the activation law applies over tHeol range of noise
intensities that we are using.

For weak noise the spectral density of fluctuations (SDR)abutput of the OB
system is defined as

2
1

Qw) = T T — oo. (1.6)

+T ‘
/ dt e Ip(t)

-T

For small noise intensities the system spends most of the flinstuating near the
stable positions, and interwell transitions occur onlyastenally.Q(w) can then be
represented as the sum of partial contributions from vibnatabout the equilibrium
positionsz,, weighted with the populations of the corresponding statdtesw,,,
and from interwell transitions. The intrawell contributitakes the form
- D 1
Q%O)(W) = NIQ((bn)Ii%l?W' (1.7)

(¢r is the value of the phasgin theith stable statd/’(¢,) = 0, U"(¢,) > 0).

One of the most important general features of fluctuatiorssbistable system is
the onset of a narrow zero-frequency spectral peak for peteraalues lying in the
range of the kinetic phase transition. This peak arises fr@rfluctuation-induced
transitions between the stable states of the system and.@reftzian shape

Wia + Wa
(Wi + Wa1)? + w?’

wiwy - _
=2 (Iry — Ir2)?

gg) (w) = Irn = N(an)jln (1.8)

The onset of this peak is closely related to stochastic msm# which can occur if
a weak periodic signal is added to the input.
1.2.3 Stochastic resonance in an OB system

For an OB system driven by a combination of the stochastereeice beam and the
periodically modulated input beand{(t) = I, + A cos ), the equation for the
phase takes on the form

¢+ U'(¢) = M(¢)Acos(t) + AI(t), (1.9)
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Fig. 1.3 Signal-to-noise-ratio (SNR) in the optical experiment &signal at frequency
Q = 3.9 Hz as a function of the internal noise intensity [114]. Ingbé corresponding signal
amplification.

To first order inA the intensity of the transmitted radiation is given by
(I7(t)) = It + ARe [x(Q) exp(—iQt)]

wherex(Q) is the susceptibility. As a result of the periodic term in thiensity of
the outgoing radiation there ariseg-apike in the SDF (1.6), with the area equal
to (1/4)A2|x(2)|%. For low noise intensityD, when the system spends most of its
time fluctuating about the stable states- 1, 2, the susceptibility (like the SDF) is
given by the sum of contributions from the vibrations abbetse stateg,,(2) and
the termy,(€2) that results from the periodic modulation of the populadiby the
force A exp(—iQt).

For Q < 7! the intrawell susceptibilities correspond to quasistégicing,
and can easily be obtained by linearising the equation ofanatear the stable
states. To calculate the interwell contribution to lowestes in A/ D, one has to
find corrections to the escape probabilitiés,,,, which can be easily done using a
path-integral formulation, solving the correspondingational problem (see [82]),
and calculating the periodic redistribution over the welising balance equations.
The resulting expression in the case of additive noise iDBaystem takes the form

aan
n:zl,2 8Ircf
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In general, the SDF at low frequency is a superposition &fanction peak at the
frequencyf?, the zero-frequency peak, and a broad, smoothly varyingdraand
(atwr < 1), which is proportional td> and which is small ifD is small.

According to [12, 13, 19, 96], the two principal features tafchastic resonance
phenomena are that the signal and/or the signal-to-ndisefia

R= 1P /Q(®) (4-0) (1.11)

can be enhanced by adding noise to the system, and disptayarese-like behaviour
in a certain range of noise intensities. It follows from Ed$.11) and (1.11) that
the signal and? in OB system indeed increase sharply withf the heights of the
“potential barriers" satishAU; » > D, because the probabilities of fluctuational
transitions (1.3) sharply increase with noise intensity.

These particular effects have been observed experimgfitddl]. A sinusoidal
signal at a frequency of 3.9 Hz was applied to an electroeoptidulator to modulate
the input signal at wavelength 514.5 nm, while the intensitthe 488 nm radiation
was modulated with noise. It is clearly seen from the Fig. tha the signal and
R (for the transmitted light intensity at wavelength 514.5)rintrease sharply in
certain range of the noise amplituffe Outside this rang& decreases with increase
of D.

But, as mentioned above in Sec. 1.1, the mechanism of béstbthastic res-
onance requires that the frequency of the input signal ismbegs than reciprocal
relaxation time of the system.

1.2.4 Noise-enhanced optical heterodyning.

We now consider the case where two high-frequency fields ai@gmonlinearly in
the OB system to generate a heterodyne signal. The equdtinatmn for the OB
system takes the form

¢+ U'(¢) = M(¢)Ain(t) cos(wot + 1h(t)) + Aref cos(wot) + AI(t), (1.12)

wherewy is a high frequency$ 7—1) and A4;,(t),v(t) are the slowly-varying
amplitude and phase of the modulated input signal, respsigti

In the most interesting and practically important case, wtiee frequencyu,
is much higher than the reciprocal relaxation time of theaesys simple analytical
results can be obtained in the spirit of [115]. If the chazsistic frequency of
the modulation) = ¢, and A;, /A;, < 77! < w, the response consists of a
comparatively slow motiop®!) with fast oscillations at frequency, superimposed
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on it. We therefore seek a solution in the form
o(t) = o™ (1) + ¢V (1) (1.13)
OV () = it [Aver sinwgt + M(6) A sinfwot + 00)|, (= Q)

Because of the nonlinearity @f/ (¢), the oscillations induced by the two beams
produce a slowly varying heterodyne force driving the slowation,

&) 4 U (¢<Sl>) - —AgM’ (qS(S‘))sith—i—AI(t) (1.14)
Aeff _ ArefAin(t)
2w0

Thus we have reduced this problem to the form of conventiBRa(see Sec. 1.2.3)
with only a renormalized effective amplitude for the inpiginal A (cf Eq. (1.9))
and the functionM (¢) replaced by its derivativé/’(¢) in the first term on the
right hand side. By analogy with standard SR, the SNR forrbdiming can be
characterized by the rati® of the low-frequency signal in the intensity of the
transmitted radiation, given by A2;|x(€2)|?, to the value of the power spectrum
Q(Q) (with Q) (Q) given by (1.7), (1.8)). The susceptibility of the system can
be easily calculated and takes the form

Ol
X =Y wa(N'(¢n) + M (60) aij) (1.15)
n=1,2 re
wiwe , = Wiz + Way

(Ir1 — Ir2)(M (1) — M(¢2))

(Wi + Way) — i

Similar to what happens in conventional SR, the heterodigmabkand its signal-
to-noise ratio can be amplified by adding noise to the systeas, manifesting the
new phenomenon afoise-enhanced optical heterodyning

These theoretical predictions were first tested in analoglsitions for Brownian
motion in the symmetric Duffing potential with/ (¢) = ¢ [28]. It was found that the
heterodyne signal amplitude and correspondirapuld be enhanced by adding noise
to the system for the cases both of white noise and of broad-hah-frequency
noise (i.e. noise with a power spectrum centered near the fréguencyw, with
half width Aw : 77! < Aw < wp). The specific dependences of the renormalized
amplitude of the heterodyne signélg on the amplitudes and frequency of the input
and reference signals were found to be in good agreementhdgttheory as shown
in Fig. 1.4. To investigate noise-enhanced optical hetgrog) in the DCMS, the
488 nm reference signal was modulated periodically at aqyw, = 2.1 kHz and
in addition by noise with a cut-off frequency of 5 kHz. The H.4m input signal
was modulated at frequencies + 2 = 2.1 + 0.0039 kHz. A heterodyne signal at
frequency) = 3.9 Hz was detected in the transmitted light intengjtyat wavelength
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Fig. 1.4 Dependence of the signal-to-noise-raliadependence on the squared amplitude of
the reference signal, measured [28] in an analogue elécteaperiment for noise intensities
D=0.015 (circles) and)=0.14 (squares). The inset shows the dependence of R onuthresq
frequencywg for the same two noise intensities.

514.5 nm. The characteristic relaxation timefthe DCMS measured in experiment
was order of 2 ms, thus meeting the assumptiont¢hat 7,7 < wp.

We have observed strong noise-induced enhancements ottmtheterodyne
signal (by a factor of 1000) and the signal-to-noise ratid;ig. 1.5. The dependence
of R on the noise intensity is of the characteristic reversedidype familiar from SR
in bistable systems and consistent with the theory givewebdhe enhancement
of the SNR occurs within a restricted range of noise intgnai expected, and the
ratio between the value @ at the minimum to that at the local maximum (i.e. the
maximum noise-induced “amplification” of the SNR}s10.

1.2.5 Conclusions

It will be apparent from the above discussion that the doehlgty membrane system
is ideally suited to investigations of fluctuations and fliattonal transition phenom-
ena. Stochastic resonance and huge noise-induced antfificex a heterodyne
signal have been observed. We would emphasize that naiteeped heterodyning
is a general phenomenon that may occur in bistable systewasiofis sorts, and that
it may therefore be of interest for applications in engiiegpr
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Fig. 1.5 Signal amplification in the optical heterodyning experimeamith wg = 2.1 kHz
and{) = 3.9 Hz, as a function of the internal noise intensity [29]. Ingsée corresponding
signal-to-noise-ratio (SNR).

1.3 OPTIMAL PATHS, LARGE FLUCTUATIONS, AND
IRREVERSIBILITY

1.3.1 Introduction

A fluctuating system typically spends most of its time in thase vicinity of a stable
state. Just occasionally, however, it will undergo a muebdadeparture before
coming back or perhaps, in some cases, making a transittbe tgcinity of a differ-
ent stable state. Despite their rarity, these large fluicinatare of great importance
in diverse contexts including, for example, nucleationteg®e transitions, chemical
reactions, mutations in DNA sequences, protein transpobtiological cells, and
failures of electronic devices. As already mentioned abtivere are many cases
of practical interest where the fluctuating system is famfrihermal equilibrium.
Examples include lasers [46], pattern-forming system§ fdpped electrons which
display bistability and switching in a strong periodic figeB, 50], and Brown-
ian ratchets [116] which can support a unidirectional aureender nonequilibrium
conditions. In general, the analysis of the behaviour ofeguilibrium systems is
difficult, there being no general relations from which thatisinary distribution or
the probability of fluctuations can be obtained.

The most promising approach to the analysis of large fluitnats through the
concept of theoptimal path[42, 57, 61, 65, 117, 118, 119, 120, 121]. This is the
path that the system is predicted to follow with overwhelgprobability during
the course of the fluctuation. For many years it remainedaamdiow the optimal
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path — calculated as a trajectory of an auxiliary Hamiltarggstem (see below) —
is related to the behaviour of real fluctuating systems. Rigehowever, through
the introduction and use of the prehistory probability ritisition [60] (see also
[122]), it has been demonstrated that optimal paths areigdilysbservables that
can be measured experimentally for both equilibrium [6@] aanequilibrium [123]
systems. In what follows we review briefly what has been agdend point out
the opportunities that have now appeared for making rapéhstic progress in this
burgeoning research field.

1.3.2 Theory

Consider an overdamped system driven by a periodic fAr¢g ¢) and white noise
&(t), with equation of motion

q=K(g;0)+£&1), K(g¢)=K(g o+ 2m),
o= o(t) =wt+do; (E()E()) = Dot —t'). (1.16)

The familiaroverdampedistable oscillator driven by a periodic force provides a
simple example of the kind of system we have in mind:

G=—-U'(q) + Acoswt + £(t),

Ulg) = —2¢® + = 4", (1.17)
2 4
We consider a situation that is bottonadiabaticand nonlinear: neitherw nor A
need be small; only the noise intensity will be assumed small. We investigate
rare fluctuations to a remote poifat;, ¢ ), coming from the metastable state within
whose domain of attractiofys, ¢ ) is located. The position of the stable sta® (¢)
is itself a periodic function of time,

0 =K(q";¢), ¢ (t+2m07") =) (1.18)

The equations for optimal paths can be found using the ellepmaioximationto solve
the corresponding Fokker-Plank equation, or by using a paégral formulation
and evaluating the path integral over the fluctuational patithe steepest descent
approximation (for details and discussion see [42, 57, 6476, 72, 73, 117]). The
optimal path of a periodically driven system correspondhéolocus traced out by
the maximum in the prehistory probability density,(q, ¢| ¢, ¢¢) [60, 123]. This

is the probability density that a system arriving at the p6in, ¢5) at the instant ¢
(¢(ty) = ¢5) had passed through the poin® at the instant (¢t < ¢¢). A particular
advantage of this formulation is that is a physical quantity that can be measured
experimentally. The approach can be extended to includertagysis of singular
points in the pattern of optimal paths.
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Using the path-integral expression for the transition ptulity density [64], one
can writep;, in the form [60]

a(ty)=ay ,
pr(a: 9lay, ¢r) = C/ Dq(t') 6(q(t) — q)
q(ti)~q® (t;)
Sl 1 [ 98],
X exp [ D 2), dt g |’ t; — —00 (1.19)

P=9(t), o5=o(ty)

Here,C is a normalization constant determined by the condition

/dq pu(q, ¢l ar, dp) = 1.

S[q(t)] has the form of an action functional for an auxiliary dynaahgystem with
time-dependent Lagrangidi(q, ¢; ¢):

ty 1
Sta) = [ dt Lig.0), Llduaio) = 50— Klg: o). (1.20)
ti
In the range of small noise intensitids, the optimal pathy.p:(t| gf, ¢5) to the

point(gy, ¢) is given by the condition that the actishbe minimal. The variational
problem forS'to be extremal gives Hamiltonian equations of motion foiberdinate

¢ and momenturp of the auxiliary system

dg OH dp OH dS 1,
at ~ ap’ dt  aq ar 2°

1
H=H(q,p;¢) = §p2+pK(q;¢), (1.21)

H(q,p;¢) = H(q,p; ¢ + 2m).

The boundary conditions for the extreme paths (1.21) fofitmm (1.19) and (1.20)

q(ty) = qr; (1.22)
qt) = ¢ D), plt) =0, Sti)—0  for t; — —ooc.

Since the Hamiltoniai/ (¢, p; ¢) is periodic ing, the set of path$q(t), p(t)} is also
periodic: the paths that arrive at a pofat;, ¢ + 27) are the same as the paths
that arrive at the poinfgy, ¢¢), but shifted in time by the perio#ir/w. The action
S(qy,¢y) evaluated along the extreme paths is also periodic as a@darafithe phase
¢y of the final point(gs, ¢s). The functionS(g, ¢) satisfies the Hamilton-Jacobi

equation
oS oS oS
w@(b__H(q’aq’(b)’ p:aqa
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S(q,¢) = S(q,¢ + 2m). (1.23)

It is straightforward to see that the extreme paths obtalyesblving (1.21) form a
one-parameter set. Itis known from the theory of dynamigsteans (see for instance
[124]) that trajectories emanating from a stationary dtaten a Lagrangian manifold
(LM) in phase spacéy, ¢, p = 95/9q) (the unstable manifold of the corresponding
state) and form a one-parameter set. The acfignt) is a smooth single-valued
function of position on the LM. It is a Lyapunov function: & hondecreasing along
the trajectories of the initial system in the absence ofegis- K(q; ¢). Therefore
S(g,t) may be viewed as a generalised nonequilibrium thermodympatential for

a fluctuating dynamical system [64]. The projections ofecapries in phase space
onto configuration space form the extreme paths. Optimdispate the extreme
paths that give the minimal action to a given point in the gunttion space. These
are the optimal paths that can be visualised in an experimanmheasurements of
the prehistory probability distribution.

Coordinate

LM, Action 1.0

LM, Action

05

00

b 05 00

Coordinate

Fig. 1.6 From top to bottom: action surface; Lagrangian manifold {t khd extreme paths
calculated [80] for the system (1.17) using equations (1.2he parameters for the system
were A=0.264 andwv=1.2. To clarify interrelations between singularities e tpattern of
optimal paths, action surface, and LM surface, they are shova single figure, as follows:
the action surface has been shifted up by one unit; and theddwben scaled by a factor 1/2
and shifted up by 0.4.

The pattern of extreme paths, LM, and action surfaces forvandamped peri-
odically driven oscillator (1.17) are shown in Fig. 1.6. Ture illustrates generic
topological features of the pattern in question. It can endeom Fig. 1.6 that,
although there is only one path to a point ¢, p) in phase space, several different
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extreme paths may come from the stationary periodic statestoorresponding point
(¢, ¢) in configuration space. These paths cross each other. Tdissequence of
the folding of the Lagrangian manifold.

A generic feature related to folding of LMs is the occurren€eausticsin the
pattern of extreme paths. Caustics are projections of this fuf an LM. They start
at cusp points. Itis clear from Fig. 1.6 that an LM structuithwwo folds merging
at the cusp must give rise to a local swallowtail singulaititythe action surface.
The spinode edges of the action surface correspond to tlsticauAswitching line
emanates from the cusp point at which two caustics meet.igthis projection of the
line in phase space along which the two lowest sheets of timnasurface intersect.
The switching line separates regions which are reached aliffierentoptimalpaths,
and the optimal paths intersect on the switching line. Ttergection occungrior to
a caustic being encountered by the optimal path. The foomati the singularities,
avoidance of caustics, and formation of switching linesenamalyzed numerically
in [118], and a complete theory was given in [119]. Until veegently, the generic
topological features of the pattern of optimal paths hadbe#n observed in any
experiment. We now describe briefly the experimental teqin{123] that enables
the pattern of optimal paths and its singularities to be olesk and we present and
discuss some of our initial results.

1.3.3 Experiments

The experiments are based on analog electronic circuiigriEdin the usual way
[112, 125] to model the system of interest, and then driveafigyropriate external
forces. Their response is measured and analysed digitaltyeiate the statistical
guantity of interest which, in the present case, was usaafiyehistory probability
distribution [60, 123]. We again emphasize that such expenits provide a valid
test of the theory, and that the theory should in this casenpestsally applicable
to anysystem described by (1.16), including natural systemantelogical ones, or
the electronic models studied here. Some experiments ordelrab(1.17) are now
described and discussed as an illustrative example of vamadlceady be achieved.

The model was driven continuously by external quasi-whdise from a noise
generator and by a periodic force from a frequency syntBesi§he fluctuating
voltage representing(t) was digitized and analysed in discrete blocks of 32768
samples using a Nicolet NIC-1180 data-processor. The spageps were triggered
by the frequency synthesiser so that information abouthiase of the periodic force
could be retained. Wheneveg(t) entered a designated square centred on a particular
(g5, ¢5) value, the immediately preceding part of the trajectory walected and
stored; in cases where relaxation trajectories were alsoterfest, the immediately
following part of the trajectory was preserved too. Theectgries that had arrived
in any chosen square could subsequently be ensemble-adet@gether to create
the prehistory probability distributiop, (¢, ¢|qs, ¢s) corresponding to the chosen
(g5, ¢¢), with or without the relaxational tail back towards the $tediate.

Because the fluctuations of interest were — by definition e,rdrwas usually
necessary to continue the data acquisition process foraleveeks in order to build
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P(x,t)

Fig. 1.7 The prehistory probability densityy, (x,¢; x,0) [60] for (1.17), measured [62]
for A = 0 in the analog electronic experiment for a final position = —0.30 with D =
0.0701.

up acceptably smooth distributions. For this reason, tredyais algorithm was
designed to enable trajectories to several terminatioarggu(not just one) to be
sought in parallel: a8 x 8 matrix of 64 adjacent termination squares, each centred
on a different(qy, ¢#) was scanned.

Experimentally measureg), for the system (1.17) for two qualitatively different
situations are shown in Figs. 1.7 and 1.8. It is immediateigaent: (i) that the
prehistory distributions are sharp and have well definegesd (i) that the ridges
follow very closely the theoretical trajectories obtairt®dsolving numerically the
equations of motion for the optimal paths, shown by the fut/es on the top-planes.
It is important to compare the fluctuational path bringing $iystem tdqy, ¢ ) with
the relaxational path back towards the stable state in thleequilibrium, Fig. 1.7,
and away from it, Fig. 1.8. Fig. 1.7 plots the distributiom fbe system (1.17) in
thermal equilibrium, i.eA=0. The ridges of a distribution are compared with the
calculated fluctuational and relaxational paths at the tofhe figure. The time
reversal symmetry [44] between these paths can be cleaty. d6ig. 1.8 plots the
pr, and the ridges of a distribution recorded for the speciabsion that arises when
the termination point lies on the switching line [123]. Indig, the time dependent
stable and unstable states bear —1 andz = 0 are shown by dashed lines on the
top. The data are compared to the (theoretical) fluctudtioaths, calculated from
(1.21), shown as full lines. It can be seen: that therewaoalistinct paths via which
the system can arrive &, ¢ ) but onlyonerelaxational path taking it back to the
stable state. Unlike the behaviour expected and seen [62juilibrium systems,
neither of the fluctuational paths is a time-reversed imdghe relaxational one.
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P(x,t)

1 Time

Fig. 1.8 Fluctuational behaviour measured and calculated for actrelic model of the
nonequilibrium system (1.17) witld = 0.264, D = 0.012. The main figure plots the
prehistory probability densityy, (z, t; 2 7, 0) and posthistory distribution to/from the remote
statexy = —0.63, ¢ = 0.83, which lies on the switching line. In the top-plane, the
fluctuational (squares) and relaxational (circles) optipahs to/from this remote state were
determined by tracing the ridges of the distribution [62].

Note that there arvo equally probable fluctuational paths to arrive on a switghin
line, they form a so calledorral [123].

Although the system (1.17) is relatively simple, it deseslvery well the fluctua-
tional dynamics of many real physical systems. In particalaehaviour qualitatively
similar to the one shown in Fig. 1.7 was observed recentlhénexperiments with
semiconductor lasers [83, 84].

In the work by Hales and co-authors [83] the prehistory itiation was observed
experimentally using a semiconductor laser with opticatifeack. Near the solitary
threshold, the system was unstable: after a period of nsteldy operation, the
radiation intensity decreased; then it recovered compatatquickly, growing to
regain its original value; decreased again; and the cypleated. In the experiment,
the output intensity was digitized with 1 ns resolution. Pheobtained in [83] from
1512 events is shown in Fig. 1.9. The results were compartdthve results of
numerical simulation for the system (1.17).

In the work by Willemsen and co-authors [84] the three Stqi@arization pa-
rameters were studied during polarization switches in icadscavity semiconductor
laser. It was demonstrated that when the linear part of tkerative anisotropy is
close to zero [126], the laser is bistable and switches skiatally between two
polarisations [127]. The analysis of large fluctuations ofapizations in this sys-
tem [84] reveals what authors have called a “stochasticrémve symmetry" (see



OPTIMAL PATHS, LARGE FLUCTUATIONS, AND IRREVERSIBILITY XXiii

Prehistory Probability Density

Fig. 1.9 Bottom: The prehistory probability distribution of the ration intensity/ (in
arbitrary units) for dropout events in a semiconductordadep: The PPD for a Brownian
particle, obtained from simulations [83].

Fig. 1.10), which is analogous to the time reversal symmahserved for the model
(2.17) and shown in Fig. 1.7.

1.3.4 Optimal paths on a finite time range, and conclusions

The previous discussion, and the results of [62, 123, 128,130, 131] among others,
show that our analog electronic technique makes it postithést fundamental tenets
of fluctuation theory, and thus provide an experimentaldasiwhich the theory can
advance. We can investigate the pattern of optimal pathikéomally nonequilibrium
systems and reveal its singularities including, in patéiciswitching lines and strong
(nonanalytic in the noise intensity) smearing of the prisprobability distribution
near cusp points. The particular system we have investidete the least number of
degrees of freedom necessary to observe these sing@daaitid therefore it is most
appropriate for analysis in these initial investigatiofhe approach that we have
described is in principle applicable to any nonequilibrisystem, and we believe it
will be found useful in a wide range of applications.
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Fig. 1.10 Time-resolved measurements of a very large polarisatiariuftion, where the
size of the fluctuation is about half (in fact, 45%)of that afoenplete polarisation switch [84].
s1, So andsg are the normalized Stockes parameters representing thezation state on the
Poincaé sphere [84].

It should also be clear that the structures predicted by lileery are indeed
observed in real systems. Reasoning along these linegrebses have recently
started predicting peculiar features which should be ofatde in real systems, onthe
basis of the topology of corresponding Lagrangian manifliese include features
predicted on the assumption that the optimal path (and tiregmonding fluctuation
in the real system) takes place over a finite time range [132, 134, 135, 136].

One of the most striking effects predicted on this basis ibges what occurs in
noise induced escape from a metastable well on a time sadeging the formation
of a quasi-equilibrium distribution within the metastalplart of the potential (see
[135, 136] for more details), which we now review briefly.

In his seminal work [109], Kramers considered the noisa:gadl flux from a
single metastable potential well i.e. he considered a Bramwparticle

G+Tq+dU/dg = f(t),
(f() =0, (f(t)f(t")) =2TTo(t —1'),

which was put initially at the bottom of a metastable potiell U (¢) and then he
calculated the quasi-stationary probability flux beyondaeorbing barrier. There
have been many developments and generalizations of the dfsapmoblem (see

(1.24)
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[137, 138] for reviews) but both he and most of those who fe#ld him considered
just thequasi-stationanflux, i.e. the flux established after the formation of a quasi-
stationary distribution within the well (up to the barriefhe quasi-stationary flux is
characterized by a slow exponential decay, an Arrheniusmidgnce on temperature
T, and a relatively weak dependence on frictian

—a t _AU
Jqs (t) = (escape€ eseaper, Qescape = Pe™ T ) (125)

whereP depends o’ andT in a non-activation manner.

But how does the flux evolve from its zero value at the initi@ment to its
quasi-stationary value at time-scales exceeding the timfor the formation of
guasi-equilibrium? It is obvious that the answer may depaméhitial conditions.
The most natural are those corresponding to the stablerséayi state of the noise-
free system i.e{(q = gpottom, ¢ = 0) Wheregyottom 1S the coordinate of the bottom
of the potential well. We assume such an initial state hefrthel noise is switched
on suddenly (e.g. if the thermal isolation of a frozen systerhroken) then the
time evolution of the escape flux from the noise-free mekdstaitial state is highly
relevant. It might seem natural that the evolution from zerthe quasi-stationary
value should bemooth Such an assumption might also seem to have been confirmed
recently by Schneidman [139] who found that, for both thersgty underdamped
and overdamped cases, the escape flux from a single metastablgrows with
time ¢ smoothly, att ~ t;. But does this exhaust the problem? We can prove
theoretically, and demonstrate experimentally, thatdtaee some generic situations
when the escape flux behaves in a quite different manner.

Our prediction are based, as mentioned, on an extensivefube method of
optimal fluctuatiorwithin which an escape rate is sought in the form

escape = Pe™ T (1.26)

where the actior does not depend of; the prefactorP does depend off’, but
relatively weakly. The actiol$ is related to a certain optimal fluctuation which, in
turn, corresponds to thaost probable escape pafMPEP).

The quasi-stationary flux is formed by optimal fluctuatiofgaeh bring the system
from the bottom of the well to the saddle during@stimal time

1 AU
topt ~ m In (T) , (1.27)

wherewy is the frequency of eigenoscillation in the bottom of thelwel

At much shorter time-scales, < ¢y, the flux is necessarily formed by optimal
fluctuations strongly differing from those of duratiog,,, and the smaller the
more marked this difference becomes. Thus, in the rang&)152depends ort.
Moreover, it can be shown rigorously thatflif< T'. wherel. is typically equal to
2wy, thenS(t) is astep-wisefunction: see the example in Fig. 1.11. The vertical
and horizontal positions of the center of the stjp) numbern (counted from the
left) equal respectivelAUw /(n#T") andnz /wy, providednn[' < wy. Generally,
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Fig. 1.11 (a) Examples of MPEPs (plotted in the energy-coordinateepld — ¢ where

E = ¢?/2 + U(q)) to escape from the bottom of the metastable W&ly) = ¢2/2 with

q < /2 (thick solid line) to beyond the barrier at= /2 (U (q) = —oo atq > v/2, which

is equivalent to the absorbing wall indicated by trianglés)[" = 0.05; (b) the corresponding
theoretical (thick solid line) and experimental (thin jaddine) dependences of the actibn
on the escape time Circles, squares and triangles indicate bits correspgnigi respectively

0, 1 and 2 turning points in the MPEP. The dashed and dotted iirdicate: in (b) the 1st and
2nd inflection point withdS/dt = 0; and in (a) the corresponding MPEPs. The thin solid
line shows: in (b) the large-time asymptotic leveél= AU; and in (a) the corresponding
MPEP (which is the time-reversal of the noise-free trajgcfoom the top of the barrier into
the bottom of the well). The dash-dotted line shows in (a)MIREP corresponding to some
arbitrarily chosen timé = 4.51 (see (b)) and demonstrates, in particular, that the escape
velocity is generally non-zero. The inset shows the expemntad dependence of the flux on
time, forT = AU [135, 136].

when the shape of the potential well departs from paratglitie equalities turninto
approximations. Thus, in the range (1.27)Jepends exponentially strongly both on
I" and ont (c.f. the inset of Fig. 1.11).

1.4 LOGARITHMIC SUSCEPTIBILITY

A very good example of the usefulness of the concept of thenabpath is the idea
of the logarithm susceptibility (LS) [56, 87, 140].

Underlying the theory of the LS [56, 87] is the realizatioattralthough the motion
of the fluctuating system is random, large rare fluctuatiomsfa metastable state to
a remote state, or during escape, take place in an almostrdeigtic manner: the
system is overwhelmingly most likely to move along a pattcudrajectory known
as the optimal path (see [42, 57, 64, 69, 120] and refereheesih). The effect of
a comparatively weak field on the escape probability carefbee be understood in
terms of the work that the field does on the system as it mowwahe optimal
path. One may expect this work to be related to the field-ieduthange in the
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activation energyr for the corresponding large fluctuation. This change isdine
in the field, provided that the field-induced change of theinoat path itself is
negligible. It follows from these arguments that in the ca$geriodic driving
F(t) = ", Fr exp(ikQt), the leading-order correctiafR to the activation energy
of escape is

R = rI%in 6R(tc), 6R(tc) — Z ka{(kﬂ)eikm“,
‘ k

Q) = - / dt 4O (1), ¢ = U’ (¢). (1.28)

Here, x(Q) is the LS for escape. It is given [56, 87] by the Fourier transf of
the velocity along the most probable escape péth(t) in the absence of driving
(F(t) = 0). The pathg(®)(¢) is an instanton [122]: it starts far — —oc at the
metastable minimung; of the potentiall/(¢) and goes fot — oo to the topg,
of the potential barrier over which the particle escapese ftinimization ovett,
corresponds to choosing the position of the center of tharsn so as to maximize
the work the field?'(¢) does on the system along the escape giilit —¢.). We have
already noted that, for Markov systems in thermal equilityrj optimal fluctuational
paths are the time-reversed relaxational paths in the abs#moise [44, 130, 141].
Unlike the standard linear susceptibility [9] which, on sality arguments, is given
by a Fourier integral over time from to oo, the LS x(Q2) is given by an integral
from —oo to co. The analytic properties of(2) therefore differ from those of
the standard susceptibility, and in particular their higgguency asymptotics are
qualitativelydifferent. The standard susceptibility for damped dynaingystems
decays as a power law for lar@=(e.g., ad /[U" (¢s) — i€2], for the model of damped
Duffing oscillator). In contrast, from (1.28) the LS decresexponentiallyfast,

X(Q) = Me U7 7, = min

Im / dq/U’(q)} . (1.29)

Here, the integral is taken from any point in the inter¢l, ¢.,) to the (complex)
positiong, of the appropriate singularity d’(q). Note thatj(®)(¢ — ¢..) for given
realt. has a pole or a branching point at Im= 7,. The prefactor\/ depends on
the form ofU(¢) nearg, and can be obtained in a standard way. In particular, for a
polynomial potentialg,| — oo) with U(q) = Cq™/n for |q| — oo, we have

|M| = 27|Q/C ) [v|* Tt /v, v =1/(n—2). (1.30)

This expression applies also for finjeg, |, with U(q) ~ C'/u(q — gp)* for ¢ — qp,
if nin (1.30) is replaced by-p: note thai M| then decreases with increasifig

To test these predictions, we used an analog electronic Ifitt® of the over-
damped motion of a Brownian particle in the double-well Dndfpotential. We drove
it with zero-mean quasi-white Gaussian noise from a skifigter noise generator,
digitize the response(t), and analysed it with a digital data processor. We also
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Fig. 1.12 The dependence of the activation enefgyn the amplituded of the harmonic
driving force F'(t) = Acos(1.2t) as determined [140] by electronic experiment (filled
circles), numerical simulations (open circles) and amalgalculation (solid line) based on
(1.28) for an overdamped Duffing oscillatéf(q) = —¢?/2 + ¢*/4; the dash-dot line,
drawn parallel to the full curve, is a guide to the eye. Thestrghows the absolute value
of the LS of the systerhy(€2)| (1.28) measured (filled and open squares for experiment and
numerical simulation, respectively) and calculated (fwitve) as a function of frequendy
using (1.29) withy(0) = —1 and7, = /2, M = —(1 +4)(7w)'/? in (1.29).

carried out a complementary digital simulation [142]. Nuiv& simulations in the
case of small damping are currently in progress: prelinyin@sults indicate a reso-
nant behaviour of the LS. The analog and digital measureswdiit involved noise
intensities in the ranges = 0.028 — 0.036 andD = 0.020 — 0.028 respectively; the
lowest (real time [112]) driving frequency used was 460 Hhe Tesults are plotted
in Fig. 1.12. The major observation is that, as expected; indeedlinear in the
force amplitude R = 1/4 for A = 0). The slope yields the absolute value of the LS.
Its frequency dependence, a fundamental characteristizeobriginal equilibrium
system, is compared with the theoretical predictions (lir2¢he inset of Fig. 1.12.
The LS theory was applied recently to the localization of evrian particle in a
three-dimensional optical trap [89]: a transparent dielespherical silica particle
of diameter 0.6um suspended in a liquid [88]. The particle moves at randorhiwit
the potential well created with a gradient three-dimenaioptical trap — a technique
widely used in biophysical studies. The potential was matdd by a biharmonic
force. By changing the phase shift between the two harmadniwas possible to
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localize particle in one of the wells in very good quantitatagreement with the
predictions based on the LS.

1.4.1 Conclusions

It is evident from the above discussion that the theory ofojigmal paths provides
a deep physical insight into the dynamics of fluctuationsiarid good agreement
both with the results of analog and numerical simulatiorgwaith the results of the
experiments in optical systems. It has now become possiblesé the prehistory
formulation [60] as a basis for experiments on fluctuatiahalamics. The work
on Markov systems presented in this section has alreadfjeceseveral longstand-
ing theoretical predictions, including symmetry betwekea growth and decay of
classical fluctuations [44], the breaking of this symmetrger non-equilibrium con-
ditions [57, 59, 65, 118], the relationship between lacketbided balance and onset
of singularities in the pattern of optimal paths, as wellesdharacter of these singu-
larities [119, 120, 121, 123, 143], including occurrencswitching between optimal
paths and critical broadening of the paths distributiotak now become possible to
apply this theory and the corresponding experimental nisthothe analysis of the
fluctuational dynamics in optical systems and to developmethods of controlling
them.

1.5 CHAOTIC ESCAPE AND THE PROBLEM OF OPTIMAL CONTROL

One of the main problem in the dynamics of optical systemisasaf controlling the
system dynamics [144]. The difficulties in solving such aljfeon depend on many
factors. Atypical optical system is characterised by thergmenon of multistability
[145, 146, 147, 148], i.e. the co-existence of a relativahalb number of distinct
dynamical regimes that are defined by the initial conditioBgcause real optical
systems are always subject to random fluctuations [46, $pp6htaneous transitions
of the system take place from one regime to another. It isasly desirable
to be able to control these transitions. Moreover, in optsyatems non-regular
oscillations are often observed which are chaotic and cateberibed by the theory
of deterministic chaos [144, 146, 148]; such non-regulaillasions in the phase
space of the system can be characterised by a chaotic attrabhe transformation of
the system dynamics from a chaotic regime to a regular re@mkso an interesting
problem in dynamical control. In solving it for real systenids essential to take
into account of fluctuations.

The need to be able to control chaos has attracted considerttdntion recently.
Methods already available include a variety of minimal ferof interaction [149,
150, 151, 152, 153, 154] and methods of strong control [156] Which necessarily
require a large modification of the system’s dynamics, fdeast a limited period
of time. For example, in [157, 158] the procedure of coninglichaos by means of
minimal forms of interaction (of saddle cycles stabilipai) is realized for different
laser systems.
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At the same time the energy-optimal directing of the motiwayafrom a chaotic
attractor (CA) to another coexisting attractor has renthiae important unsolved
problem of long standing. Its solution would be an impor&xtension of the range
of model-exploration objectives (c.f. [155] and [153]) astable through minimal
control techniques and has a variety of applications fotrodling the dynamics of
multistable optical systems [146].

In this section the application of the optimal path approtcthe problem of
escape from a non-hyperbolic and from a quasi-hyperbdliaaor is examined. We
discuss these two different types of chaotic attractor beedt is known [159] that
noise does not change very much the structure and propeftpsasi-hyperbolic
attractors, but that the structure of non-hyperbolic attes is abruptly changed in
the presence of noise, with a strong dependence on noisesityte Note that for
optical systems both types of chaotic attractor [160, 162] {non-hyperbolic and
quasi-hyperbolic) are observed, but a non-hyperboliaeiir is much more typical.

1.5.1 Escape from a non-hyperbolic attractor

1.5.1.1 Introduction to the optimal control problem Consider a system of the
form
&= f(w,u,t), (1.31)

with the state variable € R™, and an admissible control functian € R™ in
the control sel/. Assume that it is desired to transfer the system from thte sta
Xo = xz(tp) to the terminal stateX; = xz(¢1) in such a way that the (“cost”)
functional

ty
J = Inin/ folz,u, t)dt (1.32)
to

is minimized, witht; unspecified. Lefu(t),«(t)) be a solution of this problem.
Then there exist continuous piece-wise differentiablefiomsy (¢), ..., y, (¢) which
are not simultaneously zero and which satisfy together thiéhfunctionse;, (¢) the
differential equations (see e.g. [163])

o (1.33)
with the Hamiltonian
H(xlv s Ty Yoo ooey Ynis U(t), t) = Z y’if’i(xla vy Ty U(t), t) (134)
1=0

An optimal control function:(¢) maximizesH at each instantH is a continuous
function of the time and one hd$(¢;) = 0. If the functionsf;,i = 0, ..., n do not
depend on time explicitly, theff is a constant and equal to zero.

It can be seen that the solution of the problem of the enepdiyral guiding
of the system from a chaotic attractor to another coexistitticactor requires the



CHAOTIC ESCAPE AND THE PROBLEM OF OPTIMAL CONTROL XXX

solution of the boundary value problem (1.33), (1.34) fer Hramiltonian dynamics.
The difficulty in solving these problems stems from the caenjty of the system
dynamics near a CA and is related, in particular, to the dtdiproblems of the
unigueness of the solution, its behaviour near a CA, and di@diary conditions at
a CA.

Below we show how the energy-optimal control of chaos candieed via a
statistical analysis of fluctuational trajectories of aati@system in the presence
of small random perturbations. This approach is based omalogy between the
variational formulations of both problems (see e.qg. [16#{g problem of the energy-
optimal control of chaos and the problem of stability of a Wgaandomly perturbed
chaotic attractor. One of the key points of the approachasdbntification of the
optimal control function as an optimal fluctuational ford&4].

We emphasize that the question of stability of a CA under kraaldom per-
turbations is in itself an important unsolved problem in theory of fluctua-
tions [92, 93, 94] and the difficulties in solving it are siarilto those mentioned
above. Thusiitis unclear at first glance how an analogy betwesse two unsolved
problems could be of any help. However, as already notedeglibe new method
for statistical analysis of fluctuational trajectories [@2, 95, 112] based on the
prehistory probability distribution allows direct expmental insight into the almost
deterministic dynamics of fluctuations in the limit of smadiise intensity. Using
this techique, it turns out to be possible to verify experntadly the existence of a
unique solution, to identify the boundary condition on a @Ad to find an accurate
approximation of the optimal control function.

Let us now formulate the problem of the energy-optimal stgeof the motion
from a chaotic attractor to the coexisting stable limit eyébr a simple model,
a non-centrosymmetric Duffing oscillator. This is the mothit, in the absence
of fluctuations, has traditionally been considered in catioa with a variety of
problems in nonlinear optics [165]. Consider the motion gfeaiodically driven
nonlinear oscillator under control

@ = Ki(a(t)) = g, (1.35)
{2 Ka(q(t)) +u(t)
= —2T'gy — wgql — ﬁqf — 7qi’ + hsin(wt) + u(t),

Here u(t) is the control function. It is a system where chaos can berobde
at relatively small valued = 0.1 of the driving force amplitude and the chaotic
attractor is a non-hyperbolic attractor or a quasiattigdeg].

We have considered the following energy-optimal controlgem. The system
(1.35) with unconstrained control functiar(¢) is to be steered from a CA to a
coexisting stable limit cycle (SC) in such a way that the ttdanctional J is
minimized, with¢; unspecified

uelU

t1
R—inf / u?(t)dt. (1.36)
to
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Here the control séf consists of functions (control signals) able to move théesys
from the CA to the SC. The Pontryagin Hamiltonian (1.34) amel ¢orresponding
equations of motion take the form

8HC ch .
"L' - ) "L' - — 5 - 1, 2 5 1.37
=5 P o0 {1,2} (1.37)

H. =1/2p3 + p1 K1 + p2 Ko.

Here it is assumed that the optimal control functign) at each instant takes those
valuesu(t) = po that maximizeH. overU.

We note that fop; = 0 andps = 0 the dynamics of (1.37) reduces to the deter-
ministic dynamics of the original system (1.35) in the aleseof control (:(¢) = 0).
So we begin our analysis by considering some relevant ptiep@f the deterministic
dynamics of a periodically driven nonlinear oscillator.

The parameters of the system (1.35) were chosen such thattibretial is monos-
table (32 < 4yw?), the dependence of the energy of oscillations on theinfeegy

is nonmonotonic% > 1%), and the motion is underdampBd« w = 2wy.
0

10}

10}

0.4 0.6 0.8 1 12 1.4

Fig. 1.13 Phase diagram of the system (1.35) on the/{) plane obtained numerically for
the parameter valuds = 0.025,wy = 0.597, 53 = 1,y = 1. See text for a description
of the symbols, the various lines are guide to the eye. Th&ingmoint P, with w; =
0.95, h = 0.13, shown by a thick plus, was chosen to lie in the region of cgierice of the
period 1 stable limit cycle and of the strange attractor [167

A simplified parameter space diagram obtained numericaBy] is shown in
Fig. 1.13. The dashed lines bound the region in which bothitlear and nonlinear
responses of period 1 coexist. The upper line marks the tayyraf the linear
response and the lower line marks that for the nonlineaioresgs. The boundaries
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of hysteresis for the period 1 resonance are shown by spéd.liThe regionin which
linear response coexists with one or two nonlinear respoofsperiod 2 is bounded
by dotted lines. This region is similar to the one boundeddshed lines. The region
of coexistence of the two resonances of period 2 is boundetidgashed-dotted
line. Chaotic states are indicated by small dots. The cbatatte appears as the result

Fig. 1.14 The basins of attraction of the SC (shaded) and CA (whitepfBoincag cross-
section withwt = 0.6m(mod27), wy = 0.95 in terms ofg; atg». The boundary of
the CA's basin of attraction, the saddle cycle of period 1,iSEhown by the filled square.
The saddle cycle of period 3, S3, is shown by pluses. Thes@ttions of the actual escape
trajectory with the Poincércross-section are indicated by the filled circles [168].

of period-doubling bifurcations, and thus corresponds mmi-hyperbolic attractor
[166]. Its boundary of attraction? is nonfractal and is formed by the unstable
manifold of the saddle cycle of period 1 (S1).

For a given dampingI{ = 0.025) the amplitude and the frequency of the driving
force were chosen so that the chaotic attractor coexists tvé stable limit cycle
(SC):h = 0.13,wy = 0.95 (see Fig. 1.13).

The basins of attraction of the coexisting CA (strange etitrg and SC are shown
in the Fig. 1.14 for the Poincarcross-section ¢t = 0.67(mod2x) in the absence
of noise [168]. The value of the maximal Lyapunov exponentlie CA is 0.0449.
The presence of the control function effectively doublesdimension of the phase
space (compare (1.35) and (1.37)) and changes its geonggirytre non-hyperbolic
attractor. In the extended phase space the attractor isectethto the basin of
attraction of the stable limit cycle via an unstable invariaanifold. It is precisely
the complexity of the structure of the phase space of anianxiHamiltonian system
(1.37) near the non-hyperbolic attractor that makes itdiffito solve the energy-
optimal control problem.
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However, using the recently proposed [60, 62, 95, 112] nethpexperimental
analysis of the Hamiltonian flow in an extended phase spattediuctuating system,
we can exploit an analogy between the Wentzel-Freidlin amdriyagin Hamiltonians
arising in the analysis of fluctuations, and the energyroaticontrol problem in a
nonlinear oscillator. To see how it can be done let us congfue fluctuational
dynamics of a nonlinear oscillator (1.35).

Let us analyze the motion of an oscillator interacting with@rmal bath:

41 = qo,
G2 = —2Tg2 — woq1 — Bqi —vg} + hsin(wt) +£(t),  (1.38)
(€(1)) =0,  (£()&(0)) = Dé(t) = 4TKT(t).

In the zero-noise-intensity limit, a consistent theo@taevelopment[42, 169] from
the microscopic to the macroscopic equations of motiondéadescriptions of both
its deterministic (dissipative) and fluctuational dynasneithin the framework of
Hamiltonian formalism [57]. The comparison of the Hamifemmapproach to large
fluctuations, described in Sec. 1.3, and the approach tmaptontrol problem shows
that, both on physical grounds and rigorously, the Wenfzeldlin Hamiltonian [57]
(1.37)is equivalentto the Pontryagin Hamiltonian (1.343] and the corresponding
optimal control function is equivalent to the optimal fluational force. The analogy
between the two problems opens up the possibility of a derperimental insight
into the geometry of the phase space of system (1.34) usitgfistisal analysis of
the fluctuational trajectories in this system when a corfitnottionu(t) is substituted
for the random functiorg(¢). In particular the optimal control signal(t) can be
identified with the optimal fluctuational force which drivéise system from the
chaotic attractor to the stable limit cycle [164]. We notatthboth(¢) and the
optimal force are related {o, in (1.37) (see e.g. in [143]).

We therefore suggest that the optimal control functigt) can be found experi-
mentally by measurement of the optimal fluctuational fo@% [L12].

This interrelationship is intuitively clear because, ietmal equilibrium O =
4T'kpT), the probability of fluctuations is determined by the mioimwork of the
external source needed to produce the given change in theddgnamic quantities
p x exp(—Rumin/kpT) [9]. We emphasize that the analysis presented above draws
an analogy between two quite distinct and separate probldhes deterministic
energy-optimal control problem, and the problem of theitalof the system in the
presence of small random perturbations. Very similar amiohs can be drawn using
a more general formulation of the stochastic optimal cdiptr@blem (see e.g. [164]).

1.5.1.2 Statistical analysis of fluctuational trajectosge A statistical analysis of
the fluctuational trajectories is based on the measurenoéthe prehistory proba-
bility distribution [60] p;, (g, t; gf,ts) (See Sec. 1.3). By investigating the prehistory
probability distribution experimentally, one can establihe area of phase space
within which optimal paths are well defined, i.e. where thbetwf fluctuational
paths around an optimal path is narrow. The prehistoryidigton thus provides
information about both the optimal path and the probabihist it will be followed.
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In practice the method essentially reduces to continudiadlywing the dynamics
of the system and constructing the distribution of all izions of the fluctuational
trajectories that transfer it from a state of equilibriunatprescribed remote state.

To find the optimal control function(t) we performed digital simulations of (1.38)
using the Heun algorithm, with particular care given to #wedom number generator
(see[142,170]), because simulation times necessarily grkponentially a$> — 0.
We have also carried outa complementary analog electromiletimg [112] of (1.38).
We drive it with zero-mean quasi-white Gaussian noises feonoise generator,
digitize the response, (t), ¢2(t), £(t), and analyze it with a digital data processor.
In both analog and digital simulations, trajectories mghne system from the chaotic
attractor to the stable limit cycle were collected, and thieesponding distributions
of the escape trajectories were built and analyzed. Qtiaétg similar results were
obtained but, because precision is of particular impoddmere, most of the data
reported below are those from the digital simulations.

For the technique to be applicable, a solution of (1.37) mgthe system from
the CA too2 must exist, and one has to be able to identify the boundargtitons
for this solution on the CA.

In the presence of weak noise there is a finite probabilityai$erinduced tran-
sitions between the chaotic attractor and a stable limikecym Fig. 1.14 the filled
circles show the intersections of one of the real escapect@jes with the given
Poincaé section. The following intuitive escape scenario can heeeted in the
Hamiltonian formalism. Let us consider first the escape ef $iistem from the
basin of attraction of a stable limit cycle that is boundeddoysaddle cycle. In
general, escape occurs along a single optimal trajegigryt) connecting the two
limit cycles.

The trajectoryg,,(t) is determined by minimizing in (1.20) on the set of all
classical deterministic trajectories determined by thenbtanian H (1.37), that start
on a stable limit cycle as— —oo and terminate atan saddle cyclgas oo. Thatis,
¢opt(t) is a heteroclinic trajectory of the system (1.37) with minimaction, where
the minimum is understood in the sense indicated, and tlapegarobability assumes
the formP = exp(—S/D). We note that the existence of optimal escape trajectories
and the validity of the Hamiltonian formalism have been aonéid experimentally
for a number of nonchaotic systems (see Refs. [62, 95, 1112 1173 ] and references
therein).

If the noise is weak, then the probabilify ~ exp(—S/D) to escape along the
optimal trajectory is exponentially small, butitis expatially greater than the escape
probability along any other trajectory, including alonget heteroclinic trajectories
of the system (1.37).

Since the basin of attraction of the CA is bounded by an sadyilee S1, the
situation near S1 remains qualitatively the same and thapestajectory remains
unigue in this region. However, the situation is differeaanthe chaotic attractor.
In this region it is virtually impossible to analyze the Hétamian flux of the addi-
tional system (1.37), and no predictions have been madet #imeharacter of the
distribution of the optimal trajectories near the CA. Thaglest scenario is that an
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optimal trajectory approaching the boundary of a chaotiaetor is smeared into a
“cometary tail" and is lost, merging with the boundary of #t&actor.

2\‘ .

Fig. 1.15 Escape trajectories found [172] in the analogue simulation the parameters
h = 0.19, wy =~ 1.045, wy ~ 0.597, D =~ 0.0005 are shown in comparison with the
Poincaé cross-section of a quasi-attractor and its basins ofctittraforw st = 0.

However, statistical analysis of real fluctuation-induesdape trajectories gives
a more detailed picture of the noise-induced escape fronaatichattractor. Several
thousand real escape trajectories of the system (1.38) inenbbasin of attraction
of a CA in various operating regimes were investigated [172{e typical situation
as measured in analog simulations is displayed in Fig. Jol5yfstem parameters
close to the point P in Fig. 1.13 and a noise intengity= 0.0005. The figure
shows 65 measured fluctuational escape trajectories. @lrtjectories have been
shifted in time so that the characteristic regions of thpttaries corresponding to
the transition from chaotic to regular motion coincide watich other.

Itis evident that all real trajectories pass through theeloeighborhood of some
optimal trajectory in a tube with a radius/D. Thereforeit is possible to determine
the optimal escape paths by simple averaging performedaepafor each group of
trajectories. The number of different optimal escape palttained for the transition
CA — S3 depends on the choice of the working point. From one teetHigtinct
optimal escape paths for operation in various regimes weserved experimentally.
The escape probabilities along different paths are diffeend, as the noise intensity
is reduced, one of the escape paths becomes exponentiakyprabable then the
others. In what follows we concentrate on the propertiebisfrhost probable escape
path.

To find the boundary conditions on the CA, we analyze the ptehj probability
distributionpy, (g, t; g¢, t ) of the escape trajectories. The corresponding distributio
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is shown in the Fig. 1.16. It can be inferred by the inspectibinow the ridge of the
most probable escape path merges the CA that most of theeeseggrtories pass
close to the saddle cycle of the period 5 embedded into the CA.

This hypothesis can be elaborated further using a statistitalysis of the trajec-
tories arriving to a small tube around S3 for the nose intgnsduced by a few orders
of magnitude up taD = 1.5 x 1075, see Fig. 1.17 [172]. The statistical analysis

Fig. 1.16 The prehistory probability distribution of the escapedcapries for the parameters
as in Fig. 1.13. The circles, squares and triangles shoviespeagiods of the saddle cycles of
period 5 (S5), 3 (S3), and 1 (S1), respectively [172].

of the escape trajectories described in the subsectiomletieat the energetically
favorable way to move the system from the CA to the stable loycle starts at the
saddle cycle of period 5 (S5) embedded in the CA, passesghrsaddle cycle S3
and finishes at the saddle cycle S1 at the boundary of the bésittraction of the
CA. Subsequent motion of the system towards the stablediynle does not require
external action.

To find an approximation to the optimal control function wdlect all successful
realisations ¢$¢(¢), ¢5°¢(t), £°°¢(¢)) that move it from S5 t&Q). An approximate
solutiona(t) is then found as an ensemble average over the correspoediigations
of the random forcég©s(t)) (the exact solution ig(t) = limp_,o @(t)). The results
of this procedure are shown in the upper trace of Fig. 1.18efwve the irrelevant
high-frequency component left after averaging, we filtetiedugh a zero-phase
low-pass filter with frequency cut-off. = 1.9.

It can be seen from the figure that the optimal force switcheatdthe moment
when the system leaves S5 along its unstable manifold. Tti@malforce returns to
zero when the system reaches the saddle cycle S1.
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N 2I5

Fig. 1.17 Escape trajectories for the parameters as in Fig. 1.16. Gharss and circles
show one period of the saddle cycle S3 and one period of Siectegely.

Thus we conclude that the soluti@t) and the corresponding boundary condi-
tions can be found using our new experimental method. Maethe problem of
escape from the CA of a periodically driven nonlinear oatili can be essentially
reduced to the analysis of a transition between three sagdles S5~ S3— S1.
We note that the latter result is in qualitative agreemettt wie well known state-
ment that unstable cycles provide detailed invariant attarezations for dynamical
systems of low intrinsic dimension (see e.g. [173, 174, 1.75]

This result opens up the possibility of the numerical solutif the corresponding
boundary value problem for the energy-optimal control folaed above.

It can be shown [172] that the average time for the system prcaggh S5 is
much smaller then the average escape time and thus the bptoape paths found
from the statistical analysis of the escape trajectorigadependent on the initial
conditions on the attractor and provides an approximatidhé global minimum of
the corresponding deterministic control problem.

1.5.1.3 Numerical solution of the boundary value problemn principle, it is
possible to find the optimal path by direct solution of the #gagin Hamiltonian
(1.37), with appropriate boundary conditions. We mustsstrihat even for this
relatively simple system, the solution is a formidable, airdost impossible, task.
First of all, in general one has no insight into the apprdprimundary conditions,
in particular into those at the starting time (which beloaghe strange attractor).
But even if the boundaries were known, in practice the dateation of the optimal
path is impossible: the function&l of Eq. (1.36) has so many local minima, that it
proved impractical to attempt a (general) search for thavatpath.
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Fig. 1.18 The most probable escape path (bottom solid curve) from $%et&1, found in
the numerical simulations. The stable limit cycle is showrrdmbs, see Fig. 1.16 for other
symbols. Parameters wete = 0.13, wy = 0.95, wo ~ 0.597, D = 0.0005. Top:
optimal force (solid line) corresponding to the optimaltpatter filtration[168], and optimal
force from numerical solution of the boundary value problglots).

However, once the fluctuational trajectories were avadlalbk did indeed manage
to find the optimal path using by direct solution of the Poagiyn Hamiltonian. The
idea is to study the escape scenario which emerges from tiiedlional trajectories:
as we mentioned, the escape takes place through S3, S5 antV&1hen built
an initial trial function, taking a linear combination ofetlstructures involved in the
escape. The combination was such that at short times thieitriion coincided with
S5, while at large times it coincided with S1. Atintermedititnes, we had a mixture
of S5 and S1 in the initial trial function, but no S3. Using allvk@own algorithm
for two points boundary conditions (TWPBVP, obtained vidibg176], see [177]
for details), we then relaxed this trial function to find thatimal path, defined as the
path which minimises the functional 1.36. It is striking tthize relaxational optimal
path that we found does go through S3, in good agreement Wittt was observed
for the optimal path obtained via the fluctuational trajeiet® (for details, see [172]).

1.5.1.4 The energy-optimal migration control of a chaotisdillator Here we
examine the control of migration in a periodically drivemtinear oscillator. Our
aim is to demonstrate that application of the approximakatism found from the
statistical analysis of fluctuational trajectories op#igs (minimizes) the energy of
the control function. We compare the performance of somevkredaptive control
algorithms to that of the control function found through analysis.

To verify that the optimal forc&(¢) found in the experiment does minimize the
energy of the control function steering the system (1.3&nfthe CA to the S1, we
set it to arbitrary initial conditions in the basin of atttian of CA and let it evolve
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deterministically until it passed through the initial paftthe unstable manifold of
S5. At this moment the deterministic control function wasteed on. For small
variations in the shape of the control function and/oratitionditions, the amplitude
of the control function was set to the threshold of the svititgHor the system from
chaotic motion to regular motion on the stable limit cycleé.whs found that the

—/—\/\/\/\/—
(b)

control function
w
Energy

1 5 wt/2m 9 0 1 2 3 4 5 6

Control

Fig. 1.19 (a) The shapes of the control functions (not drawn to scalejlun the numerical
experiment: 1 - optimal force found from the statistical lgss of the fluctuational escape
trajectories; 2 - approximation of the optimal force by thg) = a4 sin(azt) exp(—(t —
a3)2a4) wherea; are constants; 3 - approximation of the optimal force by #wangular
pulses; 4 - arbitrary perturbation of the optimal force wiHow-frequency perturbation;
5 - control functions produced by the OPCL algorithm; 6 - colhfunction for the adaptive
control. (b) Energies of the control functions shown in (E§9].

system is very sensitive to variation of both the shape o€tmrol function and the
initial conditions. It was also demonstrated that any déwsfrom the shape ai(t)
or from the initial conditions found in the experiment leads substantial increase
in the energy of the control function required to steer sydi®m a CA to S1. Some
experimental results are shown in Fig. 1.19. Thus it can be g&t the energy of the
control function is approximately twice larger if the optihfiorce is approximated by
thesin function modulated by the Gaussiaft) = a; sin(ast) exp(—(t — a3)?a4)
and it is~ 4 and 20 times larger if the optimal force is approximated hgaegular
pulses or perturbed with arbitrary low-frequency perttidyes respectivelly.

We have also performed experiments using an open-plusdillo®p control tech-
nigue [155] and adaptive control algorithm [156] to steer sistem from the CA to
the S1. The equations of motion are taken in the form

ql =q2+ Fl(qvgvt)a
G2 = —2Tqa — wiq1 — Bg? — v¢} — f cos(wt) (1.39)
+F2(qvgvt)a q=4q1,492, g = 91,92
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HereF'(q, g,t) is the control function in the form

F(g,9.t) = (9 = K(9)) + SA)(K'(9) — A)(9(t) - q(t))- (1.40)

We will be interested in the situation when the “goal dynashig(t) is a solution of
(1.35) withu(t) = 0, i.e.¢ = K(g). Namelyg(t) describes the stable limit cycle
of period 1 SC coexisting with the CA. Thus the first term ird().vanishes. And
F(q,g,t) takes the following explicit form

Fi(g,9,t) = S(t) Y (Kij — aij)(g; — 4)), (1.41)
=12

Herei = 1,2 and K;; = 9K;/dq;. We have considered only the casg =
—|a;j|é;; andS(t) = 1 — exp(—At) as it was suggested in [156]. Parametefsind
A were varied to optimize the energy of the control function.

The energy of the control functions obtained by these methades from 0.14
to 0.6 and thus it is more then one order of magnitude largar the energy of the
optimal control functioni(¢) found by our new technique. (see Fig. 1.19). Similar
results were obtained using the algorithm for adaptive stemtrol [150] for the
migration of the nonlinear oscillator from the CA to SC (ség E.19).

We note that neither the OPCL nor the adaptive control algaié were devised
to optimize the energy of the control, but rather the recptiene. It is clear that
these methods are insensitive to the initial conditionhatG@A. The shapes of the
control functions are, to a large extent, also prescribethbylgorithms and are not
optimized. In this sense the high energy of the control fiomstis not a surprise: the
results presented serve the purpose to illustrate the noéit, pe. the sensitivity of
the optimal control to the shape of the control function antht initial conditions,
discussed above.

1.5.2 Fluctuational escape from a quasi-hyperbolic attrator

We now consider, for comparison, fluctuational escape frieenltorenz attractor,
which, for a certain range of parameters, is a quasi-hypieratbractor consisting of
unstable sets only [160]:

g = ole—q)
G2 = Tq1— G2 — q1G3, (1.42)
g3 = qi1q2 —bgs + (1),

(@) =0, (€(1)€(0)) = Ds(t) (1.43)

In the absence of noise, the system [178] describes the af@reof a single-mode
laser field interacting with a homogeneously broadenedléwvel medium [179].
The variables and parameters of the Lorenz system can beriated in terms of
a laser system asj; is the normalized electric field amplitudg, the normalized
polarization,gs the normalized inversiors = k/v1, 7 = A+ 1, b = 72/~1, with
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k the cavity decay rate of the field in the cavity, and~, the relaxation constants
of the inversion and polarization, and the pump parameter. Far-infrared lasers
have been proposed as an example of a realization of the egetem [161]. A
detailed comparison of the dynamics of the system (1.42)aafad-infrared laser,
plus a discussing the validity of the Lorenz system as lasmtal) can be found in
[162].

The Lorenz equations have a simple structure and contaimtwdinear terms
only. Let us briefly consider the main bifurcations in theteys (1.42) (a more
detailed analysis can be found in [180]). We fix the paranseter 10, b = 8/3
and vary the parametet in this case two global bifurcations take place (see the
bifurcation diagram in Fig. 1.20). For = 1, a supercritical pitchfork bifurcation
happens: the stationary state at the origin= (0,0,0) becomes a saddle state
and two new stationary states appedt = (1/b(r —1),/b(r —1),r — 1) and
Py = (—+/b(r —1),—+/b(r —1),7 — 1). In the system phase space there are two
stable pointsP, and P, a saddle poin© at the origin, and their one-dimensional
(separatrixes) and two-dimensional manifolds.

The second bifurcation occurs at

olc+b+3)
T b 24.74..., (1.44)
and it is a subcritical Hopf bifurcation, when stateésand P, loss their stability and
in the phase space there is the unigue chaotic quasi-hyleakicactor.

There are also two local bifurcations. The first one takesepfarr ~ 13.926...,
when a homoclinic tangency of separatrixes of the or@ionccurs (it is not shown
in Fig. 1.20) and a hyperbolic set appears, which consistsiofinite number of
saddle cycles. Beside the hyperbolic set, there are twolesagdles; and Lo
around the stable statdy and P,. The separatrixes of the origiti withdraw to
the saddle cycles; and L, and the attractors of system are the stdtesand P».
The second local bifurcation is observed forr 24.06. The separatrixes do not
withdraw to the saddle cycles; and L,. As a result, in the phase space of the
system a stable quasi-hyperbolic state appears — the Lattaztor. The chaotic
Lorenz attractor includes separatrices, the saddle pbarid a hyperbolic set, which
appears as aresult of homoclinic tangency of separatridespresence of the saddle
pointin the chaotic attractor defines the prefix “quasi” ia tiefinition of the chaotic
attractor agjuasi-hyperbolid160]. The stated”, P, remain stable. Thus, in the
ranger € [24.06 : 24.74] the co-existence of the chaotic attractor and two stable
point-attractors is observed in the phase space of the kmgstem. Let us fix the
parameterr = 24.08 in this range and consider the noise-induced escape for the
chaotic attractor to the basins of attraction of the stabli@ts. Note that in [64]
the invariant measure of the noisy Lorenz attractor wasdoaithin a Hamiltonian
formalism, but large deviations from a chaotic attractoreveot considered.

First, we examine [181] the structure of the system phaseesioa chosen param-
eterso = 10,b = 8/3, r = 24.08 (Fig. 1.21).
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Fig. 1.20 The bifurcation diagram of the lorenz system for fixed= 10, b = 8/3. The
unstable and stable sets are shown by dashed and solidds@ectively.

The saddle cycle&; and L, surround the stable statés and P, and they are
located at the intersection of the unstabii& and stablé? ¢ manifolds. The unstable
manifold goes to the stable stak from one side and to the chaotic attractor from
the other side. The stable manifdid® forms a tube in the vicinity of the stable state
[182]. The saddle cycles; and L, have the multiplier§1.0000, 1.0280, 0.0001),
and therefore trajectories will go slowly away along thetabhke manifold and they
will approach quickly along the stable manifold.

For simplicity we add noise in the form of a white no&e) to the third equation
of system (1.42), preserving the original system symmetry.

Like the escape from a non-hyperbolic attractor, there ighroretical prediction
about the process of fluctuational escape from the Loreractdt. But the process is
readily studied via numerical simulation and via analy$ithe prehistory probabil-
ity distribution built using the fluctuational escape trfgies. For definiteness, we
examine escape to the stable paitit The averaged escape trajectory and the cor-
responding averaged fluctuational force obtained in thisava shown in Fig. 1.22.
We have found that the escape occurs via the following sa@ndihe escape tra-
jectory starts from the stable manifold of the saddle p6intUnder the action of a
fluctuation, an escape trajectory tends to pandlong the two-dimensional stable
manifold. Then, without reaching the saddle pdintthe trajectory departs from it
again, following a path close to the separatrix and falling into the neighborhood
of the saddle cyclé.;. In the absence of an external force, the trajectory goeg awa
from the cycleL, slowly untwisting. The fluctuational force induces a cings
through the saddle cycle, and the trajectory then relaxésststable poin;. We
can thus split the escape process into two parts: fluctuatemd relaxational. In
practice all the fluctuational part belongs to the Lorenaator, and itself consists of
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Fig. 1.21 Structure of the phase space of the Lorenz system. An escgpetdry measured
by numerical simulation is indicated by the filled circledi€frajectory of the Lorenz attractor
is shown by a thin line, the separatrixés andI's by dashed lines [181]

4 éi 8 10 12

Fig. 1.22 The averaged escape trajectory (solid line) and the averfigetuational force
(dashed line) during escape from the Lorenz attractor [181]

two stages: at first, the fluctuational force throws the ttajgy as close as possible
to the cycleL; then, the trajectory crosses this cycle under the actifinctuations.
The first stage is defined by the stable and unstable manidbltie saddle poinD,
and the time-dependence of the fluctuational force is sirtol¢hat of the coordinate
qs (Fig. 1.22). During the second stage, the fluctuations hasengponent which
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oscillates in anti-phase to the coordinate Because the trajectory of the noise-free
system departs from the cyclg very slowly, the fluctuational force inducing the
crossing through the cycle may start to act at any time dwilogg interval. For this
reason the averaged fluctuational force itself consistdarfigoscillating function.

It is clear that all of the escape trajectory from the Loretizaator lies on the
attractor itself. The role of the fluctuations is, first, tangrthe trajectory to a seldom-
visited area in the neighborhood of the saddle cygleand then to induce a crossing
of the cycleL;. So we may conclude that the role of the fluctuations is diffiem
this case, and the possibility of applying the Hamiltoniamfalism will require a
more detailed analysis of the crossing process.

Thus, we have found that the mechanisms of escape from a yperiolic at-
tractor and a quasi-hyperbolic (Lorenz) attractor areegydifferent, and that the
prehistory of the escape trajectories reflects the diftesmcture of their chaotic
attractors. The escape process for the non-hyperboléctdiris realized via several
steps, which include transitions between low-period sdgitles co-existing in the
system phase space. The escape from the Lorenz attractistaiiiwo qualitatively
different stages: the first is defined by the stable and ulestaénifolds of the saddle
center point, and lies on the attractor; the second is thapesitself, crossing the
saddle boundary cycle surrounding the stable point atiraEtnally, we should like
to point out that our main results were obtained viaeaperimentabdefinition of
optimal paths, confirming our experimental approach as aepfoinstrument for
investigating noise-induced escape from complex attracto

1.6 CONCLUSIONS

The recent rapid advances in the understanding of flucyatonlinear systems,
including optical systems, have come about in large paotijin the mutually sup-
portive relationship between analytic calculation and@mand digital simulations.
This has been especially true of problems involving larget@lations, where use of
simulations, coupled with the introduction of the prehigtprobability distribution,
have set the area on an experimental basis for the first tintehelped to stimulate
new advances in the theory. These have included the logadtbusceptibility, de-
scribed above, which promises to do for optimal paths whattmventional linear
susceptibility has done for linear response theory. Therthef the logarithmic
susceptibility in turn has been tested, and its limits ofi@gpility explored, through
simulations. And the same is true of recent developmentsderstanding Kramers’
problem on short timescales. Studies of the fluctuationeds from chaotic at-
tractors, of which two examples is described above, areedntsimulation-led at
present. But the results of the analogue and digital exparisnhave already pro-
vided strong guidance for future developments in the thelbseems certain that the
close symbiotic relationship between simulation and theofluctuational dynamics
will continue, and that the emergence of many new resultspduethomena may be
anticipated over the next few years.
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