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Dispersion of the Prehistory Distribution: Analog Experiments and Numerical Results
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The dispersion parameter of the prehistory distribution for a potential system driven by white noise
is analyzed theoretically and by means of analog and digital experiments. Nonmonotonic evolution of
the dispersion with time is shown to arise provided that the potential fulfills a certain condition. It does
not necessitate the existence of an unstable point, but can occur in single-minimum potentials, both
symmetric and asymmetric. [S0031-9007(98)05610-5]

PACS numbers: 05.40.+j, 02.50.—r

The macroscopic variables characterizing the behavioandx, at an earlier time < z,. We will always consider
of very many physical systems aflectuatingquantities, that eitherr,, < x < x; orxy > x > x;. Where several
and the fluctuations often become more pronounced astable points exist, we will be interested in time intervals
the system size decreases. The description of their timmuch smaller than typical transition times between stable
dependent probability laws is a formidable problem forpoints, so that the termination point always lies within
which no general solution exists. Sometimes, one is interthe same region of attraction asand.xy;.
ested mainly in stationary situations such that the one-time By comparison of the results of analog electronic ex-
probability distribution has reached a time independenperiments with a path-integral calculation of the prehis-
functional form. In such cases, it is well known that thetory distribution, Dykmanet al. showed [5] that, in the
small amplitude equilibrium fluctuations of stochastic vari-limit of very small noise strength, the time evolution of the
ables around their stationary points are described by Gaussraximum of the prehistory distribution follows the theo-
ian distributions whose widths scale with the noise strengthetically predicted optimal path. Indeed, following the
(which, in the case of thermal systems, corresponds to theaximum of the prehistory distribution is a convenient
temperature). In practice, however, it is often the largewvay of visualizing the optimal path in a real physical sys-
excursions of the system variables away from their steadiem whereD # 0. There is a tube of trajectories around
values that are of greatest physical significance. Theste optimal path whose width corresponds to disper-
large rare fluctuations are responsible for many importarngion of the prehistory distribution. It was noted [5] that,
physical phenomena including nucleation at phase transfer an overdamped particle moving in a bistable potential
tions, switching between stable states in optically bistablend subject to additive white noise, the dispersion could
systems, stochastic resonance, and the dynamics of Browsemetimes exhibit a nonmonotonic evolution with time:
ian ratchets. They are also of crucial importance in chemithis unexpected feature was investigated both analytically
cal kinetics where, for example, the reaction rate in thermahnd through the analog experiments. Subsequent numeri-
charge transfer reactions is largely determined by the stazal simulations corroborated these ideas [6] and allowed
tistics of large solvent fluctuations. verification of the analytic results in the limit of very small

The statistical description of large rare fluctuations is anoise intensity.
daunting problem [1-3]. One technique that has been used Dispersion of the prehistory distribution is important,
extensively to describe them relies on a path-integral fornot only for its own intrinsic interest, but also because it
mulation of the probability distribution (see, e.g., [4]). The provides a direct measure of how useful the widely used
(quasi)stationary probability density for large deviations(see, e.g., [2—4,7]) concept of the optimal path is going
from the average can be evaluated in terms of the optimab be under the given circumstances: small dispersion
path originating from the neighborhood of the stationaryimplies that almost all paths lie close to the (idealized,
point. A few years ago, a new approach to the investigap — 0) optimal path, and vice versa.
tion of large fluctuations was proposed, based on the idea The aim of this Letter is to analyze the behavior of the
of the prehistory distribution [5]. Briefly, this distribution dispersion and, in particular, to clarify the relationship be-
can be defined as follows. Letus consider a system at equiween its monotonicity and the shape of the potential in
librium so that its one-time probability density is given by which the Brownian particle is moving. The work was
P1(x). As a consequence of a large fluctuation away fronprompted in part by the observation in [6] that the dis-
its steady valuey,, the stochastic variable is observed to persion parameter shows a monotonic evolution with time
reach, for the first time at time, its final valuex;,. We are along the optimal path when the termination point in a
interested in the probability densipy, (x, ; x7, t7) that the  bistable potential is located farther from the local maxi-
system passed through a paintintermediate betweery,  mum of the potential than one of the stable points. Thus,
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the fact that the potential is bistable does not necessarilgiven final point, there exists at least one solution of the
imply that the dispersion will evolve in a honmonotonic equation

fashion. Let us consider a simple system described by a "

variablex(r) satisfying the Langevin equation (in dimen- 2U"(x)o(x;xp) = 1 =10 (6)

sionless form) in the interval (xs, xf), the dispersion will show a non-

(1) = —U'(x) + £@). 1 monotonic behavior. Here(x;xf) is give.n by Eg. (5).
*() () + £0) @) If (6) has several solutions, then(x;xs) will show sev-
whereU(x) represents a potential agds) is a Gaussian eral extrema. If, for a given potential and final termina-

white noise with tion pointxy, no solution of (6) exists, then the dispersion
parametew (x; x ) will be monotonic.
(@) = 0, (E(t)é(s)y = D6(r — ). 2 To check these ideas we have carried out experiments

o _ _ and numerical simulations of the Langevin equation for
In the limit of very small noise strength, the prehistory several types of potential. Analog electronic circuits
distribution is of Gaussian form, centered around thejriven by white noise have been constructed [8] to model

optimal path, the equations of interest. Starting with the system in
1 the vicinity of one stable state, successive blocks (@f
pulx. t:xp,1y) = 27 Do (1; xp)] time series were digitized with a Microstar DAP3200A/

[x — Xopi(t; xp) ] 415 ADC (analog-to-digital converter) [9], and examined.
X ex;(— 2D (t;x5) ) () The moment at whiche(¢) eventually reached a given
e final pointx, was recorded, and the path followed by the
where the optimal path,(#; x/), is given as the solution system in reaching that point was also recorded. The pro-
of cess was then repeated, so as to build up an ensemble av-
erage of the paths leading 9. We have also solved the
Xopt(1) = U'(xopt) - (4) Langevin equation (1) numerically, using standard tech-
_ _ niques [10]: the prehistory distribution and its parameters
The width of the Gaussian has been expressétie$; x;)  were obtained through similar procedures to those used
so that the dispersion parametet(s; xy), is independent jn the analog experiments, but with an important differ-
of the noise strength. Itis given by the expression [5]  ence. As discussed previously, provided that the detailed
balance condition holds in the system under study, it can

Xf
o(x;xp) = [U'(x)]zf dy[U'(y)] 3, be exploited to evaluate the prehistory distribution in a
o (5) relatively rapid and efficient manner [6]. For a Markov
X = Xopi(t; x¢) . process with detailed balance, we can write
Notice thattU’(y) # 0 for any point inside the integration  p,(x, t; x7, 1) = wip(x, |t — tfl; x), (t <ty),
interval. o - )

For bistable potentials, the dispersion parameter as a
function of x can exhibit a nonmonotonic evolution when which shows that, for timesprior to the final observation
Xy < x < xy < xyn Wherex,, is the unstable point and time ¢, the prehistory distribution can be found from a
x5 IS one of the stable points [5]. This effect becomesknowledge of the forward conditional probability density.
more pronounced as the final poijtgets closer to the in- Rather than waiting for the fluctuating system to arrive
stability point. On the other hand, the behaviowdf; x;)  naturally atc; as in the analog experiments, therefore, we
is monotonic whenry < x < xy < xy, [6]. Clearly, the proceed by generating trajectorgsrtingfrom x at time
same holds true if one analyzes fluctuations around thes = 0, and we allow the system to evolve forward in time.
other stationary point but with the signs of the inequalitiesThe construction opj(x, £; x¢, t) from the resultant sto-
reversed. For quartic potentials with a single minimum,chastic trajectories is then straightforward. Note that this
o(x;xr) is monotonic regardless of whether the intervaltechnique woulshotbe applicable to systems for which de-
of interest is on the right or the left of the minimum. The tailed balance does not hold. This is the case in the model
question naturally arises, therefore, as to whether or nanalyzed by Maier and Stein [3]. Even though an equi-
bistability is a necessary condition for the occurrence ofibrium distribution exists, the potential conditions are not
nonmonotonic behavior of the dispersion parameter. Waeatisfied for certain values of the parameters characteriz-
now point out that this is not, in fact, the case: the existencéng the model, and the system lacks detailed balance. The
of nonmonotonic behavior is independent of the bistablefechnique is also inadequate for externally driven systems
monostable character of the potential. This can be seemhere atime independent equilibrium distribution does not
by considering Eqg. (5). Nonmonotonicity of the disper-exist. These last two examples, showing that the time-
sion occurs if the slope af (x; xf) is equal to zero at some reversal symmetry of the fluctuations is broken, have been
point within the interval of interest. Equivalently, if for a recently studied in [11].
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As a first explicit example, let us consider the potentialpected. Wheny = 2.0 < x, on the other hand, there is
2 o a clear nonmonotonicity af (x;xs). Its maximum occurs
Ukx)=——7— + — — 20x, (8)  very near the theoretically predicted position. Thus, non-
2 20 monotonic behavior can indeed exist even in the absence of
which is asymmetric around the single minimum locatedan instability pointin the potential. It should be mentioned
atxg, = 5. A numerical analysis of Eq. (6) indicates that that the matching of the experimental and numerical results
it has a single solution whery < xy, while no solution provides further [11] corroboration of the expectation that,
exists forx; > xy. Thus, one expects that the prehistorywhen detailed balance holds, the main fluctuational paths
distribution will have a width with a nonmonotonic depen- away from the stable point are time-reversed mirror images
dence on time in the first case, while its behavior shoulf the relaxational paths towards it.
be monotonic when; > x,. Forinstance, fox; = 2.49, As a second example, we consider the prehistory prob-
Eq. (6) has a single root at the point= 4.14. In Fig. 1, lem for a more complicated potential that has been used
we plot the results of the analog experiments and the nio describe several aspects of the dynamics of fluctua-
merical solution of the Langevin equation for two different tions in SQUIDS (superconducting quantum interference
values ofx; located on either side of the potential mini- devices) [12]

mum. Agreement between the results obtained through U(x) = 0.15(x + 27)? — codx). (9)
these very different approaches may be regarded as satis- ] ) o
factory. The analog data reach the abscissa axis slightij/his potential has a single minimum.at = —2, about

farther from the potential minimum than the chosgnin ~ Which it is symmetric, as seen in the inset of Fig. 2. The
each case on account of the coarse graining in coordinafistence of solutions of Eq. (6) depends upon the location
and time introduced by the ADC, which means that theréf x;. Forx; very close tax, there are no solutions of
is on average some overshoot before a crossing asfde-  EQ. (6), and, thereforer (x; x/) is monotonic. Actually,
tected, and the same effect also causes the maximum valiidollows from Eq. (5) that, regardless of the shape of the
of o to be underestimated. The numerical trajectories, byotential, the dispersion is always monotonic provided that
contrast,start from the chosen value of; in each case 7 iS sufficiently close to the stable point. Once the final
(prior to the use of time reversal under the detailed balancBoint is sufficiently far from the stable point, however,
condition, as discussed above), so there is no possibility gfolutions of Eq. (6) exist. Their number increases as the
an overshoot. The most important feature, clearly showslistance of the observation point from the minimum is
by both the analog and numerical results, is the markedcreased. A new extremum of the dispersion parameter
difference in behavior according to whetheris larger or ~ @ppears corresponding to each of these solutions. In
smaller thanx,,. Fig. 2, we compare the results of the numerical simulations
When the final point is to the right of the minimum, and the analog experiments for the potential of Eq. (9), for

x; = 7.0 > xg, the dispersion is monotonic, just as ex-a noise strengttD = 2.54 andx; = 3. This end point
‘ is far from the minimum of the potential, and Eq. (6)

0.07
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FIG. 1. Dispersion parameter for the asymmetric single-

minimum potential (8) plotted in the inset. Numerical (curves)FIG. 2. Dispersion parameter for the symmetric single-
and analog experimental (points) data with= 4 are shown minimum potential (9) plotted in the inset. Numerical (curve)
for arrivals at two different termination pointst; = 2.0 and analog experimental (points) data with = 2.54 are
(circles and full curve) andv; = 7.0 (squares and dashed shown for arrivals atx; = 3. At large negative times, the
curve), respectively. At large negative times, the systensystem approaches its stationary state at —27. Only one
approaches its stationary statexat 5 in both cases. extremum is resolved.
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has three roots located af = 0.89, x, = —0.52, and

x3 = —4.41. ltis clear from the plots that the dispersion
parameter shows a very distinct maximum located at

—4, but that the other two predicted extrema do not appear.
The shift in the position of the main maximum and the
absence of the other two extrema are both attributable
to the finite value ofD used in the experiments. Note
that Eq. (6) was derived in the asymptofic— 0 limit,

so that it cannot necessarily be expected to give good
results for finite noise values. To test this explanation,
we have repeated the numerical experiments for much
weaker noise intensity, witth = 1078, The results are
presented in Fig. 3 in the form of a semilog plot to exhibit
the extrema to best advantage. The numerical error can be
estimated from the technique used (fourth-order Runge-
Kutta with 1000 trajectories, a time step of 0.001, and
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a total run time of 15000), from the total number of FIG. 3. Semilogarithmic plot of the dispersion parameter for

: . : : the same symmetric single-minimum potential of Fig. 2 for

trajectories or, perhaps more conveniently, directly from_™_° : ~ T8 :

the small statistical deviations that are visible about &mescel sar it D = 107 The results were obtained by
&humerical solution of the Langevin equation. Three extrema

smooth curve in the figure. In all cases, one concludes thaire clearly resolved.

the numerical uncertainty is considerably smaller than the
difference (0.137) between the(x, x;) values computed
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