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Dispersion of the Prehistory Distribution: Analog Experiments and Numerical Results
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The dispersion parameter of the prehistory distribution for a potential system driven by white noise
is analyzed theoretically and by means of analog and digital experiments. Nonmonotonic evolution of
the dispersion with time is shown to arise provided that the potential fulfills a certain condition. It does
not necessitate the existence of an unstable point, but can occur in single-minimum potentials, both
symmetric and asymmetric. [S0031-9007(98)05610-5]
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The macroscopic variables characterizing the behav
of very many physical systems arefluctuatingquantities,
and the fluctuations often become more pronounced
the system size decreases. The description of their tim
dependent probability laws is a formidable problem fo
which no general solution exists. Sometimes, one is inte
ested mainly in stationary situations such that the one-tim
probability distribution has reached a time independe
functional form. In such cases, it is well known that th
small amplitude equilibrium fluctuations of stochastic var
ables around their stationary points are described by Gau
ian distributions whose widths scale with the noise streng
(which, in the case of thermal systems, corresponds to t
temperature). In practice, however, it is often the larg
excursions of the system variables away from their stea
values that are of greatest physical significance. The
large rare fluctuations are responsible for many importa
physical phenomena including nucleation at phase tran
tions, switching between stable states in optically bistab
systems, stochastic resonance, and the dynamics of Brow
ian ratchets. They are also of crucial importance in chem
cal kinetics where, for example, the reaction rate in therm
charge transfer reactions is largely determined by the s
tistics of large solvent fluctuations.

The statistical description of large rare fluctuations is
daunting problem [1–3]. One technique that has been us
extensively to describe them relies on a path-integral fo
mulation of the probability distribution (see, e.g., [4]). The
(quasi)stationary probability density for large deviation
from the average can be evaluated in terms of the optim
path originating from the neighborhood of the stationar
point. A few years ago, a new approach to the investig
tion of large fluctuations was proposed, based on the id
of the prehistory distribution [5]. Briefly, this distribution
can be defined as follows. Let us consider a system at eq
librium so that its one-time probability density is given by
P1sxd. As a consequence of a large fluctuation away fro
its steady valuexst, the stochastic variable is observed to
reach, for the first time at timetf , its final valuexf . We are
interested in the probability densityphsx, t; xf , tfd that the
system passed through a pointx, intermediate betweenxst
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andxf , at an earlier timet , tf . We will always consider
that eitherxst , x , xf or xst . x . xf . Where several
stable points exist, we will be interested in time interva
much smaller than typical transition times between sta
points, so that the termination pointxf always lies within
the same region of attraction asx andxst.

By comparison of the results of analog electronic e
periments with a path-integral calculation of the preh
tory distribution, Dykmanet al. showed [5] that, in the
limit of very small noise strength, the time evolution of th
maximum of the prehistory distribution follows the theo
retically predicted optimal path. Indeed, following th
maximum of the prehistory distribution is a convenie
way of visualizing the optimal path in a real physical sy
tem whereD fi 0. There is a tube of trajectories aroun
the optimal path whose width corresponds to thedisper-
sion of the prehistory distribution. It was noted [5] tha
for an overdamped particle moving in a bistable potent
and subject to additive white noise, the dispersion co
sometimes exhibit a nonmonotonic evolution with tim
this unexpected feature was investigated both analytic
and through the analog experiments. Subsequent num
cal simulations corroborated these ideas [6] and allow
verification of the analytic results in the limit of very sma
noise intensity.

Dispersion of the prehistory distribution is importan
not only for its own intrinsic interest, but also because
provides a direct measure of how useful the widely us
(see, e.g., [2–4,7]) concept of the optimal path is goi
to be under the given circumstances: small dispers
implies that almost all paths lie close to the (idealize
D ! 0) optimal path, and vice versa.

The aim of this Letter is to analyze the behavior of th
dispersion and, in particular, to clarify the relationship b
tween its monotonicity and the shape of the potential
which the Brownian particle is moving. The work wa
prompted in part by the observation in [6] that the di
persion parameter shows a monotonic evolution with tim
along the optimal path when the termination point in
bistable potential is located farther from the local max
mum of the potential than one of the stable points. Th
© 1998 The American Physical Society 2273
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the fact that the potential is bistable does not necessa
imply that the dispersion will evolve in a nonmonotoni
fashion. Let us consider a simple system described b
variablexstd satisfying the Langevin equation (in dimen
sionless form)

Ùxstd ­ 2U 0sxd 1 jstd , (1)

whereUsxd represents a potential andjstd is a Gaussian
white noise with

kjstdl ­ 0, kjstdjssdl ­ Ddst 2 sd . (2)

In the limit of very small noise strength, the prehistor
distribution is of Gaussian form, centered around th
optimal path,

phsx, t; xf , tfd ­ f2pDsst; xfdg21y2

3 exp

µ
2

fx 2 xoptst; xfdg2

2Dsst; xf d

∂
, (3)

where the optimal path,xoptst; xfd, is given as the solution
of

Ùxoptstd ­ U 0sxoptd . (4)

The width of the Gaussian has been expressed asDsst; xfd
so that the dispersion parameter,sst; xf d, is independent
of the noise strength. It is given by the expression [5]

ssx; xfd ­ fU 0sxdg2
Z xf

x
dy fU 0s ydg23,

x ­ xoptst; xfd .
(5)

Notice thatU 0s yd fi 0 for any point inside the integration
interval.

For bistable potentials, the dispersion parameter as
function of x can exhibit a nonmonotonic evolution when
xst , x , xf , xun wherexun is the unstable point and
xst is one of the stable points [5]. This effect become
more pronounced as the final pointxf gets closer to the in-
stability point. On the other hand, the behavior ofssx; xfd
is monotonic whenxf , x , xst , xun [6]. Clearly, the
same holds true if one analyzes fluctuations around
other stationary point but with the signs of the inequalitie
reversed. For quartic potentials with a single minimum
ssx; xf d is monotonic regardless of whether the interv
of interest is on the right or the left of the minimum. Th
question naturally arises, therefore, as to whether or n
bistability is a necessary condition for the occurrence
nonmonotonic behavior of the dispersion parameter. W
now point out that this is not, in fact, the case: the existen
of nonmonotonic behavior is independent of the bistabl
monostable character of the potential. This can be se
by considering Eq. (5). Nonmonotonicity of the dispe
sion occurs if the slope ofssx; xf d is equal to zero at some
point within the interval of interest. Equivalently, if for a
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given final pointxf there exists at least one solution of the
equation

2U 00sxdssx; xf d 2 1 ­ 0 (6)

in the intervalsxst, xfd, the dispersion will show a non-
monotonic behavior. Heressx; xfd is given by Eq. (5).
If (6) has several solutions, thenssx; xfd will show sev-
eral extrema. If, for a given potential and final termina
tion pointxf , no solution of (6) exists, then the dispersion
parameterssx; xfd will be monotonic.

To check these ideas we have carried out experimen
and numerical simulations of the Langevin equation fo
several types of potential. Analog electronic circuits
driven by white noise have been constructed [8] to mode
the equations of interest. Starting with the system i
the vicinity of one stable state, successive blocks ofxstd
time series were digitized with a Microstar DAP3200A/
415 ADC (analog-to-digital converter) [9], and examined
The moment at whichxstd eventually reached a given
final point xf was recorded, and the path followed by the
system in reaching that point was also recorded. The pr
cess was then repeated, so as to build up an ensemble
erage of the paths leading toxf . We have also solved the
Langevin equation (1) numerically, using standard tech
niques [10]: the prehistory distribution and its parameter
were obtained through similar procedures to those use
in the analog experiments, but with an important differ
ence. As discussed previously, provided that the detaile
balance condition holds in the system under study, it ca
be exploited to evaluate the prehistory distribution in a
relatively rapid and efficient manner [6]. For a Markov
process with detailed balance, we can write

phsx, t; xf , tfd ­ w1j1sx, jt 2 tf j; xfd, st , tfd ,
(7)

which shows that, for timest prior to the final observation
time tf , the prehistory distribution can be found from a
knowledge of the forward conditional probability density.
Rather than waiting for the fluctuating system to arrive
naturally atxf as in the analog experiments, therefore, w
proceed by generating trajectoriesstarting from xf at time
tf ­ 0, and we allow the system to evolve forward in time
The construction ofphsx, t; xf , tfd from the resultant sto-
chastic trajectories is then straightforward. Note that th
technique wouldnotbe applicable to systems for which de-
tailed balance does not hold. This is the case in the mod
analyzed by Maier and Stein [3]. Even though an equ
librium distribution exists, the potential conditions are no
satisfied for certain values of the parameters character
ing the model, and the system lacks detailed balance. T
technique is also inadequate for externally driven system
where a time independent equilibrium distribution does no
exist. These last two examples, showing that the time
reversal symmetry of the fluctuations is broken, have bee
recently studied in [11].
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As a first explicit example, let us consider the potentia

Usxd ­ 2
x2

2
1

x4

20
2 20x , (8)

which is asymmetric around the single minimum locate
at xst ­ 5. A numerical analysis of Eq. (6) indicates tha
it has a single solution whenxf , xst, while no solution
exists forxf . xst. Thus, one expects that the prehistor
distribution will have a width with a nonmonotonic depen
dence on time in the first case, while its behavior shou
be monotonic whenxf . xst. For instance, forxf ­ 2.49,
Eq. (6) has a single root at the pointx ­ 4.14. In Fig. 1,
we plot the results of the analog experiments and the n
merical solution of the Langevin equation for two differen
values ofxf located on either side of the potential mini
mum. Agreement between the results obtained throu
these very different approaches may be regarded as sa
factory. The analog data reach the abscissa axis sligh
farther from the potential minimum than the chosenxf in
each case on account of the coarse graining in coordin
and time introduced by the ADC, which means that the
is on average some overshoot before a crossing ofxf is de-
tected, and the same effect also causes the maximum va
of s to be underestimated. The numerical trajectories,
contrast,start from the chosen value ofxf in each case
(prior to the use of time reversal under the detailed balan
condition, as discussed above), so there is no possibility
an overshoot. The most important feature, clearly show
by both the analog and numerical results, is the mark
difference in behavior according to whetherxf is larger or
smaller thanxst.

When the final point is to the right of the minimum
xf ­ 7.0 . xst, the dispersion is monotonic, just as ex

FIG. 1. Dispersion parameter for the asymmetric single
minimum potential (8) plotted in the inset. Numerical (curves
and analog experimental (points) data withD ­ 4 are shown
for arrivals at two different termination points:xf ­ 2.0
(circles and full curve) andxf ­ 7.0 (squares and dashed
curve), respectively. At large negative times, the syste
approaches its stationary state atx ­ 5 in both cases.
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pected. Whenxf ­ 2.0 , xst, on the other hand, there is
a clear nonmonotonicity ofssx; xf d. Its maximum occurs
very near the theoretically predicted position. Thus, no
monotonic behavior can indeed exist even in the absence
an instability point in the potential. It should be mentione
that the matching of the experimental and numerical resu
provides further [11] corroboration of the expectation tha
when detailed balance holds, the main fluctuational pat
away from the stable point are time-reversed mirror imag
of the relaxational paths towards it.

As a second example, we consider the prehistory pro
lem for a more complicated potential that has been us
to describe several aspects of the dynamics of fluctu
tions in SQUIDS (superconducting quantum interferenc
devices) [12]

Usxd ­ 0.15sx 1 2pd2 2 cossxd . (9)

This potential has a single minimum atxst ­ 22p , about
which it is symmetric, as seen in the inset of Fig. 2. Th
existence of solutions of Eq. (6) depends upon the locati
of xf . For xf very close toxst, there are no solutions of
Eq. (6), and, therefore,ssx; xf d is monotonic. Actually,
it follows from Eq. (5) that, regardless of the shape of th
potential, the dispersion is always monotonic provided th
xf is sufficiently close to the stable point. Once the fina
point is sufficiently far from the stable point, however
solutions of Eq. (6) exist. Their number increases as t
distance of the observation point from the minimum i
increased. A new extremum of the dispersion parame
appears corresponding to each of these solutions.
Fig. 2, we compare the results of the numerical simulatio
and the analog experiments for the potential of Eq. (9), f
a noise strengthD ­ 2.54 and xf ­ 3. This end point
is far from the minimum of the potential, and Eq. (6

FIG. 2. Dispersion parameter for the symmetric single
minimum potential (9) plotted in the inset. Numerical (curve
and analog experimental (points) data withD ­ 2.54 are
shown for arrivals atxf ­ 3. At large negative times, the
system approaches its stationary state atx ­ 22p. Only one
extremum is resolved.
2275



VOLUME 80, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 16 MARCH 1998

s

l

has three roots located atx1 ­ 0.89, x2 ­ 20.52, and
x3 ­ 24.41. It is clear from the plots that the dispersio
parameter shows a very distinct maximum located atx ø
24, but that the other two predicted extrema do not appe
The shift in the position of the main maximum and th
absence of the other two extrema are both attributa
to the finite value ofD used in the experiments. Note
that Eq. (6) was derived in the asymptoticD ! 0 limit,
so that it cannot necessarily be expected to give go
results for finite noise values. To test this explanatio
we have repeated the numerical experiments for mu
weaker noise intensity, withD ­ 1028. The results are
presented in Fig. 3 in the form of a semilog plot to exhib
the extrema to best advantage. The numerical error can
estimated from the technique used (fourth-order Rung
Kutta with 1000 trajectories, a time step of 0.001, an
a total run time of 15 000), from the total number o
trajectories or, perhaps more conveniently, directly fro
the small statistical deviations that are visible about
smooth curve in the figure. In all cases, one concludes t
the numerical uncertainty is considerably smaller than t
difference (0.137) between thessx, xf d values computed
at the local minimum and the smaller local maximum.
is clear, therefore, that for this very small value ofD all
three extrema are unambiguously resolved.

In conclusion, analog experimental and numerical s
lutions of Langevin equations show that the dispersi
parameter of the prehistory distribution as a function
position along the optimal path can have a nonmonoto
dependence onx ­ xopt, even for monostable, symmet
ric potentials. The monotonicity property is related t
the global aspects of the potential indicated by Eq. (
The theoretical predictions are asymptotically valid in th
limit of very small noise intensity. Experimental data ar
always obtained for finite noise strength, and their com
parison with theoretical predictions requires finite noi
effects to be properly taken into account. Even for fini
noise, the comparison between the numerical and exp
mental data can be regarded as very satisfactory. On
other hand, stochastic simulations based on the deta
balance property can be carried out for extremely sm
values ofD. Thus, they provide results which are we
within the asymptotic limit where they can be matched d
rectly against theoretical predictions.
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FIG. 3. Semilogarithmic plot of the dispersion parameter for
the same symmetric single-minimum potential of Fig. 2 for
xf ­ 3, but with D ­ 1028. The results were obtained by
numerical solution of the Langevin equation. Three extrema
are clearly resolved.
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