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Abstract

The first observations of noise-induced enhancements and phase-shifts of a weak pe-

riodic signal - characteristic signatures of stochastic resonance (SR) - are reported for a

monostable system. The results are shown to be in good agreement with a theoretical

description based on linear response theory and the fluctuation dissipation theorem. It is

argued that SR is a general phenomenon that can in principle occur for any underdamped

nonlinear oscillator.
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Stochastic resonance (SR) is widely perceived as a phenomenon peculiar to bistable

systems in which, under appropriate conditions, a weak periodic signal can be amplified

by the introduction of external noise. It has been studied in a variety of contexts including

meteorology [1], lasers [2], passive optical systems [3], electron spin resonance (ESR) [4],

electronic circuits [5, 6] and a magnetoelastic ribbon [7]; arguably it is also of relevance

to the function of sensory neurons [8]. In all of these cases, the mechanism [9] of stochas-

tic amplification depends on the onset, for appropriate noise intensity, of quasi-periodic

fluctuational transitions between coexisting attractors corresponding to the minima of a

static bistable potential. At first sight, therefore, it would appear that there are pow-

erful a priori reasons to suppose that SR cannot occur at all unless the system under

study possesses at least two coexisting attractors; but we will demonstrate below that

the conventional wisdom is wrong. In this Letter we develop a rather different and much

more general perception of SR that shows, remarkably, that the phenomenon need not

be confined to static bistable (or multistable) systems but can also manifest itself, for

example, in a class of monostable nonlinear oscillators.

We propose that candidate systems in which to seek new forms of SR may readily be

identified through the perception of SR as a linear response phenomenon [6]. In practice,

one should seek systems which, when driven by Gaussian white noise, exhibit one or more

well-defined sharp maxima in the spectral densities Q0(ω) of their fluctuations (SDFs) in

the absence of the periodic force. In those cases where the SDF close to such a maximum

increases rapidly with noise intensity T, the fluctuation dissipation theorem [10] implies

that the susceptibility of the system must also be increasing with T, and a manifestation

of SR is therefore to be expected when the weak periodic force is added to the system.

(In this scenario, conventional SR is associated with the zero-frequency SDF peak [15]
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corresponding to inter-well hopping within the static bistable potential.)

The advantages and disadvantages of the linear response theory (LRT) approach to SR

have already been rehearsed elsewhere [11]. Nonetheless, it may be worth repeating that

the disadvantage of LRT is that it is only applicable when (as is often the case in practice)

the periodic force is weak. Of its many advantages we would emphasize here only that, in

contrast to other theories of SR (e.g. [12-14]), LRT avoids the problem of non-stationarity

by calculating the susceptibility from Q0(ω) in the absence of the periodic force.

An example of a promising monostable candidate system in which to seek SR, which

fulfills [16] the criteria proposed above, is provided by the single-well Duffing oscillator

driven by Gaussian white noise plus a weak periodic force

q̈ + 2Γq̇ +
dU(q)

dq
= f(t) + A cos Ωt (1)

U(q) =
1

2
q2 +

1

4
q4 +Bq

Γ� 1, 〈f(t)〉 = 0

〈f(t)f(t′)〉 = 4ΓTδ(t− t′)

We consider two distinct cases, depending on the magnitude of |B|. In case (a), |B| <

0.43, the variation of the oscillator’s eigenfrequency ω(E) with energy E measured from

the bottom of the potential well is monotonic [16], as sketched in Fig 1(a). In the absence

of the periodic force (A = 0), for small noise intensity T , a narrow Lorentzian peak of width

∼ Γ occurs in the SDF at frequency ω(0). As T is increased, the average energy E of the
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oscillator rises, and the peak broadens asymmetrically [16] towards higher frequencies. For

an Ω > ω(0), initially on the tail of the peak i.e. [Ω−ω(0)] > Γ, the magnitude of Q0(Ω)

therefore increases very rapidly (approximately exponentially) with T . The corresponding

increase in the generalised susceptibility χ(Ω) of the system implied by the fluctuation

dissipation theorem [10] means, in turn, that a weak periodic force on the right hand side

of (1) will be amplified by an increase of T . Surprising though it may seem at first sight,

SR is therefore to be anticipated in (1) even though the system is monostable, with U(q)

a smooth single-well potential. The resonance maximum is to be expected when T has

been “tuned” to adjust E such that ω(E) ∼ Ω. This argument is extremely general and

can obviously be applied, perhaps with minor variations, to any underdamped nonlinear

oscillator.

In case (b) with |B| > 0.43, on the other hand, ω(E) is nonmonotonic [16], as sketched

in Fig 1(b). In the absence of the periodic force (A = 0), the system exhibits noise-

induced spectral narrowing [16]; and, for sufficiently small values of the damping constant

Γ, exceedingly sharp zero-dispersion spectral peaks (ZDPs) of width ∝ Γ
1
2 appear [17]

close to the frequency ωm of the extremum where dω(E)/dE = 0. The magnitude of the

ZDP rises exponentially with increasing T. Just as in case (a) the corresponding rapid

increase of χ(Ω) implies a manifestation of SR for Ω close to ωm. The extreme narrowness

of the ZDP [17] suggests that SR in case (b) will be a much more dramatic phenomenon

than in case (a). [Clearly, a case (a) type resonance can also be obtained by making

Ω > ω(0), even when |B| > 0.43.]

To test these predictions, we have sought evidence of SR in an electronic model of (1)

designed, constructed, and operated according to standard practice [18]. For the results

to be presented below, the parameter values used were: Γ = 0.011; A = 0.020; and B =
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0 or B = 2.00 for cases (a) or (b) respectively. The value of Γ was in fact too small to be

determined directly from the circuit components (owing to the effect of stray capacitance

and other non-idealities); instead, it was measured in a separate experiment. The model

was driven with quasi-white noise from an external noise-generator, and with a weak

periodic force from an HP3325 frequency synthesizer. The resultant fluctuating q(t) was

digitized in 1024 point blocks and ensemble-averaged by a Nicolet LAB80 data-processor

to yield 〈q(t)〉 . The advantage of averaging in the time (rather than the frequency)

domain is that it enables measurements to be made of the phase shift φ between the drive

and the response [4, 6, 11] as well as yielding directly the amplitude a of the response.

Measurements were made of the stochastic amplification factor [19]

S(T ) = a(T )/a(0) (2)

and of the corresponding value of φ over a wide range of T for the two cases (a) and (b).

Some typical measurements of the noise-induced power gain are shown by the data

points in Fig 2 (where we plot S2, rather than S, for more convenient comparison with

earlier SR results). It is immediately evident that, both for case (a) (squares) and for case

(b) (circles), S2 at first increases rapidly with noise intensity, but then passes through

a maximum and decreases again, albeit more slowly. That these data should bear a

striking resemblance to those obtained previously for conventional SR [2-7] is, of course,

no coincidence. We emphasize that, in the case of a linear system (harmonic oscillator),

S2 would not increase at all but would remain equal to unity irrespective of the value

of T . As anticipated, the maximum is much larger for case (b) than for case (a); it can

be shown [20] that, in case (b) for sufficently small Γ, not only the signal but also the

signal/noise ratio increases with increasing T within a certain range.
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The measured phase lag −φ between the drive and response is plotted for case (a)

(squares) and case (b) (circles) in Fig 3. The forms of −φ(T ) for the two cases are

strikingly different, but they can readily be understood qualitatively by analogy with a

conventional (deterministic) resonance. In case (a) for T = 0, the periodic driving force is

being applied at a frequency well beyond the natural frequency of the system, Ω > ω(0)

[see Fig 1(a)]. Consequently −φ is close to 180◦. As T is increased, however, the “natural

frequency” ω(E) is effectively being tuned past the fixed driving frequency. Near resonance

−φ passes through 90◦ and, in the high T limit where the “natural frequency” substantially

exceeds Ω, −φ decreases towards 0◦ exactly as would be seen in a conventional resonance.

The phase changes for case (b), while quite different, can be accounted for in a closely

similar way. In this case, the “natural frequency” ω(E) always exceeds that of the drive

Ω [Fig 1(b)], and so the phase lag −φ is always less than 90◦, although it approaches 90◦

near the resonance maximum, just as expected.

A quantitative theoretical description of these phenomena is readily constructed on

the basis of linear response theory (LRT), and is relatively straightforward given that the

SDF of (1) for A = 0, Q0(ω), is already known [16]. The susceptibility χ(Ω) of the system

can be found immediately from the fluctuation dissipation theorem [10]

Reχ(Ω) =
2

T
P
∫ ∞
0

dω1[ω
2
1/(ω

2
1 − Ω2)]Q0(ω1) (3)

Imχ(Ω) = (πΩ/T )Q0(Ω) (4)

where P implies the Cauchy principal part. The squared amplitude of the response is

then just a2 = A2|χ(Ω)|2 so that
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S2 = [a(T )/a(0)]2 = |χ(Ω)|2/{[ω(0)2 − Ω2]2 + 4Γ2Ω2} (5)

and

φ = − tan−1[Imχ(Ω)/Reχ(Ω)] (6)

The quantity Q0(ω) in (3) and (4) - which, we emphasize again, is the SDF in the absence

of the periodic force - was obtained from Eq (20) of Ref [16], also using its Eqs (4a),

4(b), (14), (A7), (A9) and a numerical solution of its (16). Values of S2 and φ calculated

in this way from (3)-(6) for (1) with the parameters used in the circuit and are plotted

(full curves) as functions of T in Figs 2 and 3 for comparison with the experimental

measurements. Given that there are no adjustable parameters, the agreement between

experiment and theory can be regarded as excellent.

The physical mechanisms of these stochastic amplification phenomena differ radically

from that of conventional SR [9], and it might therefore be argued that the new effects

reported in this Letter deserve to be given an entirely different name. We would disagree

with any such proposition, however, on two grounds: because, as we have shown, a unified

theoretical description of both sets of phenomena can be constructed in terms of LRT

and the fluctuation dissipation theorem; and also because, ironically, the term stochastic

resonance actually provides an apter description of the new phenomena than it does of

conventional SR which, strictly, should not [21] be referred to as a resonance at all.

In conclusion we would emphasize, first, that the case (a) variant of SR discovered

and investigated in the present work is in no way confined to the particular system (1).

Rather, it is a quite general phenomenon, to be anticipated in all underdamped nonlin-

ear oscillators. In all situations where, as in case (b) the eigenfrequency has a smooth
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extremum in its variation with energy (or has a higher singularity), a more pronounced

manifestation of SR is to be anticipated: it might reasonably be called zero-dispersion

stochastic resonance (ZDSR). Secondly, there is an interesting distinction between the

present results and those of conventional SR. In the latter case, stochastic amplification

occurs in both overdamped and underdamped systems but is at its most pronounced when

the damping is large; the new forms of SR studied above, on the other hand, are entirely

restricted to underdamped systems and are most pronounced when the damping is small.

Finally, the differing dependences of the SR phase shift on noise intensity for cases (a)

and (b) have helped to illuminate in a satisfying way the remarkably close analogy that

exists between stochastic and deterministic resonance phenomena.

This work developed out of discussions with Mark Dykman, who first proposed that

SR should be considered within the conceptual framework provided by LRT and the

fluctuation dissipation theorem, with Riccardo Mannella who drew our attention to the

significance of phase shifts in SR, and with Slava Soskin who predicted the existence of the

zero dispersion spectral peaks. It was supported by the Science and Engineering Research

Council (UK), by the Royal Society of London, and by the European Community.
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Figure 1: Sketches to show the dependence of the eigenfrequency ω(E) on energy E

measured from the bottom of the potential well for the system (1): (a) for |B| < 0.43;

(b) for |B| > 0.43. Frequencies Ω at which a weak periodic force will be amplified by SR

are indicated.
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Figure 2: The squared stochastic amplification factor S2 measured for case (a) (squares)

and case (b) (circles) as a function of noise intensity T for the electronic circuit model

of (1) with A = 0.02 is compared with the theoretical predictions (full curves) obtained

from the fluctuation dissipation theorem.
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Figure 3: The phase difference−φ (in degrees) between the driveB cos Ωt and the response

〈q(t)〉 measured for case (a) (squares) and case (b) (circles) as a function of noise intensity

T for the electronic circuit model of (1) with A = 0.02 is compared with the theoretical

predictions (full curves) obtained from the fluctuation dissipation theorem.
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