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Abstract
A new form of stochastic resonance (SR), recently discovered in underdamped nonlinear
oscillators for which the dependence of eigenfrequency upon energy has an extremum, is
investigated. Its characteristic features are identified and discussed on the basis of linear
response theory and the fluctuation dissipation theorem. In common with conventional
SR (in bistable systems), sharp increases in the response to a weak periodic force, and
in the signal/noise ratio, occur with increasing intensity of external noise (temperature)
within a certain range. Unlike conventional SR, however, the dependence of the response
on frequency is strongly resonant.
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The physical mechanism underlying stochastic resonance (SR) [1-3], in which a weak peri-
odic signal can be optimally amplified by the introduction of external noise of appropriate
intensity, is usually assumed to involve fluctuational transitions between the coexisting
attractors of systems with double-well (or multi-well) static potentials. We shall refer to
phenomena arising through this mechanism as conventional SR. Numerous examples have
been found [4] in physics, engineering and biology, as well as in geophysics [2, 3]. The
theory of conventional SR has been developed both in terms of Fokker-Planck approxi-
mations [5-9] and also through the application of linear response theory (LRT) and the
fluctuation dissipation theorem [10, 11].

Recently, it has become apparent that SR is actually a much more general phenomenon
than had previously been supposed. In particular, it has been shown [12] that significant
stochastic enhancements of weak periodic signals can also occur, under appropriate con-
ditions, in underdamped monostable systems. The most pronounced enhancements oc-
curred for a system having an extremum in the dependence of its eigenfrequency upon en-
ergy ω(E), as sketched in Fig 1. They were observed when the frequency Ω of the periodic
force applied to the system (the signal) was close to the extremal frequency ωm = ω(Em)
at which the dispersion [dω(E)/dE]E=Em was equal to zero, and the phenomenon was
consequently referred to as zero-dispersion stochastic resonance (ZDSR). In this Letter
we identify and discuss the characteristic features of ZDSR, the ways in which it differs
from conventional SR and, in particular, the extent to which noise-induced enhancements
of the signal/noise ratio may be anticipated. We first consider the phenomenon in relation
to a general one-dimensional underdamped oscillator with coordinate q(t),

q̈ + 2Γq̇ +
dU(q)

dq
= f(t) + A cos Ωt (1)

Γ� 1, 〈f(t)〉 = 0

〈f(t)f(t′)〉 = 4ΓTδ(t− t′)

where f(t) is white Gaussian noise of zero mean and intensity T , Γ is the damping constant
which is assumed small, and A cos Ωt is the weak periodic signal whose enhancement will
occur under SR conditions. The only restriction placed on the potential U(q) at this stage
is that it should be such that ω(E) will possess at least one extremum, as discussed above.
After discussing ZDSR in quite general terms, applicable to any oscillator of this type,
we will consider in detail a particular archetypal example of such a system, the tilted
single-well Duffing oscillator.

The physical origins of ZDSR can be understood qualitatively in terms of two distinct
but linked considerations. First, it is possible for the response to the periodic force to
become substantial, even at a frequency Ω ' ωm different from the oscillator’s natural
(E → 0) frequency ω0, if the system is “tuned” by the introduction of external noise
of appropriate intensity T (or equivalently by raising the temperature) such that the
probability ∝ e−Em/T of its reaching energy Em becomes significant. The response may
therefore be expected to increase rapidly with increasing T . Secondly, and of central
importance for this Letter, the lack of dispersion near ωm means that fluctuations in
the energy of the system will exert only a minimal disruptive influence on the resonance
(because the resonant frequency is then virtually energy-independent).
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Figure 1: Sketch to illustrate the variation of eigenfrequency ω(E) with energy E typical of
the class of oscillators considered. The eigenfrequency has a minimum value ωm ≡ ω(Em)
at energy Em. The inset shows a zero-dispersion spectral peak (the sharp spike) appearing
in the fluctuation spectrum of the system (1), (11) with B = 2, 2Γ = 1.7 × 10−3, T =
0.485 measured in the absence of the periodic force (A = 0) using an electronic analogue
simulator [19].

Provided that the periodic force is weak, a quantitative description of SR in quasi-
thermal equilibrium systems can be developed on the basis of LRT and the fluctuation
dissipation theorem [10-12]. We suppose that the ensemble-averaged response of the
system to a weak periodic force A cos Ωt can be characterized by a susceptibility χ(Ω), so
that

〈q(t)〉 = ARe[χ(Ω)e−iΩt] (2)

where χ(Ω) can [13] in turn be expressed in terms of the fluctuation dissipation theorem
[14],

Reχ(Ω) =
2

T
P
∫ ∞

0
dω1[ω2

1/(ω
2
1 − Ω2)]Q0(ω1) (3)

Imχ(Ω) = (πΩ/T )Q0(Ω) (4)

Here, P implies the Cauchy principal part and

Q0(ω) ≡ 1

2π

∫ ∞
−∞

dte−iωt〈q(t)q(0)〉 (5)
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is the spectral density of the fluctuations (SDF) of the system in the absence of the periodic
force. It has been suggested [12, 15] that SR-like phenomena are to be anticipated in any
physical system where Q0(ω) possesses one or more sharp peaks that increase rapidly with
increasing T . Accordingly, we suppose that Q0(ω) has a high, narrow, maximum at some
frequency ωm. (If the potential resembles that sketched in Fig 1, ωm will correspond, as
above, to the extremal frequency at E = Em.) Thus we can write

Q0(ω) = Qpeak(ω) +Qfar(ω) (6)

where Qpeak(ω) has a maximum of magnitude Qm at ωm whose width ∆ω � ωm. We
suppose Qfar(ω) to be negligible at ωm, but that it may still be substantial at frequencies
situated far from ωm in comparison to ∆ω. If the signal frequency Ω ' ωm, the contri-
butions to Re [χ(Ω)], i.e. to the integral in (3), from frequencies close to ωm (i.e. for
|ω1 − ωm| <∼ ∆ω) and those far from it are respectively

Fclose ∼
1

T
ωm

dQ

dω

∣∣∣∣
Ω'ωm

∆ω ∼ ωmQm

T
(7)

Ffar ∼
1

T

ω2
f

|ω2
f − ω2

m|
Sf (8)

where Sf =
∫
dωQfar(ω) is the area under the far part of the SDF Qfar(ω), and ωf lies

within the range of the maximum of Qfar(ω). If Qfar(ω) has several well-defined maxima,
Ffar should be a sum of analogous terms for each maximum.

It can be seen from (7), (8) that the contribution to the real part of the susceptibility
from frequencies close to ωm does not depend on the width ∆ω of the peak Qpeak(ω)
and that, if the maximum Qm of this peak is high enough, then this contribution will
dominate. Correspondingly, given (4) that Im [χ(Ω ' ωm)] ∼ Qmωm/T , the absolute
magnitude of the response at Ω ' ωm is given by

|χ(Ω)| =
√

[Re{χ(Ω)}]2 + [Im{χ(Ω)}]2 ∼ Qmωm

T
(9)

If Qm increases rapidly with T , then the response of the system to a weak periodic force
A cos Ωt of frequency Ω close to ωm will also increase rapidly with T . Within the linear
response regime, where the signal/noise ratio [10, 11] is given by

R =
1

4
A2|χ(Ω)|2/Q0(Ω) (10)

it is clearly possible for R to rise with increasing T provided only that the increase in
|χ(Ω)|2 with T is sufficiently rapid (i.e. faster than that of Q0(Ω)). In the present case,
where we assume that the height Qm of the narrow peak in the SDF at ωm increases very
rapidly with T , (9) and (10) clearly demonstrate that stochastic resonance in R is to be
expected.

Thus, in the LRT picture, the occurrence of ZDSR stems from the extremely narrow
zero dispersion peaks (ZDPs) [16] that arise in the spectral density of the fluctuations of
the noise-driven underdamped oscillator (in the absence of the periodic force) whenever
the form of ω(E) has an extremum. For the sake of definiteness, we now consider a
particular system of this type, namely the tilted single-well Duffing oscillator, for which
the potential function is
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Figure 2: The signal/noise ratio R for the system (1) (11), calculated from (3)-(5) and
(10) for different values of Γ where Q0(ω) in the absence of the periodic force (A = 0)
was obtained on the basis of the method given in [17]. The value of Ω has been chosen
in each case to correspond to the maximum of the ZDP. The curves plot R as a function
of noise intensity T for: (a) 2Γ = 10−4, Ω = 1.794; (b) 2Γ = 10−3, Ω = 1.798; (c) 2Γ =
10−2, Ω = 1.816; (d) 2Γ = 10−1, Ω = 1.846.

U(q) =
1

2
q2 +

1

4
q4 +Bq (11)

In the absence of damping, and with no noise or periodic force, the dependence of the
frequency ω(E) of conservative vibrations on the energy E = 1

2
q̇2 + U(q) possesses a

minimum [17], of the form sketched in Fig 1, provided that the modulus of the tilt

parameter |B| > 8/(7)
3
2 ' 0.43. Correspondingly, a ZDP may be expected to arise at

the extremal frequency ωm in the fluctuation spectrum of the underdamped oscillator (1),
(11) with A = 0, provided that the noise intensity exceeds some critical value, Tc � Em

[18]. For small enough Γ the shape of the ZDP is universal, its width ∆ω ∝ Γ
1
2 and its

magnitude [16, 18] is

QZDP (Ω) = CsS(
Ω− ωm

∆ωsgn[d2ω(Em)/dE2]
) (12)

where S is a universal function and the scaling factor Cs ∝ Γ−
1
4 exp(−Em/T ). The ZDP

for (1), (11) has recently been observed [19] in analogue electronic experiments (see Fig 1
inset) and found to rise extremely rapidly (exponentially) with increasing T , in excellent
agreement with the theoretical predictions [16, 18].
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Figure 3: Demonstration of the sensitivity of ZDSR to small changes in the frequency Ω
of the periodic force. The calculated signal/noise ratio R is plotted as a function of noise
intensity T for the system (1), (11) with 2Γ = 10−4 and: (a) Ω = 1.784; (b) 1.794; (c)
1.804. The inset plots the SR magnitude parameter M directly as a function of Ω for 2Γ
= 10−4.

It is evident, therefore, that the system (1), (11) with |B| > 0.43 meets all the condi-
tions required for the occurrence of ZDSR: in particular, an increase of R with increasing
T , as well as of |χ(Ω)|, is to be anticipated. In order to provide a quantitative descrip-
tion on the basis of (3)-(5) and (10), all that we need is the fluctuation spectrum Q0(ω)
of the system in the absence of the periodic force (A = 0), which can readily be found
numerically using the method given in [17].

Some results of such calculations are shown in Figs 2-4. Figs 2 plots the signal/noise
ratio R as a function of noise intensity T for different values of the damping constant Γ.
It is immediately evident that, for large Γ as in curve (d), R decreases monotonically with
increasing T . For smaller Γ where the ZDP is more pronounced through Cs in (12), on the
other hand, there is a range of T for which R increases markedly with increasing T , i.e. a
strong manifestation of the ZDSR phenomenon is seen for R, not just for the response as
observed [12] previously. The general shape of R(T ), with a rapid rise followed by a slower
decrease as T is increased, is similar to that seen in conventional SR [1, 4, 5]. It is clear

that the magnitude of the ZDSR increase of R rises as Γ becomes smaller (∝ Γ−
1
4 ), just

as expected on the basis of the simple arguments presented above. It may conveniently
be characterized in terms of the ratio of the local maximum and local minimum values of
R(T ),

M = ln(Rmax/Rmin) (13)
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Figure 4: Illustration of the strongly resonant behaviour characteristic of ZDSR. The
calculated response |χ| for the system (1), (11) is plotted directly as a function of the
frequency Ω of the periodic force with 2Γ = 10−4 for three different noise intensities: (a)
T = 0.8; (b) T = 0.4; (c) T = 0.2. Note the highly expanded abscissa scale.

where we set M = 0 when, as e.g. in curve (d), R(T ) is monotonic.
It is interesting to compare ZDSR with conventional SR. One of the most marked

differences is that ZDSR is a strongly resonant phenomenon. Unless the frequency Ω of
the periodic force is very close to ωm, M = 0 i.e. ZDSR does not manifest itself for R. Fig
3 shows the effect of small changes in Ω for 2Γ = 10−4 and it is evident that a change of
± 0.6% in Ω is enough to eliminate the phenomenon completely; the inset shows how the
parameter M varies with Ω. The modulus of the susceptibility |χ|, which determines the
response amplitude through (2), is plotted against Ω (with a highly expanded abscissa
scale) for three values of T in Fig 4, demonstrating the resonant character of ZDSR
explicitly. This behaviour is in striking contrast to that seen in conventional SR, where
the response decreases slowly and monotonically with increasing Ω [5]. For the particular
system (1), (11) and values of Γ considered in the present work, the maximum value of
the signal/noise enhancement parameter, M = 0.86 for 2Γ = 10−4, was considerably less
than the best results (M ' 2.8) achieved in conventional SR [4]; but there is, of course,
no limit in principle to the magnitude of M attainable in ZDSR by making Γ smaller.

In conclusion we would emphasize that the phenomenon of ZDSR, whose characteris-
tic features are discussed above, is in no way confined to the particular model (1), (11)
considered. Rather, ZDSR is a quite general phenomenon to be anticipated in all under-
damped oscillators for which the dependence of eigenfrequency on energy possesses one
or more extrema [16, 18] including, for example, superconducting quantum interference
devices (SQUIDs) [20].
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