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Abstract 

 

Objective: We investigated whether newborns respond differently to novel and deviant sounds 

during quiet sleep. 

Methods: Twelve healthy neonates were presented with a three-stimulus oddball paradigm, 

consisting of frequent standard (76%), infrequent deviant (12%), and infrequent novel stimuli 

(12%). The standards and deviants were counterbalanced between the newborns and consisted of 

500 and 750 Hz tones with two upper harmonics. The novel stimuli contained animal, human, 

and mechanical sounds. All stimuli had a duration of 300 ms and the stimulus onset asynchrony 

was 1 s. Evoked magnetic responses during quiet sleep were recorded and averaged offline. 

Results: Two deflections peaking at 345 and 615 ms after stimulus onset were observed in the 

evoked responses of most of the newborns. The first deflection was larger to novel and deviant 

stimuli than to the standard and, furthermore, larger to novel than to deviant stimuli. The second 

deflection was larger to novel and deviant stimuli than to standards, but did not differ between 

the novels and deviants.  

Conclusions: The two deflections found in the present study reflect different mechanisms of 

auditory change detection and discriminative processes. 

Significance: The early brain indicators of novelty detection may be crucial in assessing the 

normal and abnormal cortical function in newborns. Further, studying evoked magnetic fields to 

complex auditory stimulation in healthy newborns is needed for studying the newborns at-risk for 

cognitive or language problems. 
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Introduction 

 

Repetitive auditory stimulation in sleeping human newborns elicits a positive deflection in the 

event-related potential (ERP), with a latency of about 200-300 ms (Ohlrich et al., 1972; Ellingson 

et al., 1974; Kurtzberg et al., 1984; Novak et al., 1989; Cheour et al., 1998, 2002a; Kushnerenko 

et al., 2002b). Recently, several studies showed responses at similar latencies (Lengle et al., 

2001; Huotilainen et al., 2003; Cheour et al., 2004; Kujala et al., 2004; Pihko et al., 2004) in 

recordings of evoked magnetic fields (ERFs). 

     Besides reacting to the repetitive stimulation evoking this basic deflection, newborns can  

detect changes in otherwise repetitive streams of stimuli, as has been shown frequently using 

ERPs (e.g., Alho et al 1990; Kushnerenko et al., 2002a; Martynova et al., 2003) and lately also in 

ERF studies (Huotilainen et al., 2003; Kujala et al., 2004). This response has been associated 

with the so-called mismatch negativity (MMN), a pre-attentive change-detection response in 

adults. The MMN is suggested to be evoked by a comparison process between an irregular, 

deviant stimulus and a sensory memory trace formed by a standard stimulus (e.g., Näätänen and 

Winkler, 1999). The MMN component is elicited by any discriminable change in repetitive 

auditory stimulation. Furthermore, it can be elicited in the absence of attention. In newborns, this 

change-detection response can be elicited during sleep. For the neonate studies, this is important, 

since neonates sleep most of the time. In addition, due to e.g., lesser movements, the noise level 

of electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings of newborns 

during sleep is significantly smaller than during awake state. 

     So far, studies on newborns have mostly been carried out with the typical oddball paradigm 

where the deviants differ from the standard on one aspect, such as pitch or duration, only. It was 

shown that a mismatch response was elicited both to changes in speech stimuli (e.g., Leppänen et 

al., 1999; Cheour et al., 2002b) and to changes in pure or complex tones (e.g., Leppänen et al., 

1997; Čeponiene et al., 2002; Huotilainen et al., 2003). An oddball paradigm has been used to 

demonstrate that sleeping newborns are able to learn to discriminate small differences in speech 

sounds. The MMN-like activity was larger in a group of newborns that had received nocturnal 

stimulus training than in those that had not (Cheour et al., 2002b).  

     The change detection response found in newborns does not necessarily have the same 

potential distribution across the scalp as it does in adults. In adults, the MMN appears strongest at 
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mid-frontal and mid-frontocentral electrodes, and is negative in polarity. In infants, both the 

polarity and the location of the strongest response have varied across studies (see Leppänen et al., 

2004 and Friedrich et al., 2004 for a discussion). 

      The role of the MMN response is proposed to be that of an automatic warning system 

(Näätänen and Winkler, 1999). Since the warning system is subconsciously monitoring the sound 

environment and alarming in case of changes, the conscious resources can be saved for other 

tasks. Possibly due to this important evolutionary role, the MMN has, additionally to the newborn 

mismatch response, also been observed in monkeys, cats (Csepe et al., 1987), and even in rats 

(Javitt et al., 1992; Ruusuvirta et al., 1998). It is proposed that the MMN process triggers the 

involuntary attention-switching mechanism, manifested in the P3a response (Escera et al., 1998), 

in order to shift the attention away from the primary task towards the change appearing in the 

unattended auditory stimulation. Also later processes for reacting and attending to the change 

may be triggered, which are manifested in children and infants as late deflections found in the 

responses to the changed sounds, such as the late discriminative negativity (LDN) or late 

negativity (LN) (Čeponiene et al., 1998, 2002, 2004; Martynova et al., 2003; Shestakova et al., 

2003).  

     The LDN occurs at latencies of 300 – 750 ms in newborns (Čeponiene et al., 2002; 

Kushnerenko et al., 2002a; Martynova et al., 2003). The functional significance of this 

component is still unknown. Further, McIsaac and Polich (1992) have observed a late positive 

deflection to the deviant stimuli at around 600 – 900 ms in 6–10–month–old infants. They 

suggested that this deflection was the equivalent of the adult P3 component. Furthermore, they 

proposed that this infant ERP component indicates higher cortical functioning in infants. The 

adult P3 component can be divided into P3a and P3b components. The P3a reflects an orienting 

response or novelty detection (Picton, 1992) and can be recorded by both EEG and MEG (Alho 

et al., 1998), whereas the P3b is said to reflect stimulus evaluation or event categorization 

(Donchin, 1981; Kok, 2002) and is rarely obtained in MEG studies. The infant P3 component 

revealed by McIsaac and Polich (1992) mirrored the adult P3a component.  

     Up to now, it has not been studied within one and the same oddball block in newborns 

whether attention-attracting novel stimuli elicit stronger responses than the normal deviants, 

differing from the standard sounds only slightly. Kushnerenko and her colleagues (2002a), 

however, used two different paradigms, a regular oddball task and a task where the deviant was 
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replaced with so-called novel, attention-attracting stimuli, such as animal and human sounds. In 

their study, a large positivity, larger than that to the deviants, was found in response to the novel 

sounds. As did McIsaac and Polich (1992), Kushnerenko with her collaborators suggested that 

this peak might be an analogue of the adult P3a. 

     In the present study, we aimed at examining whether newborns respond differently to novels 

and deviants within a three-stimulus oddball task. Standard and deviant stimuli were 500 Hz and 

750 Hz tones with two upper harmonics and stimuli including human, animal, and mechanical 

sounds served as novels. 

 

Methods 

 

Subjects 

Auditory magnetic fields were recorded from eleven healthy term newborns (gestational ages 39 

to 42 weeks; 6 female) at the age of 1 to 4 days, and in one girl on postnatal day 16 

corresponding to a postconceptional age of 39 weeks + 2 days. The infants had an Apgar score of 

8–9 at 1 min and a birth weight ranging from 3070 to 3980 g. They were recruited to the study 

from the maternity ward of Helsinki University Central Hospital. Parental written informed 

consent was obtained before enrolment. The Ethics Committee of the Hospital District of 

Helsinki and Uusimaa approved the study plan.  

 

Data acquisition 

MEG was recorded using a helmet-shaped Vectorview magnetometer (Elekta Neuromag, Oy, 

Helsinki) of the BioMag Laboratory, Helsinki University Central Hospital, with 306 channels, in 

an electromagnetically shielded environment. The channels are located at 102 positions 

uniformly over the adult head with two orthogonal planar gradiometers and one magnetometer at 

each location. The measuring helmet was in supine position and the newborn was lying with the 

right hemisphere over the ‘occipital’ part of the helmet, enabling the recording of responses of 

the right hemisphere of the neonates.  

     Simultaneous EEG and electro-oculographic (EOG) recordings were made with silver-silver 

chloride disk electrodes to monitor the sleep stages (due to technical problems, the EEG could 

not be used to calculate ERPs). EEG was recorded at F4, Cz, and P4 locations. EOG was 
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recorded from the upper left and lower right corners of the eyes. The reference electrode was 

placed on the right mastoid and the ground electrode on the forehead.  

     Both MEG and EEG were recorded with a band-pass filter of 0.03 – 200 Hz and sampled at 

600 Hz.  

 

Stimuli and procedure 

Stimuli were presented in a three-stimulus oddball condition consisting of standard, deviant, and 

novel sounds, with all stimulus types present within each sequence. The stimuli were generated 

using the program ‘Adobe Audition’ and the experiment was performed using Presentation® 

software (Version 0.70, www.neuro-bs.com). The standard and deviant stimuli were 500 Hz and 

750 Hz tones with two upper harmonic components (1000 and 1500, 1500 and 2250 Hz, 

respectively). The intensity of the first and second harmonic components was decreased 

compared to the fundamental by 3 and 6 dB, respectively. Half the newborns received the 500 Hz 

tones as standard, whereas the 750 Hz tone was used as standard for the other half. Novel stimuli 

consisted of three stimulus categories of 20 different sounds, namely animal, human, and 

mechanical sounds. The deviant and novel stimuli were each presented in 12% of the trials. All 

sounds had an approximate intensity of 75 dB, a duration of 300 ms with 10-ms rise and fall 

times, and were presented with a 1000 ms stimulus onset asynchrony and equal intensities to the 

left ear through a plastic tube with a soft earpiece.  

     The infant was placed in a crib and EEG and EOG electrodes were attached to the skin. A 

cloth cap was placed over the EEG electrodes and four marker coils were attached for 

determining the position of the head. The position of the coils in the head coordinate system was 

determined with an Isotrak 3D digitizer (Polhemus). Thereafter, the newborn infant was placed 

on a bed next to the MEG helmet in a magnetically shielded room (ETS; Lindgren Euroshield 

Oy, Eura, Finland). If necessary, the baby was fed before the recording started. The infant’s 

behaviour (eyes open/closed, eye and muscle movements and breathing pattern) was 

continuously registered by one of the researchers. The recording was started when the newborn 

was sleeping and the total measurement (preparation and recording) never lasted longer than two 

hours.  
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Sleep stage determination 

The sleep stage was determined using the MEG, EEG, EOG, and behavioural measures of the 

newborns. Active sleep (AS) was characterized by closed eyes, irregular respiration pattern, 

saccadic eye movements, and occasional facial twitches in the behavioural judgment, by low-

voltage high-frequency activity in EEG and MEG, and by sharp eye movements in EOG. Quiet 

sleep (QS) was characterized by closed eyes and a very regular respiration pattern and either 

high-voltage low frequency activity or tracé alternants (high and low-voltage slow waves 

alternating) on EEG and MEG. Responses were averaged according to those sleep stages. Only 

the responses elicited during the QS will be presented in this paper. 

 

Analysis 

Averages for each of the three stimulus types were made offline, according to the sleep stages. 

Trials during which the neonate moved were rejected. Recordings (n=11) in which the averages 

in both the deviant and novel condition included at least 100 trials/responses were included in the 

statistical analysis. The Signal Space Separation method (Taulu et al., 2004) was performed on 

each of the averages to remove artefacts from outside the helmet (e.g., heart beats and line 

frequency noise).  

     Vector sums, calculated from the gradiometer channel pairs using a 40 Hz low-pass filter, 

were used for amplitude comparisons of the responses to the three stimulus types. For each 

infant, a mean of the vector sums from three adjacent channel pairs with the largest responses 

was used for further analysis. Two deflections were observed in the evoked magnetic responses 

of the newborns. For each neonate, the peak latency was determined for both deflections and a 

mean amplitude in a window of 60 and 100 ms around the peak for the first deflection (named 

P1m) and the second deflection (named P2m), respectively, was used for statistical analysis.  

     A Univariate analysis of variance (ANOVA) with Stimulus Type (standard, deviant, and 

novel, 3 levels) as within-subject factor was performed. The Bonferroni correction was used for 

post-hoc tests. The level of significance was set at 0.05 throughout. 
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Results 

 

Figure 1 shows a grand average of 10 subjects from all the gradiometer channels. The channels 

from the occipital part of the helmet, on which the infants’ heads were laying, are shown 

enlarged. Two deflections, pointed out as P1m and P2m, can be seen. Figure 2 shows responses 

from one representative newborn (infant 6) during the QS. The same two-peaked pattern can be 

detected, with latencies of 310 and 600 ms, respectively. Most of the newborns revealed the two-

peaked pattern (see Figure 3, infants 1-7), whereas others (see Figure 3, infants 8-11) only 

showed a P1m. The mean latencies of P1m and P2m over all infants were 345 and 615 ms, 

respectively.  

 

Field distributions 

Figure 4 shows field distributions during the peaks of P1m and P2m for the deviant response in 

infant 4 and for the novel response in infant 6. It can be seen from the direction of the arrow, 

depicting the direction of the neural currents that, in both newborns, the responses recorded with 

ERPs would appear positive in polarity at the frontal and central electrodes. In general, the field 

distributions were similar in all newborns except for infant 11 who had the first deflection with 

an opposite distribution. Therefore, P1m of infant 11 was excluded from statistical analysis (See 

Leppänen et al., 2004 for a discussion on the polarity of responses).  

 

Stimulus effects 

Figure 2 shows responses to the standard, deviant, and novel stimuli for eleven newborns during 

the QS at a representative gradiometer channel. Table 1 gives the mean amplitudes to the three 

stimulus types for both deflections. The deviant and novel stimuli elicited larger responses than 

the standard stimulus for both deflections. In most of the infants, the novel elicited larger 

amplitudes than the deviant, at least for the first deflection.  

     The ANOVA for P1m revealed a significant effect of Stimulus Type [F (2,8) = 17.81, P < 

0.001]. Post-hoc evaluation showed that the novel and deviant stimuli elicited larger responses 

than did the standards (P < 0.01 for both). The responses to the novel stimuli were larger than 

those to the deviant stimuli (P < 0.05). 
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     An ANOVA for P2m showed an effect of Stimulus Type [F (2,8) = 8.38, P < 0.009]. Post-hoc 

analysis revealed that the novel and deviant stimuli elicited larger amplitudes than did the 

standard stimuli (P < 0.01 and P < 0.05, respectively), whereas the responses to the novel and 

deviant stimuli did not significantly differ. 

 

 Discussion 

 

This study demonstrated that newborns respond stronger to novel than to deviant stimuli, as was 

shown by the increased responses to the novels compared to deviants for the first deflection. The 

second deflection, however, did not reveal such an effect as manifested in equally large 

amplitudes elicited by deviants and novels. 

     A magnetic counterpart has been found to the negative MMN-like response in neonates when 

using frequency deviants (Huotilainen et al 2003). This deflection was localized in or close to the 

auditory cortex, in which the adult MMN is also partly generated (e.g., Hari et al., 1984, Rinne et 

al., 2000; Paavilainen et al., 2003). Kujala and her colleagues (2004) replicated this finding using 

speech stimuli. In the present study, we were not able to accurately locate the two deflections in 

all subjects, even though several cases (e.g. those seen in Figure 4) suggested origin in the right 

temporal lobe. However, from the field distributions, even with non-successful dipole fitting, we 

could verify that the mismatch response was vertex-positive rather than negative. Several factors 

including maturational, data-analysis-related, and paradigm-related issues, can account for this 

polarity difference (Leppänen et al., 2004).  

     In healthy newborns, the MMN-like component appears with a latency of about 200-300 ms 

(e.g., Cheour et al, 2002b; Kushnerenko et al., 2002a; Huotilainen et al., 2003). In the present 

study, however, the first deflection showing the discriminative effect  occurred only at around 

350 ms after stimulus onset. Possibly the deflection reached a maximal amplitude later because 

we used rather long stimulus durations compared with the other studies (300 ms vs. 100 ms). The 

temporal extension of the response to longer syllables in contrast to shorter ones was reported 

also by Friedrich in 2–month–old babies (Friedrich et al. 2004). Therefore, it is likely that this 

deflection reflects the same change-detection process, giving rise to a vertex-positive mismatch 

response in newborns. 
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     The LDN is a second deflection sometimes found in newborn studies (e.g., Čeponiene et al., 

2002; Kushnerenko et al., 2002a; Martynova et al., 2003), but more often in children (for a 

review, see Cheour et al., 2001). The LDN seems to decrease with age (Cheour et al., 2001). In 

newborns, it occurs around 300 – 750 ms after stimulus onset. So far, the functional significance 

of this component is not known. Since the second deflection in this study was of positive polarity, 

the typical LDN was possibly not present in the current study. However, other studies finding a 

LDN in newborns also showed a negative mismatch response, the MMN (Kushnerenko et al., 

2002a; Martynova et al., 2003). In the current study, we showed a positive mismatch response 

and a positive second deflection. The second deflection P2m could possibly be a late 

discriminative positivity and reflect the same processes as the usually obtained LDN. The LDN 

has been shown to be larger to novel than to deviant stimuli when presenting a regular oddball 

task and one in which the deviants were replaced by a novel stimulus (Kushnerenko et al., 

2002a). The P2m in our study, however, did not differ between novels and deviants. Either the 

differences in the paradigms account for this effect, since the novels and deviants were not 

presented within one session, or the P2m does not reflect a late discriminative positivity.   

     The filter settings may affect the neonatal evoked response data. Most frequently, the infant 

data have been offline filtered with a 1–Hz high-pass filter (e.g. Čeponiene et al., 2002; Cheour et 

al., 2002a; Kushnerenko et al., 2002a, 2002b; Huotilainen et al., 2003; Martynova et al., 2003). 

Cheour and her co-workers (1998) noted the importance of using no off-line high-pass filtering in 

premature–born infants data due to slow waves in their EEG. The high-pass filter setting used 

during the recordings was 0.03 Hz. While a 0.5 Hz-filter did not noticeably change the responses 

within the 1 s epoch, a 1 Hz filter did so. Thus, also mature newborns have waves slower than 1 

Hz in their evoked brain activity and, consequently, we chose not to use a high-pass filter on the 

present data. Filtering is, thus, one difference between our study and those of many others and 

may have affected latency and/or polarity of the responses.  

     Another possible explanation for our P2m comes from the study of Kushnerenko and her 

colleagues (2002a). They presented to six healthy newborns a regular oddball task and a task in 

which the deviant stimuli were replaced by novel stimuli. Enlarged positive responses were found 

to the novel stimuli compared to the deviants. It was suggested that this response may reflect a 

neonate analogue of the adult P3a component (Kushnerenko et al., 2002a), which mirrors an 

orienting response (Picton, 1992). A positive deflection was also found comparing 10-month old 
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infants and young adults in a timing oddball task (Brannon et al., 2004). The positivity peaked 

around 400 ms in infants and only at 650 ms in adults. The deflection in adults was far too late to 

be the frequently found P3a component. Therefore, they proposed that the infant deflection may 

not be an analogue of the adult P3a and may rather reflect a totally different process. 

     Similarly to our task, Määttä and colleagues (2005) tested 9-year-old children and young 

adults on a three-stimulus oddball paradigm during a condition where participants had to press a 

button in response to the deviant, but not to the standard or novel stimuli. Both children and 

adults showed a P3a component in response to the novels, but not to the deviant stimuli. The 

same result was found in a study using a passive three-stimulus oddball task in 11-year-old 

children (Čeponiene et al., 2004). A P3a was present in response to the novels, but not to the 

deviants. The P2m found in the present study was equally large to the deviant and novel stimuli. 

Either this deflection does not reflect the P3a component, or it is still immature, since it should 

not have been present at all to the deviants.  

     Some neonatal studies using consonant-vowel syllables as stimuli show a bi-lobed response 

waveform as found in most newborns in the present study (Leppänen et al., 1999; Pihko et al., 

2004). In a study in which the stimuli were syllables composed of a fricative and a vowel, it was 

suggested that the second deflection may reflect the change from the fricative to the vowel (Pihko 

et al., 2004). This, however, cannot be the case in the present study, since our stimuli were very 

different. One additional option is that our second deflection is a response to the offset of the 

stimulus, since we had rather long stimulus durations. Though the latency of the second response 

is reasonable to reflect the offset, Kushnerenko and her co-workers (2001) did not see offset 

responses of the same latency as the P2m in our study when they presented tones of different 

durations, their longest one even being longer than our stimuli. The most likely option is that the 

second deflection indeed reflects some late cognitive process. More studies are needed to reveal 

the functional significance of this deflection. Regardless of which component or process the 

second deflection of our study reflects, a late discriminative positivity, the P3a, or another late 

process, this deflection showed the immaturity of some part of the auditory system at birth. After 

all, the responses to deviant and novel stimuli did not significantly differ, although they do in 

children (Čeponiene et al., 2004). 

     In the ideal case, the infant is sleeping quietly without moving his or her head in the 

measurement device long enough to successfully perform a MEG measurement, in this case, for 
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obtaining a robust enough auditory evoked response with a sufficient number of trials in the 

average for a reasonable signal to noise ratio. In such a case, MEG is superior in locating the 

underlying activity compared to the evoked potentials measured with just a few electrodes as in 

most neonatal studies. In addition, being sensitive mostly to currents tangentially oriented relative 

to the head surface, MEG is ideal in selectively measuring the activity from auditory areas 

imbedded in the temporal sulci. The data in the present study, however, did not allow us to 

successfully calculate the equivalent current dipoles for the activities for all subjects e.g. due to 

small responses or relatively low number or trials in the average, the responses thus including 

some ‘noise’ from the background high-voltage activity in quiet sleep. Another advantage of 

neonatal MEG above EEG studies is that it may further be useful in supporting the understanding 

of fetal MEG-data (Huotilainen et al., 2005). 

     In conclusion, we have shown that change detection is stronger to novel than to deviant 

stimuli already in newborns, suggesting that the auditory detection mechanism is relatively 

mature at birth. 
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Figure legends 

 

Figure 1. A grand average over ten newborns during QS. A subset of gradiometer channels from 

the ‘occipital’ part of the helmet, on which the infants’ heads were laying, is highlighted. Evoked 

magnetic responses to the three Stimulus Types, standard (black line), deviant (grey solid line), 

and novel (grey dotted line) are shown. Two peaks can be determined, pointed out as P1m and 

P2m. Note, however, that due to the different head positions of the newborns in the measuring 

device, this grand average does not necessarily show an average of the best channels of each 

newborn.  

 

Figure 2. A subset of gradiometer channels of one representative newborn (Infant 6) during QS 

from the ‘occipital’ part of the helmet, on which the right hemisphere of this neonate was lying. 

Evoked magnetic responses to the three Stimulus Types, standard (black line), deviant (grey solid 

line), and novel (grey dotted line) are shown. Two peaks can be determined at latencies of 310 

and 600 ms after stimulus onset. 

 

Figure 3. Evoked magnetic fields of eleven newborns to the three Stimulus Types standard (black 

line), deviant (grey solid line), and novel (grey dotted line). For each infant, one representative 

gradiometer channel is shown.  

 

Figure 4. Field distributions for the two deflections of the deviant response in Infant 4 and the 

novel response in Infant 6, with a contour step of 100 fT. It can be seen from the direction of the 

arrow, depicting the direction of the neural currents, that the responses recorded with ERPs 

would appear positive in polarity at the frontal and central electrodes.   
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 Table 1. Mean amplitudes (fT/cm) with standard error (in parenthesis) of the vector sums of 

deflections P1m and P2m in response to auditory stimulation for the standard, deviant, and novel 

stimuli.  

 

 P1m (fT/cm) P2m (fT/cm) 

Standard 22.3 (3.0) 20.9 (3.0) 

Deviant 47.2 (7.5) 57.5 (13.6) 

Novel 71.3 (10.3) 65.0 (13.0) 
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