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Toolbox Installation 

CAPTAIN is usually distributed as a mixture of pre-parsed MATLAB®  pseudo-code (P-files) 
and conventional M-files. The following installation instructions assume MATLAB® itself is 
already installed. 

1 Copy all the M- and P-files to a directory where you want the toolbox to reside, such as 
Program Files\Matlab\Toolbox\Captain or similar. 

2 Start MATLAB® and add the above location of the toolbox to your path. You can use the 
standard addpath function or the graphical user interface to do this. Refer to your 
MATLAB® documentation for more information. 

3 Once installed, typing captdemo in the MATLAB® Command Window starts a simple 
graphical user interface for access to the on-line demos. If this does not work, then 
check that you have correctly added the toolbox location to your MATLAB® path. 

4 To obtain a full list of CAPTAIN functions, type help captain in the MATLAB® 
Command Window, replacing captain with the name of the installation directory 
chosen in item 1 above. 

To uninstall CAPTAIN, simply delete the files and remove the associated path. 

Conditions of use  

The CAPTAIN software package may be freely used for scientific or educational purposes. 
However, if you publish any results using CAPTAIN you should state clearly that you used 
the tools. The full reference is: 

Young, P.C., Taylor, C.J., Tych, W. and Pedregal, D.J. (2007) 
The Captain Toolbox. Centre for Research on Environmental Systems and Statistics, 
Lancaster University, UK. Internet: www.es.lancs.ac.uk/cres/captain 

For commercial applications, permission is required from the authors. 

The Toolbox is provided without formal support, although questions and bug reports can 
be emailed to the authors. 

Version Tracking 

Recent versions of CAPTAIN are developed for MATLAB® v7.0 (R14) onwards. 

The examples in the handbook were originally developed with CAPTAIN v5.2 and 
MATLAB® v6.5 (R13) on a Windows PC. They have subsequently been tested for CAPTAIN 
v6.0 and MATLAB® v7.3 (R2006b). However, updates to the optimisation routines and 
default values may yield different numerical results in some cases. 

Please check the on-line help for the latest function calling syntax and default values. 
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CAPTAIN is a MATLAB® compatible toolbox for non-stationary time series analysis and 
forecasting. Based around a powerful state space framework, CAPTAIN extends MATLAB® 
to allow, in the most general case, for the identification of Unobserved Components (UC) 
models. Here, the time series is assumed to be composed of an additive or multiplicative 
combination of different components that have defined statistical characteristics but which 
cannot be observed directly. With Maximum Likelihood estimation of most models and the 
inclusion of several popular model forms, such as the Basic Structural Model of Harvey 
(1989) and the Dynamic Linear Model of West and Harrison (1989), together with a 
standard set of data pre-processing, system identification and model validation tools, 
CAPTAIN is a wide-ranging package for signal processing and general time series analysis. 

Uniquely, however, CAPTAIN focuses on Time Variable Parameter (TVP) models, where 
the stochastic evolution of each parameter is assumed to be described by a generalised 
random walk process (Jakeman and Young, 1981). In this regard, the state space 
formulation utilised is particularly well suited to estimation based on optimal recursive 
estimation, in which the time variable parameters are estimated sequentially whilst 
working through the data in temporal order. In the off-line situation, where all the time 
series data are available for analysis, this Kalman filtering operation (Kalman, 1960) is 
accompanied by optimal recursive smoothing. Here the estimates obtained from the 
forward pass filtering algorithm are updated sequentially whilst working through the data 
in reverse temporal order using a backwards-recursive Fixed Interval Smoothing (FIS) 
algorithm (Bryson and Ho, 1969). 

In this manner, CAPTAIN provides novel tools for TVP analysis, allowing for the optimal 
estimation of dynamic regression models, including linear regression, auto-regression 
(Young, 1998b) and harmonic regression (Young et al., 1999). Furthermore, a closely 
related algorithm for state dependent parameter estimation provides for the non-parametric 
identification and forecasting of a very wide class of nonlinear systems, including chaotic 
systems. The identification stage in this process again exploits the recursive FIS 
algorithms, combined with special data re-ordering and ‘back-fitting’ procedures, to obtain 
estimates of any state dependent parameter variations (Young, 2000). 

CHAPTER 1 

INTRODUCTION 
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Of course, in many cases, specifying time invariant parameters for the model yields the 
equivalent, conventional, stationary model. In this regard, one model that has received 
special treatment in the toolbox is the multiple-input, single-output Transfer Function (TF) 
model. CAPTAIN includes functions for robust unbiased identification and estimation of 
both discrete- time  (Young, 1984, 1985) and continuous- time (Young, 2002) TF models. 
One advantage of the TF model is its simplicity and ability to characterise the dominant 
modal behaviour of a dynamic system. This makes such a model an ideal basis for control 
system design. 

In the latter regard, the toolbox includes a set of functions for True Digital Control (TDC), 
based on the Proportional-Integral-Plus (PIP) control system design methodology (Young 
et al., 1987;  Taylor et al. 1998, 2000). The underlying philosophy of the approach is that 
the entire design procedure, from the identification and estimation of a suitable model 
through to the practical implementation of the final control algorithm, is carried out in 
discrete time. This differs from many conventional digital controllers, where an inherently 
continuous time algorithm is digitised for implementation purposes. Indeed, CAPTAIN has 
been successfully utilised for the design of practical PIP control systems for many years 
(e.g. Young et al., 1994; Gu et al., 2003; Taylor et al., 2004; Taylor and Shaban, 2006). 

As demonstrated by the numerous publications and examples below, the CAPTAIN package 
is useful for system identification, signal extraction, interpolation, backcasting, forecasting 
and Data-Based Mechanistic (DBM) analysis of a wide range of linear and non-linear 
stochastic systems. In the latter case, the resulting DBM model is only considered fully 
acceptable if, in addition to explaining the data well, it also provides a description that has 
relevance to the physical reality of the system under study (e.g. Young, 1998b). 

Some of the estimation algorithms considered here were developed originally in the 
1960/1970/1980’s for the CAPTAIN and microCAPTAIN time series analysis and 
forecasting packages (MS-DOS based). The associated optimisation algorithms were 
developed in the 1980/1990’s and are used in the latest version of microCAPTAIN (Young 
and Benner, 1991). However, the MATLAB® implementation is much more flexible than 
microCAPTAIN and includes the latest innovations and improvements to the algorithms. 
Note that the present text refers exclusively to this CAPTAIN Toolbox for Time Series 
Analysis and Forecasting using MATLAB® (Taylor et al., 2007). 

1.1  Modelling Philosophy 

As we look around us, we perceive complexity in all directions: environmental, biological 
and ecological systems, socio-economic systems, and some of the more complex 
engineering systems - they all appear to be complicated assemblages of interacting 
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processes, many of which are inherently nonlinear dynamic systems, often with 
considerable uncertainty about both their nature and their interconnections. It is not too 
surprising, therefore, that the mathematical models of such systems, as constructed by 
scientists, social scientists and engineers, are often similarly complex. What is perhaps 
surprising, however, is the apparently widespread belief that such systems can be described 
very well, if not exactly, by deterministic mathematical equations, with little or no 
quantification of the associated uncertainty. Such deterministic reductionism leads 
inexorably to large, nonlinear simulation models which reflect the popular view that 
complex systems must be described by similarly complex models. 

The CAPTAIN toolbox has evolved from a different DBM modelling philosophy, developed 
by the present third author and colleagues, which is almost the antithesis of deterministic 
reductionism. DBM models are obtained initially from the analysis of observational time-
series but are only considered credible if they can be interpreted in physically meaningful 
terms. It is a philosophy that emphasises the importance of parametrically efficient, low 
order, dominant mode models, as well as the development of stochastic methods and the 
associated statistical analysis required for the identification and estimation of such models. 
Furthermore, it stresses the importance of explicitly acknowledging the basic uncertainty 
that is essential to any characterisation of physical, chemical, biological and socio-
economic processes. 

Previous publications map the evolution of the DBM philosophy and its methodological 
underpinning. Such publications utilise the approach for the analysis of numerous natural 
and man-made systems. An incomplete list includes: Beck and Young (1975); Jarvis et al. 
(1999); Parkinson and Young (1998); Price et al. (1999, 2000, 2001); Shackley et al. 
(1998); Tych et al. (1999); Ye et al. (1998); Young (1978, 1981; 1983, 1984; 1985; 1993a, 
1993b; 1994; 1998a, 1998b, 1999a, 1999b, 2000a, 2000b, 2000c, 2001a, 2001b, 2002); 
Young and Beven (1994); Young and Lees (1993); Young and Minchin (1991); Young and 
Pedregal (1996; 1997; 1998, 1999a, 1999b); Young et al. (1996, 1997, 1999, 2000). 

Naturally, these publications introduce a wide range of modelling tools, encompassing 
various model structures and identification algorithms. However, they can be broadly 
categorised into the four closely related and overlapping themes below. 

1. Many of the tools that underpin the DBM modelling philosophy can be unified in terms 
of the discrete-time UC model. Here, the components may include a trend or low 
frequency component, a seasonal component (e.g. annual seasonality), additional 
sustained cyclical or quasi-cyclical components, stochastic perturbations, a component 
to capture the influence of exogenous input signals and so on. CAPTAIN allows for a 
wide range of such components, as discussed throughout the text. 
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2. Nonstationary and nonlinear signal processing based on the identification and 
estimation of stochastic models with time varying parameters. In this case, the term 
‘nonstationarity’ is assumed to mean that the statistical properties of the signal, as 
defined by the parameters in an associated stochastic model, are changing over time at 
a rate which is ‘slow’ in relation to the rates of change of the stochastic state variables 
in the system under study. Although such nonstationary systems exhibit nonlinear 
behaviour, this can often be approximated well by TVP (or piece-wise linear) models, 
the parameters of which are recursively estimated. 

3. Further to item 2. above, if the changes in the parameters are functions of the state or 
input variables (i.e. they actually constitute stochastic state variables), then the system 
is truly nonlinear and likely to exhibit severe nonlinear behaviour. Normally, this 
cannot be approximated in a simple TVP manner; in which case, recourse must be 
made to alternative, and more powerful in this context State Dependent Parameter 
(SDP) modelling methods. 

4. Finally, if the essential small perturbation behaviour of the system can be approximated 
by linearised TF models, then robust unbiased, Refined Instrumental Variable (RIV) 
and Simplified Refined Instrumental Variable (SRIV) algorithms are employed. Here, 
either discrete-time TF models represented in terms of the backward shift operator 
(often denoted in the statistical and engineering literature by either 1−z , q, B or L, 
where the latter is utilised in the present text) or continuous-time TF models based on 
the Laplace Transform s-operator are identified and estimated. 

1.2  Toolbox Overview 

MATLAB® is a high performance language published by The MathWorks, Inc., integrating 
computation, visualisation and programming in a single environment (MathWorks, 2001). 
CAPTAIN is a collection of MATLAB® functions for the estimation of UC, TVP, SDP and TF 
models. By also including a number of tools for data pre-processing, system identification 
and model validation, CAPTAIN provides a powerful all round package for the analysis of 
complex stochastic systems. The following subsections introduce these main areas of 
functionality. 

Unobserved Components models 

CAPTAIN includes a range of UC models, a number of which are unique to this toolbox. In 
particular, the Dynamic Harmonic Regression (DHR) model, estimated using the function 
dhr, is very useful for signal extraction and forecasting of periodic or quasi-periodic series. 
This function provides smoothed estimates of the series, as well as all its components 
(trend, fundamental frequency and harmonic components), together with the estimated 
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changing amplitude and phase of the latter. Typical applications are for the analysis of 
periodic environmental and economic time-series; restoration of noisy signals with gaps or 
other aberrations; and the evaluation of temporal changes in environmental data etc. 
Furthermore, the same function allows for the estimation of the well-known Basic 
Structural Models (BSM) of Harvey (1989). 

It should be pointed out that, while it is sometimes convenient to categorise the 
functionality of the toolbox, there is considerable overlap between the methodological 
areas chosen. For example, the DHR model is a particular case of the general stochastic 
TVP model discussed in the following subsection. In this regard, the hyper-parameters of 
the model, which define the statistical properties of the time variable parameters, need to 
be estimated in some manner. CAPTAIN provides three approaches, all through the function 
dhropt, namely: Maximum Likelihood (ML) based on prediction error decomposition; 
minimisation of the multiple-steps-ahead forecasting errors; and a special frequency 
domain optimisation, based on fitting the model pseudo-spectrum to the logarithm of the 
Auto-Regression (AR) spectrum. 

An alternative to dhr/dhropt is provided by the pair univ/univopt, which allow for the 
estimation of various additional UC model forms. Here, the trend is extracted from the 
time series and a peturbational component about the trend is modelled as a pure AR 
component. Although they may also be utilised for modelling seasonal series, 
univ/univopt are particularly useful in cases where the periodic behaviour of the 
perturbation about the trend is not very marked. In this case, the models are estimated 
using either standard statistical methods or a sequential spectral decomposition approach 
that has been developed for the toolbox in order to avoid identifiably problems. 

Time Variable Parameter models 

The class of TVP, or ‘dynamic’, regression models, includes: Dynamic Linear Regression 
(DLR), Dynamic Harmonic Regression (DHR), Dynamic Auto-Regression (DAR), 
Dynamic Auto-Regression with eXogenous variables (DARX) and the closely related 
Dynamic Transfer Function (DTF) model. It should be noted that the term ‘dynamic’, 
which is used to differentiate time variable parameter regression models from their 
standard constant parameter relatives, is somewhat misleading, since not all of these 
models are inherently dynamic in a systems sense. However, it is a common term in certain 
areas of statistics (e.g. West and Harrison, 1989 and the references therein) and is retained 
for this reason. 

CAPTAIN provides functions that allow for the optimal estimation of all these dynamic 
regression models. In each case, Fixed Interval Smoothing (FIS) estimates of the TVPs are 
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obtained, under the assumption that the parameters vary as one of a family of generalised 
random walks (see Chapter 2), namely: Random Walk (RW); Integrated Random Walk 
(IRW); Smoothed Random Walk (SRW); and Local Linear Trend (LLT). The associated 
filtering and FIS algorithms are accessible via shells, namely the functions dlr, dhr, dar, 
darx and dtfm. Since the regressors are freely defined by the user, the most flexible 
toolbox function for TVP analysis is dlr, which can include all the remaining models as 
special cases. The other functions all restrict the model to the most commonly used forms. 
For example, dhr automatically constrains the regressors to model harmonic components. 
As one of the key tools for estimating UC models, it has already been discussed above. 

At this juncture, it is worth pointing out that CAPTAIN includes the functions mar and 
arspec for Auto-Regression (AR) model and spectrum estimation. However, in the context 
of dynamic regression, dar and darsp are instead useful for evaluating changing signal 
spectra and time-frequency analysis based on DAR models, since they provide the AR 
spectrum at each point in time based on the locally optimum time variable AR parameters. 

Further to this, darx is an extension of the DAR model to include measured eXogeneous or 
input time series that are thought to affect the output, while dtfm augments the model in 
order to allow for coloured noise in the output signal. The latter function employs 
instrumental variables in the solution to ensure that the parameter estimates are unbiased 
(see below and Chapter 4). In this manner, the functions darx and dtfm are truly dynamic 
in a systems sense and form a link between the dynamic regression analysis considered 
here and the dedicated TF modelling component of the toolbox discussed below. 

In the case of dlr, dar, darx and dtfm, the Noise Variance Ratio (NVR) and other hyper-
parameters, which define the statistical properties of the TVP’s, are optimised via ML 
based on prediction error decomposition. The relevant toolbox functions are dlropt, 
daropt, darxopt and dtfmopt. In comparison with most other algorithms for TVP 
estimation, the main innovations in CAPTAIN are this automatic hyper-parameter 
optimisation, the provision of FIS rather than the filtered TVP estimates and the various 
special uses outlined above. 

State Dependent Parameter models 

The approach to TVP estimation discussed above works very well in situations where the 
parameters are slowly varying when compared to the observed temporal variation in the 
measured system inputs and outputs. Although such models are nonlinear systems, since 
the same inputs, injected at different times, will elicit quite different output responses, the 
resultant nonlinearity is fairly mild. It is only when the parameters are varying at a rate 
commensurate with that of the system variables themselves that the model behaves in a 
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heavily nonlinear or even chaotic manner. For such cases, CAPTAIN includes a novel 
algorithm for state dependent parameter estimation, sdp, allowing for the non-parametric 
identification and forecasting of a very wide class of nonlinear systems. 

Multi-Input Transfer Function models 

There are numerous algorithms for estimating TF models. However, the primary technique 
employed in CAPTAIN, is the least squares- based instrumental variable approach. Here, an 
adaptive auxiliary model is introduced into the solution in order to avoid parameter bias 
and to optimally filter the data, so making the estimation more statistically efficient. 

In particular, CAPTAIN provides the recursive and en-block RIV and SRIV algorithms, as 
well as more conventional least squares based approaches, primarily through the functions 
riv (for discrete-time systems) and rivc (continuous-time). Both these functions return the 
modelling results in the form of a special matrix from which the various parameters and 
standard errors may be extracted using getpar. Such parameters may subsequently be 
utilised for simulation and forecasting through conventional MATLAB® commands like 
filter, or by using SIMULINK® (MathWorks, 2001). 

For a given physical system, an appropriate structure first needs to be identified, i.e. the 
most appropriate values for the time delay and the orders of the numerator and 
denominator polynomials in the TF. In this regard, CAPTAIN utilises two functions, namely 
rivid (discrete-time) and rivcid (continuous-time), which provide numerous statistical 
diagnostics associated with the model. These include the Coefficient of Determination 2

TR , 
based on the response error, which is a simple measure of model fit; and the more 
sophisticated Young Identification Criterion (YIC), which provides a combined measure of 
fit and parametric efficiency. 

True Digital Control 

Following the identification of a suitable discrete-time time TF model, PIP control systems 
are determined using either the pip or pipopt functions, for pole assignment or Linear 
Quadratic (LQ) optimal design respectively. PIP control with command input anticipation 
is implemented using pipcom. Finally, gains and pipcl are used to analyse the closed-loop 
system. The above functions are for the single input, single output (SISO) case, while 
mfdform, mfd2nmss, mpipqr and mpipinit are used for multivariable PIP control. 
Finally, dlrqri provides the iterative linear quadratic regulator solution for either the SISO 
or multivariable cases; while piplib is the associated Simulink® library for various PIP 
control structures, including the conventional feedback form and an alternative forward 
path approach. 
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Conventional Models, Identification Tools and Auxiliary functions 

As pointed out above, specifying time invariant parameters in CAPTAIN usually yields the 
equivalent stationary time series model. In this manner, many of the functions above may 
be utilised to estimate either the well known conventional model or the more sophisticated 
TVP version, depending on the input arguments chosen. 

Similarly, system identification is inherent to the modelling approach utilised by most of 
the functions already discussed. However, identification tools not yet mentioned, include: 
acf to determine the sample and partial autocorrelation function; ccf for the sample cross-
correlation; period to estimate the periodogram; and statist for some sample descriptive 
statistics. Additional statistical diagnostics include: boxcox, cusum and histon. 

Finally, del generates a matrix of delayed variables; fcast may be employed to prepare data 
for forecasting and interpolation; irwsm for smoothing, decimation or for fitting a simple 
trend to a time series; prepz to prepare data for TF modelling (e.g. baseline removal and 
input scaling); scaleb to rescale the estimated TF model numerator polynomial following 
initial prepz use; stand to standardise or de-standardise a matrix by columns; and reconst 
to reconstruct a time series by removing any dramatic jumps in the trend. 

1.3  Getting Started 

Installation instructions and conditions of use are given in the preface. Since CAPTAIN is 
largely a command line toolbox, it is assumed that the reader is already familiar with basic 
MATLAB® usage, such as loading data, plotting graphs and writing simple M-files. 
Introductory guides to the package include Etter (1993) and Biran and Breiner (1995). For 
example, to plot the well known airline passenger series (e.g. Box and Jenkins, 1970), 
enter the following text at the MATLAB® Command Window prompt, 

>> load air.dat 
>> plot(air) 
>> title(‘thousands of passengers per month (1949-1960)’) 

These data are included with CAPTAIN for demonstration purposes, in a standard text file. 
If an error occurs, then check that you have correctly added the toolbox location to your 
MATLAB® path. Note that the  Courier New  font is used to indicate such worked examples 
throughout the text. Another convention employed here, is that function and variable 
names referred to in the body of the text, such as plot, are highlighted in bold notation. 
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Getting Help 

On-line help information follows MATLAB® conventions. For example, to obtain a full list 
of functions, type help captain in the Command Window, where captain is the name of 
the installation directory. Similarly, the brief calling syntax for each function is obtained 
by entering its name without any input arguments, while more information is provided 
using the standard help command, as illustrated below. 

>> irwsm 
 
  IRWSM  Integrated Random Walk smoothing and decimation 
  
  [t,deriv,err,filt,h,w,y0]=irwsm(y,TVP,nvr,Int,dt) 
 
>> help irwsm 
 
  IRWSM  Integrated Random Walk smoothing and decimation 
  
  [t,deriv,err,filt,h,w,y0]=irwsm(y,TVP,nvr,Int,dt) 
  
  y: Time series (*) 
  TVP: Model type (RW=0, IRW=1, DIRW=2) (1) 
  nvr: NVR hyper-parameter (1605*(1/(2*dt))^4) 
  Int: Vector of variance intervention points (0) 
  dt: Sampling (1) 
  
  t: Decimated (or simply smoothed if dt=1) series 
  deriv: Derivatives 
  err: Standard error 
  filt: Filter frequency response 
  h: Frequency response 
  w: Frequency axis for plots 
  y0: Interpolated data 
  
  See also IRWSMOPT, FCAST, STAND, DHR, DHROPT, SDP 

In the latter case, each input argument is described in turn, followed by the output 
arguments and any other information. Note that the default values for any optional inputs 
are given in brackets, whilst any necessary inputs, such as the data vector y above, are 
listed with an asterix. In this case, the default TVP = 1 implies the following model based 
on an IRW plus noise, 

 ttt eTy +=  (1.1) 

 tttt TTT η+−= −− 212  (1.2) 

where ty  is the time series, tT  is the smoothed signal at sample t, returned by irwsm as the 
first output argument, and 1−tT  and 2−tT  are their values at the two previous samples, 
respectively. Here, tT  is effectively a time variable parameter, whose stochastic evolution 
in the form of an IRW is described by equation (1.2). Finally, tη  and et  are independent 
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zero mean white noise sequences with variance 2q  and σ 2 , representing the system 
disturbances and measurement noise respectively. 

It should be pointed out that the on-line help messages in CAPTAIN are kept deliberately 
concise, so that the experienced user can find information quickly (some of the more 
advanced functions can have ten or more input arguments). For new users, the Reference 
Guide in Chapter 8 provides more descriptive information about each of the options, whilst 
the various models implemented in the toolbox are defined in Chapters 2 to 7. 

Empty variables [] may be used to indicate default values when a mixture of defaults and 
user specified arguments are required. For example, a smoothed trend may be fitted to the 
airline passengers series as follows, 

>> load air.dat 
>> t = irwsm(air, [], 0.0001);  % equivalent to t = irwsm(air, 1, 0.0001) 
>> plot([air t]) 
 

In Chapter 2, the ‘IRW plus noise’ model is developed within a state space framework, 
based on the definition of suitable observation (1.1) and state (1.2) equations. Note that the 
3rd input argument to irwsm specifies the associated Noise Variance Ratio (NVR) hyper-
parameter. Defined here as 0001.022 =σq , this variable is closely related to the 
bandwidth of the filter, as discussed in Example 2.1 (Chapter 2). 

Demonstrations 

The following command initialises the standard MATLAB® Demo Window for access to the 
on-line demonstrations, 

>> captdemo 

This simple graphical user interface provides basic background information about 
CAPTAIN, slideshows and numerous Command Line demos. The latter demos utilise the 
MATLAB® Command Window for input and output, as well as generating graphs in a 
separate figure window, so make sure the command window is visible while you run these. 

Experience suggests that one of the most effective ways to get started with CAPTAIN, is to 
examine each Command Line Demo in turn and then to personally adapt them for each 
new data set. The following examples are based on two of these demos. The intention is to 
provide a brief illustration of toolbox functionality for users already familiar with the 
methodology, or at least to introduce some of the ideas to the open minded reader who is 
not. In this regard, it should be pointed out that formal stochastic descriptions of the 
models are withheld until later chapters. For brevity, note that the straightforward 
MATLAB® code to label the plots, set the axis limits etc. is not necessarily shown. 
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Figure 1.1  Scaled advertising data plotted against an arbitrary fixed sampling rate. 
Top: response to advertising. Bottom: expenditure on advertising. 

Example 1.1  Interpolation of advertising data using DLR 

Dynamic Linear Regression or DLR provides an excellent vehicle for the analysis of data 
in areas such as economic, business and social data, where regression analysis is a popular 
method of modelling relationships between variables and where these relationships may 
change over time. In this regard, consider the following straightforward demonstration 
from the Toolbox, which examines the relationship between a particular company’s 
expenditure on advertising and their measure of the public’s response to this expenditure, 
as illustrated in Figure 1.1. 

For the purposes of the example, these confidential data have been scaled in an arbitrary 
manner, so no units are given in the plots. The output data are in the range 0-1, where a 
larger number implies a more successful response to the advertising. It is clear that the 
response data contain missing values, represented in MATLAB® by special Not-a-Number 
or nan values and forming gaps in the top plot of Figure 1.1. The filtering and smoothing 
algorithms implemented in CAPTAIN automatically account for these. 

For a preliminary analysis of these data, we will utilise the following model, 
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 90...,,2,1         =++= teubTy ttttt   (1.3) 

where yt  is the response and tu  is the expenditure, while tT  and tb  are the time variable 
parameters. Finally, et  is a serially uncorrelated and normally distributed Gaussian 
sequence with zero mean value and variance σ 2 . Note that a full description of the general 
DLR methodology is given in Chapter 4. 

For constant parameters TTt =  and bbt = , equation (1.3) takes the form of a conventional 
regression model based on the equation of a straight line. However, here we utilise dlropt 
to determine if the optimal values of the parameters, in a Maximum Likelihood sense, in 
fact vary over time. In this regard, assuming a default random walk model for each of the 
parameters, the associated NVR hyper-parameters are estimated as follows, 

>> load adv.dat 
>> u = adv(:, 1);  % expenditure 
>> y = adv(:, 2);  % response 
>> z = [ones(size(u)) u];  % regressors 
>> nvr = dlropt(y, z) 
nvr = 
    0.0078 
    0.0000 

While dlropt is running, a window will briefly appear on screen indicating the 
optimisation algorithm being utilised, together with an update of the Log-Likelihood. If the 
solution fails to converge the optimisation may be terminated by pressing the STOP button, 
although this should not prove necessary in the present case. 

It should be pointed out that default values for the Toolbox have been carefully chosen, in 
order to be as widely applicable as possible. In the present case, the default initial 
conditions and optimisation settings converge to a solution without any problem, hence 
only the first two input arguments are required. 

From this analysis, it appears that the tT  level or trend parameter varies significantly over 
time (NVR = 0.0078), while the tb  slope parameter is relatively time invariant and has a 
NVR value close to zero. To determine the fit and parameters, 

>> [fit, fitse, par] = dlr(y, z, [], nvr); 
 

By default, dlr assumes NVR’s of zero, so the 4th input argument above is necessary to 
specify the previously optimised values. The 3rd input argument selects the model type: in 
this case, empty brackets imply the default random walk model again. Examination of the 
parameters, returned as the first and second columns of par, show how these evolve 
gradually over time. 
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Figure 1.2  Scaled response to advertising plotted against an arbitrary fixed sampling rate. 
Data (circles), DLR fit (solid) and standard errors (dashed). 

The model fit and associated standard errors are shown in Figure 1.2, which is obtained 
using the code below, 

>> plot(y, 'o')  
>> hold on 
>> plot(fit) 
>> plot(fit+2*fitse, ':') 
>> plot(fit-2*fitse, ':') 
 

It is clear from Figure 1.2 that the data all lie within the standard error bounds. Note also 
that no user intervention was required to interpolate over the missing response data: both 
fit and par apply over the entire time series. Refer to Chapter 8 for a full list of 
optimisation settings and output arguments. For example, dlr can return the interpolated 
output y0, consisting of the original series with any missing data replaced by the model fit. 

Example 1.2  Transfer function model estimation using RIV 

Many control systems, both classical and modern, are analysed by means of TF models. 
Indeed, CAPTAIN has been successfully utilised for the design of control systems for many 
years, particularly with regards to the development of Proportional-Integral-Plus (PIP) 
control methods (Young et al., 1987; Taylor et al., 2000). One recent practical application 
is concerned with forced ventilation in animal houses (Taylor et al., 2003). Here, 
uncontrolled data are first collected in order to identify the dominant dynamics of the fan. 

For a particular test installation at the Katholieke Universiteit Leuven, the SRIV algorithm, 
combined with the 2

TR  and YIC identification criteria (Chapter 6), reveal that a first order 
model with 6 seconds time delay provides the best estimated model and most optimum fit 
to the data across a wide range of operating conditions. In a typical experiment, based on a 
2 second sampling rate, the SRIV algorithm yields the following difference equation, 
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 31 8.79438.0 −− += ttt uyy  (1.4) 

where ty  is the airflow rate (m3/h) and tu  is the applied voltage to the fan expressed as a 
percentage. Equation (1.4) shows that the output variable ty , is a simple linear function of 
it’s value at the previous sample and the delayed input variable. Equation (1.4) may 
alternatively be represented in terms of the backward shift operator L, i.e. jtt

j yyL −= , by 
the following discrete-time TF model, 

 tt u
L

Ly
438.01
8.79 3

−
=  (1.5) 

The response of the model (1.5) closely follows the noisy measured data, as illustrated by 
Figure 1.3. These data are included with CAPTAIN for demonstration purposes and the 
associated MATLAB® commands for estimating the model are shown below. 

>> load vent.dat 
>> [z, m] = prepz(vent, [], 25); 
>> [th, stats, e] = riv(z, [1 1 3 0]); 
>> [a, b] = getpar(th) 
a = 
    1.0000   -0.4381 
b = 
         0         0         0   79.7835 
>> rt2 = stats(3) 
rt2 = 

0.9873 
>> subplot(211); plot([z(:, 1) z(:, 1)-e]+m(1)) 
>> subplot(212); plot(z(:, 2)+m(2)) 

Here, the experimental data are organised into matrix form, with the first column of vent 
consisting of the output variable ty , and the second the input variable tu . The function 
prepz is utilised to prepare the data for modelling. In particular, the 3rd input argument 
subtracts the mean of the first 25 samples from the data in order to remove the baseline 
from the series. Such data pre-processing often yields better results in the context of TF 
model estimation, as discussed in Chapter 6. 

The TF is estimated using riv, where the second input argument defines the model 
structure: in this case, 1 denominator parameter, 1 numerator parameter, 3 samples time 
delay and no model required for the noise. Refer to Chapters 6 and 7 for a full description 
of the TF modelling tools and the syntax required. In particular, note that MISO and 
continuous-time models are also possible, while additional functions allow for the 
identification of the most appropriate model structure. 
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Figure 1.3  Top: ventilation rate (m3/h) and response of the identified TF model (thick trace) 

Bottom: applied voltage to the control fan expressed as a percentage. 

The first riv output argument, th, is a matrix containing information about the TF model 
structure, the estimated parameters and their estimated accuracy. In this case, getpar is 
utilised to extract the required parameter estimates for later control system design. Note 
that these parameter vectors include the leading unity of the TF denominator, and that the 
time delays are represented as zero valued elements in the numerator. The second riv 
output argument, stats, lists nine statistical diagnostics associated with the model, 
including 9873.02 =TR , implying that the model describes nearly 99% of the variation in 
the data. Finally, the modelling errors are returned as the variable e and are used in the 
code above to compare the TF response with the original data, as shown in Figure 1.3. In 
this graph, the baseline is returned to the series. 

Note that the built-in MATLAB® function filter may also be employed to simulate the TF 
response using these parameter vectors. As discussed in Chapter 6, filter can be useful for 
simulation and (if estimates of the future input variable are available) forecasting purposes. 

1.4  How to use this book 

This publication is primarily intended as a tutorial guide to the data-based mechanistic 
modelling philosophy developed by Peter Young and colleagues over many years. In this 



Chapter 1  Introduction 

 CAPTAIN handbook – D. J. Pedregal, C. J. Taylor and P. C. Young – page 16 

regard, the chapter headings follow a logical structured progress through the relevant 
methodology, using worked examples throughout the text. 

Time variable parameter modelling is introduced in Chapter 2. Here, the filtering 
algorithm, smoothing algorithm, generalised random walk model and hyper-parameter 
optimisation routines are formally described. This chapter presents the models in their 
most general state space form, while the following three chapters introduce the various 
special cases, namely: unobserved component models (Chapter 3); dynamic regression 
models (Chapter 4); and state dependent parameter models (Chapter 5). Next, discrete-time 
(Chapter 6) and continuous-time (Chapter 7) transfer function models are considered, 
followed by a chapter on control system design (Chapter 8). 

Finally, Appendix 1 lists each CAPTAIN function in alphabetical order, showing the calling 
syntax, together with a brief description of the associated input and output arguments. 
Appendix 1 is designed to augment the concise on-line help messages. To learn about a 
particular model, turn to Table A2 for the appropriate function name, then to Appendix 1 
for its description. The See Also section for each entry in Appendix 1 lists the relevant 
worked examples from the text. 

Some of the algorithms discussed here have been in constant use for over 20 years. The 
present authors hope that the CAPTAIN toolbox for MATLAB® will allow interested 
researchers to add to the ever expanding list of successful applications, which already 
includes time series analysis, forecasting and control of numerous biological, engineering, 
environmental and socio-economic processes (see references above). 


