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Abstract. Let p be an odd prime number and G a finite p-group. We prove
that if the rank of G is greater than p, then G has no maximal elementary abelian
subgroup of rank 2. It follows that if G has rank greater than p, then the poset
E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the
torsion-free rank of the group of endotrivial kG-modules is one, for any field k of
characteristic p. We also verify the class-breadth conjecture for the p-groups G
whose poset E(G) has more than one component.

1. Introduction

In this article, we prove the following result, which answers a question raised by
the second author in [21, § 2]:

Theorem A. Let p be a prime and G be a finite p-group that possesses a maximal
elementary abelian subgroup E of order p2. Then G has rank at most p if p is odd.

In other words, if a finite p-group G for an odd prime p has a maximal elementary
abelian subgroup of rank 2, then G has no elementary abelian subgroup of rank
p + 1. (Recall that the rank of an elementary abelian group of order pn is n, and
that the rank of G is the maximum of the ranks of the elementary abelian subgroups
of G.)

Surprisingly, groups satisfying the rather narrow hypothesis of Theorem A appear
in several different areas of finite group theory. For example, they require a great deal
of attention as possible “small” Sylow subgroups in the proof of the Feit-Thompson
Odd Order Theorem ([9, pp. 453-454]; [8, pp. 845, 903]) and of many subsequent
theorems on classifying simple groups ([10, pp. 67-69]). More recently, they have
been important in the study of endotrivial modules in representation theory, as we
explain below. Furthermore, in the special case that CG(E) = E, they form part
of the family of p-groups of maximal class, by a theorem of M. Suzuki ([15, Satz
III.14.23]; [2, Proposition 1.8]).

N. Blackburn studied these groups extensively in [3]. In particular, he noted that
for p odd, the centralizer of E in G is a soft subgroup of G, as defined by Héthelyi
in [13] (and in Section 2 below). These groups were studied further in [14] and [21].

The condition on E in Theorem A suggests that G must be “small”. Indeed, it is
easy to show that G cannot possess a normal elementary abelian subgroup of rank
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p + 1 (this is a special case of Lemma 2.4(b) below). But what about non-normal
subgroups?

By considering subgroups of the wreath product Cp o Cp, we see that the rank,
r, of a group G satisfying the hypothesis of Theorem A can have any of the values
2, 3, . . . , p. One may show (Remark 3.3) that for p = 2, the values may also be 3 or
4, but not larger. In contrast, Theorem A shows that if p is odd, the only possible
values are 2, 3, . . . , p.

From Theorem A, we obtain an application to representation theory of arbitrary
finite groups. The concepts used in the following statement are explained in Sec-
tion 3.

Corollary B. Let p be an odd prime and G∗ a finite group having p-rank greater
than p. For any field k of characteristic p, the group T (G∗) of endotrivial kG∗-
modules has torsion-free rank one. More precisely, any endotrivial kG∗-module is
isomorphic to a direct summand of a module of the form Ωn(k)⊗M , for some integer
n and some torsion endotrivial module M .

As an independent result on p-groups with maximal elementary abelian subgroups
of rank 2, we end with the proof of the class-breadth conjecture for them ([7]). We
define the poset E(G) in Section 2.

Proposition C. Let p be an odd prime and G a finite p-group. Assume that the
poset E(G) has more than one component. Then the class-breadth conjecture holds
for G.

The paper is organized as follows: In Section 2, we set the notation and definitions.
We also review the necessary background, and show that if a finite p-group G has
a non-normal maximal elementary abelian subgroup of order p2, then G possesses a
unique normal elementary abelian subgroup of order p2, which is hence characteristic
in G. In Section 3, we prove Theorem A and Corollary B. We prove Proposition C
in Section 4.

2. Generalities: Results old and new

Henceforth in this paper, p denotes a prime number and G a finite p-group, that
is, a finite group of order a power of p.

Definition 2.1.

(1) An elementary abelian subgroup of G is an abelian subgroup E of G of expo-
nent at most p. If |E| = pn, the rank of E is the integer n. Hence, the rank
of G is the maximum of the ranks of the elementary abelian subgroups of G.

(2) An elementary abelian subgroup E of G is maximal if E is not properly
contained in any larger elementary abelian subgroup of G.

(3) The elementary abelian subgroups of G of rank at least 2 form a poset E(G)
for the order relation given by inclusion.

Now assume that G has rank at least 2. The groups in Theorem A are important
because the study of simple groups and of endotrivial modules for a finite group is
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usually much easier when E(G) is connected for a Sylow p-subgroup G. In fact, one
easily deduces from [10, Lemma 10.21] that E(G) is connected if and only if G has
a unique elementary abelian subgroup of rank 2 or G has no maximal elementary
abelian subgroups of rank 2.

Assume p is odd. We refer the reader to [10, § 10], and especially [10, Lem-
mas 10.11 and 10.21], for a detailed description of the structure of the poset E(G).
In particular, G possesses a normal elementary abelian subgroup E0 of rank 2 and
if G has rank at least 3, then all the elementary abelian subgroups of G of rank
3 or more lie in a common connected component of E(G), which contains also a
normal elementary abelian subgroup of G of rank 2; the other possible connected
components are hence isolated vertices, i.e. maximal elementary abelian subgroups
of rank 2. By Lemma 10.21 and Corollary 10.22 of [10], E(G) is connected if the
normal rank of G is greater than p, or if the center of G is not cyclic.

We now quote some useful results from [3], [13], [14] and [21]. Let |G| = pn. If
G has a non-normal maximal elementary abelian subgroup E of rank 2, then E
determines a strictly increasing chain

E ≤ N0 < N1 < · · · < Nr−1 < Nr = G with |Ni : Ni−1| = |G/Nr−1| = p .

Here, N0 = CG(E) is a soft subgroup of G (as defined in [13], i.e., CG(N0) = N0 and
|NG(N0)/N0| = p) of the form Cpn−r × Cp, and Ni = NG(Ni−1), for all 1 ≤ i ≤ r.

Moreover, |G : N0| = pr, and Ni has nilpotence class i + 1, for all 0 ≤ i ≤ r. A
striking fact is that the size of N0 does not depend on the choice of the non-normal
maximal elementary subgroup E. Finally, the centralizer CG(E0) of E0 is a maximal
subgroup of G, and its intersection H = CG(E0) ∩ Nr−1 is also independent of E
and thus is a characteristic subgroup of index p2 in G.

For the remainder of this paper, we refer the reader to one of the books [2], [11],
or [15] for the background material and the statements about regular p-groups that
we use.

Remark 2.2. For convenience, we single out the mechanics of the Lazard corre-
spondence, as we will repeatedly use them. We refer the reader to [18, Chap. 10],
and in particular to the results stated in 10.11, 10.13 and on p. 124.

A celebrated theorem of M. Lazard shows that we may define operations + and
[ , ] on any finite p-group H of nilpotence class less than p, in order to make H into a
Lie ring HL such that every automorphism of the group H induces an automorphism
of the Lie ring HL, and each element of H in HL has the same order under + as its
order in the group H. Moreover, each subgroup of the group H is a Lie subring of
HL.

The case of interest to us is when H is a subgroup of exponent p of a finite p-group
G, say |H| = pn, and x ∈ G has order p and normalizes H. Then conjugation by
x induces an automorphism cx of order p of the additive group of HL, which is an
elementary abelian group of rank n, and thus a vector space of dimension n over the
prime field Fp. By considering the Jordan form of this automorphism, we get the
rank of CH(x) as the number of Jordan blocks of cx, which is greater than or equal
to n/p.
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The following result is a consequence of P. Hall’s Enumeration Principle (see [22,
Theorem IV.4.19 (i)] or [12, Theorem 1.4]). Note that Lemma 2.3 generalizes to finite
nilpotent groups, because they are the direct product of their Sylow p-subgroups.

Lemma 2.3. Let P be a finite p-group and Q a normal subgroup of order pn of P .
For each integer k with 0 ≤ k < n, Q contains a subgroup Qk of order pk that is
normal in P .

Proof. We proceed by induction on k. If k = 0, the claim trivially holds. Assume
k ≥ 1 and pick a subgroup Q1 ≤ Q ∩ Z(P ) with |Q1| = p. (Recall that any non-
trivial normal subgroup of P intersects Z(P ) non-trivially.) Then, Q1 / P . Set
π : P → P/Q1 for the natural projection map and write K = π(K) for the image of
a subgroup K of P under π. In P , we have by induction hypothesis that Q contains
a normal subgroup Qk of P of order pk−1. Therefore, Qk = π−1(Qk) is a normal
subgroup of P contained in Q and |Qk| = pk. �

Lemma 2.4. Suppose that E is a non-normal maximal elementary abelian subgroup
of G of rank 2, and H is a subgroup of exponent p in G that is normalized by E.
Let |H| = pn. Then:

(a) for each positive integer k less than n, H contains a subgroup Hk of order
pk that is normalized by E;

(b) n ≤ p; and
(c) if E is not contained in H, then the subgroup Hk in part (a) is unique, for

each k.

Proof. Let E = 〈z, x〉, with z ∈ Z(G). Note that H is normal in HE.
Each part of the lemma is vacuous or obvious if |H| ≤ p or if H = E. So we

assume that |H| ≥ p2 and that H 6= E. Then CE(H) = 〈z〉 and

(A) CH(x) = CH(E) = H ∩ E .

Part (a) is Lemma 2.3 applied to P = HE and Q = H. Thus, for each 0 ≤ k < n,
the group H contains a subgroup Hk of order pk that is normalized by E (see also
related results in [17, Proposition 0.1]).

For part (b), assume that n ≥ p+ 1. We aim for a contradiction. By (a), we may
assume that n = p+ 1.

Since H has exponent p, it is a regular p-group. Therefore, by a theorem of N.
Blackburn ([15, Satz III.14.21]; [2, Theorem 9.5]), H is not a p-group of maximal
class.

Suppose first that x ∈ H. Since |H| > p2, we see that

〈x〉 < CH(x) = CH(E) = H ∩ E .

Hence
|CH(x)| = |E| = p2 , and |H : CH(x)| = |H|/p2 .

By Suzuki’s Theorem mentioned in Section 1, H is a p-group of maximal class, a
contradiction. Thus, x lies outside H, and

(B) |CH(x)| = |H ∩ E| ≤ p .
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Since |H| = pp+1 and H does not have maximal class, H has class at most p− 1.
We appeal to Remark 2.2. Explicitly, conjugation by x induces an automorphism
of order p of the additive group of the Lie ring HL, which is an elementary abelian
group of rank p+ 1, and thus a vector space of dimension p+ 1 over the prime field
Fp. By considering the Jordan form of this automorphism, we see that it has at
least two Jordan blocks. Therefore, |CH(x)| ≥ p2. But |CH(x)| ≤ p by (B), a
contradiction.

For part (c), we assume that E is not contained in H. By (A), we have |CH(x)| =
|H∩E| ≤ p . By part (b), |H| ≤ pp. Hence, H has nilpotence class at most p−1. As
in (b), we apply Lazard’s theorem and consider the Jordan form of the automorphism
of HL induced by conjugation by x. As |CH(x)| ≤ p, this is a single Jordan block
of degree n. Therefore, x preserves a unique k-dimensional subspace of HL over Fp,
which proves (c). �

From these technicalities, we draw the following conclusion.

Proposition 2.5. Assume that p is odd and that G has rank greater than 2. If G
has some non-normal maximal elementary abelian subgroup of rank 2, then G has a
unique normal elementary abelian subgroup of rank 2, which is hence a characteristic
subgroup of G.

Proof. Suppose that G contains a normal elementary abelian subgroup F of rank 2
other than the chosen subgroup E0 which we introduced after Definition 2.1. Let
H = E0F . Then F contains Z, and E0/Z and F/Z are contained in the center of
G/Z. Therefore, H has order p3 and nilpotence class at most 2, and possesses more
than one elementary abelian subgroup of order p2. A review of the groups of order
p3 for odd p (or an application of [11, Theorem 12.4.3], since H is a regular p-group)
shows that H has exponent p.

As E/Z is not normal in G/Z and since H/Z is central in G/Z, we see that E is
not contained in H. By Lemma 2.4, E normalizes only one subgroup of order p2 in
H. But E normalizes E0 and F , a contradiction. �

Remark 2.6. We refer the reader to [21, Corollary 2.3] for the case when G has
only normal elementary abelian subgroups of rank 2.

3. Proof of the main result

For convenience, we appeal to some additional standard notation. For any finite
p-group G of nilpotence class c, we write

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ≤ Zc(G) = G ,

with Z1(G) = Z(G) , and Zi(G)/Zi−1(G) = Z
(
G/Zi−1(G)

)
, ∀ 1 ≤ i ≤ c ,

for the subgroups in the upper central series of G. Recall that the least positive
integer c with Zc(G) = G is the nilpotence class of G. For subgroups H,K of G, the
subgroup 〈HK〉 of G is generated by the K-conjugates of H. In particular, 〈HG〉 is

the normal closure of H in G. Also, Ωd(H) is the subgroup 〈x ∈ H | xpd
= 1〉 of G

generated by the elements of order at most pd, for any integer d ≥ 1.

The following lemma is equivalent to [12, Theorem 2.49, (i)].
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Lemma 3.1. Suppose that N is a normal subgroup of G and k is an integer, k ≥ 0.

(a) If N ∩ Zk(G) = N ∩ Zk+1(G), then N ≤ Zk(G).
(b) If |N | = pk, then N ≤ Zk(G).

Proof. For part (a), let M = N ∩ Zk(G) and G = G/M , and let X = XM/M for
every subgroup X of G. Then, N / G, and since M ≤ Zk(G), the definition of the
upper central series gives

Z(G) ≤ Zk+1(G)/M and so N ∩ Z(G) ≤ (N ∩ Zk+1(G))/M = 1 .

Hence, N = 1.
Part (b) follows from (a). Indeed, let N / G. Assume that N � Zk(G). Then

1 = N ∩ Z0(G) < N ∩ Z1(G) < · · · < N ∩ Zk+1(G) ,

is a strictly increasing chain of subgroups of G. Thus, we must have |N | > pk. �

In view of [10, Proposition 10.17] (or [17, Theorem]), if p = 3 and G has rank
at least 4, then G has normal rank 4. Consequently, Theorem A holds for p = 3,
as also observed in [21]. So, we may in addition suppose that p ≥ 5 from now on.
Thus, Theorem A follows from our next result.

Theorem 3.2. Let p be a prime greater than 3, and assume that G has order pn.
If G has a non-normal maximal elementary abelian subgroup of rank 2, then G has
rank at most p.

Proof. We assume that G has rank greater than p and work toward a contradiction.
Let E be a non-normal maximal elementary abelian subgroup of rank 2 in G. By

hypothesis, p ≥ 5 and G contains an elementary abelian subgroup A of rank p+ 1.
By [1, Theorem D], we may choose A to be normal in its normal closure, 〈AG〉,

in G. Let N = 〈AG〉.
Since A / N , Lemma 2.3 says that A contains a normal subgroup B of N having

order pp−1.
Let M = Ω1(Zp−1(N)). Then M / G and B ≤ M by Lemma 3.1. Since Zp−1(N)

has class at most p−1, it is a regular p-group. Therefore, M has exponent p because
it is a regular p-group generated by elements of order p. Since M / G, Lemma 2.4
yields that |M | ≤ pp. Hence, |M : B| ≤ p.

Let Y = Ω1(Z2(N)) and W = Ω1(Z(N)). Then

W ≤ Y ≤M and W,Y / G .

Assume first that Y ≤ A. Then CG(Y )/G and A ≤ CG(Y ). Therefore, N = 〈AG〉 ≤
CG(Y ), and Y ≤ Z(N). More generally, observe similarly that any normal abelian
subgroup of G that is contained in any conjugate of A is necessarily contained in
Z(N). Then

A ∩ Z2(N) = A ∩ Y = A ∩ Z(N) ,

and A ≤ Z(N), by Lemma 3.1. But then,

A ≤ Ω1(Zp−1(N)) = M and pp+1 = |A| ≤ |M | ≤ pp ,

a contradiction. Thus, Y is not contained in A. Therefore, B < BY ≤M .
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Since |M : B| ≤ p, we have M = BY . Moreover, Y/W ≤ Z(N/W ). Therefore,
M/W is centralized by AW/W . As M / G, it follows that M/W is centralized by
〈AG〉W/W , i.e., by N/W . Therefore, M ≤ Z2(N). But now,

A ∩ Z3(N) ≤ A ∩ Zp−1(N) = A ∩M = A ∩ Z2(N) .

So A ∩ Z3(N) = A ∩ Z2(N). By Lemma 3.1, A ≤ Z2(N). Hence, A ≤ M , and we
obtain a contradiction as in the previous paragraph. �

Now we obtain our main result.

Theorem A. Let p be an odd prime and let G be a finite p-group. If G has rank
at least p+ 1, then G has no maximal elementary abelian subgroup of order p2.

Theorem A contrasts sharply with the situation for p = 2.

Remark 3.3. Suppose G is a 2-group possessing a maximal elementary abelian
subgroup of rank 2. By Lemma 2.4, G has no normal elementary abelian subgroup
of rank 3. Therefore, by a theorem of Anne MacWilliams Patterson [20], every
subgroup of G is generated by 4 or fewer elements. Hence, G has rank at most 4.

Examples in [10, p. 68] show that G may have rank 3. Here, we give an example
of rank 4.

Let F be the finite field of order 4. For each a, b, c in F, let M(a, b, c) be the 3× 3
matrix over F given by

M(a, b, c) =

1 a c
0 1 b
0 0 1


Let U be the set of all matrices M(a, b, c). Then U is a group under multiplication

and is a Sylow 2-subgroup of GL3(4).
For each a in F, let ā = a2; thus, we obtain the unique non-trivial field automor-

phism of F. Let t be the mapping on U given by

M(a, b, c)t = M(b̄, ā, āb̄+ c̄) .

Then t is an automorphism of order two of U (and comes from a unitary automor-
phism of order two of GL3(4)). Let G be the semi-direct product of U by 〈t〉.

Note that CU(t) is the group of all matrices of the form M(a, ā, c) such that
c + c̄ = aā. This group is a quaternion group of order 8, and CG(t) = CU(t) × 〈t〉.
This shows that G possesses a maximal elementary abelian subgroup of rank 2,
namely, Z(CU(t))× 〈t〉. However, it is easy to see that U , and hence G, possess an
elementary abelian subgroup of rank 4. Therefore, G has rank 4.

We end this section with a consequence of Theorem A concerning some important
finitely generated representations of an arbitrary finite group G∗ over a field k of
characteristic p. (Hence, for the remainder of this section, we let G∗ denote an
arbitrary finite group.) The relationship between the group of endotrivial kG∗-
modules T (G∗) and the result stated in Theorem A is that the torsion-free rank of
the group T (G∗) equals the number of conjugacy classes of connected components
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of the poset E(G∗) ([5, § 3]). By [4] and [21], this number is at most 5 if p = 2 and
at most p+ 1 if p is odd. In the particular case that T (G∗) has torsion-free rank 1,
the description of T (G∗) is much easier, according to the results and notation of [5]
(explained below). Indeed, in this case, any endotrivial kG∗-module is isomorphic
to a direct summand of a module of the form

Ωn(k)⊗M
for some integer n and some torsion endotrivial kG∗-module M . Hence, Theorem A
provides a criterion for this to happen which only depends on the p-rank of G∗.

For completeness, we explain the above concepts. We let k denote both a chosen
field of characteristic p and the 1-dimensional trivial kG∗-module. The modules
Ωn(k) are the syzygies of k. These are defined inductively as follows: Let P∗ � k
be a minimal projective resolution of k. Then, Ω0(k) = k and for n > 0,

Ωn(k) = ker
(
Pn−1 � Ωn−1(k)

)
.

For n < 0, we set Ωn(k) = Ω−n(k)∗, the k-linear dual of Ω−n(k). Also, M is a torsion
endotrivial module if there is a positive integer m and a projective kG∗-module F
such that M⊗m ∼= k⊕F . For additional background material on endotrivial modules,
we refer the reader to [6] and [5].

Now, to obtain Corollary B, we also recall that for an arbitrary finite group G∗

and prime number p, the p-rank of G∗ is the rank of a Sylow p-subgroup Sp of G∗.
Note that the poset E(G∗) has at most as many conjugacy classes of components as
the poset E(Sp), and E(G∗) is non-empty whenever E(Sp) is non-empty. Therefore,
if E(Sp) is connected, then the components of E(G∗) form a single conjugacy class.
This proves:

Corollary B. Let p be an odd prime and G∗ a finite group having p-rank greater
than p. For any field k of characteristic p, the group T (G∗) of endotrivial kG∗-
modules has torsion-free rank one. More precisely, any endotrivial kG∗-module is
isomorphic to a direct summand of a module of the form Ωn(k)⊗M , for some integer
n and some torsion endotrivial module M .

4. The class-breadth conjecture

We end this note with the class-breadth conjecture for the finite p-groups G whose
poset E(G) has more than one component.

Let G be a finite p-group. For x in G, the breadth b(x) of x is given by pb(x) =
|G : CG(x)|. In particular, b(x) = 0 if and only if x lies in Z(G). The breadth b(G)
of G is the maximum of b(x) as x ranges over G.

Let c(G) denote the nilpotence class of G. The class-breadth conjecture (also
known as the Breadth Conjecture) states that the inequality

c(G) ≤ b(G) + 1

always holds. Although counterexamples have been found for p = 2, none is known
for p odd. For background and recent results about the class-breadth conjecture,
we refer the reader to [19] and [7]. In particular, several cases are known to be true,
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and moreover, the bound is optimal, in the sense that there are groups for which the
equality c(G) = b(G) + 1 holds. The finite abelian p-groups and those of maximal
nilpotence class are such instances, and [19] presents further cases.

Proposition C. Let p be an odd prime and G a finite p-group. Assume that the
poset E(G) has more than one component. Then the class-breadth conjecture holds
for G.

Proof. Write c = c(G) for the nilpotence class of G. Let E = 〈x, z〉 be a maximal
elementary abelian subgroup of G, with z ∈ Z(G). By [3, Theorem], we obtain the
equalities CG(E) = 〈x〉 × Z(NG(E)), with Z(NG(E)) cyclic, and

|G : CG(E)| = |G : CG(x)| = pc−1.

Hence c = b(x) + 1. Since b(G) ≥ b(x), the class-breadth conjecture c ≤ b(G) + 1
holds for G. �

Remark 4.1. Observe that a similar proof shows that the class-breadth conjecture
holds for any finite p-group G having some soft subgroup A such that, for every
proper subgroup H of G containing A, the nilpotence class of NG(H) is one more
than the nilpotence class of H.
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