
User Modeling: Through Statistical Analysis and an Evolving
Classifier.

Jose A. Iglesias, Plamen Angelov, Agapito Ledezma and Araceli Sanchis

Abstract— Knowledge about computer users is very beneficial
for assisting them, predicting their future actions or detecting
masqueraders. In this paper, an approach for creating and
recognizing automatically the behavior profile of a computer
user is combined with an evolving method to keep up to date
the created profiles. The behavior of a computer is represented
in this research as the sequence of commands s/he types during a
period of time. This sequence is treated using statistical methods
in order to create the corresponding user profile. However, as a
user profile is usually not fixed but rather it changes and evolves,
we propose a user profile classifier based on Evolving Systems.
This paper describes briefly the model creation method and the
evolving classifier, which are compared with well established
off-line and on-line classifiers.

I. INTRODUCTION

Recognizing the behavior of users in real-time is a sig-
nificant challenge in different tasks, such as to predict
their behavior, to coordinate with them or to assist them.
Computer user modeling is the process of learning about
ordinary computer users by observing the way the use the
computer. The result of a user modeling in computer systems
is usually stored in user profiles that contains information that
characterizes the usage behavior of a computer user. This
information may be used in many areas, such as interaction
with users appropriately [1] or computer-aided instruction [2].

Experience has shown that users themselves do not know
how to articulate what they do, especially if they are very
familiar with the tasks they perform. Computer users, like all
of us, leave out activities that they do not even notice they are
doing. Thus, only by observing users we can model his/her
behavior correctly [3]. However, the construction of effective
computer user profiles is a difficult problem because of the
following aspects: human behavior is usually erratic, and
sometimes humans behave differently because of a change
in their goals. The latter problem makes necessary that the
user profiles we create evolve.

Most existing techniques for computer user modeling as-
sume the availability of carefully hand-crafted user profiles,
which encode the a-priori known behavior repertoire of the
observed user. Unfortunately, techniques for automatically
acquiring user profiles from observations are only beginning
to emerge.

A user model may take different forms depending on the
purposes for which it is created. As Webb et al. propose [4],
user models may seek to describe:

Plamen Angelov is with the Department of Communication Systems,
InfoLab21, Lancaster University, UK. E-mail:p.angelov@lancaster.ac.uk

Jose A. Iglesias, Agapito Ledezma and Araceli Sanchis are with
the CAOS Group, Carlos III University of Madrid, Spain. E-
mails:{jiglesia,ledezma,masm}@inf.uc3m.es.

1) the cognitive processes that underlie the users actions;
2) the difference between the users skills and expert skills;
3) the users behavioral patterns or preferences; or
4) the user characteristics.

Recent research has predominantly pursued the third ap-
proach, focusing on users behaviors as proposed by Webb
[5], rather than on the cognitive processes that underlie that
behavior. This research is also focused on finding relevant
users behavioral patterns in order to classify a user behavior.
We will use the approach presented in [6] for automatically
creating the profile of a user based on the analysis of the
sequence of commands s/he typed.

Once many profiles have been created, in order to classify
a new user during run-time, most existing algorithms match
the observed behavior of a user against a profile-library,
and matches are reported as hypotheses. However, as a user
profile is not necessarily fixed but rather it evolves/changes,
we use in this research the evolving classification method
proposed in [7]. This approach based on Evolving Systems [8]
classifies an observed user and the profiles created are always
up to date. In this research, this method is exhaustively ana-
lyzed and compared in detail with many other classification
methods. A novel study about the ability of this approach to
adapt to new data is also presented.

This paper is organized as follows; Section 2 provides a
brief overview of the background and related work relevant
to this research. How the computer user profiles are created
from a sequence of commands is explained in section 3. In
section 4, it is detailed the evolving user classifier. Section
5 describes the experimental setting and the experimental
results obtained. Finally, Section 6 contains future work and
concluding remarks.

II. BACKGROUND AND RELATED WORK

To model, recognize, or classify the behavior of a com-
puter user is very useful in many different computer areas:
Discovery of navigation patterns [9], Web recommender
systems [10] or Computer security [11]. For this reason,
the literature of agent modeling is truly vast. However, in
this research we focus on discovering computer user patterns
from the sequence of commands a user types. The problem of
behavior classification is examined as a problem of learning
to characterize the behavior of a user in terms of sequences
of commands.

As in this research, there are other areas in which sequen-
tial data are analyzed in order to solve a specific problem. In
general, the sequence learning problem can be categorized in

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3226

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/68014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

four basic categories: sequence prediction, sequence genera-
tion, sequence classification and sequential decision making.
In this paper, the sequence classification is the category
analyzed and developed.

Considering the sequence classification, the main reason
to need to handle sequential data is because of the observed
data from some environments are inherently sequential. An
example of these data is the DNA sequence. Ma et al. [12]
present new techniques for bio-sequence classification. In a
very different problem (computer intrusion detection prob-
lem), Coull et al. [13] propose an algorithm that uses pair-
wise sequence alignment to characterize similarity between
sequences of commands. The algorithm produces an effective
metric for distinguishing a legitimate user from a masquer-
ader. Schonlau et al. [14] investigate a number of statistical
approaches for detecting masqueraders.

A very important issue in sequence learning is tempo-
ral dependencies. The following aspect is essential in our
research: A current situation or the action that an agent
performs usually depend on what has happened before. This
aspect is taken into account in our research and in models
such as HMMs; however, there are some other models which
have problems dealing with such dependencies. For example,
recurrent neural network models or reinforcement learning
can not manage efficiently the long-range dependencies.

III. CREATING A COMPUTER USER PROFILE

In this research we consider that the commands typed
by a user are usually influenced by past experiences. This
aspect motivates the idea of automated sequence learning
for behavior classification; if we do not know the features
that influence the behavior of an agent, we can consider a
sequence of past actions to incorporate some of the historical
context of the agent. Indeed, sequence learning is arguable
the most common form of human and animal learning.
Sequences are absolutely relevant in human skill learning and
in high-level problem solving and reasoning [15]. Taking this
aspect into account in this paper, the computer user modeling
is transformed into a sequence analysis problem where a
sequence of commands represents a specific behavior. This
transformation can be done because it is clear that any
behavior has a sequential aspect, as actions are performed
in a sequence.

The commands typed by a computer user are inherently
sequential, and this sequentiality is considered in the mod-
eling process (when a user types a command, it usually
depends on the previous typed commands and it is related to
the following commands). According to this aspect, in order
to get the most representative set of subsequences from a
sequence, we propose the use of a trie data structure [16].
This trie data structure was also used in [17], [18] where a
team behavior was learned as well as in [19] to classify the
behavior patterns of a RoboCup soccer simulation team.

The construction of a user profile from a single sequence of
commands is done as it is explained in [6] for any sequence of
events. This process consists of three steps: 1. Segmentation
of the sequence of commands, 2. Storage of the subsequences

in a trie, and 3. Creation of the user profile. These steps are
detailed in the following 3 subsections.

These steps are detailed in the following 3 subsections. For
the sake of simplicity, let us consider the following sequence
as an example: {ls → date → ls → date → cat}.

A. Segmentation of the sequence of commands

First, the sequence is segmented into subsequences of
equal length from the first to the last element. Thus, the
sequence A=A1A2...An (where n is the number of commands
of the sequence) will be segmented in the subsequences de-
scribed by Ai...Ai+length ∀ i,i=[1,n-length+1], where length
is the size of the subsequences created and this value deter-
mines how many commands are considered as dependent. In
the remainder of the paper, we will use the term subsequence
length to denote the value of this length. In addition, in this
case, the value of this term represents how many commands
a user usually types consecutively as part of his/her behavior
pattern.

In the proposed sample sequence ({ ls→ date→ ls→ date
→ cat}), let 3 be the subsequence length, then we obtain:
{ls → date → ls}, {date → ls → date}, {ls → date →

cat}

B. Storage of the subsequences in a trie

The subsequences of commands are stored in a trie in
a way that all possible subsequences are accessible and
explicitly represented. A node of a trie represents a command,
and its children represent the commands that follow it. Also,
each node keeps track of the number of times a command
has been inserted into it. When a new subsequence is inserted
into a trie, the existing nodes are modified and/or new nodes
are created. Moreover, as the dependencies of the commands
are relevant in the user profile, the subsequence suffixes
(subsequences that extend to the end of the given sequence)
are also inserted.

Considering the previous example, the first subsequence
({ls → date → ls}) is added as the first branch of the empty
trie (Figure 1 a). Each node is labeled with the number 1
which indicates that the command has been inserted in the
node once (in Figure 1, this number is enclosed in square
brackets). Then, the suffixes of the subsequence ({date→ ls}
and {ls}) are also inserted (Figure 1 b). Finally, after inserting
the three subsequences and its corresponding suffixes, the
completed trie is obtained (Figure 1 c).

C. Creation of the user profile

Once the trie is created, the subsequences that characterize
the user profile and its relevance are calculated by traversing
the trie. For this purpose, frequency-based methods are used.
In particular, to evaluate the relevance of a subsequence,
its relative frequency or support [20] is calculated. In this
case, the support of a subsequence is defined as the ratio of
the number of times the subsequence has been inserted into
the trie to the total number of subsequences of equal size
inserted.

3227

Fig. 1. Steps of creating an example trie.

Fig. 2. Distribution of subsequences of commands - Example.

Thus, in this step, the trie can be transformed into a
set of subsequences labeled by its support value. This set
of subsequences is represented as a distribution of relevant
subsequences. In the previous example, the trie consists of
9 nodes; therefore, the corresponding profile consists of 9
different subsequences which are labeled with its support.
Figure 2 shows the distribution of these subsequences.

Once a user behavior profile has been created, it is classi-
fied and used to update the Evolving Profile Library (EPLib),
as explained in the next section.

IV. EVOLVING COMPUTER USER CLASSIFIER

A classifier is a mapping from the feature space to the
class label space. In the proposed evolving classifier, the
feature space is defined by distributions of subsequences
of commands. On the other hand, the class label space is
represented by the most representative distributions. Thus,
a distribution in the class label space represents a specific
profile which is one of the prototypes of the evolving library
EPLib. These prototypes are not fixed and evolve taking
into account the new information collected on-line from the
data stream - this is what makes the classifier Evolving. The
number of these prototypes is not pre-fixed but it depends on
the homogeneity of the observed sequences.

The following subsections describes how a user profile
is represented by the proposed classifier, called EVABCD
- Evolving Agent Behavior Classifier Based on Distributions
of commands, and how this classifier is created in an evolving
manner.

A. User behavior representation

First, EVABCD converts the sequence of commands into
the corresponding distribution of subsequences on-line. In
order to classify a user profile, these distributions must be
represented in a data space. For this reason, each distribution

is considered as a data vector that defines a point that can be
represented in the data space.

The data space in which these points can be represented
should consist of n dimensions, where n is the number of
the different subsequences observed. It means that we should
know all the different subsequences of the environment a
priori. However, this value is unknown and the creation of
this data space from the beginning is not efficient. For this
reason, in EVABCD, the dimension of the data space is in-
crementally growing according to the different subsequences
that are represented in it.

Fig. 3. Distributions of subsequences of commands in an evolving system
approach - Example

Figure 3 explains graphically this idea. In this example,
the distribution of the first user consists of 5 subsequences of
commands (ls, ls-date, date, cat and date-cat), therefore we
need a 5 dimensional data space to represent this distribution
because each different subsequence is represented by one
dimension. If we consider the second user, we can see that

3228

3 of the 5 previous subsequences have not been typed by
this user (ls-date, date and date-cat), so these values are
not available. Also, there are 2 new subsequences (cp and
ls-cp) and the representation of these values in the same
data space needs to increase the dimensionality of the data
space from 5 to 7. To sum up, the dimensions of the
data space represent the different subsequences typed by the
users and they will increase according to the different new
subsequences obtained.

B. Structure of the classifier EVABCD

Once the corresponding distribution has been created, it
is processed by the classifier. This classifier does not need
to be configured according to the environment where it is
used because it can start ’from scratch’. Also, the relevant
information of the obtained samples is necessary to update
the library; but, as we will explain in the next subsection,
there is no need to store all the samples in it. The structure
of this classifier includes:

1) Classify the new sample in a user group represented
by a prototype.

2) Calculate the potential of the new data sample to be
a prototype.

3) Update all the prototypes considering the new data
sample. It is done because the density of the data
space surrounding certain data sample changes with the
insertion of each new data sample. Insert the new data
sample as a new prototype if needed.

4) Remove any prototype if needed.

Next 4 subsections explain each step of this evolving
classification method.

1) Classify the new sample: In order to classify a new
data sample, we compare it with all the prototypes stored in
EPLib. This comparison is done using cosine distance and
the smallest distance determines the closest similarity. This
aspect is considered in equation (1).

Class(xz) = Class(Prot∗);

Prot∗ = MINNumProt
i=1 (cosDist(xPrototypei , xz))

(1)

The time-consumed for classifying a new sample depends
on the number of prototypes and its number of attributes.
However, we can consider, in general terms, that both
the time-consumed and the computational complexity are
reduced and acceptable for real-time applications (in order
of milliseconds per data sample).

2) Calculate the potential of a new data sample: As in
[21], a prototype is a data sample (a computer user profile
represented by a distribution of subsequences of commands)
that groups several samples which represent a certain class.
The classifier is initialized with the first data sample, which
is stored in EPLib. Then, each data sample is classified to one
of the prototypes (classes) defined in the classifier. Finally,
based on the potential of the new data sample to become a

prototype [22], it could form a new prototype or replace an
existing one.

The potential (P) of the kth data sample (xk) is calculated
by the equation (2) which represents a function of the
accumulated distance between a sample and all the other k-
1 samples in the data space [21]. The result of this function
represents the density of the data that surrounds a certain data
sample.

P (xk) =
1

1 +
∑k−1
i=1 distance(xk,xi)

k−1

(2)

where distance represents the distance between two sam-
ples in the data space.

In [23] the potential is calculated using the euclidean
distance and in [21] it is calculated using the cosine distance.
Cosine distance has the advantage that it tolerates different
samples to have different number of attributes (in this case, an
attribute is the support value of a subsequence of commands).
Also, cosine distance tolerates that the value of several
subsequences in a sample can be null (null is different than
zero). Therefore, EVABCD uses the cosine distance (cosDist)
to measure the similarity between two samples; as it is
described in equation (3).

cosDist(xk, xp) = 1−
∑n

j=1 xkjxpj√∑n
j=1 x

2
kj

∑n
j=1 x

2
pj

(3)

where xk and xp represent the two samples to measure its
distance and n represents the number of different attributes
in both samples.

Note that the expression in the equation (2) requires all
the accumulated data sample available to be calculated,
which contradicts to the requirement for real-time and on-
line application needed in the proposed approach. For this
reason, in [21] it is developed a recursive expression cosine
distance. This formula is as follows:

Pk(zk) =
1

2− 1
k−1

1√∑n
j=1(z

j
k)

2
Bk

; k = 2, 3, ...;P1(z1) = 1

where Bk =
n∑

j=1

zj
kb

j
k ; bjk = bj(k−1) +

√
(zj

k)2∑n
l=1(z

l
k)2

and bj1 =

√
(zj

1)2∑n
l=1(z

l
1)2

; j = [1, n+ 1]

(4)
Using this expression, it is only necessary to calculate

(n+1) values where n is the number of different subsequences
obtained; this value is represented by b, where bjk, j = [1, n]
represents the accumulated value for the kth data sample.

3) Creating new prototypes: The proposed evolving user
behavior classifier, EVABCD, can start ’from scratch’ (with-
out prototypes in the library) in a similar manner as eClass
evolving fuzzy rule-based classifier proposed in [23], used
in [24] for robotics and further developed in [21]. The
potential of each new data sample is calculated recursively

3229

and the potential of the other prototypes is updated. Then,
the potential of the new sample (zk) is compared with the
potential of the existing prototypes. A new prototype is
created if its value is higher than any other existing prototype,
as shown in equation (5).

∃i, i = [1, NumPrototypes] : P (zk) > P (Proti) (5)

Thus, if the new data sample is not relevant, the overall
structure of the classifier is not changed. Otherwise, if
the new data sample has high descriptive power and
generalization potential, the classifier evolves by adding a
new prototype which represents a part of the observed data
samples.

4) Removing existing prototypes: After adding a new
prototype, we check whether any of the already existing pro-
totypes are described well by the newly added prototype [21].
By well we mean that the value of the membership function
that describes the closeness to the prototype is a Gaussian
bell function chosen due to its generalization capabilities:

∃i, i = [1, NumPrototypes] : µi(zk) > e−1 (6)

For this reason, we calculate the membership function
between a data sample and a prototype which is defined as:

µi(zk) = e
− 1

2 [
cosDist(zk,Proti)

σi
]
, i = [1, NumPrototypes]

(7)
where cosDist(zk, P roti) represents the cosine distance

between a data sample (zk) and the ith prototype (Proti);
σi represents the spread of the membership function, which
also symbolizes the radius of the zone of influence of the
prototype. This spread is determined based on the scatter [25]
of the data. The equation to get the spread of the kth data
sample is defined as:

σi(k) =

√√√√1
k

k∑
j=1

cosDist(Proti, zk) ; σi(0) = 1 (8)

where k is the number of data samples inserted in the data
space; cosDist(Proti, zk) is the cosine distance between the
new data sample (zk) and the ith prototype.

However, to calculate the scatter without storing all the
received samples, this value can be updated (as shown
in [23]) recursively by:

σi(k) =

=

√
[σi(k − 1)]2 +

[cosDist2(Proti, zk)− [σi(k − 1)]2]
k

(9)

V. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate EVABCD in a command interface, we
use a data set with the UNIX commands typed by 168 real
users and labeled in 4 different groups. In this section we will
detail the experimental results obtained and the comparison
with other different classification methods.

A. Data Set

For these experiments, we use the command-line data
collected by Greenberg [26] using UNIX csh command
interpreter. In this data, four target groups were identified,
representing a total of 168 male and female users with a
wide cross-section of computer experience and needs. Salient
features of each group are described below, and the sample
sizes (the number of people observed) are indicated in table I.
• Novice Programmers: The users of this group had little

or no previous exposure to programming, operating
systems, or UNIX-like command-based interfaces. These
users spent most of their time learning how to program
and use the basic system facilities.

• Experienced Programmers: These group members were
senior Computer Science undergraduates, expected to
have a fair knowledge of the UNIX environment. These
users used the system for coding, word processing, em-
ploying more advanced UNIX facilities to fulfill course
requirements, and social and exploratory purposes.

• Computer Scientist: This group, graduates and re-
searchers from the Department of Computer Science,
had varying experience with UNIX, although all were
experts with computers. Tasks performed were less
predictable and more varied than other groups, research
investigations, social communication, word-processing,
maintaining databases, and so on.

• Non-programmers: Word-processing and document
preparation was the dominant activity of the members of
this group, made up of office staff and members of the
Faculty of Environmental Design. Knowledge of UNIX
was the minimum necessary to get the job done.

TABLE I
SAMPLE GROUP SIZES AND COMMAND LINES RECORDED.

Group of users name Sample size Total number
of command lines

Novice Programmers 55 77423
Experienced Programmers 36 74906
Computer Scientists 52 125691
Non-Programmers 25 25608
Total 168 303628

B. Experimental Design

Although the proposed classifier can be used in real-time,
in order to measure its performance using the above data set,
the 10-fold cross-validation thecnique is used. all the users
(training set) are divided into 10 disjoint subsets with equal
size. Each of the 10 subsets is left out in turn for evaluation.
It should be emphasized that EVABCD does not need to
work in this model. This is done mainly in order to have
comparable results with very different techniques.

The number of UNIX commands typed by a user and
used for creating his/her profile, is very relevant in the
classification process. When EVABCD is carried out in the
field, the behavior of a user is classified (and the evolving
behavior library updated) after s/he types a limited number

3230

of commands. In order to show the relevance of this aspect
using the data set already described, we consider sequences
of different number of UNIX commands for creating the
user profile: 100, 500 and 1000 commands per user. Also,
if the number of users increases, the number of different
subsequences increases, too.

In the phase of user profile creation, the length of the
subsequences in which the original sequence is segmented
(used for creating the trie) is a relevant parameter: using long
subsequences, the time consumed for creating the trie and
the number of relevant subsequences of the corresponding
distribution increase drastically. In the experiments presented
in this paper, the subsequence length varies from 2 to 6.

In addition, we should consider that the number of subse-
quences obtained using different sequences of data is often
very large. To get an idea of how this number increases,
table II shows the number of different subsequences obtained
using different number of commands for training (100, 500
and 1000 commands per user) and subsequence lengths (3
and 5).

TABLE II
TOTAL NUMBER OF DIFFERENT SUBSEQUENCES OBTAINED.

Number of Subsequence Number of
commands per user Length different subsequences

100 3 11451
5 34164

500 3 39428
5 134133

1000 3 63375
5 227715

Using EVABCD, the number of prototypes to create per
each group is not fixed, it varies automatically depending on
the heterogeneity of the data. To get an idea about this aspect,
table III tabulates the number of different prototypes per
group created in each of the 10 runs using 1000 commands
per user as training dataset and a subsequence length of 3.

TABLE III
EVABCD: NUMBER OF PROTOTYPES CREATED PER GROUP USING

10-FOLD CROSS-VALIDATION

Number of prototypes in each of the 10 runs
Group 1 2 3 4 5 6 7 8 9 10
Novice Progr. 4 5 3 4 4 3 2 3 4 5
Exp. Progr. 1 1 1 1 2 3 2 1 1 2
Comp. Scientists 1 1 1 1 1 1 2 2 2 2
Non-Progr. 1 1 1 1 1 1 1 1 1 1

C. Results

In order to evaluate the performance of EVABCD, we
compare it with incremental and non-incremental classifiers:
Naive Bayes [27], k-Nearest Neighbor [28] (incremental
and non-incremental), and C5.0 (a commercial version of
C4.5 [29], [30]).

For this purpose, these classifiers were trained using a
feature vector for each user (168 samples). This vector

consists of the support value of all the different subsequences
obtained for all the users; thus, there are a lot of subsequences
which do not have a value because the corresponding user
has not typed those commands. In this case, in order to be
able to use this data for training the classifiers, we consider
the value 0 (although its real value is null).

Table IV shows the percentage of users correctly classified
into its corresponding group using different number of com-
mands for training (100, 500 and 1000 commands per user)
and subsequences lengths for segmenting the initial sequence
(from 2 to 6).

According to this data, we can see that the percentages
of users correctly classified by our approach are better than
the obtained by K-NN but worse than the obtained by Naive
Bayes. For small subsequences length (2 or 3) the difference
between EVABCD and Naive Bayes is considerable; but
this difference decreases if this length is longer (5 or 6). In
general, these results show that the proposed classifier works
well in this kind of environments when the subsequence
length is around 5. However, EVABCD is suitable in the
proposed environment because it does not need to store the
entire data stream in the memory and disregards any sample
after being used. In addition, EVABCD is one-pass (each
sample is proceeded once at the time of its arrival), while non-
incremental classifiers are offline algorithms which require a
batch set of training data in the memory and make many
iterations. For this reason, EVABCD is computationally
simple and efficient as it is recursive and one pass. In fact,
because the number of attributes is very large in a real
environment, the proposed approach EVABCD is the best
working alternative.

In addition to the advantage that EVABCD is an online
classifier, we want to prove the ability of our approach
to adapt quickly to new data (in this case, new users
or a different behavior of a user). For this purpose, we
design a new experimental scenario in which the number
of commands used as training set for each user in a new
class is incremented to detect how the different classifiers
recognize the users of that new class. Thus, using the same
experimental setup explained above, firstly the users of the
Novice Programmers group will be added incrementally in
the training data. In this case, we also use 10-fold cross-
validation, hence the process finishes when the training data
contains the 90% of the users of that group. The sequence
of commands used for creating the profile of a user contains
1000 commands and it is created using a subsequence length
of 5.

The first graph of the Figure 4 shows the results of
this experiment: x-axis represents the number of Novice
Programmers users that have been considered in the training
data, and y-axis represents the classification rate. In the graph
we can see how quickly EVABCD evolves and adapts to the
new class. Only with 3 users of the new class, our method is
able to create a new prototype in which almost 90% of the
test users are classified correctly. However, the other non-
incremental classifiers need a higher number of samples for

3231

TABLE IV
RESULTS OF UNIX USER CLASSIFICATION - COMPARATIVE. #1: NUMBER OF COMMANDS IN A TRAINING SEQUENCE. #2: SUBSEQUENCE LENGTH.

Classifier and classification rate (%)
Incremental Classifier Non Incremental Classifier
Naive k-NN

EVABCD Bayes Incremental C5.0 Naive k-NN
#1 #2 Incremental (k=1) Bayes (k=1)

2 65,5 77,3 38,3 73,9 79,1 42,8
3 64,9 76,1 36,5 69,6 79,7 39,8

100 4 64,5 72 34,1 74,6 74,4 39,2
5 67,9 73,2 32,3 68,6 75 33,3
6 64,3 73,2 32,3 70,1 77,3 32,7
2 58,3 77,9 33,9 73,9 82,1 41,9
3 59,5 73,8 36,9 74,6 77,3 39,8

500 4 59,2 70,8 39,2 73,9 76,7 38,9
5 66,7 71,4 35,1 73,6 76,1 37,3
6 70,8 72,6 35,7 75,6 75,5 36,9
2 60,1 78,5 43,6 73,9 85,1 44,1
3 65,5 77,9 44,0 74,6 81,5 47,3

1.000 4 61,3 77,3 43,5 73,9 79,1 46,1
5 70,2 76,7 42,5 73,6 78,5 44,0
6 72,0 76,1 41,9 74,6 77,9 44,6

Fig. 4. Evolution of the classification rate during online learning with a subset of users data set. - Comparison with non-incremental classifiers.

3232

recognizing the users of that new class. The increase in the
classification rate is not perfectly smooth because the new
data bring useful information but also noise. The other three
graphs of the Figure show similar performance for the other
3 groups.

VI. CONCLUSIONS

In this paper we describe a generic approach to model
and classify automatically computer users from the sequence
of commands s/he types during a period of time. However,
as a user profile is usually not fixed but rather it changes
and evolves, we have proposed a user profile classifier able
to keep up to date the created profiles based on Evolving
Systems. This evolving classifier is one pass, non-iterative,
recursive and it has the potential to be used in an interactive
mode; therefore, it is computationally very efficient and fast.

The test results with a data set of 168 real UNIX users
demonstrates that, using an appropriate subsequence length,
EVABCD can perform almost as well as other well estab-
lished off-line classifiers in terms of correct classification on
validation data. However, the proposed classifier is able to
adapt extremely quickly to new data.

Although it is not addressed in this paper, the proposed
method can be also used to monitor, analyze and detect
abnormalities based on a time varying behavior of same
users and to detect masqueraders. It can also be applied
to other type of users such as users of e-services, digital
communications, etc.

REFERENCES

[1] F. Nasoz and C. L. Lisetti, “Affective user modeling for adaptive
intelligent user interfaces.” in HCI (3), ser. Lecture Notes in Computer
Science, J. A. Jacko, Ed., vol. 4552. Springer, 2007, pp. 421–430.

[2] L. Barrow, L. Markman, and C. E. Rouse, “Technology’s edge: The
educational benefits of computer-aided instruction,” National Bureau
of Economic Research, Working Paper 14240, August 2008.

[3] J. T. Hackos and J. C. Redish, User and Task Analysis for Interface
Design. Wiley, 1998.

[4] G. I. Webb, M. J. Pazzani, and D. Billsus, “Machine learning
for user modeling,” User Modeling and User-Adapted Interaction,
vol. 11, no. 1, pp. 19–29, March 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1011117102175

[5] G. I. Webb, “Feature based modelling: A methodology for producing
coherent, consistent, dynamically changing models of agents compe-
tency,” in Proceedings of the 1993 World Conference on Artificial
Intelligence in Education (AI-ED’93), P. Brna, S. Ohlsson, and H. Pain,
Eds. Charlottesville, VA: AACE, 1993, pp. 497–504.

[6] J. A. Iglesias, A. Ledezma, and A. Sanchis, “Creating user profiles
from a command-line interface: A statistical approach,” in UMAP
2009: Proceedings of the 1st and 7th International Conference on
User Modeling, Adaptation, and Personalization, ser. LNCS, vol. 5535.
Springer, June 2009, pp. 90–101.

[7] J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Modelling
evolving user behaviours,” in IEEE Workshop on Evolving and Self-
Developing and Self-Developing Intelligent Systems, ESDIS 2009,
2009, pp. 16–23.

[8] P. Angelov, Rule-based Models: A Tool for Design of Flexible Adaptive
Systems. Heidelberg, New York: Springer-Verlag, 2002.

[9] M. Spiliopoulou and L. C. Faulstich, “Wum: A web utilization miner,”
in In Proceedings of EDBT Workshop WebDB98. Springer Verlag,
1998, pp. 109–115.

[10] A. A. Macedo, K. N. Truong, J. A. Camacho-Guerrero, and
M. da GraÇa Pimentel, “Automatically sharing web experiences
through a hyperdocument recommender system,” in HYPERTEXT
2003. New York, NY, USA: ACM, 2003, pp. 48–56.

[11] D. L. Pepyne, J. Hu, and W. Gong, “User profiling for computer
security,” in Proc. American Control Conference, 2004, pp. 982–987.

[12] Q. Ma, J. T.-L. Wang, D. Shasha, and C. H. Wu, “Dna sequence
classification via an expectation maximization algorithm and neural
networks: a case study.” IEEE Transactions on Systems, Man, and
Cybernetics, Part C, vol. 31, no. 4, pp. 468–475, 2001.

[13] S. E. Coull, J. W. Branch, B. K. Szymanski, and E. Breimer, “Intrusion
detection: A bioinformatics approach,” in ACSAC, 2003, pp. 24–33.

[14] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus, and Y. Vardi,
“Computer intrusion: Detecting masquerades,” 2001, statistical Sci-
ence.

[15] J. Anderson, Learning and Memory: An Integrated Approach. New
York: John Wiley and Sons., 1995.

[16] E. Fredkin, “Trie memory,” Comm. A.C.M., vol. 3, no. 9, pp. 490–499,
1960.

[17] J. A. Iglesias, A. Ledezma, and A. Sanchs, “Sequence classification
using statistical pattern recognition.” in IDA, ser. LNCS, vol. 4723.
Springer, 2007, pp. 207–218.

[18] G. A. Kaminka, M. Fidanboylu, A. Chang, and M. M. Veloso, “Learn-
ing the sequential coordinated behavior of teams from observations,”
in RoboCup, ser. Lecture Notes in Computer Science, vol. 2752.
Springer, 2002, pp. 111–125.

[19] J. A. Iglesias, A. Ledezma, and A. Sanchis, “A comparing method of
two team behaviours in the simulation coach competition,” in MDAI,
ser. LNCS, vol. 3885. Springer, 2006, pp. 117–128.

[20] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Interna-
tional Conference on Data Engineering, Taiwan, 1995, pp. 3–14.

[21] P. Angelov and X. Zhou, “Evolving fuzzy rule-based classifiers from
data streams,” IEEE Transactions on Fuzzy Systems: Special issue on
Evolving Fuzzy Systems, vol. 16, no. 6, pp. 1462–1475, 2008.

[22] P. Angelov and D. Filev, “An approach to online identification of
takagi-sugeno fuzzy models,” Systems, Man, and Cybernetics, Part B,
IEEE Transactions on, vol. 34, no. 1, pp. 484–498, Feb. 2004.

[23] P. Angelov, X. Zhou, and F. Klawonn, “Evolving fuzzy rule-based clas-
sifiers,” Computational Intelligence in Image and Signal Processing,
2007. CIISP 2007. IEEE Symposium on, pp. 220–225, April 2007.

[24] X. Zhou and P. Angelov, “Autonomous visual self-localization in
completely unknown environment using evolving fuzzy rule-based
classifier,” Computational Intelligence in Security and Defense Appli-
cations, 2007. CISDA 2007. IEEE Symp., pp. 131–138, April 2007.

[25] P. Angelov and D. Filev, “Simpl eTS: a simplified method for learning
evolving Takagi-Sugeno fuzzy models,” The IEEE International Con-
ference on Fuzzy Systems. FUZZ-IEEE 2005., vol. -, pp. 1068–1073,
May 2005.

[26] S. Greenberg, “Using unix: Collected traces of 168 users,” Master’s
thesis, Department of Computer Science, University of Calgary, Al-
berta, Canada, 1988.

[27] I. Rish, “An empirical study of the naive bayes classifier,” in Pro-
ceedings of IJCAI-01 Workshop on Empirical Methods in Artificial
Intelligence, 2001.

[28] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[29] J. R. Quinlan, C4.5: programs for machine learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[30] J. Quinlan, “Data mining tools see5 and c5.0,” 2003 [online], available:
http://www.rulequest.com/see5-info.html.

3233

