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Abstract – We describe a method for attaching
content-based labels to video data using a weighted com-
bination of low-level features (such as colour, texture,
motion, etc.) estimated during motion analysis. Ev-
ery frame of a video sequence is modeled using a fixed
set of low-level feature attributes together with a set of
corresponding weights using a block-based motion esti-
mation technique. Indexing a new video involves an
alternative scheme in which the weights of the features
are first estimated and then classification is performed
to determine the label corresponding to the video. A hi-
erarchical architecture of increasingly complexity is used
to achieve robust indexing of new videos. We explore
the effect of different model parameters on performance
and prove that the proposed method is effective using
publicly available datasets.

Keywords: Tracking, filtering, estimation, fuzzy logic,
resource management.

1 Introduction
Video indexing involves attaching content or
appearance-type labels to video in order to pro-
vide efficient, reliable and classified access to the data
[5, 22]. Video indexing is a central problem in the
structured organization of video data that will allow
efficient retrieval, browse and manipulation. However,
these tasks are particularly complicated when per-
formed without appropriate human intervention [10].
A number of different approaches for video indexing
have been proposed, mostly encapsulating variations
in either low-level (physical) or high-level (semantic)
feature attributes. Though high-level indices provide
elaborate description of video content, they are often
contaminated by semantic inconsistencies and are
generally suitable for dealing with small quantities of
video and providing access to already annotated video
data. On the other hand, low-level video indexing
based on feature attributes such as colour [4], texture
[16], motion [17], etc. provide basis for video classifi-
cation. The general idea behind these methods is to

extract features from the video, organize them based
on distances and use some form of similarity matching
for video classification [3].

In this paper we investigate a method of com-
bined feature-level motion estimation for accurate and
robust video indexing. The central idea behind the
proposed method is to estimate some average feature-
level characteristics of a video using a block-based
motion estimation scheme. In accordance with the
features selected for matching the blocks i.e. grey-
level, texture, colour, motion, etc. and to the weights
assigned to these features, we obtain performance
levels in terms of the fitness between each frame and
motion estimated frame by means of a block matching
procedure. The weights leading to the best average
matches between all the pairs of actual and motion
estimated frames along a sequence are considered as
the descriptors of the video. These descriptors are
then used for assigning videos to different classes using
an classification algorithm. We denote this method
a combined feature-level video indexing (CFVI) and
demonstrate it on a various publicly available datasets
including CAVIAR [1], CMU [13], PETS 2001 [2] and
our own collection of People, Traffic and Under-water
videos.

1.1 Related Work

The goal of video indexing and retrieval systems is
to model and extract effective features describing
the visual input being indexed and thus use these
extracted features to search and match the query
video based on a suitable similarity rank. The chosen
feature descriptors can be either low-level (primitive),
high-level (semantic) or more popularly a combination
of the two [5].

Under the high-level (semantic) video indexing
framework, information on the high-level ontological
categories such as objects, actions, time, abstract are
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often used as descriptors for indexing and retrieval.
This video abstract is in a form of a short sequence
of images, extracted from longer sequences in a way
that it preserves the underlying meaning/message of
the original video [15, 17]. The obvious complexity in
extracting such an abstract is in determining which
frames best represent the contents of the original video.
A general approach is to segment a video in shots and
then select a key frame to represent each shot. Several
different approaches have been proposed to summarize
and further index videos based on this principle. In
[15], the authors aim to generate trailers for movies
that result in a precise video abstract, however, this
may not work with video documentaries and libraries
where the video content is exhaustive and elaborate. In
contrast, explicit detection of shot changes have been
more widely used for video indexing [14]. A typical ap-
proach for semantic video indexing is to use supervised
learning techniques such as the graphical models and
support vector machines [16, 24] or rarely unsupervised
schemes to extract repeating feature patterns such
as visual context, camera motion and audio context
[11, 22]. In addition to conventional techniques such as
the edit effect detection algorithm outlined in [18] and
extraction of temporal aspects of video data as in [17],
much research efforts have been spent in extracting
temporal coherence among shots for video indexing
[19, 25]. A majority of the techniques introduced
above, capture and preserve high level description of
visual information by modeling description of some
event or concept [24], object motion information [9]
and influences of capture devices [17]. In order to
handle the constraints in time, storage and efficiency
overhead of delivering such high-level descriptions, a
large number of high level techniques either directly or
indirectly depend on low-level (primitive) features.

Low-level features that are used to represent video data
have conventionally been the same used for images,
generally including the temporal aspects of video data
(in the form of motion primitives). As previously
mentioned low-level features form the lowest level of
abstraction that models descriptions of the raw video
data that is used as input for the higher-levels. In
[16], region level feature extraction is performed by
combining linearized Hue, Saturation and Value (HSV)
colour histograms with gray-level co-occurrence matrix
type texture and affine motion features for accurate
video indexing. In a similar study by [8], Luminance L
and Chrominance components U and V (LUV) colour,
coarseness, contrast and orientation textures, shape
and motion features have been combined for accurate
video indexing. However, these features are extracted
after objects of interest are segmented from the video
using a high-level spatio-temporal segmentation pro-
cedure. A novel technique of multi-resolution analysis
of colour histograms using Hausdroff similarity criteria

addressing the scalability and efficiency issues of video
indexing systems is proposed in [7]. Likewise [26]
integrate motion features computed using perceived
motion energy spectrum (PMES) with camera motion
descriptor based on normalized dominant direction his-
togram and quantized colour primitives for classifying
video data using support vector machines. With a total
of 40 features the authors have demonstrated that the
model can capture fundamental characteristics of the
video data and can achieve high levels of generalization.

Though so much research efforts have been spent
on developing state-of-the-art systems for video index-
ing, several open issues still remain. Though recent
literature suggests the use of Principle Component
Analysis (PCA) for dimensionality reduction during
indexing [12], the problem of high dimensional feature
space still remains fully unresolved. In addition to
the issues of lack of generality [21] and not having
benchmark data and performance evaluation criteria,
the gap between composing low-level and high-level
features for extracting semantic features is significant
[5].

2 Contributions and Structure

The method proposed in this paper combines weighted
feature descriptors estimated using block matching
with a classification strategy for video indexing. One
novelty of the method is that the estimation of weights
for features describing a video is integrated into block
matching based motion estimation. The technique
automatically categorizes videos quantitatively by
the relative proportion of feature attributes that are
present in them. Furthermore, the method applies a
hierarchical implementation for robustness: in the first
step, we determine the weights of a salient subset of
features using block-based motion estimation; in the
second step we refine the current estimates of weights
using the combined weights from the previous step by
comparing blocks that share similar motion character-
istics and also estimate new weights corresponding to
a larger set of less salient features. Our results suggest
that using such a hierarchical architecture of increasing
complexity can significantly improve the performance
when compared to a single-level model.

The paper is organized as follows. We begin by
describing our CFVI model, including the motion
estimation technique in Section 3. We then conduct
experiments on various publicly available dataset in
Section 4 that investigate the effect of: the hierarchical
implementation, the measure of performance, the
choice of the search strategy used within motion esti-
mation when compared to other developed techniques.
In Section 5, we present some conclusive remarks and
future directions of work.



3 Proposed Method
In our proposed technique, we formulate the video in-
dexing problem using low-level (primitive) features and
their corresponding weights that are estimated during
motion estimation using a block-based approach. We
represent the model as a set of N primitive features
and their corresponding weights, ℜ = { ℵi = (fi, wi) }.
Given a query video V, our aim is then to find the opti-
mal set, ℜ∗ that maximizes the performance metric Ω.
The distribution of weights of corresponding features of
the query video V is then subjected to classification to
determine the class label (known from already available
ground truth). We summarize this approach as follows:

1. Initialize the feature set f0
i and their correspond-

ing weights, w0
i = ui

∑

i

j=1
uj

; where ui is a random

number generated between [0,1].

2. For image frames I at t = 1, . . ., T-1:

• For ℓ = 1, ...,K iterations:

– Select the best candidate target frame,
I∗t+1 ← m(It, It+1), wherem is the fitness
function of weighted block based motion
estimation.

– Measure the performance of motion esti-
mation using known metric d to obtain
Ωℓ = d(I∗t+1, It+1).

– Reinitialize w0,ℓ
i = ui

∑

i

j=1
uj

; where ui is a

random number generated between [0,1].

• Select update weights wt,ℓ
i = argmaxℓΩ.

3. Estimate the average weights wi =
w

t=1:T−1

i

T−1
as the

feature descriptors of the video.

4. Perform classification on the descriptors to obtain
relevant class label.

3.1 Motion Estimation

The first step involves finding the best candidate
target frame, I∗t+1 from the source frame It, using
motion vectors computed from a weighted block
based motion estimation framework. The proposed
weighted block based motion estimation technique
extends the block matching method suggested in
[6]. The block matching strategy in [6] is imple-
mented using an affine based genetic algorithm search
scheme for accurate motion estimation. In this paper
we extend that genetic algorithm search mechanism
such that it accommodates matching weighted features.

Let us assume that bt represents the block ex-
tracted from the source image frame after quad-tree
decomposition and bt+1 be the affine matched block
extracted from the target frame. The genetic algo-
rithm is an evolving iterative procedure that aims to

minimize an fitness function. The fitness function for
the proposed weighted genetic algorithm search is as
follows:

Minimize m(.) = argmin

N
∑

i=1

wfi ∗mfi (1)

wheremfi measure the cumulative difference between
the features (pixel-wise or regions-wise) of block bt and
bt+1,

mfi = |bfit ⊖ b
fi

t+1| (2)

where ⊖ is a difference operator. For example, if
grey level intensity feature is used, then mfi will be
cumulative sum of mean absolute difference between
pixels of the block b

fi
t and b

fi

t+1.

In our genetic algorithm the population is initialized
with chromosomes that are encoded as a vector contain-
ing the displacements in x and y directions and a set of
affine parameters that encompasses rotational, shear,
scale and squeeze changes: (∂x, ∂y, a11, a12, a21, a22).
For the purposes of evolution we perform the cross-over
step based on a single point swap of a random gene
between successive chromosomes and the mutation
step where we replace all the genes of a particular
chromosome using scaled values from a uniform distri-
bution. The algorithm is set to terminate either when
the minimum of the fitness function or a maximum
number of generations is reached (whichever is earlier).
We represent the motion vector between the source
image frame It and target image frame It+1 as the
displacement of a generic point at location (x, y) from
t to t + 1, we reconstruct the target frame using these
vectors to form I∗t+1.

3.2 Performance Metric

Having obtained the reconstruction of the target frame,
we focus our attention in measuring the performance
of motion estimation based on prediction errors. We
measure the quality of motion estimation using Peak
signal to Noise Ratio (PSNR), which the most classic
metric of evaluating motion estimation. PSNR for a
gray scale image is defined as:

dPSNR = 10 log10

[

2552

1

HW

∑

H

∑

W

∥

∥It+1 − I∗t+1

∥

∥

2

]

(3)

where, (H,W ) refers to the height and the width
of the image frames. PSNR values generally range
between 20dB and 40dB; higher values of PSNR
indicate better quality of motion estimation.



In addition to the classic measures of quality, we
also measure the structural similarity between the two
images (SSIM index) comparing local patterns of pixel
intensities that have been normalized in luminance and
contrast [23].

dSSIM =
(2µIt+1

µI∗

t+1
+ c1)(2covIt+1,I

∗

t+1
+ c2)

(µ2
It+1

+ µ2
I∗

t+1

+ c1)(σ2
It+1

+ σ2
I∗

t+1

+ c2)

(4)

where c1 = (k1L)
2, c2 = (k2L)2, L is the dynamic

range of the pixel-values, k1 and k2 are two constants
equal to 0.01 and 0:03 respectively and µ, cov and σ are
the mean, the covariance and the standard deviation
functions, respectively.

3.3 Hierarchical Implementation

We extend the proposed model by applying the block
matching algorithm in a hierarchical fashion by adapt-
ing the quad-tree decomposition methodology of split-
ting an image into blocks of regions. The quad-tree de-
composition scheme progresses recursively dividing the
source image frame It into 4 equal blocks (regions in
the image) until no further splitting is needed. During
every cycle of split, the genetic algorithm based search
strategy as described in section 3.1 is engaged to accu-
rately match each block to the target frame and thus
motion vectors are determined. In our implementation,
during the first cycle of decomposition, we determine
the weights of only a salient subset of features (up to
3); in the second cycle we refine the current estimated
weights of individual blocks using the combined esti-
mate from the previous step by comparing blocks that
share similar motion characteristics and also estimate
new weights corresponding to a slightly larger set of less
salient features (increased by 1 at every level) and so
on until no further splitting is needed (maximum sized
block of 4x4 pixels). Importantly, search parameters
are re-learned at every level so that the nearly correct
values are employed rather inefficiently assuming (ran-
dom) constant values for all levels.

4 Results and Analysis
In this section we perform systematic experiments eval-
uating the proposed model for its accuracy and ro-
bustness. We compare the proposed motion estimation
scheme with conventional mechanisms using the stan-
dard performance metrics detailed in section 3.2 and
the overall performance using the rate of true classifica-
tion and misclassification. To demonstrate the perfor-
mance we use a combined dataset that contains a total
of 400 short video clips from various different sources in-
cluding the CAVIAR [1], CMU [13], PETS 2001 [2] and
our own collection of people, traffic, maritime surveil-
lance and under-water videos. Each video clip is edited

Table 1: Summary of Performance
Class PSNR SSIM Level Clsfy Rate
1 27.034 0.645 3 83.825
2 24.618 0.601 2 87.125
3 29.189 0.710 3 86.875
4 31.923 0.827 2 92.45
5 30.508 0.794 3 91.3
6 33.187 0.862 3 93.075

to a length 15 seconds containing approximately 375
frames at a scaled resolution of 320x320. We have man-
ually annotated each of these videos with 1 of 6 possible
class labels: 1-indoor surveillance, 2-outdoor surveil-
lance, 3-sports, 4-under-water, 5-wildlife and 6-coastal
surveillance. For all our experiments, we use a pool
of texture, colour and grey-intensity features ranging
from the most salient to the least salient including: cor-
relation, hue, grey-level intensity, contrast, saturation,
gradient, energy, brightness and homogeneity. Table 1,
summarizes the performance of the CFVI system. Due
to space constraint, in Figure 1, we just present the 3
fold results of cross validation of 30 randomly selected
test video clips represented using black ’*’s. Using the
nearest neighbor approach we spatially link the test
video clips to their nearest class label. Though it is
possible to extend our model using other classification
strategies, we restrict ourselves to the nearest neigh-
bor method because of its simplicity. Also, we presume
that other classification methods can only improve our
results and not otherwise. The results thus obtained
have demonstrated 94% classification rate for the cho-
sen features (grey-intensity, hue and correlation).

4.1 Effect of the Hierarchical Imple-

mentation

One of the novelties of the CFVI is its implemen-
tation of a hierarchical architecture that allows coarse
reconstruction between the model with the image data
using only a small subset of highly salient features, fol-
lowed iteratively by more finer reconstructions with in-
creased features. The following experiment examines
the impact of increasing the levels of decomposition in
the hierarchy by comparing with one level decomposi-
tion (3 features), two levels of decomposition (4 fea-
tures) and three levels of decomposition (5 features).
The cumulative average performance curves for some of
the video clips (Figure 2), suggest that increasing the
levels of decomposition, has a significant impact on the
performance of motion estimation. In order to prove be-
yond doubt that the hierarchical implementation with
increasing complexity not alone has a positive impact
on the motion estimation process but also on correct
classification of a a video, we conduct experiments on
using different number of features extracted at various
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Figure 1: Cross Validation Clustering Results of 3 most
salient features (colour, texture and intensity)
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Figure 2: Cumulative average performance of motion
estimation with respect to number of cascade levels

levels of the hierarchical model and subjecting them
to classification. The distribution of the number of fea-
tures required for correct classification of videos (Figure
4a.), show positive correlation with reference to our ob-
servation in Figure 2. However, in some videos smaller
number of salient features are found to be more effec-
tive than larger subset of unsalient features, mainly due
to the ambiguity rise by unsalient feature in the model.

4.2 Effect of search strategy and perfor-

mance metric

We now conduct experiments that jointly evaluates the
effect of different search mechanisms on motion esti-
mation and the use of different performance metrics.
We present results in Figure 3 and Figure 4b. showing
that our motion estimation model with weighted ge-
netic algorithm search compares favourably with con-
ventional search methods such as diamond search, three
step search and exhaustive search that are modified to
take weighted features. In addition to the experiments
above that already provide sufficient evidence on the ef-
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Figure 3: Cumulative average performance of motion
estimation with respect to search strategy

fect of different performance metrics on motion estima-
tion, we also investigated the effect of different perfor-
mance metrics on the overall classification performance
of the model. The curve for each metric in Figure 4c.,
suggest that the PSNR metric produces maximum rate
of classification for a majority of the videos closely fol-
lowed by the SSIM index and relative entropy.

4.3 Comparison of Video Retrieval

Finally, having investigated on the effect of differ-
ent system parameters on the model, we compare our
video indexing model with simple implementation of a
color based video retrieval system. Here, we have built
a simplified baseline framework based on the work of
[20]. We have performed some initial comparative ex-
periments with both the systems and our results sug-
gest that our proposed methodology increases the clas-
sification rate by an average of 8% for all class labels
in comparison to the baseline technique. The experi-
ments have also indicated that the proposed strategy is
potentially scalable to larger datasets. In terms of the
computational demand, the baseline strategy is more
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efficient ( 437ms per image frame compared to 783ms
for our method) when implemented with Matlab and
run on a Pentium Duo Core processor with 4GB RAM.
Since there exist a large tradeoff between the efficiency
and accuracy of our models, we are working on optimiz-
ing our feature level method by incorporating higher
level semantic knowledge into indexing.

5 Conclusions
We have investigated a novel framework of combined
feature-level motion estimation and classification for
low-level video indexing. The hierarchical implementa-
tion of the framework with increasing complexity allows
greater robustness of the proposed model resulting in a
method that outperforms simpler models on standard
datasets. One of the open question concerns the opti-
mal set of features that are needed to faithfully describe
a video. Initial experimentation suggests that the rela-
tionship between a particular video and the necessary
feature set required to describe it completely, maybe
complex. In our future work, we will address this issue
and also look to extend the proposed model to extract
higher order semantics in a video to help perform better
indexing and retrieval.
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