
System Evolution, Feedback, and Compliant Architectures

R. Mark Greenwood, Ken Mayes, Dharini Balasubramaniam, Graham Kirby,

Brian C. Warboys, Ben S. Yeomans Ron Morrison

Department of Computer Science School of Computer Science

University of Manchester University of St Andrews

Oxford Road, Manchester, M13 9PL North Haugh, St Andrews, Fife, KY16 9SS

+44 161 275 6183 +44 1334 463240

fmarkg,ken,brian,yeomansbg@cs.man.ac.uk fdharini,graham,rong@dcs.st-and.ac.uk

1 Introduction

The thesis of this position paper is that the evolu-

tionary development of a software system can be sig-

ni�cantly a�ected by the compliance of its software ar-

chitecture. The notion of compliance focuses on the re-

lationship between a software system being developed

or evolved, and system functions, such as concurrency

control, scheduling, address space management and re-

covery management, which are often provided by com-

ponents, e.g. languages, operating systems and libraries,

over which the system developers have little or no con-

trol [4]. Where there is compliance the system func-

tions match the requirements; with non-compliance ad-

ditional code is required to bridge between the system

functions provided and those which are required. This

will be illustrated through some details of what has hap-

pened in the development of the ProcessWeb system [5],

concentrating on the issue of scheduling.

ProcessWeb is a multi-user system which provides

process support through the execution of process models

[6]. It is based on ICL/TeamWARE's ProcessWise In-

tegrator (PWI) engine extended to allow web browsers

to be used as the user interface. Its users can login and

logout from the system at will, irrespective of the state

of any process in which they are participating. Users

can also be involved in many distinct processes and can

switch their focus between them at will. To provide this

exibility ProcessWeb consists of many threads which

need to be scheduled.

The novelty of a compliant architecture is that it

is designed top-down to meet the needs of the system.

This contrasts with the more traditional approach where

components are designed to deliver system functions

based on assumed needs. With a compliant architec-

ture it would possible to employ a scheduling algorithm

tailored to ProcessWeb using the basic mechanisms pro-

vided. For example, it might be appropriate to give pri-

ority to threads which related to users currently logged

into the system. However, currently ProcessWeb does

not have a compliant architecture. Speci�cally it is

implemented in a multi-threaded language PML, and

PWI's PML interpreter imposes a round-robin schedul-

ing policy on all runnable threads.

For the developers this scheduling policy is simply

part of the environment which they have to take into

account. Where there is feedback which indicates that

this policy is not what is required, the developers in-

troduce new code to alleviate the problem. The lack

of architectural compliance a�ects the system's ongoing

development. This is signi�cant because often the new

code introduced is among the hardest to understand and

this causes knock-on e�ects for other system changes.

To illustrate in more detail, we must briey outline part

of the ProcessWeb implementation.

2 ProcessWeb Architecture Overview

We will concentrate on the user interface aspects of

the architecture. As a very visible part of the system,

the user interface is particularly prone to user feedback

of faults or inconveniences with the system. In addition,

delivering an adequate response to users is one of the

main aims of scheduling, on which we are concentrating.

Users interact with ProcessWeb through web

browsers. The user interface for the executing pro-

cess models is based on HTML which is sent to users'

browsers. At the simplest level, there are general facili-

ties which enable users to browse around their personal

view of the executing models. This view is in terms of

HTML pages, and the browser issues a request which

\pulls" any new HTML page required. When a user

provides input which changes the process state then a

revised HTML page will be generated, both for the user

who provided the input and for all other users a�ected

by the state change. In this situation, ProcessWeb will

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/67939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


\push" the updated pages if these are currently being

viewed by any of the other users.

Input is through HTML forms and uses standard

CGI (Common Gateway Interface) mechanisms. The

user interface mechanisms are the same for all the mod-

els and ProcessWeb provides a number of standard fa-

cilities which hide the communication details from the

models.

The executing process models, and ProcessWeb it-

self, are implemented in PWI's PML language. The

main construct in PWI PML is the role: an independent

thread with its own local data and behaviour. Roles are

connected through interactions which are typed, asyn-

chronous bu�ered message channels. ProcessWeb pro-

vides a number of standard facilities, in particular there

are proxy roles and user roles which are used in commu-

nicating with the user interface. The basic design can

be illustrated as follows:

1. When a user logs in, a message is sent to their proxy

role which returns an HTML page. This page in-

cludes a list of all the model instances which the

system is running, and a list of the user roles for

the model on which the user is currently focusing

attention.

2. Through their browser, a user connects to one of

the user roles. This involves a message from the

browser to the proxy, a message from the proxy to

the appropriate user role. The user role has the lat-

est interface, in the form of an HTML page, which

it sends to the proxy and thence to the browser.

3. The user now has a model-speci�c display. Input

from a CGI form is sent by the browser, which then

waits for a new HTML page in response. The CGI

form data is passed through the proxy role and the

user role to the actual model role. This will deal

with the input, perhaps sending messages to other

roles. Then it will send the display representing its

new state to its user role, and from there the display

is sent to the proxy and then to the web browser.

A proxy role is speci�c to a user. It copes with the

user logging in and out. (In 3 above, the user could lo-

gout before receiving the updated display.) It also deals

with the user's commands to switch between di�erent

user roles.

Each user role is speci�c to a model role. It stores

the latest HTML interface for the model role. A proxy's

request for the HTML is often orthogonal to the process

execution: a user may simply be browsing the current

state of a number of model roles.

The PML interpreter's scheduler is simple. There

is a queue of runnable roles, which can include proxy

roles, user roles, and model roles. And there is a queue

of waiting roles which will become runnable when they

receive a message. PWI has facilities which covert an

external input, e.g. a message from the browser, into a

message in a PML interaction, and so waking a waiting

proxy role if required.

3 Feedback

The basic design for proxy roles and user roles is

quite simple. However, as ProcessWeb has been used

and observed over the years extra code has been intro-

duced to deal with speci�c problems.

3.1 Flicker

On occasions it was found that the HTML page

would be updated several times in succession. This can

be seen as an advantage, as it con�rms that the system

is working. However, it can also be seen as an annoying

irrelance, when there is no chance of reading the up-

dated output, or as a stupid waste of bandwidth if the

user's browser's connection to the ProcessWeb server is

not very fast.

One cause of this icker was a build up of messages

in the interaction bu�er between a user role and proxy,

perhaps because the user was viewing a di�erent role.

When the proxy did start to handle these messages it

would take each one and send it to the browser, causing

the ickering update of the display. This was avoided by

altering the code so that the proxy informed the user role

whether the user was actively interested in its output.

If not the user role simply cached the latest display so

that it would be available if requested. This enabled the

proxy roles to concentrate on handling the data which

users wished to view.

The relationship to scheduling is not direct in this

example: because of the lack of control over the schedul-

ing, the most economic development approach is to im-

plement, obtain feedback on how the user interface be-

haves, and then evolve in the light of that feedback.

Reviewing the situation it is clear that many evolution-

ary developments are aimed at alleviating the symptoms

rather than tackling core problems. When a user has

just supplied input and is waiting for a response the

processing done by the proxy and user roles is urgent;

when a user is logged out it is a background updating

task.

3.2 Wait for Display

As more models were developed, it was discovered

that there was a problem in getting interim status mes-

sages from computationally intensive tasks. While a dis-

play update might be started it did not reach the user's



browser and the computationally intensive task hogged

most of the processor. Eventually the computationally

intensive task �nished and then all the status messages

got delivered at once.

The solution to this problem involved using a

\blocking" interaction. After sending the message to the

user role, the computationally intensive task would wait

for a resume message on this interaction. This blocks the

role, moving it from the running to the waiting queue.

The proxy role is also changed. When it sends the sta-

tus message HTML to the browser, it then sends the

required unblocking resume message. There is a cost in

this. The proxy role is now more complicated to deal

with the extra check, and the model developer has an

extra issue to consider.

In this example there is an explicit code introduced

to alter the standard scheduling into something which

is more acceptable in ProcessWeb terms.

4 Discussion

ProcessWeb is an E-type system [1]. It becomes

part of the world which it models. Its validity depends

upon human assessment of its e�ectiveness rather than

its correctness with regard to a speci�cation. In common

with many modern systems it incorporates \bought-

in" components (e.g. ProcessWise Integrator and a web

server) which its developers do not control. Its devel-

opment shares many of the characteristics of evolution

and feedback which stimulated the formulation of the

FEAST hypothesis [3]. The system has been contin-

ually adapted in response to user feedback to avoid it

becoming progressively less satisfactory (Lehman's First

Law, Continuing Change [3]). In many cases the sources

of dissatisfaction were not observable until the system

was used (Uncertainty Principle [2]).

The previous section has taken a particular system

function, scheduling, and illustrated that this has had an

impact on the evolutionary development of ProcessWeb.

In brief:

� A scheduling policy is imposed.

� As the system is used, the e�ects of this scheduling

policy are observed and the system is evolved to

work around problems.

� The new code which is introduced adds complex-

ity and embeds assumptions about the scheduling

policy.

There is de�nitely a feedback cycle. As the system is

evolved, new scheduling e�ects may be introduced or

observed. This illustrates that the evolution of E-type

systems, such as ProcessWeb, is not exclusively in re-

sponse to changes in the business process which they

support. There are feedback loops where the system ar-

chitecture gives rise to dissatisfaction, and thus prompts

system evolution.

The feedback and evolution described above are typ-

ical of a non-compliant system. Often, because the de-

velopers have no control over the system function policy,

in this case scheduling, its inuence is not recognised or

ignored. (For example, in response to a problem devel-

opers may experiment with a number of coding alterna-

tives until an acceptable result is obtained.) Our vision

of a compliant system also has a feedback cycle.

� A scheduling policy is designed, or chosen from a

library.

� As the system is used, the e�ects of this policy

are measured. This feedback is used to evolve the

scheduling policy.

The most important thing is that the feedback loop is

explicitly recognised. Developers are faced with two key

questions (adapted from [4]). How to discover what the

system is doing? How to structure the architecutre to

utilise that knowledge? Our conjecture is that the di�-

culty of predicting the e�ects of a software architecture

is one of the many reasons why software evolution oc-

curs. A compliant architecture could make a signi�cant

change to some of the feedback loops within many E-

type systems' development processes. How to measure

a compliant architecture and its inuence is a key re-

search challenge.1

References

[1] Lehman M.M. and Belady L.A., Software Evolution -

Processes of Software Change, Academic Press, London,
1985, 538 p.

[2] Lehman M.M., Software Engineering, the Software Pro-
cess and Their Support, in Software Engineering Journal

vol. 6, no. 5., Sept. 1991, 243 - 258

[3] Lehman M.M., Laws of Software Evolution Revisited,
in Montangero C. (ed.) Fifth European Workshop in
Software Process Technology (EWSPT'96). Nancy, Oct.
1996, in Lecture Notes in Computer Science, vol. 1149,
1996, 108 - 124

[4] Morrison R., Balasubramaniam D., Greenwood R.M.,
Kirby G.N.C., Mayes K., Munro D.S. and Warboys B.C..
A Compliant Persistent Architecture. to appear in Soft-

ware Practice and Experience, vol. 30, no. 4, 2000.

[5] ProcessWeb, http://processweb.cs.man.ac.uk/

[6] Warboys B.C., Kawalek P., Robertson I., and Green-
wood R.M., Business Information Systems: a Process

Approach. McGraw-Hill, 1999.

1Research supported by UK EPSRC Grants GR/M88938 and

GR/M88945


