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Abstract— Network traffic abnormalities pose one of the greatest 
threats for networked environments. Autonomic communications 
offer a solution: it should be possible to design network 
mechanisms that behave adaptively and respond to any 
anomalous phenomenon that threatens normal network 
behaviour. In this paper we present the design of an adaptive 
anomaly detection component that has been built as part of an 
autonomic network system. We have implemented an entropy 
estimator  to predict the onset of anomalous traffic behaviour 
within an autonomic resilience framework, and a Supervised 
Naïve Bayesian classifier which synergistically empower the core 
properties of self-adaptation, self-learning and self-protection for 
next generation networks. Being part of an always-on, automated 
measurement and control infrastructure, such mechanism 
enforces the adaptive system reaction to suboptimal network 
operation and its subsequent restoration, while requiring 
minimal static (re)configuration and operator intervention.  

Keywords- Autonomic Networks; Resilience; Anomaly 
detection; Ttraffic classifier 

 

I.  INTRODUCTION  

An increasingly important requirement for next generation 
networks is that they exhibit autonomic behaviour in order to 
minimise the need for static configuration and operator 
intervention. Autonomic architectures are being designed to 
employ self-* mechanisms such as self-adaptation, self-
configuration, self-awareness and self-protection, based on 
always-on automated measurement, monitoring and control of 
their networked and system components. The diagnosis of 
anomalous traffic in autonomic networked environments in 
particular, poses great challenges that are hard to be 
confronted from both a system and a network perspective. By 
definition, autonomic systems are required to behave 
intelligently and to adapt their operation at the onset of sudden 
changes in the network traffic, so that they can mitigate the 
effects of malicious or legitimate processes that threaten the 
system with resource starvation.  
 
However, due to the diversity and the dynamic behaviour of 
sources of suboptimal network operation, the entirety of 
anomalous traffic cannot be classified by statically using a 
single detection methodology. It is therefore required for a 
system to be supported by mechanisms that adapt to the 
operational traffic dynamics and provide reasonably accurate 
conclusions regarding traffic behaviour.  
 

Work done in the area of measurement-based anomaly 
detection has provided valuable results presenting numerous 
detection/classification techniques such as those reported in 
[2][3][4]. Most of these methodologies can be instrumented 
within an autonomic context employing principles of self-
learning and self-adaptation without the need of external 
operator guidance.  
 
We argue that our proposed design and implementation is a 
contribution towards the practical and theoretical 
instrumentation of the aforementioned principles. Our 
anomaly diagnosis engine provides for adaptive prediction and 
further categorization of network anomalies. In this way, 
abnormalities caused by legitimate or malicious intentions 
may be initially predicted, detected and at the same time be 
classified on a real-time scenario. These abilities are achieved 
due to the collaborative behaviour that our architecture 
enforces on the selected algorithms we have implemented.  
 
In addition, our diagnosis framework operates within an 
overall resilience architecture that we also present in this 
document. Within the context of resilient networking, a 
system or network is required to keep its operation under an 
acceptable service level at the onset of various threats. Our 
proposed diagnosis component acts as the threat detection 
engine where it will be the unit in charge for notifying a 
mitigation engine in order to confront the threat in real-time. 
Hence, our framework implicitly serves one extra autonomic 
capability that of self-optimization. At the same time, it 
exhibits a pluggable behaviour which facilitates autonomic 
network nodes running our resilience architecture to 
dynamically employ a desired algorithm either for prediction 
or for classification, in order to customise the process of 
network behaviour diagnosis. We have used the Autonomic 
Network Architecture (ANA) node infrastructure to deploy the 
measurement-based diagnosis component, since it fulfils the 
core autonomic requirements and at the same time offers 
flexible design capabilities [1]. 
 
The remainder of this paper is structured as follows: section II 
briefly describes our resilience architecture that hosts the 
diagnosis mechanism, and introduces the ANA node 
infrastructure. Section III shows the engineering and internal 
algorithmic design of our detection framework where Section 
IV is purely dedicated on presenting the implementation of our 
prototype. Section V discusses the achievements and potential 
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of the proposed system, discusses future work and concludes 
the paper. 

II. RESILIENCE ARCHITECTURE 

 Autonomic network environments are required to be 
resilient. Resilience is defined as the ability for a network to 
provide and maintain an acceptable level of service in the face 
of various challenges to normal operation [7]. 
 
Our resilience architecture adopts a modular design that uses 
information from a distinct monitoring facility [8]. It is 
composed by two core Functional Blocks (FBs), the Detection 
Engine (DE) and the Remediation Engine (RE). In ANA, any 
protocol entity generating, consuming, processing and 
forwarding information is abstracted as a FB, which may 
reside locally on an ANA node-host or it may be distributed 
across many hosts on a same or different compartments. A 
compartment is a primitive abstraction within the ANA 
terminology and is responsible for determining how FBs 
cooperate in order to provide particular functionality (or a 
service) to the data, control, and management planes [5]. In 
general, a compartment refers to the most absolute network 
entity which is autonomous and implements all the operational 
and administrative rules for a given communication context. 
 
In simple terms, an ANA node is a local means for message 
exchange between FBs [5]. At the same time, one or more 
ANA nodes can map directly onto a physical networked host, 
or a single ANA node may span across multiple physical 
nodes. In reality, the ANA node is considered as the collection 
of mandatory and optional software components that in 
practice allow a physical device (e.g. router, switch, computer, 
sensor) to “run ANA” [6]. It is mainly composed of three core 
elements: the Minimal Infrastructure for Maximal 
Extensibility (MINMEX), the ANA playground and the ANA 
hardware abstraction layer. The ANA MINMEX provides the 
basic low-level functionalities which are required to bootstrap 
and run ANA. In parallel, it facilitates the generic sets of 
methods (API) that are used by “clients” of the MINMEX (i.e. 
protocols, applications). 
 
The ANA Playground acts as a development framework and 
couples with a dedicated execution environment, where the 
more advanced and complex networking functionalities of 
ANA are placed [6]. This is the place where both commodity 
and bespoke functionalities are hosted. Commodity elements 
are “public” components that one can re-use such as 
cryptographic primitives, compression schemes and error 
recovery codes. 
 
The resilience architecture we have designed and implemented 
resides within the ANA Playground. Fig. 1 shows a conceptual 
representation in respect to the location of our architecture 
within an ANA node. As already mentioned, we conduct 
resilience instrumentation using a monitoring facility that also 
resides within the Playground.  
 

 
Figure 1: Resilience architecture within an ANA node. 

 
Fig. 2 shows the resilience architecture emphasizing on the 
basic data flow interactions between the FBs. Initially, a 
monitoring entity sends real-time per-flow information of 
monitored traffic to the DE on a designated interface which in 
ANA terms we refer to as the Information Dispatch Point 
(IDP). IDPs act as generic communication pivots between the 
various FBs and they offer the advantage of re-organising 
communication paths between FBs. In addition, IDPs permit 
to implement forwarding tables which are fully decoupled 
from addresses and names: i.e., in ANA, the next hop “entity” 
(local or remote) is always identified by an IDP. This allows 
easily adding (and using) new networking technology and 
protocols as long as they export their communication services 
as IDPs do not revise any of the current designations. 
 

 

Figure 2: The Resilience Architecture. 
 
After receiving per-flow data, the DE internally performs 
entropy estimation on selected flow features in order to detect 
an anomaly, and subsequently applies runtime classification 
via a supervised Naïve Bayes estimator. By these actions, the 
DE is eligible to decide whether the observed flows are the 
result of a local or compartment-wide anomaly. As soon as a 
decision regarding the precise nature of the anomaly is made, 
the DE composes a summary specification message that sends 
to its closest RE. Depending on the nature and causes of the 
identified event, and according to its classification by the DE, 
an appropriate remediation action is taken by RE. For 
example, in response to an attack, traffic shaping and possibly 
host blacklisting can be enforced, whereas in case of 
legitimate very high traffic demands towards particular 
network resources, appropriate load balancing algorithms are 
put in place to enable fast content propagation [16]. In case of 
a compartment-wide threat, the RE distributes the threat 



information to regionally-close REs. These subsequently 
decide at which compartment region they should take action 
for confronting the event. Nevertheless, further description of 
the internals of the Remediation Engine is outside the scope of 
this paper, and the interested reader should refer to [16].  
 

III. THE DETECTION ENGINE DESIGN 

A. An Anomaly Diagnosis Framework 
A milestone in our design was to identify the correct 

methodologies to apply in our prototype. Recently, 
considerable attention has been drawn to the analysis of the 
distributions of selected traffic features (i.e. combination of 
fields in packet headers) without the need for analysing large 
traffic volumes.   
 
It has been mentioned in [10] that several anomalies are 
coupled with particular features present on each packet, and 
that their direct observation would, in theory, cause less 
processing cost and increased efficiency on the extraction of 
abnormal traffic characteristics. This work has evaluated the 
practical feasibility and detailed accuracy of selecting 
particular traffic features as opposed to the old volume-based 
traffic analysis methods, such as those presented in [2][12]. 
Alongside the practical feasibility, there were also some 
promising results showing that initial entropy estimation on 
the selected features provides a valuable heuristic for anomaly 
detection. Therefore, we have included the entropy metric as a 
basic initial detection scheme. 
 
A topic that always accompanies detection frameworks is that 
of traffic classification whose challenges are unmet. 
Techniques employed by most classification mechanisms have 
been based on traffic volume metrics that are not reliable in 
providing sufficient information with respect to the structure 
of a specific phenomenon. For the classification of particular 
anomalies, we had initially considered several techniques from 
past literature but the most promising was the one presented in 
[11][13]. It is based on a Naïve Bayesian Classifier that 
accurately classified events whose traffic characteristics look 
almost identical from a volume-based perspective (e.g. WWW 
traffic from attack traffic). 
 
Apart from the generic requirements of reasonably accurate 
and cost-effective detection/classification, the basic algorithms 
for the initial prototype were chosen based on their similarity 
in theoretically treating traffic behaviour. As we explain in the 
next section, both entropy estimation and Bayesian 
classification adopt a probabilistic, stochastic view of 
operational traffic. We have selected the particular 
combination since we have a strong hypothesis that traffic 
behaviour within autonomic environments is dynamic and 
random, mainly due to the diversity of networks that ANA 
incorporates. As we explain next, ANA’s principles as well as 
the diversity and dynamicity within traffic subsequently lead 
to a hypothesis that spotted anomalies would promote 

discriminative properties beyond those already defined in 
traditional backbone networks.  
 
Within ANA, inter and intra-compartment communication 
sessions go beyond traditional layering since they are achieved 
by abstractions such as the IDPs and compartments. Even 
though they facilitate node interaction under heterogeneous 
networks, they enable opaqueness to any mechanism that tries 
to monitor the environmental configurations (e.g. routing) that 
take place on lower levels of session initiation between two 
entities. Also, apart from IP-based networks, ANA by 
principle allows the incorporation of IP-independent networks 
(e.g. sensor networks) that can exhibit particular and 
idiosyncratic anomalies within their traffic behaviour. Under 
such a scheme, anomalies within a compartment are the 
aggregation of challenges triggered by several different 
environments. This fact leads to the assumption that statistical 
(e.g the distribution of flow interarrival times) properties that 
characterise normal behaviour and distinguish types of 
anomalies will capture different values than those observed in 
traditional backbone networks.   
 
As an example, we can consider the case where a malicious, 
blackhole node that already has compromised the routing 
protocol of a large wireless sensor network (WSN) wants to 
exploit the initial protocol negotiations with an IP 
compartment. In such a scenario, the attacker would easily 
perform eavesdropping on the application-layer services that 
the particular compartment offers (since the services provided 
by each compartment are public to every node and 
compartment IDPs have no security mechanisms) and further 
“legally” request for a particular service in order to join the IP 
compartment. Subsequently the attacker node would be able to 
tamper the TCP negotiation (e.g. by using a fake RST or ACK 
flag) and create a blackhole route in its new environment. In 
parallel with the newly formed blackhole, the attacker node 
still behaves as a blackhole to its old WSN compartment and 
is in a position to trigger anomalies such as a (D)DoS on both 
compartments. Obviously, due to the WSN nature, a (D)DoS 
in such an environment is volume-wise comparatively much 
smaller rather than a (D)DoS in an IP environment. 
Nevertheless, such an action would lead to different pattern on 
the ANA traffic distributions since a monitoring entity under 
ANA is not concerned only with a single compartment but 
rather with all inter-connected compartments. 
 
Having as a basis the aforementioned scenario as well as the 
hypothesis in respect with the different values we’ll possibly 
observe on traffic distributions, we constructed some ANA-
specific characteristics that our detection/classification 
mechanism should follow. We required an anomaly diagnosis 
framework that would exhibit common mathematical 
properties on both the detection and classification phase 
having at the same the capability to process a range of features 
from all the traditional layers. In parallel we considered as 
necessary that our component should be able to extract and 
further classify “lightweight” unobserved anomalies (e.g. the 



WSN (D)DoS example). In addition, an important aspect is for 
our framework to be adaptive. This capability is not only 
determined by the algorithmic design but also from a pure 
engineering point of view. Our Detection Engine was 
formulated in a pluggable fashion where a diversity of various 
detection/classification methodologies may be 
plugged/removed based on the customised requirements of 
each compartment (i.e. based on which other types of 
compartments is connected with) in order for our engine to 
adapt at the environment-specific traffic (e.g. WSN traffic). 
 

B. DE Internal Design 
 As shown in Fig. 3, the DE is internally composed by the 

Logic Brick, the Classifier, the Notifier brick, and a 
Configuration Manager (CM). The latter is in charge of 
handling all configuration settings in order for the DE to bind 
and configure itself with the interface provided by the adaptive 
measurement FB. In addition, it is the unit that allows 
dynamic binding and configuration of the RE with the DE as it 
will be described in the following subsection.  
 
The Notifier brick (NB) is in charge of sending periodical 
updates to the RE. These are initially classifications passed to 
the NB by the Classifier who purely acts as the storage facility 
for the classified events. According to the nature of the already 
classified event, the NB instructs the RE to take either a local 
or a distributed remediation action. In case of no anomaly 
being reported, the NB still updates the RE within the time 
interval defined from the configuration made at the CM. 

 

 

Figure 3:The DE high-level internal design. 
 
The Logic Brick (LB) is the main control processing 
component in the DE. This is where the two most basic 
capabilities exist, prediction and learning. The prediction unit 
(Predictor) is in charge of applying all the prediction 
algorithms based on the runtime measurements taken by the 
adaptive measurements FB which are received on the 
dedicated measurement reception IDP [8].  

On our current prototype, the Predictor acts according to the 
estimates given by the distribution of selected flow features 
(e.g. total number of packets of a complete bidirectional flow) 

and applies entropy estimation in order to characterise the 
evolution of selected fields in each flow received. We assume 
X  corresponds to a finite number of selected flow-feature 

measurements ],...,,[ 21 nxxx where each value possesses a 

probability [ ]npppP ,...,, 21= . For each n, there is a 

corresponding uncertainty function )( pa  and therefore the 

function ),...,( 21 nn pppA  states the average uncertainty for 

the range of all the set of finite random values in X . Based on 
axioms by Azcel and Daroczy [14] and Mathai and Rathie 
[15], we summarise and reform the relationships between the 
aforesaid functions, and as a result we attain the generalised 
formula that is also known as the Shannon’s entropy:  
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Using formula (1), we achieve an approximation of the 
evolutionary probabilistic behaviour that a selected flow 
feature would take. This technique will enable prediction of a 
possible anomaly within the network traffic on a local or 
compartment-wide scenario. In more detail, the prediction 
achieved is based on a simple comparison accommodated 
between the new entropy value and past pre-known entropy 
values observed in the particular compartment for the selected 
flow feature throughout time. As we explain in the following 
section (III), past entropy values are stored in a dedicated 
database present within the Predictor.  

However, at this point we need to clarify that for the particular 
case of ANA, we need to go beyond single-layer features and 
exploit properties from some or even all of the traditional 
layers. Therefore, our current Predictor implementation 
accepts a range of features to be processed in a way to provide 
a summary of joint multivariate entropy results. For example, 
in a case where a wired Ethernet compartment interacts with a 
variation of other wireless and IP compartments, there is a 
possible selection of features ranging from the traditional data 
link layer (e.g Ethernet packets size distribution) to the 
network layer (e.g. TCP/UDP packets or bytes interarrival 
time) and application layer (e.g. SMTP byte size in case of 
mail-based attacks). This way, a deeper and at the same time 
broader view of the network statistics may be visualised and 
post-processed in the learning phase as employed by the 
Learner unit.   
 
The Learner unit is in charge of performing run-time traffic 
classification based on the sample multivariate entropy results 
given by the Predictor and the already categorised past events 
stored in the Classifier. The Learner unit currently uses a 
supervised Naïve Bayes estimator which –being a probabilistic 
classifier– accepts a range of training data and classifies 
certain events at runtime. In our case, the training data are the 
conclusive entropy outcomes provided by the Predictor. 
Therefore, the already selected probability distributions of 
flow features constructed by the Predictor will be the input in 



our Naïve Bayes classifier, in order to achieve a statistical 
model defining the different anomaly groups (i.e. classes). So, 
if we let X  be a random vector with n  variables: 
 

[ ]nxxxX ,...,, 21=              (2) 

 
we can use it as input to the classifier and include it in the 
Bayes theorem that gives the following formula: 
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Formula (3) considers the discriminant functions given by any 
n variable in X as independent and that )( jcP  is the 

probability of obtaining the anomaly class independently of 
the observed data given by X . The function )|( jcXf  is a 

distribution function defining the probability of X  given by 

jc . The calculation of this formula is the main action taken by 

the Learner and provides a number denoting the Bayes 
likelihood ratio, therefore making it extremely feasible to 
minimise the cost or the probability error and resulting in 
accurate classification [11].  
 
Obviously, since we employ a supervised scheme, complete 
runtime classification is achieved with a threshold-based 
comparison between a training data set and the likelihood 
estimation performed on the new data input. The training data 
set contained within the Learner holds likelihood values for 
the joint entropy (univariate or multivariate feature 
distributions) of past inputs given by the Predictor. Those 
likelihood values were initially grouped based on simply 
whether they belong to the normal or abnormal traffic 
spectrum and subsequently, those within the abnormal group 
are clustered into several sub-groups indicating the exact 
anomaly. In our current prototype, the training data set holds 
values for Flash Events and local as well as distributed Denial 
of Service (DoS) attacks. The values we embedded in our 
prototype were decided based on results obtained in [11] and 
[13]. 

IV. THE DETECTION ENGINE IMPLEMENTATION 

 There are three main components encapsulating the 
functionality entailed in the DE. The Logic Brick (LB), the 
Notifier Brick (NB) and the Configuration Manager (CM). 
Fig. 4 shows a diagrammatical view of the data flow taking 
place within our implementation.  
 
The Adaptive Measurement (AM) FB that is composed by 5 
bricks has generic IDPs in charge of handling configuration 
and binding parameters. The AM IDPs are published as 
services within the local MINMEX and at the same time are 
advertised as a compartment-wide service. By exploiting this 
flexibility, it is therefore feasible for a remote DE to attach 
itself on a physically distant ANA node.  

As bootstrapping stage, the CM sends binding parameters to 
the AM and at the same time transmits AM-compatible 
configuration parameters that will subsequently serve the 
measurement requirements coming from the DE. The binding 
parameters are simple messages denoting the compartment-
related presence of the client DE to the AM (e.g. IP address). 
 

 
Figure 4: DE data flow & functionality. 

 
On the other hand, the configuration parameters are series of 
filtering commands composed within a file requesting a 
customized operation of the bricks orchestrating the AM. An 
example might be the request by a DE to get measurements 
only for TCP flows from specific source/destination addresses 
within the local compartment.  
 
At the same time, the CM accepts binding and configuration 
requests from a local or remote RE. Similarly to the binding 
done between the DE and the AM, a RE may bind itself by 
stating its position within the compartment. The configuration 
currently implemented allows a RE to determine a diagnosis 
notification time interval as received by the NB (which resides 
within the DE) and furthermore, to request from the DE to run 
preferred algorithms in a pluggable fashion. The algorithms to 
be plugged are meant to complement the standard algorithms 
we have implemented and described in the previous section. 
 
Prediction and learning algorithms are initially plugged 
through the configuration done from an RE towards the CM, 
and are then placed correctly in the DE by the Algorithm 
Plugin Manager (APM). The APM is a management sub-
component that resides within the LB and is in charge for 
initially cancelling the operations of the current running 
algorithms and for substituting them with the requested 
algorithm “plugins”. These plugins are pre-compiled binaries 
and are not obliged to follow the ANA API since they are 
called as subroutines from the ALgorithm EXecutor (ALEX) 
units, which are placed within the Predictor and Learner 
components. However, a plugin request is not full if it is 
composed only by a pre-compiled binary. A request is 
considered to be fully compatible with the APM if it is 
accompanied with a “location” parameter denoting which unit 
(e.g. the Predictor or the Learner) to be attached to. Any 
wrong configuration parameters are discarded from the APM 
configuration IDP (i.e. ALEXConfigIDP). The Predictor 



component holds a dedicated IDP (i.e. MeasurementIDP) that 
publishes itself on the local MINMEX and receives 
measurements according to the initial configuration agreed 
between the CM and the AM. A FIFO queue is on the 
reception of the Predictor and measurement data are then 
passed to the ALEX unit. Based upon the estimations done in 
the ALEX, they are then stored on a local database and 
subsequently sent to an output FIFO queue.  
 
The Predictor’s conclusive estimations are passed to a 
reception queue that resides within the Learner component 
which employs all learning algorithms (in our current 
prototype a Supervised Naïve Bayesian Classifier) via the 
operations done by its dedicated ALEX unit. Since the 
classification scheme within the Learner is supervised, a 
training set database is present in order for the ALEX to 
perform comparison with the real-time input coming from the 
reception queue. As soon as a coherent classification 
conclusion is structured, it is sent to the notification queue. 
The notification queue updates the Classifier DB within a 
dedicated time interval (currently 4 seconds). While the 
Classifier DB updates its data, it also sends a conclusive 
notification that includes the type of anomaly (e.g. local DoS) 
and the related traffic flow group to the Notifier Brick (NB).  
 
As can be seen from Fig. 4, the NB’s notification reception 
IDP is attached to a Decision Unit (DU) which is in charge of 
separating local from compartment-wide classified events. 
Every local threat is transmitted from the DU to the System 
Notifier (SN) which will then notify the local RE. Similarly, 
the Compartment Notifier (CN) is the unit that publishes 
notifications in case of a compartment-wide anomaly (e.g. a 
DDoS) where the local RE is required to interact with remote 
REs in order to mitigate such event. The NB holds one IDP 
that is mainly for handling data received from remote REs. 
Whether or not a network anomaly is manifested, the NB 
regularly updates the locally attached RE regarding the traffic 
status within an agreed time interval. 

V. DISCUSSION & CONCLUSION 

 In this paper, we have presented the design and 
implementation of a traffic anomaly detection component that 
can be an integral part of next generation autonomic network 
infrastructures. 

 
Via this work we have shown that the exploitation of carefully 
designed infrastructures, complex issues such as anomaly 
detection may be reasonably resolved in an affordable manner. 
Our diagnosis framework contributes to the composition of 
important autonomic capabilities such as adaptability, self-
learning and self-protection, and also to self-optimization by 
being a component of the overall resilience architecture. In 
parallel, our framework prototype sets a core foundational 
contribution towards the realisation of an always-on 
measurement and control framework which to the best of our 
knowledge has not been seriously considered.      
 

The results presented in [10][11] ensure that our algorithmic 
design satisfies the requirements of  real-time anomaly 
diagnosis.  Therefore, we have already started evaluating our 
engine’s behaviour within the overall resilience architecture 
that we have also presented in this document. The overall 
architecture is in the process of being tested on the autonomic 
communications testbed provided within the ANA project 
(ANA-Lab). The ANA-Lab is a distributed ANA node 
infrastructure that provides the capability of virtual topology 
instrumentation through distributed monitoring and control 
facilities. Our target is to accommodate a series of 
experiments using (live as well as captured) operational traffic 
traces in order to examine the practical system performance of 
our architecture.   
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