
Autonomic Diagnosis of Anomalous Network Traffic

Angelos K. Marnerides, David Hutchison
Computing Department, Infolab21

Lancaster University
Lancaster, UK

{a.marnerides,dh}@comp.lancs.ac.uk

Dimitrios P. Pezaros
Department of Computing Science

University of Glasgow
Glasgow, UK

dp@dcs.gla.ac.uk

Abstract— Network traffic abnormalities pose one of the greatest
threats for networked environments. Autonomic communications
offer a solution: it should be possible to design network
mechanisms that behave adaptively and respond to any
anomalous phenomenon that threatens normal network
behaviour. In this paper we present the design of an adaptive
anomaly detection component that has been built as part of an
autonomic network system. We have implemented an entropy
estimator to predict the onset of anomalous traffic behaviour
within an autonomic resilience framework, and a Supervised
Naïve Bayesian classifier which synergistically empower the core
properties of self-adaptation, self-learning and self-protection for
next generation networks. Being part of an always-on, automated
measurement and control infrastructure, such mechanism
enforces the adaptive system reaction to suboptimal network
operation and its subsequent restoration, while requiring
minimal static (re)configuration and operator intervention.

Keywords- Autonomic Networks; Resilience; Anomaly
detection; Ttraffic classifier

I. INTRODUCTION

An increasingly important requirement for next generation
networks is that they exhibit autonomic behaviour in order to
minimise the need for static configuration and operator
intervention. Autonomic architectures are being designed to
employ self-* mechanisms such as self-adaptation, self-
configuration, self-awareness and self-protection, based on
always-on automated measurement, monitoring and control of
their networked and system components. The diagnosis of
anomalous traffic in autonomic networked environments in
particular, poses great challenges that are hard to be
confronted from both a system and a network perspective. By
definition, autonomic systems are required to behave
intelligently and to adapt their operation at the onset of sudden
changes in the network traffic, so that they can mitigate the
effects of malicious or legitimate processes that threaten the
system with resource starvation.

However, due to the diversity and the dynamic behaviour of
sources of suboptimal network operation, the entirety of
anomalous traffic cannot be classified by statically using a
single detection methodology. It is therefore required for a
system to be supported by mechanisms that adapt to the
operational traffic dynamics and provide reasonably accurate
conclusions regarding traffic behaviour.

Work done in the area of measurement-based anomaly
detection has provided valuable results presenting numerous
detection/classification techniques such as those reported in
[2][3][4]. Most of these methodologies can be instrumented
within an autonomic context employing principles of self-
learning and self-adaptation without the need of external
operator guidance.

We argue that our proposed design and implementation is a
contribution towards the practical and theoretical
instrumentation of the aforementioned principles. Our
anomaly diagnosis engine provides for adaptive prediction and
further categorization of network anomalies. In this way,
abnormalities caused by legitimate or malicious intentions
may be initially predicted, detected and at the same time be
classified on a real-time scenario. These abilities are achieved
due to the collaborative behaviour that our architecture
enforces on the selected algorithms we have implemented.

In addition, our diagnosis framework operates within an
overall resilience architecture that we also present in this
document. Within the context of resilient networking, a
system or network is required to keep its operation under an
acceptable service level at the onset of various threats. Our
proposed diagnosis component acts as the threat detection
engine where it will be the unit in charge for notifying a
mitigation engine in order to confront the threat in real-time.
Hence, our framework implicitly serves one extra autonomic
capability that of self-optimization. At the same time, it
exhibits a pluggable behaviour which facilitates autonomic
network nodes running our resilience architecture to
dynamically employ a desired algorithm either for prediction
or for classification, in order to customise the process of
network behaviour diagnosis. We have used the Autonomic
Network Architecture (ANA) node infrastructure to deploy the
measurement-based diagnosis component, since it fulfils the
core autonomic requirements and at the same time offers
flexible design capabilities [1].

The remainder of this paper is structured as follows: section II
briefly describes our resilience architecture that hosts the
diagnosis mechanism, and introduces the ANA node
infrastructure. Section III shows the engineering and internal
algorithmic design of our detection framework where Section
IV is purely dedicated on presenting the implementation of our
prototype. Section V discusses the achievements and potential

This work was supported in part by the EU FP6-IST Autonomic Network
Architecture (ANA) Project (FP6-IST-27489).

978-1-4244-7265-9/10/$26.00 © 2010 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/67892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the proposed system, discusses future work and concludes
the paper.

II. RESILIENCE ARCHITECTURE

 Autonomic network environments are required to be
resilient. Resilience is defined as the ability for a network to
provide and maintain an acceptable level of service in the face
of various challenges to normal operation [7].

Our resilience architecture adopts a modular design that uses
information from a distinct monitoring facility [8]. It is
composed by two core Functional Blocks (FBs), the Detection
Engine (DE) and the Remediation Engine (RE). In ANA, any
protocol entity generating, consuming, processing and
forwarding information is abstracted as a FB, which may
reside locally on an ANA node-host or it may be distributed
across many hosts on a same or different compartments. A
compartment is a primitive abstraction within the ANA
terminology and is responsible for determining how FBs
cooperate in order to provide particular functionality (or a
service) to the data, control, and management planes [5]. In
general, a compartment refers to the most absolute network
entity which is autonomous and implements all the operational
and administrative rules for a given communication context.

In simple terms, an ANA node is a local means for message
exchange between FBs [5]. At the same time, one or more
ANA nodes can map directly onto a physical networked host,
or a single ANA node may span across multiple physical
nodes. In reality, the ANA node is considered as the collection
of mandatory and optional software components that in
practice allow a physical device (e.g. router, switch, computer,
sensor) to “run ANA” [6]. It is mainly composed of three core
elements: the Minimal Infrastructure for Maximal
Extensibility (MINMEX), the ANA playground and the ANA
hardware abstraction layer. The ANA MINMEX provides the
basic low-level functionalities which are required to bootstrap
and run ANA. In parallel, it facilitates the generic sets of
methods (API) that are used by “clients” of the MINMEX (i.e.
protocols, applications).

The ANA Playground acts as a development framework and
couples with a dedicated execution environment, where the
more advanced and complex networking functionalities of
ANA are placed [6]. This is the place where both commodity
and bespoke functionalities are hosted. Commodity elements
are “public” components that one can re-use such as
cryptographic primitives, compression schemes and error
recovery codes.

The resilience architecture we have designed and implemented
resides within the ANA Playground. Fig. 1 shows a conceptual
representation in respect to the location of our architecture
within an ANA node. As already mentioned, we conduct
resilience instrumentation using a monitoring facility that also
resides within the Playground.

Figure 1: Resilience architecture within an ANA node.

Fig. 2 shows the resilience architecture emphasizing on the
basic data flow interactions between the FBs. Initially, a
monitoring entity sends real-time per-flow information of
monitored traffic to the DE on a designated interface which in
ANA terms we refer to as the Information Dispatch Point
(IDP). IDPs act as generic communication pivots between the
various FBs and they offer the advantage of re-organising
communication paths between FBs. In addition, IDPs permit
to implement forwarding tables which are fully decoupled
from addresses and names: i.e., in ANA, the next hop “entity”
(local or remote) is always identified by an IDP. This allows
easily adding (and using) new networking technology and
protocols as long as they export their communication services
as IDPs do not revise any of the current designations.

Figure 2: The Resilience Architecture.

After receiving per-flow data, the DE internally performs
entropy estimation on selected flow features in order to detect
an anomaly, and subsequently applies runtime classification
via a supervised Naïve Bayes estimator. By these actions, the
DE is eligible to decide whether the observed flows are the
result of a local or compartment-wide anomaly. As soon as a
decision regarding the precise nature of the anomaly is made,
the DE composes a summary specification message that sends
to its closest RE. Depending on the nature and causes of the
identified event, and according to its classification by the DE,
an appropriate remediation action is taken by RE. For
example, in response to an attack, traffic shaping and possibly
host blacklisting can be enforced, whereas in case of
legitimate very high traffic demands towards particular
network resources, appropriate load balancing algorithms are
put in place to enable fast content propagation [16]. In case of
a compartment-wide threat, the RE distributes the threat

information to regionally-close REs. These subsequently
decide at which compartment region they should take action
for confronting the event. Nevertheless, further description of
the internals of the Remediation Engine is outside the scope of
this paper, and the interested reader should refer to [16].

III. THE DETECTION ENGINE DESIGN

A. An Anomaly Diagnosis Framework
A milestone in our design was to identify the correct

methodologies to apply in our prototype. Recently,
considerable attention has been drawn to the analysis of the
distributions of selected traffic features (i.e. combination of
fields in packet headers) without the need for analysing large
traffic volumes.

It has been mentioned in [10] that several anomalies are
coupled with particular features present on each packet, and
that their direct observation would, in theory, cause less
processing cost and increased efficiency on the extraction of
abnormal traffic characteristics. This work has evaluated the
practical feasibility and detailed accuracy of selecting
particular traffic features as opposed to the old volume-based
traffic analysis methods, such as those presented in [2][12].
Alongside the practical feasibility, there were also some
promising results showing that initial entropy estimation on
the selected features provides a valuable heuristic for anomaly
detection. Therefore, we have included the entropy metric as a
basic initial detection scheme.

A topic that always accompanies detection frameworks is that
of traffic classification whose challenges are unmet.
Techniques employed by most classification mechanisms have
been based on traffic volume metrics that are not reliable in
providing sufficient information with respect to the structure
of a specific phenomenon. For the classification of particular
anomalies, we had initially considered several techniques from
past literature but the most promising was the one presented in
[11][13]. It is based on a Naïve Bayesian Classifier that
accurately classified events whose traffic characteristics look
almost identical from a volume-based perspective (e.g. WWW
traffic from attack traffic).

Apart from the generic requirements of reasonably accurate
and cost-effective detection/classification, the basic algorithms
for the initial prototype were chosen based on their similarity
in theoretically treating traffic behaviour. As we explain in the
next section, both entropy estimation and Bayesian
classification adopt a probabilistic, stochastic view of
operational traffic. We have selected the particular
combination since we have a strong hypothesis that traffic
behaviour within autonomic environments is dynamic and
random, mainly due to the diversity of networks that ANA
incorporates. As we explain next, ANA’s principles as well as
the diversity and dynamicity within traffic subsequently lead
to a hypothesis that spotted anomalies would promote

discriminative properties beyond those already defined in
traditional backbone networks.

Within ANA, inter and intra-compartment communication
sessions go beyond traditional layering since they are achieved
by abstractions such as the IDPs and compartments. Even
though they facilitate node interaction under heterogeneous
networks, they enable opaqueness to any mechanism that tries
to monitor the environmental configurations (e.g. routing) that
take place on lower levels of session initiation between two
entities. Also, apart from IP-based networks, ANA by
principle allows the incorporation of IP-independent networks
(e.g. sensor networks) that can exhibit particular and
idiosyncratic anomalies within their traffic behaviour. Under
such a scheme, anomalies within a compartment are the
aggregation of challenges triggered by several different
environments. This fact leads to the assumption that statistical
(e.g the distribution of flow interarrival times) properties that
characterise normal behaviour and distinguish types of
anomalies will capture different values than those observed in
traditional backbone networks.

As an example, we can consider the case where a malicious,
blackhole node that already has compromised the routing
protocol of a large wireless sensor network (WSN) wants to
exploit the initial protocol negotiations with an IP
compartment. In such a scenario, the attacker would easily
perform eavesdropping on the application-layer services that
the particular compartment offers (since the services provided
by each compartment are public to every node and
compartment IDPs have no security mechanisms) and further
“legally” request for a particular service in order to join the IP
compartment. Subsequently the attacker node would be able to
tamper the TCP negotiation (e.g. by using a fake RST or ACK
flag) and create a blackhole route in its new environment. In
parallel with the newly formed blackhole, the attacker node
still behaves as a blackhole to its old WSN compartment and
is in a position to trigger anomalies such as a (D)DoS on both
compartments. Obviously, due to the WSN nature, a (D)DoS
in such an environment is volume-wise comparatively much
smaller rather than a (D)DoS in an IP environment.
Nevertheless, such an action would lead to different pattern on
the ANA traffic distributions since a monitoring entity under
ANA is not concerned only with a single compartment but
rather with all inter-connected compartments.

Having as a basis the aforementioned scenario as well as the
hypothesis in respect with the different values we’ll possibly
observe on traffic distributions, we constructed some ANA-
specific characteristics that our detection/classification
mechanism should follow. We required an anomaly diagnosis
framework that would exhibit common mathematical
properties on both the detection and classification phase
having at the same the capability to process a range of features
from all the traditional layers. In parallel we considered as
necessary that our component should be able to extract and
further classify “lightweight” unobserved anomalies (e.g. the

WSN (D)DoS example). In addition, an important aspect is for
our framework to be adaptive. This capability is not only
determined by the algorithmic design but also from a pure
engineering point of view. Our Detection Engine was
formulated in a pluggable fashion where a diversity of various
detection/classification methodologies may be
plugged/removed based on the customised requirements of
each compartment (i.e. based on which other types of
compartments is connected with) in order for our engine to
adapt at the environment-specific traffic (e.g. WSN traffic).

B. DE Internal Design
 As shown in Fig. 3, the DE is internally composed by the

Logic Brick, the Classifier, the Notifier brick, and a
Configuration Manager (CM). The latter is in charge of
handling all configuration settings in order for the DE to bind
and configure itself with the interface provided by the adaptive
measurement FB. In addition, it is the unit that allows
dynamic binding and configuration of the RE with the DE as it
will be described in the following subsection.

The Notifier brick (NB) is in charge of sending periodical
updates to the RE. These are initially classifications passed to
the NB by the Classifier who purely acts as the storage facility
for the classified events. According to the nature of the already
classified event, the NB instructs the RE to take either a local
or a distributed remediation action. In case of no anomaly
being reported, the NB still updates the RE within the time
interval defined from the configuration made at the CM.

Figure 3:The DE high-level internal design.

The Logic Brick (LB) is the main control processing
component in the DE. This is where the two most basic
capabilities exist, prediction and learning. The prediction unit
(Predictor) is in charge of applying all the prediction
algorithms based on the runtime measurements taken by the
adaptive measurements FB which are received on the
dedicated measurement reception IDP [8].

On our current prototype, the Predictor acts according to the
estimates given by the distribution of selected flow features
(e.g. total number of packets of a complete bidirectional flow)

and applies entropy estimation in order to characterise the
evolution of selected fields in each flow received. We assume
X corresponds to a finite number of selected flow-feature

measurements],...,,[21 nxxx where each value possesses a

probability []npppP ,...,, 21= . For each n, there is a

corresponding uncertainty function)(pa and therefore the

function),...,(21 nn pppA states the average uncertainty for

the range of all the set of finite random values in X . Based on
axioms by Azcel and Daroczy [14] and Mathai and Rathie
[15], we summarise and reform the relationships between the
aforesaid functions, and as a result we attain the generalised
formula that is also known as the Shannon’s entropy:

�
=

−==
n

i
iinn pppppAxH

1
221 log),...,,()((1)

Using formula (1), we achieve an approximation of the
evolutionary probabilistic behaviour that a selected flow
feature would take. This technique will enable prediction of a
possible anomaly within the network traffic on a local or
compartment-wide scenario. In more detail, the prediction
achieved is based on a simple comparison accommodated
between the new entropy value and past pre-known entropy
values observed in the particular compartment for the selected
flow feature throughout time. As we explain in the following
section (III), past entropy values are stored in a dedicated
database present within the Predictor.

However, at this point we need to clarify that for the particular
case of ANA, we need to go beyond single-layer features and
exploit properties from some or even all of the traditional
layers. Therefore, our current Predictor implementation
accepts a range of features to be processed in a way to provide
a summary of joint multivariate entropy results. For example,
in a case where a wired Ethernet compartment interacts with a
variation of other wireless and IP compartments, there is a
possible selection of features ranging from the traditional data
link layer (e.g Ethernet packets size distribution) to the
network layer (e.g. TCP/UDP packets or bytes interarrival
time) and application layer (e.g. SMTP byte size in case of
mail-based attacks). This way, a deeper and at the same time
broader view of the network statistics may be visualised and
post-processed in the learning phase as employed by the
Learner unit.

The Learner unit is in charge of performing run-time traffic
classification based on the sample multivariate entropy results
given by the Predictor and the already categorised past events
stored in the Classifier. The Learner unit currently uses a
supervised Naïve Bayes estimator which –being a probabilistic
classifier– accepts a range of training data and classifies
certain events at runtime. In our case, the training data are the
conclusive entropy outcomes provided by the Predictor.
Therefore, the already selected probability distributions of
flow features constructed by the Predictor will be the input in

our Naïve Bayes classifier, in order to achieve a statistical
model defining the different anomaly groups (i.e. classes). So,
if we let X be a random vector with n variables:

[]nxxxX ,...,, 21= (2)

we can use it as input to the classifier and include it in the
Bayes theorem that gives the following formula:

�
=

jc
jj

jj
j cXfcP

cXfcP
XcP

)|()(

)|()(
)|((3)

Formula (3) considers the discriminant functions given by any
n variable in X as independent and that)(jcP is the

probability of obtaining the anomaly class independently of
the observed data given by X . The function)|(jcXf is a

distribution function defining the probability of X given by

jc . The calculation of this formula is the main action taken by

the Learner and provides a number denoting the Bayes
likelihood ratio, therefore making it extremely feasible to
minimise the cost or the probability error and resulting in
accurate classification [11].

Obviously, since we employ a supervised scheme, complete
runtime classification is achieved with a threshold-based
comparison between a training data set and the likelihood
estimation performed on the new data input. The training data
set contained within the Learner holds likelihood values for
the joint entropy (univariate or multivariate feature
distributions) of past inputs given by the Predictor. Those
likelihood values were initially grouped based on simply
whether they belong to the normal or abnormal traffic
spectrum and subsequently, those within the abnormal group
are clustered into several sub-groups indicating the exact
anomaly. In our current prototype, the training data set holds
values for Flash Events and local as well as distributed Denial
of Service (DoS) attacks. The values we embedded in our
prototype were decided based on results obtained in [11] and
[13].

IV. THE DETECTION ENGINE IMPLEMENTATION

 There are three main components encapsulating the
functionality entailed in the DE. The Logic Brick (LB), the
Notifier Brick (NB) and the Configuration Manager (CM).
Fig. 4 shows a diagrammatical view of the data flow taking
place within our implementation.

The Adaptive Measurement (AM) FB that is composed by 5
bricks has generic IDPs in charge of handling configuration
and binding parameters. The AM IDPs are published as
services within the local MINMEX and at the same time are
advertised as a compartment-wide service. By exploiting this
flexibility, it is therefore feasible for a remote DE to attach
itself on a physically distant ANA node.

As bootstrapping stage, the CM sends binding parameters to
the AM and at the same time transmits AM-compatible
configuration parameters that will subsequently serve the
measurement requirements coming from the DE. The binding
parameters are simple messages denoting the compartment-
related presence of the client DE to the AM (e.g. IP address).

Figure 4: DE data flow & functionality.

On the other hand, the configuration parameters are series of
filtering commands composed within a file requesting a
customized operation of the bricks orchestrating the AM. An
example might be the request by a DE to get measurements
only for TCP flows from specific source/destination addresses
within the local compartment.

At the same time, the CM accepts binding and configuration
requests from a local or remote RE. Similarly to the binding
done between the DE and the AM, a RE may bind itself by
stating its position within the compartment. The configuration
currently implemented allows a RE to determine a diagnosis
notification time interval as received by the NB (which resides
within the DE) and furthermore, to request from the DE to run
preferred algorithms in a pluggable fashion. The algorithms to
be plugged are meant to complement the standard algorithms
we have implemented and described in the previous section.

Prediction and learning algorithms are initially plugged
through the configuration done from an RE towards the CM,
and are then placed correctly in the DE by the Algorithm
Plugin Manager (APM). The APM is a management sub-
component that resides within the LB and is in charge for
initially cancelling the operations of the current running
algorithms and for substituting them with the requested
algorithm “plugins”. These plugins are pre-compiled binaries
and are not obliged to follow the ANA API since they are
called as subroutines from the ALgorithm EXecutor (ALEX)
units, which are placed within the Predictor and Learner
components. However, a plugin request is not full if it is
composed only by a pre-compiled binary. A request is
considered to be fully compatible with the APM if it is
accompanied with a “location” parameter denoting which unit
(e.g. the Predictor or the Learner) to be attached to. Any
wrong configuration parameters are discarded from the APM
configuration IDP (i.e. ALEXConfigIDP). The Predictor

component holds a dedicated IDP (i.e. MeasurementIDP) that
publishes itself on the local MINMEX and receives
measurements according to the initial configuration agreed
between the CM and the AM. A FIFO queue is on the
reception of the Predictor and measurement data are then
passed to the ALEX unit. Based upon the estimations done in
the ALEX, they are then stored on a local database and
subsequently sent to an output FIFO queue.

The Predictor’s conclusive estimations are passed to a
reception queue that resides within the Learner component
which employs all learning algorithms (in our current
prototype a Supervised Naïve Bayesian Classifier) via the
operations done by its dedicated ALEX unit. Since the
classification scheme within the Learner is supervised, a
training set database is present in order for the ALEX to
perform comparison with the real-time input coming from the
reception queue. As soon as a coherent classification
conclusion is structured, it is sent to the notification queue.
The notification queue updates the Classifier DB within a
dedicated time interval (currently 4 seconds). While the
Classifier DB updates its data, it also sends a conclusive
notification that includes the type of anomaly (e.g. local DoS)
and the related traffic flow group to the Notifier Brick (NB).

As can be seen from Fig. 4, the NB’s notification reception
IDP is attached to a Decision Unit (DU) which is in charge of
separating local from compartment-wide classified events.
Every local threat is transmitted from the DU to the System
Notifier (SN) which will then notify the local RE. Similarly,
the Compartment Notifier (CN) is the unit that publishes
notifications in case of a compartment-wide anomaly (e.g. a
DDoS) where the local RE is required to interact with remote
REs in order to mitigate such event. The NB holds one IDP
that is mainly for handling data received from remote REs.
Whether or not a network anomaly is manifested, the NB
regularly updates the locally attached RE regarding the traffic
status within an agreed time interval.

V. DISCUSSION & CONCLUSION

 In this paper, we have presented the design and
implementation of a traffic anomaly detection component that
can be an integral part of next generation autonomic network
infrastructures.

Via this work we have shown that the exploitation of carefully
designed infrastructures, complex issues such as anomaly
detection may be reasonably resolved in an affordable manner.
Our diagnosis framework contributes to the composition of
important autonomic capabilities such as adaptability, self-
learning and self-protection, and also to self-optimization by
being a component of the overall resilience architecture. In
parallel, our framework prototype sets a core foundational
contribution towards the realisation of an always-on
measurement and control framework which to the best of our
knowledge has not been seriously considered.

The results presented in [10][11] ensure that our algorithmic
design satisfies the requirements of real-time anomaly
diagnosis. Therefore, we have already started evaluating our
engine’s behaviour within the overall resilience architecture
that we have also presented in this document. The overall
architecture is in the process of being tested on the autonomic
communications testbed provided within the ANA project
(ANA-Lab). The ANA-Lab is a distributed ANA node
infrastructure that provides the capability of virtual topology
instrumentation through distributed monitoring and control
facilities. Our target is to accommodate a series of
experiments using (live as well as captured) operational traffic
traces in order to examine the practical system performance of
our architecture.

REFERENCES
[1]. Autonomic Network Architecture (ANA) Project details available at:

http://www.ana-project.org
[2]. Barford P., Plonka D., “Characteristics of network traffic flow

anomalies.”, in Proceedings of ACM SIGCOMM, Internet
Measurement Workshop, San Francisco, California, USA, November
2001.

[3]. Lakhina A., Crovella M., Diot C., “Diagnosing Network-wide traffic
Anomalies.”, in ACM SIGCOMM, Aug. 30- Sept 3, Oregon, Portland,
USA, 2004

[4]. Lakhina A., Crovella M., Diot C., “Characterization of Network-wide
Anomalies in Traffic Flows.”, in ACM SIGCOMM Internet
Measurement Conference (IMC), 2004

[5]. Sifalakis M., Louca A., Peluso L., Mauthe A., Zseby T., "A Functional
Composition Framework for Autonomic Network Architectures ". In
proceedings of 2nd IEEE International Workshop on Autonomic
Communications and Network Management (IEEE NOMS/ACNM
'08), Salvador, Bahia, Brazil, April 7-11, 2008.

[6]. Jelger C., Bouabene G., Schmid S., “Autonomic Network Architecture
(ANA) Blueprint – Second Version”, ANA, February 2009

[7]. Hutchison, D., Sterbenz, J. P.G, Jabbar, A. Sholler, M., 2006 D3.2:
Resilience/Security Framework, Deliverable D3.2 ANA December
2006

[8]. Marnerides A. K., Pezaros D. P., Hutchison D., “Detection and
Mitigation of Abnormal Traffic Behaviour in Autonomic Networked
Environments”., 4th ACM CoNEXT Student Workshop, December 9-
12, 2008, Madrid, Spain.

[9]. Bouabene G., Jelger C., Keller A., Rodriguez D., “ANA Core
Documentation” Deliverable D.1.11, ANA, December 2008

[10]. Lahkina, A., Crovella, M., Diot, C., 2005, “Mining Anomalies Using
Traffic Feature Distributions”, ACM SIGCOMM 2005, Philadelphia,
Pensylvania, USA.

[11]. Zuev, D., Moore, W., A., “Traffic Classification using a Statistical
Approach”, Intel Research Paper, 2005

[12]. Barford P., Kline J., Plonka D., Ron A., “A Signal Analysis for
Network Traffic Anomalies.”, in ACM IMW’02, Nov. 6-11, Marseille,
France, 2002

[13]. Moore A. ,W., Zuev D., "Internet Traffic Classification Using
Bayesian Analysis Techniques" in the Proceedings of the ACM
SIGMETRICS Banff, Canada, June 2005.

[14]. Aczél J., Daróczy Z., “On measures of information and their
characterizations.” Mathematics in Science and Engineering, vol. 115,
Academic Press, New York, San Francisco, London, 1975

[15]. Mathai A. M., Rathie P. N., “Basic Concepts in Information Theory
and Statistics: Axiomatic Foundations and Applications”, Wiley
Halstead, New York, Wiley Eastern, New Delhi (1975).

[16]. Pezaros, D., P., Mathy, L., “Explicit Application-Network Cross-layer
Optimisation”, 4th International Telecommunication Networking
WorkShop (IT-NEWS) on QoS in Multiservice IP Networks (QoS-IP
2008), Venice, Italy, February 13-15, 2008

