
Marquette University
e-Publications@Marquette

Dissertations (2009 -) Dissertations, Theses, and Professional Projects

Biplanar Fluoroscopic Analysis of in vivo Hindfoot
Kinematics During Ambulation
Janelle Ann Cross
Marquette University

Recommended Citation
Cross, Janelle Ann, "Biplanar Fluoroscopic Analysis of in vivo Hindfoot Kinematics During Ambulation" (2015). Dissertations (2009 -
). 558.
https://epublications.marquette.edu/dissertations_mu/558

https://epublications.marquette.edu
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses


 
 

BIPLANAR FLUOROSCOPIC ANALYSIS OF IN VIVO HINDFOOT KINEMATICS 
DURING AMBULATION 

 
 
 
 
 
 
 
 
 
 

by 
 

Janelle A. Cross, M.S. 
 

 
 
 
 
 
 
 
 
 

A Dissertation submitted to the Faculty of the Graduate School, 
Marquette University,  

in Partial Fulfillment of the Requirements for  
the Degree of Doctor of Philosophy 

 
 
 
 
 
 
 
 
 
 

Milwaukee, Wisconsin 
 

August 2015 
 

 



 
 

ABSTRACT 
BIPLANAR FLUOROSCOPIC ANALYSIS OF IN VIVO HINDFOOT KINEMATICS 

DURING AMBULATION 
 
 

Janelle A. Cross, M.S. 
 

Marquette University, 2015 
 
 

The overall goal of this project was to develop and validate a biplanar 

fluoroscopic system and integrated software to assess hindfoot kinematics. Understanding 

the motion of the foot and ankle joints may lead to improved treatment methods in 

persons with foot and ankle pathologies. During gait analysis, skin markers are placed on 
the lower extremities, which are defined as four rigid-body segments with three joints 
representing the hip, knee and ankle. This method introduces gross assumptions on the 

foot and severely limits the analysis of in depth foot mechanics. Multi-segmental models 

have been developed, but are susceptible to skin motion artifact error. Intra-cortical bone 

pins studies provide higher accuracy, but are invasive. This dissertation developed and 
validated a noninvasive biplane fluoroscopy system to overcome the skin motion artifacts 
and rigid-body assumptions of conventional foot motion analysis.  

The custom-built biplane fluoroscopy system was constructed from two 
fluoroscopes separated by 60°, attached to a custom walkway with an embedded force 

plate. Open source software was incorporated to correct the image distortion and calibrate 

the capture volume. This study was the first that quantified the cross-scatter 
contamination in a biplane fluoroscopic system and its effects on the accuracy of marker-

based tracking. A cadaver foot study determined the static and dynamic error of the 
biplane fluoroscopic system using both marker-based and model-based tracking 

algorithms. The study also developed in vivo 3D kinematic models of the talocrural and 
subtalar joints during the stance phase of gait.  

Cross-scatter degradation showed negligible effects in the smallest phantom, 

suggesting negligible motion tracking error due to cross scatter for distal extremities. 

Marker-based tracking error had a maximum absolute mean error of 0.21 (± 0.15) in 

dynamic trials. Model-based tracking results compared to marker-based had an overall 
dynamic RMS average error of 0.59 mm. Models were developed using custom 

algorithms to determine talocrural and subtalar joint 3D kinematics. The models offer a 
viable, noninvasive method suitable for quantifying hindfoot kinematics. Patients with a 

variety of adult and pediatric conditions which affect foot and ankle dynamics during 

walking may benefit from this work. 
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1. INTRODUCTION 

1.1 Statement of Problem 

Dynamic assessment of skeletal kinematics and kinetics is necessary for 

understanding normal joint function, in addition to effects of injury or disease (1, 2). For 

lower extremity evaluation, external optical markers are typically placed on specific bony 

landmarks on the skin so that video cameras can track the motion of the underlying bones 

(3-5). Software is used to define the markers in a program as a sequence of four rigid-

body segments of the pelvis, thigh, shank, and foot with three universal rotary joints 

representing the hip, knee, and ankle joints (6).  Conventional gait analysis has been 

validated and is used frequently in research and clinical settings (6-8). 

Although these optical motion analysis systems are easy to implement and are 

clinically relevant for several applications, they have issues that need to be addressed 

when looking more in depth at the foot. Conventional methods do not allow for obtaining 

intertarsal kinematics or kinetics of the hindfoot. A single rigid body assumption of the 

foot fails to take into account the major joints and can lead to errors regarding subtalar 

joint kinematics, especially when applied to the deformed foot (9, 10). It has been found 

that the most significant source of error in gait analysis is skin movement artifact (SMA) 

(3, 11). When the markers are placed on the surface of the skin, a motion artifact is 

introduced that has the potential to greatly affect the kinetics results to estimate the 

dynamic loads in joints (1). 

Understanding the biomechanics of the tarsal complex during gait is critical to the 

proper care of patients with a variety of orthopaedic impairments. Orthopaedic disorders, 

such as cerebral palsy or myelomeningocele, often require lower extremity orthoses for 
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ambulation. Due to obscuring of skin markers, gait analysis to determine the joint 

kinematics and kinetics cannot be performed with conventional optical methods while 

wearing braces, orthoses, or modified footwear. Markers placed directly on the shoe 

remain visible, but data from these markers will not adequately measure the motion of the 

foot within the shoe. This limitation of optical imaging systems has prevented the 

analysis of motion of the foot during gait in patients who require orthoses or modified 

footwear for functional ambulation. The ability to look “inside the shoe” during 

ambulation is required to provide better means of quantifying the motion and loading 

patterns of the hindfoot. 

Fluoroscopic methods have been introduced for use in gait analysis to aid in 

eliminating SMA by looking at the motion of the bones directly. X-ray fluoroscopy 

acquires a time sequence of images while performing a dynamic movement (12). While 

fluoroscopy is limited to a small field of view, typically allowing for single joint analysis,  

and has extensive image data processing, it is noninvasive and provides complete three-

dimensional (3D) analysis of joints. The ability to track the bones of the foot directly 

would also greatly reduce the rigid body assumptions. The purpose of this study was to 

develop and validate a biplane fluoroscopic system that performs dynamic in vivo 

assessment of subtalar joint kinematics. The ability to directly analyze the bones and 

joints within the body to attain reliable in vivo kinematics is beneficial for research in 

several fields. 

1.2 Hindfoot Anatomy  

 



4 
 

 

 

1.2.1 Bones and Articulating Surfaces 

The foot contains 26 bones, 33 joints, 107 ligaments and 19 muscles that allow for 

intricate multiplanar motion (13). The bones of the foot are clustered into 3 groups: 7 

tarsal bones, 5 metatarsals, and 14 phalanges (14). The tarsal group consists of the talus, 

calcaneus, navicular, cuboid, and the medial, intermediate and lateral cuniforms. The 

focus of this project is the hindfoot, which is comprised of the talus and calcaneus, along 

with the lower leg bones, the tibia and fibula.  

 

Figure 1: Medial and superior view of talus. 

The talus (Figure 1) has a rounded head, projected anteriorly and medially by a 

short broad neck, which is connected posteriorly to an expanded body (14). The anterior 

surface of the head is convex for articulation with the navicular. The convex surface 

extends inferiorly to form three articular facets separated by smooth ridges. The anterior 

and middle facets articulate with adjacent surfaces on the calcaneus. The other facet is 

medial to the calcaneal articulations and articulates with the spring ligament. The neck of 

the talus has a deep groove, the sulcus tali, which passes obliquely forward across the 
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inferior surface from medial to lateral, and expands dramatically on the lateral side (14). 

Posterior to the sulcus tali is a large facet for articulation with the calcaneus.  

The superior surface of the talus body, called the trochlear, is elevated to fit into 

the socket formed by the distal ends of the tibia and fibula and articulates with the 

inferior end of the tibia. The medial surface articulates with the tibia and the lateral 

surface articulates with the fibula. The lateral articulating surface is larger and projects 

more inferiorly than the medial surface (14). The lower part of the lateral surface forms 

the bony projection called the lateral process, which supports the facet for articulation 

with the fibula. The inferior surface of the body has a large oval concave facet for 

articulation with the calcaneus. The posterior aspect of the body consists of the posterior 

process, a posterior and medial facing projection. Its surface has lateral and medial 

tubercles, which bracket a groove for the flexor hallucis longus tendon (14). There are no 

muscle insertions on the talus bone (15).  

 

Figure 2: Medial and superior view of calcaneus. 

The calcaneus (Figure 2) is an elongated, irregular, box-shaped bone with its long 

axis generally orientated along the midline of the foot, but deviates laterally to the 
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midline anteriorly (14). It is the largest tarsal bone, which sits under and supports the 

talus. The calcaneus projects posteriorly behind the talocrual joint to form the heel. The 

posterior surface is circular and divided into upper, middle and lower parts. The upper 

part is separated from the calcaneal tendon by a bursa. The lower part, the weight bearing 

region of the heel, curves anteriorly and is continuous onto the plantar surface of the bone 

as the calcaneal tuberosity (14). The tuberosity has a large medial process and small 

lateral process, separated by a v-shaped notch. The anterior end of the plantar surface of 

the calcaneus has the calcaneal tubercle for the posterior attachment of the short plantar 

ligament.  

The lateral surface of the calcaneus has a smooth contour except for two slightly 

raised regions. One region, the fibular trochlea, is anterior to the middle of the surface 

and has two shallows grooves that pass obliquely across its surface. The second region is 

superior and posterior to the fibular trochlea. It serves as an attachment site for the lateral 

collateral ligament. The medial surface of the calcaneus is concave and has one 

prominent feature, the sustentaculum tali, which is a shelf of bone projected medially and 

supporting the posterior part of the head of the talus (14). The superior surface of the 

sustentaculum tali has a facet for articulating with the middle facet on head of the talus.  

The superior surface of the calcaneus has two articulating surfaces. The anterior 

talar articular surface is small and articulates with the anterior facet on the head of the 

talus. The posterior talar articular surface is large and is approximately near the middle of 

the superior surface of the calcaneus. Between the posterior talar articular surface and the 

middle and anterior talar articular surfaces is the calcaneal sulcus, a deep groove running 

medial-laterally across the calcaneus. The calcaneal sulcus and the sulcus tali on the talus 
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together form the tarsal sinus, a large gap visible laterally between the anterior calcaneus 

and talus (14).  

 

Figure 3: Anterior and inferior view of tibia. 

The tibia (Figure 3) is the weight bearing bone of the lower leg. The cross-section 

of the shaft is triangular, while the distal end is rectangular with a bony protuberance on 

the medial side, the medial malleolus (14). The inferior surface of the tibia, the tibial 

plafond, along with the medial malleolus articulates with the talus to form a large part of 

the talocrural joint. The lateral surface of the distal tibia has the fibular notch, where the 

distal head of the fibula is anchored by a thickened part of the interosseous membrane 

(14). The fibula is lateral to the tibia and much smaller in size. Its shaft cross-section is 

also triangle, expanding distally to form the spade-shaped lateral malleolus. The medial 

surface of the lateral malleolus has a facet for articulation with the talus, forming the 

lateral part of the talocrural joint.  
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1.2.2 Joints and Axis of Motion 

The talocrural joint (Figure 4) is often referred to as the ankle joint. The tibia and 

fibula create a deep bracket-shaped socket for the trochlear surface of the talus. The ankle 

axis passes through the body of the talus, just above the talo-calcaneal articulation (16, 

17). The oblique axis of the ankle is rotated laterally downward 82° from the tibial 

midline in the frontal plane, and runs laterally and posteriorly 20-30° in the transverse 

plane, from the medial malleolus to the lateral malleolus (10). The superior surface of the 

talus is much wider anteriorly than posteriorly. As a result, the bone fits tighter into the 

socket when the foot is dorsiflexed when the wider surface moves into the joint. Thus, the 

talocrural joint is most stable when the foot is dorsiflexed (14).  

The talocalcaneal joint (Figure 4), typically called the subtalar joint, is between 

the large posterior calcaneal facet of the talus and the posterior talar facet of the 

calcaneus. The joint allows for gliding and rotation. The subtalar joint has an oblique axis 

that runs approximately from antero-medio-superior to postero-latero-inferior through the 

talus and calcaneus (16-19). This axis forms an angle 42° (10, 19, 20) to 45° (16, 17, 21) 

from horizontal in the sagittal plane of the foot, and a 16° (16) to 23° (10, 15, 21) from 

the foot midline in the transverse plane. These angles can vary subject to subject and 

change the joint range of motion (ROM).  
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Figure 4: Axes of talocrural and subtalar joint. 

The ankle joint is primarily responsible for sagittal plane motions 

(dorsiflexion/plantar flexion). The subtalar joint is primarily responsible for motions in 

the frontal plane (inversion/eversion) and the transverse plane (abduction/adduction). The 

actions are often combined when the ankle and subtalar joint work together as the ankle 

joint complex (AJC) to generate pronation (dorsiflexion, eversion, abduction) and 

supination (plantarflexion, inversion, adduction). The triplanar motions of the AJC are 

further complicated due to the joint axes not being in any of the cardinal planes of 

motion. A method to locate the talus during gait analysis would allow for more advanced 

subtalar motion assessment and a more accurate estimate of the subtalar kinematics and 

kinetics than current models.  

1.2.3 Actions of Ankle and Subtalar Joint during Gait 
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The gait cycle consists of the stance phase (when the foot is in contact with the 

ground) and swing phase (when the limb is swinging forward) (22). The stance phase is 

approximately 60% of the gait cycle and has 5 major events: heel strike (HS), foot flat 

(FF), mid-stance (MS), heel rise (HR), and toe off (TO) (17, 22). The foot must perform 

various important functions at specific times during the gait cycle for normal ambulation.  

At HS, the ankle joint is either in neutral or slightly plantarflexed (22). The foot 

must be flexible to adjust to the ground surface and simultaneously assist the body’s 

shock absorbing mechanism (22, 23). Heel contact with the ground is lateral to the ankle 

joint, where the body weight (BW) is transmitted to the talus, creating a pronation 

moment at the subtalar joint. The talus rotates medially on the calcaneus about the 

subtalar axis, forcing the calcaneus into pronation (22). Immediately following HS, the 

foot flexes to the floor, controlled by the dorsiflexors to prevent the foot from slapping 

down to the FF position (22). At FF, the lower limb begins to rotate laterally, transmitting 

the lateral rotation to the talus as well. As lateral rotation continues, the foot goes into 

supination, increasing the stability at the transverse tarsal joint. During MS, the foot 

needs to be rigid to enable BW to be carried with sufficient stability (22). After HR, the 

ankle joint moves back into plantarflexion. Just before TO, the combination of weight 

bearing and supination ensures that the foot is in a maximally stable position for lift-off 

(22). At TO, the foot must function as a lever to propel the body across the ground (22, 

23). 

1.2.4 Cadaver Foot Studies 
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Foot cadaver studies have been performed to determine the relative kinematics 

and kinetics of the foot during the stance phase of gait (16, 24-29). In 1998, Sharkey and 

Hamel performed a cadaver study using a dynamic gait simulator to validate the utility of 

their foot kinetic model (25). Also in 1998, Parenteau et al. assessed the biomechanical 

properties of cadaveric ankle and subtalar joints in quasi-static loading conditions (26). In 

their study, the cadaver foot specimens were cemented in a jig upside down, with the 

calcaneus pinned so that the sole response of the testing was through the ankle and 

subtalar joints. More advanced kinematics testing was performed by Hamel et al. in 2004 

and Nester et al. in 2007 using dynamic gait simulators and markers drilled directly into 

the cadaver specimen bones (28, 30). The dynamic gait simulator uses the cadaver limb 

to mimic normal kinetics and kinematics of the tibia, foot and ankle during the stance 

phase of gait from HS to TO. In both studies, marker clusters were attached to K-wires 

drilled into the tibia, talus and calcaneus. The results demonstrated the extent to which 

rigid segment assumptions of conventional skin marker models have oversimplified the 

foot (30). Cadaver studies have shown potential for often-ignored foot joints to contribute 

significantly to the overall function of the foot.  

1.3 External Marker-based Models 

1.3.1 Skin Motion Artifact 

Skin movement artifacts (SMA) are due to the relative movement between 

markers and underlying bone. These movements can be caused by the non-rigid 

attachment of skin to bone, muscle contractions underneath skin, and inertial effects (3). 

Various invasive and noninvasive methods have been used to directly measure in vivo 
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skeletal motion in an effort to eliminate SMA. These methods include bone pins (29, 31, 

31-36), external fixation devices (3), percutaneous skeletal tracker (37), and imaging 

techniques (11, 38, 39). Studies using intra-cortical bone pins attached to bones in the 

lower extremities have found significant differences in angular displacements about all 

axes of rotation and displacements of skin markers relative to underlying bone of up to 20 

mm (32, 33). A bone pin study involving the foot found that skeletal markers are only 

gross indicators of the skeletal tibiocalcaneal motion, with a typical overestimate of 

skeletal kinematics by 46.3% using external markers (31). A study that used external 

fracture fixation devices on the tibia found skin marker displacements of the lateral 

malleolus to be 15 mm in all directions (3).  

Imaging techniques offer a way to simultaneously visualize skin markers and 

bone motion during activity. Roentgen photogrammetry has been used to track the 

relative skin movement of the foot in 2D (39). Marker movement varied from 1.8 to 4.3 

mm, with the largest movements occurring more proximally to the malleoli. In another 

study involving the foot and ankle, the two malleoli markers showed the largest artifact 

with the mean displacement between skin markers and bones varying from 2.7 to 14.9 

mm (40). Single plane fluoroscopy was used to quantify the SMA of a multi-segment 

foot model using triad cluster markers (34). The translational results of SMA ranged from 

6.46 to 16.72 mm, with maximal error occurring at the toe-off position. These results 

indicate that skin markers placed on bony landmarks of the foot may not be suitable for 

accurate kinematic analysis of foot motion. The current study used biplane fluoroscopy to 

eliminate the SMA of tracking bones within the foot. 
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1.3.2 Model Repeatability 

When skin-mounted optical markers are used, model repeatability is a concern 

because of how the markers define the segments and joints. Several markers in lower 

extremity models are placed on bony landmarks. The incorrect location of bony 

landmarks can be caused by: the palpable landmarks are not points but surfaces, soft 

tissue layer of variable thickness covering the landmark, and the palpation technique used 

to find the bony landmark (41, 42). The precision and accuracy of bony landmark 

locations is essential, as they affect the segment orientation and the LCS, as well as the 

sensitivity of joint kinematic variables (41). A model needs to repeatedly generate 

accurate results intra-subject, inter-subject, within-day testing, between-day testing, intra-

examiner, and inter-examiner. It is critical that the model used is repeatable so that the 

performed single gait evaluation is representative of a subjects’ overall gait performance 

(43).  

In multi-segmental foot models, the external skin markers need to be placed in 

very specific locations to define the segment center of mass and coordinate system. In the 

five segmental shank-foot model developed by Leardini et al., inter-subject repeatability 

tests suggest that the protocol was not repeatable for all the joints (44). While Carson et 

al. found their four segment foot model to have good repeatability between trials, they 

had low repeatability between different days and different testers (4). Long et al. 

performed a validation study involving the use of the four segment Milwaukee foot 

model (MFM) between test sites (45). The MFM uses weight bearing x-rays to orientate 

the skin-mounted markers to the orientation of the underlying bony anatomy. Their 

results showed minimal inter-site differences in foot kinematics, with the largest source 
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of variability from inter-subject testing (45). The method using biplane fluoroscopy 

avoids inter-subject repeatability errors and inter-tester repeatability errors by eliminating 

the need for external markers.  

1.3.3 Rigid Segment Assumption 

External marker based systems that define multiple bones as a single segment 

make the assumption that the bones do not move with respect to one another. Violation of 

the rigid body assumption may lead to overestimated inter-segmental motion, unreported 

intra-segmental motion, or attributing motion to one joint when in fact it occurs at 

another (46). Conventional motion analysis models combine the ankle and subtalar joints 

as a single joint and describe the motion as that of a single rigid segment foot with 

respect to the tibia. Unlike other segments of the lower extremity, the foot is composed of 

multiple bones and joints with complex interaction (47). Cadaver studies, discussed in 

Section 1.2.4, have confirmed the complexity of foot kinematics and the potential for 

often ignored foot joints to contribute significantly to the overall kinematics. A single 

rigid segment is a gross assumption of the foot anatomy and function that may violate the 

rigid body assumption in current foot models. The current study avoided rigid segment 

assumptions by tracking the calcaneus, talus, and tibia directly to determine joint 

kinematics.  

1.3.4 Segmental Foot Models 

To overcome issues associated with modeling the foot as a single rigid body, the 

foot was subdivided further into multiple segments. Numerous multi-segment foot 
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models dividing the foot and ankle into anywhere between two to nine segments have 

been developed to aid in better analysis of the foot during gait (4, 5, 9, 44, 48-55). These 

models use external markers that define multiple bones of the foot as one or more rigid 

body segment and assume that the bones do not move with respect to one another. To 

define a rigid segment, three non-collinear markers are required. Finding palpable 

locations to place the markers becomes increasing difficult as the segments get smaller or 

deeper within the foot. While dividing the foot into multiple segments allows for better 

analysis of the major joints of the foot, it still has sources of error from SMA, and the 

violation of rigid body assumption (46, 47). Again, the current study avoided the issues 

associated with segmental models by tracking the individual bones of the foot.  

1.3.5 Shod and Orthosis Conditions 

Foot orthoses and shoe modifications can play an important role in noninvasive 

management of foot and ankle pathologies. Orthopaedic disorders, such as cerebral palsy 

and myelomeningocele, often require lower extremity braces or shoe modifications for 

walking (56). Therapeutic shoe wear may be used to treat patients with diabetes, arthritis, 

neurologic conditions, traumatic injuries or congenital deformities (57, 58). Rocker sole 

shoe modifications are designed to relieve plantar pressure by altering the motion and 

force distribution patterns of the foot (58-60). Motion analysis to determine the joint 

motion and forces cannot typically be performed with conventional optical methods 

while wearing braces, orthoses, or modified footwear due to their interference with 

external markers. Although numerous methods have been attempted, they currently limit 

the validity of measurement in the form of either structural modifications of footwear or 
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surface marker applications to the external shoe surface (61). Describing foot movement 

within shoewear during ambulation is required to provide better means of quantifying the 

motion and loading patterns. Fluoroscopy provides dynamic motion measurements within 

shoes that are otherwise difficult to achieve. 

1.4 Bone Pin Models 

 Bone pin foot models have been developed to circumvent the errors associated 

with external markers by surgically attaching pins directly to the bone, thus eliminating 

SMA and marker misplacement (29, 31, 36, 62-64). This method requires the assistance 

of an experienced orthopaedic surgeon and the use of local anesthesia. Bone pin studies 

have been performed to analyze hindfoot kinematics during walking (62, 64). These 

studies are limited due to their invasive nature, possible pain and discomfort for the 

subjects, influences on the natural gait pattern through anesthetic or soft tissue 

impingement, and have a risk of infection at the insertion site (33, 62). They are also 

limited by low subject numbers. Although the current study had low dose radiation 

exposure, it was noninvasive to the patients and does not cause gait pattern alterations.  

1.5 Alternative Imaging Techniques 

1.5.1 Computer Tomography (CT) and Magnetic Resonance (MR) Imaging 

Imaging methods that allow direct 3D imaging of in vivo joint morphology, such 

as computed tomography (CT) and magnetic resonance (MR) imaging, have been used to 

study various joints (65-74). While these methods provide noninvasive joint motion 

analysis, they are expensive and restrict the joint to one position during the CT or MR 
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scan, preventing the quantification of full motion kinematics during various functional 

activities (72). Another issue with CT is the amount of effective dose the patient is 

exposed to. Effective dose is a dose descriptor that reflects the difference in potential 

biological effects from radiation based on the biological sensitivity of the tissue or organ 

irradiated (75). The typical effective dose of a chest CT and abdomen CT is 5 to 7 

millisieverts (mSv), a pelvis CT is 3 to 4 mSv, and a head CT is 1 to 2 mSv (75). The 

effective dose during a foot and ankle CT scan is 0.07 mSv, which is slightly less than the 

0.08 mSv of effective dose received from a conventional chest x-ray (76). Also, CT and 

MR images are generally not acquired under weight-bearing conditions and may be 

distorted in the presence of metal implants (77). While this study currently uses a single 

CT scan of the foot to generate the bone models, future work includes replacing the 

required CT with an MR scan to greatly reduce the effective dose patients receive during 

the analysis.  

1.5.2 Roentgen Stereophotogrammetric Analysis 

Roentgen stereophotogrammetric analysis (RSA) involves static x-ray imaging of 

joint implants or beads implanted into bones to determine their positions (78, 79). It was 

originally developed to measure prosthesis migration (79, 80). Single plane RSA, used in 

studying hip and knee prostheses, had an accuracy of 0.7 to 0.9 mm (12, 81). In a study 

of knee prostheses, biplane RSA was found to have accuracy as high as 10-250 µm (82). 

While RSA has demonstrated highly accurate determination of positioning, it is limited to 

static imaging and exposes the patient to high radiation dosage compared to x-ray 

fluoroscopy (83, 84).  
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1.5.3 Single Plane Fluoroscopy 

Whereas RSA acquires biplane x-ray images at one time point, x-ray fluoroscopy 

acquires a time sequence of images (12). Fluoroscopic technology has been used for over 

a century for several medical applications. Single plane fluoroscopy allows direct 

visualization of underlying bones and has been used to track bone movements in animals 

(85), the forearm (86), fingers (87), spine (88), the knee (77, 89-94) and the ankle (72, 

95-102). While fluoroscopy is limited to a small field of view, often a single joint at a 

time, and has extensive image data processing, it is noninvasive and provides complete 

3D analysis of joints without SMA. An average testing procedure of 20 seconds has a 

radiation exposure of 100 µSv, which is equivalent to the approximate solar radiation 

exposure received on a 12 hour flight from London to Tokyo (103). The USNRC (United 

States Nuclear Regulatory Commission) places an annual occupational limit of whole 

body effective dose at 5 rems (50,000 µSv). In the United States, the average person is 

exposed to 3000 µSv every year from natural background radiation (104).  

Single plane fluoroscopy uses a 3D to two-dimensional (2D) registration 

technique to match 3D models with x-ray images (86). The six kinematic parameters, 

three rotations and three translations, can be estimated for each frame. Single plane 

fluoroscopy is limited to 2D evaluation and is susceptible to out-of-plane errors and 

motion blur (1). The assessment of out-of-plane translations is unreliable and the 

accuracy for measuring out-of-plane translations is poor relative to accuracy for 

measuring in-plane translations (77, 105). Single plane fluoroscopy lacks the ability to 

capture accurate 3D motion during dynamic functional loading and should not be used to 

study joints that have combined motions in different planes (104). The unique system 
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developed in this project performed biplanar fluoroscopic analysis using two gantries to 

avoid the errors associated with single plane techniques.  

1.6 Biplane Fluoroscopic Techniques 

In biplane fluoroscopy, radiographic images are captured in two different planes, 

allowing for assessment of 3D joint motion. It has the potential to quantify six degrees of 

freedom (DOF) motion with high accuracy and has important applications to a wide 

range of problems in orthopaedics, sports medicine, and bioengineering (84). Typically, 

the accuracy of biplane fluoroscopy is higher compared to single plane, with both types 

of fluoroscopy systems having substantially higher accuracy compared to conventional 

skin marker techniques.  

Biplane fluoroscopy has been used to determine motion in animals (1, 2, 106), the 

shoulder (107, 108), spine (104, 109, 110), hip (111), knee (112-116) and the ankle (117-

123). A biplane study of the shoulder found a dynamic accuracy of ±0.4 mm for 

translation and ±0.5° for rotation (107). Another biplane study of the cervical spine had 

high repeatability, with 0.02 mm error in translation and 0.06° error in rotation (104). A 

direct comparison between fluoroscopic studies is difficult due to differences in 

techniques, testing conditions, and software packages. 

Figure 5 presents a diagram of a biplane fluoroscopy system. The two fluoroscopy 

gantries are separated by angle θ, allowing 3D localization in the region irradiated by 

both systems. A walkway containing a force plate (FP) enables kinetic analysis as well. 

Kinematic data from biplane fluoroscopy, along with patient specific models, can be used 

to calculate stress distributions and assess deformation to joint structures (124).  
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Figure 5: Sketch of a biplane fluoroscopic system with embedded force plate. 

Four components are required to perform fluoroscopic gait analysis: 1) a 

hardware system for acquiring x-ray images; 2) software algorithms for tracking bones or 

markers; 3) a 3D model, generated from a CT or MR scan (for markerless or model-based 

tracking); 4) a set of kinematic equations for determining joint motion.   

 1.6.1 Hardware 

Two x-ray fluoroscopes with an image intensifier (II) coupled to a high-speed 

video camera are typically used to acquire images. The fluoroscopes can be used in the 

standard C-arm configuration or a custom build gantry. High-speed cameras are typically 

shuttered and sampled at 250 frames per second (FPS) to reduce motion blur when 

recording joint motion (84). The settings for x-ray tube current (measured in milliampere 
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or mA) and voltage (measured in kilovolts or kV) vary depending on the investigated 

joint and surrounding soft tissue. The voltage determines the energy distribution of the 

photons produced by the source, while the current determines how many photons are 

produced. When the voltage is increased, more photons are produced from the source, 

thus the current can be reduced to maintain the overall x-ray exposure (125). Lead vests 

or aprons are typically worn during testing to cover areas not being studied. Image 

quality is also affected by the beam energy, subject size, image intensifier size, and the 

distance from the patient to image intensifier (126). Positioning the patient closer to the 

image intensifier reduces the air gaps and may reduce image blur (84). 

1.6.2 Calibration 

Inside the II, the x-ray signal is converted to electrons which are then amplified. A 

curved input phosphor plate converts the energy of the electrons into visible light, and 

then projects it onto a flat output phosphor. Due to the curved nature of the input plate, 

the II introduces pincushion distortion toward the edge of the image on the order of 10% 

that must be corrected to minimize 3D tracking errors (1, 105). Distortion can be 

corrected by acquiring calibration images with a calibration frame attached to the face of 

the II. Calibration frames contain uniformly spaced lead beads on a Plexiglass sheet or a 

perforated metal sheet. The distortion correction algorithm compares the spacing between 

the beads or holes of the calibration frame in the fluoroscope image with the true spacing 

and calculates a transformation matrix for correcting the images (106). Each x-ray image 

undergoes calibration using the distortion correction algorithm prior to joint motion 
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analysis. Positioning the anatomy of interest in the center of the II also helps minimize 

distortion. 

In biplane studies, a 3D calibration object is needed to calibrate the imaging 

volume so that the relationship between the 3D coordinates of the bones and the projected 

2D image coordinates can be determined. The calibration object is typically acrylic, 

either a cube or triangle, with beads implanted in known locations. Software using the 

direct linear transformation (DLT) method calculates the position of each bead to 

determine the configuration of the biplane system relative to the global reference 

coordinate system (1, 2). The DLT technique defines the linear transformation between 

the 3D object space and the 2D image planes by using a group of 11 coefficients to 

represent the internal parameters and orientation of the cameras (127). The DLT method 

was used to calibrate the volume of the biplane system built in this study.  

1.6.3 Marker-based Tracking 

In marker-based fluoroscopy, tantalum beads implanted in bones are used to track 

and calculate kinematics. A minimum of three beads per bone segment are required for 

3D analysis (106). This is an invasive procedure that is limited to subjects who are 

undergoing a surgical procedure at the same time as implantation (107). To extract the 

marker coordinates from biplane x-ray images, four steps are required. First, the images 

are corrected with the distortion correction algorithm. Second, the 3D space is calibrated 

using the calibration object and required parameters. Third, the marker positions are 

tracked in the x-ray images. Fourth, the 3D coordinates of the markers are used to 

calculate the rigid body motions of each bone segment. In addition to being invasive, 
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some trials can be lost due to the beads becoming obstructed when aligned with 

implanted joint prostheses, screws or rods. A bead must be simultaneously visible in both 

fluoroscopy images in order to calculate the 3D bead position (109). Marker-based 

studies are typically used as the “gold standard” when evaluating the accuracy and 

validating model-based tracking methods and software. The current study used model-

based tracking methods to avoid invasive marker-based techniques.  

1.6.4 Model-based Tracking 

Markerless or model-based fluoroscopy has been developed because of the 

invasiveness and limitations of implanting beads into living subjects. The model-based 

method determines bone positions and orientations by comparing a 3D bone model, 

obtained with CT or MR, to the acquired biplane fluoroscopic images. The 3D model is 

typically created from CT images by identifying and segmenting the anatomy of interest 

using various available software packages. Once 3D bone models are created, a local 

coordinate system (LCS) is assigned to each model so that the orientation and positions 

of the models can be determined within the calibrated space using standard rigid-body 

transformations.  

The 3D bone model pose is defined by the six DOF position and orientation of the 

model’s LCS relative to the global coordinate system (GCS) (83). Two techniques to 

estimate the pose of the 3D model are currently used: feature-based or intensity-based. 

The feature-based methods rely on identifying features in the image, such as bony 

landmarks and contour information. The prosthesis or bone models are projected as a 2D 

silhouette over the images to determine the position and orientation (77). The bony 
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landmarks and contours assist in aligning the projection over the image for optimal 

placement of the model. This method has been effective for assessing in vivo kinematics 

of both prosthetic joints (77, 83, 89, 92, 93) and natural joints (110, 128). Due to the 

smooth, rounded corners of bones, feature detection in natural joints may be difficult 

using this technique. This method also requires manual identification of the landmarks on 

each frame of fluoroscopy images. 

The intensity-based method is performed by comparing digitally reconstructed 

radiographs (DRRs) with the acquired x-ray images. DRRs are x-ray images created by 

computer simulation using virtual models of the fluoroscopy systems and subject 

anatomy.  Using the calibration object data, the locations and orientations of the x-ray 

sources and high-speed cameras are modeled within a computer program so that a virtual 

configuration identical to the actual biplane fluoroscopy system is created (84, 111). The 

3D bone models created from the CT images are placed within the virtual configuration 

so that a pair of DRRs can be generated by ray-tracing projections through the bone 

models (105). The DRRs change accordingly as the CT models are translated and rotated 

within the virtual space, resulting in simulated 2D images (DRRs) from the 3D geometry 

of the modeled bones. The similarity between the modeled DRRs and the acquired 

biplane x-ray images is calculated, and the positions of the bone models are optimized to 

find the positions which yield the highest similarity between the simulated DRRs and the 

acquired images (83, 107). An overview of the model-based method is presented in 

Figure 6. 
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Figure 6: Flow chart of model-based tracking method (2). 

Various similarity metrics and optimization algorithms have been proposed, 

including: Euclidean distance between contours extracted from the DRRs and measured 

x-ray images (77), root mean square distance between projection lines and model surface 

(92), similarity measures between the x-ray image and DRRs (128), downhill Simplex 

optimization (2), and optimization by simulated annealing (89). Once the bone model and 

biplane x-ray images are optimally aligned for each frame in the sequence, the joint 

position and orientation are obtained directly from the model using inverse kinematics 

(84). While intensity-based methods are computationally more expensive than feature-

based methods, they have been used successfully to assess in vivo joint kinematics of the 

spine (129), shoulder (107), and knee (2, 112, 113).  
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1.6.5 Fluoroscopic System Validation 

Fluoroscopic methods are expected to reliably quantify motion on the sub-

millimeter scale. Currently, there are no commercially available or standard fluoroscopy 

systems or software specifically designed for motion analysis, causing research groups to 

build and validate their unique systems. Tashman has recommended that an independent 

validation be performed of each biplane fluoroscopy system specifically for the 

anatomical joints and activities that will be analyzed (130). Validating these systems 

typically requires evaluating how the hardware and software eliminates distortion 

inherent in fluoroscopy systems, and measuring the static and dynamic accuracy and 

precision. Numerous validation studies of biplane fluoroscopy system have been reported 

for marker-based (1, 106, 131-133) and model-based tracking (104, 107, 112, 113, 131, 

134). In the current study, the system and tracking software used was validated using 

previously performed methods of implanting beads into a cadaver specimen (106, 107, 

113, 131, 134). The system used a combination of open source software packages: image 

distortion correction using X-ray Reconstruction of Moving Morphology (XROMM) 

software (106), DLTdv5 marker-based tracking software (135), and Autoscoper model-

based tracking software (131).  

1.7 Foot and Ankle Fluoroscopy 

Fluoroscopic analysis is expected to have numerous benefits for studying the foot 

and ankle joint complex. Conventional motion analysis methods often make assumptions 

of these segments due to the numerous small bones and several joints involved. The 

absence of external landmarks on the talus limits the ability of skin-mounted markers to 
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measure the AJC motion accurately (72). Understanding the biomechanics of the tarsal 

complex during gait is critical to the proper care of patients with a variety of orthopaedic 

impairments. The first fluoroscopy study involving the foot was performed by Green et 

al. in 1975 (136). Fluoroscopic images were captured on 16 mm film and bony motion 

was described as subjects moved their foot through its maximal ROM. Various single 

plane and biplane studies involving the foot and ankle have since been performed (72, 

95-102, 117, 119-123, 137-144).  

Wearing et al. used fluoroscopic methods to measure sagittal plane motion of the 

arch (95, 141), and properties of the heel fat pad during walking (142). Gefen et al. 

developed a clinical application for biomechanical analysis of the foot (137), and also 

determined the elastic properties of the plantar fascia during walking using fluoroscopy 

(139). Several other researchers have used fluoroscopy to analyze AJC kinematics (97, 

99, 100, 102, 117, 122, 140). Komistek et al. developed the first 2D static kinematic 

model of the foot based on fluoroscopic images in 2000 (140). The study measured 

sagittal plane motion of ten ankles between maximum dorsiflexion and plantarflexion. De 

Asla et al. developed the first 3D static kinematic model of the hindfoot using 

fluoroscopy in 2006 (117). 3D bone models of the tibia, fibula, talus and calcaneus were 

created using MR images. The fluoroscopic images were used to align the 3D bone 

models into the correct orientation. Anatomical coordinate systems (ACSs) for each bone 

model were used to complete the kinematic analysis between the different orientations. 

These studies were all limited by their static nature, and by only analyzing certain poses, 

or specific points throughout the gait cycle. The overall goal of this project was to 

develop and validate a biplane fluoroscopic system and integrated software to assess 
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hindfoot kinematics. This study is the first that quantified the cross-scatter contamination 

in a biplane fluoroscopic system and its effects on the accuracy of marker-based tracking. 

This study completed the necessary validation of the biplane system by performing a 

cadaver foot study, determining the static and dynamic error of the system using both 

marker-based and model-based tracking algorithms. In addition, the study developed an 

in vivo 3D kinematic model of the talocrural and subtalar joints during the stance phase 

of gait. To achieve this, the following objectives and specific aims were defined:  

1.8 Objectives 

1. Develop a biplane fluoroscopy system for in vivo studies of hindfoot 

kinematics. 

2. Validate the system and software for use of model-based tracking of the 

hindfoot.  

3. Develop in vivo kinematic models of the hindfoot joints.  

 

1.9 Specific Aims 

1. Develop a hardware system for performing biplanar fluoroscopic analysis of 

in vivo hindfoot kinematics during the stance phase of gait.  

2. Incorporate a software system to track the bones throughout the analyzed 

motion.  

3. Perform imaging study quantifying cross-scatter contamination in biplane 

system. 
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4. Evaluate the static and dynamic error of the biplane system with a cadaver 

specimen using both marker-based and model-based tracking algorithms. 

5. Develop in vivo 3D kinematic model of the talocrural and subtalar joints with 

fluoroscopic analysis. 
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2. DEVELOPMENT OF BIPLANE FLUOROSCOPY SYSTEM 

2.1  Biplane Fluoroscopy System 

A biplane system was constructed centered along a 7 m, non-obstructed walkway 

with an embedded 46.4 by 50.8 cm force plate (AMTI OR6-500 6-DOF, Watertown, 

MA) to allow for clinical gait assessment (Figure 7). The force plate is used to accurately 

determine heel strike and toe off, as well as collect the ground reaction forces (GRFs) at 

3000 Hz. The force plate is connected to a Vicon Nexus system (Version 1.7, Vicon 

Motion Systems, Lake Forest, CA). Two x-ray sources (OEC 9000, GE, Fairfield, CT), 

and two images intensifiers (II’s, 15" diam., Dunlee, Aurora, IL) are mounted to the 

walkway with a 60 degree angle between the sources. Prior to obtaining the second 

gantry, the single plane system, along with a phantom foot (XA241L, Phantom Lab Inc.) 

and rotary table (30010-S, Parker Daedal, Irwin, PA), were used to simulate biplane 

images at angles ranging between 45 and 90 degrees. The 60 degree angle allowed for the 

largest field of view with the least amount of forefoot bone overlap. The sources and II’s 

were disarticulated C-arms that were mechanically and electronically installed in this 

configuration. All four components had brackets attached to their side, enabling the 

sources and II’s to be placed on posts that are attached to steel plates on either side of the 

walkway. The posts have 6 height levels to lock in the system. The top level is used for a 

non-obstructed view of the calibration grid for image distortion correction. The system is 

then dropped down the lowest level for geometric calibration and to allow for the largest 

field of view during stance phase of gait. The source-to-detector and source-to-object-

center distances are 112 cm and 76 cm, respectively for both source-intensifier pairs. 

During testing, the x-rays were generated using continuous exposure. High-speed, high 
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resolution (1024 x 1024) cameras (N4, IDT, Pasadena, CA) are attached to each II. 

Cameras have 52mm lenses (Nikon, Melville, NY). Images are captured at 200 fps and 

digitized directly to a controller PC via Motion Studio 64 (Version 2.10.05, IDT, 

Pasadena, CA). 

 

Figure 7: Custom-built biplane fluoroscopy system with x-ray sources attached to right-
hand side of walkway and image intensifiers attached to left-hand side. The embedded 
force plate is placed where x-ray beams intersect. Global lab coordinate system shown 

with x-axis parallel to the walkway, y-axis across the walkway, and z-axis perpendicular 
to the walkway (z-axis not shown). 

2.2 System Synchronization 

 The entire system was set up to record synchronously. When the fluoroscopy 

push-button switch was pressed, both x-ray tubes were turned on and a 5V TTL pulse, 
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generated by one of the fluoroscopy units, was sent to the trigger circuit. The circuit 

initiated synchronous recording of the images and while sending a pulse signal to the 

Vicon system as an external device analog signal. High acceleration impact testing was 

performed to ensure synchronous recording between the fluoroscopy system high speed 

cameras and the force plate. 

2.3 Exposure of System 

  Exposure is the amount of ionization per mass of air due to x and gamma rays. It 

is a useful quantity because ionization is the process by which radiation detectors work 

and the initial event that can lead to biological damage (125). An in-beam chamber 

(RadCal 10x6-6, Monrovia, California) was placed in the middle of the radiation area of 

the biplane system and combined with an x-ray monitor (MDH Industries Model 1015, 

Monrovia, California) to measure the amount of radiation exposure (unit of roentgen or 

R) at various voltage and current levels (Table 1). The fluoroscopy units were turned on 

for two seconds, the approximate length of one gait trial, to record the measurements. As 

expected, the exposure increased with an increase in the voltage, due to the increased 

energy of photons produced.  

Table 1: Exposure measurements of biplane system with fluoroscopy units turned on for 
2 seconds. 

kV mA R 

60 5.0 0.115 

70 5.0 0.157 

80 4.5 0.190 

90 3.5 0.199 

100 2.5 0.191 

110 2.2 0.214 
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  Not all types of radiation cause the same biological damage per unit dose. The 

absorbed dose is the amount of energy imparted by radiation per mass (unit of rad). To 

modify the dose to measure the radiation in producing biological damage, the absorbed 

dose is multiplied by a radiation weighing factor to obtain the equivalent dose (unit of 

Sv) (125). An average testing procedure of 20 seconds (10 trials, 2 seconds each) has a 

total radiation exposure of 100 µSv, which is equivalent to the approximate solar 

radiation exposure received on a 12 hour flight from London to Tokyo (103). In the 

United States, the average person is exposed to 3000 µSv every year from natural 

background radiation (104). 

2.4 Image Distortion Correction 

Open source software, X-Ray Reconstruction of Moving Morphology (XROMM, 

Brown University, Providence, RI) was used for image intensifier distortion correction. 

Two calibration frames of 1.20 mm thick perforated steel with 3.18 mm diameter holes 

spaced 4.76 mm apart in a staggered pattern (part no. 9255T641, McMaster-Carr, 

Robinson, NJ) were cut to fit the face of the image intensifiers. The distortion correction 

algorithm in XROMM compares the spacing between the holes of the calibration frame 

in the fluoroscopic image with the known spacing of the frame and calculates a 

transformation matrix for correcting the images (106). Images of the calibration frames 

(Figure 8A) were corrected for geometric distortion using XROMM to create a 

transformation matrix. This matrix was then applied to all image sequences collected 

(Figure 8B and 8D). 



34 
 

 

 

 

Figure 8: A) Raw, distorted calibration frame. B) Frame after distortion correction. C) 
Raw, distorted image of phantom foot. D) Foot after distortion correction algorithm 

applied. 

2.5 Geometric Calibration 

 The direct linear transformation (DLT) technique was used to define the linear 

transformation between the 3D object space and the 2D image planes. The 11 DLT 

coefficients represent the internal parameters and orientations of the cameras (127). An 

acrylic calibration cube (Figure 9A), as described by Brainerd et al., with 64 precisely 

positioned steel spheres implanted as calibration points was manufactured and imaged 

with the biplane system (106). A coordinate measuring machine (CMM, Gage 2000, 

Brown & Sharpe, North Kingstown, RI) was used to measure the physical geometrical 
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characteristics of the cube to verify the positions of the beads within a linear accuracy of 

0.005 mm. Points in the x-ray images of the cube (Figure 9B) were digitized and 

compared with the known points to determine the 11 DLT coefficients (135). The 

calibration cube origin was used as the global lab coordinate system origin, with the x-

axis parallel to the walkway, y-axis across the walkway, and z-axis perpendicular to the 

walkway (x- and y-axis shown in Figure 7). The corner of the calibration cube was used 

as the global coordinate system due to the output of the model-based tracking results 

being reference to the cube origin. See Appendix A for complete instructions on biplane 

fluoroscopy.  

 

Figure 9: A) Image of 64-point calibration cube. B) Fluoroscopic image of calibration 
cube. Radiopaque markers were used to identify the beads in the fluoroscopic image. 
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3. QUANTIFYING CROSS-SCATTER CONTAMINATION IN BIPLANE 

FLUOROSCOPY MOTION ANALYSIS SYSTEMS 

 As in conventional x-ray imaging, the detected biplane fluoroscopy image is 

degraded by photons scattered from the primary beam. In biplane fluoroscopy, additional 

scattered photons are detected that originated from the second x-ray source, which is 

referred to as ‘cross-scatter.’ Cross-scatter is a potential source of degradation in biplane 

fluoroscopy motion analysis, as the two biplane images are typically acquired 

synchronously to enable accurate localization of the bone segments at each time point. 

The purpose of this aim was to quantify the magnitude and effects of cross scatter in 

fluoroscopic images acquired with a biplane x-ray imaging system over a range of object 

sizes, x-ray tube settings, and gantry angles. This study also quantified the effects of 

cross-scatter on the accuracy of marker-based tracking. Quantifying the effects of cross-

scatter on motion tracking is important for determining whether scatter rejection methods 

should be developed for this specific application of high-speed motion tracking. 

3.2 Methodology 

  The biplane system (Section 2.1), distortion correction algorithm (Section 2.4) 

and geometric calibration (Section 2.5) methods previously described were used in this 

study. 

3.2.1 Phantoms and X-ray Settings 

  Four cylindrical water phantoms of height 12 inches and of diameter 4, 6, 8, and 

10 inches were imaged. The 4-in cylinder represented the ankle, the 6-in cylinder the 
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knee, the 8-in cylinder the shoulder, and the 10-in cylinder simulated the spine. A one-

inch-diameter Teflon sphere was suspended in the center of the phantoms for measuring 

contrast. Teflon and water were used to produce contrast similar to bone and soft tissue. 

For each phantom, images were acquired at a series of tube settings, with the voltage set 

at  60, 70, 80, 90, 100, and 110 kV, and the current set at  5.0, 5.0, 4.5, 3.5, 2.5, 2.2 mA. 

The current settings were varied in order to provide similar detected intensity within x-

ray images of the foot across the different voltage levels.  

  Images containing primary, scatter, and cross-scatter signals 

(primary+scatter+cross_scatter) were collected by imaging with both sources on. In this 

work, ‘primary+scatter’ is the signal detected by one II from the beam that is focused on 

that II. ‘Cross-scatter’ is the signal detected by one II from the beam that is focused on 

the second II. Images were then acquired with one source turned off, such that one II 

collected images without cross scatter (primary+scatter), while the second II collected 

images of only cross-scatter and no primary signal. Fifty images were acquired (sampling 

frequency of 200 Hz) for each phantom, tube setting, and scatter condition. 

3.2.2 Scatter Fraction and Contrast-to-Noise Ratio 

  Regions of interest (ROIs) of size 30 by 30 pixels were extracted from the water 

background (ROI1) and Teflon sphere (ROI2) in all the collected images. The 

background ROI was located at the center of the field of view. These ROIs were used to 

calculate the cross-scatter fraction (CSF) and the percent change in the contrast-to-noise 

ratio (CNR) due to cross scatter.  The CSF was calculated as: 
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  The CNR was calculated for the Teflon bead in images acquired with and without 

cross scatter as:  

    ��� =  
|���	






�����






|

��� ! 
                (2) 

  The percent change in CNR due to cross-scatter was calculated as: 

%��� =  100 ∗ (1 −
()���������������������_�������
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)               (3) 

3.2.3 Effects of Gantry Angle on Cross-Scatter 

  The gantry angle is the angle between the central-ray of the two fluoroscopes. The 

system used in this study (Figure 7) has a fixed gantry angle of 60 degrees. Previous 

biplane fluoroscopy motion analysis studies have reported gantry angles ranging from 45 

to 90 degrees (104, 107, 112). The amount of detected cross-scatter is expected to vary 

with gantry angle. The effects of gantry angle could not be experimentally quantified in 

this study, due to the fixed system geometry. Therefore, Monte Carlo simulations were 

performed to quantify cross-scatter fraction across a range of gantry angles. The biplane 

fluoroscopy system was modeled using the GEANT4 software (145). X-ray spectra were 

modeled at 60, 80, and 100 kV using the SPEC78 software (146). As in the experimental 

system, the source-to-detector distance was 112 cm, and source-to-object-center distance 

was 76 cm. The simulations modeled an ideal detector, which generated images of the 

primary and scattered signal. Simulations were performed with gantry angles of 60, 75, 

and 90 degrees for each of the four cylindrical water phantoms. The CSF was calculated 

for each gantry angle, phantom, and tube setting, using ROIs as in the experimental 
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study. To validate the simulation methods, the CSFs estimated from the simulations at 60 

degrees were compared to the experimental measurements. 

3.2.4 Effects of Cross-Scatter on Marker-based Tracking Accuracy 

  To determine the effects of cross-scatter contamination on the accuracy of 

marker-based tracking, a rectangular acrylic plate (50 mm long, 16 mm wide, 2.3 mm 

thick) with two 2-mm steel beads separated by 30-mm (±0.03) was suspended in the 

center of the water phantoms. The water phantoms were then placed on the walkway at 

the intersection of the two beams. Static images were collected with both x-ray sources 

on to obtain primary+scatter+cross_scatter images. Images were collected with one 

source on and the other off to obtain image sequences containing the primary+scatter 

signal for one II. The on/off status of each source was reversed, to acquire 

primary+scatter signal for the second II. For dynamic testing, a pendulum moved the 

acrylic plate through the phantom. Due to the unrepeatable motion of the acrylic plate 

through the water, only primary+scatter+cross_scatter images were collected during 

dynamic trials. Static and dynamic images of the markers were collected with the x-ray 

sources set at 90 kV and 3.5 mA. 

  After the image distortion was corrected and the volume was calibrated, marker-

based tracking was performed using software developed by Hedrick (135). In each 

fluoroscopic image, the bead positions were found by automatically tracking the center of 

the bead, using an extended Kalman prediction algorithm. The 3D positions of the beads 

were then determined from the biplane DLT data. For static tracking, the beads were 

tracked in 50 images of each phantom. The absolute tracking error for each image was 
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calculated as the measured distance between the beads minus the true 30-mm inter-bead 

distance. The mean absolute tracking error and standard deviation for each phantom were 

calculated. For dynamic tracking, the beads were tracked in 30 images for 5 trials of each 

phantom. The absolute error was calculated for each image, with the mean and standard 

deviation determined across all 5 trials. Statistically significant differences between the 

static tracking error with and without cross scatter were analyzed using a Student’s t-test. 

3.3 Results 

  Figure 10 shows an x-ray image of the primary+scatter image and the 

primary+scatter+cross_scatter image of the 4-in and 10-in water phantoms, 

demonstrating the negligible effect of cross-scatter for the 4-in phantom. Figure 10 also 

demonstrates the increased signal and reduced contrast due to cross scatter for the 10-in 

phantom. 

 
Figure 10: X-ray images of a) 4-in phantom primary+scatter image and b) 4-in phantom 
primary+scatter+cross_scatter image displayed at the same window/level settings. c) 10-
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in phantom primary+scatter image and d) 10-in phantom primary+scatter+cross_scatter 
image displayed at the same window/level settings. 

  Figure 11 plots the CSF measured at a range of tube settings for all phantom 

diameters.  The CSF increased with phantom diameter, ranging from 0.15 for the 4-in-

phantom to 0.89 for the 10-in phantom, when averaged across kV. The CSF decreased 

with increasing kV. Cross-scatter reduced the CNR by 5% (±5%) for the 4-in phantom, 

15% (±5%) for the 6-in phantom, 26% (± 7%) for the 8-in phantom, and 36% (±9%) for 

the 10-in phantom, when averaged across kV. The percent change in CNR did not 

correlate with kV for any of the phantoms (p > 0.1). 

 
Figure 11: Measured cross-scatter fraction for all phantoms across a range of tube 

settings. Error bars, representing standard deviation, are smaller than the markers and 
thus are not visible. 

  Prior to quantifying the effects of gantry angle on cross-scatter, the simulation 

methods were validated against the experimental results at the 60 degree gantry angle. 

Figure 12 presents the results of the validation study. The experimental and simulation 

results demonstrated good agreement at 80 kV and 100 kV (error<10%). The 60 kV 
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simulations demonstrated larger discrepancies, with errors ranging from 13% to 60% 

compared to the experimental measurements. This discrepancy may be due to errors in 

modeling beam filtration. The purpose of the simulation study was to quantify the effect 

of gantry angle on cross-scatter magnitude, which can be investigated despite 

discrepancies in the 60 kV spectrum model. 

 
Figure 12: Comparison of CSF measured experimentally and estimated through 

simulations for a gantry angle of 60 degrees. Error bars represent one standard deviation. 

 Figure 13 plots the CSF at 60, 75, and 90-degree gantry angles, as estimated by 

the Monte Carlo simulations, for the 8-in and 10-in phantom at range of tube levels. The 

results demonstrate increased CSF with increasing gantry angle, with greater increases 

for the 10-in phantom and at lower tube settings. Gantry angle did not measurably affect 

the CSF for the 4-in and 6-in phantoms. 
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Figure 13: Cross-scatter fractions plotted for gantry angles of 60, 75, and 90-degrees for 

the 8-in and 10-in phantoms at a range of tube settings, as estimated through simulations. 

Gantry angle did not measurably affect the cross-scatter fractions for the 4-in and 6-in 
phantoms. 

  The absolute tracking error for the static marker trials is compared in Figure 

14 for images with and without cross scatter. As seen in Figure 10, images acquired 

with cross scatter demonstrated significantly increased tracking error (p<0.01) for the 

6-in, 8-in, and 10-in phantoms. The error increased with phantom diameter.  

 
Figure 14: Static tracking error (in mm) between no cross scatter and with cross scatter. 

Note: * signifies statistical significance (P < 0.01) 
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  Dynamic tracking was performed on images acquired with cross-scatter for all 

four water phantoms. Dynamic tracking without cross scatter was not possible, as 

synchronized acquisition is required to track a moving object. Table 2 displays the 

mean error (in mm) and standard deviation (SD) of the static and dynamic trials. The 

dynamic error was larger or had less precision than the static error for each phantom. 

As the phantom size increased, the error increased in both static and dynamic 

tracking.  

Table 2: Static and dynamic tracking mean error and SD for images acquired with cross 
scatter. 

Water Phantom 
Static Error 

(mm) 
  

Dynamic Error 

(mm) 

Object 1 (4") 0.12 (0.05) 
 

0.15 (0.11) 

Object 2 (6") 0.13 (0.07) 
 

0.16 (0.10) 

Object 3 (8") 0.22 (0.08) 
 

0.23 (0.15) 

Object 4 (10") 0.47 (0.18)   0.57 (0.49) 
 

3.4 Discussion 

  Biplane fluoroscopy is currently being used for motion analysis of various joints. 

This study measured the magnitude and effects of cross-scatter for a biplane fluoroscopic 

motion analysis system across a range of object sizes and tube settings. Marker-based 

tracking was performed to analyze the effects of cross-scatter contamination on tracking 

accuracy. The sizes of the cylindrical water phantoms were selected to simulate joints 

studied using biplane fluoroscopy: the 4-in cylinder represented the ankle, the 6-in 

cylinder the knee, the 8-in cylinder the shoulder, and the 10-in cylinder simulated the 

spine.  
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   The results demonstrated that the CSF increased with phantom size and decreased 

with kV. Cross scatter caused a greater reduction in CNR as the phantom size increased. 

For the smaller phantoms (4 in and 6 in), the CSF was unaffected by gantry angle. For the 

larger phantoms (8 in and 10 in), the CSF increased with gantry angle, despite the fact 

that photons are less likely to scatter at larger angles. One possible explanation of this 

result is that at larger gantry angles, scattered photons that travel towards the second 

detector are emitted closer to the phantom edge and have less attenuation within the 

phantom. The results of the simulation study suggest that a gantry angle of 60-degrees 

may be advantageous for larger objects, although these results should be verified 

experimentally with anthropomorphic phantoms. 

  Cross-scatter contamination did not significantly increase the tracking error in the 

4-in phantom. Cross-scatter significantly increased the tracking error by 15%, 25% and 

38% for the 6-in, 8-in, and 10 inch phantoms, respectively.  The static tracking error with 

cross-scatter ranged from 0.12 mm (SD ± 0.05) for the 4-in phantom to 0.47 mm (SD ± 

0.18) for the 10-in phantom. A previous study used XROMM software to track 12 

markers embedded into two cylindrical polycarbonate posts and found a static tracking 

error of 0.12 mm (SD ± 0.08), which is similar to the results in the current study (131). 

The dynamic tracking error with cross-scatter ranged from 0.15 mm (SD ± 0.11) for the 

4-in phantom to 0.57 mm (SD ± 0.49) for the 10-in phantom. In previous studies, 

XROMM software dynamically tracked two steel markers of known separation 

embedded in a wand through a biplane fluoroscopy system with a mean absolute error of 

0.037 mm (SD ± 0.046) (106). Tashman and Anderst measured the tracking error of two 

beads implanted in acrylic to be 0.02 mm (SD ± 0.10) using a different tracking 
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algorithm (1). In the current study, the highest tracking error of 0.57 mm (SD ± 0.49) for 

the 10-in phantom with cross scatter is smaller than the estimated 2.7 to 14.9 mm error 

due to skin movement artifacts of skin-mounted markers (40).  

  The results suggest that marker-based tracking is possible on the sub-millimeter 

level for a range of phantom sizes, even in the presence of cross-scatter contamination. 

The reduction in CNR due to cross-scatter may affect the accuracy of model-based 

tracking techniques. Model-based tracking methods optimize the bone positions and 

orientations by comparing projections of a 3D bone model, generated from CT or MR 

data, to the fluoroscopic images (2, 131). The reduced CNR due to cross-scatter may 

decrease the accuracy of this 2D-3D registration algorithm. An area of future work is to 

quantify the effects of cross-scatter contamination on the accuracy of model-based 

tracking in biplane systems.  

  This study did not consider the effects of varying the distance between the object 

and the detector. As in conventional x-ray imaging, a larger air-gap is expected to reduce 

scatter. In motion tracking biplane fluoroscopy systems, the object is generally placed as 

close to the detectors as possible, in order to maximize the field of view. Therefore, larger 

air gaps are unlikely to be utilized for scatter rejection. 

  The biplane fluoroscopy system used in this study was designed for tracking the 

foot/ankle.  Therefore, the walkway and force plate are in the beam path, as can be seen 

in Figure 7. These objects contribute to the cross-scatter, although the results from the 4-

inch phantom suggest that this contribution is small. The significant increase in tracking 

error due to cross-scatter suggests that biplane fluoroscopy systems may benefit from the 

development of scatter rejection techniques for high-speed motion tracking applications. 
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Synchronous acquisition is currently required for motion estimation algorithms. Anti-

scatter grids are expected to be effective at removing cross-scatter, due to the large 

scattering angles. Therefore, it may be beneficial to design grid mechanisms that enable 

accurate motion tracking at high frame rates.   

3.5 Conclusion 

  The results demonstrated negligible cross-scatter effects for biplane fluoroscopy 

imaging of the 4-in phantom, suggesting negligible motion-tracking error due to cross 

scatter for distal extremities. This may change when a shoe or orthosis is present at the 

foot. Based on the 6 inch phantom results, with a shoe or orthoses added to the foot, the 

scatter and the tracking error may both increase. In human testing, when going from 

barefoot to shod analysis, the voltage may need to be increased to better penetrate the 

added material to reduce the scatter and produce the best tracking results. The cross-

scatter fraction ranged from 0.4 to 0.9 for the 6 inch through 10 inch phantoms, with 

CNR decreasing by 15% to 36%. Cross scatter significantly increased the marker 

tracking error for the 6, 8, and 10-inch phantoms. These results suggest that the accuracy 

of motion analysis of larger anatomical regions, such as the shoulder or spine may be 

degraded due to cross scatter. Sub-millimeter tracking accuracy was attained in this study 

for all phantoms, despite increasing cross-scatter effects with phantom size. The results 

from this aim indicated which tube settings will produce images with the least amount of 

cross-scatter degradation and enable the best tracking results in future studies involving 

biplane fluoroscopic testing of the hindfoot.  
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4. MARKER AND MODEL-BASED VALIDATION OF A BIPLANE 

FLUOROSCOPIC SYSTEM FOR HINDFOOT ANALYSIS 

The purpose of this aim was to quantify the accuracy and precision of a biplane 

fluoroscopy system for model-based (markerless) tracking of in vivo hindfoot motion. 

Due to the absence of an appropriate location for skin markers on the talus, optical 

motion analysis assumes the calcaneus and talus to be one segment. This aim used a 

cadaver foot specimen to evaluate motion tracking performance with a realistic field of 

view that included multiple bones and soft tissue.    

4.2 Methods 

  The biplane system (Section 2.1), synchronization (Section 2.2), distortion 

correction algorithm (Section 2.4) and geometric calibration (Section 2.5) methods 

previously described were used in this study. 

4.2.1 Cadaver Specimen 

 To provide a realistic simulation of the in vivo condition, a fresh frozen trans-

tibial cadaver foot from a 34 year old male was obtained (Figure 15). Prior to bead 

implantation in the cadaver specimen, a skeletal model of the foot was used to determine 

the placement of the beads markers to avoid marker overlap and maximize spacing within 

the bones. Three 1.6-mm diameter steel beads were implanted into each of the three 

hindfoot bones (calcaneus, talus, and tibia) with minimal dissection of the surrounding 

soft tissues. A minimum of three beads per bone segment are required for 3D analysis 

(106), and all three beads must be simultaneously visible in both fluoroscopy images to 
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calculate the 3D positions. A 2-mm hole was drilled into the cortical bone so that the 

beads could be manually pressed into the hole until flush with the bone. The beads were 

then secured into place using cyanoacrylate adhesive. A 16-mm diameter steel rod was 

attached to the specimen using a bone plate attached to the proximal end of the tibia for 

manual manipulation through the capture volume.  

 

Figure 15: Cadaver specimen with steel rod attached to tibia via bone plate 

4.2.2 CT Scan 

 A CT scan of the cadaver foot was obtained consisting of 956, 0.625-mm thick 

transverse-plane slices (512 x 512 pixels) (LightSpeed VCT, GE Healthcare, Milwaukee, 

WI) to generate volumetric models of the calcaneus, talus, and tibia. An image processing 

algorithm was implemented in MATLAB (MathWorks, Natick, MA) to determine the 
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sub-pixel bead centroids, which represented the gold-standard bead locations. For model-

based tracking, 3D bone models were generated by manual segmentation of the CT scan 

performed using 32-bit OsiriX software, version 3.8.1 (Pixmeo, Geneva, Switzerland). 

The radiopaque bead signatures were identified manually in the segmented bone images 

and replaced with the mean values from surrounding voxels to eliminate influences of the 

beads on the model-based tracking. This process is similar to previous methods used by 

You et al. for bead removal (2).  

4.2.3 Static and Dynamic Trials  

 Static trials were obtained by both rotating and translating the foot through the 

capture volume. In the center of the volume, the foot was rotated through 11 foot 

progression angles (±25°, Figure 16A). It was then placed in 22 locations within the 

capture volume in a neutral position for translational measurements (Figure 16B). Ten 

dynamic trials were collected by manually simulating gait through the volume via the 

attached tibial rod. Accuracy of the dynamic trials was assessed by both marker-based 

and model-based tracking methods, therefore variation in motion between dynamic trials 

was acceptable. The force place was used for event detection of heel strike and toe off. 

Quantifying the effects of cross-scatter contamination in the system determined that a 

higher voltage and lower current setting had the least amount of degradation in the 

images. Based on those results, all trials were collected with the x-ray tubes set at 100 kV 

and 2.0 mA.  
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Figure 16: A) 11 static foot progression angles. B) Grid used for translational 
measurements. 

4.2.4 Marker-based Tracking 

 After image distortion correction and geometry calibration, marker-based tracking 

was performed using standard DLT techniques (135). In each image sequence, the beads 

were first manually selected to start the automated tracking algorithm. If the algorithm 

failed to locate a bead while tracking the sequence, the bead was relocated manually, and 

then the automated tracking was resumed. The Euclidean distance between two beads 

within the same bone was found in both the CT and fluoroscopic images. The CT inter-

bead distances were considered as the true distance. The marker-based tracking error was 

then calculated as the absolute value of the true distance minus the estimated distance. 

The error was calculated within each image, with the mean and standard deviation 

determined for the entire sequence, for all of the trials. It was assumed that the beads 

were rigidly fixed in the bone and that there was no motion of the beads relative to the 

Y 
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bone during the trial. The bead xyz coordinates were not filtered for tracking error 

calculations.  

4.2.5 Model-based Tracking 

 The acquired static and dynamic fluoroscopic imaging sequences were also used 

to quantify the accuracy and precision of model-based tracking. Prior to model-based 

tracking, an automated image processing algorithm located the beads in all fluoroscopy 

images and replaced the bead pixels by selecting intensity values from the distribution of 

pixel values in the region surrounding each bead. Model-based tracking was performed 

using the previously validated software, Autoscoper (Brown University, Providence, RI) 

(131). The Autoscoper algorithm follows the description of auto-registration algorithms 

previously developed by You et al. (2) and Bey et al. (107) that use digitally 

reconstructed radiographs (DRRs) generated by ray-traced projections through a 3D bone 

model. The software uses a downhill simplex optimization algorithm to find the bone 

positions for which the DRRs best match the acquired x-ray images. In the current study, 

the calcaneus, tibia, and talus were tracked separately using 3D bones models, generated 

from the CT data. A trained user first manually aligned the bone models with the biplane 

x-ray images to obtain the best visual fit every two to five frames throughout the image 

sequence. Sobel edge detection and contrast enhancement filters were applied to the bone 

models and biplane image sequences to improve alignment. These parameters were 

selected by the user to provide the best visual match. The Autoscoper optimization 

algorithm was then performed on the manually aligned frames, with the Autoscoper 

software interpolating between the frames. Once the tracking was complete, the 6 degrees 
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of freedom (DOF) were output (x, y, z position, yaw, pitch, roll orientation). The rotation 

matrices were defined using the traditional dynamics definitions, with the Euler sequence 

XYZ designation. The differences between the manual and the automated method of 

model-based tracking were compared. 

All bone DOF from Autoscoper were recorded in the lab coordinate system. To 

enable a direct comparison between the marker-based and model-based tracking results, a 

transformation matrix was used to determine the position of the beads in the bone models 

and expressing their 3D positions relative to the laboratory coordinate system. Agreement 

between the marker-based and model-based tracking results was quantified by bias in 

each xyz bead coordinate (the average difference in bead positions between the two 

methods, averaged across the three beads in each bone and across all trials) and precision 

(standard deviation of the difference in bead positions between the two methods, 

averaged across the three beads in each bone and across all trials). The root-mean-

squared (RMS) error of the bead xyz coordinates estimated through model-based tracking 

relative to the marker-based bead positions across all trials was also calculated to assess 

the overall accuracy of the model-based tracking method. To assess the intra-observer 

user error associated with model-based tracking, the tibia was tracked repeatedly ten 

times in one dynamic trial.  

4.3 Results 

The marker-based tracking method resulted in an average of 0.1% error across the 

three bones in both the static and dynamic trials, with the CT-derived bead positions 

serving as the gold standard. The absolute error was lower in the static trials than the 
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dynamic trials for all three bones (Table 3). Each bone had 3 bead pair distances 

calculated, averaged across 100 frames in the static trials and 150-200 frames in the 

dynamic trials. The bone averages were then calculated across all trials for the given 

motion (11 rotations, 22 translations, 10 dynamic). Marker-based static tracking error 

results for all trials are in Appendix C.  

Table 3: Marker-based absolute mean tracking error and standard deviation (SD) in mm.  

  Calcaneus   Talus   Tibia Overall 

  mm  (SD)   mm  (SD)   mm  (SD) mm  (SD) 

Static: Rotation 0.12 (0.06)   0.16 (0.09)   0.15 (0.06) 0.15 (0.07) 

Static: Translation 0.16 (0.04) 
 

0.14 (0.05) 
 

0.14 (0.04) 0.15 (0.04) 

Dynamic 0.22 (0.12)   0.19 (0.15)   0.23 (0.18)   0.21 (0.15) 

 

 The model-based tracking bias for static trials was less than 0.35 mm across all 

three bones in both rotation and translation trials (Tables 4A and 4B). The rotational bias 

ranged from -0.28 mm to 0.34 mm (Table 4A), and the translational bias ranged from -

0.25 mm to 0.25 mm (Table 4B). Rotational precision ranged from 0.04 mm to 0.15 mm 

(Table 4A), and the translation precision ranged from 0.04 mm to 0.13 mm (Table 4B). 

Across all static trials, the y-axis measurements were less precise than the x-axis and z-

axis measurements. The static tracking precision values were similar between all three 

bones, with the tibia demonstrating slightly higher precision than the calcaneus and talus. 

Complete bias, precision and RMS error results for static trials are in Appendix D. 

Model-based tracking bias for dynamic trials was less than 0.30 mm for all three 

bones, ranging from -0.30 mm to 0.05 mm (Table 4C). Model-based tracking precision 

for dynamic trials ranged from 0.37 mm to 1.19 mm, with the precision along the y-axis 
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lower than the x-axis and z-axis precision. Complete bias, precision and RMS error 

results for dynamic trials are in Appendix E. 

Table 4: Model-based tracking accuracy for individual bones (bias and precision reported 
in mm and SD). 

Table 4A. Static Rotation Trials 

  Bias     Precision   

Axis Calcaneus       Talus Tibia        Calcaneus      Talus Tibia 

X -0.20 (0.37) 0.19 (0.58) 0.04 (0.20) 
 

0.06 (0.03) 0.09 (0.03) 0.04 (0.02) 

Y -0.02 (0.29) -0.28 (0.71) 0.03 (0.25) 0.09 (0.04) 0.15 (0.07) 0.07 (0.03) 

Z -0.26 (0.29) 0.34 (0.77) -0.08 (0.32) 0.06 (0.03) 0.08 (0.03) 0.05 (0.04) 

                  
Table 4B. Static Translation Trials 

  Bias     Precision   

Axis Calcaneus       Talus Tibia        Calcaneus      Talus Tibia 

X -0.03 (0.18) -0.05 (0.38) 0.09 (0.11) 
 

0.07 (0.06) 0.05 (0.03) 0.04 (0.03) 

Y -0.03 (0.44) 0.25 (0.72) 0.01 (0.26) 0.13 (0.13) 0.09 (0.04) 0.06 (0.03) 

Z -0.25 (0.23) 0.07 (0.50) 0.04 (0.28) 0.07 (0.04) 0.05 (0.02) 0.04 (0.02) 

                  
Table 4C. Dynamic Trials 

  Bias     Precision   

Axis Calcaneus       Talus Tibia        Calcaneus      Talus Tibia 

X 0.05 (0.11) -0.06 (0.16) 0.03 (0.13) 
 

0.70 (0.22) 0.37 (0.06) 0.38 (0.08) 

Y -0.23 (0.21) -0.05 (0.21) -0.09 (0.23) 1.19 (0.33) 0.75 (0.13) 0.42 (0.07) 

Z -0.30 (0.18) 0.02 (0.29) -0.22 (0.09) 0.69 (0.17) 0.40 (0.06) 0.39 (0.07) 

 

The RMS error was lower in the static trials (Tables 5A and 5B) than the dynamic 

trials (Table 5C), with the smallest RMS error in the tibia across all trials. The overall 

RMS error between methods, calculated across all three bones and trials, was 0.56 mm in 

static rotation, 0.45 mm in static translation, and 0.59 mm in the dynamic trials. Similar 

to the precision measurements, the y-axis RMS error was higher than x-axis and z-axis 

error. Across all three bones and trials, the manual model-based tracking method had an 
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overall dynamic error of 0.64 mm, compared to the automated method of 0.59 mm 

(Figure 17).  

Table 5: Model-based tracking accuracy for individual bones (RMS error reported in mm 
and SD). 

Table 5A. Static Rotation Trials 

  RMS Error 

Axis Calcaneus 
 

Talus 
 

Tibia   Overall 

X 0.72 (0.44)   0.67 (0.32)   0.28 (0.17) 
 

0.56 (0.31) 
Y 0.87 (0.35) 

 
0.84 (0.15) 

 
0.27 (0.13) 

 
0.66 (0.21) 

Z 0.54 (0.19) 
 

0.57 (0.27) 
 

0.27 (0.21) 
 

0.46 (0.22) 

Overall 0.71 (0.33)   0.69 (0.25)   0.27 (0.17)   0.56 (0.25) 

            
Table 5B. Static Translation Trials 

  RMS Error 

Axis Calcaneus 
 

Talus 
 

Tibia   Overall 

X 0.39 (0.24)   0.40 (0.24)   0.25 (0.16) 
 

0.35 (0.21) 
Y 0.83 (0.38) 

 
0.79 (0.45) 

 
0.31 (0.18) 

 
0.64 (0.34) 

Z 0.48 (0.20) 
 

0.36 (0.25) 
 

0.24 (0.13) 
 

0.36 (0.19) 

Overall 0.57 (0.27)   0.52 (0.31)   0.26 (0.16)   0.45 (0.25) 

            
Table 5C. Dynamic Trials 

  RMS Error 

Axis Calcaneus   Talus   Tibia   Overall 

X 0.70 (0.13) 
 

0.37 (0.05) 
 

0.37 (0.06) 
 

0.48 (0.08) 
Y 1.11 (0.21) 

 
0.73 (0.14) 

 
0.47 (0.06) 

 
0.77 (0.13) 

Z 0.71 (0.14) 
 

0.46 (0.09) 
 

0.42 (0.05) 
 

0.53 (0.09) 

Overall 0.84 (0.16)   0.52 (0.09)   0.42 (0.06)   0.59 (0.10) 
* all values in mm 
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Figure 17: Manual verses automated model-based tracking across 10 dynamic trials. 

The intra-observer user error of the model-based tracking was extremely low 

across all three measures (Figure 18). The bias ranged from -0.02 to 0.09 mm, the 

precision ranged from 0.51 to 0.63 mm, and the RMS error ranged from 0.52 to 0.60 mm 

across all ten repeated trials of tracking the tibia. Complete bias, precision and RMS error 

results for the user error are in Appendix F. 
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Figure 18: Intra-observer user error of model-based tracking ten times for one dynamic 
trial. 

4.4 Discussion 

This study evaluated the static and dynamic error of the biplane system using both 

marker-based and model-based algorithms. The results indicated that the system is 

accurate to within approximately 0.2 mm for marker-based tracking. For marker-based 

trials, the current system’s average absolute error across all three bones was 0.15 mm (± 

0.070), 0.15 mm (± 0.04), and 0.21 mm (± 0.15) for rotation, translation and dynamic 

trials, respectively. These numbers compare well with marker-based validation in other 

systems. Miranda et al. tracked 12 markers embedded into two cylindrical polycarbonate 

posts and found a static tracking error of 0.09° (± 0.08) and 0.12 mm (± 0.08) for rotation 

and translation, respectively (131). Iaquinto et al. used a wand with beads implanted to 

determine their systems error of 0.094 mm (± 0.081), 0.083° (± 0.068), and 0.126 mm (± 

0.122) for translation, rotation and dynamic trails, respectively (132). Tashman and 
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Anderst found the dynamic bias (mean difference between measured and actual) of two 

beads implanted in acrylic to be -0.02 mm (1). Brainerd et al. dynamically tracked two 

steel markers embedded in a wand with a mean absolute error of 0.037 mm (± 0.046) 

(106). It is important to note that these previous marker-based studies validated their 

systems using phantom objects with implanted metal beads that do not duplicate complex 

bone geometries. The current aim used beads implanted in bones in a cadaver specimen 

with all the soft tissue intact. This allowed for a realistic validation of our system for the 

use of analyzing foot kinematics. 

 For model-based tracking, the results indicated that the system had a bias range of 

-0.30 mm to 0.34 mm, precision range of 0.04 mm to 1.19 mm, and an overall dynamic 

RMS average error of 0.59 mm. Across all three conditions (static rotation, static 

translation, and dynamic), the tibia had the lowest error, followed by the talus, then the 

calcaneus. Wang et al. had similar results across the bias and precision measures when 

tracking the same three bones (144). This is likely due to the long bone shape of the tibia 

is easier to track than the irregular shape of the talus and calcaneus. Model-based tracking 

has been previously validated for various anatomical regions. You et al. found the RMS 

error of canine knee kinematics averaged 0.5 mm in translation and 2.6° in rotation 

compared to the gold standard measurements performed with implanted bony markers 

(2). A cadaver study of the glenohumeral joint found a static bias ranged from -0.126 mm 

to 0.199 mm, static precision ranged from 0.06 mm to 0.13 mm, and had an overall 

dynamic RMS average error of 0.32 mm (107). Another cadaveric study of the 

patellofemoral joint had a bias range of -0.174 mm to 0.248 mm, precision range of 0.023 

mm to 0.062 mm, and overall dynamic RMS average error of 0.24 mm (113). Anderst et 
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al. implanted beads in human subjects during ACL reconstruction to validate tibio-

femoral tracking during running (112). They found the static bias ranged from -0.37 mm 

to 0.14 mm, static precision ranged from 0.03 mm to 0.08 mm, and had an overall 

dynamic RMS average error of 0.46 mm (112). In a different foot cadaver study, Wang et 

al. found a bias range of 0.31 mm to 0.50 mm and a precision range of 0.15 mm to 0.20 

mm in their system (144).  

 The automated tracking method reduced the overall RMS error from 0.64 mm 

using just manual alignment, to 0.59 mm. Using the optimization algorithm reduces the 

error and also helps eliminate user bias. The results showed that the model-based tracking 

method had low intra-observer user error across all three measures (bias, precision, RMS 

error). Figure 18 also shows how the overall all RMS error, a combination of the 

precision and bias, is dominated by the precision factor.   

It is important to validate each biplane fluoroscopy system for the anatomical 

joints to which they are intended investigate (130). This is due to the numerous factors 

that may influence the accuracy of the model-based method, including the shape of a 

particular bone, CT segmentation of the bone model, radiographic parameters (voltage 

and current), presence of surrounding soft tissues, overlap from surrounding bones, 

magnitude of joint motion, and the velocity of joint motion. In the current study, the 

overall dynamic RMS average error of 0.59 mm is smaller than the estimated 2.7 to 14.9 

mm error at the foot due to generated by skin movement artifacts of skin-mounted 

markers (40).  

In the model-based tracking, the precision values in the lab coordinate system y-

axis were approximately two times higher than those in the x- and z-axis directions, 
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indicating less precision in the y-axis across all trials. This was expected due to model-

based tracking methods being most imprecise when measuring movement perpendicular 

to the x-ray image plane, which is the y-axis direction in the current study (77, 89). Image 

intensifiers are 2D, and therefore lack depth perception and magnify objects farther away 

from the II. The lack of precision in the  y-axis can easily be attributed to the relationship 

between the imaging planes and the primary direction of movement. This will affect the 

analysis if a patient walks with a severely internally or externally rotated foot, thus lining 

up the foot perpendicularly with one of the II’s. While this error will impact the 

kinematic model along the mediolateral axis, it is still well below what is currently 

accepted for clinical gait assessment with SMA present.  

One limitation of fluoroscopy in general is the amount of x-ray exposure 

associated with the CT scan and the fluoroscopy trials, which can limit the number of 

motion trials. The exposure can be reduced by using MR to obtain the 3D bone model. 

Also, the field of view is limited to the biplane x-ray system’s 3D imaging volume. While 

this limitation prevents collection of biplane images during the entire gait cycle for some 

adult subjects, it does not restrict capture for pediatric participants.  

In summary, the results presented herein indicate that the biplanar fluoroscopic 

hardware and tracking methods presented can be used to effectively track in vivo hindfoot 

bone motion within 0.59 mm. Model-based tracking was validated under the conditions 

that match the planned in vivo tracking trials. Biplane fluoroscopy is advantageous over 

traditional motion analysis methods due to the elimination of SMA and rigid-body 

assumptions. The non-obstructed, walkway-based biplane fluoroscopic system 

constructed was structured for clinical applications. The next steps will be validating 
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model-based tracking using a MR scan to create the 3D bone models to reduce the 

radiation exposure to patients and incorporating kinetic modeling by utilizing the force 

plate already embedded in the system. Future work will also include developing a 

kinematic model of the talocrural and subtalar joints to assess hindfoot joint motion under 

a variety of testing conditions in normal subjects and subjects with orthopaedic 

impairments, such as cerebral palsy or spina bifida, or foot deformities, such as 

equinovarus, pes planovalgus or club foot.   
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5. KINEMATIC MODEL FOR ASSESSMENT OF IN VIVO HINDFOOT 

MOTION DURING GAIT 

To fully understand what is occurring during gait at the hindfoot, a kinematic 

analysis should be performed from heel strike to toe off. The purpose of this study was to 

develop the methodology to collect and analyze in vivo hindfoot kinematics using biplane 

fluoroscopy. The fluoroscopic images were corrected for image distortion before a 

model-based tracking method was used to determine bone position and orientation. 

Models were developed to determine talocrural and subtalar joint 3D kinematics. The 

method used avoided rigid-body assumptions and eliminated SMA by tracking the 

individual bones of the hindfoot using model-based tracking methods. The fluoroscopic 

method can also provide dynamic motion measurements within shoes that are otherwise 

difficult to achieve. 

5.2 Methods 

  The biplane system (Section 2.1), synchronization (Section 2.2), distortion 

correction algorithm (Section 2.4) and geometric calibration (Section 2.5) methods 

previously described were used in this study. 

5.2.1 ACS Definitions 

 After obtaining a CT scan, geometric bone models of the calcaneus, talus, and 

tibia were created from the images using OsiriX (Pixmeo, Geneva, Switzerland). 

Anatomical coordinate systems (ACSs) were defined for each bone (Figure 19) using 

Geomagic (Geomagic Wrap, Geomagic, Research Triangle Park, NC) according to the 
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International Society of Biomechanics (ISB) recommendations (147) and previously 

published methods (96, 99). The calcaneal origin was placed at the midpoint of the line 

that connected the most lateral point of the posterior facet and the most medial point of 

the middle facet. The superoinferior (SI) axis was defined as the line perpendicular to the 

facet line and the line tangent to the inferior surface of the calcaneus. The mediolateral 

(ML) axis was defined as the line perpendicular to the SI axis and the lateral wall of the 

calcaneus, passing through the origin. The anteroposterior (AP) axis was the cross 

product of the SI and ML axes. The talar origin was placed at the center of a sphere that 

encompassed the talus body. A line connecting the midpoint of the anteromedial and 

anterolateral edge and the midpoint of the posteromedial and posterolateral edge of the 

trochlea tali was defined. The ML axis was defined as the line perpendicular to this line, 

passing through the origin. The AP axis was defined as the line parallel to the midpoint 

line, passing through the origin. The SI was formed as a cross product of the AP and ML 

axes. The tibial origin was placed at the centroid of the tibial plafond. The SI axis was 

perpendicular to the tibial plafond, running parallel through the center of the shaft. The 

AP axis was perpendicular to the anterior edge of the tibia, passing through the origin. 

The ML axis was the cross product of the SI and AP axes. For each bone ACS, the SI 

axis was defined as the y-axis, the AP axis as the x-axis, and the ML axis as the z-axis. 

See Appendix B for detailed instructions on defining ACSs using Geomagic.  
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Figure 19: Anatomical coordinate system of the bones. Medial and superior views of the 
calcaneus (A), talus (B), and tibia (C). 

5.2.2 Model Simulation  

A fresh frozen trans-tibial cadaver foot from a 34 year old male was used for this 

study. A steel rod was attached to the specimen using a bone plate attached to the 

proximal end of the tibia for manual manipulation through the capture volume. A CT 

scan of the cadaver foot was obtained (LightSpeed VCT, GE Healthcare, Milwaukee, 

WI) to generate a volumetric model of the calcaneus, talus, and tibia. 3D bone models 

were generated by manual segmentation of the CT scan performed using OsiriX software. 

Static fluoroscopic images with the foot in a neutral position were used to quantify the 

angles of the joints at quiet standing and represent the neutral position of the kinematics. 

Ten dynamic trials were collected by manually simulating gait through the capture 

volume via the attached tibial rod. The force place was used for event detection of heel 

strike and toe off. 

A) B) C) 
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5.2.3 Model-based Tracking Method 

Model-based tracking was performed using the previously validated software, 

Autoscoper (Brown University, Providence, RI) (131). The Autoscoper algorithm follows 

the description of auto-registration algorithms previously developed by You et al. (2) and 

Bey et al. (107) that uses digitally reconstructed radiographs (DRRs) generated by ray-

traced projections through a 3D bone model. The algorithm uses an optimization 

algorithm to find the bone positions for which the DRRs best match the acquired 

fluoroscopic images. In the current study, the calcaneus, tibia, and talus were tracked 

separately using 3D models segmented from the CT data. A trained user manually 

aligned the bone models with the biplane x-ray images to obtain the best visual fit for 

every two to five frames (depending on the amount of movement frame to frame) 

throughout the image sequence. Sobel edge detection and contrast enhancement filters 

were applied to the bone models and biplane image sequences to improve tracking. These 

parameters were selected by the user to provide the best visual match. The Autoscoper 

auto-tracking algorithm was performed for all frames with the Autoscoper software 

interpolating between the user-selected frames. Once the tracking was complete, the 6 

degrees of freedom (DOF) were output (x, y, z position, yaw, pitch, roll orientation).   

5.2.4 Kinematic Models 

After obtaining the Autoscoper results and the ACSs, the data were analyzed 

using custom written programs (MATLAB, MathWorks, Natick, MA) using the joint 

coordinate system method described by Grood and Suntay (148). Talocrural joint motion 

was defined as the motion of the talus relative to the tibia. Subtalar joint motion was 
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defined as motion of the calcaneus relative to the talus. Using this convention, inversion 

(–, INV)/eversion (+, EV) occurred about the x-axis, abduction (–, ABD)/adduction (+, 

ADD) occurred about the y-axis, and dorsiflexion (–, DF)/plantarflexion (+, PF) occurred 

about the z-axis. All raw data were filtered at 20 Hz using a low-pass Butterworth filter. 

The kinematic results were reported relative to the neutral position and normalized to 

100% of the stance phase of the gait cycle. The intra-observer variation of the methods 

defining the coordinate systems was determined by one observer performing the 

procedure three times. The average intra-observer differences were 0.40 mm and 0.78 

degrees in translation and rotation, respectively.  

5.3 Results 

 Normal walking was simulated using a cadaver specimen manually manipulated 

through the capture volume. Figure 20 shows kinematics of both the talocrural and 

subtalar joints during the stance phase of simulated gait. 
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Figure 20: Talocrural and subtalar joint kinematics during stance phase. Solid lines 
represent mean of all 10 trials. Dashed lines represent mean ± 1 standard deviation. The 
morphology of the talocrural joint plantar/dorsiflexion curve was similar to results found 

in a 2D fluoroscopy study with human subjects (102). 
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 For the talocrural joint, the primary motion was in the sagittal plane, with the 

DF/PF angles ranging from -12.47° to 10.73°, respectively (Table 6). For the subtalar 

joint, the motion was tri-axial; with the range of motion (ROM) nearly the same across all 

three planes (Table 6).  

Table 6: Talocrural and subtalar joint maximum angles during stance phase (°). 

Joint PF DF EV INV ABD ADD 

Talocrural 10.73 -12.47 1.79 -2.74 2.00 -2.96 

Subtalar 5.35 -4.86 4.95 -3.99 2.32 -5.82 

 5.4 Discussion 

The foot has two major functions during the gait cycle for normal ambulation: 

support and propulsion. The subtalar joint helps the foot level out gait, interfaces with 

uneven walking surfaces, acts as a shock absorber at heel strike, extends the extremes of 

motion of the ankle, and converts the foot to a rigid structure at toe off (17, 21). While 

gait analysis is a valuable tool to determine lower extremity kinematics for both research 

and clinical purposes, it has limitations when assessing foot kinematics. The absence of 

external landmarks on the talus restricts the ability of skin-mounted markers to measure 

the subtalar joint motion accurately (72). A unique biplane fluoroscopy system was built 

and rigorously validated for dynamic in vivo hindfoot analysis. Our system uses a 

combination of open source software packages: image distortion correction using X-ray 

Reconstruction of Moving Morphology (XROMM) software (106), DLTdv5 marker-

based tracking software (135), and Autoscoper model-based tracking software (131) and 

was previously validated for hindfoot model-based tracking (Section 4.3).  
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The ROM at the talocrural joint showed the expected predominance of PF/DF 

motion (23.19°) compared to EV/INV (4.53°) and ABD/ADD (4.95°) (Figure 20, Table 

6).  The talocrural joint sagittal plane ROM is similar with previously presented studies, 

showing ROM values between 15.3 and 18.1 degrees (62, 64, 102). The subtalar joint is 

generally considered to demonstrate primarily EV/INV and ABD/ADD movements. 

Although this study did not confirm to this notion, the PF/DF ROM decreased 

dramatically (10.21°) and the EV/INV (8.94°) and ABD/ADD (8.14°) both increased, 

compared to the talocrural joint. This triaxial motion was also demonstrated in a bone pin 

study that found subtalar joint ROM to be 6.8 degrees, 9.8 degrees, and 7.5 degrees in the 

sagittal, frontal and transverse planes, respectively (64). The complex interlocking 

orientation of the three subtalar joint facets and the short sinus tarsi ligament provides a 

higher degree of constraint on its joint kinematics, compared to the talocrural joint and its 

inherent anatomy (64).  

 The current fluoroscopy talocrural and subtalar joint models are promising and 

offer a viable, noninvasive, method suitable for quantifying hindfoot kinematics in the 

bare and shod foot. The use of fluoroscopy overcomes the errors associated with optical 

motion analysis, such as SMA error and rigid-body assumptions. SMA produce the most 

significant source of error in gait (3, 11), with a study involving the foot and ankle 

showing the artifact between skin markers and bones varied from 2.7 to 14.9 mm (40). A 

single rigid segment is a gross assumption of the foot anatomy and function that may 

violate the rigid-body assumption in other foot models. Violation of the rigid-body 

assumption may lead to overestimated inter-segmental motion, unreported intra-

segmental motion, or attributing motion to one joint when in fact it occurs at another 
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(46). Although bone pin studies allow for more direct analyze of hindfoot kinematics 

during walking, they are limited due to their invasive nature, possible pain and 

discomfort for the subjects, influences on the natural gait pattern, and have a risk of 

infection at the insertion site (33, 62). 

This aim developed the methodology to collect and analyze in vivo hindfoot 

kinematics using biplane fluoroscopy. The next step will be applying the joint models to 

human testing and comparing the joint kinematics to previous bone pin and fluoroscopy 

studies. There are limitations of biplane fluoroscopy. Currently, it is limited to a small 

field of view, has extensive image data processing, and exposes the subjects to radiation. 

An average testing procedure of 20 seconds (10 trials, 2 seconds each) has a total 

radiation exposure of 100 µSv from the fluoroscopy units, plus 0.07 mSv of radiation 

from the CT scan, Future work should involve validating the use of a MR scan instead of 

relying on CT for creating the 3D models. This will greatly reduce the radiation exposure 

to patients and allow for pediatric testing. In addition to the kinematic model presented 

here, a kinetic model of the joints will be added in a future study, utilizing the force plate 

already embedded in the system. Future studies comparing barefoot verses shod or other 

braces/orthoses will be performed to describe foot movement within shoewear.  
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6. CONCLUSION 

Biplane fluoroscopy is used for dynamic, in vivo three-dimensional motion 

analysis of various joints of the body. The overall goal of this project was to develop and 

validate a biplane fluoroscopic system and integrated software to assess hindfoot 

kinematics. An aim quantified the cross-scatter contamination in a biplane fluoroscopic 

system and its effects on the accuracy of marker-based tracking. A cadaver foot specimen 

was used to determine the static and dynamic error of the biplane fluoroscopic system 

using both marker-based and model-based tracking algorithms. Lastly, in vivo 3D 

kinematic models of the talocrural and subtalar joints were developed during the stance 

phase of gait.  

6.1 Summary of Findings 

 Based on the results of this dissertation, all specific aims in Section 1.9 were 

completed. A hardware system was developed (Section 2.1) with two gantries connected 

to a walkway to allow for biplane fluoroscopic analysis. The system collected data 

synchronously via a trigger circuit (Section 2.2). A suite of software programs were 

integrated into the system to analyze motion. First, the distortion introduced from the 

image intensifiers was corrected in all the images (Section 2.4). Second, a calibration 

cube allowed for the direct linear transformation method to define the linear 

transformation between the 3D object space and the 2D image planes, thus calibrating the 

3D space of the capture volume (Section 2.5). Third, a model-based tracking algorithm 

was used to track the bones in the captured image sequences (Section 2.8).  
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 The effect of cross-scatter contamination in the biplane system was quantified 

using water phantoms of varying diameters (Section 3.3). The results showed an increase 

in the cross-scatter fraction and average change in CNR with increase in phantom size. 

The cross-scatter also significantly increased the static tracking error in the three larger 

phantoms. Despite the cross-scatter degradation, the system still demonstrated that sub-

millimeter marker-based tracking was possible for a range of phantom sizes. This aim 

demonstrated that a higher voltage and a lower current tube setting results in less cross-

scatter degradation of the images and produce better tracking results, which will be 

important when selecting tube settings during human trials. It also indicated that the 

presence of a shoe or orthosis may increase the scatter and tracking error at the foot, thus 

needing the voltage to be increased.  

 The static and dynamic error of the biplane system was determined by performing 

a cadaver study (Section 4.3). Both marker-based and model-based tracking algorithms 

were validated for our system. The marker-based tracking method was precise for the 

three bones in both static and dynamic trials, with an average of 0.1% error across all 

trials. The overall dynamic absolute mean tracking error of the system was 0.21 mm. 

There was good agreement between the results from model-based tracking method with 

the marker-based tracking method, with the largest error being 0.59 mm. The model-

based tracking bias for static trials was less than 0.35 mm, while dynamic trials were less 

than 0.30 mm for all three bones. Static precision ranged from 0.04 mm to 0.15 mm and 

dynamic ranged from 0.37 mm to 1.19 mm. The overall RMS error between methods 

averaged 0.56 mm in static rotation, 0.45 mm in static translation, and 0.59 mm in the 

dynamic trials. 
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Using the biplane system and anatomical coordinate systems for each bone, 

kinematic models of the talocrural and subtalar joints were developed following the joint 

coordinate system method (Section 5) (148). The models were simulated using the 

cadaver study. The ROM at the talocrural joint showed the expected predominance of 

PF/DF motion (23.19°) compared to EV/INV (4.53°) and ABD/ADD (4.95°). The results 

showed correlations of the gait patterns with previously published studies (62, 64, 102). 

The subtalar joint is generally considered to demonstrate primarily EV/INV and 

ABD/ADD movements. Although the results did not conform to this notion, the PF/DF 

ROM decreased (10.21°) and the EV/INV (8.94°) and ABD/ADD (8.14°) both increased, 

compared to the talocrural joint.  

6.2 Limitations and Future Work 

This study validates a biplane fluoroscopic system for analyzing 3D hindfoot 

kinematics in vivo during the stance phase of gait. This noninvasive process allows for 

evaluation of the subtalar joint that was previously unattainable with conventional motion 

analysis systems. Understanding the biomechanics of the foot during gait is critical to the 

proper care of patients with a variety of orthopaedic impairments or foot deformities, 

such as cerebral palsy, spina bifida, club foot, or pes planovalgus. Future work will use 

kinematic models of the talocrural and subtalar joints to assess hindfoot joint motion 

under a variety of testing conditions in normal subjects and subjects with pathological 

gait and foot deformities. Biplane fluoroscopy enables motion analysis of the shod foot, 

for which optical tracking methods are limited. Future studies will be performed using the 

system to analyze kinematics while wearing shoes, orthoses and various braces.  
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A current limiting factor of the system is the need for a CT scan to make the 3D 

models. To enable use of the system for pediatric clinical applications, the use of a MRI 

scan to generate the bone models needs to be validated to lower the radiation exposure. 

The issue with using a MRI scan is that the images produced have different intensity 

levels and lower spatial resolution. The effects of this on model-based tracking are 

unknown and need to be understood. The use of a MRI scan may require a transformation 

and additional image processing for the 3D models to be compatible with the model-

based tracking technique. Once the use of MRI is validated, the system will be ready for 

clinical testing. Knowing how the kinematics of the hindfoot are altered by orthoses, shoe 

modifications or post-operatively may lead to better non-operative interventions and 

improved surgical techniques for patients with pathological gait. The system is already 

equipped with an embedded force plate, thus incorporating a kinetic model may advance 

the current analysis. The kinetic model would require defining the joint location, ground 

reaction force magnitude and location, segment masses, mass moments of inertia, and 

mass location. Previous work has found that that the body segment parameters of the 

talus and calcaneus play an incidental role in the talocrural and subtalar kinetics (149). 

Due to these findings, a quasi-static kinetic model at selected points throughout stance 

phase may be more beneficial than performing a full kinetic analysis. The current force 

plate also limits the accuracy of a hindfoot kinetic model past foot flat during stance 

phase, with forces then traveling through more joints than just the subtalar and talocrural 

joints. Future work using F-Scan plantar pressure inserts (Tekscan, Inc, South Boston, 

MA) during fluoroscopic analysis would enable dynamic pressure, force and timing 

information of the foot during gait. A pilot fluoroscopic image of the sensor within a shoe 
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(Figure 21) demonstrates how radiolucent the sensor is due to its extremely thin design. 

The effects on the accuracy of tracking the bones with the sensor present should be 

verified in future work.  

 

Figure 21: Pilot fluoroscopic image of foot with F-Scan plantar pressure. Markers present 
in image would not be used in a biplane fluoroscopic study. 

 To improve the current system, larger image intensifiers would increase the field 

of view and allow for full stance phase evaluation, with less trial loss due to missing the 

radiation area. Another way to reduce trial loss and radiation exposure is to implement a 

prediction algorithm using the Vicon system to determine whether a subject will step into 

the capture volume, thus turning on the fluoroscopy units. The scatter study found a 
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significant increase in tracking error due to cross-scatter, suggesting that biplane 

fluoroscopy systems may benefit from the development of scatter rejection techniques for 

high-speed motion tracking applications. Anti-scatter grids are expected to be effective at 

removing cross-scatter, due to the large scattering angles. It may be beneficial to design 

grid mechanisms that enable accurate motion tracking at high frame rates. Another area 

of future work is to quantify the effects of cross-scatter contamination on the accuracy of 

model-based tracking and the effects of shod and orthoses present at the foot. Lastly, a 

drawback of the current system is the time consuming process of manually tracking each 

bone individually in Autoscoper. A fully automated, multi-bone tracking algorithm would 

greatly reduce the processing time, allowing for faster analyses and quicker turnaround 

time in getting patients results. 
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Appendix A. Steps for Model-Based Biplane Fluoroscopy 

Collect image sequences at 200 fsp synchronously with Master and Slave cameras 

1. Set up system: walkway, sources, II’s, cameras, trigger, pulse 
2. Attach white plastic sheets to II’s to align x-ray sources 
3. Open Motion Studio software and connect cameras 
4. Mark the Master camera as the master camera in software 
5. Attach metal sheets to collect grid images with system at level 1, save images 
6. Lower system and check alignment  
7. Place calibration cube in center of radiation area, record cube images and save 
8. Instruct subject to stand in center of radiation area, lift opposite foot, and stand 

quietly. Record static images and save 
9. Proceed with walking trials, saving sequences after each one 

 
Use XROMM Undistortion for undistorting video sequences 

10. Run XROMM Undistortion program 
a. Open undistortion tool 
b. Load a grid image (Master), grid points will automatically be selected 
c. Compute the undistortion (Edit menu > Computer undistortion) 
d. Save the parameters (File menu > Save LookUpTable and Points 

i. Creates MasterGrid Look Up Table (Master001_UNDSTFORM 
file) 

e. Repeat process for Slave camera 
i. Creates SlaveGrid Look Up Table (Slave001_UNDSTFORM file) 

11. Undistort images for Master camera (grid, cube, image sequences) 
a. Load MasterGrid look up table 
b. Undistort Master Cube image (File menu > Undistort single image) 
c. Undistort master image sequences (File menu > Undistort image 

sequence) 
i. Select input folder (distorted images) and output folder 

(undistorted) 
12. Undistort images for Slave camera (grid, cube, image sequences) 

a. Load SlaveGrid look up table 
b. Undistort Slave Cube image (File menu > Undistort single image) 
c. Undistort slave image sequences (File menu > Undistort image sequence) 

i. Select input folder (distorted images) and output folder 
(undistorted) 

 

Image Preprocessing in MATLAB 

13. Event Detection 

a. Get c3d pulse data from Vicon  
b. Use m-file EventDetection to determine heel strike and toe off in dynamic 

trials 

c. Crop the image sequences to stance phase 

14. Flip images for Autoscoper  
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a. For single image: 
i. Cube=imread(‘Cube_MasterUND.tif’); 

ii. Temp=fliplr(Cube); 
iii. imwrite(temp,‘Cube_Flip_MasterUND.tif’) 

b. For image sequences of Mater images, use m-file MasterFlip 

c. For image sequences of Slave images, use m-file SlaveFlip  
 

Use Hedrick Software for Generating DLT Coefficients 

15. Run DLTcal5.m 
a. Use modified 11 parameter DLT (select in drop down) 
b. Load framespec_mm_EDIT file for calibration points (xyz locations of 

beads in cube) 
c. Digitize points in image in same order as the locations defined in 

framespec file 
i. Use Calibration_Cube_sheet for identifying correct bead numbers 

d. Make sure calibration residual is less than 1 (smaller the better ~< .3) 
e. Calculate DLT coefficients from calibration cube for Master camera 

i. Saves Master_DLTcoefs.csv file and xypts.csv file 
f. Calculate DLT coefficients from calibration cube for Slave camera 

i. Saves Slave_DLTcoefs.csv file and xypts.csv file 
16. Merge DLT coefficients file from Calibration Cube 

a. Save Master and Slave DLT files into 1 file: Master DLTs in 1st column, 
Slave DLTs in 2nd column – Merged_DLTcoefs.csv file 

 

Use OsiriX to Segment Bones of Interest (protocol for CT scan) 
17. Open OxiriX, Import CT image files: File > Import files..  
18. Select study of interest in Database window 
19. Open 2D view window by clicking its icon on top toolbar 
20. Create a Region of Interest for a single bone 

a. Set default ROI name: ROI > Set Default ROI Name > (One for each 
bone) 

b. Select Closed Polygon Tool: Under tool bar, in row of buttons, Text drop 
down menu 

c. Create ROI on each slice that contains the bone of interest, skip a few 
slices between ROI’s and interpolate ROIs at end: ROI > ROI Volume > 
Generate missing ROIs 

d. Go through and make sure each slice the ROIs are correctly sized 
e. Save ROI to file: ROI > Save All ROIs of this Series 
f. Repeat for each bone 

21. Isolate Bones within Each ROI 
a. Select ROI to isolate 
b. Set all pixel values outside of ROI to black: ROI > Set Pixel Values to.. 

i. Make sure ROIs with same name as selected ROI is selected 
ii. Make sure Outside ROIs button is selected 

iii. Make sure To this new value button is selected (should be -3024) 
c. Export new images containing only bone of interest as DICOM 
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d. Repeat for each bone 
22. Export .tif image stacks for each isolated bone 

a. Select all of the series’ to export to .tif image stacks 
b. Export: File > Export > Export to TIFF 

23. Create surface model of bone (needed for Geomagic) 
a. In DICOM series of a bone, select 2D/3D button > 3D Surface Rendering 
b. Select amount of decimation you want, try different amounts of smoothing 
c. Select CT-Bone from predefined values drop down, or try other pixel 

values until model looks like you want 
d. Save the model: Select 3D-SR button > Save as object file (.obj) 

24. After segmentation, use ImageJ to create a stack of tif for each bone (save as 16-
bit image) 

 

Use Autoscoper for Model-based Tracking 

25. Create MayaCam Files in MATLAB (specifies camera position and orientation; 
and dimension and location of image plane in lab space from DLT’s) 

a. Define variable coefs 
i. coefs= xlsread(‘Merged_DLTcoefs.csv’); 

b. Run DLT2Maya function 
i. DLT2Maya(coefs, [1024,1024], ‘StudyName_’) 

ii. Saves MayaCamMaster.csv and MayaCamSlave.csv files 
26. Create text files for trials using Notepad 

a. Create text file for each trial with mayacam files, image sequences, bone 
model, and voxel size of model 

i. Voxel Dimensions: depend on CT/MRI scan, check pixel 
spacing/slice thickness 

Text File: 
mayaCam_csv     complete path including file name to mayacam file for camera 1 
CameraRootDir    complete path to undistorted video frames for camera 1 

mayaCam_csv     complete path including file name to mayacam file for camera 2 
CameraRootDir    complete path to undistorted video frames for camera 2 

VolumeFile   complete path including file name to tif file containing bone volume 

VoxelSize    in plane x in mm    in plane y in mm    slice thickness in mm 

VolumeFlip x y z 
27. Run Autoscoper 

a. Open trial in Autoscoper (Open Trial button) 
i. Add directory of where files are located by clicking on Add button 

once in the directory to locate files quicker 
b. Add contrast and edge detection to both DRR and image sequence 

i. Right click on DrrRender or RadRender under a View1 or View2, 
select New Filer, select Sobel or Contrast 

ii. Sobel filter allows for control of edge detection, Contrast filter 
controls for object/image contrast 

iii. Filter properties can be adjusted by right clicking on created filter 
and selecting Properties 
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iv. To save filter, right click on View and select Export (saves filter 
for both Drr and Rad for the view) 

v. To import filters previously saved, right click on View and select 
Import 

c. Move the pivot point to the middle of the bone  
i. Click the Move Pivot button or hold the D key (solid lines turn to 

dotted lines) 
ii. Rotate the volume so that you are looking down one axis, move 

coordinate system to middle of bone 
iii. Rotate the volume to another axis and repeat 

d. Switch to camera views (Camera 1 and Camera 2) 
e. Manually manipulate DRR to best match 2 image sequences 

i. Use bony landmarks to align bone in both camera views 
ii. Use Translate (W key) and Rotate (E key) to move DRR 

iii. Once aligned, lock the bone in position by pressing the S key (save 
point) 

f. Click on Save Tracking button to save initial pose. Include the study 
name, trial number, bone, tracking and initials in the file name 

i. File name: cad_dyn_trial_1_calc_tracking_JC_initialpose 
ii. Save type: xyzypr, column, comma, none, mm, degrees; don’t 

interpolate until finished 
g. Move ahead 5 to 10 frames using the slider on bottom panel, align bones 

again (depending on movement of bone) 
h. Click on Save Tracking button to save tracking after every few points 

(remove _initialpose from file name) (save type: xyzypr, column, 
comma, none, mm, degrees; don’t interpolate until finished) 

i. Once finished tracking 
i. Save trial once (Save Tracking button, save over previous 

tracking) 
ii. Save trial again as interpolated (Save Tracking button, add _int in 

file name), select Spline 
iii. Load the interpolated tracking file by clicking the Load Tracking 

button and selecting the interpolated file 
iv. Scroll through the image sequences to check if DRR follows the 

images. Write down frames where they are not aligned 
v. Reload the original tracking file (Load Tracking button, select 

original non-interpolated file) and adjust DRR as necessary at 
frames 

1. To move a saved point, create a new one over the old one 
vi. Save original tracking again (over previous tracking file, don’t 

interpolate) 
vii. Save new interpolation tracking (over previous interpolation file) 

viii. Check interpolation again 
j. Once manual tracking is completed to the best visual match, load the final 

original tracking file (not interpolated) 
i. Go to the first save point and click the Track button 
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ii. Input in the Range: From Frame:  current frame number; To 

Frame: current frame number (i.e. 70 to 70). Initial Guess: Current 

Frame. Then press ok 

iii. The bone model should move slightly to the optimal match 

1. If model moves out of alignment and looks worse than manual 

match, press Ctrl+Z to undo, and move on to next save point 

iv. Perform automated tracking on each save point in the sequence 

v. When finished save tracking with _AUTO in file name (don’t 

interpolate) 

vi. Save again with interpolation 

Autoscoper Shortcuts and keys: 
Ctrl + scroll – Zoom in/out of camera view 
Ctrl + LMB – Pan camera view 
D (press and hold) – Move pivot point 
W – Translation 
E – Rotation  
S – Create keyframe (save point) 
T – Track 
R – Retrack (don’t use) 
H – Hide DRR 
=/- – increase/decrease size of axes 
+/- – advance/go back one frame (keypad) 

 

Use Geomagic to Define ACS (Geomagic Wrap Version 2014.4.0) 
28. Open and Clean up Model: 

a. Import/Open: bone_model.obj file; Select units in millimeters; Select no 
for Mesh Doctor 

b. Clean up model in Polygons Tab: fill holes, remove spikes 
c. Save as: bone_model_cleaned.obj 

29. Calcaneus: Need Origin, SI Point, ML Point 
a. Origin: At midpoint of facet line 
b. SI axis: line perpendicular to facet line and tangent to inferior surface, 

passing through origin 
c. ML axis: line perpendicular to SI axis and lateral wall, passing through 

origin 
d. AP axis: cross product of SI and ML axes 

- Create LINE connecting most lateral point of posterior facet and most 
medial point of middle facet (Facet Line) 

- Create POINT at midpoint of Facet Line (Origin) 
- Create PLANE on inferior surface of calcaneus (Inferior Plane) 
- Create LINE perpendicular to Inferior Plane through the Origin (SI 

Line) 
- Create POINT at end of SI Line (SI Point) 
- Create PLANE on lateral wall of calcaneus (Lateral Plane) 
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- Create PLANE parallel to Inferior Plane through the Origin 
(Horizontal Plane) 

- Create PLANE perpendicular to Horizontal and Lateral Planes through 
the Origin (ML Plane) 

- Create POINT at intersection of 3 planes (ML Point) 
- Extract Points: Origin, SI Point, ML Point 

30. Talus: Need Origin, AP Point, ML Point 
a. Origin: At center of sphere encompassing body of talus 
b. ML axis: line perpendicular to sphere, passing through origin 
c. AP axis: line parallel to line connecting anterior/posterior edge of trochlea, 

passing through origin 
d. SI axis: cross product of ML and AP axes 

- Create POINT at center of sphere encompassing body of talus (Origin) 
- Create PLANE on superior surface of talus (Superior Plane) 
- Create PLANE parallel to Superior Plane through the Origin 

(Horizontal Plane) 
- Create LINE defining anterior edge of trochlea tali (AntML Line) 
- Create LINE defining posterior edge of trochlea tali (PostML Line) 
- Create LINE connecting midpoints of AntML and PostML Lines 

(Midpt Line) 
- Create PLANE perpendicular to Midpt Line (ML Plane) 
- Create LINE at intersection of Horizontal Plane and ML Plane (ML 

Line) 
- Create POINT at end of ML Line (ML Point) 
- Create PLANE perpendicular to ML Line (AP Plane) 
- Create LINE at intersection of Horizontal Plane and AP Plane (AP 

Line) 
- Create POINT at end of AP Line (AP Point) 
- Extract Points: Origin, AP Point, ML Point 

31. Tibia: Need Origin, SI Point, AP Point 
a. Origin: At center of tibial plafond 
b. SI axis: line perpendicular to tibial plafond going superiorly through 

midpoint of tibial shaft, passing through origin 
c. AP axis: line perpendicular to anterior surface of tibia and SI axis, passing 

through origin 
d. ML axis: cross product of AP and SI axes 

- Create LINE at proximal end of tibial shaft in the anterior/posterior 
direction (APprox Line) 

- Create LINE at proximal end of tibial shaft in the medial/lateral 
direction (MLprox Line) 

- Create POINT at intersection of 2 lines (SI Point) 
- Create PLANE at tibial plafond (Tibial Plafond) 
- Create LINE between Tibial Plafond plane and SI Point (SI Line) 
- Create POINT at intersection of Tibial Plafond and SI Line (Origin) 
- Create PLANE on anterior surface of tibia (Anterior Plane) 
- Create PLANE perpendicular to MLprox Line (AP Plane) 
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- Create POINT at intersection of 3 planes (AP Point) 
- Extract Points: Origin, SI Point, AP Point 

Geomagic Features: 

Zoom: roll middle mouse button 
Pan: Alt + middle mouse button 
Rotation: click and hold middle mouse button 
Use Axes Indicator in bottom right of screen for quick rotations about 
axes 
In Features tab, use Feature Visibility to toggle features on/off 

 
Run Kinematic Model to determine Joint Motion 

32. Create folder of Autoscoper output files in Kinematic Model directory 
a. In directory, have Autoscoper file folder and Geomagic points file 
b. Run m-file MODEL to calculate Talocrural and Subtalar kinematics 

i. Use static pose to determine neutral position 
 
Filter Kinematic Output 

33. Open kinematic output files 
a. Delete extra sheets and crop to stance phase if not already 
b. Save as CSV file: Trial#_Kinematics.csv 

34. Put all cropped kinematics .csv files in Filter director, within Kinematic Model 
35. Type butterBatch into the MATLAB command line 
36. Select a csv data file 

a. Enter the cutoff frequency: 20 Hz 
b. Recording frequency (i.e. frame rate): 200 Hz 
c. Filter type: low 

i. Files are saved in the original directory with BUTTER## appended 
to the 
end of the original file name (## specifies the cutoff frequency) 

 
Analyze Results 

37. Create folder of filtered results in Kinematic Model Directory 
a. Run m-file FINAL_RESULTS to normalize to the static pose and plot 

talocrural and subtalar kinematics to 100% stance phase 
b. Variables AVG_TALOCRURAL_JT and AVG_SUBTALAR_JT have 

max ROM values of each joint 
i. Plantarflexion, Dorsiflexion, Eversion, Inversion, Abduction, 

Adduction 
 

 
Software Needed: 

- MATLAB for image processing, DLT, Filtering and Kinematic Model 

- Motion Studio 64 for high speed camera data collection (Motion Studio 64 
Version 2.10.05) 

- XROMM Undistorter for image distortion correction (XROMM Undistorter 
v1.0.0 for Windows) 
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https://wiki.brown.edu/confluence/display/ctx/Recent+Changes+and+DOWNLO
ADS 

- Hedrick Digitizing Software for DLT coefficients (DigitizingTools_20141017.zip) 
http://www.unc.edu/~thedrick/software1.html 

- XROMM Autoscoper for Model-based Tracking (AutoScoper 1.13 install 
package ) 
https://wiki.brown.edu/confluence/display/ctx/XROMM+AutoScoper 

- OxiriX for Bone Segmentation (OsiriX software Version 3.8.1, 32-bit) 
- ImageJ for making stack of .tifs (ImageJ version 1.42q) 
- Geomagic for Defining ACS (Geomagic Wrap Version 2014.4.0) 
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Appendix B. Using Geomagic to Define Anatomical Coordinate Systems 

Open and Clean up Model: 

1. Import/Open: bone_model.obj file; Select units in millimeters; Select no Mesh 

Doctor 

 
2. Clean up model in Polygons Tab: fill holes, remove spikes 

 
3. Save as: bone_model_cleaned.obj 
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Calcaneus: Need Origin, SI Point, ML Point 

 Origin: At midpoint of facet line 

 SI axis: line perpendicular to facet line and tangent to inferior surface, passing 

through origin 

 ML axis: line perpendicular to SI axis and lateral wall, passing through origin 

 AP axis: cross product of SI and ML axes 

In Features Tab: 

1. Create LINE connecting most lateral point of posterior facet and most medial 

point of middle facet (Facet Line) 

• Line > 2 points > Select points on facets > Apply > Ok 

 
2. Create POINT at midpoint of Facet Line (Origin) 

• Point > Parameters > Move cursor along middle of line until green, select 

point > Apply > Ok 
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3. Create PLANE on inferior surface of calcaneus (Inferior Plane) 

• Plane > Best Fit > Select inferior surface of bone > Apply (check plane 
position) > Ok 

 
• Make sure plane normal is pointed superiorly: Edit Features > Select plane 

> reverse direction > Ok  
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4. Create LINE perpendicular to Inferior Plane through the Origin (SI Line) 

• Line > Plane and Point > Select Inferior Plane and Origin > Apply > Ok 

 
• Line should be pointing superiorly 

5. Create POINT at end of SI Line (SI Point) 

• Point > Parameters > Move cursor to end of line until green, select point > 

Apply > Ok 
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6. Create PLANE on lateral wall of calcaneus (Lateral Plane) 

• Plane > Best Fit > Select lateral side of bone > Apply (check position) > 

Ok 

 
7. Create PLANE parallel to Inferior Plane through the Origin (Horizontal Plane) 

• Plane > Parallel through point > Select Inferior Plane and Origin > Apply 
> Ok 
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8. Create PLANE perpendicular to Horizontal and Lateral Planes through the Origin 

(ML Plane) 

• Plane > Perpendicular through point > Select Horizontal, Lateral, Origin > 

Apply > OK 
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9. Create POINT at intersection of 3 planes (ML Point) 

• Point > 3 Planes > Select Horizontal, Lateral and ML planes > Apply > Ok 

 
10. Extract Points: Origin, SI Point, ML Point 

• Edit Features > Select Point > Copy XYZ positions to excel file 
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Talus: Need Origin, AP Point, ML Point 

 Origin: At center of sphere encompassing body of talus 

 ML axis: line perpendicular to sphere, passing through origin 
 AP axis: line parallel to line connecting anterior/posterior edge of trochlea, passing 

through origin 

 SI axis: cross product of ML and AP axes 
In Features Tab: 

1. Create POINT at center of sphere encompassing body of talus (Origin) 

• Point > Sphere > Select body of talus > Apply > Ok 
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• Go to Edit Features > Select Origin > Copy points to use in following 

steps 

 
2. Create PLANE on superior surface of talus (Superior Plane) 

• Plane > Best Fit > Select superior surface of talus > Apply (check 

position) > Ok 

 
3. Create PLANE parallel to Superior Plane through the Origin (Horizontal Plane) 

• Plane > Parallel through point > Select Superior Plane and Origin > Apply 

> Ok 
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4. Create LINE defining anterior edge of trochlea tali (AntML Line) 

• Line > 2 points > Select anteriomedial and anteriolateral points of trochlea 

tali > Apply > Ok 

 
5. Create LINE defining posterior edge of trochlea tali (PostML Line) 

• Line > 2 points > Select posteriomedial and posteriolateral points of 

trochlea tali > Apply > Ok 
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6. Create LINE connecting midpoints of AntML and PostML Lines (Midpt Line) 

• Line > 2 Points > Move cursor to middle of Ant/Post ML line until green, 
select points > Apply > Ok 

 
7. Create PLANE perpendicular to Midpt Line (ML Plane) 

• Plane > Perpendicular to Axis > Select Midpt Line and Origin > Apply > 
Ok 
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8. Create LINE at intersection of Horizontal Plane and ML Plane (ML Line) 

• Line > 2 Planes > Select Horizontal and ML planes > Apply > Ok 

 
• Make sure line points laterally: Edit Features > Select line > reverse 

direction > Ok 
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9. Create POINT at end of ML Line (ML Point) 

• Point > Parameters > Move cursor to end of line until green, select point > 

Apply > Ok 

 
10. Create PLANE perpendicular to ML Line (AP Plane) 

• Plane > Perpendicular to Axis > Select ML Line and Origin > Apply > Ok 
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11. Create LINE at intersection of Horizontal Plane and AP Plane (AP Line) 

• Line > 2 Planes > Select Horizontal and AP planes > Apply > Ok 

 
• Make sure line points anteriorly: Edit Features > Select line > reverse 

direction > Ok 

12. Create POINT at end of AP Line (AP Point) 

• Point > Parameters > Move cursor to end of line until green, select point > 

Apply > Ok 
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13. Extract Points: Origin, AP Point, ML Point 

• Edit Features > Select Point > Copy XYZ positions to excel file 

 
 

 

Tibia: Need Origin, SI Point, AP Point 
 Origin: At center of tibial plafond 

 SI axis: line perpendicular to tibial plafond going superiorly through midpoint of 

tibial shaft, passing through origin 
 AP axis: line perpendicular to anterior surface of tibia and SI axis, passing through 

origin 

 ML axis: cross product of AP and SI axes 

In Features Tab: 
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1. Create LINE at proximal end of tibial shaft in the anterior/posterior direction 

(APprox Line) 

• Line > 2 Points > Select anterior and posterior points > Apply > Ok 

2. Create LINE at proximal end of tibial shaft in the medial/lateral direction 

(MLprox Line) 

• Line > 2 Points > Select medial and lateral points > Apply > Ok 

 
3. Create POINT at intersection of 2 lines (SI Point) 

• Point > 2 Lines > Select APprox and MLprox lines > Apply > Ok 

 
4. Create PLANE at tibial plafond (Tibial Plafond) 

• Plane > Best Fit > Select area of tibial plafond > Apply > Ok 
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5. Create LINE between Tibial Plafond plane and SI Point (SI Line) 

• Line > Plane and Point > Select Tibial Plafond and SI point > Apply > Ok 

 
6. Create POINT at intersection of Tibial Plafond and SI Line (Origin) 

• Point > Plane and Line > Select Tibial Plafond and SI Line > Apply > Ok 
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7. Create PLANE on anterior surface of tibia (Anterior Plane) 

• Plane > Best Fit > Select anterior surface of bone > Apply (check position) 

> Ok 

 
8. Create PLANE perpendicular to MLprox Line (AP Plane) 

• Plane > Perpendicular to Axis > Select MLprox Line and SI Point > Apply 

> Ok 
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9. Create POINT at intersection of 3 planes (AP Point) 

• Point > 3 Planes > Select Tibial Plafond, Anterior and AP planes > Apply 
> Ok 

 
10. Extract Points: Origin, SI Point, AP Point 

• Edit Features > Select Point > Copy XYZ positions to excel file 
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Geomagic Features: 

- Zoom: roll middle mouse button 
- Pan: Alt + middle mouse button 

- Rotation: click and hold middle mouse button 
- Use Axes Indicator in bottom right of screen for quick rotations about axes 

- In Features tab, use Feature Visibility to toggle features on/off 
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Appendix C. Marker-based Static Tracking Error Results 

Marker-based Static Rotational Tracking Error 

 
Calcaneus 

 
Beads 1-2 Beads 2-3 Beads 1-3 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

25° Rotation 0.158 ± 0.141 0.154 ± 0.094 0.215 ± 0.055 0.176 ± 0.097 

20° Rotation 0.062 ± 0.039 0.295 ± 0.043 0.054 ± 0.037 0.137 ± 0.040 

15° Rotation 0.097 ± 0.075 0.068 ± 0.063 0.178 ± 0.072 0.114 ± 0.070 

10° Rotation 0.268 ± 0.050 0.075 ± 0.042 0.049 ± 0.035 0.131 ± 0.042 

5° Rotation 0.309 ± 0.220 0.306 ± 0.165 0.070 ± 0.054 0.228 ± 0.146 

0° Rotation 0.217 ± 0.113 0.182 ± 0.098 0.055 ± 0.040 0.151 ± 0.083 

-5° Rotation 0.093 ± 0.035 0.132 ± 0.032 0.107 ± 0.026 0.111 ± 0.031 

-10° Rotation 0.034 ± 0.029 0.036 ± 0.026 0.080 ± 0.033 0.050 ± 0.030 

-15° Rotation 0.064 ± 0.035 0.026 ± 0.022 0.027 ± 0.020 0.039 ± 0.026 

-20° Rotation 0.157 ± 0.040 0.079 ± 0.047 0.130 ± 0.053 0.122 ± 0.047 

-25° Rotation 0.141 ± 0.072 0.082 ± 0.061 0.050 ± 0.035 0.091 ± 0.056 

Average 0.145 ± 0.077 0.130 ± 0.063 0.092 ± 0.042 0.123 ± 0.061 

             

Marker-based Static Translational Tracking Error 

 
Calcaneus 

 
Beads 1-2 Beads 2-3 Beads 1-3 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Position 2,2 0.097 ± 0.114 0.092 ± 0.068 0.179 ± 0.091 0.123 ± 0.091 

Position 3,1 0.142 ± 0.077 0.443 ± 0.145 0.106 ± 0.038 0.231 ± 0.087 

Position 3,2 0.267 ± 0.036 0.167 ± 0.034 0.155 ± 0.024 0.196 ± 0.031 

Position 3,3 0.342 ± 0.048 0.070 ± 0.032 0.096 ± 0.019 0.169 ± 0.033 

Position 4,1 0.026 ± 0.020 0.329 ± 0.034 0.064 ± 0.022 0.139 ± 0.026 

Position 4,2 0.027 ± 0.022 0.022 ± 0.017 0.059 ± 0.028 0.036 ± 0.023 

Position 4,3 0.204 ± 0.034 0.032 ± 0.025 0.053 ± 0.029 0.096 ± 0.029 

Position 4,4 0.035 ± 0.036 0.063 ± 0.039 0.123 ± 0.036 0.074 ± 0.037 

Position 5,1 0.037 ± 0.031 0.223 ± 0.035 0.153 ± 0.027 0.138 ± 0.031 

Position 5,2 0.113 ± 0.033 0.095 ± 0.029 0.166 ± 0.026 0.125 ± 0.029 

Position 5,3 0.042 ± 0.028 0.157 ± 0.023 0.135 ± 0.030 0.111 ± 0.027 

Position 5,4 0.355 ± 0.036 0.231 ± 0.027 0.062 ± 0.025 0.216 ± 0.029 

Position 6,1 0.345 ± 0.033 0.030 ± 0.023 0.083 ± 0.035 0.152 ± 0.030 

Position 6,2 0.331 ± 0.057 0.036 ± 0.049 0.061 ± 0.030 0.143 ± 0.045 

Position 6,3 0.032 ± 0.034 0.311 ± 0.037 0.038 ± 0.024 0.127 ± 0.032 

Position 6,4 0.184 ± 0.046 0.253 ± 0.040 0.069 ± 0.036 0.169 ± 0.040 

Position 7,1 0.112 ± 0.044 0.181 ± 0.033 0.057 ± 0.034 0.117 ± 0.037 

Position 7,2 0.089 ± 0.032 0.227 ± 0.027 0.081 ± 0.034 0.132 ± 0.031 

Position 7,3 0.462 ± 0.037 0.270 ± 0.029 0.049 ± 0.028 0.260 ± 0.031 

Position 7,4 0.043 ± 0.034 0.494 ± 0.106 0.291 ± 0.035 0.276 ± 0.058 

Position 8,2 0.068 ± 0.047 0.345 ± 0.038 0.196 ± 0.047 0.203 ± 0.044 
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Position 8,3 0.043 ± 0.028 0.380 ± 0.032 0.275 ± 0.038 0.233 ± 0.033 

Average 0.154 ± 0.041 0.202 ± 0.042 0.116 ± 0.033 0.157 ± 0.039 

 

Marker-based Static Rotational Tracking Error 

 
Talus 

 
Beads 4-5 Beads 5-6 Beads 4-6 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

25° Rotation 0.316 ± 0.311 0.077 ± 0.051 0.134 ± 0.105 0.175 ± 0.156 

20° Rotation 0.222 ± 0.145 0.195 ± 0.101 0.330 ± 0.103 0.249 ± 0.117 

15° Rotation 0.295 ± 0.198 0.153 ± 0.118 0.096 ± 0.071 0.182 ± 0.129 

10° Rotation 0.142 ± 0.133 0.165 ± 0.115 0.092 ± 0.064 0.133 ± 0.104 

5° Rotation 0.092 ± 0.069 0.130 ± 0.081 0.103 ± 0.068 0.108 ± 0.073 

0° Rotation 0.158 ± 0.089 0.089 ± 0.075 0.085 ± 0.061 0.111 ± 0.075 

-5° Rotation 0.188 ± 0.039 0.341 ± 0.085 0.381 ± 0.087 0.304 ± 0.070 

-10° Rotation 0.183 ± 0.035 0.049 ± 0.033 0.050 ± 0.040 0.094 ± 0.036 

-15° Rotation 0.042 ± 0.030 0.042 ± 0.036 0.055 ± 0.035 0.046 ± 0.034 

-20° Rotation 0.109 ± 0.082 0.226 ± 0.046 0.165 ± 0.072 0.167 ± 0.067 

-25° Rotation 0.106 ± 0.076 0.293 ± 0.137 0.210 ± 0.128 0.203 ± 0.114 

Average 0.168 ± 0.110 0.160 ± 0.080 0.155 ± 0.076 0.161 ± 0.088 

             

Marker-based Static Translational Tracking Error 

 
Talus 

 
Beads 4-5 Beads 5-6 Beads 4-6 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Position 2,2 0.104 ± 0.065 0.071 ± 0.060 0.101 ± 0.071 0.092 ± 0.065 

Position 3,1 0.089 ± 0.038 0.035 ± 0.026 0.047 ± 0.037 0.057 ± 0.034 

Position 3,2 0.134 ± 0.033 0.053 ± 0.038 0.159 ± 0.056 0.115 ± 0.042 

Position 3,3 0.071 ± 0.031 0.031 ± 0.023 0.350 ± 0.051 0.151 ± 0.035 

Position 4,1 0.037 ± 0.025 0.260 ± 0.039 0.063 ± 0.038 0.120 ± 0.034 

Position 4,2 0.051 ± 0.032 0.038 ± 0.031 0.048 ± 0.038 0.046 ± 0.034 

Position 4,3 0.154 ± 0.044 0.121 ± 0.048 0.103 ± 0.044 0.126 ± 0.045 

Position 4,4 0.146 ± 0.037 0.175 ± 0.030 0.111 ± 0.045 0.144 ± 0.038 

Position 5,1 0.047 ± 0.030 0.137 ± 0.047 0.044 ± 0.033 0.076 ± 0.037 

Position 5,2 0.042 ± 0.026 0.129 ± 0.037 0.048 ± 0.035 0.073 ± 0.033 

Position 5,3 0.146 ± 0.051 0.108 ± 0.063 0.106 ± 0.047 0.120 ± 0.054 

Position 5,4 0.045 ± 0.030 0.211 ± 0.038 0.112 ± 0.048 0.123 ± 0.038 

Position 6,1 0.466 ± 0.159 0.168 ± 0.041 0.347 ± 0.049 0.327 ± 0.083 

Position 6,2 0.258 ± 0.046 0.323 ± 0.039 0.330 ± 0.056 0.304 ± 0.047 

Position 6,3 0.338 ± 0.045 0.141 ± 0.055 0.186 ± 0.079 0.222 ± 0.060 

Position 6,4 0.217 ± 0.050 0.072 ± 0.035 0.172 ± 0.064 0.154 ± 0.049 

Position 7,1 0.135 ± 0.042 0.333 ± 0.046 0.058 ± 0.043 0.175 ± 0.044 

Position 7,2 0.204 ± 0.043 0.324 ± 0.050 0.037 ± 0.031 0.189 ± 0.041 

Position 7,3 0.149 ± 0.040 0.207 ± 0.045 0.059 ± 0.044 0.139 ± 0.043 
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Position 7,4 0.157 ± 0.046 0.154 ± 0.052 0.055 ± 0.040 0.122 ± 0.046 

Position 8,2 0.090 ± 0.040 0.100 ± 0.048 0.140 ± 0.060 0.110 ± 0.049 

Position 8,3 0.171 ± 0.042 0.099 ± 0.041 0.248 ± 0.061 0.173 ± 0.048 

Average 0.148 ± 0.045 0.150 ± 0.042 0.133 ± 0.049 0.143 ± 0.045 

 

Marker-based Static Rotational Tracking Error 

 
Tibia 

 
Beads 7-8 Beads 8-9 Beads 7-9 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

25° Rotation 0.168 ± 0.032 0.275 ± 0.098 0.186 ± 0.045 0.210 ± 0.058 

20° Rotation 0.167 ± 0.052 0.076 ± 0.061 0.055 ± 0.036 0.099 ± 0.050 

15° Rotation 0.127 ± 0.083 0.097 ± 0.080 0.099 ± 0.072 0.108 ± 0.078 

10° Rotation 0.398 ± 0.060 0.110 ± 0.088 0.091 ± 0.074 0.199 ± 0.074 

5° Rotation 0.133 ± 0.075 0.107 ± 0.091 0.116 ± 0.091 0.119 ± 0.085 

0° Rotation 0.079 ± 0.051 0.106 ± 0.072 0.087 ± 0.070 0.091 ± 0.064 

-5° Rotation 0.165 ± 0.030 0.050 ± 0.037 0.109 ± 0.039 0.108 ± 0.035 

-10° Rotation 0.117 ± 0.025 0.312 ± 0.045 0.118 ± 0.037 0.182 ± 0.036 

-15° Rotation 0.063 ± 0.028 0.260 ± 0.045 0.233 ± 0.039 0.185 ± 0.037 

-20° Rotation 0.069 ± 0.045 0.267 ± 0.084 0.075 ± 0.055 0.137 ± 0.061 

-25° Rotation 0.065 ± 0.058 0.393 ± 0.097 0.258 ± 0.103 0.239 ± 0.086 

Average 0.141 ± 0.049 0.187 ± 0.072 0.130 ± 0.060 0.152 ± 0.060 

             

Marker-based Static Translational Tracking Error 

 
Tibia 

 
Beads 7-8 Beads 8-9 Beads 7-9 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Position 2,2 0.087 ± 0.058 0.147 ± 0.088 0.082 ± 0.053 0.105 ± 0.066 

Position 3,1 0.253 ± 0.029 0.231 ± 0.095 0.151 ± 0.059 0.212 ± 0.061 

Position 3,2 0.025 ± 0.022 0.202 ± 0.049 0.165 ± 0.029 0.131 ± 0.033 

Position 3,3 0.265 ± 0.021 0.124 ± 0.042 0.277 ± 0.033 0.222 ± 0.032 

Position 4,1 0.142 ± 0.026 0.034 ± 0.028 0.154 ± 0.030 0.110 ± 0.028 

Position 4,2 0.116 ± 0.030 0.232 ± 0.065 0.229 ± 0.039 0.193 ± 0.045 

Position 4,3 0.119 ± 0.023 0.205 ± 0.046 0.067 ± 0.030 0.130 ± 0.033 

Position 4,4 0.068 ± 0.027 0.261 ± 0.059 0.242 ± 0.034 0.190 ± 0.040 

Position 5,1 0.103 ± 0.026 0.341 ± 0.061 0.087 ± 0.040 0.177 ± 0.042 

Position 5,2 0.133 ± 0.030 0.277 ± 0.057 0.066 ± 0.033 0.159 ± 0.040 

Position 5,3 0.106 ± 0.027 0.056 ± 0.035 0.145 ± 0.036 0.102 ± 0.033 

Position 5,4 0.066 ± 0.027 0.191 ± 0.051 0.049 ± 0.045 0.102 ± 0.041 

Position 6,1 0.036 ± 0.028 0.067 ± 0.049 0.034 ± 0.026 0.046 ± 0.034 

Position 6,2 0.048 ± 0.027 0.055 ± 0.041 0.042 ± 0.032 0.048 ± 0.033 

Position 6,3 0.080 ± 0.033 0.088 ± 0.060 0.056 ± 0.037 0.075 ± 0.043 

Position 6,4 0.049 ± 0.027 0.203 ± 0.148 0.129 ± 0.115 0.127 ± 0.097 

Position 7,1 0.170 ± 0.032 0.147 ± 0.059 0.054 ± 0.035 0.124 ± 0.042 
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Position 7,2 0.041 ± 0.022 0.244 ± 0.060 0.177 ± 0.049 0.154 ± 0.044 

Position 7,3 0.099 ± 0.038 0.356 ± 0.056 0.062 ± 0.039 0.172 ± 0.044 

Position 7,4 0.135 ± 0.030 0.258 ± 0.057 0.091 ± 0.044 0.161 ± 0.044 

Position 8,2 0.028 ± 0.023 0.078 ± 0.050 0.240 ± 0.045 0.116 ± 0.040 

Position 8,3 0.108 ± 0.034 0.163 ± 0.052 0.056 ± 0.038 0.109 ± 0.041 

Average 0.104 ± 0.029 0.180 ± 0.059 0.121 ± 0.042 0.135 ± 0.043 

 

Marker-based Dynamic Tracking Error 

 
Calcaneus 

 
Beads 1-2 Beads 2-3 Beads 1-3 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Trial 1 0.340 ± 0.184 0.234 ± 0.133 0.157 ± 0.137 0.243 ± 0.152 

Trial 2 0.221 ± 0.147 0.105 ± 0.052 0.182 ± 0.090 0.169 ± 0.096 

Trial 3 0.391 ± 0.163 0.080 ± 0.059 0.107 ± 0.082 0.192 ± 0.101 

Trial 4 0.491 ± 0.221 0.093 ± 0.076 0.128 ± 0.088 0.237 ± 0.128 

Trial 5 0.164 ± 0.168 0.324 ± 0.071 0.207 ± 0.094 0.232 ± 0.111 

Trial 6 0.340 ± 0.157 0.115 ± 0.098 0.154 ± 0.127 0.203 ± 0.128 

Trial 7 0.537 ± 0.133 0.214 ± 0.093 0.075 ± 0.066 0.275 ± 0.097 

Trial 8 0.269 ± 0.200 0.123 ± 0.096 0.147 ± 0.112 0.180 ± 0.136 

Trial 9 0.152 ± 0.155 0.244 ± 0.126 0.294 ± 0.128 0.230 ± 0.136 

Trial 10 0.341 ± 0.180 0.099 ± 0.105 0.146 ± 0.066 0.195 ± 0.117 

Average 0.324 ± 0.171 0.163 ± 0.091 0.160 ± 0.099 0.216 ± 0.120 

             
 

Talus 

 
Beads 4-5 Beads 5-6 Beads 4-6 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Trial 1 0.182 ± 0.196 0.137 ± 0.109 0.154 ± 0.094 0.158 ± 0.133 

Trial 2 0.168 ± 0.196 0.149 ± 0.138 0.138 ± 0.120 0.152 ± 0.152 

Trial 3 0.215 ± 0.159 0.098 ± 0.079 0.189 ± 0.116 0.167 ± 0.118 

Trial 4 0.309 ± 0.233 0.257 ± 0.178 0.308 ± 0.166 0.291 ± 0.192 

Trial 5 0.212 ± 0.142 0.148 ± 0.092 0.161 ± 0.121 0.173 ± 0.118 

Trial 6 0.137 ± 0.111 0.125 ± 0.097 0.184 ± 0.138 0.149 ± 0.115 

Trial 7 0.194 ± 0.153 0.115 ± 0.087 0.150 ± 0.111 0.153 ± 0.117 

Trial 8 0.255 ± 0.170 0.125 ± 0.100 0.223 ± 0.165 0.201 ± 0.145 

Trial 9 0.215 ± 0.167 0.258 ± 0.136 0.309 ± 0.188 0.260 ± 0.164 

Trial 10 0.123 ± 0.211 0.242 ± 0.232 0.206 ± 0.178 0.190 ± 0.207 

Average 0.201 ± 0.174 0.165 ± 0.125 0.202 ± 0.140 0.190 ± 0.146 

             
 

Tibia 

 
Beads 7-8 Beads 8-9 Beads 7-9 Bone Average 

 
Avg ± SD Avg ± SD Avg ± SD Avg ± SD 

Trial 1 0.173 ± 0.136 0.297 ± 0.216 0.384 ± 0.174 0.285 ± 0.175 

Trial 2 0.133 ± 0.130 0.239 ± 0.162 0.178 ± 0.150 0.183 ± 0.147 

Trial 3 0.161 ± 0.145 0.382 ± 0.411 0.296 ± 0.193 0.280 ± 0.250 

Trial 4 0.125 ± 0.106 0.425 ± 0.266 0.307 ± 0.162 0.286 ± 0.178 
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Trial 5 0.132 ± 0.091 0.293 ± 0.232 0.235 ± 0.163 0.220 ± 0.162 

Trial 6 0.146 ± 0.134 0.329 ± 0.271 0.214 ± 0.172 0.229 ± 0.192 

Trial 7 0.090 ± 0.066 0.310 ± 0.192 0.167 ± 0.122 0.189 ± 0.127 

Trial 8 0.132 ± 0.104 0.249 ± 0.188 0.238 ± 0.163 0.206 ± 0.152 

Trial 9 0.126 ± 0.101 0.285 ± 0.240 0.238 ± 0.281 0.217 ± 0.207 

Trial 10 0.164 ± 0.227 0.236 ± 0.161 0.227 ± 0.169 0.209 ± 0.186 

Average 0.138 ± 0.124 0.305 ± 0.234 0.248 ± 0.175 0.230 ± 0.178 
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Appendix D. Static Validation: Bias, Precision, RMS 

Static Rotation Validation: Bias, Precision, RMS 

 
Calcaneus: Beads 1-3 

 
Talus: Beads 4-6 

 
Tibia: Beads 7-9 

Bias X Y Z 
 

X Y Z 
 

X Y Z 

25° Rotation -0.02 0.02 -0.37 
 

-0.53 -1.09 0.37 
 

-0.24 0.35 0.17 

20° Rotation 0.01 -0.25 -0.30 
 

-0.30 -0.90 0.00 
 

-0.06 0.48 0.02 

15° Rotation -0.14 -0.24 0.42 
 

0.44 -0.63 0.30 
 

0.01 -0.01 0.46 

10° Rotation -0.12 -0.11 -0.13 
 

0.30 -0.86 0.33 
 

-0.12 -0.28 0.15 

5° Rotation -0.53 0.75 -0.61 
 

-0.67 -0.54 0.69 
 

0.32 0.00 -0.03 

0° Rotation 0.03 0.09 -0.10 
 

0.18 0.08 0.89 
 

-0.26 -0.06 -0.77 

-5° Rotation 0.04 -0.31 -0.53 
 

0.82 0.90 -0.11 
 

0.04 -0.21 -0.19 

-10° Rotation 0.29 -0.08 -0.37 
 

-0.42 0.38 0.73 
 

0.18 -0.32 -0.39 

-15° Rotation -0.30 -0.16 -0.06 
 

0.10 -0.29 -1.07 
 

0.00 0.21 -0.19 

-20° Rotation -0.07 0.08 -0.35 
 

0.56 -0.21 -0.36 
 

0.19 0.07 -0.14 

-25° Rotation -0.23 -0.02 -0.51 
 

0.18 0.10 0.61 
 

0.34 0.11 0.05 

Average -0.09 -0.02 -0.26 
 

0.06 -0.28 0.22 
 

0.04 0.03 -0.08 
SD 0.21 0.29 0.29 

 
0.48 0.61 0.57 

 
0.20 0.25 0.32 

  
 

         
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

Precision X Y Z 
 

X Y Z 
 

X Y Z 

25° Rotation 0.06 0.11 0.06 
 

0.09 0.17 0.10 
 

0.02 0.04 0.02 

20° Rotation 0.07 0.14 0.12 
 

0.09 0.16 0.09 
 

0.04 0.06 0.03 

15° Rotation 0.07 0.11 0.07 
 

0.10 0.16 0.09 
 

0.05 0.09 0.06 

10° Rotation 0.04 0.07 0.03 
 

0.07 0.15 0.08 
 

0.05 0.08 0.05 

5° Rotation 0.13 0.14 0.09 
 

0.12 0.20 0.11 
 

0.06 0.10 0.05 

0° Rotation 0.05 0.09 0.05 
 

0.07 0.12 0.07 
 

0.05 0.08 0.14 

-5° Rotation 0.02 0.04 0.02 
 

0.03 0.06 0.03 
 

0.02 0.04 0.02 

-10° Rotation 0.08 0.06 0.09 
 

0.08 0.07 0.08 
 

0.02 0.04 0.02 

-15° Rotation 0.02 0.04 0.03 
 

0.12 0.32 0.13 
 

0.02 0.04 0.02 

-20° Rotation 0.03 0.06 0.03 
 

0.07 0.10 0.05 
 

0.05 0.07 0.05 

-25° Rotation 0.06 0.09 0.05 
 

0.08 0.13 0.06 
 

0.06 0.10 0.05 

Average 0.06 0.09 0.06 
 

0.08 0.15 0.08 
 

0.04 0.07 0.05 

SD 0.03 0.04 0.03 
 

0.02 0.07 0.03 
 

0.02 0.03 0.04 

  
 

         
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

RMS Error X Y Z 
 

X Y Z 
 

X Y Z 

25° Rotation 0.42 0.30 0.54 
 

0.55 1.11 0.38 
 

0.24 0.36 0.25 

20° Rotation 0.62 0.78 0.34 
 

0.32 0.91 0.48 
 

0.13 0.49 0.07 

15° Rotation 1.24 1.20 0.56 
 

0.50 0.73 0.34 
 

0.15 0.09 0.46 

10° Rotation 0.86 1.00 0.23 
 

0.32 0.88 0.35 
 

0.18 0.30 0.16 

5° Rotation 1.57 0.96 0.98 
 

0.82 0.76 0.73 
 

0.58 0.24 0.13 

0° Rotation 0.18 0.14 0.49 
 

0.45 0.72 0.89 
 

0.28 0.13 0.79 

-5° Rotation 0.58 0.93 0.53 
 

0.82 0.90 0.17 
 

0.38 0.35 0.20 

-10° Rotation 1.17 0.91 0.66 
 

0.43 0.62 0.73 
 

0.54 0.44 0.39 

-15° Rotation 0.65 1.10 0.43 
 

1.17 0.97 1.08 
 

0.06 0.21 0.19 

-20° Rotation 0.41 1.16 0.57 
 

1.24 0.93 0.51 
 

0.20 0.21 0.15 
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-25° Rotation 0.24 1.11 0.54 
 

0.80 0.68 0.62 
 

0.34 0.17 0.13 

Average 0.72 0.87 0.54 
 

0.67 0.84 0.57 
 

0.28 0.27 0.27 

SD 0.44 0.35 0.19 
 

0.32 0.15 0.27 
 

0.17 0.13 0.21 

 

Static Translation Validation: Bias, Precision, RMS 

 
Calcaneus: Beads 1-3 

 
Talus: Beads 4-6 

 
Tibia: Beads 7-9 

Bias X Y Z 
 

X Y Z 
 

X Y Z 

Position 2,2 0.19 0.67 -0.22 
 

0.18 0.22 -0.51 
 

0.17 0.10 0.02 
Position 3,1 -0.21 -0.38 -0.51 

 
-0.05 -0.25 -0.81 

 
-0.03 0.08 0.15 

Position 3,2 0.08 0.63 -0.31 
 

0.25 0.53 0.10 
 

0.04 0.11 0.35 
Position 3,3 -0.14 -0.34 -0.37 

 
0.15 0.67 0.94 

 
0.29 -0.02 -0.16 

Position 4,1 -0.25 -0.46 -0.02 
 

-0.86 -1.46 -0.07 
 

-0.02 -0.23 -0.49 
Position 4,2 0.17 0.01 -0.24 

 
0.02 0.38 0.19 

 
0.05 -0.41 0.00 

Position 4,3 -0.05 0.20 -0.56 
 

-0.28 -0.38 0.63 
 

0.14 0.41 -0.35 
Position 4,4 -0.10 0.07 -0.49 

 
0.57 1.02 -0.28 

 
0.22 0.26 0.20 

Position 5,1 -0.29 -0.70 0.05 
 

0.11 0.42 0.02 
 

0.06 -0.35 0.08 
Position 5,2 0.17 0.25 -0.19 

 
-0.25 0.51 0.07 

 
-0.05 -0.08 0.30 

Position 5,3 0.10 -0.25 0.14 
 

-0.36 1.09 0.52 
 

0.10 0.27 0.37 
Position 5,4 0.08 0.26 -0.24 

 
0.66 1.13 0.04 

 
0.15 0.68 -0.10 

Position 6,1 -0.07 -0.03 -0.04 
 

-0.87 -0.27 0.24 
 

-0.31 -0.60 0.22 
Position 6,2 -0.02 0.08 0.01 

 
0.05 -0.01 -0.06 

 
0.06 -0.63 0.01 

Position 6,3 0.20 0.12 0.12 
 

0.45 0.12 0.15 
 

0.07 -0.32 0.18 
Position 6,4 0.03 0.49 0.04 

 
0.46 0.40 -0.14 

 
-0.19 0.06 -0.08 

Position 7,1 0.05 -0.30 -0.02 
 

0.23 0.23 -0.79 
 

-0.11 -0.14 0.45 
Position 7,2 -0.30 -0.87 0.01 

 
0.76 1.70 0.18 

 
0.07 -0.12 -0.05 

Position 7,3 0.24 0.24 0.21 
 

0.69 0.99 0.26 
 

-0.01 -0.08 -0.34 
Position 7,4 -0.27 -0.17 -0.49 

 
0.37 -0.05 -0.27 

 
-0.17 0.55 -0.10 

Position 8,2 -0.38 -0.80 0.09 
 

-0.52 -1.71 -0.25 
 

-0.16 -0.25 0.11 
Position 8,3 0.23 -0.30 -0.07 

 
-0.05 -0.29 -0.34 

 
-0.04 -0.17 -0.02 

Average -0.03 -0.03 -0.25 
 

-0.05 0.25 0.07 
 

0.09 0.01 0.04 
SD 0.18 0.44 0.23 

 
0.38 0.72 0.50 

 
0.11 0.26 0.28 

            
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

Precision X Y Z 
 

X Y Z 
 

X Y Z 

Position 2,2 0.09 0.11 0.09 
 

0.13 0.12 0.06 
 

0.07 0.09 0.06 
Position 3,1 0.18 0.21 0.10 

 
0.05 0.18 0.09 

 
0.04 0.06 0.03 

Position 3,2 0.04 0.04 0.06 
 

0.07 0.08 0.08 
 

0.02 0.03 0.02 
Position 3,3 0.03 0.04 0.02 

 
0.04 0.09 0.02 

 
0.02 0.06 0.06 

Position 4,1 0.05 0.04 0.04 
 

0.03 0.04 0.05 
 

0.02 0.03 0.01 
Position 4,2 0.02 0.03 0.02 

 
0.06 0.11 0.02 

 
0.10 0.05 0.06 

Position 4,3 0.05 0.34 0.07 
 

0.04 0.06 0.02 
 

0.02 0.03 0.02 
Position 4,4 0.08 0.09 0.05 

 
0.03 0.08 0.06 

 
0.06 0.05 0.07 

Position 5,1 0.05 0.05 0.09 
 

0.04 0.06 0.03 
 

0.02 0.04 0.02 
Position 5,2 0.03 0.06 0.02 

 
0.03 0.08 0.04 

 
0.06 0.14 0.08 

Position 5,3 0.18 0.41 0.17 
 

0.05 0.09 0.05 
 

0.05 0.04 0.02 
Position 5,4 0.02 0.05 0.02 

 
0.05 0.09 0.12 

 
0.03 0.05 0.02 

Position 6,1 0.26 0.18 0.20 
 

0.03 0.05 0.03 
 

0.03 0.05 0.03 
Position 6,2 0.12 0.18 0.08 

 
0.04 0.09 0.05 

 
0.04 0.05 0.03 



126 
 

 

 

Position 6,3 0.10 0.08 0.03 
 

0.04 0.07 0.04 
 

0.04 0.06 0.02 
Position 6,4 0.09 0.07 0.03 

 
0.05 0.07 0.07 

 
0.04 0.10 0.02 

Position 7,1 0.03 0.05 0.02 
 

0.03 0.06 0.06 
 

0.02 0.04 0.02 
Position 7,2 0.03 0.04 0.02 

 
0.03 0.06 0.03 

 
0.03 0.07 0.02 

Position 7,3 0.09 0.06 0.03 
 

0.05 0.08 0.06 
 

0.02 0.04 0.06 
Position 7,4 0.14 0.24 0.10 

 
0.06 0.06 0.04 

 
0.02 0.04 0.02 

Position 8,2 0.04 0.07 0.03 
 

0.04 0.08 0.03 
 

0.02 0.05 0.07 
Position 8,3 0.02 0.05 0.02 

 
0.08 0.10 0.07 

 
0.04 0.05 0.02 

Average 0.07 0.13 0.07 
 

0.05 0.09 0.05 
 

0.04 0.06 0.04 
SD 0.06 0.13 0.04 

 
0.03 0.04 0.02 

 
0.03 0.03 0.02 

            
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

RMS Error X Y Z 
 

X Y Z 
 

X Y Z 

Position 2,2 0.21 0.69 0.28 
 

0.22 0.35 0.52 
 

0.26 0.17 0.08 
Position 3,1 0.33 0.50 0.52 

 
0.17 0.92 0.82 

 
0.18 0.12 0.16 

Position 3,2 0.18 0.67 0.50 
 

0.28 0.53 0.23 
 

0.05 0.12 0.35 
Position 3,3 0.42 0.81 0.49 

 
0.19 1.18 0.94 

 
0.84 0.28 0.34 

Position 4,1 0.28 1.36 1.00 
 

0.87 1.46 0.28 
 

0.19 0.23 0.49 
Position 4,2 0.28 0.75 0.52 

 
0.09 0.40 0.20 

 
0.39 0.42 0.07 

Position 4,3 0.88 1.23 0.61 
 

0.28 0.45 0.63 
 

0.14 0.41 0.35 
Position 4,4 0.42 1.25 0.76 

 
0.57 1.02 0.29 

 
0.23 0.28 0.22 

Position 5,1 0.30 0.70 0.35 
 

0.24 0.43 0.07 
 

0.35 0.43 0.11 
Position 5,2 0.78 1.56 0.52 

 
0.25 0.63 0.26 

 
0.12 0.19 0.31 

Position 5,3 0.27 0.67 0.28 
 

0.38 1.10 0.53 
 

0.18 0.27 0.37 
Position 5,4 0.24 0.62 0.44 

 
0.66 1.14 0.19 

 
0.21 0.68 0.13 

Position 6,1 0.40 0.41 0.27 
 

0.87 0.60 0.24 
 

0.31 0.60 0.22 
Position 6,2 0.27 0.28 0.29 

 
0.14 0.31 0.10 

 
0.16 0.63 0.08 

Position 6,3 0.36 0.50 0.69 
 

0.45 0.43 0.16 
 

0.16 0.32 0.18 
Position 6,4 0.31 0.74 0.29 

 
0.47 0.41 0.23 

 
0.26 0.18 0.09 

Position 7,1 1.14 1.74 0.52 
 

0.23 0.90 0.86 
 

0.11 0.15 0.45 
Position 7,2 0.31 0.87 0.12 

 
0.76 1.70 0.19 

 
0.28 0.18 0.33 

Position 7,3 0.38 0.77 0.46 
 

0.69 1.00 0.27 
 

0.44 0.09 0.36 
Position 7,4 0.30 0.86 0.69 

 
0.37 0.26 0.28 

 
0.24 0.55 0.11 

Position 8,2 0.38 0.91 0.42 
 

0.52 1.71 0.25 
 

0.21 0.25 0.14 
Position 8,3 0.23 0.34 0.51 

 
0.13 0.43 0.46 

 
0.14 0.22 0.26 

Average 0.39 0.83 0.48 
 

0.40 0.79 0.36 
 

0.25 0.31 0.24 
SD 0.24 0.38 0.20 

 
0.24 0.45 0.25 

 
0.16 0.18 0.13 
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Appendix E. Dynamic Validation: Bias, Precision, RMS 

 
Calcaneus: Beads 1-3 

 
Talus: Beads 4-6 

 
Tibia: Beads 7-9 

Bias X Y Z 
 

X Y Z 
 

X Y Z 

Trial 1 -0.09 -0.32 -0.25 
 

0.13 -0.06 -0.07 
 

-0.16 -0.46 -0.08 

Trial 2 0.15 -0.33 -0.10 
 

-0.12 0.03 -0.13 
 

0.07 -0.08 -0.30 

Trial 3 0.23 0.01 -0.47 
 

-0.24 0.00 -0.19 
 

0.12 -0.20 -0.31 

Trial 4 0.00 -0.23 -0.67 
 

-0.14 -0.08 -0.19 
 

-0.13 -0.05 -0.31 

Trial 5 0.15 -0.19 -0.17 
 

-0.19 -0.04 -0.20 
 

-0.10 -0.41 -0.30 

Trial 6 0.00 -0.27 -0.17 
 

-0.14 0.21 0.37 
 

0.11 0.02 -0.20 

Trial 7 -0.04 -0.30 -0.36 
 

-0.15 0.02 0.05 
 

0.07 -0.22 -0.12 

Trial 8 0.12 0.05 -0.18 
 

0.06 0.19 -0.28 
 

0.23 0.11 -0.21 

Trial 9 -0.03 -0.07 -0.45 
 

-0.04 -0.23 0.61 
 

0.01 0.08 -0.14 

Trial 10 -0.06 -0.67 -0.20 
 

0.25 -0.51 -0.13 
 

0.12 0.27 -0.21 

Average 0.05 -0.23 -0.30 
 

-0.06 -0.05 -0.02 
 

0.03 -0.09 -0.22 

SD 0.11 0.21 0.18 
 

0.16 0.21 0.29 
 

0.13 0.23 0.09 

            
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

Precision X Y Z 
 

X Y Z 
 

X Y Z 

Trial 1 0.53 0.85 0.44 
 

0.32 0.70 0.41 
 

0.36 0.47 0.35 

Trial 2 0.39 0.65 0.46 
 

0.30 0.54 0.40 
 

0.31 0.40 0.36 

Trial 3 1.03 1.71 1.02 
 

0.36 0.72 0.36 
 

0.31 0.47 0.34 

Trial 4 0.94 1.56 0.87 
 

0.40 0.73 0.44 
 

0.49 0.46 0.33 

Trial 5 0.60 1.08 0.65 
 

0.36 0.71 0.33 
 

0.30 0.36 0.31 

Trial 6 0.41 0.86 0.71 
 

0.29 0.68 0.32 
 

0.33 0.38 0.40 

Trial 7 0.93 1.36 0.71 
 

0.47 0.93 0.51 
 

0.35 0.32 0.53 

Trial 8 0.65 1.34 0.72 
 

0.41 1.00 0.42 
 

0.34 0.40 0.43 

Trial 9 0.77 1.33 0.60 
 

0.42 0.71 0.45 
 

0.51 0.56 0.41 

Trial 10 0.72 1.14 0.77 
 

0.40 0.74 0.38 
 

0.46 0.42 0.46 

Average 0.70 1.19 0.69 
 

0.37 0.75 0.40 
 

0.38 0.42 0.39 

SD 0.22 0.33 0.17 
 

0.06 0.13 0.06 
 

0.08 0.07 0.07 

            
 

Calcaneus: Beads 1-3 
 

Talus: Beads 4-6 
 

Tibia: Beads 7-9 

RMS Error X Y Z 
 

X Y Z 
 

X Y Z 

Trial 1 0.77 1.06 0.58 
 

0.32 0.71 0.43 
 

0.40 0.56 0.31 

Trial 2 0.45 0.65 0.52 
 

0.30 0.51 0.36 
 

0.29 0.43 0.45 

Trial 3 0.81 1.33 0.95 
 

0.39 0.64 0.37 
 

0.30 0.46 0.38 

Trial 4 0.80 1.26 0.90 
 

0.39 0.64 0.53 
 

0.47 0.48 0.44 

Trial 5 0.76 1.24 0.59 
 

0.40 0.72 0.46 
 

0.32 0.51 0.42 

Trial 6 0.56 1.02 0.66 
 

0.31 0.66 0.45 
 

0.34 0.40 0.43 

Trial 7 0.87 0.98 0.77 
 

0.34 0.87 0.41 
 

0.31 0.38 0.40 

Trial 8 0.67 1.11 0.70 
 

0.40 0.96 0.51 
 

0.41 0.45 0.45 

Trial 9 0.64 1.08 0.73 
 

0.39 0.73 0.67 
 

0.38 0.55 0.41 

Trial 10 0.70 1.34 0.73 
 

0.44 0.89 0.40 
 

0.45 0.49 0.49 

Average 0.70 1.11 0.71 
 

0.37 0.73 0.46 
 

0.37 0.47 0.42 

SD 0.13 0.21 0.14 
 

0.05 0.14 0.09 
 

0.06 0.06 0.05 
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Appendix F. User Error: Bias, Precision, RMS 

 
Manual: Tibia 

 
Automated: Tibia 

Bias X Y Z Overall 
 

X Y Z Overall 

Trial 4: Repeat 1 0.17 0.45 0.46 0.36 
 

0.06 0.23 -0.01 0.09 
Trial 4: Repeat 2 0.23 0.31 0.14 0.23 

 
0.06 0.20 -0.17 0.03 

Trial 4: Repeat 3 -0.03 0.22 0.24 0.14 
 

0.06 0.19 -0.18 0.02 
Trial 4: Repeat 4 0.19 0.47 -0.05 0.21 

 
-0.07 0.20 -0.17 -0.01 

Trial 4: Repeat 5 0.15 0.36 0.06 0.19 
 

0.01 0.19 -0.23 -0.01 
Trial 4: Repeat 6 0.17 0.23 0.18 0.19 

 
0.00 0.19 -0.18 0.00 

Trial 4: Repeat 7 0.19 0.44 0.18 0.27 
 

-0.02 0.20 -0.24 -0.02 
Trial 4: Repeat 8 0.20 0.56 0.04 0.27 

 
0.01 0.23 -0.22 0.01 

Trial 4: Repeat 9 0.18 0.37 0.10 0.22 
 

0.02 0.17 -0.19 0.00 
Trial 4: Repeat 10 0.14 0.36 0.17 0.22 

 
0.06 0.14 -0.14 0.02 

Average 0.16 0.38 0.15 0.23 
 

0.02 0.19 -0.17 0.01 
SD 0.07 0.11 0.14 0.11 

 
0.04 0.03 0.07 0.05 

          
 

Manual: Tibia 
 

Automated: Tibia 

Precision X Y Z Overall 
 

X Y Z Overall 

Trial 4: Repeat 1 0.42 0.54 0.73 0.56 
 

0.46 0.46 0.68 0.54 
Trial 4: Repeat 2 0.39 0.47 0.56 0.47 

 
0.46 0.45 0.64 0.51 

Trial 4: Repeat 3 0.39 0.54 0.51 0.48 
 

0.49 0.49 0.68 0.55 
Trial 4: Repeat 4 0.41 0.46 0.38 0.42 

 
0.61 0.48 0.71 0.60 

Trial 4: Repeat 5 0.37 0.41 0.52 0.43 
 

0.54 0.46 0.73 0.58 
Trial 4: Repeat 6 0.39 0.52 0.60 0.50 

 
0.55 0.49 0.69 0.57 

Trial 4: Repeat 7 0.40 0.48 0.58 0.49 
 

0.48 0.49 0.62 0.53 
Trial 4: Repeat 8 0.41 0.57 0.70 0.56 

 
0.58 0.60 0.70 0.63 

Trial 4: Repeat 9 0.45 0.65 0.75 0.62 
 

0.54 0.58 0.70 0.61 
Trial 4: Repeat 10 0.46 0.50 0.50 0.48 

 
0.53 0.51 0.65 0.57 

Average 0.41 0.51 0.58 0.50 
 

0.52 0.50 0.68 0.57 
SD 0.03 0.07 0.12 0.07 

 
0.05 0.05 0.04 0.05 

          
 

Manual: Tibia 
 

Automated: Tibia 

RMS Error X Y Z Overall 
 

X Y Z Overall 

Trial 4: Repeat 1 0.42 0.67 0.58 0.55 
 

0.45 0.56 0.65 0.55 
Trial 4: Repeat 2 0.45 0.59 0.69 0.58 

 
0.47 0.53 0.63 0.54 

Trial 4: Repeat 3 0.41 0.66 0.67 0.58 
 

0.52 0.57 0.65 0.58 
Trial 4: Repeat 4 0.45 0.67 0.62 0.58 

 
0.42 0.54 0.59 0.52 

Trial 4: Repeat 5 0.37 0.56 0.61 0.51 
 

0.51 0.54 0.67 0.58 
Trial 4: Repeat 6 0.42 0.61 0.60 0.55 

 
0.55 0.58 0.64 0.59 

Trial 4: Repeat 7 0.45 0.68 0.64 0.59 
 

0.51 0.59 0.67 0.59 
Trial 4: Repeat 8 0.46 0.78 0.65 0.63 

 
0.48 0.65 0.69 0.60 

Trial 4: Repeat 9 0.50 0.70 0.66 0.62 
 

0.55 0.60 0.66 0.60 
Trial 4: Repeat 10 0.44 0.62 0.59 0.55 

 
0.49 0.56 0.64 0.56 

Average 0.44 0.65 0.63 0.57 
 

0.50 0.57 0.65 0.57 
SD 0.03 0.06 0.04 0.04 

 
0.04 0.04 0.03 0.03 
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