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ABSTRACT

TRANSFORMING ANALOGOUS TIME SERIES DATA TO IMPROVE

NATURAL GAS DEMAND FORECAST ACCURACY

Paul Kaefer, B.S.

Marquette University, 2015

This work improves daily natural gas demand forecasting models for days

with unusual weather patterns through the use of analogous data (also known as

surrogate data). To develop accurate mathematical models, data are required that

describe the system. When this data does not completely describe the system or all

possible events in the system, alternative methods are used to account for this lack

of information. Improved models can be built by supplementing the lack of data

with data or models from sources where more information is available.

Time series forecasting involves building models using a set of historical

data. When “enough” historical data are available, the set used to train models

exhibits ample variation. This results in higher accuracy in GasDayTM natural gas

demand forecasting models, since there is a wide range of history to describe. In

real-world applications, this also means that the data are more realistic, due to the

stochastic nature of real events. However, it is not always the case that “enough”

historical data are available. This may be due to few years of available historical

data, or a case where available data does not exhibit as much variation as desired.

By taking advantage of GasDay’s many customers from various geographical

locations, a large pool of data sets may be used to address this problem of

insufficient data. Data from utilities of similar climate or gas use may be used to

build useful models for other utilities. In other words, available data sets may be

used as analogues or surrogates for building models for areas with insufficient data.

The results show that the use of surrogate data improves forecasting models.

Notably, forecasts for days with unusual weather patterns are improved. By

applying clever transformation methods and carefully selecting donor areas, the

methods discussed in this thesis help GasDay to improve forecasts for natural gas

demand across the United States.
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CHAPTER 1

Building Good Forecasting Models

This chapter introduces the natural gas industry, the importance of

developing good forecasts, and an overview of the work done at GasDay. The focus

of this research is described in the context of the GasDay lab. A synopsis of our

research is also presented.

1.1 The Natural Gas Industry

The United States of America consumes approximately 26% of the world’s total

annual natural gas consumption, according to the U.S. Energy Information

Administration (EIA) [51]. Natural gas is used for a variety of purposes including

space heating, cooking, water heating, clothing dryers, electric power generation,

industrial processes, and as a vehicle fuel.

In the United States, natural gas futures are traded on the New York

Mercantile Exchange (NYMEX). The “gas day” is defined as the 24-hour period

that starts at 9 A.M. Central Time and ends at 9 A.M. the next calendar day [22].

Energy utilities have to predict the amount of gas they expect to sell or use in

advance of each gas day. They are highly motivated to get their forecasts correct, as



2

there are penalties for both low and high forecasts. If the utility does not nominate

enough gas in advance, it may be forced to curtail certain customers or purchase the

gas on the sometimes much more expensive spot market. If they have too much gas

due to a high forecast, they may incur expensive storage costs or penalties for not

withdrawing the gas from the pipeline. Many natural gas Local Distribution

Companies (LDCs) do not have available storage [52].

The costs incurred by the utility are passed on to their customers, which

encourages the utilities to develop good forecasts. In some cases, customers may be

able to switch to an alternative energy source such as electricity or heating oil if

they are experiencing high prices from their natural gas utility.

Marquette University GasDay is like a small business that is housed in a

research lab that forecasts the daily demand for about 17.7% of the natural gas

consumed by residential, commercial, and industrial customers in the United States.

This market share has been achieved through years of research and work improving

the methods used to forecast in such an interesting industry.
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1.2 A Brief Introduction to Natural Gas Forecasting Methods

This section gives a brief overview of forecasting natural gas demand. The second

chapter of this thesis delves further into forecasting methods and an overview of

work that has been done in the field of gas demand forecasting.

Various methods are used to forecast gas demand. Linear models have been

used, as mentioned in [6, 11, 47]. Box-Jenkins [7] methods are used by [40].

Artificial neural networks are used by [31, 52]. Other nonlinear models are used

by [30]. Vitullo et al. [52] discuss various mathematical models in use, including

those currently in use at the GasDay laboratory.

There are some interesting techniques in use in the energy domain. One is

the nonlinear effect of temperature on demand. Demand is linearly modeled with

temperature inputs, but only below a certain threshold temperature. People turn on

their furnaces once the temperature outside is below a certain level. This concept is

called the heating degree day (HDD) [13], similar to the degree day found in fields

such as parasitology [33], and the temperature transformation done by [40], and is

calculated as

HDD = max(Tref − T, 0) ,

where Tref is typically 65◦F. By using this value instead of the raw temperature

value, more accurate forecasting models are developed [44, 47].
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Balestra and Nerlove [6] use consumer behavior to improve models of natural

gas demand. In Section 3.2.4, we consider this and other features that are unique to

natural gas time series and help improve our modelling techniques.

1.3 Forecasting at GasDay

GasDay’s flagship product forecasts daily demand for time horizons of up to eight

days for natural gas service territories known as operating areas. (Operating areas

are also known as service territories, market areas, or zones; we use the term

“operating area” for consistency.) An ensemble model [26] of linear regression

models and artificial neural networks is used. These models are trained on historical

data, so forecasts for unusual day types (which will be further explained in Chapters

2 and 3) depend on the available data from past events. Because not all gas utilities

are able to provide many years of good data, surrogate data from other utilities is

used to build forecasting models [20]. “Surrogate data” is also referred to as

“analogous data” or “analogous time series” when the data comes from time series

data sets.

1.4 Using Analogous Time Series in Forecasting Models

Chapter 3 provides mathematical details for our analogous data transformation

algorithms. The high-level concept is to use data from other sources that exhibit
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Figure 1.1: Data from different states may be used as surrogate data for the state of

Wisconsin.

similar patterns to a given data set. Consider Figure 1.1. It may be the case that

only a few years of historical data for the state of Wisconsin are available. If similar

patterns are seen in Illinois, Oregon, etc., these data may be transformed to look

like Wisconsin data. In this example, we refer to Illinois and Oregon as potential

“donor” areas and to Wisconsin as the “target” area. Our research explores

methods of determining good surrogate donors and methods of transforming data so

they build better models.

If we consider data for different areas throughout the country, it is apparent
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that the areas are quite different due to various reasons including climate and

customer bases. Figure 1.2 plots gas flow against (65 − temperature) for many areas

in the country. By using several of these sets, it is obvious that a combined model

will not forecast an individual area very well. Some of them have quite steep trends

as the number of heating degree days increases (i.e., the HDD increases). In

addition, some of these areas have been scaled to fit on the graph, as their typical

flow values are 1000 times the plotted values.

It is apparent that work needs to be done in order for the data sets to be

useful in building combined models.

Our work focuses on transforming these data sets to make them match the

given target area for which we want to build better models. Our work is valuable

because we scale and shift the data so that it has similar properties as the target

area. However, we do not want to mangle the data or manipulate it in any way such

that we cannot transform it back to the raw form. Through this process, we are

able to transform donor data sets from any area in the country to make them look

like they came from a different target area. This addresses the problem at hand by

improving natural gas daily forecasts for unusual days where there would not

otherwise be enough data.

Transformed surrogate data are used only for training models. Insufficient

data is only a problem to the point that it leads to the risk of models that cannot
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Figure 1.2: Data from many areas in the country.

accurately predict events that have not been seen in the past. The use of surrogate

data enables us to train models that hypothetically produce better forecasts for

these events. We then evaluate these models on testing data that originates solely

from the target area. In practice, the models will not be used to forecast any of the

donor areas, but rather the original target area.

Figures 1.3 and 1.4 illustrate this process. In the typical forecasting process,

historical data are used to train models. These models accept exogenous variable

input, and output forecasts, as seen in Figure 1.3. Analogous data are added for
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model training, as shown in Figure 1.4. Once again, exogenous variables are used by

the models, and a different set of forecasts will be produced (since the models were

trained on different data). We compare the forecasts from both to evaluate this

research.

Figure 1.3: Forecasting process before analogous data are used.

1.5 Organization of this Thesis

The remainder of this thesis expands upon what has been explained in this chapter.

In Chapter 2, we will discuss state-of-the-art natural gas demand forecasting and

existing work addressing the problem of insufficient data. Chapter 3 will explain our

analogous data transformation algorithm, including how we determine which data

sets to transform and use in building models. The results from these models,
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Figure 1.4: Analogous data within the forecasting process. Our work adds the ele-

ments in red to the process in Figure 1.3.

compared against models built without analogous data, will be presented in Chapter

4. Finally, we discuss in Chapter 5 ideas for future research that are inspired by our

work.
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CHAPTER 2

Forecasting Models and Surrogate Data

The purpose of this chapter is to discuss state-of-the-art of forecasting and

methods that are used to address the problem of not having sufficient data to

develop a good forecast.

2.1 Forecasting Research

Much work has been done in the area of forecasting. De Gooijer and Hyndman

provide an excellent review of various methods that are used in forecasting [16].

Soldo [44] and Vitullo, et al. [52] provide reviews of methods used specifically in the

area of natural gas modeling and forecasting.

In the area of natural gas forecasting, research has been done around the

world. Research in England by Piggott uses the concept of heating degree days to

capture the not-exactly linear relationship between temperature and gas

demand [40]. We use heating degree days (as explained in Chapter 1) for the same

reason. In Iran, a Smooth Transition Auto-regression (STAR) model was used by

Kani et al., as lagged variables capture nonlinear properties of natural gas

demand [30]. Likewise, GasDay uses autoregressive terms. The impact of previous
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days on the current demand is the reason that many “unusual events” used here are

multiple days long. Akkurt et al. [2] looked at different demand patterns in

residential, commercial, and industrial groups in Turkey. While we do not explicitly

separate an area’s data into these groups, we recognize that customer behavior

differs in different areas, and the algorithm used to transform data sets takes into

account different patterns.

Estimation of natural gas demand using ordinary least squares is done in [6].

This research uses least squares regression to validate the improvements from our

algorithms. Linear regression is easy to do quickly and efficiently. Hence, we use it

to test many different combinations of surrogate data to verify the accuracy of the

results.

2.2 Insufficient Data

Since we want to predict demand on unusual days better than current practice, we

wish we had more data than is available. If we have only one data point for a

“once-in-30-years” event, it will only be a good predictor if a future such event

behaves in exactly the same way, but events never happen in exactly the same way.

Hence, it is very common that we do not have many data points for gas demand

during unusual weather events. Hence, we search for more data.
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Balestra and Nerlove [6, p. 607] mention having an insufficient amount of

years of gas data given the number of estimated parameters to determine for their

model. Mohri [37] and others also recognize that in many practical applications,

there is insufficient data with which to both train and test models.

One method to combat having insufficient data uses hierarchical models.

Models are built at different levels. The lowest level is the raw data. Parameters at

different higher levels allow for generalization of levels below. Duncan, Gorr, and

Szczypula [19] use hierarchical models to forecast government revenue for different

school districts and find that they helped improve accuracy. Hierarchical forecasting

also is done in the energy domain for electrical load forecasting [27]. In our research,

we do not build hierarchical models, but similar to the previous research, we are

able to construct an algorithm that describes a general natural gas demand time

series set and then apply this algorithm to specific cases.

When our modeling application does not have enough data, we can

supplement available data with data from other sources. To do this, we must find

data that is similar in some way(s).

Dixon et al. [17] leverage auxiliary data for enhancing models for rare events.

They look at several methods for getting this auxiliary data including aggregated

data that corresponds to a different time scale and using probability distributions to

generate data. We are also seeking more data to predict rare events. In some cases,
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gas utilities do provide data at different time scales. For example, they may have

customer data aggregated into billing cycle frequency [12]. In this case, the

characteristics of a rare event in that data are masked by the other days with which

it is aggregated. The idea of using a probability distribution is interesting. However,

the literature does not show a probability distribution that describes natural gas

demand, or particularly gas demand during rare events.

Thomas [49] explores the use of data from similar products in estimating the

market trends for a new product. He identifies similar products for which data are

available and use the parameters from models for these similar products in modeling

response to the new product. Likewise, we identify data sets that are similar to a

target set. Rather than using the same coefficients from models, we transform the

data so the coefficients of these models match the target area. We then use the

transformed data, rather than the model parameters.

2.3 Determining “Similarity” in Data

Twenty plus years of natural gas forecasting research performed at the GasDay lab

has resulted in the accumulation of domain knowledge that has contributed to this

research. One important contribution is the familiarity with patterns in natural gas

consumption time series. Essentially, we have a heuristic for how natural gas data

should look. In addition, the patterns are seen independently in areas around the
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United States with vastly different weather and climate patterns. As a result, we

have found [10] that surrogate data works, at least by “guessing” through the use of

a genetic algorithm which combination(s) of transformed data will perform well as

surrogates.

Here, we make more educated guesses by comparing data sets, grouping

similar sets, and using those in our surrogate data algorithms. Clustering is one

method in which this may be performed.

The winner [42] of GEFCom 2012 [27] used k-means clustering to forecast

wind power generation. The idea behind the clustering technique is mathematically

grouping data based on known or calculated features. This could be Bayesian, as

was done through prior domain knowledge by [19]. Even if there is no prior

information, features can be extracted from the data and used to compare data sets

for similarity.

Eigenfaces [50] and eigenvoices [34] are applications in facial recognition and

speech processing, respectively, that involve recognizing features of the data that

vary for individuals but are recognized as the same feature across the population.

There are patterns in facial structure and in human voices that are computationally

detectable, despite the differences that appear among individual examples of faces

or voices.
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Both eigenfaces and eigenvoices illustrate the idea that mathematical

features are not necessarily the same features that are visible to the human eye.

While the human eye recognizes eye color and nose shape, a computer recognizes

mathematical similarity between the digital representation of two facial images.

Likewise with natural gas data, there are features and patterns that require

computational resources to detect. Experienced humans can recognize trend almost

instantaneously, but it would take much more time staring at graphs or using a

pencil and paper to realize other underlying patterns such as what happens in the

days preceding a cold event.

Brown et al. [10] suggest the use of surrogate data in natural gas forecasting.

Transforming data from operating areas that show similar customer or weather

characteristics may be able to address problems that arise when the testing set has

events or patterns not seen in the available training data. The GasDay lab currently

uses surrogate data to help build accurate forecast models for extreme weather

events. Similar to the application of eigenfaces and eigenvoices, this enables the lab

to apply natural gas demand patterns that are found across data sets.

We use the k-Nearest-Neighbors (kNN) algorithm to select data sets with

similar parameters of transformation. The kNN algorithm is well-known in the data

mining community and is reviewed by Wu et al. [53].

Available literature shows several methods of dealing with insufficient data.
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In many cases, there are not enough data for a specific area or model, but there are

data from other sources that are similar in some way. Our lab historically has

termed this the use of “surrogate” data, which we explain further in the next

section.

2.4 Surrogate or Analogous Data

The terms “surrogate” and “analogous” appear in the literature in different

contexts. Some of these contexts are explained briefly here to distinguish where our

research fits.

Forrester, Sóbester, and Keane [23] present several uses of surrogate

modelling techniques. One is to reduce computational complexity by using smaller

surrogate sets. Another is for handling noisy or missing data. The use that most

closely matches our research is the use of surrogate models to gain insight into the

variables and results in a given problem. As explained later in this chapter, we want

our surrogate data to improve forecasts in the case of variable combinations that

have not been seen historically or have been seen very infrequently. By using

surrogate data from other sources that exhibits similar patterns, we can create

models that are better able to respond to unusual patterns in variables.

Surrogate data tests [24] are used to determine nonlinearity of a data
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set [41]. Often, they involve the creation of synthetic surrogates (with similar

properties of the original data) that are used in statistical analysis. In some cases,

“surrogate surrogates” are used to calibrate surrogate data tests for accuracy [48].

Surrogates used in our research are not synthetic or randomly generated, but rather

transformed data from other sources. We use synthetic data sets to verify

functionality of our code that performs the transformations. Another difference

characterizing our research is that rather than use surrogates to examine properties

of the original data, we use surrogates alongside this data. Rather than use

surrogates to test our data, we use the original data and surrogates in combination

and test the results from forecasting models.

Duncan, Gorr, and Szczypula [20] pooled data from analogous time series

and found that the resulting group models improved forecast accuracy. This is a

close fit to our research. By pooling or aggregating data from multiple sources, we

improve accuracy in forecasts.

If we look back at Figure 1.2 from Chapter 1, it is apparent that we cannot

simply pool natural gas data sets that have vastly different ranges and even

patterns. Thus, we have to do something to make the data sets transformable.

Fortunately, work has been done to this end. In mathematics, a canonical form of a

matrix is used to describe the similarities that exist across matrices that initially

look very different.
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2.5 The Canonical Form of Data

The canonical form or Jordan form of a matrix is a way of representing a matrix in

a reduced form such that it may be translated back to the original [43].

We do not use the canonical form, but it is a helpful concept when

considering the problem of converting one data set to match features and

parameters of another. If we consider both data sets the “in between” form that is a

canonical form, we want our algorithm to be able to convert to and from this form

seamlessly. There is no well-defined canonical form of gas data, but the thought

exercise helps develop the concept that there are quantifiable similarities across

natural gas demand data sets that help us convert a donor set to match a target set.

2.6 Current Practices at GasDay

Currently, GasDay uses surrogate data to forecast unusual day types [39], including

near design days, days that are colder than normal, very windy or humid days, and

the first heating and non-heating days of the year (i.e., days where people are just

turning their furnaces on or off for the heating season). Specifically, GasDay

considers the day types listed in Table 2.1.

Current practice [29] is to perform temperature scaling, so the HDD reference

temperature and 95th percentile temperatures of the donor and recipient area(s)
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Table 2.1: Unusual day types at GasDay.

Coldest days

Days that are colder than normal weather

Days that are warmer than normal weather

Windiest days

Days that are much colder than the day before

Days that are much warmer than the day before

The first cold day of the year

The first warm day of the year

High humidity heating days

Low humidity heating days

Sunny heating days

Cloudy heating days

match. This is shown in Figure 2.1. Next, similar scaling is done on the natural gas

flow. As shown in Figure 2.2, when temperature and flow values are scaled, the

donor area comes close to matching the target area. Finally, multi-dimensional

scaling is done so various characteristics of the gas consumption in the donor area(s)

match the target area. These characteristics include baseload (amount of gas used

for non-temperature-related purposes, such as cooking, drying, and water heating),

heatload (amount of gas used for space heating), day-of-week, and other cooling-

and heating- degree day characteristics. These characteristics are not matched when

the 5th and 95th percentile values of temperature and flow are matched.

Unusual day types are selected from the transformed surrogate data. A

genetic algorithm then is used to determine the best combination(s) of surrogate

donors. These are evaluated based on how well they backcast demand on unusual
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Figure 2.1: The temperature values for a donor area have been scaled to match those

of the target area.

days for different test sets. GasDay considers several unusual day types, shown in

Figure 2.3.

Winter periods tend to have different characteristics. For example, some

winters are milder, whereas others seem to drag on and have multiple cold events.

As a result, cross-validation of surrogate sets could be used. Since we cannot test

how well the models with surrogate data will perform on events that have not yet

happened, we can backcast several different winter periods. In this manner, we can

be reasonably confident in the accuracy of a model if it performed well backcasting
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Figure 2.2: The temperature and flow values for a donor area have been scaled to

match those of the target area.

several different “types” of winters. However, it is difficult to select which of

historical winters the upcoming winter will be like. Hence, we perform ex ante

forecasts of the 2013-2014 winter. This shows us that had our methods been used,

we would have forecasted the past winter better than we did without using our

surrogate data methods discussed in this thesis.
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Figure 2.3: Unusual day types considered by GasDay.

2.7 Volatility in Time Series Data

Makridakis et al. [35] write, “It is believed that the greater the randomness in the

data, the less important is the use of statistically sophisticated methods.” The goal

of our research is not to create more sophisticated models. Rather, we can leverage

available data to create a better model for areas that may have very random

patterns, and not enough native data to model that inherent randomness in the

data.
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Rather than the term “randomness,” we use the term volatility. Volatility is

a measure of variation in time series, for example in foreign currency [36] and stock

market [45] applications. Different data sets exhibit different levels of volatility.

This impacts how well donor data act as surrogates for other data sets. The

methods of surrogate data transformation need to take this into account.

Duncan, Gorr, and Szczypula [20] found that time series with higher

volatility benefited the most from methods that involved pooling data. Natural gas

consumption data is a time series that is notably volatile. At different times during

the year, we can expect there to be different levels of variation in the gas consumed.

In the summer months, the baseload is expected to be fairly consistent. In summer,

residential consumers tend to use gas primarily for cooking and water heating. As

the temperature outside gets colder, heatload increases as people use gas to heat

their homes. Since the weather in most of the United States is more volatile in the

winter (as seen in Figure 2.4), the gas load is also more volatile (as seen in

Figure 2.5). Since gas consumption data exhibits volatility, we expect that by

pooling data through our surrogate data techniques, we will get more accurate

forecasts.
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Figure 2.4: Volatility in daily average temperature for three different weather stations

in the United States.

2.8 Using State-of-the-Art in Our Research

Our research leverages previous work in the areas described in this chapter. Our

surrogate data algorithms transform time series data to be used to improve models

specifically for days with unusual weather patterns. The next chapter describes the

methods we use to apply the use of analogous data to the natural gas demand

forecasting domain.
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Figure 2.5: Volatility in daily gas flow for three operating areas in the U.S.
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CHAPTER 3

Applying Surrogate Data to Improve Forecasts

This chapter discusses our methods of applying surrogate data to natural gas

forecasting models. We discuss current practice, followed by the improved methods

that are the focus of this thesis. For both, the methods require

1. transforming the data from its original (or donor) form to match the recipient

(or target) data,

2. selecting a number of sets to use as surrogates, and

3. evaluating the resulting model with surrogate data.

Each operating area for which GasDay produces forecasts has sample data.

This is generally several years of daily weather and gas flow data that are used to

build a mathematical model. This model is used to make daily forecasts for the

following calendar year. Notable is the winter, when gas demand is typically the

highest. Weather variables are unknown until they actually happen, which is also

when the data are most needed. This is because gas forecasts for the current day

typically are made before the previous gas day is over.
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The GasDay lab has accumulated extensive domain knowledge of over two

decades of research and working with natural gas utilities. This knowledge is

applied to the problem of how to develop good forecasts for days where we have

little relevant historical data.

GasDay has data from more than 150 operating areas from local distribution

companies (LDCs) from across the United States. The current practice [29] is to

select data from unusual events from the various operating areas and transform

them.

“Unusual events” are days with weather patterns that are abnormal, such as

much colder than normal weather, that have higher flows than normal, or perhaps

other nonlinear relationships with the weather. For example, days that are much

warmer than the previous day are considered unusual days. When it gets unusually

cold, a day may experience much higher flow than is expected simply because the

previous day was much colder. Customer behavior [10] and thermodynamics [9] may

account for the difference from a day with the same temperature that had a warmer

previous day. Research is in progress to explain these events.

Once gas flow from a set of unusual day types has been transformed to

match the target area, a genetic algorithm tries different combinations of

transformed donor data, searching for the best combination of data that works as

good surrogate data for building models to predict future unusual events. Good
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surrogate data contributes to models which forecast more accurately than a model

trained where there are not many unusual data points. It is important to note that

the original data (before transformations) has been preserved, so the

transformations do not impact the integrity of the raw data sets.

Section 3.2.3 explains further what it means to transform data to match a

set of features and make it appear that it originated from a different source.

Consider Figure 3.1. The two time series look very different, as the flow in the red

area is much higher than that of the blue area. However, similar patterns are

visible, with gas flow being highest in winter and lowest in the summer for both

areas. The goal of this chapter is to explain the methods with which we transform

the donor to match the target.

3.1 The Brown Surrogate Algorithm

In this thesis, the current GasDay surrogate data algorithm is called the Brown

Surrogate Algorithm. This section presents this algorithm. The algorithm is

introduced and explained in [29].

The Brown Surrogate Algorithm has five steps:

1. Scale temperature of donor(s) to match the target area. Temperature values

are scaled so they have properties similar to those seen in the target area.
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Figure 3.1: Time series of two operating areas from different places in the country.

Proprietary data has been scaled for anonymity.

2. Scale natural gas flow data of donor(s) to match the target area. Similarly to

the temperature scaling, this makes it look like the gas flow was originally

from the target area.

3. Use a multi-dimensional detrending algorithm [14] so regression coefficients of

the donor area(s) are close to those of the target area. This also makes

historical data closely resemble recent data and provides the benefit of

allowing all training data to behave as if they were from the most recent year.
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As a result, positive or negative growth patterns are accommodated. This

accounts for a multi-dimensional linear trend.

4. Identify and select unusual day types from Table 2.1.

5. Select and evaluate donors using a genetic algorithm.

Each of these are discussed in turn.

3.2 Improved Surrogate Selection and Transformation Algorithms

Our Universal Surrogate Algorithm improves upon current practice by accounting

for prior information to select the best surrogate donors. The Brown Surrogate

Algorithm was built under the assumption that a genetic algorithm would find a

good set of surrogate data with which to build better models. Our new algorithm is

“universal” in the sense that it may be used to transform any given daily natural

gas consumption data set to match any other such set. It is less computationally

intensive than the Brown Surrogate Algorithm, as it does not use a genetic

algorithm, and thus may be used more universally, without costly time constraints.

In addition to improved selection methods, we have improved upon the

transformation algorithm used to consider time series volatility.

The methods used in our research result in better accuracy of models over

current practices. Less computational resources are required, which enables more
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surrogate data use and further research potential. We can transform a data set

quickly and try new techniques instead of having to wait for a

computationally-intensive genetic algorithm.

In our Universal Surrogate Algorithm, we improve on existing methods also

by performing day-of-year scaling. In different areas of the country, winters have

different start and end dates and durations. By scaling the day-of-year

characteristics, we can simulate areas with different winter characteristics being

similar to target areas.

Our Universal Surrogate Algorithm has the following steps, which we can

contrast with the Brown Surrogate Algorithm:

1. Scale temperature of donor(s) to match the target area, just like the Brown

Surrogate Algorithm

2. Scale natural gas flow data of donor(s) to match the target area, as we do in

the Brown Surrogate Algorithm

3. Also scale by day-of-year to account for the fact that seasons start and end at

different times during the year in different climates

4. Improve upon the multi-dimensional detrending algorithm [14] to include

day-of-year terms
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5. Identify and select unusual day types, as done in the Brown Surrogate

Algorithm

6. Use natural gas time series features, rather than a genetic algorithm, to

determine which donor set(s) to use

The following sections outline how data are converted (by further explaining

steps 1-4 of the Universal Surrogate Algorithm), how the converted sets are selected

to act as donors (details of steps 5 and 6), and how the resulting set is evaluated.

3.2.1 Conversion of Donor Data to Match Target Data

We scale temperature, flow, and day-of-year values of the donor area(s) to match

the target. The temperature and flow scaling are performed by linear

transformation. The general equation is given in Equation (3.1). P5 and P95

represent the 5th- and 95th-percentile values, respectively. The donor data, xdonor, is

transformed to match the target data, xtarget.

xtransformed =
(xdonor − P5(xdonor)) ∗ P95(xtarget)

P95(xdonor)
+ P5(xtarget) (3.1)

Likewise, day-of-year values are transformed linearly so the median first

warm and cold days match those of the target area, respectively. The date is

converted to an integer from 1 (January 1) to 365 (December 31). A version of
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Equation (3.1) is then used. Rather than values of P5 and P95, the median first cold

and first warm days (Fcold and Fwarm, respectively) are matched. Before the

median first warm day of the year for the donor area, we transform the date values

using

scaledDate =
donorDate ∗ Fwarm(target)

Fwarm(donor)

Between the median first warm and cold days of the year, the transformation is

scaledDate =
(donorDate − Fwarm(donor)) ∗ (Fcold(target) − Fwarm(target))

Fcold(donor) − Fwarm(donor)

+ Fwarm(target)

Finally, between the median first cold day and the end of the year, we use

scaledDate =
(donorDate − Fcold(donor)) ∗ (365 − Fcold(target))

365 − Fcold(donor)

+ Fcold(target)

The transformed day numbers are then converted back into date values to be used

in model training. An example of a day-of-year transformation from one area to

match another is shown in Figure 3.2.

Next, we transform the data by applying a 17 parameter model (see
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Figure 3.2: Number of days shifted in day-of-year transformation.

Table 3.1 for a complete list of terms),

ŝ = β0 + β1HDD65 + β2HDD55 + β3CDD65 + β4∆MHDD

+ β5 sin

(
2πDOW

7

)
+ β6 cos

(
2πDOW

7

)
+ . . . (3.2)

Model 3.2 is fit to each set. By evaluating on each point, we can determine the

value contributed by each variable in the model. Then we can scale these values by
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(target − donor) for each of the coefficients. This is performed on the donor data by

multiplying each variable in Model 3.2 using the coefficients of the target area,

rather than those of the scaled donor area.

Results of transforming data are shown in Table 3.1. After scaling by

temperature and flow to match the 5% and 95% percentiles, the coefficients of the

potential donor area are closer to those of the target area. After tuning based on

our 17-parameter model, the coefficients match exactly. We also scale the day of the

year values of the donor so the median first cold days and first warm days of the

year match those of the target area. This is done because winters have different

lengths and beginning dates with different climates seen across the country.

Data transformed in this way are more realistic than synthetic data, since

they are not randomly generated. This preserves customer behavior characteristics

and other properties of the unusual events for which we want improved forecasts.

The transformations also preserve weather and flow variability that are difficult to

simulate through random number generation.

3.2.2 Accounting for Volatility

We account for volatility by transforming data as surrogates that have similar

coefficients of transformation from our 17-parameter model. This accounts for

volatility by using surrogate data that exhibits similar patterns. For example,
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Table 3.1: Surrogate data transformation model coefficients.

Coefficient Donor area

before trans-

formation

Donor area

after temp-

erature

and flow

scaling

Donor area

after tuning

with 17-

parameter

model

Target area

Constant 15341.29 17723.42 18875.85 18875.85

HDD65 830.61 569.37 582.77 582.77

HDD55 1266.80 1280.68 1062.97 1062.97

CDD65 -21.82 -23.70 -30.24 -30.24

∆MHDD -265.53 -233.62 -232.22 -232.22

sin(2 π DOW/7) 157.92 135.53 -187.94 -187.94

cos(2 π DOW/7) -427.11 -361.96 -2704.41 -2704.41

sin(4 π DOW/7) 148.71 135.29 -195.53 -195.53

cos(4 π DOW/7) -120.55 -99.42 -1065.36 -1065.36

sin(2 π DOW/7) x HDD65 2.78 2.38 6.75 6.75

cos(2 π DOW/7) x HDD65 -8.32 -7.07 -22.30 -22.30

sin(4 π DOW/7) x HDD65 -11.80 -10.21 -5.33 -5.33

cos(4 π DOW/7) x HDD65 -6.15 -5.22 -14.27 -14.27

sin(2 π DOY/365) 2796.92 2185.07 789.94 789.94

cos(2 π DOY/365) 4178.69 3081.10 2258.32 2258.32

sin(2 π DOY/365) x HDD65 79.71 77.12 87.91 87.91

cos(2 π DOY/365) x HDD65 162.16 159.57 177.49 177.49

consider operating area A that is assumed to be identical to a different operating

area B, with the exception that A is ten times the size of B. The coefficients for area

A are 10 times the coefficients for area B. If we simply divide the data from area A

by 10, we have the ideal set of surrogate data for area B. While we are not likely to

find two areas that are so similar, we use nearest neighbor clustering techniques to

reveal areas with similar coefficients.

GasDay accounts for volatility in forecasts by using ensemble models [26],
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which is also known as combining [16]. As Makridakis et al. explain [35], combining

reduces forecast errors because techniques such as averaging reduce the volatility

that is present in an individual model. For a given forecast, if one model is

under-forecasting and one is over-forecasting, the resultant combined model is more

accurate than either separately. Thus, volatility in the residual error is reduced

through combining/ensembling.

3.2.3 Similarity Features and Donor Set Selection

There are a number of features of natural gas time series that we make surrogate

data match via our transformation algorithm. They are explained in Table 3.2.

However, there are a number of features that do not match when we transform

surrogate data. Notable are temperature sensitivity and prior day weather

sensitivity, which are explained in Section 3.2.4. Future research may consider

methods of transforming data to match these features.

To determine which of the available data sets should be used as surrogates

for a given target, we consider the values of the features discussed in Section 3.2.4.

The features help us determine which data sets exhibit similar underlying

relationships between weather variables and gas demand. The coefficients of

transformation then allow the data to appear to have come from a different source.

Future work may consider comparing the differences between the coefficients of the
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Table 3.2: Features matched via our Surrogate Data Transformation Algorithm

Feature Brief Description what we match

sk natural gas flow for day k;

amount of natural gas con-

sumed that day, for that

area

5th- and 95th-percentile

flows

Temperature daily average temperature

in ◦F used to calculate the

HDD, CDD, and MHDD

variables

5th- and 95th-percentile

temperatures; HDD refer-

ence temperature

Wind speed Daily average wind speed in

miles per hour

5th- and 95th-percentile

wind speeds

DOW the day of the week (Sun-

day=1); used by itself and

as a cross term with HDD65

coefficients on 17+ parame-

ter model

DOY numeric day of the year median first cold and first

warm days of the year; co-

efficients on 17+ parameter

model

target and donor areas. Perhaps by normalizing these coefficients, we can extract

more features for determining which donors will make good surrogates.

3.2.4 Natural Gas Time Series Features

Natural gas demand data sets exhibit some interesting characteristics that can be

captured mathematically as attributes or features. Two such features are the

Tenneti Index of Temperature Sensitivity [47] and Prior Day Weather Sensitivity.

The Tenneti Index of Temperature Sensitivity [47] is a quantitative measure

that attempts to describe to what degree the weather variables temperature, wind,
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Figure 3.3: Tenneti Index of Temperature Sensitivity vs. aggregate annual flow.

and dew point impact natural gas demand forecasts. Tenneti’s models were designed

to quantify the impact of weather variables on natural gas demand models. The

temperature sensitivity of an area ranges from 0 to 1. The greater the improvement

by including temperature variables to the model, the closer the sensitivity is to one.

Consider Figure 3.3. Operating areas around the United States have varying levels

of sensitivity to weather variables, with the average being about 0.79. Similar to

this sensitivity value is the F-test, which also is used to quantify the improvement of

one model over another or the effects of some variables on the total [38].
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We introduce the term “Prior Day Weather Sensitivity” to describe a similar

quantitative measure. Rather than describing overall sensitivity of gas consumption

in an area to weather factors, Prior Day Weather Sensitivity is a measure of how

much consumption fluctuates day-to-day with change in temperature. Often,

day-to-day natural gas use is not perfectly correlated with temperature fluctuations.

This is because space heating is not the only use of natural gas and is partly due to

consumer behavior [10]. It is also partly due to the thermodynamic lag effects [9] of

home insulation and the thermal mass of a structure and its contents.

For example, consider the gas controller who, before the advent of computer

models, drew a scatter plot of historical flow values to help predict the next day’s

flow. Domain knowledge led this controller to know that the next day flow is not a

function of the next day’s temperature alone. Rather, as Figure 3.4 illustrates, it is

somewhere between no difference in flow and the expected difference due to the

weather. In this situation, 0.3 was chosen as the Prior Day Weather Sensitivity. As

Figure 3.4 shows, the red forecast point is 30% of the distance between today’s

forecast temperature and yesterday’s point.

We can calculate an exact value of this constant for a given operating area.

We do this by fitting a model to the historical data,

ŝk = β0 + β1HDD65k + β2HDD65k−1, (3.3)
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Figure 3.4: Prior Day Weather Sensitivity

which enables us to calculate

Prior Day Weather Sensitivity = − β2
β1 + β2

. (3.4)

In principle, there is a risk of the denominator of Prior Day Weather

Sensitivity being zero. If this occurs in one of GasDay’s data sets, our code throws

an exception. That did not happen in any of our experiments. Domain knowledge

says that both coefficients will be greater than zero.
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Figure 3.5: Prior Day Weather Sensitivity vs. aggregate annual flow.

Figure 3.5 plots the calculated value of Prior Day Weather Sensitivity by

operating area against the annual flow in 2012 for that area. The average is

approximately −0.22 for the operating areas in GasDay’s database.

The Tenneti Index of Temperature Sensitivity and Prior Day Weather

Sensitivity are two of many possible parameters that are used to characterize a

GasDay data set. Parameters such as these are calculated to enable comparison of

different data sets. We use a nearest neighbors clustering algorithm to determine

which data sets are good surrogate data for building a model for a different area. In
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this research, we find the 12 nearest neighbors using the Tenneti Index of

Temperature Sensitivity and Prior Day Weather Sensitivity. Future research may

consider using other parameters for similarity and varying numbers of nearest

neighbors.

The benefit of the features we use is that they may be generated in the same

way for each available data set. Pseudocode for feature selection is shown in

Algorithm 1: Surrogate Data Feature Selection.

Algorithm 1 Surrogate Data Feature Selection

for each op area do

if no weather data available then

remove missing data range (shorten data set so there are no gaps)

end if

look at entire “good” (assumed clean) data set

calculate (extract) features

save results

end for

select 12 nearest neighbors as donor sets

We use these features to help determine which transformed surrogate sets

will act as good surrogates for a target area. We then can use the transformed

surrogate data to supplement available historical data in the target set. Since we are

not trying to supplement available data for normal days, we specifically select data

from unusual days (see Section 2.6) to use as surrogates. Once the original data and
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surrogates are aggregated to a form from which a model may be built, evaluation is

performed as described in Section 3.2.5.

3.2.5 Evaluation Techniques

Many error metrics commonly are used in forecasting [16, 28]. We use MAPE and

RMSE to evaluate the use of surrogate data in developing forecasting. We can

determine appropriate validation methods by considering why we want to use

surrogates.

3.2.6 Problems Forecasting Unusual Days

The goal of this research is improved forecasts for unusual events consisting of one

or more days with patterns that have been seen at best rarely in historical data.

These are often the days which gas transmission systems have been designed to

handle at their peak. Brown [10] suggested using surrogate data from other

operating areas to improve natural gas forecasting models for these uncommon days.

In real-world data, various factors contribute to noise in the data. These

include inherent noise and measurement and reporting error. Chatfield [15, p. 217]

talks about how outliers can cause major problems with data, and as such should be

a focus of the initial examination of data (IDA). Akouemo [3], Kiware [32], and

Tan et al. [46] discuss more reasons that data might require cleaning. This leads to
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outliers that in many cases fit the description of unusual events, as some outliers are

particularly high or low values. We can distinguish outliers from unusual days by

looking at the weather patterns [39]. We know that natural gas data has trends

with respect to weather variables [14]. Unusual days will still reasonably follow this

trend, while outliers will not.

We do not want to forecast outliers or have the outliers adversely affect our

forecasts. To this end, we have assumed that the data has been cleaned, that

suspected anomalous data have been detected and either removed or replaced with

imputed data. The assumption of beginning with “clean” data is justified due to

algorithms currently applied to GasDay data, e.g., [3, 4]. Cleaning removes outliers,

so it is assumed that the desired unusual days data have not been removed. By

nature, unusual days may seem like outliers, but the goal of previous work in this

area is to remove true outliers. We acknowledge that by nature, these data sets will

never be perfect, but the aforementioned previous work has proven to improve the

accuracy of our models.

3.2.7 Validation of New Methods

As stated in the previous section, we want to forecast events unlike those in

available past data.

It is difficult to validate our Universal Surrogate Algorithm, since we have
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not yet seen such events, and we do not know for sure when they might happen. As

González-Rivera writes, “By their very nature, rare events occur very infrequently,

but when they do occur, their consequences are catastrophic.” [25] In the natural

gas industry, these rare events are often bitterly cold days. These are the days when

residential customers want gas the most, so they can stay warm. Consequences of

bad forecasts could include these customers being angry with their gas utilities,

causing loss of customers, or perhaps lawsuits.

Since it is impractical to wait until a rare event occurs to see how our work

performs, we have backcasted [5] events from the winter of 2013-2014. There were

many cold events throughout the United States during that winter. By acting as if

that winter had not yet occurred, we can see how our methods would have

performed predicting these unusual events. This ex ante, out-of-sample testing

enables us to verify that surrogate data works to forecast future events. We are able

to demonstrate that adding surrogate data to the training set of data, forecasting

model accuracy improves.

In this chapter, we discussed our methods of transforming data to act as

surrogates and selecting a subset of the possible surrogate data to use. Results of

validation of forecasting models tested with and without surrogate data are

discussed in the next chapter.
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CHAPTER 4

Evaluation of Our Improved Surrogate Data Methods

This chapter presents the results of our research into using surrogate data for

improved forecasting models on days with unusual weather patterns. We illustrate

results of the transformation algorithms described in the previous chapter. We then

compare forecasts made with only the original raw data to forecasts made by

augmenting the original data with surrogate data. This chapter illustrates that the

methods explained in Chapter 3 improve forecasts on unusual days.

4.1 Transforming Surrogate Data

To illustrate the results of our transformation algorithm, we will consider an area

near the East Coast. This area has about nine years of available historical data,

which is less than many of the data sets in GasDay’s databases. Hence, it is an ideal

recipient of surrogate data to supplement what is available. Figure 4.1 shows the

raw data for this target area (in red) and the first potential donor (in light blue),

which is located in the Southwestern United States. The donor area has a smaller

flow, and it does not get as cold as the target area. The donor area also has several

years of historical data more than that of our initial target area.
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Figure 4.1: Target area from the East Coast and potential donor area from the

Southwest.

Figure 4.2 shows the scaled donor area (in dark blue), which matches the

target area’s 5th- and 95th-percentile values for temperature and flow. The scaled

donor area now fits in the same general window as the target area, but it shows

more variation.

Figure 4.3 adds the fine-tuned transformed donor area data (in purple). This

data looks much better; it almost could have originated in the target area (red) data

set. It has been scaled to match the day-of-year characteristics of the target area,
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Figure 4.2: Target area, raw donor area from the Southwest, and donor area with

temperature and flow scaled to match that of the target area.

and the coefficients of the 17-parameter linear regression model that was explained

in Chapter 3 match that of the target area.

The next potential donor comes from the Midwestern United States. As the

original data in Figure 4.4 shows, this area is much bigger and gets colder than our

target area. Like the previous example, several more years of historical data are

available from this area.

Figure 4.5 adds the temperature- and flow-scaled data (in dark blue). Once
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Figure 4.3: The day of year for the donor area has been scaled, and the data has also

been fine-tuned with our 17-parameter model.

again, it has the same general range as the target, but still looks like it originated

from a different source.

The fine-tuned donor data are added to the plot in Figure 4.6. The trend has

clearly increased, bringing up the points on the coldest days (which appear at the

far right). This data has been transformed to match the same 17-parameter model

as the red data.

These two examples show how data from areas of the country with different
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Figure 4.4: Target area from the East Coast and potential donor area from the

Midwest.

climates and customer bases can be transformed successfully to match a given

target area with different parameters. We use the transformation algorithm from

Section 3.2, which ensures that the transformed data matches the target data

perfectly with our specific model.

We now discuss how our forecasting models are used to determine how using

this transformed data helps improve forecasting accuracy.
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Figure 4.5: Target area, raw donor area from the Midwest, and donor area with

temperature and flow scaled to match that of the target area.

4.2 Our Forecasting Model

We use GasDay’s proprietary models to backcast natural gas demand from the

winter of 2013-2014, both with and without surrogate data for training. These

models consist of an ensemble of linear regression and artificial neural network

models [52]; they are used at about 30 utilities around the United States to predict

daily gas operations that comprise 17.7% of the country’s natural gas consumed for

residential, commercial, and industrial purposes. These models consist of an



53

Figure 4.6: Target area from the East Coast and scaled and tuned donor area from

the Midwest.

ensemble of linear regression and artificial neural network models [52]; they are used

at about 30 utilities around the United States to predict daily gas operations that

comprise 17.7% of the country’s natural gas consumed for residential, commercial,

and industrial purposes.

We present results from operating areas from different climates. Five areas

from the midwest United States and one area from the East Coast were tested. We

show results from one of the midwest areas, as results were consistent across the five.
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Figure 4.7: Analogous data within the forecasting process. Our work adds the ele-

ments in red to the process in Figure 1.3.

We present forecasting results on the original data and show the improved results

using our surrogate data algorithm to augment training data for unusual days.

4.3 Training and Testing Data

Ideally, we test our data on unusual weather events in the current winter.

Practically, this is not a good strategy, since this would involve waiting for unusual

events to occur. To mitigate this, we backtest on the past winter. This provides the

benefit of enabling us to compare forecasts with the actual natural gas flow that was

consumed on the range of dates. The winter of 2013–2014 was marked by several

notable cold events in many areas of the United States. Since we now have
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forecasted and actual flow values for these events for many locations, that winter

makes for ideal testing data.

4.4 Measuring Forecast Accuracy

As mentioned in Chapter 3, we want our forecasts to do well on unusual day types.

We are good at forecasting typical days, as there are many in the database. If we

show that surrogate methods result in better forecasts for unusual day types, we can

use ensemble models to predict unusual events with surrogates.

We use several error metrics to gauge accuracy of linear models. Error

metrics are compared for forecasts made by models trained with and without the

surrogate data. The following are the error metrics used:

mean absolute percent error (MAPE):

MAPE =
1

n

n∑
k=1

∣∣∣∣ ŝk − sk
sk

∣∣∣∣× 100

and root-mean-square-error (RMSE):

RMSE =

√√√√ n∑
k=1

(ŝk − sk)2

n
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4.5 Analysis of Results

Most of GasDay’s data sets have at least five years of data. While weather patterns

change year-to-year, most of the data are in the normal or expected range of

temperature. It is important that our forecasting model is able to model and

predict accurately on these days. There is also less data for these areas. In this

section, we show results and look specifically at forecasting results using surrogate

data for these days with unusual weather patterns.

4.5.1 Results from an Operating Area in the Midwest

Figure 4.8 shows the results by month for an area in the U.S. Midwest. Results are

shown for models built without surrogate data (dark blue bars), using the Brown

Surrogate Algorithm that has chosen 12 surrogate donor sets via the genetic

algorithm (brown bars), using the Brown Surrogate Algorithm to transform 12

surrogate donors that have been selected by our feature selection method (yellow

bars), and using the Universal Surrogate Algorithm (turquoise bars). Figure 4.9

shows results for the same testing set, but plotted by the unusual day types

mentioned in Section 2.6. Both surrogate data algorithms improve results across all

days when compared with models trained using only the available historical data

from this operating area. The Universal Surrogate Algorithm results are

consistently worse than the Brown Surrogate Algorithm, however across all days
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and for most of the months and unusual day types, it outperforms models trained

without using surrogate data.

Results from models trained using the Brown Surrogate Algorithm using

surrogate donors selected using feature selection (yellow bars) validate our approach

to selecting potential donor sets. Results using this method are approximately the

same, and in some cases better than using the genetic algorithm of the Brown

Surrogate Algorithm.

Note that the mean errors in both Figures 4.8 and 4.9 are consistently

negative. (This is also true for the results in the next section.) We would expect

that the mean error from the models would fluctuate between positive and negative

values, and overall be close to zero. These results are average results across seven

different neural network models. The consistent negative results indicate that the

neural network models are under-forecasting. This may be because the 2013-2014

winter was noticeably colder than normal in the United States. GasDay’s ensemble

model, built into the GasDay software, is able to tune itself over time based on

residual error and correct for models that consistently over- or under-forecast.
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Figure 4.8: Forecast accuracy by month for an area in the Midwest.
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Figure 4.9: Error by Unusual Day type for an area in the Midwest.
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4.5.2 Results from an Operating Area on the East Coast

Figures 4.10 and 4.11 show results by month and unusual day types, respectively,

for an area on the East Coast. Models trained using surrogate data from Universal

Surrogate Algorithm consistently perform better than models using the Brown

Surrogate Algorithm, with the exception of February 2014. Models using the

Universal Surrogate Algorithm also perform better on unusual day types.

The data for the baseline model in this case was produced from

disaggregating [12] available data that was not at daily frequency. As a result, our

transformed surrogate data has not been matched to available historical data, as

this data does not exist. Rather, surrogate data has been transformed to match

parameters of the operating area. While the artificial historical data appears to

generate better models, these results illustrate another benefit of surrogate data: it

can be used when historical data is only available in a lower frequency than desired

for forecasting models.

As with the area in the Midwest, this test validates the donor selection

method of the Universal Surrogate Algorithm. Selecting potential donors based on

features is more efficient than a genetic algorithm, and works as well (if not better)

in this case.
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Figure 4.10: Forecast accuracy by month for an area on the East Coast.
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Figure 4.11: Error by Unusual Day type for an area on the East Coast.



63

4.6 Concluding Remarks

Using surrogate data improves forecast accuracy for days with unusual weather

types. In some cases, the resulting forecasts are worse than models trained without

surrogate data, but forecast accuracy is almost always close or better using

surrogates. This affirms that surrogate data should be used to increase forecast

accuracy, especially on unusual day types. Surrogate data should be used, as it is

the best available method for solving the problem of insufficient data when building

forecasting models.

The modifications present in the Universal Surrogate Algorithm do not

consistently improve forecast accuracy across all operating areas tested. Future

research should investigate why transforming day-of-year variables does not improve

results. Our research does validate our improved method of donor selection.

Selecting potential donors using feature selection requires less computational

resources and works as well as a genetic algorithm.
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CHAPTER 5

Benefits of Analogous Data and Future Considerations

This chapter discusses conclusions from our research. Future work

possibilities and suggestions are presented.

One of the benefits of our research is a greater widespread use of analogous

data in GasDay models. Rather than having to run a genetic algorithm to

determine good surrogate donors for a given area, our methods enable the use of

surrogate data for any area to be determined with significantly less computational

time involved. Our use of feature selection and improved transformation algorithms

allow for better use of surrogate data.

5.1 Contributions of Our Research

This research shows that surrogate data is a reasonable technique for enhancing

forecasts where available data are insufficient. If there is a short historical range, or

the historical data only includes mild weather conditions, the use of surrogate data

may improve forecast accuracy. This is especially true for days with unusual

weather patterns.

Our transformation algorithms are effective for target operating areas from
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places with vastly different climates. Because the algorithm transforms based on

weather conditions and features of the target set, it is robust in its ability to make

donor data match characteristics from vastly different places. The end product is

surrogate data that is viable for supplementing available data in the target data set.

Our work also illustrates that surrogate data may be used in the case where

the original data are only available at a lower frequency than desired. Available

data can be disaggregated [12], and the parameters of the disaggregated data may

be used to transform analogous data.

5.2 Improvements on the Universal Surrogate Algorithm

Our method outputs a list of potential donor sets, ranking how similar they are to

the target set. When we transform n surrogate donors, they are selected based on

this ranking. A logical next step would be to develop a score for how well a given

donor set may work when transformed to match a target area. Likewise, we should

consider using other error metrics. MAPE and RMSE are commonly used in the

field of energy forecasting. However as Hyndman and Koehler [28] mention, metrics

such as Mean Absolute Error (MAE) are recommended in forecasting due to being

less sensitive to outliers. MAE and RMSE are metrics that have the same units as

the residuals, which means that the dollar value of the forecasting error is much

more easy to quantify than with MAPE, for example.
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In addition to these improvements, our work has revealed several directions

of future research, which will be explained in the next section.

5.3 Future Research

Our work presents many opportunities for further research. Some domain

knowledge from natural gas forecasting can be applied to electricity demand

forecasting. It may be the case that surrogate gas data can help train electric

demand models (or vice-versa). Also, similar techniques applied here may be

applied to surrogate data used in electricity forecasting. For example, electricity

demand also has unusual days in both the winter and the summer, since electricity

is used for both air conditioning and heating.

We use the HDDW65 variable, as natural gas consumption is higher in the

winters due to space heating. Including a cooling degree day term adjusted for wind

may enhance models used to transform surrogate data in the electricity load

forecasting domain. As both natural gas and electricity loads are highly dependent

on weather, there may be some value in transforming natural gas data to enhance

electricity demand forecasting models. Further research is needed.

González-Rivera writes, “The good news is that the ‘rare event’ is

predictable; at the very least, it can be measured probabilistically” [25]. It may be



67

possible to generate a canonical probabilistic model of rare events in natural gas

consumption data. This model could be tailored to specific areas based on different

consumption parameters. We could then use this model to generate probabilistic

surrogate data, which would help predict one-in-n events. Likewise, a probabilistic

model of natural gas consumption could improve disaggregation algorithms.

An application of this work which could leverage the concepts of hierarchical

models mentioned in the literature [19, 27] would be to develop a pooled model,

perhaps for an entire state, region, or country. Lower levels of models would

eventually get to the level of the operating areas focused on in our work. The

benefits of the hierarchical model include filling in gaps where data may be lacking

and modeling trends that may be seen in other areas of a given state, or similar

states. This concept has been discussed previously by Brown [8].

Bootstrapping [21] is a technique based on the statistical concept of the

jackknife. These ideas are similar to our method of surrogate data. Essentially,

repeated random samples can be used to supplement available data. Rather than

picking similar areas, one could perhaps bootstrap samples of areas and build a

distribution of unusual events for a given utility or operating area.

GasDay trains neural network models as part of their forecasting

package [52]. There may be benefit to increasing the number of epochs or neurons in
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these models due to the increased amount of data available with our surrogate

models.

We transform data with the intent of matching a number of features that

have been found to impact natural gas demand. Future research can explore

transforming data to match other features, as was mentioned in Section 3.2.3.

Future work may also match these features after transformations, as was mentioned

in Section 3.2.3. We also scale to match the 5th- and 95th-percentile values of

temperature and flow. Rather, we could match the one-in-n threshold temperature

and flow values [18] in our scaling. We could also select a number of transformed

one-in-n data to be used as surrogates, in addition to the unusual days data.

We showed that our models using surrogate data result in better forecasts on

days with unusual weather patterns. We suggest that a rule-based ensemble

model [1] takes this into account. Surrogate data can be a great help for multi-day

events with unusual weather patterns. An ensemble model could switch off

surrogate data when it might not be as much help. In this way, we could use

surrogate data in such a way that it does not make our forecasts work, but is only

used where it is certain to improve forecasts.

Our work implicitly leverages the fact that different winters have different

characteristics. Some winters are milder, but have a few notable bitterly cold

events. Contrarily, there are winters that are consistently much colder than normal
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but may not see cold events that one would expect to happen less frequently than

once per year. It would be beneficial to have a way to characterize winters and

classify them. If the upcoming winter is expected to be of a certain type, surrogate

data may be drawn from similar type winters that have been seen in the past or in

different areas of the country.

We scale our data sets based on temperature, wind, gas flow, and day of the

year. There are other variables used in our natural gas forecasting algorithms, and

there may be benefit in exploring scaling these variables as well. For example, there

may be a way to scale the Prior Day Weather Sensitivity feature mentioned in

Section 3.2.4.

5.4 Conclusion

In conclusion, the problem of insufficient data can be addressed by transforming

data of a similar nature from other sources. The results shown in Chapter 4 show

that natural gas demand data sets from operating areas around the country exhibit

similar trends that may be successfully transformed and used to supplement

available data from a target area. This work also reveals several notable possibilities

for future research.
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