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Identification of a Histidine Metal Ligand in the
argE-Encoded N-Acetyl-L-Ornithine Deacetylase
from Escherichia coli
Wade C McGregor4, Danuta M Gillner2,3, Sabina I Swierczek1, Dali Liu2* and Richard C Holz1,2*

Abstract

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE)
from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of
the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic
absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-
coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme
provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using
the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from
Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.

Keywords: Zinc; Bioinorganic Chemistry; Hydrolysis; Deacetylase; Active site ligands; Isothermal titration calorimetry;
Mechanistic enzymology

Prokaryotes synthesize arginine through a series of
eight enzymatically-catalyzed reactions that differ from
those of eukaryotes by two key steps: i) acetylation
of glutamate and ii) the subsequent deacetylation of
the arginine precursor Nα-acetyl-L-ornithine (L-NAO)
by the argE-encoded Nα-acetyl-L-ornithine deacetylase
(ArgE) (Figure 1) (Cunin et al. 1986; Davis 1986;
Ledwidge and Blanchard 1999). The arginine biosyn-
thetic pathway is found in all Gram-negative and most
Gram-positive bacteria including all of the so-called
ESKAPE pathogens (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species), which
account for more than 60% of the multidrug resistant hos-
pital acquired infections in the United States (Velasco et al.
2002; Cunin et al. 1986; Sakanian et al. 1990; Xu et al. 2000;
Sakanyan et al. 1996; Hani et al. 1999; Valentsev et al. 1995;
Picard and Dillon 1989). Because ornithine is required, not
only for the synthesis of arginine in bacteria, but also for

the production of polyamines involved in DNA replication
and cell division, the L-NAO deacetylation step is critical
for bacterial proliferation (Girodeau et al. 1986). Indeed,
when an arginine auxotrophic bacterial strain void of L-
NAO deacetylase activity was transformed with a plasmid
containing argE, an Arg+ phenotype resulted (Meinnel
et al. 1992). However, when the start codon (ATG) of argE
in the same plasmid was changed to the Amber codon
(TAG), the resultant plasmid was unable to relieve arginine
auxotrophy in the same cell strain indicating that ArgE is
required for cell viability. Given the fact that ArgE is only
found in prokaryotes and is required for bacterial cell
growth and proliferation, it represents a potential enzymatic
target for the development of a new class of antimicrobial
agents (Girodeau et al. 1986).
At the present time, no X-ray crystallographic data is

available for any ArgE enzyme but it shares sequence hom-
ology with several dinuclear Zn(II) metallopeptidases in the
M28 family and biochemical studies revealed that the ArgE
from E. coli is a Zn(II) containing enzyme (Javid-Majd and
Blanchard 2000; McGregor et al. 2005; Holz 2002; Holz
et al. 2003). Based on sequence alignments of the ArgE
from E. coli with the aminopeptidase from Aeromonas
proteolytica (AAP) (Desmarais et al. 2006), the dapE-
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encoded N-succinyl-L,L-diaminopimelic acid desuccinylase
(DapE) (Nocek et al. 2010), the N-acetyl-L-citrulline
deacetylase (ACD) from Xanthomonas campestris (Shi
et al. 2007), and the carboxypeptidase from Pseudomonas
sp strain-RS-16 (CPG2) (Rowsell et al. 1997), the residues
that function as ligands in the dinuclear active site of AAP,
DapE, ACD, and CPG2 are strictly conserved in ArgE
(Figure 2) (Born et al. 1998; Chevrier et al. 1994; Rowsell

et al. 1997). Since AAP, DapE, and CPG2 possess a
(μ-aquo)(μ-carboxylato)dizinc(II) core with one terminal
carboxylate and one histidine residue at each metal site, a
similar active site was proposed for ArgE (Tao et al. 2012).
In an effort to provide insight into the structural proper-

ties of each divalent metal ion in the active site of the
ArgE form E. coli, we have prepared and purified the
H355A, H355K, H80A, and H80K ArgE mutant enzymes.
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Figure 1 Reaction catalyzed by ArgE.

Figure 2 Sequence alignment between the structurally characterized enzymes DapE from H. influenzae, ACD from X. campestris, and
CPG2 from Pseudomonas sp. strain RS-16 with the ArgE from E. coli.
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Only the H355A mutant ArgE enzyme was expressed as
a soluble enzyme and, consequently, it was the only
ArgE mutant investigated via kinetic, electronic absorp-
tion, and isothermal titration calorimentry (ITC). A
three-dimensional homology model of ArgE was also
generated using the X-ray crystal structure of the DapE
from Haemophilus influenzae. Combination of these
data provides verification that H355 is an active site lig-
and and provide new insight into the divalent metal
binding properties of co-catalytic metallohydrolase ac-
tive sites.

Materials and methods
Reagents
All chemicals used were purchased commercially and
were of the highest quality available. All metal reagents
were obtained from Strem Chemicals, Newburyport,
MA with ≥99.999% purity. Stock solutions of Co (II)
(50 mM) and Zn(II) (10 mM) were prepared by dis-
solving the metal chloride salts (CoCl2

. 6H2O or ZnCl2)
in nanopure water.

Enzyme purification
The aminopeptidase from Aeromonas proteolytica (AAP)
was purified according to the previously published pro-
cedure (Chen et al. 1997). Protein concentrations were
estimated from the absorbance at 280 nm using an ex-
tinction coefficient ε280 = 41,800 M-1cm-1 (Bennett and
Holz 1997). Wild-type recombinant ArgE from E. coli
was expressed and purified, as previously described,
from a stock culture of E. coli BL21 Star™ cells
(Invitrogen, Carlsbad, CA) kindly provided by Professor
John Blanchard (Javid-Majd and Blanchard 2000). Pure
ArgE enzyme (> 98%), as determined by SDS-PAGE gel
electrophoresis, was stored at −80°C until used. The
concentration of ArgE was estimated from the absorb-
ance at 280 nm using an extinction coefficient ε280 =
41,250 M-1cm-1 (McGregor et al. 2005). Enzyme concen-
trations determined by molar absorptivity were in close
agreement to that obtained using a Bio-Rad assay.

Site-Directed Mutagenesis
The pET-27a(+) plasmid containing the argE gene was
extracted and transformed into E. coli BL21 Star™ cells
for expression of protein variants, which were purified in
the same manner as WT ArgE. The Quick Change™
Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA,
USA) and the following primers: 5’-GGC TCA ATT
AAT CAG GCT XXX CAA CCT GAT GAA TAT CTG
G-3’and 5’-C CAG ATA TTC ATC AGG TTG YYY
AGC CTG ATT AAT TGA GCC-3’ with GCT and AAA
for XXX and AGC and TTT for YYY were employed for
production of the H355A and H355K variants respect-
ively. Likewise, 5’-G CTG GCG GGG XXX ACC GAT

ACG GTG CC-3’ and 5’-GG CAC CGT ATC GGT YYY
CCC CGC CAG C-3’ with GCT and AAA for XXX and
AGC and TTT for YYY were employed for production
of H80A and H80K variants respectively. Products from
these Site-Directed Mutagenesis reactions were trans-
formed into E. coli XL1-Blue competent cells which
were subsequently spread on LB-agar plates containing
100 μg/mL of Ampicillin. Following over-night incuba-
tion at 37°C, one of many colonies from each plate was
selected for growth in 50 mL liquid LB medium,
containing 100 μg/mL of Ampicillin, for ≥10 hours at
37°C and shaking at 225 rpm. Plasmids were isolated
from the resultant cultures using the Qiaprep® Spin
Miniprep kit (Qiagen, Valencia, CA) and incorporation
of the variant gene sequence was confirmed by DNA
sequencing.

Enzymatic assay of ArgE
ArgE activity was measured by the method of Javid-Majd
and Blanchard (Javid-Majd and Blanchard 2000). In this
assay, the hydrolysis of a 2 mM L-NAO solution, in 50
mM Chelex-100 treated phosphate buffer at pH 7.5, was
measured spectrophotometrically at 25°C as the decrease
in absorbance at 214 nm (Δε214 = 103 M-1cm-1), corre-
sponding to the cleavage of the L-NAO amide bond. Pro-
tein concentrations were determined using the theoretical
value ε280 = 41,250 M-1 cm-1 (Gill and von Hippel 1989).
The specific activity of purified wild-type ArgE with
L-NAO was typically found to be 2,000 units per mg of
enzyme. One unit was defined as the amount of enzyme
that releases 1 μmole of ornithine in 60 sec at 25°C. Initial
rates were fit directly to the Michaelis-Menten equation to
obtain the catalytic constants Km and kcat.

Preparation of Apo-enzymes
Apo-enzyme samples were prepared for each purified
enzyme by methods previously described in the litera-
ture (Prescott et al. 1983; Javid-Majd and Blanchard
2000). Briefly, AAP was dialyzed for 72 h at 4°C against
10 mM 1,10-phenanthroline monohydrochloride in 50
mM HEPES buffer, pH 7.5, and then exhaustively dia-
lyzed against Chelex-treated (Chelex-100 column) 50
mM HEPES buffer, pH 7.5. (Bennett and Holz 1997).
Apo-ArgE enzyme samples were prepared by adding 15
mM EDTA and incubating for 24 h at 4°C. The EDTA
was removed by exhaustive dialysis against Chelex-
treated (Chelex-100 column) 50 mM HEPES buffer, pH
7.5, containing 150 mM KCl at 4°C for 36 h. Metal-free
buffers were prepared by passing the buffers through a
Chelex-100 column. The resulting apo-enzymes were in-
active, and were found to contain no detectable metals
ions via Inductively Coupled Plasma Atomic Emission
Spectrometry (ICP-AES).
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Spectroscopic measurements
Electronic absorption spectra were recorded on a
Shimadzu UV-3101PC spectrophotometer equipped with
a constant temperature holder and a Haake (Type 423)
constant temperature-circulating bath. All solutions were
degassed prior to performing an experiment. Electronic
absorption spectra were normalized for protein concentra-
tion and the absorption due to uncomplexed Co(II) (ε512 =
6.0 M-1 cm-1) (D’souza et al. 2000).

Isothermal Titration Calorimetry
Isothermal Titration Calorimetry (ITC) measurements
were carried out on a MicroCal OMEGA ultrasensitive
titration calorimeter at 25 ± 0.2°C. The divalent metal
ion titrants and apo-enzyme solutions were prepared in
25 mM Chelex-100 treated HEPES buffer at pH 7.5.
Stock buffer solutions were thoroughly degassed before
each titration. The enzyme solution (70 μM) was placed
in the calorimeter cell and stirred at 200 rpm to ensure
rapid mixing. Typically, 4–6 μL of titrant was delivered
over 7.6 s with 6 min. intervals between injections to
allow for complete equilibration. Each titration was con-
tinued until 4.5-6 equiv. of M(II) had been added to en-
sure that no additional complexes were formed in excess
titrant. A background titration, consisting of the identi-
cal titrant solution but only the buffer solution in the
sample cell, was subtracted from each experimental ti-
tration to account for heat of dilution. Individual AAP
solutions were prepared by diluting stock enzyme solu-
tions with 50 mM Chelexed HEPES buffer (pH 7. 5),
and ArgE solutions were prepared by diluting stock en-
zyme solutions with 25 mM Chelexed HEPES buffer (pH
7.6) containing 150 mM KCl.

Molecular modeling
A three-dimensional homological structure of the ArgE
from E. coli was developed using the X-ray crystal struc-
ture of the DapE from H. influenzae (PDB code:3IC1) as
a template (Figure 3) (Rowsell et al. 1997; Eswar et al.
2003; Krissinel and Henrick 2004; Nocek et al. 2010). Se-
quence analysis of the target and template show that
these two proteins are of similar length, share good se-
quence identity (~24%), and exhibit no significant se-
quence gaps. The ModWeb-based homology-building
server was used to construct a structural homology
model of the ArgE from E. coli. Comparison of the en-
ergy minimized ArgE homology model to the X-ray crys-
tal structure of DapE, using the MathMaker in UCSF
Chimera, reveals that the ArgE homology model displays
the typical dimerization and catalytic domains of DapE
with a Needleman-Wunsch (Needleman and Wunsch
1970) score of 490.6 and an average RMSD of 0.974 Å
for the core atom pairs (Figure 3).

Results and discussion
Protein production
Of the four ArgE mutant plasmids produced (H355A,
H355K, H80A and H80K) and transformed into E. coli
BL21 Star™ cells, only ArgE H355A was produced as a
soluble enzyme. SDS-PAGE analyses of protein from
E. coli cultures hosting plasmids containing the other
three ArgE variants indicated that the enzymes were
produced in abundance, but in an insoluble form. Vari-
ous attempts were made to refold inclusion bodies of
the three insoluble ArgE variants, but none proved
fruitful.

Figure 3 Homology model of the [ZnZn(ArgE)] from E. coli based on the X-ray structure of DapE. A) Overlay of the ArgE homology
model (Green) and the X-ray crystal structure of DapE (Magenta). The two Zn(II) ions and the bridging water from ArgE are shown as spheres.
B) Conserved active site residues for ArgE (Green) and DapE (Magenta). Nitrogen atoms are in blue, oxygen atoms are in red. The residues are
labeled with single-letter amino acid codes with the labels for residues from DapE in parenthesis.
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Kinetic studies on ArgE H355A
Based on ICP-AES data, the as-purified H355A ArgE
mutant enzyme contains no Zn(II) ions. These data
imply that the remaining metal binding site in ArgE has
a much higher Kd value and is unable to bind Zn(II) in
the absence of saturating conditions, similar to DapE,
and consistent with weak cooperative binding as sug-
gested by EXAFS (Tao et al. 2012; Gillner et al. 2009).
The hydrolysis of L-NAO by H355A was monitored in
the presence of three equivalents of Zn(II) or Co(II),
after a one-hour incubation period, at pH 7.5 (Figure 1).
Interestingly, no enzymatic activity was detected for
H355A ArgE in the presence of three equivalents of Zn
(II). The lack of measurable activity for the H355A mu-
tant enzyme may be the result of the reaction conditions
used. Since the amide bond cleavage of L-NAO is moni-
tored at 214 nm, enzyme concentrations must be < 10 nM
so as not to overwhelm the amide bond absorption of
L-NAO with background protein absorption. The severely
reduced/eliminated enzymatic activity is consistent with the
impaired ability of this variant to bind Zn (II). This further
substantiates the hypothesis that this point mutation has
knocked out a key metal ligand.
Further verification of this hypothesis comes from

examining the hydrolysis of L-NAO by the Co (II)-
loaded H355A variant. The WT Co (II)-loaded ArgE
enzyme is 2.4-times more active than the WT Zn (II)-
loaded form. For Co (II)-loaded H355A ArgE, a kcat
value of 10 ± 1 s-1 was obtained in the presence of three
equivalents of Co(II) using L-NAO as the substrate (Km =
0.5 ± 0.1 mM). Comparison of the kinetic parameters for

the Co(II)-loaded WT and H355A ArgE enzymes indicate
that the decrease in activity of H355A is due to a ~380-
fold decrease in kcat. Interestingly, the Km value deter-
mined for the Co (II)-loaded H355A mutant enzyme is
smaller than Co(II)-loaded WT ArgE by ~2-fold. Calcula-
tion of the catalytic efficiency (kcat/ Km) for the Co(II)-
loaded H355A mutant enzyme results in a value ~160-fold
less than the Co(II)-loaded WTArgE. The histidine to ala-
nine mutation at this position, while having some impact
on substrate binding, has primarily affected a key aspect of
the active site of the enzyme (i.e. metal cofactor binding).

Electronic absorption spectra of Co(II)-loaded ArgE
Insight into whether H355 acts as an active site Zn(II)
ligand was also investigated by examining the electronic
absorption spectra of the Co(II)-substituted forms of the
enzyme (Figure 4). The addition of one equivalent of Co
(II) to apo-H355A ArgE (in Chelex-100 treated 50 mM
HEPES buffer at pH 7.5) results in a broad absorption
band with maxima at 560 nm (ε560 = ~95 M-1 cm-1)
along with shoulders at 515 nm (ε515 = ~75 M-1 cm-1)
and 620 nm (ε515 = ~55 M-1 cm-1) suggesting that the
Co(II) ion bound to H355A ArgE resides in a penta-
coordinate geometry (Bertini and Luchinat 1984;
Horrocks et al. 1980). The addition of a second equiva-
lent of Co(II) to H355A ArgE did not alter the overall
shape of the observed absorption spectrum but did ap-
proximately double the molar absorptivity, consistent
with a coordination number of five. In contrast, the WT
ArgE from E. coli in the presence of one equivalent of Co
(II) exhibited three distinct peaks at 560, 619, and 705 nm

Figure 4 UV–vis absorption spectra of 1 mM samples of (A) WT ArgE in the presence of 1 equivalent of Co(II), (B) WT ArgE in the
presence of 2 equivalents of Co(II), (C) H355A ArgE in the presence of 1 equivalent of Co(II), and (D) H355A ArgE in the presence of 2
equivalents of Co(II). (Reaction conditions: 25°C in 50 mM HEPES buffer, pH 7.5, and 150 mM KCl).
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with ε values of ε560 = 114 M-1cm-1, ε619 = 119 M-1cm-1,
and ε705 = 52 M-1cm-1, respectively (McGregor et al.
2005). The addition of a second equivalent of Co(II) in-
creased the intensity of each of the observed absorption
bands, providing ε values of ε560 = 229 M-1cm-1, ε619 =
290 M-1cm-1, and ε705 = 121 M-1cm-1, respectively
(Figure 4). Thus, the UV–vis spectrum of H355A ArgE is
significantly different from WT ArgE in the presence of
one and two equivalents of Co(II) (Figure 4) and the loss
of distinct d-d transitions in the UV–vis spectrum of
H355A is likely the result of a more flexible distorted five-
coordinate geometry with water molecules occupying
non-protein coordination sites. Taken together, these data
are consistent with the loss of an active site histidine
ligand.
The altered ability of the H355A ArgE to bind Co(II)

was also investigated by titrating Co(II) into apo-H355A
ArgE samples and monitoring the molar absorptivity
of the λmax for the Co(II) d-d bands, which allowed
the dissociation constant (Kd) for this divalent metal
binding site to be obtained by fitting these titration data to
equation 1 (Winzor and Sawyer 1995):

r ¼ pCS= Kd þ CSð Þ ð1Þ

where p is the number of sites for which interaction with
Co(II) is governed by the intrinsic dissociation constant
Kd, Cs is the free metal concentration and, r is the bind-
ing function calculated by conversion of the fractional
saturation (fa) (Winzor and Sawyer 1995). Values for Kd

and p were obtained by fitting these data via an iterative
process that allowed Kd and p to vary (Figure 5). The

best fits obtained for Co(II) binding to the H355A ArgE
provided a p value of 0.9 and a Kd value of 1.6 ± 0.3 μM,
which is 4-fold larger than that observed for WT ArgE
(Kd = 0.4 μM) (McGregor et al. 2005) consistent with a
loss of an active site ligand. Since alteration of H355 will
greatly perturb and potentially alter the ability of metal
binding, this Kd value likely corresponds to a single
metal binding event. Moreover, the Kd value obtained
for Co(II) binding to H355A is ~4 times stronger than
that obtained for Zn(II) binding to WT ArgE. This dif-
ference is typically related to Zn(II)’s preference for four
or five-coordinate geometries vs. Co(II)’s preference for
five or six-coordinate structures (Holz 2002). These
data, taken together with the lack of observed activity
for H355A ArgE in the presence of Zn(II), suggest that
H355 is in fact an active site ligand.

Isothermal Titration Calorimetry
Additional insight into whether H355 is a ligand in the
active site of ArgE and which metal binding site it re-
sides in, were gleaned by obtaining Kd values and
thermodynamic profiles using ITC (Figure 6). These data
were analyzed with a one, two, or three-site binding
model after subtraction of the background heat of dilu-
tion, via an interactive process using the Windows-
based Origin software package supplied by MicroCal.
This software package uses a nonlinear least-squares al-
gorithm, which allows the concentrations of the titrant
and the sample to be fit to the heat-flow-per-injection to
an equilibrium binding equation. The Ka value, enzyme-
metal stoichiometry (n), and the change in enthalpy
(ΔHo) were allowed to vary during the fitting process.
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Figure 5 Plot of Δε560 vs. the concentration of free Co(II) ions in solution for Co(II) titration into apo-H355A ArgE (50 mM KH2PO4

buffer, pH 7.5).
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The equilibrium binding constant, Ka, and the enthalpy
change ΔH, were used to calculate ΔG and ΔS using the
Gibbs free energy relationship (equation 2):

ΔG�¼−RT In K a½ � ¼ ΔH�−TΔS� ð2Þ
where R = 1.9872 cal mol-1 K-1. The relationship be-
tween Ka and Kd is defined as:

Kd ¼ 1=K a ð3Þ
For the H355A ArgE mutant, the best fits provided n

values of 2 for two non-interacting sites with Kd values
of 39 and 330 μM (Figure 6; Table 1). The ITC data do
not suggest cooperative binding whereas the EXAFS
data do; however, weak cooperative binding is typically
undetectable via ITC. The ΔHo value for the first Zn (II)
binding event is endothermic with a large positive

entropy consistent with the loss of water ligands from
the Zn(II)-hexaauqo complex upon Zn(II) binding to
ArgE. On the other hand, the second Zn(II) binding
event is exothermic with an entropy change near zero
(Table 2).

Figure 6 (Top) ITC titration data for a 70 μM solution of apo- H355A ArgE with a 2.5 mM solution of Zn(II). (Bottom) Fit of the ITC data
for H355A ArgE after subtracting the heat of dilution. (Reaction conditions: 25°C in 50 mM HEPES buffer, pH 7.5, and 150 mM KCl).

Table 1 Metal dissociation constants of ArgE H355A and
WT ArgE determined by ITC and UV–vis absorption
titration

Enzyme Metal Method Kd1 (μM) Kd2 (μM)

WT ArgEa Zn(II) ITC 2.7 51

H355A ArgE Zn(II) ITC 39 330

WT ArgEa Co(II) ITC 0.4 153

H355A ArgE Co(II) UV–vis Titration 1.6 NDb

aPreviously reported (ref. (McGregor et al. 2005)).
bNone detected.
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Comparison of these data with previously reported
ITC data for Zn(II) binding to WT ArgE and DapE
provide insight into which metal binding site is being
populated first in the H355A ArgE mutant enzyme
(McGregor et al. 2005; Davis et al. 2006). Both ArgE
and DapE bind two Zn(II) ions in non-interactive

binding sites with Kd values for the first Zn(II) binding
event for ArgE and DapE being 2.7 and 4.4 μM, respect-
ively, whereas the observed Kd values for the second
metal binding event in ArgE and DapE are 51 and 13.6
μM, respectively. The ΔHo values observed for the first
Zn(II) binding event in both ArgE and DapE are endo-
thermic while the second is exothermic (Table 2). While
Kd for AAP has been reported previously by one of us
(Bzymek et al. 2005), we report here a high quality ITC
data set for Zn(II) binding to AAP, which provided Kd

values for the first and second metal binding event of
0.008 and 0.4 μM, respectively (Figure 7). The energy
change observed for both AAP binding sites indicates
an endothermic-type reaction with the second metal
binding event providing a more negative ΔHo value than
the first. Taken together, the thermodynamic data
obtained for H335A are similar to those observed for
the first binding events in WT ArgE, DapE, and AAP,
suggesting that the H335 residue resides in the second

Table 2 Thermodynamic binding parameters for Zn(II)
binding to AAP, WT ArgE and H355A ArgE (ΔH (kcal/mol),
(ΔG cal/mol·K) and (ΔS cal/mol·K))

Parameter AAP WT ArgEa H355A ArgE

ΔH1 2.1 4.6 6.0

ΔH2 1.1 −2.7 −3.7

ΔG1 −11.0 −5.9 −6.0

ΔG2 −7.5 −7.6 −4.7

ΔS1 43 35 40

ΔS2 29 16 3.5
aPreviously reported (ref. (McGregor et al. 2005)).

Figure 7 (Top) ITC titration data for 30 μM solution of AAP with a 2.5 mM Zn(II) solution. (Bottom) Fit of the ITC data for AAP after
subtraction of the heat of dilution. (Reaction conditions: 25°C in 50 mM HEPES buffer, pH 7.5).
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metal binding site similar to that observed for DapE
(Gillner et al. 2009; Nocek et al. 2010). The weaker
binding affinity for the first Zn(II) binding event in
H355A ArgE vs. WT ArgE is likely the result of weak
cooperative binding, which would be lost upon muta-
tion of H355.

Modeling of the ArgE structure
Since no three-dimensional X-ray crystal structure has
been reported for the ArgE form E. coli, a three-
dimensional homological structure was developed using
the X-ray crystal structure of the DapE from H.
influenzae (PDB code:3IC1) as a template (Figure 3)
(Rowsell et al. 1997; Eswar et al. 2003; Krissinel and
Henrick 2004; Nocek et al. 2010). The catalytic domain
of ArgE contains the dinuclear Zn(II) site with a Zn-Zn
distance of ~3.3 Å and within 4.0 Å of the Zn(II) bind-
ing sites of ArgE, and all of the amino acid residues are
nearly identical to those observed in DapE confirming
the assignment of H80 and H355 as active site ligands
in ArgE (Figure 3) (Rowsell et al. 1997; Eswar et al.

2003; Krissinel and Henrick 2004). The active site in
ArgE is located in a long and open cleft of the catalytic
domain; the cleft is parallel to and in the vicinity of the
“hinge” region between the catalytic domain and the
dimerization domain (Figure 8). With such a location,
conformational changes upon metal and/or substrate
binding are likely and have been observed for DapE
(Nocek et al. 2010). Both Zn(II) ions are solvent access-
ible and have four protein centered ligands including
H80 and H355 as well as two terminal glutamate resi-
dues (E145 and E160) and a bridging aspartate residue
(D122). A bridging water provides the fifth ligand for
both metal ions, which forms a hydrogen bond to a sec-
ond water molecule that is in turn hydrogen bonded to
E144, a candidate for the general acid/base during ca-
talysis (Davis et al. 2006). Therefore, our data supports
the hypothesis that H355 is an active site Zn (II) ligand,
and as this residue corresponds to H349 in DapE, which
has been shown to be the second metal binding site, it
is likely that H355 resides in the second metal binding
site of ArgE.

Figure 8 Surface rendering of the [ZnZn(ArgE)] molecule where the black box indicates the position of the di-nuclear metal center.
Insert: Close-up of the dinuclear Zn(II) cluster showing that the active site is located in a long cleft across the catalytic domain. Zn(II) ions are
shown in light blue spheres and the bridging water molecule is shown as a red sphere and labeled as “WAT”.
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Summary
The kinetic, spectroscopic and thermodynamic data
presented herein provide evidence that H355 is intim-
ately involved in catalysis and serves as a metal binding
ligand. While these data do not conclusively indicate
which metal binding site H355 resides in, they are con-
sistent with H355 residing in the second metal binding
site, similar to DapE. Therefore, the ArgE from E. coli
forms a (μ-aquo)(μ-carboxylato)dizinc(II) core where H80
and H355 function as active site metal ion ligands similar
to DapE, AAP, and CPG2 and consistent with EXAFS data
(Tao et al. 2012). While the data reported here provide a
structural starting point for elucidating the catalytic mech-
anism of ArgE, which may lead to the design and synthesis
of small molecule inhibitors that specifically target ArgE,
an X-ray crystal structure of the ArgE from E. coli with
both one and two metal ions bound is desperately needed.
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