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ABSTRACT 

RISK-BASED SEISMIC DESIGN OPTIMIZATION OF  

STEEL BUILDING SYSTEMS WITH  

PASSIVE DAMPING DEVICES 

Junshan Liu, B.S., M.S. 

Marquette University, 2010 

Nonlinear time history analysis software and an optimization algorithm for 

automating design of steel frame buildings with and without supplemental passive 

damping systems using the risk- or performance-based seismic design philosophy are 

developed in this dissertation. The software package developed is suitable for conducting 

dynamic analysis of 2D steel framed structures modeled as shear buildings with 

linear/nonlinear viscous and viscoelastic dampers. Both single degree of freedom (SDOF) 

and multiple degree of freedom (multistory or MDOF) shear-building systems are 

considered to validate the nonlinear analysis engine developed.  The response of both un-

damped and damped structures using the 1940 EI Centro (Imperial Valley) ground 

motion record and sinusoidal ground motion input are used in the validation. Comparison 

of response simulations is made with the OpenSEES software system and analytical 

models based upon established dynamic analysis theory. 

A risk-based design optimization approach is described and formulation of 

unconstrained multiple objective design optimization problem statements suitable for this 

design philosophy are formulated. Solution to these optimization problems using a 

genetic algorithm are discussed and  a prototypical three story, four bay  shear-building 

structure is used to demonstrate applicability of the proposed risk-based design 

optimization approach for  design of moderately sized steel frames with and without 

supplemental damping components. All programs are developed in MATLAB 

environment and run on Windows XP operating system. 

A personal computer cluster with four computational nodes is set up to reduce the 

computing time and a description of implementation of the automated design algorithm in 

a cluster computing environment is provided. The prototype building structure is used to 

demonstrate the impact that the number of design variables has on the resulting designs 

and to demonstrate the impact that use of supplemental viscous and viscoelastic damping 

devices have on minimizing initial construction cost and minimizing expected annual loss 

due to seismic hazard. 
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Chapter 1 Introduction 

In traditional seismic design, the lateral force resisting system in a structure is designed to 

be able to absorb and dissipate energy in a stable manner for a number of seismic shaking 

cycles.  Earthquake energy in steel building systems is dissipated by ductile plastic hinge 

regions of beams and column bases, which are also a part of gravity load carrying system 

in a building structure. The structure is permitted to be damaged while it is subjected to 

lateral deformations associated with moderate or severe seismic events, but collapse is to 

be avoided.   

 Plastic hinges are regions of concentrated yielding within members that make up 

the building skeleton [1.1]. The development of plastic hinges relies on deformation 

capacity and inherent ductility of a structure. The more ductility demand a structure 

sustains during the ground motion event the more damage the structure will likely suffer. 

When a structure must remain functional after a major earthquake, as is the case of 

important structures (e.g. hospitals, fire stations), a traditional design approach that 

assumes significant damage will occur to the structural and nonstructural systems can be 

inappropriate. Current building code methods ensure that a structure is designed with 

sufficient strength within the elements of the framing system to prevent collapse. 

However, damage to nonstructural components may still occur and this damage can be 

significant.  

 To mitigate damage resulting from seismic hazard, an alternative design approach 

is to introduce seismic isolation systems or supplemental energy dissipation devices 

which can distribute energy dissipation within a structure when subjected to seismic 
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ground motions [1.1]. A variety of energy dissipation systems have been developed in the 

past two decades.   Several will be discussed in this dissertation and a focus will be given 

to passive linear/nonlinear viscous and viscoelastic dampers available commercially.  

 Building system performance can be improved if a portion of the input energy can 

be absorbed by some type of supplemental devices, not by the structure itself. The energy 

relationship describing the components of energy input, absorption, and dissipation can 

be described in the following equation [1.2]: 

 e k s h dE E E E E     (1.1) 

 Ee is the absolute earthquake energy input, kE is the kinetic energy of the masses, sE is 

the recoverable elastic strain energy, hE  is the irrecoverable hysteretic energy, and dE is 

the energy dissipated by supplemental damping devices. The right hand side of the 

equation (1.1) is the energy dissipative and absorptive capacity of the structural system 

and the left hand side is the energy imparted by the ground motion to the structure.  

 The right hand side of equation (1.1) should be larger than the left hand side in a 

successful seismic design. In conventional seismic design, the energy capacity of a 

structure relies mostly on the hysteretic energy hE to dissipate the ground motion input 

energy. This energy dissipation results from the inelastic deformations in the components 

of the structural system. The energy dissipation capacity of a structure,
 dE

, 
 will be 

increased when supplemental dampers are added to the structure. A structure with 

supplemental dampers is normally designed for early engagement of dampers to dissipate 

the earthquake energy input prior to the development of yielding in localized regions in 

the primary structural system. A structure with added dampers has the potential to be 
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protected from earthquake damage and the building's performance can be improved 

during seismic ground motions.  

 Viscoelastic dampers have been utilized successfully in high-rise buildings for the 

reduction of earthquake-induced response within the United States for two decades [1.3]. 

A damper is an energy dissipater or absorber which is added to a structure to mitigate 

undesirable aspects of earthquake-induced structural response. Passive viscous dampers 

dissipate energy based upon the relative velocity between their two ends. They absorb the 

vibrations automatically without the need of an external electrical control system and the 

forces in the dampers are generated in reaction to the deformations induced during the 

seismic motion.  This characterizes them as passive control systems. Passive control 

systems are generally low in cost and effective.  Active control systems use computer-

controlled actuators design to actively impart forces to the structural system in reaction to 

deformations generated by earthquake motions.   Active mass dampers, active mass 

drivers, active tendon systems, pulse thrusters, and active variable stiffness systems are 

all active control systems and these are very effective in controlling oscillations in high 

winds and severe earthquakes. A combination of active and passive control systems can 

be used in a building structure to protect it from seismic damage. This type of control 

system is known as hybrid active-passive system. This research will focus on linear/non-

linear viscous and viscoelastic dampers used as the foundation for a passive control 

system.  

 Passive energy dissipative devices generally fall into one of two categories: 

hysteretic where material yielding is relied upon to dissipate energy; and viscous where a 

viscous fluid is used to inhibit movement of a "plunger" within it and the resulting 
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damping force is proportional (or in some cases, non-proportional) to the velocity of the 

plunger moving through the fluid. Figure 1.1 shows a typical longitudinal cross section of 

a viscous fluid damper. It consists of a stainless steel piston with orifices and piston head 

and it is filled with silicone fluid. The difference in the pressure between inside and 

outside of the piston results in the damper resistive force to be generated. Fluid viscous 

dampers, which are the focus of this research effort, are made by Taylor Devices, Inc. 

[1.4]. Examples of fluid-viscous dampers and their size compared to a person are shown 

in Figure 1.2.  

 

Figure 1.1   Longitudinal Cross Section of a Taylor Fluid Damper [1.4]. 

 

Figure 1.2 Taylor Fluid Viscous Damper [1.4]. 

 Hysteretic energy-based devices rely on controlled yielding of material. The 

energy dissipation arises from this yielding. Common examples of hysteretic devices are 

buckling-restrained-braces (BRB's). A typical buckling-restrained brace has stable 

hysteretic yielding characteristics. Common BRB configurations are shown in Figure 1.3. 
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The most common BRB consists of a core steel plate jacketed by confining concrete 

encased in a steel tube to restrain buckling. Coating materials are used between the 

concrete and the core plate to prevent the transmission of axial forces between the two 

dissimilar materials. Figure 1.4 shows a typical elevation and components of a BRB 

made by Star Seismic LLC [1.5].  

 

Figure 1.3 Buckling Restrained Brace [1.5]. 

 

Figure 1.4 Typical Elevation of a BRB [1.5]. 

 

 Analytical and experimental studies have shown that significant reduction in a 

structure‟s response to earthquake excitation can be achieved by adding viscoelastic 

dampers to the structure [1.6]. To address design issues related to structural applications 

of viscoelastic dampers, the structural engineer must decide the number, size, location, 
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and the parameters defining the relationship between velocity and force for the dampers 

being used with a defined structure topology (or configuration) to achieve a desired or 

targeted structural response level [1.7]. When all these issues are integral components 

defining the structural system and are dependent upon decisions made by the structural 

engineer, design using passive damping systems and the desire to balance energy 

dissipation among all potential components with the goal being economical and safe 

designs becomes a significant structural engineering challenge. 

 Historically speaking, building codes and design specifications establish 

minimum requirements for life-safety (i.e. prevention of collapse) of a structural system 

through prescriptive criteria that regulate acceptable materials used in construction, 

specify required minimum levels of strength and stiffness, and suggest appropriate 

construction detailing. Although these prescriptive criteria are intended to result in 

buildings capable of providing acceptable performance with regard to life-safety, they 

provide  little guidance to the structural engineer with regard to reducing the potential of 

damage to non-structural components and systems, or excessively expensive initial 

construction cost. In addition, the performance of buildings designed using these 

prescriptive criteria can have high levels of variability in their performance during 

seismic events. Some buildings will perform better than anticipated by the code, while 

the performance of others could be worse.  

 Performance-based seismic design methods intend to include estimation of how a 

building is likely to perform through consideration of: 

 a range of potential seismic hazards, 

  uncertainties inherent in the quantification of potential hazard, 
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 uncertainties in assessment of the actual building response.  

These newly developing methods permit design of new buildings or upgrade of existing 

buildings with a better understanding of the risk of casualties, occupancy interruption, 

and economic loss that may occur as a result of future earthquakes [1.8].  

 In the developed world, it is well known that buildings perform fairly well with 

respect to life-safety performance (i.e. complete collapse of buildings is rare). However, 

recent seismic events have revealed that the uncertainties listed above result in significant 

variability with respect to damage to structural and nonstructural systems. Supplemental 

damping systems have potential to allow building systems to achieve life-safety 

performance (i.e. no collapse) after large (rare) ground motion events while making 

mitigation of possible damage to structural and nonstructural components after less 

severe (more frequent) ground motion events. It is now timely to address performance-

based design and analysis issues related to the applications of passive supplemental 

damper systems within the context of state of the art performance-based (probabilistic) 

seismic design procedures. 

 

1.1 Background and Literature Review 

An extensive body of knowledge related to evolutionary algorithms and their application 

in the performance–based probabilistic seismic design of a structure without 

supplemental dampers has evolved in the last decade. This section will include a review 

of previous passive damper design research efforts and the development of optimization 

methods applied in the field of seismic structural engineering and those that include use 

of supplemental damping systems in the optimization design problem statements. 
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 In general, optimization algorithms can be classified as gradient-based or 

stochastic search. The major obstacle for a gradient-based optimization procedure is that 

continuous functions are required to represent design variables and objectives. Stochastic 

search techniques are not restricted by this requirement and the Genetic Algorithm (GA) 

is one of the most commonly applied stochastic search techniques. GA‟s do not require 

evaluation of gradients of objective and constraint functions. A GA is used to solve the 

optimization problems formulated in this research effort and its fundamental theory will 

be reviewed in this section. An overview of the current formulations for performance-

based probabilistic seismic design will also be provided. 

 

1.1.1 Automated Design with and without Supplemental Dampers 

Previous studies related to the use of supplemental dampers within building structures 

involve a variety of methods. Algorithms designed to locate and size supplemental 

dampers in multistory 1:5 scale steel building have been undertaken [1.9]. Optimal 

control theory using a linear quadratic regulator (LQR) has been adapted to design linear 

passive viscous or viscoelastic devices. The design was aimed at minimizing a 

performance cost function, but provides the most suitable minimal configuration of 

devices while maximizing their effect to control the earthquake response by optimizing 

damper location and their coefficient factors. The term “linear-quadratic” refers to the 

linear structural analysis and the quadratic cost function. Newmark‟s numerical method 

was used for the linear dynamic analysis.  The design algorithm was evaluated using 

three ground motions (1) El Centro N-S 1940 accelogram with peak ground acceleration 
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(PGA) of 0.34g; (2) Mexico City SCT 1985 accelogram (PGA 0.20g); and (3) Hachinohe 

1968 accelogram (PGA 0.20g).  

 A sequential search algorithm has also been proposed as a method to allow the 

automatic selection of damper capacity for the design of optimal configurations of 

supplemental dampers [1.10, 1.11, 1.12]. Sequential search is known as a linear search 

algorithm, which is suitable for searching a list of data for a particular value. Every 

element in the list is checked one at a time until a match is found. The simplicity of 

sequential search means that less work needs be done if just a few elements are to be 

searched. However, in many realistic problems, preparation of the list being searched, 

such as sorting the list, is required. Furthermore, direct search also can require more 

complex data structures. Simplified sequential search algorithms have been proposed 

[1.12]. The simplified sequential search algorithm can be easily integrated into 

conventional design procedures by structural engineers dealing with damper-added 

structures. Linear viscous dampers were added to a 6-story frame structure. It was found 

that the efficiency of damper configurations given by the simplified sequential search 

algorithm is comparable to the efficiency of damper configurations determined in 

previous efforts [1.10, 1.11].   

Genetic algorithms have also been used to design passive dampers for linearly 

behaving building structures [1.13]. In this study, viscoelastic dampers and fluid 

viscoelastic dampers are employed in two building structures. The first building structure 

is a 24-story shear-building model. The second building is a six-story torsion system. The 

objective is to minimize the structural response such as the floor accelerations, shears, 

and inter-story drifts, etc. The design variables are the total number of dampers to be 
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placed in the structure which is constrained to a reasonable pre-defined number. The 

capacity of dampers is defined, the total required number of dampers is determined, and 

their location in the building were designed to achieve the maximum seismic response 

reduction. The response reduction was defined in terms of base shear, overturning 

moment or floor acceleration. Numerical examples for a shear building model and torsion 

building model were presented to show the distribution of three different types of 

dampers to achieve a desired seismic response reduction.   

A genetic algorithm with integer representation was used to optimize passive fluid 

damper location to control the seismic response of a 20 – story nonlinear steel frame 

building [1.14]. In this research, a linear system transfer function, which measures the 

frequency response of a system, was utilized to define the objective function. A Genetic 

Algorithm (GA) was used to minimize the response in the second mode of vibration 

instead of the dominant first mode. The supplemental damper characteristics were 

predefined and the damper location at any story level was the only design variable. The 

constraints defined in this study were the number of dampers and the requirement of 

dampers being located between floor levels. The results showed that the damper location 

may vary significantly with different objective function H2 or H∞ -norms. The H2 and 

H∞ -norms are measures of the frequency response of a system. For the damper 

distribution optimization process, both H2 and H∞ -norms of the transfer function were 

utilized as objective function to compute average and peak response of the structure 

respectively. In all scenarios considered, the algorithm developed indicated that dampers 

should be concentrated in the lowermost and uppermost stories.  
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An automated seismic design procedure considering only one building 

performance level, Life Safety, has been presented [1.15]. The performance-based design 

concept was utilized and a three-dimensional (3D) space steel frame with six – stories 

without supplemental dampers was studied.  The 3D space steel frame underwent linear 

and nonlinear deformation when subjected to natural and artificial ground motions.  A 

GA was adopted to minimize the weight of the structure under behavioral constraints on 

stress and displacements. The dimensions of the cross section areas of the structural 

members were chosen as design variables. Maximum inter-story drift ratio equal to 2% 

was used in the nonlinear analysis to eliminate the need to consider P effects. The 

results from this research shows that less material weight with good seismic performance 

could be obtained when nonlinear time-history analysis is performed. 

 

1.1.2 Probabilistic or Risk - Based Design 

Performance-based seismic design (PBD) is a process intended to result in the design of 

buildings with a realistic and reliable quantification of the risk of loss of life and 

economic loss that may occur as a result of future earthquakes [1.16]. The first generation 

of performance-based seismic design procedures developed in 1990‟s and it focused on 

the evaluation and upgrade of existing building structures. The Federal Emergency 

Management Agency (FEMA – now within the Department of Homeland Security) then 

extended the PBD approach and recommended programs for carrying out the 

development of performance-based seismic design guidelines for existing and new 

buildings. 
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In the next generation PBD guidelines, both direct economic loss and indirect 

economic loss, in addition to potential of casualties, will be measured as building 

performance indices. Economic loss related to the structural system and nonstructural 

components and systems will be considered. Direct economic loss relates to repair or 

replacement of damaged buildings, building content losses and building inventory losses. 

The time required for damage repair and the duration of lost building function as a result 

of earthquake-induced damage are defined as indirect economic losses. In this research, 

only direct economic loss due to repair and replacement of damaged building components 

are considered.  It is important to recognize, however, that indirect losses can be included 

within the optimization framework formulated in this thesis.   

 The framework for performance-based engineering developed by the Pacific 

Earthquake Engineering Research (PEER) center is convenient for calculating losses 

given seismic hazard. The framework consists of four main analysis steps [1.17-1.22]: 

hazard analysis; structural analysis (ground motion response simulation); damage 

analysis; loss analysis. The mean annual frequency of a decision variable (DV) being 

exceeded can be represented as [1.17]; 

       ( ) | | |DV G DV DM dG DM EDP dG EDP IM d IM      (1.2) 

where:  |G DV DM  is the probability that the DV exceeds specified values given that a 

particular damage measure (DM) is reached;  |G DM EDP  is the probability that a DM 

will be exceeded given a particular engineering demand parameter (EDP);  |G EDP IM  

is the probability that an EDP will be exceeded given that a particular intensity measure 

(IM) occurs; and  IM  is the mean annual frequency (MAF) of an intensity measure 

(seismic hazard curve).  If the most general form of the PEER framework [1.18, 1.19] is 
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to be implemented, probability density functions describing all random variables must be 

available. 

 Examples of decision variables are: casualties, direct economic loss, and indirect 

economic losses.  These variables are the basis for goals of minimizing “deaths, dollars 

and downtime” resulting from the seismic hazard [1.18]. Damage measures depend upon 

the type of building component.  Common measures for structural components are 

Immediate Occupancy (IO) and Collapse Prevention (CP) [1.23]. Damage to 

displacement-sensitive non-structural building components (NSD), acceleration-sensitive 

non-structural building components (NSA), and the structural system (SS) has also been 

characterized using four damage measures: slight, moderate, extensive and complete 

[1.24]. Typical engineering demand parameters associated with these damage measures 

include inter-story drift, floor acceleration, column compression force, and column splice 

force.  Decision variables and damage measures can be represented as binary damage 

state indicator variables [1.17] and the probabilities,  |G DV DM  and  |G DM EDP , can 

then be established using fragility curves or fragility surfaces [1.24, 1.8].  

 Equation (1.2) describes a highly complex structural engineering problem because 

each parameter (IM, EDP, DM, and DV) remains a continuous random variable. Losses 

resulting from damage to non-structural and structural components within the building 

system are most-often triggered in a discrete manner [1.25]. As a result, some of the 

integrations contained in equation (1.2) are carried out with discrete summation for all 

pertinent components [1.25]. In next-generation PBE methodologies, the decision 

variables are likely to be conceptualized relatively simply as deaths, dollars and 

downtime [1.18].  
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 A fragility function is a mathematical relationship that indicates the probability 

that a component or system will experience damage at or in excess of a specific level, 

given that the component or system experiences a specific level of demand, expressed 

herein as EDP. The probability that the component reaches or exceeds damage state ds, 

given a particular EDP value, and idealized by a lognormal distribution, 

  
1

| ln
ds ds

EDP
P ds EDP

EDP

 
   

 
   (1. 3) 

where:   

  dsEDP is the median value of the lognormal distribution, 

 ds  denotes the logarithmic standard deviation  

   is the standard normal cumulative distribution function.  

 In general, the total variability of each damage state, ds , is modeled by the 

combination of following three contributors to damage variability: 

 uncertainty in the damage state threshold, 

 variability in the capacity (response) properties of the model building type of 

interest,  

 uncertainty in response due to the spatial variability of ground motion demand. 

Each of these three contributors to damage state variability is assumed to be lognormally 

distributed random variables.  

 The fragility function can be used to evaluate that a component is in damage state 

ds, given the EDP = z, by performing the following calculation with the lognormal 

cumulative distribution function, 



 

 

15 

 

 
1

[ | ] 1 ( )                  1

                                    ( ) ( )      2 4

                                    ( )                       5

i

i i

i

i ds

ds ds

ds

P D DS EDP z F z i

F z F z ds

F z i



    

   

 

 (1.4) 

Damage States are defined separately for structural and non-structural systems or 

components of a building. A total five damage states are defined for structural and non-

structural systems in this thesis. These are none  1ds  slight  2ds , moderate  3ds , 

extensive  4ds  and complete  5ds   . 

 Figure 1.5 provides example fragility curves for the four damage states (Slight, 

Moderate, Extensive, and Complete) used in this methodology for structural systems 

(SS), non-structural displacement-sensitive (NSD) components, and non-structural 

acceleration-sensitive (NSA) components. Each fragility curve is defined by a median 

value of the engineering demand parameter (e.g. spectral displacement, spectral 

acceleration, PGA or PGD) that corresponds to the threshold of the damage state and by 

the variability associated with that damage state. The parameters used to develop the 

fragility curves seen in Figure 1.5 are given in Table 1.1. 

 Figure 1.6 illustrates how the lognormal fragility curve is used to define 

probabilities of specific damage states given a known engineering demand parameter. 

The figure includes an example of the probability that structural components in a building 

structure is in damage state “Moderate” for given interstory drift angle (ISDA) of  0.01. 

The probability is computed using the equation (1.4).  
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Figure 1.5  Example Fragility Curves for Slight, Moderate, Extensive and Complete 

Damage. 
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Figure 1.6 Example Probabilities for Structural Component in Damage State 

“Moderate” 
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Table 1.1:  Fragility Curve Parameters for Structural and Non-Structural 

Components in SIL Building and High-Code Design Level [1.27]. 

Component Fragility 

Curve 

Parameter 

Damage State 

Slight Moderate Extensive Complete 

SS 
dsISDA  0.004 0.008 0.020 0.0533 

ds  0.50 0.50 0.50 0.50 

NSD 
dsISDA  0.004 0.008 0.025 0.050 

ds  0.50 0.50 0.50 0.50 

NSA 

 
( )dsPFA g  0.30 0.60 1.20 2.40 

ds  0.60 0.60 0.60 0.60 

 

 A probabilistic performance based design optimization problem can be 

formulated using the PEER center framework outlined in equation (1.2). The 

optimization problem statement that can be formulated potentially includes minimization 

of initial construction costs, minimization of damage (and resulting loss) to the structural 

system and minimization of damage (and resulting loss) to nonstructural systems and 

components. Formal optimization algorithms for this type of structural optimization 

problem have only recently been developed [1.28] and future application of performance 

based engineering procedures in structural engineering can benefit significantly from 

research activities in this area. Furthermore, algorithms suitable for tackling such 

optimization problems will likely be based upon evolutionary computation. Application 

of evolutionary computation to solve performance-based design optimization problems 

has occurred for structural systems without supplemental damping mechanisms, but 
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application of these algorithms in the design of systems with supplemental passive 

damping devices is a promising area of application that remains to be demonstrated and 

studied. 

 

1.1.3 Genetic Algorithm (GA) 

A genetic algorithm (GA) is used to solve the optimization problems formulated in this 

research. The GA is a stochastic global search method and optimization algorithm 

inspired by processes normally associated with natural biological evolution. GA's operate 

on a population of potential solutions applying the principle of survival of the fittest to 

produce better and better approximations to a solution [1.26]. At each generation, a new 

set of solutions (individuals) is created by the process of selecting individuals according 

to their level of fitness in the problem design space and exchanging characteristics of 

each (mating) using operators analogous to those found in natural genetics. “This process 

leads to the evolution of populations of individuals that are better suited to their 

environment than the individuals that they were created from, just as in natural 

adaptation” [1.26].  

 The GA simulates the rules of natural genetic evolution by systematically 

applying reproduction operations termed selection, crossover, and mutation. A population 

of individuals is generated and the genetic make-up of each individual is constructed by 

encoding its design variables into a single binary string, chromosome, composed over an 

alphabet. The genotypes (chromosome values) are uniquely mapped onto the decision 

variable (phenotypic) domain. The most commonly used representation in GAs is the 

binary alphabet {0, 1}, but other encodings are also possible (e.g. ternary, integer, real-
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valued, objects [1.27, 1.30]). For example, a problem with two variables, x1, x2, may be 

mapped onto binary-string chromosome structure as shown in Figure 1.7. x1 is encoded 

with 10 bits and x2  with 15 bits, possibly reflecting the level of accuracy or range of the 

individual decision variables.  

X1 X2

1 0  1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 

 

Figure 1.7 Design Variables Mapped onto Binary Chromosome. 

 

 A genetic algorithm initializes a population of solutions randomly, and then 

improves it through repetitive application of reproduction operations of mutation, 

crossover and selection. In each generation, the fitness of every individual in the 

poulation is evaluated. A fitness function, which is always problem dependent, is defined 

for each individual candidate solution. This fitness is used to evaluate the quality of the 

solutions in the population relative to one another. Multiple individuals are selected from 

the current population (based on their fitness) and modified (recombined and possibly 

randomly mutated) to form a new population. The new population is then used in the next 

generation of the algorithm. The GA is often terminated when termination criteria are 

satisfied (e.g. a certain number of generations). 

 The selection operator is used to produce the next generation of individuals. 

Common selection operators are fitness-proportionate and roulette wheel selection. With 

fitness-proportionate selection, the probability of being selected for reproduction is 

proportional to an individual‟s fitness. The value of individual‟s fitness is used in the 

selection to establish bias towards more fit individuals. Highly fit individuals, relative to 

http://en.wikipedia.org/wiki/Algorithm
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the entire population, have a higher probability of being selected for mating whereas less 

fit individuals have a correspondingly lower probability of being selected [1.29]. There 

are many other types of reproduction operators that have been proposed over the years, 

but they will not be reviewed here. The interested reader is referred to the seminal work 

by Goldberg [1.31] for additional selection mechanisms and discussion of their 

characteristics and implementation. 

 The simplest recombination operator is called single-point crossover. Single point 

crossover proceeds by cutting the pair of selected chromosomal strings at a random locus 

picked by selecting a random number between 1 and the chromosomal string length L-1 

and swapping the tails to create two child strings. Considering the two parent binary 

strings in Table 1.2, if the crossover location is 4, the genetic information is exchanged 

between the individuals about this point, then two new offspring strings are produced. 

This crossover operation is not necessarily performed on all strings in the population. 

Instead, it is applied to chromosomal strings selected for breeding from the population 

with defined probability Px. Crossover operations allow the search space to be explored 

in a wider or global manner. 

Table 1.2 Example of Crossover Operator 

Mating 

Individual 
Parent Strings Children Strings 

1 1010 0010101 1010 1111111 

2 1111 1111111 1111 0010101 

 

Another genetic operator, mutation, is often applied to the new chromosomes with 

a small set probability Pm. Mutation causes the individual genetic representation to be 

changed slightly according to a defined probabilistic rule. The slight variation in the 
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individual chromosome that results from the mutation operations allows the search space 

to be explored in a local manner in the near vicinity of solutions.  In the binary string 

representation, mutation will cause a single bit to change its state, 0  1 or 1  0. 

Therefore, mutating the fourth bit of the following binary string: 1  0  1  (1)  1  1  1  0 

leads to the new string 1  0  1  (0)  1  1  1  0. Mutation is generally considered to be a 

background operator that ensures the probability of searching a particular local subspace 

of the problem space [1.29]. This has the effect of inhibiting the possibility of converging 

to a local optimum, rather than the global optimum. 

 After recombination and mutation, the individual strings are then decoded, the 

objective function evaluated, a fitness value assigned to each individual and individuals 

selected from mating according to their fitness, and the process continues through 

subsequent generation. In this way, the average performance of individuals in a 

population is expected to increase, as good individuals are preserved and bred with one 

another and the less fit individuals die out.  

 

1.2 Objectives and Scope 

There are several objectives for this dissertation.  The first is to develop an accurate time 

history analysis tool which is suitable for conducting nonlinear time-history analysis of 

2D multiple degree of freedom steel frame structures with linear/nonlinear viscous and 

viscoelastic dampers and nonlinear material response.  As will be discussed later in the 

dissertation, accurate modeling of nonlinear behavior that includes nonlinear viscoelastic 

damping components is difficult and accurate modeling algorithms and software do not 

exist at present. The simulation tool developed will be used to evaluate structural 
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response when a steel framing system is subjected to ground motion.  The tool developed 

will then be used as the foundation for an automated and optimized design algorithm for 

steel framed structural systems with supplemental damping devices.  While nonlinear 

analysis of steel systems with supplemental linear viscous damping systems is relatively 

well established, there is a need to develop accurate modeling tools for simulating 

structural response during ground motion with supplemental nonlinear viscous and 

viscoelastic damping elements and nonlinear material behavior. 

The second objective is to develop, implement, and evaluate an optimization 

algorithm capable of automating the design of 2D frame structures modeled as shear 

buildings with linear/nonlinear viscoelastic dampers within the context of the risk- or 

performance-based engineering methodology. The design problems for which this 

algorithm will be targeted are limited to frames with known topology, loading, and 

material properties. The research will focus on the application of a genetic algorithm 

(GA) for identifying damper parameters (including viscous and viscoelastic properties), 

damper location; and  wide-flange shape for column members from a database of 

available AISC wide flanged sections, 

The optimization problem will include multiple competing objectives:  (1) 

minimize the initial capital investment in the structural system including dampers; (2) 

minimize the expected direct economic losses due to the damage to structural and non-

structural components. The structural model for the 2D frames considered used is the 

shear building model.  As such, the beam members are considered rigid and are not 

assumed to be design variables. The area of multiple objective structural optimization is a 
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relatively new arena and automated design of steel framing systems with damping 

systems for multiple competing objectives has not been demonstrated and studied. 

HAZUS [1.26] procedures are used to define and assess the damage to both 

Structural System components (SS), Non-structural Drift-sensitive components (NSD) 

and Non-structural Acceleration-sensitive components (NSA).   Fragility curves [1.26] 

will be used to define the probability of SS, NSA, and NSD components residing in the 

pre-defined damage states of none, slight, moderate, extensive, and complete.  The 

HAZUS [1.26] procedures will also be used to assign repair costs to these damage states.  

Transient analysis of the steel systems subjected to simulated and measured ground 

motions consistent with three recurrence probabilities is used as the basis for the damage 

assessment.  While these procedures have been successfully implemented for steel 

framing systems without dampers [1.28], these risk-based design methodologies have not 

been explored within the context of the design of steel framing systems with 

supplemental damping systems. 

The research will introduce the use of the distributed computing capability of 

MATLAB [1.32] and the distributed computing Toolbox
 TM

 [1.32] on a personal 

computer cluster with 4 computer nodes to speed up the optimization algorithm for 

automated design and handle larger data sets. Implementation of the algorithms 

developed will be done on this 4-node computational cluster.  It is well known that 

distributed computing can speed up the application of a genetic algorithm, but 

applications within the realm of structural engineering have been sparse if not-existent.  

The proposed research will contribute to understanding the benefits of cluster computing 
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in this realm and will provide a concrete example of its implementation in the field of 

structural engineering optimization. 

Finally, this study intends to illustrate the impact of supplemental damping 

systems and their characteristics for minimizing initial construction costs and minimizing 

expected annual loss due to a predefined seismic hazard.  The dissertation also seeks to 

provide the reader with examples of how design variable number and arrangement 

changes the resulting frame designs.  Finally, the design case studies provided in this 

dissertation intend to provide the reader with steel frame designs conducted within the 

context of multiple-objective risk-based optimization of steel framing systems to 

illustrate the trade-offs in initial construction cost and expected annual losses likely for 

systems that include supplemental damping components. 

 

1.3 Thesis Overview 

To accomplish the objectives mentioned above, an automated tool for risk- or 

performance-based seismic design optimization using an evolutionary algorithm for shear 

buildings with supplemental dampers is developed. Chapter 2 outlines the development 

and validation of an algorithmic approach for nonlinear time-history analysis of 2D steel 

frame structures with linear/nonlinear viscous/viscoelastic dampers.  The validation is 

conducted via comparison to theoretical (analytically-based) solutions and comparison to 

solutions generated using research-grade software.  

 Chapter 3 provides an overview and discussion of the formulation of the risk- or 

performance-based seismic design methodology, the development of optimized design 

statements for the multiple objectives of minimizing total initial construction cost of the 
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structural system and expected annual loss. Detailed discussion of the constraints for the 

design problem considered and the use of penalty factors to transform the optimized 

design problem to one that is unconstrained is discussed.  Detailed discussion of the 

genetic algorithm developed to tackle the multiple objective design problem formulated 

is also provided. 

 Chapter 4 of the dissertation includes illustration of the application of the 

automated-design algorithm to a single steel frame topology. Ten design cases are 

formulated and the algorithm developed is used to generate optimized designs that 

populate Pareto fronts in objective space.  These cases are designed to explore the 

following: (a) variation in design variable number and configuration and its effect on the 

resulting Pareto fronts generated; (b) how damper characteristics affect designs and 

achieving the multiple objectives used as the basis for the optimization problem 

considered; and (c) how supplemental damping systems affect initial construction cost 

and expected annual losses for low-rise steel framing systems. 

 Chapter 5 includes a summary of the dissertation contents, provides conclusions 

and insights learned through completion of the dissertation, and provides the reader with 

recommendations on future research directions. 
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Chapter 2  

Transient Analysis of Systems with 

Viscous and Viscoelastic Damping 

2.1 Introduction 

Simulating the response of damped structural systems to horizontal ground accelerations 

is the foundation for the research effort described in this dissertation. Therefore, the 

theory supporting this simulation is outlined in the present chapter and algorithms used to 

compute the response of viscous and viscoelastically damped single- and multiple-degree 

of freedom shear-building models are described. Newmark's method of numerical 

integration is used to solve the equations of motion of systems with added damping.  

 A single degree of freedom (SDOF) shear building model is used as the basis for 

discussion related to viscous and viscoelastic damping in governing the response of the 

system to a forcing function characterized by sinusoidal ground acceleration.  The 

behavior of the SDOF system with viscous and viscoelastic damping (linear and 

nonlinear) is discussed. The impact of damping on the response of nonlinear (elastic-

perfectly-plastic) systems is also discussed. Simulations using the algorithms developed 

are compared to analytical solutions developed using first principles (differential 

equations). 

 Six multistory MDOF shear-building models were used to develop and evaluate 

the algorithms formulated for computing response of systems that include supplemental 

passive damping to ground accelerations. Comparisons of response simulations made 

with recognized open- source research-grade software [2.1] are described.  These 
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comparisons were made using the 1940 El Centro (Imperial Valley) ground motion 

record.  

 

2.2 Foundational Theory 

Passive fluid dampers have been studied and utilized for seismic protection of building 

structures for two decades. Characteristics of fluid dampers that are of particular 

importance to engineers include their reliability, their high-energy dissipation capacity 

and their ability to produce forces that are velocity-dependent [1.14]. Viscoelastic (VE) 

dampers installed in structures have been found to be effective for resisting lateral loads 

introduced by seismic and wind forces. The addition of VE dampers results in a 

significant increase in modal damping ratios and an accompanying increase in structure 

stiffness [2.2].  

There are two fundamental modeling approaches for damping often used in 

simulating the response of structural systems with dampers: classical damping (often 

termed proportional or Rayleigh damping); and non-classical damping (sometimes called 

non-proportional damping). The discussion can begin by considering the 3-DOF system 

with inherent and supplemental damping as shown in Figure 2.1.  Horizontal equilibrium 

of the mass at each level at any point in time gives the following coupled equations of 

equilibrium: 

0xF   

3 3 3 3 3( ) 0S D

gm u t f f m U     (2.1) 

2 3 3 2 2 2 2( ) 0S D S D

gm u t f f f f m U       (2.2) 

1 2 2 1 1 1 1( ) 0S D S D

gm u t f f f f mU       (2.3) 
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In general, the spring force, S

if  and damping forces, D

if  in equations (2.1) through (2.3) 

can be nonlinear functions of relative displacement and relative velocity. The spring and 

damping forces included in these equations need to be examined in significant detail to 

completely illustrate how modeling nonlinear spring behavior and linear/nonlinear 

damping occurs in this research effort. 
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Figure 2.1 Typical MDOF Shear-Building System with Inherent and Supplemental 

Damping. 

 

 The discussion can begin with the spring forces.  In general, the spring forces can 

be nonlinear functions of relative displacement.  Therefore, the spring force at any level i 

can be written as, 

  ,S

i i if f k u  (2.4) 
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where ik  represents the linear spring stiffness at level i and 
iu is the relative (interstory) 

displacement at level i. The spring stiffness response characteristics used in the present 

dissertation are assumed to be elastic perfectly plastic as shown in Figure 2.2. 
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Figure 2.2 Nonlinear Spring Response Characteristics. 

 

 Damping forces are most often modeled using viscous damping characteristics. 

The general damping force versus relative velocity response characteristics at any level i 

is shown schematically in Figure 2.3. A viscous damping force model has the following 

general form, 

  , ,D

i i if f c u  (2.5) 

where iu represents the interstory (relative) velocity.  Linear viscous damping response is 

modeled using 1   and the slope of the response in force-velocity space is given by the 

damping coefficient c.  It should be noted that Figure 2.1 illustrates two damping 

coefficients: (a) inherent damping – I

ic  and (b) supplemental damping – S

ic .  The 
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inherent damping coefficient is formulated using summation of damping that is 

proportional to stiffness and proportional to mass (i.e. Rayleigh or classical damping).  

 Figure 2.3 illustrates supplemental viscous damper response in force-

displacement space (hysteresis) and force velocity space.  The area enclosed by the 

damping response in the hysteresis is called the hysteretic energy dissipated by the 

viscous damping. Hysteretic energy dissipation through yielding will also occur when the 

nonlinear springs with behavior described in Figure 2.2 are utilized.  , ,f c uViscous Damping;

Df

u

Df

u

 , 1c  
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Figure 2.3 Viscous Damping Behavior. 

  

 A viscoelastic supplemental damping model is more general and viscous damping 

is a special case. The typical response characteristics of viscoelastic supplemental damper 

in force-velocity space are shown in Figure 2.4.  The general expression for the 

viscoelastic damping force is given below, 

  , , ,D D

i i i eif f c u k  (2.6) 

where D

eik  is the elastic stiffness corresponding to the viscoelastic damper (termed 

viscoelastic stiffness in the present research).  Other than the tilt in the hysteresis, there is 

very little difference between viscous and viscoelastic damping when observing their 
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respective force-relative-displacement plots.   There is very little difference in the force-

relative-velocity behavior. 

 The damper hysteresis shown in Figure 2.4 illustrates the effects of the elastic 

stiffness component on the damper hysteretic behavior at any level i. It should be noted 

that the viscoelastic damping characteristics considered in this dissertation work are those 

arising from supplemental fluid viscoelastic damper devices. 
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Figure 2.4 Viscoelastic Damping Behavior. 

 

 Inclusion of nonlinear response characteristics in the shear building model poses a 

unique challenge in the structural analysis.  The equation of motion for the shear-building 

model shown in Figure 2.1 follows from equations (2.1) through (2.3) written in matrix 

form with consideration of equations (2.4) through (2.6) as follows, 

          I D S DE

gM U C C U K K U M u             (2.7) 

The terms in equation (2.7) are defined in the following. [M] is the mass matrix. 
IC    is 

the inherent damping matrix modeled using classical (Rayleigh) damping, 

    IC a M b K      (2.8) 
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DC    is the supplemental damping matrix where terms are functions of the damping 

coefficient, the nonlinearity parameter, and relative (interstory) velocity:  , ,S

i i if c u .  

The stiffness matrix is separated into the inherent spring stiffness, 
SK   , and the 

viscoelastic damper stiffness, 
DEK   .   The spring stiffness 

SK    is considered to have 

nonlinear characteristics and the viscoelastic damper stiffness contribution is assumed to 

be linear.  

 Stiffness and damping terms in equation (2.7) are functions of interstory (drift) 

displacement and interstory (relative) velocity, respectively.  These equations are 

nonlinear coupled equations of motion and analysis in the time domain [2.3] is utilized in 

the present thesis to solve the equations of motion. 

 

2.3 Numerical Integration of the Equations of Motion 

A general approach for the solution of the dynamic response of structural systems 

governed by equation (2.7) is the direct integration of the dynamic equilibrium equations. 

In 1959, Newmark presented a family of single-step integration methods for the solution 

of structural dynamic problems for both blast and seismic loading [2.3]. During the past 

50 years, Newmark‟s method has been applied to the dynamic analysis of many practical 

engineering structures. However, it was felt that outlining the procedure in this section of 

the chapter would provide the reader with a complete picture of the dissertation work. 

 Consider a set of coupled equilibrium equations at any instant in time as given 

below,  

 M U C U K U F       (2.9) 
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Where M, C, K are the mass, damping, and stiffness matrices respectively; U , U , and 

U are the acceleration, velocity, and displacement; and F is the external force vector. It 

should be noted that the damping and stiffness matrices can be nonlinear. The well-

known algorithm for the numerical integration of equation (2.9) is defined by [2.3], 

 2 21
( )
2

t t t t t t t tU U tU t U t U           (2.10) 

 (1 )t t t t t tU U tU tU         (2.11) 

 Two forms of integration have been used.  The first is called the average 

acceleration method and the second is called the linear acceleration method. These two 

methods are all good for small solution time intervals. The average acceleration method 

is selected for the present dissertation.  The parameter settings for these two methods are 

given below: 

 (1)  
1

2
   and

1

4
   , average acceleration method; 

 (2)  
1

2
   and

1

6
   , linear acceleration method. 

 Equations (2.9), (2.10), and (2.11) are used iteratively for each time step. The 

term tU  was obtained from Equation (2.9) by dividing the equation by the mass 

associated with the DOF. A flowchart of the algorithm is given in Figure 2.5. 

 A computer algorithm for nonlinear transient analysis of multiple degree of 

freedom (MDOF) systems with supplemental viscous or viscoelastic damping was 

developed based on Newmark‟s average acceleration method for use in this dissertation 

research. The Matlab m-file is called inelasticMDOF.m  and it includes several 

additional functions that it utilizes.  The source code for this m-file is included in 
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Appendix 9 of the dissertation. Each m-file utilized by inelasticMDOF.m is 

described in the following paragraphs. It should be noted that the discussion is framed 

within the context of an example MDOF system based upon the shear building model 

shown in Figure 2.1. 
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0

0

1

(0)

(0)

(0) (0) (0) (0)U

U U

U U

U M P CU K





    

•Initial calculations

 
2

1ˆ

1

1
1

2 2

K K C M
t t

A M C
t

B M t C



 



 



 

  
 

 


 
    

 

•Calculations for each time step, i

 

1

2

1
2

1 1

2

i i i i

i i i i

i i i i

U k P AU BU

U U U t U
t

U U U U
tt

  

  



 

       

 
       

  

     


•Update state variables

1

1

1

i i i

i i i

i i i

U U U

U U U

U U U







  

  

  

 

Figure 2.5 Flow Chart for Numerical Integration Algorithm [2.3]. 
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 The first m-file, assembleK.m, is used to generate the system linear stiffness 

matrix. For example, a 3-story shear building that includes story stiffness: 

1 150k  /kip in ,
2 100k   /kip in and 3 50k  /kip in  would result in the initial stiffness 

matrix shown below,  

 

250 100 0

100 150 50

0 50 50

SK

 
 

  
 
    

(2.12) 

 The second m-file is kCurrent.m.  This m-file is used to calculate current 

story stiffness during instances in time during the ground motion simulation. If the story j 

considered is in the elastic stage, its stiffness is given by ( ) ( )k j kElas j  .  If the 

displacement of story j exceeds the yield displacement and no viscoelastic damper 

applied at story j, the stiffness for story j is  ( ) 0k j   . 

 The m-file, internalForce.m, is used to calculate the shear forces in each 

story. It should be noted that the shear forces in the spring models in the story are limited 

by the yield force capacity of the story. 

 The m-file, DamperSlope.m, is used to calculate the slope of the damper 

response for the next increment of velocity; 

 

1
* *d slopeF C relVel






 
     

(2.13) 

C  is the damping constant in kip-sec/in,  is the velocity exponent and relVel is the 

relative velocity between the two neighboring stories.  

 The m-file, DamperForce.m, is used to compute the damper force, which 

includes two parts. The first part is proportional to the relative displacement and is 
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defined by equation (2.14), and the second part is proportional to the relative velocity and 

calculated using equation (2.15); 

  
*d elasF relDsp kDamp   (2.14) 

   
*d viscF C relVel   (2.15) 

 There are several parameters that are needed as input to the driving m-file, 

inelasticMDOF.m.  These parameters are briefly defined below; 

 filename, filename containing the ground acceleration record.  

 zeta, the percentage of critical damping. 

 freq1, the first modal frequency for Rayleigh damping computations. 

 freq2, the second modal frequency for Rayleigh damping computations. 

 m, the building mass at each floor level (vector). 

 kCol, the building stiffness at each story (vector). 

 kDamp, the damper stiffness matrix.  

 Coef, the coefficient for the supplemental damper at each story (vector). 

 Alpha, the velocity exponent for the supplemental dampers at each story 

(vector). 

 Vyld, the story yield force (vector). 

 timeEnd, the ending time for the response computation 

 nSol, the number of solution substeps within ground motion time interval 

 

 Pseudo code for the algorithm used to conduct the nonlinear transient analysis of 

2D MDOF systems with viscous/viscoelastic dampers is described in the following: 
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1. Read in the time-history acceleration data from fileName to matrix, 

( Re )U g dd num c  , where numRec is total number of Records. 

2. Generate u dd
which is an array of time vs. ground acceleration at solution 

increment desired using linear interpolation method. 

3. Initialize the stiffness matrix using function assembleK.m. 

4. Generate the mass matrix for the shear building model.  

5. Compute natural frequencies via, eigen value analysis. 

6. Compute the classical damping matrix using Rayleigh damping method.  

7. Execute the Newmark algorithm for numerical integration. 

 

2.4 Response Simulation Algorithm Validation 

The algorithm was implemented in a computer program written as a series of Matlab m-

files (see Appendix 1 through 21 of the dissertation).  The numerical integration 

algorithm is contained in the Matlab m-file called inelasticMDOF.m.  This section of 

the dissertation includes a series of comparisons to demonstrate the accuracy of the 

algorithm for computing the response of linear and nonlinear MDOF shear building 

models with linear/nonlinear viscous and viscoelastic damping.  Several benchmarking 

cases were developed and comparison between the responses computed using the present 

algorithm, theory, and other research-grade software is made.   Finally, a five story shear 

building model with nonlinear springs and nonlinear viscous dampers is used to verify 

that all pertinent behaviors are correctly modeled in the program developed. 
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2.4.1 Linear Viscous Damping 

Damping tends to reduce the amplitude of displacements and velocities in the structural 

system imparted through the earthquake hazard. In the simplest case, linear viscous 

damping forces may be mathematically modeled as being proportional to velocity as 

given below, 

 ( ) ( )D Sf t c u t  (2.16) 

Consider the SDOF system shown in Figure 2.6.  It includes inherent damping 

proporational to mass and stiffness and supplemental viscous or viscoelastic damping.  

The system is subjected to harmonic force given by 0( ) sinp t p t  and this harmonic 

force is translated to a harmonic ground acceleratoin, 0( ) singu t A t .   

  sinoA t

1

Ic
1k

1m

 

 1

( ) sin

sin

o

o

p t p t

A m t









1

Ic
1k

1m

, ,S

ec k

, ,S

ec k

 

 

Figure 2.6 Single Degree of Freedom with Inherent Linear Viscous Damping and 

Equivalent Ground Acceleration. 



 

 

39 

 

The damping force in this system can be written as [2.4], 

  0( ) cosD S Sf c u t c u t      

  2 2 2

0 0 sinSc u u t      

 =  2 2

0 [ ]Sc u u t   (2.17)  

Equation (2.17) can be re-written as [2.4], 

 

2 2

0 0

1
D

S

u f

u c u

   
    

   
 (2.18) 

Equation (2.18) describes the hysteretic behavior (force versus displacement response) of 

the linear viscous damper.  The hysteretic behavior follows an elliptical shape. 

 The SDOF system was given the characteristics are given in Table 2.1.  It should 

be noted that the spring characteristics for this example are linear.   

 

 Table 2.1 Characteristics of the One-story Shear Building 

1m  

 2 /k s in  
1k  

( / )k in  

sc  

( / )k s in  

Ic  

( / )k s in  

5 240 100 3.464 * 

          * -calculated on the basis of 5% of critical damping.  

 

The harmonic (sinusoidal) forcing function was utilized to generate an equivalent 

horizontal harmonic ground motion acceleration given by,  

 ( ) sin( ) 0.25 sin( )g ou t A t g t      (2.19)  

with the excitation frequency being taken as; 1 / secrad  . 
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 The SDOF system subjected to harmonic forcing function and linear viscous 

damping has well known solutions for time history response.  The parameters in Table 

2.1 lead to the following conclusions regarding the system.  The inherent damping 

coefficient and the supplemental damping coefficient lead to the following total damping 

coefficient for the system, 

 103.46 /T I Sc c c k s in     

The total damping ratio for the system is, 

 
1 1

103.46
1.49

2 2 240(5)

T
T c

k m
   


 

The total damping ratio therefore, indicates that this system is overdamped and there will 

be very little transient response component for the system prior to it reaching the steady-

state response.  Using the harmonic loading frequency and natural frequency of the 

system computed as, 

 
240

6.93 /
5

rad s    

we can estimate the dynamic amplification factor as 0.94fD  .  Thus, the system 

parameters selected indicate that the harmonic loading and equivalent harmonic ground 

acceleration will cause peak displacements that are essentially equal to the magnitude of   

the static dsiplacement.  The amplitude of the forcing function is; 

 1 (0.25 386.4) 5 483.0oA m      

and the static displacement for the system with this applied force is given by, 

 
483

2.01
240

staticu in   

The peak dynamic displacement is therefore 0.94(2.01) 1.89dynamicu in  . 
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 The steady-state elliptical damping response given by equation (2.18) is known as 

a hysteresis loop. The elliptical response takes on different shapes due to varying value 

of  as shown in Figure 2.3.  In the case of   = 1.0, the dampers have linear behavior. 

 The theoretical hysteretic response given by equation (2.18) is plotted together 

with the hysteretic response generated using the algorithms developed.  This comparison 

is shown in Figure 2.7.  The figure illustrates that the program developed for use in the 

present study is capable of doing a very good job simulating the response characteristics 

of linear viscous damping.  
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Figure 2.7 Hysteretic Response Comparison for SDOF System in Figure 2.6 with 

Linear Viscous Supplemental Damper.  

 

The peak dynamic steady-state displacement shown in Figure 2.7 is approximately 1.87 

inches.  The peak dynamic displacement predicted using first principles approximations 

is 1.88 inches.  Thus, the correlation is quite good and the solution methodology provides 

accurate results for the case of viscous supplemental dampers. 
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2.4.2 Linear Viscoelastic Damping 

Viscoelastic dampers  include elastic stiffness characteristics when  subjected to 

deformation. Viscous materials resist forces as a function of the rate (velocity) at which 

strain is applied.  Elastic materials strain when stretched and their response is 

independent of strain rate. The total resisting force in the SDOF system considered in the 

previous section (elastic stiffness generated and damping generated) can be written as, 

 
1

2 2

0

( ) ( ) ( )

( ) ( )

D S

s d

D S

d

f f k u t k u t c u t

f k u t c u u t

   

  
 (2.20) 

The plot of Df  against u  is the ellipse of Figure 2.3 rotated as shown in Figure 2.4 

because of the ( )dk u t term (elastic stiffness of the damper) in equation (2.20).  

 The accuracy and applicability of the algorithm developed for the present work 

for analyzing shear-building structures with linear viscoelastic (VE) damping is evaluated 

using the SDOF frame and equivalent sinusoidal ground motion shown in Figure 2.6 and 

equation (2.19). The SDOF system has the characteristics given in Table 2.1 and the 

linear elastic stiffness of the damper is 50 /dk kip in .  

 The procedures found in Section 2.4.1 can again be used to estimate the dynamic 

displacement of the system with viscoelastic dampers.  The natural frequency of the 

system can be approximated as, 

 
240 50

7.62 /
5

k
rad s

m



    

The total damping coefficient can be estimated as follows, 

 (0.05) 2 (5)(290) 3.81 /Ic k s in   
 

 

 103.81 /T I Sc c c k s in     

http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Deformation
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The total damping ratio is therefore, 

 
1

103.81
1.36

2 2 290(5)

T
T c

k m
   


 

This again indicates that the system is overdamped.  The frequency ratio for the system is 

estimated as, 

 
1

0.131
7.62

r



    

and the dynamic amplification factor can be computed as, 

 

   
2 2 2 2 22

1 1
0.956

(1 ) (2 ) 1 0.131 2(1.363)(0.131)
fD

r r
  

   

 

The static displacement can be computed as,  

 
483

1.67
290

staticu in   

The peak dynamic displacement is therefore 0.96(1.67) 1.59dynamicu in  . 

 Hysteretic response simulations  generated using the present algorithm for the 

linear VE-damped SDOF frame subjected to the equivalent sinusoidal ground motion 

computed using equation (2.19) are  plotted together in Figure 2.8. The simulation 

performed using the algorithm developed for the present study results in a hysteretic 

damper response that correlates nearly perfectly with the theoretical results.  The peak 

dynamic displacement predicted using first principles is approximately 1.59 and this 

correlates quite favorably with the peak displacements given in Figure 2.8. 



 

 

44 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-200

-150

-100

-50

0

50

100

150

200

u (in)

F
d

e
la

s
ti

c +
 F

d
v
is

c
. (

K
ip

)

 

 

MDOF Program

Theory Equation (Upper Loop)

Theory Equation (Lower Loop)

 

Figure 2.8 Hysteretic Response Comparison for SDOF System in Figure 2.6 with 

Linear Viscoelastic Damping.  

 

 The results of first principles analysis of the SDOF viscoelastically damped 

system and the results generated using the algorithm and program developed for use in 

this thesis correlate quite favorably and the programs developed are accurately modeling 

linear viscoelastic and viscous systems. 

 

2.4.3 Nonlinear Viscous Damping 

The force and velocity relationship for a nonlinear viscous damper can be characterized 

as, 

  D Sf c V  (2.21) 

Where V is the relative velocity across the damper and   is a constant exponent which 

can be any value within a typical range of 0.30 to 1.95. The exact value for   depends 

on the shape of the piston head. The best values ranges from 0.3 to 1.0 for structural 

applications [2.5].   In the case of   = 1.0, the dampers have linear behavior. The 
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manufacturer determines the velocity at which the dampers can displace and the 

maximum displacement that the shafts of the piston can undergo. The most common 

values for V are between 0.6 - 1.50 in/s.   The practical range for the damper coefficient, 

Sc , is 100 - 200 lb-s/in [2.5], but the range can expand.  

 Let's again assume that the linear elastic (stiffness) SDOF system shown in Figure 

2.6 is subjected to the harmonic force:   0 sinp t p t . The equation of motion for a 

system with nonlinear viscous or viscoelastic damping can be expressed as, 

 1 1 sinI S

d oumu c u c k u k u p t       (2.22) 

where all terms in equation (2.22) have been defined previously.  If viscous damping is 

considered, equation (2.22) reduces to, 

 1 1 sinI S

oumu c u c k u p t      

The SDOF shear building model with nonlinear viscous damping characteristics 

was again used to compute system response when subjected to sinusoidal ground motion 

accelerations.  The SDOF system characteristics are given in Table 2.1.   

 The displacement time history and the hysteretic loops computed using the 

simulation algorithm generated in this study and those computed by solving Eq. (2.22) 

using MATLAB ODE45 solver [2.6].  The default options for ODE45 were initially 

utilized.  Relative tolerance settings were altered from the default values as well.  The 

nonlinear viscous damping problem could not be solved without generating real and 

complex components to the displacement time histories.  While not ideal, plotting the real 

component of the ODE45 solution allows a qualitative comparison of the solution 

generated by ODE45 and the program written for the present study. As a result, the 
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quality of the solutions generated by the algorithms generated for later use in this thesis 

can be evaluated. 

 The velocity exponent chosen for comparison was 0.50.  Figure 2.9 illustrates the 

displacement time histories for the ODE45 solver and the MDOF program.  
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Figure 2.9 Displacement Comparison for SDOF System in Figure 2.6 with Nonlinear 

Viscous Damping, 0.5   . 

Only the real component of the displacement is plotted.  The overdamped system has the 

expected response that includes nearly immediate migration to the steady-state response 

with a period equal to that of the harmonic ground motion or force (6.28 s).  Figure 2.10 

illustrates the hysteretic response of the supplemental damper. 
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   Figure 2.10 Hysteretic Response Comparison for SDOF System in Figure 2.6 with 

Nonlinear Viscous Damping, 0.5   . 
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The steady-state damper response includes the expected elliptical hysteresis for the 

velocity exponent chosen.  Only the real component of the displacement response 

computed by ODE45 is included in Figure 2.10.  As a result, there is deviation from the 

solution generated by MDOF, but the hysteresis shape is preserved.  The m-files used as 

the basis for MDOF generated are able to numerically solve this difficult nonlinear 

differential equation very effectively.  In fact, the MDOF solution can be considered as a 

benchmark solution for this problem. 

 

2.4.4 Nonlinear Viscoelastic Damping 

The final condition used in the algorithm validation for SDOF systems is one that 

includes nonlinear viscoelastic damping.  The same SDOF frame and sinusoidal ground 

motion in Figure 2.6 is considered and the equation of motion is given by equation (2.22).  

The linear elastic stiffness of the damper in the system used as the basis for comparison 

was defined as 50 /dk kip in .   The damping coefficient, the linear elastic spring 

stiffness, and the SDOF system mass are given in Table 2.1 and the velocity exponent 

was taken as 0.50. 

 The displacement time history for the system in Figure 2.6 was computed using 

the algorithm developed for this thesis work and the response of the system was also 

determined using the MATLAB ODE45 solver [2.6].  Figure 2.11 illustrates the 

displacement time histories for both solutions.  Only the real components of the 

displacements are plotted.  The response is similar to that illustrated in Figure 2.9.  The 

system is overdamped in both cases and the main difference in the response is the peak 

dynamic displacement magnitude (less in Figure 2.11).  The viscoelastic stiffness of the 
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damper in this case serves to reduce the dynamic displacement from that seen in the 

previous system.   
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Figure 2.11 Displacement Time History Response Comparison for SDOF System in 

Figure 2.6 with Nonlinear Viscoelastic Damping, 0.5   . 

 

 The hysteretic loop (steady-state response) computed using the algorithm 

developed for current use (MDOF program) is plotted in Figure 2.12.  The solution 

generated using ODE45 was similar to that shown in Figure 2.11 and the hysteretic 

response qualitatively followed that of the MDOF program. 
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Figure 2.12 Hystertic Response for SDOF System in Figure 2.6 with Nonlinear 

Viscoelastic Damping, 0.5, 50 /dk k in    . 
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The steady-state damper hysteresis generated by the MDOF program shows the expected 

tilted, flatened, elliptical shape expected for a viscoelastic damper with the parameters 

used. 

 The time history response and the hysteretic behavior of the supplemental damper 

illustrates that the MDOF program is capable of generating accurate solutions to dynamic 

systems with nonlinear viscoelastic and viscous supplemental damping.  The 

comparisons given in Figures 2.9 through 2.12 indicates the algorithm developed is 

capable of simulating the response quite well and the methodology developed for the 

present study is a suitable tool for analyzing building structures with supplemental 

nonlinear viscous or viscoelastic dampers. 

 

2.4.5 Energy Dissipation 

The final SDOF system comparison that was made to evaluate the computer algorithm 

used to simulate the ground motion response of 2D shear building systems with 

supplemental linear/nonlinear viscous/viscoelastic damping was based upon energy 

dissipation characteristics of the damper systems.  The area within the damper force 

hysteresis loop gives the energy dissipated by dampers in the system. In the case 

of 1.0  , the area enclosed by the hysteretic ellipse is [2.4], 

  
2 / 2 /

2 2

0
0 0

D S S S

DE f du c u u dt c u dt c u
   

        (2.24) 

It should be noted that equation (2.24) is for one cycle of deformation for vibrations in 

the steady state.  The peak dynamic displacement is ou . 

 The SDOF system parameters for a system with linear viscous dampers are given 

in Table 2.2.  The energy dissipated by the dampers in the solution generate by the 
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MDOF program was determined through numerical integration of the damper force 

versus relative displacement response for one hysteretic cycle of vibration in the steady 

state.    The period for this is 6.28 seconds.  Because the system is overdamped, the 

response in any 6.28 second cycle can be chosen. 

Table 2.2 Dynamic Properties of One – Story Shear Building (SDOF system) 

Mode 

  

(rad/s) 

sc  

(k-s/in) 

  

(rad/s) 
T  

(sec) 

0u  

(in) 
ED  

(kips-in) 

1 6.928 100 1 6.28 1.8810 1111.5 

 

The accumulated energy dissipated by the dampers computed using the m-files developed 

for use in this thesis work (MDOF) for various damper types is shown in Figure 2.13.  
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Figure 2.13 Energy Dissipated by Dampers in One Cycle of Steady-State Vibration. 

 

 The energy dissipated in any one cycle in the steady state can be numerically 

integrated using the response shown in Figure 2.13.  As mentioned earlier, any cycle can 
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be chosen because the system is overdamped.  The present analysis utilized the first cycle 

in the response and therefore, there is  slight error introduced into the numerical 

integration.  The parameters in Table 2.2 lead to the energy dissipated by the damper 

computed using equation (2.24) being 1,112 k-in.  Numerical integration of the first 6.28 

seconds of response shown in Figure 2.13 leads to the energy dissipated being equal to 

1,097 k-in.  The comparison is excellent and it demonstrates that the numerical 

simulation is capable of preserving the damper energy dissipation. 

 

2.5 Case Study Comparisons with OpenSees 

The Open System for Earthquake Engineering Simulation (OpenSees) [2.1] is being 

developed by the Pacific Earthquake Engineering Research Center (PEER) for the 

research and professional communities and it is open-source “object-oriented framework 

for finite element analysis” [2.1].  The goal of OpenSees is to improve modeling and 

computational simulation in earthquake engineering through open-source development. 

Structures in OpenSees can be modeled in 2D or 3D including linear damping and may 

include elements with degrading stiffness. Opensees was an option for the present 

research effort as dynamic analysis software. However, it was not selected because it is 

under development and it is not able to model nonlinear viscous and nonlinear 

viscoelastic damping. 

 The 3-story shear building shown in Figure 2.1 was used as the basis for further 

comparison of the MDOF program.  The motivation for these comparisons was to 

evaluate the present algorithm‟s capabilities with respect to modeling multi-story shear-
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building system behavior with/without supplemental dampers and with/without diagonal 

bracing.    

 The OpenSees computer program is not designed for shear building analysis and 

the model used in OpenSees had to be modified to simulate shear building-type behavior.  

As outlined earlier, the algorithm formulated for simulations in this dissertation assumes 

shear building behavior. 

 The following outlines the planar 3-story model used in OpenSees.  Columns and 

beams were steel material with Young‟s modulus equal to 29,000 ksi.  Flexurally rigid 

beams were desired and 4100000 gI in , and 2100000 gA in  was used. The length of 

beams in the model topology was 144 beamL in .  The characteristics of the model and 

ground motion input are summarized in Table 2.3. 

 

Table 2.3 3–Story Building Model Characteristics. 

 

Story 

im  

2( / )k s in  

Columns 

iI  

4( )in  

ik  

( / )k in  

iH  

( )in  

1 15 1,710 398.6 144 

2 10 1,710 398.6 144 

3 5 1,710 398.6 144 

3

12
2 398.6i

i

EI k
k

H in

 
  

 
 

Earthquake Input Record: 1940 El Centro 
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 Three cases of damping were considered in the comparisons.   I

ic  is defined as the 

inherent damping coefficient at any  story, and S

ic   is the supplemental damping 

coefficient  at any story, which is introduced by adding dampers to the system.   ik  is the  

story (spring) stiffness resulting from column members, and dik  is the additional linear-

elastic stiffness introduced through dampers.  i  is a constant velocity exponent 

corresponding to the supplemental dampers and im  is the mass at story i . Comparison of 

the simulations computed with those generated using OpenSees [2.1] and the present 

algorithm are described in the following sections. 

 

2.5.1  Case 1 - No Supplemental Damping Devices or Braces 

The first model considered includes no added dampers in the system: 0, 0S

i dic k   .  

The system was analyzed with the Matlab m-files (denoted as MDOF or Matlab) and 

OpenSees [2.1].  The fundamental (1st) and 3rd modal frequencies were used to calculate 

Rayleigh proportional (inherent system) damping constants ,a b  with equations (2.25), 

and (2.26) [2.4], 

 
2 i j

i j

a



 




 (2.25) 

 
2

i j

b 
 




 (2.26) 

The parameters within equations (2.25) and (2.26) are defined as follows: 1, 3i j  , and 

the inherent damping ratio   is a target value of 5%.  
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 Figure 2.14 shows the displacement time-histories for the 3rd floor (roof level) 

when the model was subjected to the El Centro 1940 earthquake ground acceleration. The 

two analysis results plotted in this figure illustrate excellent correlation.  
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Figure 2.14 The 3rd Floor (Roof Level) Displacement Time Histories. 

 

There is slight deviation in the response histories late in the response after 15 seconds 

results from implementation of the damping model, but overall the comparison is very, 

very good. 

 

2.5.2  Case 2 - Elastic Diagonal Braces and No Dampers 

The second model considered includes the addition of elastic diagonal braces to the 

previous case. The elastic braces provide additional linear elastic stiffness at each story.   

The cross-sectional area of the braces, A, was taken as 20 2in .  Using frame topology (bay 

width equal to 144 inches and story height equal to 144 inches, the length of braces can 

be computed as 203.65 inches based upon an angle, , made between the diagonal brace 
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and horizontal beam. The added horizontal stiffness component resulting from the 

diagonal braces can be computed using, 

 2cosei

AE
k

L
  (2.27) 

If we assume that the material modulus is taken as 29,000 ksi , this horizontal stiffness is 

equal to 1,424 /kips in . 

 A comparison of the computed time histories when the system is subjected to the 

El-Centro 1940 ground motion are given in Figure 2.13.  The results indicate that the 

computed response histories match nearly perfectly. 

 

Figure 2.15 The 3
rd

 Floor (roof) Displacement Time Histories for Case 2. 

 

2.5.3  Case 3 and 4 - Supplemental Linear Viscous Dampers 

These cases are based on the steel frame (with no braces) from case 1, but now include 

supplemental linear viscous dampers. Stiffness contribution from the supplemental 

damping device was not considered, so 0, 1,2,3eik i    and the systems in these cases 
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can be considered to have supplemental linear viscous damping with the following 

characteristics: 

 Case 3: 100.0 - / , 1.0  1,2,3S

i ic k s in i     

 Case 4:  10.0 - / , 1.0  1,2,3S

i ic k s in i     

The inherent damping characteristics remained Rayleigh damping computed for a target 

of 5% of critical in modes 1 and 3 as outlined in equations (2.25) and (2.26). Ground 

motions applied as base acceleration again was based in the El Centro 1940 record. 

 Figures 2.16 and 2.17 include the response time-histories for cases 3 and 4, 

respectively.   
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Figure 2.16 The 3
rd

 Floor Displacement Time Histories for Case 3. 

 

The figures illustrate that the time histories computed using both programs essentially lie 

on top of one another and therefore, the comparison is excellent. Thus, one can conclude 

that the MDOF program and OpenSees are capable of accurately simulating the response 

of shear building systems with supplemental linear viscous damping. 
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Figure 2.17 The 3
rd

 Floor Displacement Time Histories for Case 4. 

  

2.5.4  Case 5 – Various Supplemental Devices 

Another case (composed of many different brace and damper configurations) was studied 

to validate the MDOF program's capability to accurately simulate system response when 

linear or nonlinear viscoelastic supplemental dampers exist at various levels throughout 

the system.  The input ground motion acceleration time history was again the El-Centro 

1940 record. 

 Five different shear building configurations were considered in this evaluation 

case.  Inherent (Rayleigh) damping was considered at 5% of critical damping and the first 

and third modal frequencies were used to establish Rayleigh damping coefficients.  The 

linear-elastic braces and the linear-elastic stiffness component of the viscoelastic damper 

are based upon a cross-sectional area of 20 square inches and steel material and a 

diagonal length of the brace or damper, L, in equation (2.27), taken as 203.6 inches.  If a 

steel brace was used, the elastic modulus was set to 29,000 ksi.  All dampers had 
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proportionality coefficients equal to 100 k-s/in and three cases of velocity exponents were 

evaluated.  

 The three-story shear building parameters for the three story frame considered in 

this final evaluation are given in Table 2.4.  Figure 2.18 illustrates the time-history 

response computed using the MDOF computer program developed for use in this 

dissertation work for a variety of brace and damper configurations.   

 Table 2.4 System Parameters for the Three-Story Shear Buildings in Case 5.  

Story 

m  
2( / )k s in  

gI  

 4in  

H  

 in  

k  

 /k in  

e dk or k  

 /k in  

sc  

 /k s in  

1 15 1,710 144 398.6 150 100 

2 10 1,710 144 398.6 150 50 

3 5 1,710 144 398.6 150 10 
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Figure 2.18 The 3rd Floor Displacement Time Histories for Case 5 Systems. 
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 As expected, the presence of supplemental dampers significantly reduces the 

horizontal displacement at the roof (top floor) level.  It appears the greatest reduction in 

horizontal displacement comes from the velocity exponent being equal to 1.50. However, 

the roof displacement for all damper configurations is relatively consistent with one 

another with exceptions occurring relatively early in the systems response to the El 

Centro record (10 seconds or earlier in the response).  Frame configurations with added 

dampers undergo considerably reduced amplitude of vibration in comparison to the 

structure without the energy dissipation system when subjected to the same ground 

motion record.  Overall, the behavior of the systems followed expected response 

characteristics. 

 A slight modification to the framework described in the data found in Table 2.4 in 

which different damper velocity exponents exist at each level in the frame was used as a 

follow-up evaluation to ensure that the programming of the nonlinear damper 

characterstics were correct.  The damper velocity exponents at the first through third 

stories were 0.5, 1.0, and 1.5, respectively. 

 Figure 2.19 illustrates a comparison of the force-relative-velocity response for the 

three different types of viscoelastic dampers at each of the stories in the three story 

system. It is clearly seen that the linear viscoelastic damper has the expected linear 

response in force-relative-velocity space.  The nonlinear viscoelastic dampers also exhibit 

the expected behavior.  This is an important check of the programming to ensure that 

correct damping behavior is seen in the system response. 

 The response illustrated in Figure 2.19 also gives an understanding of the solution 

increment size needed to accurately trace the force-velocity response characteristics of 
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the supplemental dampers in the system.  If the nonlinear response characteristics did not 

follow the smooth curves implied by the nonlinear response, one could argue the time 

steps used for the solution were not small enough.  The response in Figure 2.19 indicates 

that adequate solution time increments were used. 
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Figure 2.19 Force-Velocity Response for Nonlinear Viscoelastic Dampers in Three-

Story Shear Building with Parameters in Table 2.4. 

  

 Figures 2.20, 2.21 and 2.22 illustrate the hysteresis loops for the dampers added at 

each of the three stories computed when the three-story frame is subjected to the El-

Centro 1940 ground motion. As expected, the loops are elliptical in shape, but the input 

ground motion results in some waviness in the shapes and a growth and retraction 

tendency indicating that the relative displacements imparted through the ground motion 

are increasing and decreasing during the response. The hysteretic behavior in these loops 

illustrates expected characteristics consistent with those outlined and discussed earlier in 

the chapter. 
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Figure 2.20 Hysteresis Loops of Dampers at Story 1 in Three Story Frame. 
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Figure 2.21 Hysteresis Loops of Dampers at Story 2 in Three Story Frame. 
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Figure 2.22 Hysteresis Loops of Dampers at Story 3 in Three Story Frame. 

 

 It should also be noted that the damper force plotted in components include: (a) 

elastic stiffness contribution; and (b) viscous damping contribution.  The first story 

damper response is as expected and consistent with the modeling assumptions and theory 

upon which the present algorithm is based.  Linear viscoelastic damper response (i.e. 

second story damper response) is shown in Figure 2.21.  Response characteristics of the 

components and total damper force response are again consistent with the assumptions 

and theoretical basis.  The pinched hysteretic behavior of the stiffening damper is present 

in the response shown in Figure 2.22.  The significant difference in energy dissipation 

among the three cases is as expected in the responses shown in these three figures. 

 

2.6  Additional Evaluation 

The behavior of an idealized five-story shear building frame, as shown in Figure 2.23 

[2.4], was used as a final evaluation  the present algorithm‟s modeling capabilities with 
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respect to simultaneous nonlinear material behavior and nonliear viscous damper 

behavior.  The 5-story frame is a shear building. The characteristics of the model are 

summarized in Figure 2.23 and the ground motion applied to the system was the El 

Centro earthquake that occurred in 1940 [2.4].  

m

m

m

m

m

Story

Mass Stiffness Shear Strength

m k V

(Kips/g) (Kips/in) (Kips)

1 100 234.9 72.55

2 100 220.2 66.8

3 100 190.6 57.15

4 100 146.2 43.6

5 100 87.08 26.05

 

 

Figure 2.23  Five-Story Shear Building Frame [2.4]. 

 

The inherent viscous damping in the structure is defined by Rayleigh proportional 

(classical) damping. The first and third ( 1, 3i j  ) natural vibration modes and constant 

damping ratio 5%   were used to calculate Rayleigh proportional damping constants 

,a b  with equations (2.25), and (2.26). 
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 Figure 2.24 shows the displacement time-histories for the 5
th

 floor when the 

model subjected to the El Centro earthquake. The peak displacement at the 5
th

 floor is 

3.203 in from Choprs‟s book as shown in Figure 2.24.  

   

Figure 2.24   The 5
th

 Floor Displacement for the Five-Story Shear Building Described 

in Figure 2.23 [2.4]. 

 

Yielding in the stories causes the system to drift from its initial position in to a position of 

permanent deformation [2.4]. As a result, the system does not oscillate always about its 

initial un-deformed position. The system oscillates around a new deformed position when 

it is shifted by episodes of yielding [2.4].  

 Figure 2.25 was generated by the program developed for later use in the 

dissertation (MDOF). The maximum displacement at the 5
th

 floor computed using the 

programs and algorithms for the present study is 3.22 inches at 5.44 sec. The comparison 

to earlier work [2.4] is excellent and nonlinear material is modeled correctly. 

 Figure 2.26 shows the relation between story shear jV and the inter-story drift 

j as the structure goes through several cycles of oscillation. The figure shows 

elstoplastic relation between the shear force jV  and interstory drift.  
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Figure 2.25   Displacement Time History at Each Level Computed Using MDOF. 
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 Figure 2.26  Story Shear at Each Story Computed Using MDOF. 

 

The nonlinear spring hysteretic response behavior seen in Figure 2.26 indicates that the 

modeling of elasto-plastic spring behavior is being adhered to and the program generated 

is performing as intended. Values of initial stiffness, yiellding and the hardening model 

assumed earlier are preserved in the systme response. 

 A second topology included identical nonlinear ( 1.5  ) viscous dampers at each 

story with 10 sec/c kips in  .  This frame was studied to evaluate the behavior of 
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nonlinear dampers and nonlinear springs in all five stories of the frame. The shear yield 

strengths at each story were reduced to keep the system in plastic stage when subjected to 

ground motions. The characteristics of the model are listed in Figure 2.24 and the ground 

motion applied to the system was the El Centro earthquake that occurred in 1940 [2.4].  
 

Story

Mass Stiffness

Shear 

Strength Damper

m k V C Ke

α(Kips/g) (Kips/in) (Kips) (K-s/in) (Kips/in)

1 200 120.0 35.0 10 0.00 1.50

2 200 110.0 33.0 10 0.00 1.50

3 200 95.0 29.0 10 0.00 1.50

4 200 73.0 22.0 10 0.00 1.50

5 200 44.0 13.0 10 0.00 1.50

m

m

m

m

m

 

Figure 2.27 Five Story Shear Building Frame with Nonlinear Viscous Dampers. 

  

 Figures 2.28 through 2.31 show the displacement histories of building, the 

relation between story shear and story drift, the relation between damper force and story 

drift and the relation between damper force and relative velocity, respectively. The 

response results present in Figures 2.28 through 2.31 are organized as as follows: (a) the 

top (5
th

) story; (b) the 4
th

 story; (c) the 3
rd

 story; (d) the 2
nd

 story; and (e) the 1
st
 story.   

 Figure 2.29 shows elastoplastic relation between the shear forces at each level jV  

and story drift, 1j j ju u    . The relations between damper forces and relative velocities 
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and the damper force and the inter-story drift illustrate the dampers are also modeled 

correctly in the MDOF program.  
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Figure 2.28 Displacements at Each Story 
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Figure 2.29 Story Shear Forces vs. Inter-Story Drift at Each Story 
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Figure 2.30 Damper Forces vs. Inter-Story Drift at Each Story 
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Figure 2.31 Damper Forces vs. Relative Velocity at Each Story 
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2.7 Concluding Remarks 

This chapter in the thesis included discussion of many comparative cases designed to 

illustrate that the MDOF program written for use in this dissertation is able to correctly 

simulate the behavior of shear buildings with a variety of supplemental damping devices 

(elastic, viscous or viscoelastic) when subjected to ground acceleration records and 

sinsoidal ground accelerations consistent with harmonic loading. 

 Comparison of simulation results for test cases using theoretically based solution, 

research-grade software solutions (e.g. OpenSees), and the MDOF system program 

written indicates that it can be used to provide reliable dynamic analysis  that can be used 

as the basis for the risk-based optimized design algorithms to follow. In fact, the case 

studies examined can serve as benchmark solutions for complicated nonlinear dynamic 

behavior. 

 

  

 

 

 

 

 

 

 

 

 

 



 

 

73 

 

Chapter 3 

Risk-Based Seismic Design Optimization of Steel  

Building Systems with Supplemental Damping Devices 

3.1 Introduction 

In the past ten years, estimated losses due to seismic hazard were twenty times larger than 

in the previous 30 years combined [3.1]. FEMA‟s expenditures related to earthquake 

losses have become an increasing percentage of its disaster assistance budget [3.1]. A 

typical expected service life for a building is 50-70 years. For purposes of this 

dissertation, there are two costs associated with a building system.  The initial 

construction cost and the cumulative expected losses (cost) associated with damage 

resulting from seismic activity.  Initial construction cost includes costs for fabrication and 

erection of the structural framing system. It is recognized that initial construction cost 

associated with the framing system are a small fraction of the total building cost, but the 

framing system is the entity with the most ability to control loss due to seismic hazard.  A 

building‟s life-cycle cost also includes losses resulting from damage due to natural 

hazards: earthquakes, tornados, and hurricanes.  A risk-based design optimization should 

include these losses in order to help builders choose the most suitable building system 

that can balance initial construction cost with the expected losses resulting from natural 

hazards. 

 Building codes have historically required that structures be built to meet a 

minimum level of life safety to protect building occupants. Current building codes do not 

directly consider loss resulting from damage due to ground motions.  Performance or 

risk-based design is a methodology that seeks to more accurately predict risk of seismic 
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damage in buildings and offer the structural engineer and owner a means to include this 

risk in the design of the structural system. When performance levels are tied to probable 

losses within a reliability-based design framework, the building design process can be 

tied into an owner‟s long-term capital planning strategies, as well as numerical life-cycle 

cost models [3.1]. The current research effort is geared toward development of automated 

risk-based design methodologies to optimize structural system performance to reduce 

expected annual losses due to seismic hazard and reduce initial construction costs for 

structural steel systems with passive damping devices. 

 

3.2 Structural Optimization Fundamentals 

As discussed earlier in this dissertation, many algorithmic approaches to solving optimal 

design problems include design variable representations that are discrete rather than 

continuous in nature (e.g. wide-flange column sections, passive damper configurations).  

This dissertation assumes discrete design variables and seeks to attack a multiple-

objective structural optimization problem using a genetic algorithm.   The present section 

seeks to provide more details regarding structural optimization and the algorithms that are 

used to solve them and develop algorithms for automatically selecting structural system 

components.  This discussion will introduce the multiple objective optimization problem 

tackled in this dissertation as well as provide background and justification for the genetic 

algorithm as the method to attack the problem. 

   The traditional form of a structural optimization problem includes a statement of 

objective(s) and constraints.  The classical form of the optimization problem statement is 

given in the following: 
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Minimize:  f x  

Subject to:   0,ig x     1,...,j p  

    0,kh x     1,...k m  

  L U

i i ix x x     1,...,i n  

Therefore, any algorithm suitable for automating a design  will seek to define a vector of 

design variables, x, within an upper bound U

ix and a lower bound L

ix that satisfies all 

equality constraints  ig x , and inequality constraints  kh x , while minimizing the 

objective function,  f x .  

 There are many methods to solve optimization problems such as these.  These 

algorithms have been discussed extensively in the literature [3.2, 3.3, 3.4, 3.5]. The 

design variable representations can generally take two forms: (a) continuous; and (b) 

discrete.  In general, discrete variable optimization problems usually require more 

computational effort compared to the continuous variable problems even though the 

number of feasible points with discrete variables is finite, but are infinite with continuous 

variables. The reason for this is that continuous-variable optimization problems can allow 

very efficient search of the design space as a result of mathematical gradients being 

defined for constraints and objective functions. 

 Stochastic, gradient-based, and direct-search algorithms can be used as the basis 

for powerful search and optimization tools. Direct-search   methods are point-to-point 

search algorithms that use objective function and constraint values to guide the search 

through feasible decision space [3.2]. A Genetic Algorithm (GA) is a popular stochastic 

search technique that simulates natural phenomena related to genetic evolution. Gradient-
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based methods use derivatives of objective functions and constraint equations to guide 

the search. Convergence of these algorithms depends upon selection of an initial solution 

for subsequent modification through iteration and design variable changes. However, the 

algorithm can be stuck in sub-optimal regions of the decision space due to poor initial 

design selections. 

 The structural engineering optimization problem considered in this dissertation 

includes multiple objectives, discrete design variables, and inequality constraints.  

Therefore, the formal definition of the optimal design problem considered is; 

 Minimize: 
1
( )F x  and 

2
( )F x  

 Subject To: ( ) 0 1, ,
k

h x k m   

   1, ,L U

i
x x x i n    

There are two objectives considered: initial construction cost and expected annual loss 

due to ground motion hazard.  The inequality constraints formulated include strength 

constraints normally associated with structural steel design.  The design variables 

considered will be discrete wide-flange member cross-sections found in steel construction 

and parameters associated with defining the response characteristics of a supplemental 

damping device.   

 A genetic algorithm will be used as the basis for the automated design variable 

selection.  Therefore, fitness functions for each objective considered need to be 

formulated.  The optimal design problem also needs to be re-cast into one that is 

unconstrained.  Therefore, constraints need to be considered as penalties tied to the 

objectives (or fitness).  The following sections provide details related to re-casting the 

optimal design problem into one that is suitable for application of a genetic algorithm.  
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3.3 Fitness Function for Initial Construction Cost 

Estimating initial cost for a steel building with supplemental damping devices is 

complicated, because there are a large number of variables that go into any project. For 

example, a building in Chicago is required to support relatively large snow loads when 

compared to a building in Phoenix.  Furthermore, seismic hazard variability across 

different regions can affect the expected loss and the types and locations of supplemental 

damping systems within the structure. 

  The initial construction cost of a building system often includes: (a) the material 

cost of structural members such as beams, columns, and bracing; (b) the fabrication cost 

including the material costs of connection elements, bolts, welding electrodes, and the 

labor cost; (c) the cost of transporting the fabricated pieces to the construction site; (d) 

the erection cost; and (e) the cost of the foundation. The weight of a steel structure is 

most-often used as the basis for defining initial construction cost of a steel framing 

system without supplemental damping devices.  The weight can be used as the basis for 

the cost of the steel framing system if a proportional multiplier is introduced.  Therefore, 

the costs of (a), (b), (c), and (d) above can be related to the initial weight of the elements 

in the structural framing system.  These costs are included in this dissertation, but the 

foundation cost and transportation costs are ignored. 

 As discussed earlier, two objectives are included in the optimal design problem 

statement considered in this dissertation.  The first is initial construction cost.  The initial 

construction cost is re-cast to fitness using the weight of the structural framing system 

components.  The initial construction cost is approximated using the following, 

  1
1.20C WT   (in dollars) (3.1) 



 

 

78 

 

where: WT  is the weight of steel components (wide-flange cross-section members) in the 

framing system; and the multiplier (1.20) is a factor that includes the cost for material, 

fabrication, and erection.  

 This dissertation assumes that wide-flange steel members are utilized.  These 

members are often cataloged using weight per linear foot [3.5].  Therefore, the cost of the 

wide flange member components in the framing system can be re-written as, 

  1

1

1.20
N

k k

k

C L wt


   (3.2) 

where:  
k

wt  is the weight of the component on a per foot basis (tabulated), 
k

L  is the 

length of the component, and N  is the number of wide-flange components in the framing 

system. 

 The additional cost of supplemental damping devices is also included in the initial 

cost to the structural framing system.  The price of a supplemental damping device is 

related to the maximum force expected in the damper during a seismic event and the 

maximum stroke required from the damper during the seismic events considered.  The 

peak damper force is used to define the diameter of the supplemental damping device and 

the maximum stroke expected defines the length of the damper. 

 Supplemental damping devices in typical structures often have strokes on the 

order of +/- 3 to 4 inches.  Smaller buildings (low rise, or low mass) often include 

dampers with peak force magnitudes in the range of 30-75 tons. Larger buildings or those 

with larger mass often include larger dampers with capacities in the 70-200 ton force 

range.  

 Engineers at Taylor Devices (http://www.taylordevices.com) were contacted to 

gain input with regard to formulating a rational cost estimate for supplemental damping 

http://www.taylordevices.com/
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devices.  Table 3.1 lists cost estimates for a 4-ft long Taylor damping device which 

includes a clevis and spherical bearing at one end and a square plate at the other end to 

attach to an extender. The cost of the extenders is not included in this dissertation.  

  Table 3.1  Supplemental Damper Device Costs 

Peak Force 

(Tons) 

Cost Per Damper 

(Dollars) 

25 3,200 

50 3,600 

80 4,400 

100 6,400 

150 8,700 

200 11,000 

 

Therefore, if the peak force expected during seismic events is known, Table 3.1 provides 

a means with which to define the cost of the damper associated with that peak force.  

Interpolation and extrapolation of values in Table 3.1 are used in this dissertation to 

define costs.  Thus, the damper contribution to the initial construction cost can be written 

as, 

 2 max

1

( )
dN

D

j

j

C C f


   (3.3) 

where: 
max

( )D

j
C f  is the cost of damper j, which is a function of the peak damper force, 

,maxd
F , and 

d
N  is the number of dampers in the system.   

 The total initial construction cost for the framing configuration or system 

considered is then a sum of the two components.  This is conveniently written as, 

 
1 2

C C C    (3.4) 

Two objectives are included in the optimization statement and as a result, the fitness 

function related to initial construction cost objective is, 
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1 1 2

F C C C     (3.5) 

   

3.4 Fitness Function for Expected Annual Loss (EAL) 

Earthquakes can result in damage to both structural and non-structural components within 

a building system depending upon the severity of the ground motion, the type of 

structural system used in the building, and the building‟s contents and their susceptibility 

to deformation-induced and acceleration-induced damage.     Damage can be classified as 

being in one of five discrete damage states: no damage, slight damage (SLT), moderate 

damage (MOD), extensive damage (EXT), or complete damage (COM) using fragility 

curves for specific building occupancy classes and their corresponding expected repair 

costs for a defined building structural system and its non-structural components and 

contents [3.10].  

 This dissertation uses fragility curves and repair cost percentages developed for 

low-rise structural steel moment resisting frames categorized as S1L for building 

occupancy class COM4, which is office buildings housing professional or technical 

services [3.10].  It is recognized that both braced and unbraced moment resisting 

frameworks are considered in the dissertation research.  However, the present work 

constitutes a framework under which risk-based optimized seismic design can be 

undertaken.  As a result, any suitable fragility curve can be implemented. 

 Table 3.2 provides fragility function parameters for structural system (SS), 

nonstructural drift-sensitive (NSD) components and nonstructural acceleration-sensitive 

(NSA) components used in the dissertation research.  
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Table 3.2 Fragility Curve Parameters for Structural and Non-Structural Components 

(S1L Building System and COM4 Occupancy Class) [3.10]. 

 

Component 
Fragility Curve 

Parameter 

Damage State 

SLT MOD EXT COM 

SS 
dsISDA  0.004 0.008 0.020 0.0533 

ds  0.50 0.50 0.50 0.50 

NSD 
dsISDA  0.004 0.008 0.025 0.050 

ds  0.50 0.50 0.50 0.50 

NSA 

 

( )dsPFA g  0.30 0.60 1.20 2.40 

ds  0.60 0.60 0.60 0.60 

 

 The relative percentage of total building replacement cost allocated to structural 

and non-structural components is derived from Means of component breakdowns for a 

building‟s occupancy class [3.10]. Table 3.3 shows the values for the expected repair cost 

(expressed as a percentage of the building replacement value) of the structural system 

(SS), nonstructural acceleration sensitive (NSA) components and nonstructural drift 

sensitive (NSD) components. Acceleration sensitive nonstructural components include 

hung ceilings, mechanical and electrical equipment, and elevators. Drift sensitive 

components include partitions, exterior wall panels, and glazing.  

Table 3.3 Repair Costs Expressed as Percentage of Building Replacement Cost (S1L 

Building System and COM4 Occupancy Class) [3.10].  

 

Component 
Damage State 

SLT MOD EXT COM 

SS 0.40 1.90 9.60 19.2 

NSD 0.70 3.30 16.4 32.9 

NSA 0.90 4.80 14.4 47.9 
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 The expected losses L (in percentage of building replacement cost) resulting from 

earthquake damage to structural components (SS) or nonstructural components (NSA or 

NSD) for a given ground motion intensity measure, IM, can be written as  

 
5

1

| | *Y Y Y

dsE L IM P DS ds EDP RC         (3.6) 

Y

dsRC is the repair cost for building component Y being in damage state ds , which is 

defined as being one of the following:  1 (no damage); 2 (SLT); 3 (MOD); 4 (EXT); and 

5 (COM).   |YP DS ds EDP     is the probability of building component Y being in 

damage state, ds , given  the engineering demand parameter, EDP , used to characterize 

damage of building component Y.   This probability is calculated using fragility functions 

given by equations (1.3) and (1.4) using parameters defined in Table 3.2. 

 The total expected loss for a given building structure type and occupancy class is 

the summation of loss due to structural and nonstructural component damage, 

  | | | |SS NSD NSA

TE L IM E L IM E L IM E L IM              (3.7) 

where [ | ]YE L IM  is the expected loss for component Y given a ground motion intensity 

measure, IM.  It should be noted that equation (3.7) includes the earthquake intensity 

measure, IM, and losses must be aggregated over all earthquake intensities considered at 

the building site.  The earthquake intensity measure most often considered in past 

research efforts is the peak ground acceleration (PGA).  PGA magnitude is often given 

probabilities of occurrence on an annualized basis, or a probability of recurrence given a 

building‟s exposure period (e.g. 2% chance of exceedence in 50 years). 

 Computing the expected annual loss (EAL) requires that different intensities of 

earthquake motion and their annual probability be considered. The annual average 
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probability, p  of an earthquake intensity measure, IM, being exceeded can be computed 

using the assumption that ground motion recurrence follows a Poisson probability 

distribution. If this is the case, annual average probabilities of occurrence of ground 

motion intensity measures can be defined with 2%, 10% and 50% probabilities of 

exceedence during a defined exposure period.  The annual probability of a specified 

ground motion intensity measure being exceeded given that intensity measure‟s 

probability of being exceeded, p, within an exposure period of t years can be computed 

using the Poisson model [3.11], 

    1/ *ln 1p t p    (3.8) 

Table 3.4 lists the annual probability of different earthquake intensities corresponding to 

exceedence probabilities of 2/50, 10/50 and 50/50.  

The expected annual loss (EAL) resulting from all potential ground motion 

intensities can then be computed using the individual losses determined using equation 

(3.5) and the annual probabilities found in Table 3.4.  This computation is given below,  

      2/50 10/50 50/502% 10% 50%
| * | * | *T T TEAL E L IM p E L IM p E L IM p     (3.9)  

The second objective fitness then follows from equation (3.7), 

 2F EAL  (3.10) 

 

3.5 Genetic Algorithm Constraint Formulation  

A building must be designed and constructed according to the provisions of a building 

code, which is a legal document containing requirements related to structural safety. 

Design specifications give guidance for the design of structural members and their 
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connections and present criteria that enable a structural engineer to achieve the objectives 

mandated by a building code. In this research, the American steel design specifications 

[3.5] are used to formulate constraints needed for designs to meet strength requirements 

set forth by building codes.  

Table 3.4 Annual Probabilities for Earthquake Intensities Considered. 

Earthquake Exceedence 

Probability 
Annual Probability of Occurrence 

2% in 50 years  2%

1
*ln 1 0.02 0.000404

50
p

 
    

 
 

10% in 50 years  10%

1
*ln 1 0.1 0.002107

50
p

 
    

 
 

50% in 50 years  50%

1
*ln 1 0.5 0.013863

50
p

 
    

 
 

  

 The genetic algorithm implementation requires that optimization problems be 

posed as unconstrained.  Therefore, the constraints defined must be re-formulated as 

penalties that are applied to individual fitness.  Penalty multipliers or scaling factors are 

also formulated.  The present section discusses the constraints formulated for the design 

problem considered in this dissertation and method used to define penalty factors and 

scaling factors suitable for the constraint application within the context of the genetic 

algorithm formulated. 

 

3.5.1 Strength 

Strength limit states are related to safety and load-carrying capacity of the structural 

framing system and its members or components. Load combinations for assessing the 
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strength for buildings and their components are available [3.5, 3.12]. The load and 

resistance factor design (LRFD) provisions should be followed in the research to ensure 

that the strength limit state is not exceeded when the structure is subjected to all 

appropriate design load combinations. The basic safety check in LRFD may be expressed 

mathematically as  

 i i nQ R   (3.11) 

where, i   a load combination factor; iQ   a load effect (a force or a moment);    a 

resistance factor; and nR   the nominal resistance, or strength, of the component under 

consideration. 

 The following load combinations are used in this research to assess the strength limit 

states are,  

    1.0 1.0F S rD D L   (3.12) 

    1.0 1.0 1.0F S rD D L E    (3.13)  

As a result, the applied ultimate load ration, u , must satisfy the constraint U  . 

 n
u

i i

R

Q








 (3.14) 

 
1

1.0rU

u




   (3.15)  

Where, FD = the floor dead load; SD = the self-weight; rL = the live load present when 

ground motion occurs.  The load combinations are similar to those found in ASCE-7 

[3.12], but the combination factors have been simpflied.  It should be noted that any load 

combination and associated factors can be implemented. 
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3.5.2 Local and Member Instability 

It is assumed that the axial and flexural strength of the members within the frames 

considered in this research are not affected by local buckling of the web or flanges within 

the cross sections.  Wide flange members subjected to plastic hinging resulting from 

combined flexure and axial compression should be compact with width-thickness ratios 

for the webs in the cross-section satisfying the following: 

 
2.75

3.76 1 u

w y b yLimit

Ph E

t F P

  
     

   

    for  0.125u

b y

P

P
   (3.16) 

 1.12 2.33 u

w y b yLimit

Ph E

t F P

  
     

   

  for  0.125u

b y

P

P
      (3.17) 

where, uP  is the required axial strength, yP  is the yield strength, yF  is the yield stress of 

the steel, and b  is the resistant factor for flexure (assumed equal to 1.0). The flange 

slenderness must satisfy, 
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 (3.18) 

 Therefore, web and flange slenderness constraints can be formulated for the 

optimization problem.  The constraint corresponding to the web slenderness ratio, 
w

h

t
,  

can be expressed as,  
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The constraint corresponding to flange width-thickness ratio, 
2

f

f

b

t
 ,  can be expressed 

as, 
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 Any cross-section within a framework that does not satisfy the web-slenderness 

constraints will be penalized.  These slenderness ratios for the members are taken from 

the manual of steel construction databases of shapes [3.5]. 

 

3.5.3 Beam-Column Strength 

The members within the frames considered will be subjected to flexural and well as axial 

loads.  In other words, the members are treated as beam columns.  The following two 

constraints are set up for steel members subjected to axial force and flexure [3.5],  
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(b) For 0.2r
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where, rP is required axial compressive strength; cP is available axial compressive 

strength; rM  is required flexure strength; cM  is available flexure strength; x is subscript 

relating symbol to strong axis bending. 

 Additional axial loads resulting from the presence of a damper is included on the 

columns adjacent to the dampers. The vertical component of damper axial forces is added 
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to the axial column loads when they cause column compression. However the tension 

force introduced into the columns is conservatively ignored.   Effective length factors for 

major-axis flexural buckling and minor-axis flexural buckling are taken as 1.0. 

 

3.5.4 Damper Stiffness 

The frames considered in this dissertation can be considered as dual systems where any 

bay that contains a diagonal damper compression member acts together with moment-

resisting frame bays to resist seismic loading.  It should also be noted that the columns 

within the bay that includes diagonal dampers (i.e. bracing members) are assumed to 

have flexural stiffness.  This means that the braced bay is actually a combination of axial-

flexural members and diagonal bracing members (i.e. dampers).  

 In order to prevent the dampers from becoming the dominant lateral load resisting 

component in the framing system thereby placing large and currently not quantified 

demands on the connections at the ends of the damper, the damper elastic stiffness was 

restricted.   This prevents large elastic stiffness magnitudes from dominating the 

definition of the damper and prevents the damper elastic stiffness from becoming the 

dominant source of lateral load resistance in the shear building models considered. 

 The damper elastic stiffness, ek , at any story level is selected from a range of 

discrete values ranging from 0 to 100 k
in

with  increment equal to 10 k
in

. The upper 

bound equal to 100 k
in

 is defined as the summation of flexural stiffness for all columns 

at the same level. The column stiffness is calculated using,  
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 The lightest and heaviest columns possibly being selected from AISC steel shape 

database are W6x9 and W14x342 respectively at any story level considered. Therefore, 

the minimum column stiffness is 1.5 /k in   and maximum column stiffness is 224.6 k
in

 

when 156h in   (story height assumed in the frames considered).  A damper elastic 

stiffness constraint at any level i   is therefore, defined as follows, 

 
_

1.0
0.3*

D

ei
Damper

Col i

k

k
    (3.24) 

This constraint ensures that the elastic stiffness of the damper is 30% or less than the 

stiffness of the story in which it is placed.  This helps to maintain the damper systems as 

being supplemental and not the sole source of lateral load stiffness and strength in the 

framing system considered. 

 

3.5.5 Designer Preference  

Good structural engineering and economical steel erection practice suggests that column 

sizes either remain the same cross-sectional shape for as long as possible as one rises 

through a building frame.  If shape changes do occur along vertical column runs within a 

building, larger dimension shapes will be below shapes that are supported.  In other 

words, nominal depths should decrease as one rises through the frame and nominal 

weights should reduce as one rises through the framework. 

 Therefore, a design preference or shape constraint is established to guide 

automatic selection of columns from AISC steel shape database. The shape constraint 

requires that a column have the same or a larger nominal depth than the column 

immediately above it. This constraint is similar to that used by Foley and Schinler [3.13]. 
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 The AISC designation for a W-shape includes the nominal depth and unit weight. 

(i.e. a W14x48 has a nominal depth of 14 inches and a weight of 48 pounds per linear 

foot). The shape constraint is therefore, set up as follows, 
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where, lower

id  and upper

id  are the nominal depth of lower and upper columns respectively;  

lower

iwt and upper

iwt  are the weight of the lower and upper columns; and i is the index of 

the columns.  

 

3.6 Penalty Functions 

A genetic algorithm is used in the present research effort to solve the optimization 

problem established earlier. The GA requires that optimization problems be re-cast as 

unconstrained optimization problems and as a result, the constraints discussed earlier 

must be re-formulated as penalties.   

 The unconstrained objective fitness function f is expressed as the product of the 

original multi-objective fitness involving initial construction cost and expected annual 

loss and penalties which reflect violations of the problem constraints expressed in 

equations (3.15), (3.19), (3.20), (3.21), (3.22), (3.24) and (3.25).  

 The unconstrained objective function is expressed as the product of the fitness and 

penalties, 
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where,  1 2F F  is the multiple objective fitness given by equations (3.5) and (3.10), i  is 

the penalty corresponding to thi  constraint, and pn  is the number of constraints for the 

problem. This form of individual fitness has been used in previous research [3.6], [3.7], 

[3.13]. 

 The penalty multipliers, i , contained in (3.26) are formulated for each of the 

constraints considered above by taking the product of the scaled constraint violations for 

each component and each load case. This is illustrated with the following generic 

expression, 
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where, rN  is the total number of load cases, jN  is the total number of components, and  

ip  is the scaled constraint violation associated with the thi  constraint. The scaled 

constraint violations are established via scaling functions [3.8], [3.9].   Linear and 

quadratic scaling functions are included in the proposed algorithm using,  

  1.0 1
n

i i ip k q    (3.28) 

where, n  is the degree of the scaling function (1 for linear, 2 for quadratic), ik  is the 

scaling rate, and iq   is the scaling switch defined as, 
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In other words, iq ensure only constraints that are violated (i.e.  1.0 ) contribute to the 

penalty.  
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 Figure 3.1 demonstrates the effect of the scaling rate, ik  and the type of scaling 

function (linear or quadratic) on the scaled constraint violations.  

  

 

Figure 3.1 Scaling Functions Used for Penalty Multipliers. 

 

 Each constraint requires a penalty multiplier with scaling factor.  The expressions 

for penalty multipliers corresponding to each of constraints are written below: 

1.) The penalty multipliers for not attaining the ultimate load levels 

  
1

u

U U

N

r
r

p 



   (3.30) 

 where, uN is the number of factored load cases. 

2.) The penalty multiplier for column web local buckling, out-of-plane flexural 

buckling, and lateral torsion buckling, respectively, are computed using, 



 

 

93 

 

 
1 1 ,

u col

w w

N N

h h
t tr k k r

p
 

 
   

 
  (3.31) 

 
2 21 1

,

u col

f f

f f

N N

b b

t tr k
k r

p
 

 
   

 
 

  (3.32) 

 where, colN is the number of columns in the framework. 

3.) The penalty multiplier for the Beam-Column design criteria is computed 

using, 
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4.) The penalty multiplier for the designer defined damper design criteria is 

computed using, 
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 where, DamperN  is the number of dampers in the framework. 

5.) The penalty multiplier for the designer preference criteria (shape) is 

computed using, 

   
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3.7 GA Optimization Statement and Basic Flowchart 

Three different earthquake intensity levels are assumed in the design problems 

considered in this research.  The suite of earthquakes corresponding to each intensity 
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level is assumed to cause direct economic losses and damage to a given building. The 

three sets of ground motion records are 2%, 10% and 50% probabilities of exceedance in 

50 years (2/50, 10/50 and 50/50, respectively) are used.  The ground motions are selected 

from the records developed by the SAC steel project for the city of Los Angeles, 

California [4.7]. Each intensity level group (i.e. 2/50) includes 6 ground motion 

acceleration records which are used as ground motion input to the inelastic seismic 

analysis program MDOF described in chapter 2 to compute the median of peak response 

quantities (i.e. ISDA, PFA) for the  risk-based design optimization considered. These 

ground motions will be discussed in Chapter 4.    

 The risk-based design optimization problem considered in this dissertation 

research can be stated in words as follows:  

1.) Minimize the total initial construction cost described in equation (3.2) for 

structures without supplemental dampers or equation (3.5) if the analyzed 

structures include supplemental viscoelastic dampers. 

2.) Minimize the Expected Annual Loss (EAL) described in equation (3.10). 

3.)  Subject to constraints ensuring system strength under ASCE-7 load 

combinations, constraints preventing local buckling of the elements within 

the cross-section, constraints ensuring column members have sufficient 

strength, constraints restricting the viscoelastic stiffness of the supplemental 

damper at any story level; and constraints ensuring design preference. 

 The application of the genetic algorithm is depicted in the flowchart shown in 

Figure 3.2.  An initial population (possible designs) is generated randomly from the 

search space which is the database of steel w-shapes.  For each set individual design 
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variables, a nonlinear dynamic analysis is conducted using the algorithm, “MDOF”, 

described in Chapter 2 of the dissertation.  This evaluation is conducted to find the peak 

(maximum) engineering demand parameter (e.g. interstory drift, floor acceleration) at 

each story level for each ground motion record.   The median value of the maximum 

engineering demand parameter for each set of ground motions is then determined.    

 

Initialize 
Population

Evaluate each
Individual

GA Process

New 
Population

Terminate Stop
YesNo

 

Figure 3.2 Flowchart of Genetic Algorithm Implemented. 

 

 The fitness component of individual in the population related to expected annual 

loss is determined using the peak engineering demand parameter for all stories 

considered, fragility functions, and the repair cost percentages found in Tables 3.2 and 

3.3. The cost ratios expressed as a percentage of building replacement cost for Structural 
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System components (SS), acceleration sensitive non-structural (NSA), and drift sensitive 

non-structural (NSD) components in buildings are listed in Table 3.2 and 3.3.  The fitness 

component related to initial construction cost is determined using equation (3.2), equation 

(3.3) and the tabular data found in Table 3.1.  

The GA then continues in traditional fashion until a termination criterion is 

reached.  It should be noted that the following chapter will highlight further details 

related to implementation of the genetic algorithm on a personal computer cluster and 

further details related to the algorithm parameters and scaling factors used in the 

definition of penalties. 
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Chapter 4  

Application of the Genetic Algorithm to Optimized  

Design of Steel Framing Systems 

4.1 Introduction 

The primary objectives of this chapter are to introduce the concept of distributed 

computing applied within the context of evolutionary computation; to illustrate how the 

present evolutionary algorithm incorporates distributed computing on a desktop computer 

cluster; to  demonstrate the ability of the proposed evolutionary algorithm to obtain 

practical designs within the context of performance-based structural engineering for 

systems subjected to seismic loading; and to evaluate the performance of the algorithm. 

Assessment is carried out through brief discussions and observations of the results.  

The focus of the chapter is on a steel framed building system with fixed topology.   

The design scenarios considered include structural systems with and without 

supplemental dampers with viscous and viscoelastic properties.  The evolutionary 

algorithm developed in earlier chapters and the performance-based engineering 

philosophy for seismic design constitute the automated engineering design system 

implemented in this chapter.   

The frame design cases formulated are based upon a three-story building frame 

considered in previous research [1.23].  The 3-story, 4-bay steel building frame is 

modeled using the shear-building approach.  As a result, beam members are considered 

flexurally rigid with respect to the column members and they are also considered 

inextensible.  Design variables in the frame scenarios considered include damper 

parameters and column sizes.   
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The computational expense that the evolutionary algorithm brings required that 

alternate computational architectures be investigated for use in the dissertation.  This 

dissertation utilizes distributed computing to execute the genetic algorithm.  As a result, 

the present chapter outlines how this is accomplished and how the Matlab distributed 

computing toolbox and engine [1.32] is utilized.  

 

4.2 Introduction to Distributed Computing 

It is well known that evolutionary algorithms can be computationally expensive [4.1]. 

Test runs of the present evolutionary algorithm on the three story framework considered, 

indicated that run times on single processor computers were on the order of 24 hours for 

design scenarios that included the bare minimum number of design variables.  Larger 

frames and those that include more design variables took even longer.  As a result, it was 

decided to implement distributed computing to speed up the evolutionary algorithm 

developed.  In simple terms, distributed computing is the technique of distributing 

computational tasks to multiple processors within a computing system (most often a 

networked cluster of computers).  

The concepts of parallel and distributed computing are not new.  There have been 

applications in structural engineering for many decades including applications in inelastic 

analysis of structural steel systems [4.2, 4.3, 4.4].  There are many types of computing 

systems suitable for implementing parallel and distributed computing and there are two 

types of computers capable of distributing computational cycles: (a) shared memory 

computers; and (b) distributed memory computers.  Shared memory computers utilize 

more than one processor and share a single memory pool for the results of computations.  
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Distributed memory computers have processors that include their own memory for the 

results of computations.   

The following is a brief discussion of the major classifications commonly found 

in the high-performance computing arena.  Parallel Vector Processors (PVP‟s) utilize 

limited numbers of vector processors within a single machine. Compilers most often 

utilized on these machines optimize a calculation automatically by breaking the 

innermost loops into blocks of N (64, etc) elements in size. Each element processor, 

functioning in a pipeline mode, operates on all elements within a single clock cycle. So 

vector processors could work on large vectors of data in parallel (simultaneously).   The 

PVP computer architecture is relatively expensive (vector processors are often expensive 

and cooling the processors is not trivial) and these machines have often been historically 

referred to as supercomputers.  PVP‟s have historically been very powerful and very 

expensive and no longer are in the mainstream of computing.  Such machines (Cray Y-

MP 64) have been used for conducting inelastic collapse-load analysis of large-scale steel 

buildings [4.4]. 

Shared-Memory multi-Processor (SMP) parallel systems have multiple processors 

which share a common memory pool and data bus. Generally, each processor has its own 

local memory (cache) which can save data temporarily while the data bus is used by other 

processors. These computing systems can suffer from bottlenecks in data flow and as a 

result, the data bus should be fast enough to transfer data through all processors [4.5].  

These computer architectures often involve relatively inexpensive processors with low 

levels of on-board memory.  Each processor in this computing architecture is sometimes 

referred to as a “node”. 
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Distributed memory computing systems often include many processors where 

each includes its own local memory.  These systems will often require a head or master 

node that orchestrates computations and assembles the results of the computing effort.  

The main difference between distributed and shared memory machines is the presence so 

significant levels of memory that comes along with the distributed processors.  If this 

memory level is significant, this is referred to as distributed memory.  In reality, both 

distributed and shared memory computers require head or master computers (often called 

nodes) to orchestrate computations.  Distributed memory architectures also include 

reference to processors as nodes. 

The advent of relatively inexpensive personal computers and computing networks 

has lead to an extension of the distributed memory computing architecture.  The modern 

implementation of distributed-memory computing architecture is the networked 

computing cluster.  A computing cluster is most often composed of many identical 

computers which are assembled together (often in racks). These computers are then 

networked together with one another using high-speed data bus network connections and 

a network switch facilitating communications among each other.  Heterogeneous 

computers within a common network can also be used to form a computer cluster.  This 

is often referred to as network/internet-based distributed computing.  This differs from a 

cluster in that these heterogeneous computers can be geographically separated personal 

computer workstations.  Internet-based network traffic can be slow relative to local 

network connectivity and therefore Network/Internet distributed computing can be 

successfully implemented under limited scenarios (e.g. fast network speeds). 
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The present dissertation utilizes a form of network distributed computing to 

economically execute the genetic algorithm developed for optimized design of steel 

framing systems for seismic loading.  A four-node networked computer cluster was 

developed for the present research effort.  A schematic of the cluster architecture is 

shown in Figure 4.1.  The four networked computers are connected via a 10 M Byte/Sec 

network and each has its own network interface card (NIC) attached to its own peripheral 

component interconnect (PCI), which is a 10 MB/s bus.  The cluster developed for this 

dissertation work was constructed using spare personal computers.  A 10 MB/s network 

switch was included in the cluster configuration.  The cluster was made accessible to the 

outside world through the Internet and all runs were conducted remotely.  The 

architecture described can be defined as a distributed memory computational architecture 

that utilizes local area network connectivity.   
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Figure 4.1 Computer Cluster with 4 Workers. 
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4.3 Distributed Computing Implementation of GA Using MATLAB 

Assembling the computer hardware (e.g. computers, cabling, and switches) is relatively 

easy, but orchestrating the four computers to perform computational tasks can be 

relatively difficulty.  As a result, distributed memory computing architectures often 

include head nodes and worker nodes with job schedulers.  An engineer interested in 

distributing computations within a distributed memory architecture would have to 

program these job schedulers and orchestrate the distribution of computations using 

software written by him or herself.  This can be a very daunting task and as a result, there 

is very limited application of distributed computing in structural engineering. 

 The present dissertation work utilizes the Matlab Parallel Computing Toolbox and 

Distributed Computing Engine [4.3] to orchestrate the distributed computing 

implementation of the genetic algorithm written for optimized design of steel framing 

systems subjected to seismic loading.  The Optimization Toolbox [1.32] also contains a 

distributed computing option and this is used to facilitate distribution of computing tasks 

within the genetic algorithm implemented. 

 The Genetic Algorithm and Direct Search Toolbox [1.32] can automatically 

distribute the evaluation of objective function and nonlinear constraint functions 

associated with a genetic algorithm population to multiple processors within a distributed 

computing network [1.32]. There are two options to use the inherent parallelism in 

optimization problems to reduce the time to get a solution. 

Option 1, using the parallel computing option in Optimization ToolboxTM and no 

code modification required. To use the parallel computing capability in Optimization 

Toolbox, one needs to do the following: 
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 add the following command-line to change the “UseParallel” option from the 

default „Never‟, to „Always‟,  

 options = optimset( ‘UseParallel’, ‘Always’); 

 enable the desired number of computer nodes with matlabpool command, 

 Matlabpool open 2 

 Run the optimization solver as before [4.3], 

 [x, fval,exitflag] = ga(@GA_fitness, NumberOfVariables, options) 

For Optimization Tool, set Options > User function evaluation > Evaluate 

fitness and constraint functions > parallel.  

Option 2, if each run is independent in a serial approach as shown in Figure 4.2, 

and therefore can benefit from parallel computation. Using parfor (parallel for loop) to 

replace the for loop construct can speed up the objective function evaluation time because 

the objective statements inside the parfor loop can run in parallel.   

Both of these two options need Parallel Computing Toolbox and MATLAB 

Distributed Computing Server [1.32]. Option 1 is selected for the present research effort. 

The parallel computing option in the Optimization Toolbox [1.32] can be used to 

automatically distributed computations and no code modification is required provided a 

working cluster is defined and the installation of MATLAB and all toolboxes is done 

properly.  A schematic illustrating the administrative structure for MATLAB‟s 

orchestration of distributed computations is given in Figure 4.3.  The scheduler or job 

manager is resident on the head node on the computer cluster and computations are 

distributed to worker nodes according to tasks defined by the scheduler.  The present 
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cluster includes four computers and therefore, there is a single master node and three 

worker nodes.  
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Figure 4.2 Serial Approach vs. Parallel Approach [1.32]. 
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Figure 4.3 A MATLAB Administration System for Parallel and Distributed 

Computing 

 

Parallel computing genetic algorithm with multiple objective functions works 

almost exactly the same as with single objective GA [1.32]. The only difference is to run 
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optionally a hybrid function, fgoalattain, after gamultiobj finishes its run. Each 

individual on Pareto curve in each generation becomes the starting point for an 

optimization using function fgoalattain. The optimization could be done in parallel 

and the number of processors involved is the smaller of the number of individuals or the 

number of working nodes which were regulated with command matlabpool. 

The following command lines [1.32] need to be added to the program to run 

function fgoalattain in parallel.  

 fgoalopts = optimset(‘UseParallel’, ‘always’) 

 gaotions = gaoptimset(‘HybridFcn’ , {fgoalattain, 

fgoalopts}) 

There is a limitation to use Function fgoalattain - the objectives must be 

continuous. Function fgoalattain was not used though multiple objectives need to 

be optimized. However the objectives are discontinuous in the present research effort.  

 

4.4 Frame Design Case Studies 

A base frame topology was chosen to evaluate the evolutionary algorithm‟s ability to 

generate frame designs.  A shear building model is implemented for structural analysis 

purposes and design variables in the optimization analysis include wide-flange column 

shapes and nonlinear viscous and visco-elastic damper parameters. 

 The 3-story, 4-bay frame topology used in the FEMA/SAC project [1.23] was 

converted to the shear-building model used in the present study. The topology of the 

revised frame model is shown in Figure 4.4. As outlined earlier in the dissertation, wind 

loads are not considered in this research. The structural steel which composes the wide-

flange shapes is assumed to have a modulus of elasticity of 29,000 ksi and yield strength 
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of 50 ksi (elasto-plastic material response is assumed). The frames are spaced every 30 

feet [1.23]. The floor dead load is taken as 96 2
lb

ft
( 296F

lbD
ft

 ) and the reduced live 

load present when ground motion occurs is taken as 20 2
lb

ft
( 220r

lbL
ft

 ). The self-

weight of the steel framing is taken as 13 2
lb

ft
( 213S

lbD
ft

 ) and this is assumed to be 

consistent for all designs generated during the evolution. The seismic mass of the 

structure at the roof level and floor levels were taken to be: roof-70.9
2seckip

ft
; and 

floors-65.53 
2.seck

ft
.The masses at each floor level are lumped and have a magnitude 

of 0.591
2.seck

in
  on the roof level and a magnitude of 0.546 

2.seck
in

on the 2nd and 3rd 

floor.  

360” 360” 360” 360”
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Figure 4.4 Basic Frame Topology Used for Design Studies 
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The structural frame without damping system could be modeled using various 

numbers of design variables.  The wide-flange shape for any column member in the 

frame is considered a design variable.  The number of column shapes chosen by the 

design algorithm varies depending upon how often the engineer seeks to change shapes 

within the frame topology.  For example, the exterior columns shapes can be considered 

as a single design variable.  Furthermore, the interior columns can be considered a 

common design variable.  The engineer may also wish to allow the column shape to 

change over the height of the frame and as a result, the three story frame may have three 

design variables for each column line. 

 In addition to the column design variables, the dampers within the framing 

system (if present) include three design variables to describe the nonlinear, viscous and 

visco-elastic properties of the damper.  The design variables for the dampers are: linear 

damping coefficient; elastic stiffness; and nonlinear characterizing parameter.  The 

location of the viscoelastic dampers within the three-story, four-bay frame is considered 

fixed.  Dampers are located in the second bay from the left within the frame topology. 

The computer software package MDOF discussed earlier in this dissertation is 

utilized for the nonlinear response history analysis of structural systems.  The program 

models hysteretic yielding of the steel member components and the linear/nonlinear 

characteristics of any viscous/viscoelastic dampers present in the framework.    The 

MDOF analysis algorithms formulated in this dissertation are used as the basis for 

evaluating system response parameters needed to assess the expected annual loss quantity 

that is a foundational objective in the design optimization. 
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   There are fifteen ground motions used to assess expected annual loss.  These 

ground motions have various probabilities of exceedence within a common recurrence 

interval (50 years).  The ground motions are characterized using peak ground acceleration 

(PGA).  There are three ground motions for each of three probabilities of exceedence: 2% 

in 50 years; 10% in 50 years; and 50% in 50 years.  The fifteen ground motions are given 

in Figure 4.5 [4.6]. 

Floor accelerations (relative to the ground) and interstory drift are engineering 

demand parameters used to define expected annual loss within the performance-based 

design environment discussed earlier in Chapter 3.  The five ground motions for each 

intensity measure shown in Figure 4.5 are used to define the median floor maximum 

acceleration and the median level maximum drift corresponding to each intensity 

measure.   
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Figure 4.5 Ground Motion Record Suite Used for Frame Designs 
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 The engineering demand parameters are then used in conjunction with fragility 

functions to evaluate damage to the structural system (SS), non-structural drift-sensitive 

components (NSD), and non-structural acceleration-sensitive components (NSA).  These 

damage magnitudes are then used to define loss using each intensity measure.  The 

annual probabilities of occurrence for each intensity measure are then assigned and 

equation (3.8) is used to establish the expected annual loss for any given design.  This is 

then one of the two objectives considered in the optimized design statement. 

 

4.4.1 Genetic Algorithm Parameters 

Genetic Algorithm (GA) and Direct Search Toolbox built-in MATLAB [1.32] are used to 

operate optimization design in this research. The parameters for Genetic Algorithm were 

defined and listed in the Table 4.1. The Pareto fraction option limits the number of 

individuals on the Pareto front. The default population size used by GAMULTIOBJ is 

'15*Design Variables'.  To set the Parameters of Population size and Pareto fraction to 

0.9 and 100, would generate 90 individual points on the Pareto front in the last 

generation. There three different criteria to determine when to stop the solver running GA 

program. The solver stops when any one of the stopping criteria is met. It stops when the 

maximum number of generations is reached; 200 for the present research. The solver also 

stops if the average change in the spread of the Pareto front over the „StallGenLimit‟ 

generations (default is 100) is less than tolerance specified in options 'TolFun’. The 

third criterion (not used in the present research) is the maximum time limit in seconds 

(default is ).    The stopping criteria for GA in this research were defined to “no 
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improvement in the best fitness value for an interval of time in seconds specified by Stall 

time limit” or a maximum generation number of 200 is reached.   

Table 4.1 Genetic Algorithm Parameters: 

Design Variables Varies with cases 

Fitness Functions 2, Total initial construction cost and Expected Annual Lost (EAL)  

Population type “custom”, discrete integer,  

Max. generation 200 

Population size 100 

Pareto Fraction 0.9 

StallGenLimit 100 

TolFun 1e-4 

 

4.4.2 Fragility Curve Parameters and Repair Cost Ratios 

The parameters listed in Table 4.2 are assigned to the fragility functions given in 

equations (3.4) and (3.5) to evaluate the damage and loss to the structural system and 

non-structural components. ISDA represents the interstory drift angle and PFA represents 

the peak floor acceleration. ISDA and PFA are used to characterize the response of SS, 

NSD, and NSA components during an earthquake. The numbers in Table 4.2 present the 

median values of ISDA and PFA used to define the fragility curve(s).  ds  is the damage-

state lognormal standard deviation.  The fragility curves used in the present study 

correspond to high-code seismic levels and a building type S1L (steel moment-frame) in 

the HAZUS model [1.24]. High-code seismic level refers to lateral force design 

requirements of seismic Zone 4 according to 1994 UBC code. 

The repair cost ratios are listed in Table 4.3 and equation (3.4) are used to 

estimate the losses due to the damage to structural and non-structural components.  Only 

direct economic loss is considered in this dissertation.   The methodology developed can 

be extended to estimate casualty and downtime (indirect) losses using different repair 
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cost ratio parameters. The values in Table 4.3 are picked from Table 3.2, Table 3.3, and 

Table 3.4 in Chapter 3, assuming that a commercial building provides 

Professional/Technical/Business Services.  

Table 4.2: Fragility Curve Parameters for Structural and Non-Structural Components in  

                  SIL building and High-Code Design Level. 

 

Component Fragility 

Curve 

Parameter 

Damage State 

Slight Moderate Extensive Complete 

SS 
dsISDA  0.004 0.008 0.020 0.0533 

ds  0.50 0.50 0.50 0.50 

NSD 
dsISDA  0.004 0.008 0.025 0.050 

ds  0.50 0.50 0.50 0.50 

NSA 

 
( )dsPFA g  0.30 0.60 1.20 2.40 

ds  0.60 0.60 0.60 0.60 

 

Table 4.3: Repair Cost Ratios in % of Building Replacement Cost for Structural and  

        Non-Structural Components. 

 

Component Damage State 

Slight Moderate Extensive Complete 

SS 0.4 1.9 9.6 19.2 

NSD 0.7 3.3 16.4 32.9 

NSA 0.9 4.8 14.4 47.9 

 

4.4.3 Optimal Design Statements for Case Studies 

Two of the major objectives of the dissertation are to evaluate the ability of the genetic 

algorithm and optimal design algorithm formulated to generate feasible and realistic 

designs for practically sized frameworks; and to evaluate the influence of supplemental 

damper systems on the performance of frames and expected annual losses when subjected 

to seismic loads.   
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 Six design case studies are considered in this dissertation.  Each case study 

corresponds to a unique combination of design variables involving wide-flange column 

arrangements and passive supplemental damper parameters for the three-story, four-bay 

frame shown in Figure 4.4. The cases considered and the objective of their comparison to 

other cases is described in the following. 

 

Design Cases 1:  

The frame topology and design variables considered for Design Case 1 are shown in 

Figure 4.6.   

360” 360” 360” 360”360” 360” 360” 360”360” 360” 360” 360”

 

Figure 4.6 Topology for Frame Design Case 1. 

This design case includes the bare minimum number of design variables considered 

practical for the present framework.  Two design variables are considered: interior 

column shape and exterior column shape.  There are no supplemental dampers or 
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diagonal bracing elements in this design case.  The column shape is assumed to extend 

through all three stories.  Column shapes come from the standard wide-flange shapes 

found in the AISC Steel Construction Manual [3.5].  A reduced database of wide-flange 

shapes is used and it is given in Appendix 22. 

The motivation for this case is to evaluate expected annual loss and initial 

construction cost when the frame is constructed without supplemental damping devices 

and diagonal bracing elements. The results generated by the algorithm for this design 

case can facilitate comparison with the results for other design cases. This will allow the 

engineer to explore how defining the parameters of the damper can affect expected 

annual loss and initial construction cost.  

 

Design Cases 2, 3, and 4: 

The frame topologies and design variables for design cases 2, 3, and 4 are shown in 

Figures 4.7, 4.8, and 4.9, respectively.  These three design cases involve passive 

supplemental damping devices located in the second bay from the leftmost bay.  There 

are three design variables for column sizes in each frame.  The column shapes are 

assumed to extend from the ground story to the third story.  Column shapes adjacent to 

the diagonal bracing are assumed to be the same. 

 The main difference among these three design cases is in regard to the type of 

passive dampers allowed in the design.  Case 2 includes linear dampers with the damper 

exponent,   equal to 1.0.  Case 3 includes what can be termed as softening dampers 

where response in force-velocity space asymptotically approaches a limiting value 
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(Figure 2.3).  Design Case 4 includes super linear dampers where force-velocity space 

behavior exponentially increases. 
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Figure 4.7 Frame Design Case 2, 5 Design Variables, Linear Dampers 
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Figure 4.8 Frame Design Case 3, 5 Design Variables, Nonlinear Dampers, 0.5   
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Figure 4.9 Frame Design Case 4, 5 Design Variables, Nonlinear Dampers, 1.5   

 

 Design variables in each of these three design cases include two parameters 

defining damper characteristics: the proportionality factor, Sc ; and the visco-elastic 

stiffness parameter, ek . The damping coefficient, Sc  is typically selected from a range of 

discrete values from 0 to 100 ( / )k s in with increasing spacing 10 ( / )k s in . The 

constraints to damper stiffness,  ek  and the cost of dampers are described in Chapter 3.   

It should be noted that the dampers at all three levels are the same passive damper.  In 

other words, there are three dampers placed in the framework, each with the same damper 

characteristics (two of which are assigned by the design algorithm developed). 

 The motivation for these three cases is to evaluate the designs that result when 

specific damper types are forced: linear viscoelastic; super-linear viscoelastic; and 

asymptotic viscoelastic dampers.  Column sizes may be affected by these variations in 

damper types as well as the proportionality and viscoelastic stiffness parameters.  
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Comparison of results from these three cases also facilitates evaluation of how damper 

characteristics affect expected annual loss and the resulting impact on initial construction 

cost.  Furthermore, these cases will help to identify the most appropriate damper type. 

 

Design Cases 5 and 6: 

The frame topologies and design variable orientations for design cases 5 and 6 are given 

in Figures 4.10 and 4.11, respectively.  Three linear supplemental damping devices are 

assumed in Case 5.  Dampers are allowed to be different at each level in the frame.  Case 

6 allows all three damper parameters at all three levels within the frame to be defined by 

the automated design algorithm. The relative velocity exponents,  is selected from a 

range of discrete values from 0.5 to 1.5 with increasing spacing 0.25.  Damping 

coefficient, Sc  is selected from a range of discrete values from 0 to 100 ( / )k s in as in 

Cases 2, 3, and 4. The number of design variables for the column sizes remains as 

defined in the previous design cases which have damping devices. Design Case 6 will 

allow the most flexibility with regard to the algorithm selecting damper characteristics.  

As a result, the engineer can see what the ground motions and frame topology demand as 

the best damper arrangement at all locations within the frame. 

 

4.5 Case Study Results and Discussion 

Each of the six design cases was run using the objectives of minimizing expected annual 

loss (EAL) and minimizing initial construction cost.  These objectives are defined in 

equations (3.2) for frames without dampers, equation (3.3) for frames with dampers, and 
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equation (3.8).  Design constraints transformed to penalties thereby generating an 

unconstrained optimization problem are defined in Section 3.2 of the dissertation.   

 

360” 360” 360” 360”

C, Var 6
Ke, Var 7
α = 1.0

C, Var 4
Ke, Var 5
α = 1.0

C, Var 8
Ke, Var 9
α = 1.0

360” 360” 360” 360”360” 360” 360” 360”360” 360” 360” 360”

C, Var 6
Ke, Var 7
α = 1.0

C, Var 4
Ke, Var 5
α = 1.0

C, Var 8
Ke, Var 9
α = 1.0

C, Var 6
Ke, Var 7
α = 1.0

C, Var 4
Ke, Var 5
α = 1.0

C, Var 8
Ke, Var 9
α = 1.0

 
 

Figure 4.10 Frame Design Case 5, 9 Design Variables, Linear Dampers, 1.0   
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Figure 4.11 Frame Design Case 6, 12 Design Variables. 
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 Genetic algorithm parameters were defined in Table 4.1 and the stopping criteria 

described earlier in this chapter.  The optimization design results for the steel shear 

building models with/without viscoelastic dampers will be discussed in this section. 

Three (3) individual designs, which represent minimum initial cost, minimum expected 

annual loss (EAL), and the median point in the last generation Pareto fronts are included 

in the synthesis of the design results.   

All design results included in the Pareto fronts are feasible designs (i.e. all design 

constraints are satisfied).  The feasibility of the designs was gauged by checking 

constraint penalty factors. All penalty factors for the designs considered and discussed 

are less than or equal to 1.1 (i.e. there is a 10% violation of constraints allowed).  

Each design case will be discussed in the following.  Comparisons will also be 

made among design cases to explore how various design variable selection schemes as 

well as damper inclusion/exclusion affects initial construction costs and expected annual 

losses for the steel frame topology examined.  

 

4.5.1 Design Case 1 

Design Case 1 is the first to be considered.  The genetic algorithm was run and many 

feasible designs in objective space were developed.  As discussed earlier, two objectives 

were present in the optimization problem formulated:  (a) minimum expected annual loss 

as a percentage of initial construction cost; and (b) minimum total initial construction 

cost (dollars). 

 Design Case 1 included a framework with two design variables (see Figure 4.6).  

Figure 4.12 illustrates potential feasible designs plotted in objective space.  
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Figure 4.12 Pareto Front for Frame Design Case 1 

 The solid diamonds in the plot are feasible designs generated throughout all generations 

in the genetic algorithm.  The circled diamonds indicate the designs oriented along the 

Pareto front at the last generation.  As indicated in the figure, there are many, many 

potential feasible designs that the structural engineer may consider.  The Pareto front 

includes designs that dominate all potential feasible solutions in at least one of the two 

objectives. 

 Table 4.4 includes the feasible designs on the Pareto front in Figure 4.12.  These 

designs are better than all designs generated throughout the evolution in at least one of 

the two objectives.  If both objectives are weighted equally (i.e. no designer preference), 

there are twelve potential designs to consider at the end of the evolution.  The Pareto 

front designs range in initial construction cost from $28,300 to $33,200.  The expected 

annual loss (EAL) resulting from the suite of ground motions considered ranges from 

0.38% to 0.31% of the building replacement cost.  Thus, an engineer can select the 



 

 

120 

 

magnitude of EAL that is desired and then understand the associated cost of additoinal 

construction cost to meet that loss level.  This is performance-based engineering. 

  

Table 4.4 Design Variables in the Last Generation, Case 1 

Designs 

1st Story 2nd Story 3 Story Cost EAL 

Variable 

1 

Variable 

2 

Variable 

1 

Variable 

2 

Variable 

1 

Variable 

2 
($) (%) 

1 * W14X283 W14X48 W14X283 W14X48 W14X283 W14X48 33200 0.31 

2 W14X283 W12X45 W14X283 W12X45 W14X283 W12X45 32800 0.33 

3 W14X233 W14X74 W14X233 W14X74 W14X233 W14X74 32200 0.33 

4 W14X257 W14X53 W14X257 W14X53 W14X257 W14X53 31500 0.34 

5 W14X233 W14X68 W14X233 W14X68 W14X233 W14X68 31400 0.34 

6 ** W12X96 W14X159 W12X96 W14X159 W12X96 W14X159 31300 0.36 

7 W14X132 W14X132 W14X132 W14X132 W14X132 W14X132 30900 0.36 

8 W14X257 W10X45 W14X257 W10X45 W14X257 W10X45 30400 0.36 

9 W14X211 W14X74 W14X211 W14X74 W14X211 W14X74 30100 0.36 

10 W14X48 W14X176 W14X48 W14X176 W14X48 W14X176 29200 0.36 

11 W14X193 W14X74 W14X193 W14X74 W14X193 W14X74 28500 0.37 

12 *** W14X233 W10X45 W14X233 W10X45 W14X233 W10X45 28300 0.38 

*, The minimum EAL design 

**, The median point of Pareto Front in the last generation 

***, The minimum initial cost 

 Three designs are noted in Table 4.4.  The first is the design with the minimum 

EAL (0.31%).  The second is the design median design on the Pareto front (i.e. one-half 

the designs have lower initial construction cost, but greater EAL and one-half the designs 

have higher initial construction cost, but lower EAL).   This median design can be said to 

have equal preference in meeting the minimization objectives.  The final noted design is 

the one which has the minimum initial construction cost ($28,300). 

 The column sizes follow a relatively predictable pattern with weight reducing as 

one rises through the frame, nominal depth reducing as one rises through the frame, and 

the exterior columns being slightly larger than the interior.   Overall, the wide-flange 
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shapes selected by the algorithm are shapes expected.  It should be re-emphasized that a 

reduced database of shapes (Appendix 22) was used (see earlier discussion). 

 Design Case 1 has the same cross-section shape running from the ground floor 

level to the roof. It should be noted that the economy of repetition is not addressed in the 

definition of lower initial construction costs.  In other words, while changing member 

sizes over the height of a three-story frame may result in lower weight, there is more 

fabrication-related expense in allowing this variation.  As a result, it may actually cost 

less to construction a design using the design variable arrangement used in Design Case 

1.  This additional fabrication-related expense could be interjected into the present 

definition of cost, but it was not done in this dissertation. 

 The distribution of expected annual loss among the structural and nonstructural 

components in the building system for Design Case 1 is shown in Table 4.5.   

Table 4.5 The Distribution of Losses, Case 1 

 

 

Total 

EAL 

SS NSD NSA SS NSD NSA SS NSD NSA (%)

EAL (%) 2.46E-03 3.41E-03 2.95E-02 1.23E-03 2.12E-03 4.30E-02 2.50E-03 4.36E-03 2.20E-01 3.09E-01

Distribution 0.80 1.10 9.56 0.40 0.68 13.91 0.81 1.41 71.21

EAL (%) 2.80E-03 3.85E-03 3.60E-02 1.51E-03 2.59E-03 4.87E-02 3.08E-03 5.37E-03 2.23E-01 3.27E-01

Distribution 0.86 1.18 10.99 0.46 0.79 14.90 0.94 1.64 68.28

EAL (%) 2.56E-03 3.55E-03 3.05E-02 1.99E-03 3.38E-03 5.09E-02 3.53E-03 6.15E-03 2.28E-01 3.31E-01

Distribution 0.77 1.07 9.21 0.60 1.02 15.38 1.07 1.86 68.95

EAL (%) 3.05E-03 4.23E-03 3.54E-02 1.96E-03 3.33E-03 5.09E-02 3.51E-03 6.11E-03 2.28E-01 3.36E-01

Distribution 0.91 1.26 10.55 0.58 0.99 15.13 1.04 1.82 67.85

EAL (%) 4.42E-03 6.24E-03 3.52E-02 2.41E-03 4.07E-03 5.04E-02 3.73E-03 6.49E-03 2.30E-01 3.43E-01

Distribution 1.29 1.82 10.27 0.70 1.19 14.69 1.09 1.89 67.01

EAL (%) 7.56E-03 1.20E-02 4.39E-02 3.43E-03 5.66E-03 6.19E-02 3.77E-03 6.57E-03 2.10E-01 3.55E-01

Distribution 2.13 3.38 12.35 0.96 1.59 17.44 1.06 1.85 59.18

EAL (%) 6.70E-03 1.03E-02 4.30E-02 3.38E-03 5.58E-03 5.45E-02 3.84E-03 6.69E-03 2.21E-01 3.55E-01

Distribution 1.89 2.90 12.10 0.95 1.57 15.35 1.08 1.89 62.22

EAL (%) 7.54E-03 1.19E-02 4.40E-02 3.46E-03 5.69E-03 5.62E-02 3.81E-03 6.64E-03 2.15E-01 3.55E-01

Distribution 2.13 3.36 12.38 0.97 1.60 15.83 1.07 1.87 60.70

EAL (%) 7.31E-03 1.15E-02 4.36E-02 3.32E-03 5.48E-03 5.34E-02 3.86E-03 6.72E-03 2.23E-01 3.59E-01

Distribution 2.04 3.19 12.15 0.92 1.53 14.88 1.07 1.87 62.21

EAL (%) 9.35E-03 1.53E-02 4.65E-02 3.42E-03 5.64E-03 6.12E-02 3.77E-03 6.58E-03 2.11E-01 3.62E-01

Distribution 2.58 4.22 12.84 0.94 1.56 16.92 1.04 1.82 58.19

EAL (%) 1.12E-02 1.89E-02 4.62E-02 3.43E-03 5.69E-03 6.49E-02 3.89E-03 6.78E-03 2.08E-01 3.69E-01

Distribution 3.03 5.12 12.52 0.93 1.54 17.60 1.06 1.84 56.27

EAL (%) 1.32E-02 2.26E-02 4.81E-02 4.29E-03 6.96E-03 6.52E-02 4.35E-03 7.57E-03 2.07E-01 3.79E-01

Distribution 3.48 5.96 12.69 1.13 1.84 17.21 1.15 2.00 54.60

Distribution of Repair Cost (%)

Seismic 

Losses

Designs

8

9

10

11

12

3

4

5

6

7

2% in 50 yrs 10% in 50 yrs 50% in 50 yrs
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Most of the total losses come from the losses of non-structural acceleration-sensitive  

(NSA) components. When the seismic level is not severe, such as 50/50 ground motions, 

the contribution to losses from damage of NSA components was is almost 70% for all 

designs.  Tables 4.4 and 4.5 illustrate that losses move toward a more even balance 

among SS, NSD and NSA components as the initial construction cost is reduced. 

Therefore, there is more damage to NSD and SS components as the intial construction 

cost reduces and there is little improvement with regard to the loss from NSA component 

damage. 

 

4.5.2  Design Cases 2, 3, and 4 

Design Case 2 includes a single damper configuration distributed over the height of the 

three-story framework located within the second bay from the left.  The dampers in this 

case are linear or nonlinear and viscous or viscoelastic as determined by the algorithm 

(Figure 4.7). 

 The designs generated throughout the entire evolution plotted in objective space 

for Design Case 2 are shown in Figure 4.13.  The final generation Pareto front is noted 

using diamonds enclosed by circles.  Table 4.6 illustrates the design variables selected for 

the last generation in the evolution for Design Case 2.  The use of passive supplemental 

damping systems has a significant impact on the column sizes required as a moment 

resisting framework is no longer the dominant lateral load resisting system.  There is a 

relatively wide range of damping coefficients chosen 10 to 100 kips-sec/in.  It is also 

interesting to note that relatively narrow viscoelastic stiffness property is selected (0 to 20 
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kips/in) by the algorithm.  The range of EAL and total initial construction costs over the 

Pareto front is relatively narrow ($49,211 to $33,895). 
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Figure 4.13 Pareto Front for Frame Design Case 2. 

 It is very interesting to note that the lowest construction cost ($33,895) in Case 2 

is very similar to the highest construction cost ($33,200) in Case 1. However, the 

expected annual losses for all designs in Design Case 2 are less than 0.20% of building 

repair costs, where the lowest EAL in design case 1 was 0.31%.  This suggests that the 

use of dampers, while adding initial construction expense, will result in lower expected 

annual losses due to ground motion.  This supports the popularity of supplemental 

damping systems in seismic engineering. 

The distribution of losses between structural (SS) and non-structural components 

(NSA, NSD) for each level ground motions from Case 2 is listed in Table 4.7.  Most of 

the total losses in this  design case again come from the losses due to damage to non-

structural acceleration senstive  (NSA) components.  
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Table 4.6 Design Variables in the Last Generation, Case 2. 

 

Designs 

Columns Dampers Total Cost EAL  

Exterior Interior  C Ke 

α ($) (%) Variable 1 Variable 2 Variable 3 kips-sec/in kips/in 

1 * W8X28 W10X112 W8X58 100 0 1.0 49211 0.04 

2 W8X28 W10X112 W8X58 100 10 1.0 49196 0.04 

3 W8X28 W10X112 W12X45 100 0 1.0 48439 0.04 

4 W8X28 W10X112 W12X45 100 10 1.0 48421 0.04 

5 W8X28 W12X96 W8X58 100 0 1.0 47386 0.04 

6 W8X28 W12X96 W8X58 100 10 1.0 47365 0.04 

7 W8X28 W12X96 W12X45 100 0 1.0 46598 0.04 

8 W8X28 W12X96 W12X45 100 10 1.0 46573 0.04 

9 W8X28 W10X60 W8X58 100 0 1.0 45514 0.04 

10 W8X28 W10X60 W12X45 100 0 1.0 44783 0.04 

11 W8X28 W10X60 W12X45 90 0 1.0 44602 0.05 

12 W8X28 W10X60 W12X45 70 0 1.0 44515 0.06 

13 W8X28 W10X112 W12X45 40 0 1.0 43415 0.09 

14 W8X28 W12X106 W8X58 40 0 1.0 42254 0.09 

15 W8X28 W12X106 W12X45 40 0 1.0 41131 0.09 

16 W8X28 W12X96 W12X45 40 10 1.0 40925 0.09 

17 W8X28 W12X96 W12X45 40 0 1.0 40917 0.09 

18 ** W12X96 W12X106 W12X45 30 20 1.0 40667 0.11 

19 W12X96 W12X106 W12X45 30 10 1.0 40589 0.11 

20 W12X96 W12X96 W12X45 30 20 1.0 40172 0.11 

21 W12X96 W12X96 W12X45 30 10 1.0 40147 0.11 

22 W10X45 W12X106 W12X45 30 20 1.0 38859 0.11 

23 W8X28 W12X106 W12X45 30 20 1.0 38398 0.11 

24 W8X28 W12X106 W12X45 30 10 1.0 38310 0.11 

25 W8X28 W12X106 W12X45 30 0 1.0 38280 0.11 

26 W8X40 W10X112 W12X96 20 10 1.0 38273 0.14 

27 W8X28 W10X112 W12X96 20 20 1.0 38045 0.14 

28 W12X96 W12X106 W12X45 20 10 1.0 37637 0.14 

29 W8X28 W10X112 W12X96 20 10 1.0 37633 0.14 

30 W8X28 W10X112 W12X96 20 0 1.0 37213 0.14 

31 W10X45 W12X106 W12X96 20 20 1.0 36803 0.14 

32 W10X45 W12X106 W12X96 20 10 1.0 36676 0.14 

33 W8X28 W12X106 W12X96 20 20 1.0 36410 0.14 

34 W8X28 W12X106 W12X96 20 10 1.0 36121 0.14 

35 W8X28 W12X106 W12X96 20 0 1.0 36053 0.14 

36 *** W10X45 W10X112 W12X96 10 10 1.0 33895 0.20 

*, The minimum EAL design 

**, The median point of Pareto Front in the last generation 

***, The minimum initial cost 
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Table 4.7 Distribution of Losses, Case 2 

 

Designs 
Seismic 
Losses 

Distribution of Repair Cost (%) Total  

2% in 50 yrs 10% in 50 yrs 50% in 50 yrs EAL  

SS NSD NSA SS NSD NSA SS NSD NSA (%) 

1 

EAL (%) 5.26E-04 8.73E-04 2.21E-03 1.68E-04 2.94E-04 5.97E-03 4.85E-05 8.48E-05 2.93E-02 3.94E-02 

Distribution 1.34 2.21 5.60 0.43 0.75 15.14 0.12 0.22 74.26   

2 

EAL (%) 5.25E-04 8.71E-04 2.21E-03 1.66E-04 2.89E-04 5.98E-03 4.81E-05 8.41E-05 2.93E-02 3.95E-02 

Distribution 1.33 2.21 5.61 0.42 0.73 15.13 0.12 0.21 74.27   

3 

EAL (%) 5.25E-04 8.71E-04 2.22E-03 1.65E-04 2.89E-04 5.98E-03 4.80E-05 8.40E-05 2.93E-02 3.95E-02 

Distribution 1.33 2.20 5.61 0.42 0.73 15.13 0.12 0.21 74.29   

4 

EAL (%) 5.24E-04 8.69E-04 2.22E-03 1.63E-04 2.84E-04 5.99E-03 4.74E-05 8.30E-05 2.94E-02 3.96E-02 

Distribution 1.32 2.19 5.61 0.41 0.72 15.12 0.12 0.21 74.30   

5 

EAL (%) 5.24E-04 8.69E-04 2.22E-03 1.62E-04 2.84E-04 5.99E-03 4.74E-05 8.29E-05 2.94E-02 3.96E-02 

Distribution 1.32 2.19 5.62 0.41 0.72 15.12 0.12 0.21 74.31   

6 

EAL (%) 5.22E-04 8.66E-04 2.23E-03 1.59E-04 2.78E-04 6.00E-03 4.66E-05 8.15E-05 2.95E-02 3.97E-02 

Distribution 1.31 2.18 5.62 0.40 0.70 15.11 0.12 0.21 74.31   

7 

EAL (%) 5.22E-04 8.66E-04 2.23E-03 1.59E-04 2.78E-04 6.00E-03 4.65E-05 8.13E-05 2.95E-02 3.97E-02 

Distribution 1.31 2.18 5.62 0.40 0.70 15.12 0.12 0.20 74.33   

8 

EAL (%) 5.20E-04 8.63E-04 2.24E-03 1.56E-04 2.72E-04 6.01E-03 4.55E-05 7.97E-05 2.96E-02 3.98E-02 

Distribution 1.31 2.17 5.63 0.39 0.68 15.11 0.11 0.20 74.33   

9 

EAL (%) 5.25E-04 8.70E-04 2.13E-03 1.79E-04 3.12E-04 5.91E-03 4.35E-05 7.61E-05 2.87E-02 3.87E-02 

Distribution 1.36 2.25 5.50 0.46 0.81 15.28 0.11 0.20 74.07   

10 

EAL (%) 5.26E-04 8.72E-04 2.14E-03 1.78E-04 3.11E-04 5.92E-03 4.54E-05 7.94E-05 2.88E-02 3.88E-02 

Distribution 1.36 2.25 5.52 0.46 0.80 15.26 0.12 0.20 74.13   

11 

EAL (%) 6.54E-04 1.06E-03 2.48E-03 2.55E-04 4.46E-04 6.29E-03 7.81E-05 1.37E-04 3.19E-02 4.33E-02 

Distribution 1.51 2.46 5.73 0.59 1.03 14.53 0.18 0.32 73.73   

12 

EAL (%) 1.06E-03 1.63E-03 3.36E-03 5.45E-04 9.47E-04 7.16E-03 2.40E-04 4.20E-04 4.11E-02 5.65E-02 

Distribution 1.87 2.89 5.94 0.96 1.68 12.68 0.43 0.74 72.76   

13 

EAL (%) 2.73E-03 3.74E-03 6.02E-03 1.56E-03 2.67E-03 1.31E-02 8.88E-04 1.55E-03 6.14E-02 9.37E-02 

Distribution 2.91 3.99 6.42 1.67 2.85 14.03 0.95 1.66 65.50   

14 

EAL (%) 2.74E-03 3.76E-03 5.85E-03 1.44E-03 2.46E-03 1.34E-02 7.04E-04 1.23E-03 6.22E-02 9.38E-02 

Distribution 2.92 4.01 6.23 1.53 2.63 14.31 0.75 1.31 66.27   

15 

EAL (%) 2.71E-03 3.72E-03 5.88E-03 1.39E-03 2.39E-03 1.35E-02 6.43E-04 1.12E-03 6.25E-02 9.38E-02 

Distribution 2.89 3.96 6.27 1.48 2.54 14.39 0.69 1.20 66.59   

16 

EAL (%) 2.71E-03 3.72E-03 5.87E-03 1.43E-03 2.45E-03 1.34E-02 6.89E-04 1.20E-03 6.22E-02 9.37E-02 

Distribution 2.89 3.97 6.26 1.52 2.61 14.34 0.73 1.28 66.42   

17 

EAL (%) 2.72E-03 3.72E-03 5.83E-03 1.47E-03 2.52E-03 1.34E-02 7.47E-04 1.31E-03 6.20E-02 9.36E-02 

Distribution 2.90 3.98 6.22 1.57 2.69 14.27 0.80 1.40 66.20   

18 

EAL (%) 2.71E-03 3.73E-03 8.22E-03 1.36E-03 2.34E-03 1.78E-02 2.63E-04 4.61E-04 7.45E-02 1.11E-01 

Distribution 2.44 3.36 7.41 1.23 2.11 15.99 0.24 0.42 67.11   
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Table 4.7 Distribution of Losses, Case 2 (continued) 

Designs 
Seismic 
Losses 

Distribution of Repair Cost (%) Total  

2% in 50 yrs 10% in 50 yrs 50% in 50 yrs EAL  

SS NSD NSA SS NSD NSA SS NSD NSA (%) 

19 

EAL (%) 2.83E-03 3.89E-03 8.14E-03 1.41E-03 2.41E-03 1.79E-02 2.82E-04 4.94E-04 7.41E-02 1.11E-01 

Distribution 2.55 3.51 7.33 1.27 2.17 16.11 0.25 0.44 66.77   

20 

EAL (%) 2.87E-03 3.95E-03 8.18E-03 1.44E-03 2.47E-03 1.80E-02 3.00E-04 5.24E-04 7.38E-02 1.12E-01 

Distribution 2.57 3.53 7.30 1.29 2.21 16.05 0.27 0.47 65.90   

21 

EAL (%) 3.03E-03 4.18E-03 7.92E-03 1.49E-03 2.55E-03 1.81E-02 3.22E-04 5.63E-04 7.34E-02 1.12E-01 

Distribution 2.71 3.73 7.07 1.33 2.28 16.13 0.29 0.50 65.57   

22 

EAL (%) 3.53E-03 4.85E-03 7.64E-03 1.90E-03 3.22E-03 1.82E-02 6.08E-04 1.06E-03 7.06E-02 1.12E-01 

Distribution 3.15 4.33 6.82 1.69 2.87 16.24 0.54 0.95 63.05   

23 

EAL (%) 3.67E-03 5.03E-03 7.46E-03 2.06E-03 3.48E-03 1.79E-02 7.79E-04 1.36E-03 6.97E-02 1.11E-01 

Distribution 3.30 4.53 6.72 1.85 3.14 16.16 0.70 1.23 62.80   

24 

EAL (%) 3.86E-03 5.33E-03 7.18E-03 2.12E-03 3.58E-03 1.78E-02 8.56E-04 1.49E-03 6.94E-02 1.12E-01 

Distribution 3.45 4.76 6.41 1.89 3.20 15.91 0.76 1.33 61.95   

25 

EAL (%) 3.94E-03 5.46E-03 7.03E-03 2.18E-03 3.68E-03 1.77E-02 9.41E-04 1.64E-03 6.91E-02 1.12E-01 

Distribution 3.52 4.87 6.28 1.95 3.29 15.78 0.84 1.47 61.67   

26 

EAL (%) 5.40E-03 7.84E-03 9.32E-03 3.38E-03 5.55E-03 2.49E-02 1.02E-03 1.78E-03 7.74E-02 1.37E-01 

Distribution 3.94 5.72 6.80 2.47 4.05 18.19 0.74 1.30 56.49   

27 

EAL (%) 5.48E-03 7.97E-03 9.43E-03 3.37E-03 5.54E-03 2.50E-02 1.01E-03 1.76E-03 7.74E-02 1.37E-01 

Distribution 4.00 5.81 6.88 2.46 4.04 18.21 0.73 1.28 56.53   

28 

EAL (%) 4.21E-03 6.06E-03 1.03E-02 2.35E-03 3.96E-03 2.56E-02 3.90E-04 6.82E-04 8.36E-02 1.37E-01 

Distribution 3.07 4.42 7.51 1.72 2.89 18.71 0.28 0.50 61.02   

29 

EAL (%) 5.63E-03 8.25E-03 9.21E-03 3.47E-03 5.68E-03 2.47E-02 1.11E-03 1.95E-03 7.70E-02 1.37E-01 

Distribution 4.11 6.02 6.72 2.53 4.15 18.00 0.81 1.42 56.22   

30 

EAL (%) 5.71E-03 8.33E-03 8.98E-03 3.56E-03 5.82E-03 2.43E-02 1.24E-03 2.17E-03 7.66E-02 1.37E-01 

Distribution 4.17 6.08 6.56 2.60 4.25 17.76 0.91 1.58 55.92   

31 

EAL (%) 4.75E-03 6.83E-03 9.98E-03 2.77E-03 4.62E-03 2.61E-02 5.52E-04 9.65E-04 8.08E-02 1.37E-01 

Distribution 3.46 4.98 7.28 2.02 3.37 19.02 0.40 0.70 58.97   

32 

EAL (%) 4.98E-03 7.25E-03 9.71E-03 2.86E-03 4.75E-03 2.60E-02 5.98E-04 1.04E-03 8.03E-02 1.37E-01 

Distribution 3.64 5.29 7.09 2.08 3.47 18.98 0.44 0.76 58.59   

33 

EAL (%) 5.00E-03 7.22E-03 9.72E-03 3.01E-03 4.99E-03 2.58E-02 6.92E-04 1.21E-03 7.94E-02 1.37E-01 

Distribution 3.65 5.27 7.09 2.20 3.64 18.83 0.51 0.88 57.93   

34 

EAL (%) 5.18E-03 7.50E-03 9.47E-03 3.10E-03 5.12E-03 2.56E-02 7.56E-04 1.32E-03 7.89E-02 1.37E-01 

Distribution 3.78 5.47 6.91 2.26 3.74 18.71 0.55 0.96 57.56   

35 

EAL (%) 5.63E-03 8.37E-03 8.98E-03 3.19E-03 5.26E-03 2.54E-02 8.29E-04 1.45E-03 7.84E-02 1.38E-01 

Distribution 4.08 6.07 6.51 2.31 3.81 18.44 0.60 1.05 56.79   

36 

EAL (%) 7.50E-03 1.17E-02 1.32E-02 6.06E-03 9.39E-03 4.35E-02 1.70E-03 2.97E-03 8.59E-02 1.82E-01 

Distribution 4.12 6.45 7.24 3.33 5.16 23.90 0.93 1.63 47.21   
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When the seismic level is not severe, such as 50/50 ground motions, the 

contribution of losses from damage to NSA components is the most significant portion of 

the total EAL.  Loss resulting from damage to NSA components increases to almost 70% 

as the construction cost increases.  This suggests that the added stiffness generated by 

viscoelastic dampers and column sizes actually serves to increase the tendency for 

acceleration-related damage to nonstructural components.  This makes sense because 

added stiffness will tend to move accelerations of the floor levels closer to those of the 

ground.  

Higher damping coefficients lead to reduced overall loss due to seismic hazard, 

but result in loss from damage to NSA components becoming a larger percentage of the 

total EAL.  As damping levels reduce, there is a tendency to have losses move toward 

equalization across all seismic hazards. 

In general, higher magnitudes of damping coefficient and lower magnitudes of 

viscoelastic stiffness tend to result in lower EAL and higher initial construction costs 

when linear dampers are utilized. 

Design Case 3 includes what has been termed a softening damper where the 

velocity exponent is 0.50.  This damper configuration is used at each of three levels in the 

framework and the topology and design variable configuration is shown in Figure 4.8.  

The feasible designs generated during the evolution plotted in objective space are shown 

in Figure 4.14 and the design variables selected are given in Table 4.8. 

 The range of initial construction costs for Design Case 3 range from $43,229 on 

the high end (EAL = 0.07%) to $25,514 on the low end (EAL = 0.19%).  The column 

shape design variables selected are similar in size and weight to those determined in 
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Design Case 2 at lower initial construction costs.  Howver, the damper coefficient for this 

design case are larger through all designs on the Pareto front.   
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Figure 4.14 Pareto Front for Frame Design, Case 3. 

 

 In general, when softening dampers are utilized (velocity exponent equal to 0.5), 

very low viscoelastic stiffness was selected for the designs on the Pareto front in Design 

Case 3.  This was coupled with overall larger magnitude damper coefficients selected.   

 As with linear dampers, the addition of softening dampers to the system results in 

an overall lowering of the expected annual loss.  It also appears that linear dampers result 

in better loss performance when compared to softening dampers. 

 The Pareto front for Design Case 4 is shown in Figure 4.15.   The variation in 

EAL along the Pareto front is similar in this case to that of Design Cases 2 and 3, but the 

initial construction costs are much greater.  Table 4.9 contains the design variables 

selected.  It should be pointed out that Design Case 4 includes superlinear dampers 

(velocity exponent equal to 1.5). 
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 Table 4.8 Design Variables in the Last Generation, Case 3 

Design1 

Columns Dampers Total Cost EAL  

Exterior Interior  C Ke 

α ($) (%) Variable 1 Variable 2 Variable 3 kips-sec/in kips/in 

1 * W12X96 W12X87 W12X96 100 0 0.5 43229 0.07 

2 W12X96 W12X106 W12X96 100 20 0.5 43150 0.07 

3 W12X96 W12X106 W8X40 100 20 0.5 41508 0.07 

4 W8X40 W12X106 W10X88 100 20 0.5 40783 0.07 

5 W8X40 W12X106 W12X96 100 20 0.5 40416 0.07 

6 W12X50 W10X88 W12X96 100 0 0.5 39349 0.07 

7 W12X50 W12X106 W12X45 100 20 0.5 38967 0.07 

8 W8X40 W12X106 W12X45 100 20 0.5 38913 0.07 

9 W12X50 W12X106 W8X40 100 20 0.5 38884 0.08 

10 W12X50 W12X106 W12X45 100 0 0.5 38098 0.08 

11 W12X50 W12X87 W12X45 100 0 0.5 37795 0.08 

12 W12X50 W12X106 W12X45 90 20 0.5 37035 0.08 

13 W8X28 W12X87 W12X45 100 0 0.5 36174 0.08 

14 W10X45 W12X87 W12X45 90 0 0.5 36114 0.09 

15 ** W8X40 W12X106 W8X40 80 20 0.5 36098 0.10 

16 W8X28 W12X87 W8X40 90 0 0.5 35622 0.10 

17 W12X50 W10X100 W12X45 80 0 0.5 35557 0.10 

18 W10X45 W12X87 W8X40 80 10 0.5 35153 0.10 

19 W12X50 W12X87 W12X45 80 0 0.5 34957 0.11 

20 W12X50 W10X100 W12X45 70 0 0.5 33711 0.11 

21 W10X45 W12X87 W12X45 70 0 0.5 32739 0.11 

22 W12X96 W12X106 W8X58 40 0 0.5 32665 0.15 

23 W12X96 W10X112 W8X40 40 0 0.5 32530 0.16 

24 W8X40 W12X106 W12X96 40 20 0.5 32205 0.16 

25 W12X50 W12X106 W12X96 40 0 0.5 30308 0.16 

26 W10X45 W12X106 W12X96 40 0 0.5 29878 0.16 

27 W12X50 W10X100 W8X40 40 0 0.5 28480 0.17 

28 W8X28 W10X112 W8X40 40 0 0.5 27862 0.18 

29 *** W8X28 W10X112 W8X40 30 0 0.5 25514 0.19 

 

*, The minimum EAL design 

**, The median point of Pareto Front in the last generation 

***, The minimum initial cost  
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Figure 4.15 Pareto Front for Frame Design, Case 4. 

 The lowest initial construction cost design for Design Case 4 (Table 4.9) is much 

larger than that seen in Design Case 3 (Table 4.8). Design Case 4 resulted in the lowest 

EAL when compared to cases 2 and 3.  The EAL for these two cases for the lowest cost 

designs in cases 3 and 4 are close to one another (0.14% and 0.19%).  The column sizes 

are slightly smaller in Design Case 4 likely resulting from the relatively higher damper 

forces generated during the ground motions arising from the velocity exponent (1.5 for all 

dampers). 

 The damper coefficients and viscoelastic stiffness for the designs on the Pareto 

front in Design Case 4 are similar to those seen in Design Case 2.   It is interesting to note 

that the lowest cost design in case 4 includes a low damping coefficient and low 

viscoelastic stiffness.  A similar trend to that seen in design cases 2 and 3 is seen in this 

case.  That is, as the damper coefficients coefficients and viscoelastic stiffness decreases, 

the expected annual loss decreases.  This again demonsrates that the addition of dampers 

results in lower expected annual loss.  
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Table 4.9 Design Variables in the Last Generation, Case 4. 

Designs 

Columns Dampers Total Cost EAL  

Exterior Interior  C Ke 

α ($) (%) Variable 1 Variable 2 Variable 3 kips-sec/in kips/in 

1 * W8X58 W10X112 W10X88 100 0 1.5 56737 0.04 

2 W8X28 W12X106 W10X45 100 10 1.5 51376 0.04 

3 W8X28 W12X106 W8X40 100 20 1.5 51234 0.04 

4 W8X28 W12X106 W8X40 100 10 1.5 51127 0.04 

5 W8X28 W12X96 W10X45 100 20 1.5 51098 0.04 

6 W8X28 W12X96 W10X45 100 10 1.5 50723 0.05 

7 W8X28 W12X96 W8X40 80 0 1.5 50367 0.05 

8 W8X28 W12X96 W8X40 80 10 1.5 50051 0.05 

9 W8X28 W10X88 W10X45 60 10 1.5 49639 0.06 

10 W8X28 W12X96 W8X40 60 10 1.5 49527 0.06 

11 ** W8X28 W10X88 W10X45 40 10 1.5 49050 0.07 

12 W8X28 W10X88 W8X40 40 10 1.5 49013 0.07 

13 W8X28 W12X96 W10X45 40 10 1.5 48731 0.07 

14 W8X28 W12X96 W8X40 30 0 1.5 48098 0.08 

15 W8X28 W12X106 W10X45 30 20 1.5 47889 0.09 

16 W8X28 W12X106 W8X58 20 10 1.5 47423 0.11 

17 W8X28 W12X106 W8X40 20 20 1.5 46708 0.11 

18 W8X28 W12X106 W10X45 20 20 1.5 46493 0.11 

19 W8X28 W12X106 W12X96 20 10 1.5 46232 0.11 

20 W8X28 W12X106 W12X96 20 20 1.5 46030 0.11 

21 W8X28 W10X112 W12X96 10 20 1.5 43065 0.13 

22 *** W8X28 W12X106 W12X96 10 20 1.5 41012 0.14 

 

*, The minimum EAL design 

**, The median point of Pareto Front in the last generation 

***, The minimum initial cost  

 

A comparison of Pareto fronts at the final generation for design cases 1, 2, 3, and 

4 is made in Figure 4.16.  The results indicate that nonlinear dampers with exponent 

0.5   in the three story frame generate consistently lower initial construction costs and 

lower expected annual losses.  There appears to be a trend that as the velocity exponent 

increases, the initial construction cost increases, while the EAL tends to decrease. 
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This trend is exhibited by the Pareto fronts in Figure 4.16 moving downward and 

rightward.  This trend was alluded to earlier in Chapter 2 of the dissertation where was 

said that dampers are generally more economical and effective when the damper velocity 

exponent ranges from 0.3 to 1.0. 
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Figure 4.16  The Comparison of Pareto Fronts for Design Casees 1 through 4. 

 Figure 4.16 clearly illustrates the use of dampers in controlling losses due to 

seismic hazard and balancing these losses with initial construction cost. It also appears to 

indicate that the objectives of minimizing initial construction cost and minimizing 

expected annual loss can best be balanced with systems that include passive supplemental 

damping devices. 

 Two feasible designs with minimum initial construction cost are selected from 

design Cases 1 and 2 to represent the building frame without and with supplemental 

damping elements, respectively. Table 4.10 lists the design variables selected.  The 

addition of linear dampers results in similar overall steel weight for the system. 
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Table 4.10  The Designs with the Minimum Initial Cost from Cases 1 & 2 

Design 
Case 

Columns Dampers 

Exterior Interior C Ke 
α Variable 

1 
Variable 

 2 
Variable 

3 
kips-sec/in kips/in 

Case 1 W14X233 W10X45 N/A N/A N/A N/A 

Case 3 W10X45 W10X112 W12X96 10 10 1.0 

 

 Table 4.11 illustrates the maximum interstory drift and floor level accelerations 

for the frame designs shown in Figure 4.10 when subjected to the fifteen ground motions 

defining the hazard level considered.  The maximum inter-story drift at the first level is 

reduced from 16.09 inches to 6.15 inches when linear dampers are utilized.  Peak floor 

level accelerations are also significantly reduced when supplemental dampers are 

utilized.  Both of these tendencies are expected. 

Table 4.11 Maximum Inter-Story Drift and Acceleration for Minimum Initial Cost 

Designs in Cases 1 & 2. 

 

Design 
Cases Story 

Max. Inter-story Drift (in) Max. Acceleration (in/sec2) 

2%in50 10%in50 50%in50 2%in50 10%in50 50%in50 

1 

1 16.09 1.11 0.50 1753.85 242.62 150.90 

2 7.17 0.88 0.42 1369.15 393.54 245.31 

3 1.30 0.53 0.27 1256.59 528.61 342.47 

2 

1 6.15 1.34 0.40 297.65 198.01 122.26 

2 3.15 1.06 0.30 442.73 321.54 167.96 

3 1.05 0.60 0.17 471.61 382.55 181.37 

 

 The loss distributions for the minimum initial construction cost designs in Cases 1 

and 2 are shown in Table 4.12.  As expected, the lower interstory drifts and smaller floor-

level accelerations result in percentages of the total EAL resulting from nonstructural 
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drift-sensitive components (NSD) and nonstructural acceleration-sensitive components 

(NSA) being reduced for 2/50 and 50/50 ground motions. 

Table 4.12 Loss Distribution for Minimum Initial Cost Designs in Cases 1 & 2 

 

Designs 
Seismic 
Losses 

Distribution of Repair Cost (%) Total  

2% in 50 yrs 10% in 50 yrs 50% in 50 yrs EAL  

SS NSD NSA SS NSD NSA SS NSD NSA (%) 

1 

EAL (%) 1.32E-02 2.26E-02 4.81E-02 4.29E-03 6.96E-03 6.52E-02 4.35E-03 7.57E-03 2.07E-01 3.79E-01 

Distribution 3.48 5.96 12.69 1.13 1.84 17.21 1.15 2.00 54.60   

2 

EAL (%) 7.50E-03 1.17E-02 1.32E-02 6.06E-03 9.39E-03 4.35E-02 1.70E-03 2.97E-03 8.59E-02 1.82E-01 

Distribution 4.12 6.45 7.24 3.33 5.16 23.9 0.93 1.63 47.21   

 

 It is interesting to note that the repair cost resulting from 10/50 ground motions 

actually increased for Design Case 2 when compare to Design Case 1.  Interstory drifts 

for these ground motions were not significantly reduced (and actually increased in some 

levels) when dampers were added.  Furthermore, accelerations for the 50/50 ground 

motions did not significantly change resulting resulting in NSD components picking up a 

larger percentage of the total repair cost. 

 The behavior shown in Tables 4.10 through 4.12 illustrate that the expected 

annual loss due to the seismic hazard considered is likely to be reduced signficantly when 

dampers are considered.  However, this reduced expected annual loss results in 10/50 and 

50/50 ground motions contributing more to the repair costs.  In other words, there appears 

to be a move toward a damage balance across all components and across all seismic 

events.  NSA damage is the most important component damage to consider for the frame 

topology and seismic hazard examined. 
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4.5.3  Design Cases 5 and 6 

Design cases 5 and 6 were intended to allow the algorithm to select different damper 

proportionality factors, viscoelastic stiffness magnitudes, and velocity exponents at each 

level within the framework.  The dampers in Case 5 have the same velocity exponent 

( 1.0  ) at each level. Design Case 6 was formulated to explore how allowing damper 

parameters to vary through the height of the frame would affect initial construction cost 

and expected annual loss. The motivation for comparing these two cases is to explore 

how the damping exponent affects the resulting designs generated.   

 The feasible designs generated for Design Case 5 plotted in objective space and 

the designs located along the Pareto front at the final generation are given in Figure 4.17.  

Table 4.13 includes the design variable choices for the Pareto front.   
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Figure 4.17  Pareto Front for Frame Design, Case 5. 

It is interesting to note that the Pareto front designs for Design Case 5 include slightly 

lower initial construction costs and expected annual losses when compared to Design 
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Case 2 (common topology and damper velocity exponent).  These results indicate that by 

allowing different dampers to be used at each level within the frame topology improved 

economy and reduced losses can be attained.  It should also be noted that the Pareto front 

is well populated as a result of the increased number of design variables considered in the 

algorithm.  The stepped nature to the Pareto front is of interest, but the reason(s) for the 

stepped shape could not be identified. 

 The designs in Table 4.13 indicate that the lower EAL designs include higher 

damper proportionality factors and lower viscoelastic stiffness magnitudes than the 

higher EAL designs.  The magnitude of the damping coefficient also reduces as one rises 

in the framework.  Thus, there appears to be a trend in Design Case 5 that lower stories 

should have larger magnitude proportionality factors and lower viscoelastic component if 

loss is to be minimized.  If cost is to be mimized, this trend is reversed (opposite). 

 The designs developed during the evolution and the Pareto front generated at the 

final generation for Design Case 6 is given in Figure 4.18.  The Pareto front shown in 

Figure 4.18 is very well dispersed throughout the objective space.  There is no stepping 

as seen in the previous design case and there is a large number of designs from which to 

select.  This behavior is a result of the increased number of design variables in case 6. 

 Design variables for this final Pareto front can be found in Table 4.14.  The least 

construction cost design has an expected annual loss that is comparable with those values 

seen in Design Case 5.  In general, all designs have larger damping coefficients at the 

first level with reductions occurring as one rises through the frame.  Viscoelastic stiffness 

magnitudes selected were also on the low end of the set of possible choices (less than 10 

kips/in).  This behavior is consistent with that seen in Design Case 5.



 

 

137 

 

Table 4.13 Design Variables in the Last Generation, Case 5 
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Table 4.13 Design Variables in the Last Generation, Case 5 (continued) 

 

 

C
o
lu

m
n
s
 

1
s
t 
S

to
ry

, 
D

a
m

p
e
rs

 
2
n
d
 S

to
ry

, 
D

a
m

p
e
rs

 
3
rd

 S
to

ry
, 

D
a
m

p
e
rs

 
T

o
ta

l 
C

o
s
t 

E
A

L
  

E
x
te

ri
o
r 

In
te

ri
o
r 

 
C

 
K

e
 

α
 

C
 

K
e
 

α
 

C
 

K
e
 

α
 

($
) 

(%
) 

V
a
ri

a
b
le

 1
 V

a
ri

a
b
le

 2
 V

a
ri

a
b
le

 3
 

k
ip

s
-s

e
c
/i
n

 
k
ip

s
/i
n

 
k
ip

s
-s

e
c
/i
n

 
k
ip

s
/i
n

 
k
ip

s
-s

e
c
/i
n

 
k
ip

s
/i
n

 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
4
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
2
9
6

3
 

0
.0

7
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
4
0

 
1
0

 
1
.0

 
1
0

 
1
0

 
1
.0

 
4
2
9
5

6
 

0
.0

7
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

7
0

 
1
0

 
1
.0

 
5
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
2
7
5

5
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

8
0

 
1
0

 
1
.0

 
3
0

 
1
0

 
1
.0

 
3
0

 
1
0

 
1
.0

 
4
2
7
1

4
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

8
0

 
1
0

 
1
.0

 
4
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
2
4
8

0
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
3
0

 
2
0

 
1
.0

 
1
0

 
2
0

 
1
.0

 
4
2
4
5

0
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

1
0
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
2
0

 
1
.0

 
4
2
2
5

7
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
2
0
9

1
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

8
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
2
0

 
1
.0

 
4
1
7
2

8
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

8
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
1
5
9

4
 

0
.0

8
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

7
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
2
0

 
1
.0

 
4
1
4
7

0
 

0
.0

9
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

7
0

 
1
0

 
1
.0

 
3
0

 
1
0

 
1
.0

 
1
0

 
1
0

 
1
.0

 
4
1
2
6

6
 

0
.0

9
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

7
0

 
1
0

 
1
.0

 
3
0

 
0
 

1
.0

 
1
0

 
1
0

 
1
.0

 
4
1
2
2

5
 

0
.0

9
 

W
1
2
X

9
6
 

W
1
2
X

9
6
 

W
8
X

2
8
 

3
0

 
1
0

 
1
.0

 
5
0

 
1
0

 
1
.0

 
3
0

 
2
0

 
1
.0

 
4
1
2
1

7
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

3
0

 
2
0

 
1
.0

 
5
0

 
0
 

1
.0

 
3
0

 
1
0

 
1
.0

 
4
1
0
1

9
 

0
.1

1
 

W
8
X

4
0

 
W

1
2
X

1
0
6

 
W

8
X

2
8

 
3
0

 
2
0

 
1
.0

 
5
0

 
1
0

 
1
.0

 
3
0

 
2
0

 
1
.0

 
4
0
9
8

9
 

0
.1

1
**

 

W
1
2
X

9
6
 

W
1
2
X

9
6
 

W
8
X

2
8
 

3
0

 
2
0

 
1
.0

 
7
0

 
3
0

 
1
.0

 
1
0

 
1
0

 
1
.0

 
4
0
7
6

1
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

1
0
0

 
2
0

 
1
.0

 
1
0

 
1
0

 
1
.0

 
3
0

 
2
0

 
1
.0

 
4
0
4
9

9
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
1
0

 
1
0

 
1
.0

 
3
0

 
1
0

 
1
.0

 
4
0
0
3

8
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
1
0

 
0
 

1
.0

 
3
0

 
2
0

 
1
.0

 
3
9
9
0

3
 

0
.1

1
 

W
1
2
X

9
6
 

W
1
2
X

9
6
 

W
8
X

2
8
 

3
0

 
2
0

 
1
.0

 
5
0

 
1
0

 
1
.0

 
1
0

 
2
0

 
1
.0

 
3
9
7
0

0
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

9
6
 

W
8
X

2
8
 

1
0
0

 
1
0

 
1
.0

 
1
0

 
0
 

1
.0

 
3
0

 
1
0

 
1
.0

 
3
9
4
8

0
 

0
.1

1
 

W
8
X

4
0
 

W
1
2
X

1
0
6

 
W

8
X

2
8
 

3
0

 
2
0

 
1
.0

 
5
0

 
0
 

1
.0

 
1
0

 
2
0

 
1
.0

 
3
9
4
4

6
 

0
.1

1
 

W
1
2
X

9
6
 

W
1
2
X

9
6
 

W
8
X

2
8
 

3
0

 
3
0

 
1
.0

 
4
0

 
0
 

1
.0

 
1
0

 
3
0

 
1
.0

 
3
9
3
1

3
 

0
.1

1
 

 



 

 

139 

 

Table 4.13 Design Variables in the Last Generation, Case 5 (continued) 
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Table 4.13 Design Variables in the Last Generation, Case 5 (continued) 
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 It is interesting to note that the algorithm preferred to select relative velocity 

exponents that ranged from 0.5 to 1.0.  Smaller magnitudes for this exponent were 

preferred in the lower cost designs, but this resulted in slight elevations in EAL.  This 

suggests that having large damping coefficients results in lower relative velocity 

exponents to balance damper forces and the resulting axial loads in the adjacent columns. 
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Figure 4.18 Pareto Front for Frame Design, Case 6 

 

 A comparison of the Pareto fronts at the final generation for Design Cases 5 and 6 

is given in Figure 4.19.  This figure again illustrates and confirms the benefit of more 

design variables. When more design variables are included, it is able to achieve better 

design solutions in lower initial construction cost and lower expected annual loss for the 

ground motions considered.  The Pareto fronts for Design Case 6 are much better 

distributed through objective space. 
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Table 4.14 Design Variables in the Last Generation, Case 6 
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Table 4.14 Design Variables in the Last Generation, Case 6 (Continued) 
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Figure 4.19 The Comparison of Pareto Fronts, Case 5 Vs. Case 6 

 

4.6  Concluding Remarks 

The algorithm outlined in Chapter 3 provides well-proportioned designs for a steel shear 

building model with and without supplemental dampers. When more design variables are 

included, it is able to achieve better design solutions with lower initial construction cost 

and lower expected annual loss for the ground motion suite considered. The use of 

dampers will result in lower expected annual losses due to ground motions while slighltly 

increasing the initial construction costs.  By comparing visco-elastic dampers vs. visco-

inelastic ones, the nonlinear dampers with lower damping exponents generate 

consistently lower initial construction costs and lower expected annual losses. 

Furthermore, the objectives of minimizing initial construction cost and minimizing 

expected annual loss can best be balanced with systems that include passive supplemental 

dampers.  
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 The distribution of losses changes with damping coefficient.  Most of the total 

losses come from damage to non-structural acceleration sensitive (NSA) components 

when the ground motions are design basis motions (10/50) and when the ground motions 

correspond to frequently occurring earthquakes (50/50).  The losses resulting from 

damage to non-structural acceleration-sensitive (NSA) components will be reduced with 

increased supplemental damper coefficient when subjected to the same hazard level. The 

proposed algorithm prefers to select relative velocity exponents that ranged from 0.5 to 

1.0.    Smaller magnitudes for this exponent were preferred in the lower cost designs, but 

this resulted in slight elevations in EAL.  This suggests that having large damping 

coefficients results in lower relative velocity exponents to balance damper forces and the 

resulting axial loads in the adjacent columns. 

In general, the visco-elastic stiffness chosen for all supplemental dampers chosen 

by the GA is very low in all cases.  In other words, balancing initial construction cost and 

more importantly minimizing expected annual losses can be achieved using supplemental 

dampers with low viscoelastic stiffness. 
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Chapter 5  

Summary, Conclusions and Future Work 
 

The emphasis of the present thesis effort is to develop an accurate time history analysis 

tool which is suitable for conducting nonlinear time-history analysis of 2D multiple 

degree of freedom (MDOF) steel frame structures with linear/nonlinear viscous and 

viscoelastic dampers and to develop an optimization algorithm capable of automating the 

design of 2D frame structures modeled as shear buildings with linear/nonlinear viscous 

and viscoelastic dampers within the performance-based engineering methodology. The 

evolutionary algorithm developed was used to explore a vast number of combinations of 

column member sizes and dampers for shear building frames with prescribed topology 

that minimized initial construction cost and minimized expected annual losses. The 

research introduced the use of the distributed computing capability of MATLAB and the 

distributed computing toolbox on a personal computer cluster with 4 computer nodes to 

speed up the optimization algorithm for automated design and handle larger data sets. 

The purpose of this chapter is to summarize the previous chapters, draw 

conclusions, and outline some ideas for future research work. 

 

5.1 Summary 

The objective and scope of the research were introduced in Chapter 1.  Previous research 

efforts were reviewed for each of the primary components of this research effort: 

automated design with supplemental dampers, probabilistic performance-based design 

methods, and use of genetic algorithms (GAs) to solve optimization problems.  
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In Chapter 2, the foundational theory for simulating the response of damped 

structural system to horizontal ground accelerations was outlined and an algorithm used 

to compute the response of linear/nonlinear viscous and viscoelastically damped shear 

building models were described.  The algorithm was validated by several benchmark case 

studies.  

A performance- or risk-based seismic design optimization algorithm was 

formulated in Chapter 3.   The objective functions and constraint criteria used for the 

multiple objective optimization problem were discussed in detail. The constraint criteria 

include strength, instability, damper stiffness, and constraints to beam – column.  Penalty 

functions were then developed to convert the constrained optimization problem to an 

unconstrained problem suitable for solution with a GA .   

Six case studies were presented in Chapter 4 to demonstrate the application of the 

evolutionary design algorithm. Designs for a 3-story, 4-bay shear-building frame 

with/without dampers and several design variable arrangements was investigated using 

Pareto-front curves. Three alternative designs, 1) the minimum total cost, 2) the 

minimum EAL, and 3) the median point in the last generation Pareto Fronts were selected 

for each case to study how supplemental dampers affect losses and initial construction 

costs.  Scalability of the algorithm was demonstrated through increasing the number of 

design variables considered. 

 

5.2 Conclusions 

A number of conclusions can be drawn from this research effort. First of all, the 

algorithm developed to compute the response of viscous and viscoelastically damped 
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shear building models is able to perform accurate seismic analysis for 2D MDOF and 

SDOF systems with nonlinear material (spring) behavior and linear and nonlinear damper 

behavior.  The program developed for shear buildings as part of this research effort and 

the solutions provided can serve as a benchmark-generating tool and as benchmark 

solutions for analyzing shear building systems with nonlinear linear viscous and 

viscoelastic damping systems. 

 The proposed automated design algorithm provides reasonable design results for 

shear-building frames with and without dampers. Moreover, the algorithm developed in 

the research effort generates consistent design results with Pareto curves that have good 

distribution throughout objective space.  The algorithm is scalable and solutions quality 

improves as the number of design variables increases.  In general, the number of design 

variables does not significantly improve the objective of minimizing expected annual 

loss, but it reduces the initial construction cost slightly. 

 Damping systems are very effective in reducing the impact of damage and losses 

resulting from seismic events. This suggests that the use of dampers, while adding initial 

construction expense, will result in lower expected annual losses due to ground motion.  

This supports the popularity of supplemental damping systems in seismic engineering. 

 Most of the expected annual losses for the design cases considered come from 

damage to non-structural acceleration sensitive components (NSA) when the seismic 

level in not severe (e.g. 50/50 ground motions) and whe design basis ground motions are 

considered (e.g. 10/50 ground motions). The losses due to damage to non-structural 

acceleration sensitive components (NSA) will be reduced with increases in the damping 

coefficient, C , when subjected to the same hazard level. 
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When the seismic level is not severe, such as 50/50 ground motions, the 

contribution of losses from damage of NSA components is most significant portion of the 

toal EAL.  Loss resulting from damage to NSA components increases to almost 70% as 

the initial construction cost increases.  This suggests that the added stiffness generated by 

viscoelastic dampers and column sizes actually serves to increase the tendency for 

acceleration-related damage to nonstructural components.  This makes sense because 

added stiffness will tend to move accelerations of the floor levels closer to those of the 

ground. 

In general, higher magnitudes of damping coefficient and lower magnitudes of 

viscoelastic stiffness tend to result in lower expected annual losses and higher initial 

construction costs. 

A comparison of Pareto fronts at the final generation for design cases 1, 2, 3, and 

4 indicate that nonlinear dampers with exponent 0.5   in the three story frame generate 

consistently lower initial construction costs and lower expected annual losses.  There 

appears to be a trend that as the velocity exponent increases, the initial construction cost 

increases, while the EAL tends to decrease.  This trend is supported by the Pareto fronts 

generated and supports the hypothesis that dampers are generally more economical and 

effective when the damper velocity exponent ranges from 0.3 to 1.0. 

The expected annual loss due to the seismic hazard considered is reduced 

signficantly when supplemental dampers are utilized in the design.  However, this 

reduced expected annual loss results in 10/50 and 50/50 ground motions contributing 

more to the repair costs resulting from damage.  In other words, there appears to be a 

move toward a damage balance across all components and across all seismic events.  
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Nonstructural acceleration-sensitive component damage is the most important to consider 

for the frame topology, building type, and seismic hazard examined. 

These results indicate that by allowing different dampers to be used at each level 

within the frame topology improved economy and reduced losses can be attained.  It 

should also be noted that the Pareto front is very nicely dispersed and populated as a 

result of the increased number of design variables considered in the algorithm. 

 The magnitude of the damping coefficient in systems with reduced expected 

annual losses also reduces as one rises in the framework.  Thus, there appears to be a 

trend that lower stories should have larger magnitude supplemental damper 

proportionality factors and lower viscoelastic stiffness if loss is to be minimized.  If cost 

is to be mimized, this trend is reversed (opposite).  As a result, supplemental damping 

systems offer a very nice vehicle for balancing initial construction cost and loss due to 

seismic hazard. 

 Smaller magnitudes for the velocity exponent were preferred in the lower cost 

designs, but this resulted in slight elevations in expected annual loss.  This suggests that 

having large damping coefficients results in lower relative velocity exponents to balance 

damper forces and the resulting axial loads in the adjacent columns. 

 

5.3 Recommendations for Future Work 

This dissertation provides the development and initial implementation of an automated 

evolutionary design algorithm for shear building models with and without dampers. 

However, a considerable amount of work remains to advance its performance and 

application.  Furthermore the algorithm developed can be used to conduct further studies 
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exploring the use of supplemental damping systems in seismic design. The following 

discussion provides recommendations for future work. 

The weight of a steel structure and a proportional multiplier of 1.2 are used as the 

basis for defining initial construction cost of a steel framing system. However, the initial 

construction cost includes material cost, fabrication cost, erection cost, foundation cost, 

etc. It is recommended that more accurate cost models be used. 

Only direct economic loss due to the damage to structural and non-structural 

components is considered in the dissertation. The developed methodology should be 

extended to estimate casualty and downtime (indirect) losses by incorporating different 

repair cost ratio parameters. 

Seeding the population with “good” initial design variables and limiting the shape 

database to reasonable sizes will help make the exploration and convergence of the 

algorithm more efficient. If a frame has already been analyzed in a previous study, the 

results could be reused to reduce the number of analyses and to shorten the duration of 

the evolution.  

Other passive damping systems should be considered (e.g. buckling restrained 

braces) in the system.  The proposed automated design algorithm can easliy incorporate 

additional system types.  The impact of damper presence on construction cost related to 

connections should also be addressed. 

The algorithm developed can be used to conduct regionally-based studies where 

designs in Memphis, TN can be compared to those in Los Angeles. It is recommended 

that these regional studies be conducted as they will be able to shed some light on the 

benefits of supplemental damping systems on a regional basis. 
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It is recommended that the algorithm developed be enhanced to include non-

shear-building models. Therefore, beam sizes can be included as design variables. This 

will require more advanced matrix-based analysis procedures, but open-source computer 

programs (e.g. OpenSees) can serve as the analytical engine for advancement in this 

regard. 

It is recommended that an alternate programming language be used. For example, 

the C or C++ programming languages and programs would speed up the analysis 

considerably.  Executing Matlab programs includes significant overhead resulting from it 

being a scripting language. 

It is recommended that models for expected annual loss be refined to include 

better representations of ground motion hazard.  For example, more ground motions can 

be considered in the suites.  A better dispersion of ground motions to represent 

probabilities of recurrence can also be formulated.  This would allow better 

representation of the seismic hazard to be included in the designs. 
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Appendices 

M-File Source Code for the  

Design Algorithm 

The six case studies discussed in Chapter 4 have different numbers of design 

variables. Appendix 2 through 21 lists the source code which was used in the calculation 

of Case 6.   The variable,   numberOfVariables, and the lower/upper bound 

matrixes, LB/UB in sub routine GAInteger1.m should be adjusted when the design 

variables are different from Case 6.                                                                                  
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Appendix 1 

Flow Chart of MATLAB Files 

 

GA.m

Main program

FileConvert.m
Prepare input file for Modelsetup.m

GAInteger1.m
GA fitness function

GA control parameters

readDataBase.m
Read in steel shape database

Modelsetup.m
Set up shear frame model

CalEALFrame1.m  
Return EAL value to GAInteger1.m

CalWeight1.m
Return Initial Cost to 

GAInteger1.m

GM2in50.m
 Calculate Median of floor drift 

and acceleration by calling

inelasticMDOF.m                                                                            

GM10in50.m
 Calculate Median of floor drift 

and acceleration by calling 

inelasticMDOF.m

GM50in50.m
 Calculate Median of floor drift 

and acceleration by calling 

inelasticMDOF.m

FragilityFun.m
Calculate the loss of 

SS, NSA, NSD

VyieldMatrix_shear.m
Generate a matrix for yield shear force

pf_Kshear.m

Generate stiffness matrix

Expected Annual 

Loss (EAL %)

Constraint_Penalty1.m
 Calculate penalty factors 

FragilityFun.m
Calculate the loss of 

SS, NSA, NSD

FragilityFun.m
Calculate the loss of 

SS, NSA, NSD
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Appendix 2 

 
Main Driving Program for Automated Design Algorithm 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                  % 

% GA.m                                                             %   

%                                                                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

global Story;   % total story number in the model 

global Bays;   % total Bay number in the model 

global height;   % story height matrix 

global Span;   % bay span matrix 

global propertyEle;  % element property matrix 

global Eletxt;   % element text description 

global zeta;   % the percentage of damping in  

                              % each mode desired 

global freq1;   % first modal frequency for  

% Rayleigh damping 

global freq2;   % second modal frequency for  

                              % Rayleigh damping 

global nSol;   % the number of solution substeps within 

                              % ground motion time intervals 

global timeEnd;   % the ending time for the response 

                              % computation 

global Sigma_y;   % the yield strength of steel 

global fid_penalty fid_column fid_s fid_fval fid_EAL; 

                                                       

 

[fid_penalty, message] = fopen('C:\GAInteger\Penalty_output.txt','w'); 

 

if ( fid_penalty == -1) 

   disp('FILE - Penalty_output.txt - DOES NOT EXIST !!!!'); 

end 

 

[fid_column, message] = fopen('C:\GAInteger\Column_output.txt','w'); 

 

if ( fid_column == -1) 

   disp('FILE - Column_output.txt - DOES NOT EXIST !!!!'); 

end 

 

[fid_s, message] = fopen('C:\GAInteger\Column_s.txt','w'); 

 

if ( fid_s == -1) 

   disp('FILE - Column_s.txt - DOES NOT EXIST !!!!'); 

end 

 

[fid_fval, message] = fopen('C:\GAInteger\fval_output.txt','w'); 

 

if ( fid_fval == -1) 

   disp('FILE - fval_output.txt - DOES NOT EXIST !!!!'); 

end 

 

[fid_EAL, message] = fopen('C:\GAInteger\EAL_output.txt','w'); 
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if ( fid_EAL == -1) 

   disp('FILE - EAL_output.txt - DOES NOT EXIST !!!!'); 

end 

 

TimeStart] = datestr(now);   % timer starts 

 

FileConvert; 

 

[propertyEle, Eletxt] = readDataBase; 

 

[Story, Bays, zeta, freq1, freq2, timeEnd, ... 

                       nSol, Sigma_y, m, height, Span] = Modelsetup; 

 

[s,fval] = GAInteger1; 

 

fclose(fid_penalty);                % file closes  

fclose(fid_column); 

fclose(fid_s); 

fclose(fid_fval); 

fclose(fid_EAL) 

 

TimeEnd] = datestr(now);            %timer ends 

 

% ------------------------------------------------------------------ 

 



 

 

163 

 

Appendix 3 

 

Sub-Function M-File to Establish Database of Cross-Section Shapes 

(The database of wide-flange shapes considered in this dissertation is listed in Appendix 22.  The 
user needs to develop an MS Excel® spreadsheet database of shapes if this is needed. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                  % 

% readDataBase.m                                                   % 

%                                                                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [propertyEle, Eletxt] = readDataBase 

 

[propertyEle,  Eletxt] = …  

     xlsread('c:\GAInteger\AISC_ShapesDatabase.xls','Column','B4:O53'); 

 

% ------------------------------------------------------------------ 
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Appendix 4 

 

Sub-Function M-File to set up 2D Steel Frame Model for Analysis 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                % 

% Modelsetup.m                                                   %                                                                              

%                                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [Story, Bays, zeta, freq1, freq2, timeEnd, nSol, …  

Sigma_y, m, height, Span] = Modelsetup 

 

global Eletxt; 

 

% Open the data file for reading 

fid = 0; 

[fid,message]=fopen('C:\GAInteger\frame_inp.txt','r');  

if ( fid == -1) 

   disp('FILE - frame_inp.txt - DOES NOT EXIST !!!!'); 

end 

 

% Read in the problem control parameters 

Bays = fscanf(fid,'%d',1); 

Story = fscanf(fid,'%d',1); 

Nmaterial = fscanf(fid,'%d',1);      

zeta = fscanf(fid,'%g',1); 

freq1 = fscanf(fid,'%d',1); 

freq2 = fscanf(fid,'%d',1); 

timeEnd = fscanf(fid,'%d',1); 

nSol = fscanf(fid,'%d',1); 

Sigma_y = fscanf(fid,'%d',1); 

Span = fscanf(fid,'%d',1); 

for i = 1:Story 

    kDamp(i) = fscanf(fid, '%g', 1);     % read in the damper stiffness 

end 

for j = 1:Story 

    Coef(j) = fscanf(fid, '%g', 1);      % read in the damper 

coefficients 

end 

for n = 1:Story 

    alpha(n) = fscanf(fid, '%g', 1);     % read in the Damper exponents 

end 

for p = 1:Story 

    m(p) = fscanf(fid, '%g', 1);      % read in mass matrix 

end 

for q = 1:Story 

    height(q,1) = fscanf(fid, '%g', 1);  % read in story height matrix 

end 

fclose(fid);         % file closed 
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Appendix 5 

 

Sub-Function M-File to Control GA Algorithm 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                 % 

% GAInteger1.m                                                    %                                                                               

%                                                                 % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [s,fval] = GAInteger1 

 

FitnessFcn = @GA_fitness; 

numberOfVariables = 12;      % number of design variables 

 

% Lower bound of design variables 

LB =[1 1 1 0 0 0 0 0 0 1 1 1 ] 

 

% Upper bound of design variables 

UB = [30 30 30 10 10 10 10 10 10 5 5 5];    

Bound = [LB;UB];    % If unbounded then Bound = [] 

 

options = gaoptimset('PopulationType','custom',... 

    'CreationFcn',@int_pop,... 

    'MutationFcn',@int_mutation,... 

    'CrossoverFcn', @int_crossoverscattered,... 

    'PopInitRange',Bound,... 

    'Display','iter',... 

    'Generations',200, ... 

    'PopulationSize',100,... 

    'ParetoFraction',0.9,... 

    'PlotFcns',@gaplotpareto,... 

    'TolFun',1e-4) 

    'UseParallel','always'); 

[s,fval, EXITFLAG, OUTPUT, POPULATION] = 

gamultiobj(FitnessFcn,numberOfVariables,[],[],[],[],... 

   [1 1 1 0 0 0 0 0 0 1 1 1 ],... 

   [30 30 30 10 10 10 10 10 10 5 5 5], options);  

% --------------------------------------------------------------- 

 

function mutationChildren = int_mutation(parents,options, … 

GenomeLength, FitnessFcn,state,thisScore,thisPopulation) 

shrink = .01;  

scale = 1; 

scale = scale - shrink * scale * state.Generation/options.Generations; 

range = options.PopInitRange; 

lower = range(1,:); 

upper = range(2,:); 

scale = scale * (upper - lower); 

mutationPop =  length(parents); 

 

% The use of ROUND function will make sure that children are integers. 

mutationChildren =  repmat(lower,mutationPop,1) +  ... 

    round(repmat(scale,mutationPop,1) .* 

rand(mutationPop,GenomeLength)); 

% End of mutation function 
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%-------------------------------------------------------------------- 

 

function Population = int_pop(GenomeLength,FitnessFcn,options) 

 

totalpopulation = sum(options.PopulationSize); 

range = options.PopInitRange; 

lower= range(1,:); 

span = range(2,:) - lower; 

 

% The use of ROUND function to make sure that individuals are integers. 

Population = repmat(lower,totalpopulation,1) +  ... 

    round(repmat(span,totalpopulation,1) .* 

rand(totalpopulation,GenomeLength)); 

 

% End of creation function 

%--------------------------------------------------------------------- 

 

% GA fitness function 

function [fval] = GA_fitness(s) 

global fid_fval; 

 

fval(2) =  

CalEALFrame1(s(1),s(2),s(3),s(4),s(5),s(6),s(7),s(8),s(9),… 

s(10),s(11), s(12); 

 

fval(1) = CalWeight1(s(1),s(2),s(3),s(4),s(5),s(6),s(7),s(8),s(9),… 

s(10),s(11), s(12)); 

 

cost = fval(1); 

EAL = fval(2); 

 

fprintf(fid_fval, '[ %1.5e  %1.5e ]\n', [cost,EAL]); 

  

% End of fitness function 

 

%--------------------------------------------------------------------- 
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Appendix 6 

 

Sub-Function M-File to Calculate Expected Annual Loss 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                 % 

% CalEALFrame1.m                                                  %      

%                                                                 %                                                                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fval1] = CalEALFrame1(s1,s2,s3,s4,s5, s6, s7, s8, s9, s10, …  

s11, s12,) 

global zeta; 

global freq1; 

global freq2; 

global timeEnd; 

global nSol; 

global m; 

global FDamper_max; 

global FDamper_min; 

global PHI_all; 

global PHI_kRatio; 

global fid_EAL; 

Col = [s1 s2 s2 s3 s1; s1 s2 s2 s3 s1; s1 s2 s2 s3 s1]; 

Var = [s1 s2 s3; s1 s2 s3; s1 s2 s3];  

VarDamper = [s4 s5 s6; s7 s8 s9; s10 s11 s12];  

[kCol]=pf_Kshear(Col); 

[Vyld] = VyieldMatrix_shear(Col); 

Coef = [s4*10 s7*10 s10*10]; 

kDamp = [s5*10 s8*10 s11*10]; 

alpha = [0.5+(s6-1)*0.25 0.5+(s9-1)*0.25 0.5+(s12-1)*0.25]; 

 

[AvefloorAcc2in50, AvefloorDrift2in50, FDmax2in50, FDmin2in50] =                  

CalGM2in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol); 

[fval2in50] = FragilityFun(AvefloorAcc2in50, AvefloorDrift2in50); 

fvalTEMP = fval2in50 * 0.000404; 

fprintf(fid_EAL, ' %1.5e \t', fvalTEMP); 

fprintf(fid_EAL, ' %s \n', '2in50'); 

fval2in50 = fval2in50 * 0.000404;  

 

[AvefloorAcc10in50, AvefloorDrift10in50, FDmax10in50, FDmin10in50] =                                      

CalGM10in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol); 
[fval10in50] = FragilityFun(AvefloorAcc10in50, AvefloorDrift10in50); 

fvalTEMP =fval10in50 * 0.002107; 

fprintf(fid_EAL, ' %1.5e \t', fvalTEMP); 

fprintf(fid_EAL, ' %s \n', '10in50'); 

fval10in50 =  fval10in50 * 0.002107;  

 

[AvefloorAcc50in50, AvefloorDrift50in50, FDmax50in50, FDmin50in50] =                          

CalGM50in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol);  
[fval50in50] = FragilityFun(AvefloorAcc50in50, AvefloorDrift50in50); 

fvalTEMP = fval50in50 * 0.013863; 

fprintf(fid_EAL, ' %1.5e \t', fvalTEMP); 

fprintf(fid_EAL, ' %s \n', '50in50'); 

fval50in50 =  fval50in50 * 0.013863;  
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Angle = atan(156/360); %the angle between damper and beam. 
FDamper_max = zeros(1,Story); 
FDamper_min = zeros(1,Story); 
for i = 1 : Story     
    FDamper_max(1,i) = max([FDmax2in50(1,i) FDmax10in50(1,i) 

FDmax50in50(1,i)]); 
    FDamper_min(1,i) = min([FDmin2in50(1,i) FDmin10in50(1,i) 

FDmin50in50(1,i)]); 
end 
FDamper_max = FDamper_max/cos(Angle); 
FDamper_min = FDamper_min/cos(Angle); 

 
[PHI_all ,PHI_kRatio] = 

Constraint_Penalty1(Var,VarDamper,AvefloorDrift10in50,kCol,…  

FDamper_max, FDamper_min); 

fval1 = (fval2in50 + fval10in50 + fval50in50) * PHI_all * PHI_kRatio;  

 

%--------------------------------------------------------------------- 
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Appendix 7 

 

Sub-Function M-File to Calculate the Initial Construction Cost 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                   % 

% CalWeight1.m                                                      %                                                                                         

%                                                                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fval2] = CalWeight1(s1,s2,s3,s4,s5, s6, s7, s8, s9, … 

 s10, s11,s12) 

global propertyEle; 

global height; 

global PHI_all; 

global PHI_kRatio; 

global Story; 

global FDamper_max; 

global FDamper_min; 

global fid_column; 

global Eletxt; 

global fid_s; 

global fid_fval; 

 

% To generate weight matrix for current generation 

columns = [s1 s2 s2 s3 s1; s1 s2 s2 s3 s1; s1 s2 s2 s3 s1]; 

col=[s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 ]; 

for ii = 1:3 

    output1 = char(Eletxt(col(ii))); 

 

    % output selected columns for current generation 

    fprintf(fid_column, '    %s\t',output1);   

end 

 

fprintf(fid_column, ' %s \n', '---'); 

fprintf(fid_s, '    %u\t',col); % output all design variables 

fprintf(fid_s, ' %s \n', '---'); 

 

[row, col] = size(columns); 

weight = zeros(row, col); 

totalweight = 0; 

 

for i = 1:row 

    for j = 1:col 

        weight(i,j)=propertyEle(columns(i,j),2); 

    end 

end 

 

for i = 1 : row 

    for j = 1:col 

        totalweight = totalweight + weight(i,j) * height(i)/(12*1000);  

 %unit: kips    

    end    

end 
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% To calculate the cost of columns, assume that the cost is $1.2/lb. 

TotalCost = totalweight * 1.2 * 1000; 

Col_Cost = TotalCost * PHI_all; 

 

% to calculate the damper cost 

Dampermin = abs(FDamper_min); 

TotalDamperCost = 0.0; 

for i = 1 : Story 

    if FDamper_max(i)>= Dampermin(i) 

        FD = FDamper_max(i); 

    else 

        FD = Dampermin(i); 

    end;  

    % 1kip = 0.4536 tons 

    TotalDamperCost = TotalDamperCost +(11000-3200)/(200-25)*FD*0.4536        

end 

Damper_Cost = TotalDamperCost * PHI_kRatio; 

fprintf(fid_fval, '[ %1.5e  %1.5e ]\t', [Col_Cost,Damper_Cost]); 

fval2 = TotalCost * PHI_all + TotalDamperCost * PHI_kRatio;  

 

% ------------------------------------------------------------------ 
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Appendix 8 

 

Sub-Function M-File to Calculate Constraint and Penalty Factors 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                    %                                                                            

% Constraint_Penalty1.m                                              %                                                                                 

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [PHI_all,PHI_kRatio]=Constraint_Penalty1(Var,VarDamper,… 

AvefloorDrift10in50,kCol, FDamper_max, FDamper_min ) 

 

global Story;         %Total number stories in the model 

global Bays;          %Total number bays in the model 

global m;             %mass matrix 

global height;       %height matrix 

global propertyEle;   %Element property matrix from database. 

global fid_penalty; 

 

% Compute the flexural buckling capacity for all columns 

G_B = 4.71 * sqrt(29000/50);  

Kx = 1.0;          %In-plane behavior: fixed-fixed 

Ky = 1.0;          %out-of-plane behavior: pin - pin 

E = 29000;         %elastic modulus 

Fy = 50;          %material yield stress 

g = 386.4;        %gravity acceleration 

[m1,n1]=size(Var); 

Pn = zeros(Story, n1);    % nominal flexural buckling strength 

 

for i = 1 : Story    

    for j = 1 : n1 

        lamda_y = Ky * height(i,1)/propertyEle(Var(i,j),11);      

   %out-plane 

        lamda_x = Kx * height(i,1)/propertyEle(Var(i,j),6);      

   %in-plane 

        lamda = max(lamda_x, lamda_y); 

        Fe = (pi^2)* E/(lamda)^2; 

        if lamda <= G_B 

            Fcr = (0.658^(Fy/Fe))* Fy; 

            Pn(i,j) = Fcr * propertyEle(Var(i,j),3); 

        else 

            Fcr = 0.877 * Fe; 

            Pn(i,j) = Fcr * propertyEle(Var(i,j),3); 

        end     

    end 

end 

 

 for i = 1 : Story 

     SumWeight = 0.0; 

     for j = i : Story 

         SumWeight = SumWeight + m(j); 

     end 

     W(i) = SumWeight * g; 

     Pa1(i) = W(i)/(Bays);  % max axial load applied to inter-columns, 
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 end 

  

% the axial forces introduced by dampers.  

Angle = atan(156/360);   %the angle between damper and beam. 

FD(1,1) = 0; 

FD(1,2) = 0; 

FD(1,3) = FDamper_max(1) *sin(Angle); 

FD(1,4) = 0; 

FD(1,5) = 0; 

 

for i = 2 : Story 

% only the second and third columns are affected by the damper forces. 

    FD(i,1) = 0; 

    FD(i-1,2) = abs(FDamper_min(i)) *sin(Angle);  

    FD(i,3) = FDamper_max(i) *sin(Angle);           

    FD(i,4) = 0; 

    FD(i,5) = 0; 

end 

 

FD_axial(Story,Bays+1) = zeros; 

for i = 1 : Story                                

    for j = 1 : Bays+1 

        for k = i : Story 

        FD_axial(i,j)=FD_axial(i,j)+FD(k,j); 

        end 

    end 

end 

 

% calculate penalty factors 

PHI_strength = 1.0; 

  

for i = 1 : Story 

     phi1 = Pa1(i)/(2*Pn(i,1)); % 2 external columns, carries 1/2 of 

Pal 

     if phi1 <= 1.0 

         q1 = 1.0; 

     else 

         q1 = phi1; 

     end 

     p1 = 1.0 + 5 * (q1 -1)^2; 

     phi4 = Pa1(i)/(Pn(i,3));   % internal columns without dampers. 

     if phi4 <= 1.0 

         q4 = 1.0; 

     else 

         q4 = phi4; 

     end 

     p4 = 1.0 + 5 * (q4 -1)^2;     

     phi2 = (Pa1(i)+ FD_axial(i,2))/Pn(i,2); %left column with damper 

     if phi2 <= 1.0 

         q2 = 1.0; 

     else 

         q2 = phi2; 

     end 

     p2 = 1.0 + 5 * (q2 -1)^2;   

     phi3 = (Pa1(i)+ FD_axial(i,3))/Pn(i,2); %right column with damper 
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     if phi3 <= 1.0 

         q3 = 1.0; 

     else 

         q3 = phi3; 

     end 

      

     p3 = 1.0 + 5 * (q3 -1)^2;  

     PHI_strength =  PHI_strength * p1^2 * p4^(Bays-3)* p2 * p3;  

end 

 

% Beam-column constraints, Columns are fully Lateral_supported  

PHI_BC = 1.0; 

for i = 1 : Story 

     phi1 = Pa1(i)/(2*Pn(i,1)); % 2 external columns  

     m_p = Fy*propertyEle(Var(i,1),5); 

     m_t = min(6*E*propertyEle(Var(i,1),4)*AvefloorDrift10in50(i)/ …  

           (height(i))^2, m_p); 

 

     if phi1 >= 0.2 

         phi_B  = phi1 + (8/9)*(m_t/m_p);  

     else 

         phi_B  = phi1/2 + (m_t/m_p); 

     end 

 

     if phi_B <= 1.0 

         q1 = 1.0; 

     else 

         q1 = phi_B; 

     end 

          

     p1 = 1.0 + 5 * (q1 -1)^2; 

      

     phi2 = Pa1(i)/(Pn(i,3));          % internal columns  

     m_p = Fy*propertyEle(Var(i,3),5); %internal column without damper 

     m_t = min(6*E*propertyEle(Var(i,3),4)*AvefloorDrift10in50(i)/ …   

           (height(i))^2, m_p); % the fourth column from the left. 

      

     if phi2 >= 0.2 

         phi_B  = phi2 + (8/9)*(m_t/m_p); 

     else 

         phi_B  = phi2/2 + (m_t/m_p); 

     end 

      

     if phi_B <= 1.0 

         q2 = 1.0; 

     else 

         q2 = phi_B; 

     end 

          

     p2 = 1.0 + 5 * (q2 -1)^2; 

         

     phi3 = (Pa1(i)+ FD_axial(i,2))/(Pn(i,2)); % internal columns  

     m_p = Fy*propertyEle(Var(i,2),5); %internal column with damper  

     m_t = min(6*E*propertyEle(Var(i,2),4)*AvefloorDrift10in50(i)/ …    

           (height(i))^2, m_p); % the second column from left. 
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     if phi3 >= 0.2 

         phi_B  = phi3 + (8/9)*(m_t/m_p); 

     else 

         phi_B  = phi3/2 + (m_t/m_p); 

     end 

      

     if phi_B <= 1.0 

         q3 = 1.0; 

     else 

         q3 = phi_B; 

     end 

          

     p3 = 1.0 + 5 * (q3 -1)^2; 

      

     phi4 = (Pa1(i)+ FD_axial(i,3))/(Pn(i,2)); % internal columns  

     m_p = Fy*propertyEle(Var(i,2),5); %internal column with damper 

     m_t = min(6*E*propertyEle(Var(i,2),4)*AvefloorDrift10in50(i)/ …  

           (height(i))^2, m_p); % the third column from left. 

      

     if phi4 >= 0.2 

         phi_B  = phi4 + (8/9)*(m_t/m_p); 

     else 

         phi_B  = phi4/2 + (m_t/m_p); 

     end 

     if phi_B <= 1.0 

         q4 = 1.0; 

     else 

         q4 = phi_B; 

     end 

          

     p4 = 1.0 + 5 * (q4 -1)^2; 

      

     PHI_BC =  PHI_BC * p1^2 * p2^(Bays-3) * p3 * p4;       

 end 

 

% shape and weight constraints 

 

PHI_shp = 1.0; 

for i =2 :Story 

    for j = 1 : 3   

        phi = propertyEle(Var(i,j),2)/propertyEle(Var((i-1),j),2); 

        if phi <= 1.0 

            q = 1.0; 

        else 

            q = phi; 

        end 

        p(j) = 1.0 + 5 * (q -1)^2; 

    end 

    PHI_shp = PHI_shp * p(1)^2 *p(2)^2*p(3); 

end 
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PHI_wt = 1.0; 

for i =2 :Story 

    for j = 1 : 3   % 4 vars for each story 

        phi = propertyEle(Var(i,j),1)/propertyEle(Var((i-1),j),1); 

        if phi <= 1.0 

            q = 1.0; 

        else 

            q = phi; 

        end 

        p(j) = 1.0 + 5 * (q -1)^2; 

    end 

    PHI_wt = PHI_wt * p(1)^2 *p(2)^2*p(3); 

end         

     

% Coulumn web slenderness limit 

 

PHI_web = 1.0; 

for i = 1 : Story 

    if Pa1(i)/(2* Fy* propertyEle(Var(i,1),3)) <= 0.125    

        webslender1 = (640/sqrt(Fy))* … 

(1-((2.75*Pa1(i))/(2*Fy*propertyEle(Var(i,1),3)))); 

    else 

        webslender1 = max(((191/sqrt(Fy))*(2.33- …  

        (Pa1(i)/(2*Fy*propertyEle(Var(i,1),3))))), 253/sqrt(Fy)); 

    end 

     

    phi = propertyEle(Var(i,1),14)/webslender1; 

    if phi <= 1.0 

        q = 1.0; 

    else 

        q = phi; 

    end 

        p1 = 1.0 + 5 * (q -1)^2; 

     

    if Pa1(i)/(Fy* propertyEle(Var(i,3),3)) <= 0.125        

        webslender4 = (640/sqrt(Fy))* … 

(1-((2.75*Pa1(i))/(Fy*propertyEle(Var(i,3),3)))); 

    else 

        webslender4 = max(((191/sqrt(Fy))*(2.33- 

        (Pa1(i)/(Fy*propertyEle(Var(i,3),3))))), 253/sqrt(Fy)); 

    end 

    phi = propertyEle(Var(i,3),14)/webslender4; 

     

    if phi <= 1.0 

        q = 1.0; 

    else 

        q = phi; 

    end  

        p4 = 1.0 + 5 * (q -1)^2; 
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if (Pa1(i)+FD_axial(i,2))/(Fy* propertyEle(Var(i,2),3)) <= 0.125           

    %the left column with dampers 

        webslender2 = (640/sqrt(Fy))* … 

(1-((2.75*Pa1(i))/(Fy*propertyEle(Var(i,2),3)))); 

    else 

        webslender2 = max(((191/sqrt(Fy))*(2.33-  

        (Pa1(i)/(Fy*propertyEle(Var(i,2),3))))), 253/sqrt(Fy)); 

    end 

     

    phi = propertyEle(Var(i,2),14)/webslender2; 

    if phi <= 1.0 

        q = 1.0; 

    else 

        q = phi; 

    end  

        p2 = 1.0 + 5 * (q -1)^2;         

         

    if (Pa1(i)+FD_axial(i,3))/(Fy* propertyEle(Var(i,2),3)) <= 0.125          

    %the right column with dampers 

        webslender3 =(640/sqrt(Fy))* … 

(1-((2.75*Pa1(i))/(Fy*propertyEle(Var(i,2),3)))); 

    else 

        webslender3 = max(((191/sqrt(Fy))*(2.33- 

        (Pa1(i)/(Fy*propertyEle(Var(i,2),3))))), 253/sqrt(Fy)); 

    end 

    phi = propertyEle(Var(i,2),14)/webslender3; 

     

    if phi <= 1.0 

        q = 1.0; 

    else 

        q = phi; 

    end  

    p3 = 1.0 + 5 * (q -1)^2;               

    PHI_web = PHI_web * p1^2 * p2*p3*p4^(Bays-3); 

end 

 

% Coulumn flange slenderness limit 

PHI_f = 1.0; 

 

for i = 1 : Story 

     for j = 1 : 3 

        phi = propertyEle(Var(i,j),13)/(0.30*sqrt(E/Fy)); 

        if phi <= 1.0 

            q = 1.0; 

        else 

            q = phi; 

        end 

        p(j) = 1.0 + 5 * (q -1)^2; 

    end 

                

    PHI_f = PHI_f * p(1)^2 * p(2)^2* p(3); 

end 

 

 

 

 



 

 

177 

 

 

% damper's stiffness constraints and penalty. 

PHI_kRatio = 1.0; 

 

for i =1 :Story 

    phi = VarDamper(i,2)*10/(kCol(i)*0.1);  

    if phi <= 1.0 

            q = 1.0; 

    else 

            q = phi; 

    end 

    p = 1.0 + 5 * (q -1)^2; 

    [PHI_kRatio] = PHI_kRatio * p; 

end 

fprintf(fid_penalty,'[%1.5e %1.5e %1.5e %1.5e %1.5e %1.5e %1.5e]\n', … 

[PHI_strength,PHI_shp,PHI_wt ,PHI_web, PHI_f, PHI_BC,… 

PHI_kRatio]); 

[PHI_all] = PHI_strength * PHI_shp *  PHI_wt *  PHI_web *  PHI_f * 

PHI_BC; 

 

%------------------------------------------------------------------- 
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Appendix 9 

 

Sub-Function M-File to Calculate Constraint and Penalty Factors 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                        

%                                                                 % 

% inelasticMDOF.m                                                 %                                                                       

%                                                                 % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime] = inelasticMDOF 

(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol) 

 

% MatLab function uses Newmark's 'average acceleration' method to  

% compute the response to ground motion for an MDF shear building.   

%  

% Input Arguments: 

% fileName = filename containing the ground acceleration record 

%            data to follow (must be contained in single quotes, 

%            (i.e.  '1940ImperialValley.txt').   

%            The first line of the ground acceleration file must  

%            contain the following line before acceleration data: 

%            del_time  gFact 

%            where: 

%               del_time= the time increment for the ground  

%                          acceleration data 

%               gFact   = acceleration multiplier to make accelerations  

%                         in the file consistent with in/s^2 units 

% zeta     = the percentage of damping in each mode desired 

% freq1    = first modal frequency for Rayleigh damping computations 

% freq2    = second modal frequency for Rayleigh damping computations 

% m        = the building mass list at each floor level (vector) 

% k        = the building stiffness at each story (vector) 

% Vyld     = the story yield force (vector) 

% timeEnd  = the ending time for the response computation 

% nSol     = the number of solution sub steps within ground motion time  

%            intervals 

% alpha    = the velocity exponent for the supplemental dampers at each 

%            story (vector) 

% Coef     = the coefficient for the supplemental damper at each story 

% 

% Returned Arguments: 

% time = vector of time for response plotting 

% x    = story displacement vector (relative to ground) 

% V    = vector of story shears 

% u_dd = ground acceleration vector 

% 

% Read in the time-history acc. data and store in an appropriate  

% array.  Time history input is assumed to be in 'g-units'. 
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numRec = 1 ; 

fid = fopen(fileName,'r') ;    % File identifier for read-in 

delTime = fscanf(fid,'%g',1) ; % Read in the time increment for GM 

gFact = fscanf(fid,'%g',1) ;   % Acceleration due to gravity multiplier 

u_g_dd(numRec) = 0.0 ; 

 

while feof(fid) == 0 

    numRec = numRec + 1 ; 

    accel(numRec)  = fscanf(fid,'%g',1) ; 

    u_g_dd(numRec) = accel(numRec)*gFact ; % Convert to 'in/s^2' units 

end 

 

status   = fclose(fid) ; 

 

% Generate time and ground motion arrays of needed length 

 

timeRec  = delTime * numRec ; 

timeStop = max(timeEnd,timeRec) ; 

 

if timeEnd >= timeRec 

    recInc = timeEnd / delTime ; 

    for i = numRec+1:recInc 

        u_g_dd(i) = 0.0 ; 

    end 

    numRec = recInc ; 

end 

 

recTime(1) = 0.0 ; 

for i = 2:numRec   

    recTime(i) = recTime(i-1) + delTime ; 

end 

 

% Generate an array of time vs. ground acceleration values at solution  

% increment desired 

 

delSol = delTime / nSol ; 

u_dd(1)  = 0.0 ; 

time = 0.0 ; 

solIndx = 1 ; 

 

for i = 2:numRec 

    for j = 1:nSol 

        solIndx = solIndx + 1 ; 

        time = time    + delSol ;     

        u_dd(solIndx) = u_g_dd(i-1) + ( time - recTime(i-1) ) / … 

  (recTime(i) - recTime(i-1)) * ( u_g_dd(i) - u_g_dd(i-1) ); 

    end 

end 

numSol = solIndx ; 

solTime(1) = 0.0 ; 

 

for i = 2:numSol 

    solTime(i) = solTime(i-1) + delSol ; 

end 
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% Compute the number of rows and columns for the matrices in the system 

 

numRows = length(m) ; 

numCols = length(m) ; 

 

% Initialize the inelastic analysis parameters 

 

for j = 1:numRows 

    yldKey(j)  = 0.0 ; 

    xMax(j)  = Vyld(j)/kCol(j) ; 

    xMin(j) = -1.0*Vyld(j)/kCol(j) ; 

    stryFrc(j,1) = 0.0 ; 

    inf(j,1) = 1.0 ; 

    fInt(j,1) = 0.0 ; 

end 

 

% Compute the stiffness matrix for the shear building 

kElas = kCol ; 

[K]   = assembleK(kCol+kDamp) ; 

 

% Compute the mass matrix for the shear building 

M(1:numRows,1:numCols) = 0.0 ;    % Initialize the mass matrix 

for i = 1:numRows 

    M(i,i) = m(i); 

end    

 

% Compute natural frequencies via Eigen value analysis 

[Phi,omega] = eig(K,M);       % Compute Mode Shape and Natural 

Frequencies 

 

for i = 1:numRows 

    Omega(i) = sqrt(omega(i,i)); % Take square root of frequencies 

end 

 

Omega   = sort(Omega);           % Sort frequencies low to high 

 

%Compute the classical damping matrix assuming Rayleigh damping 

 

omega_i = Omega(freq1); 

omega_j = Omega(freq2); 

a_0 = zeta * ( 2.0*omega_i*omega_j ) / ( omega_i + omega_j ) ; 

a_1 = zeta * ( 2.0 ) / ( omega_i + omega_j ) ; 

C_Ray = a_0*M + a_1*K ; 

 

% Initialize 

for i = 1:numRows 

    u_aa(i,1) = 0.0;       % Zero the displacement response vector 

    u_aa_d(i,1) = 0.0;     % Zero the velocity response vector 

    u_aa_dd(i,1) = 0.0;    % Zero the acceleration response vector 

    del_u_aa_d(i,1) = 0.0; % Zero the incremental velocity response 

end 
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for i = 1:numRows 

    for j = 1:numSol 

        x(i,j) = 0.0;   % Zero the deformation vector  

        x_d(i,j) = 0.0; % Zero the velocity vector 

        x_dd(i,j) = 0.0;% Zero the first column of the acceleration 

        intFrc(i,j) = 0.0; % Zero the internal spring force vector 

    end 

    F_d(i) = 0.0 ;             

    F_d_slope(i)=alpha(i) * Coef(i) * (abs(0.000001))^(alpha(i) - 1) ; 

end 

 

% Initialize quantities prior to time stepping.  Newmark's Average  

% Acceleration method coded 

 

beta  = 0.25; 

gamma = 1.0/2.0;                                            

p = -1.00*M*inf*u_dd(1);  % Compute load vector for first time value 

 

% Begin the time stepping 

for i = 1:numSol-1 

   [C]   = assembleC(F_d_slope) ; 

   C = C + C_Ray ; 

    

   % Compute Newmark coefficient vector; 'a' 

   A = 1.0/(beta*delSol)*M + gamma/beta*C;    

    

   % Compute Newmark coefficient vector; 'b' 

   B = 1.0/(2.0*beta)*M + delSol*(gamma/(2.0*beta)-1.0)*C ;      

   del_p = -1.00*M*inf*( u_dd(i+1) - u_dd(i) ) ; 

   p = p + del_p  ; 

   del_p_hat = del_p + a*u_aa_d + b*u_aa_dd ; 

    

   [kCol,yldKey,xMax,xMin] =  

            kCurrent(kCol,kElas,yldKey,Vyld,xMax,xMin,u_aa_d,u_aa) ; 

   [K] = assembleK(kCol+kDamp) ; 

   K_hat = K + gamma/(beta*delSol)*C + 1.0/(beta*delSol*delSol)*M ; 

 

   del_u = inv(K_hat)*del_p_hat ; 

   del_u_d = gamma/(beta*delSol)*del_u - gamma/beta*u_aa_d ... 

             + delSol*(1.0-gamma/(2.0*beta))*u_aa_dd ; 

   del_u_dd = 1.0/(beta*delSol*delSol)*del_u - 1.0/(beta*delSol)* …  

u_aa_d - 1.0/(2.0*beta)*u_aa_dd ;                          

   u_aa  = u_aa    + del_u ; 

   u_aa_d = u_aa_d  + del_u_d  ; 

   u_aa_dd = u_aa_dd + del_u_dd ; 

     

   [fInt,stryFrc] =  

           

internalForce(kCol,kElas,yldKey,Vyld,xMax,xMin,stryFrc,del_u);     

   [F_d_slope] = DamperSlope( Coef, alpha, u_aa_d ) ; 

   [F_d_elas,F_d_visc] = DamperForce(Coef, alpha, u_aa_d, kDamp,u_aa ); 
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   for j = 1:numRows 

        x(j,i+1) = u_aa(j,1) ; 

        x_d(j,i+1) = u_aa_d(j,1) ;  

        x_dd(j,i+1) = u_aa_dd(j,1) ; 

        intFrc(j,i+1) = stryFrc(j,1) ; 

        F_d_elas_time(j,i+1) = F_d_elas(j) ; 

        F_d_visc_time(j,i+1) = F_d_visc(j) ;  

   end 

end 

 

%------------------------------------------------------------------- 
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Appendix 10 

 

Sub-Function M-File to Calculate Evaluate the damages and Repair Cost 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                    % 

% FragilityFun.m                                                     %                          

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fval] = FragilityFun(AvefloorAcc, AvefloorDrift) 

global Story; 

global height; 

global fid_EAL; 

       

SS = [0.4, 1.9, 9.6, 19.2]; 

NSD = [0.7, 3.3, 16.4, 32.9]; 

NSA = [0.9, 4.8, 14.4, 47.9]; 

EDP = AvefloorDrift./height; 

Bate = 0.5; 

EDP_ds = [0.004, 0.008, 0.02, 0.0533]; 

 

x1 = (1/Bate) * log(EDP/EDP_ds(1)); 

P1= 0.5 * erfc(-x1/sqrt(2)); 

 

x2 = (1/Bate) * log(EDP/EDP_ds(2)); 

P2= 0.5 * erfc(-x2/sqrt(2)); 

 

x3 = (1/Bate) * log(EDP/EDP_ds(3)); 

P3= 0.5 * erfc(-x3/sqrt(2)); 

 

x4 = (1/Bate) * log(EDP/EDP_ds(4)); 

P4= 0.5 * erfc(-x4/sqrt(2)); 

 

E_SS = (P1-P2)*SS(1)+(P2-P3)*SS(2)+(P3-P4)*SS(3)+P4*SS(4); 

 

% non structural drift sensitive components 

 

EDP_ds = [0.004, 0.008, 0.025, 0.050]; 

x5 = (1/Bate) * log(EDP/EDP_ds(1)); 

P5= 0.5 * erfc(-x5/sqrt(2)); 

 

x6 = (1/Bate) * log(EDP/EDP_ds(2)); 

P6= 0.5 * erfc(-x6/sqrt(2)); 

 

x7 = (1/Bate) * log(EDP/EDP_ds(3)); 

P7= 0.5 * erfc(-x7/sqrt(2)); 

 

x8 = (1/Bate) * log(EDP/EDP_ds(4)); 

P8= 0.5 * erfc(-x8/sqrt(2)); 

 

E_NSD = (P5-P6)*NSD(1)+(P6-P7)*NSD(2)+(P7-P8)*NSD(3)+P8*NSD(4); 

 

 

 

 



 

 

184 

 

% non structural acceleration sensitive components 

 

EDP = AvefloorAcc/386.4; 

Bate = 0.6; 

EDP_ds = [0.30, 0.6, 1.2, 2.4]; 

 

x9 = (1/Bate) * log(EDP/EDP_ds(1)); 

P9= 0.5 * erfc(-x9/sqrt(2)); 

 

x10 = (1/Bate) * log(EDP/EDP_ds(2)); 

P10= 0.5 * erfc(-x10/sqrt(2)); 

 

x11= (1/Bate) * log(EDP/EDP_ds(3)); 

P11= 0.5 * erfc(-x11/sqrt(2)); 

 

x12 = (1/Bate) * log(EDP/EDP_ds(4)); 

P12= 0.5 * erfc(-x12/sqrt(2)); 

 

E_NSA = (P9-P10)*NSA(1)+(P10-P11)*NSA(2)+(P11-P12)*NSA(3)+P12*NSA(4); 

 

storyEAL = (E_SS+E_NSD+E_NSA); 

E1 = 0; 

E2 = 0; 

E3 = 0; 

 

for ii = 1:Story 

    E1 = E1 + E_SS(ii); 

    E2 = E2 + E_NSD(ii); 

    E3 = E3 + E_NSA(ii);    

end 

 

fprintf(fid_EAL, '[ %1.5e  %1.5e  %1.5e ]\t', [E1,E2,E3]); 

fval = 0; 

 

for i = 1: Story 

    fval = fval + storyEAL(i); 

end 

%-------------------------------------------------------------------- 
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Appendix 11 

 

Sub-Function to Assembly the Structure Stiffness Matrix 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                 % 

% pf_Kshear.m                                                     %                          

%                                                                 % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [kCol]=pf_Kshear(Col) 

 

global height; 

global Story; 

global Bays; 

global propertyEle; 

 

youngs = 29000; 

for i = 1:Story 

k = 0; 

 for j = 1:(Bays +1) 

  k = k +  12*youngs * propertyEle(Col(i,j),4)/height(i)^3; 

 end 

 kCol(i) = k; 

end 

% ------------------------------------------------------------------- 
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Appendix 12 

 

Sub-Function M-File to Generate the Matrix of Yield Strength 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%                                                               % 

% VyieldMatrix_shear.m                                          %  

%                                                               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [Vyld] = VyieldMatrix_shear(Col) 

global height; 

global Story; 

global Bays; 

global propertyEle; 

 

for i = 1:Story 

 V = 0; 

 for j = 1:(Bays +1) 

  V = V + 2*(50*propertyEle(Col(i,j),5)/height(i)); 

 end 

 Vyld(i) = V; 

end 

 

% --------------------------------------------------------------- 
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Appendix 13 

 

Sub-Function M-File to Generate the Matrix of Current Frame Stiffness 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                   %   

% kCurrent.m                                                        %                                                                                 

%                                                                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[k,yldKey,xMax,xMin] =  

                             

kCurrent(k,kElas,yldKey,Vyld,xMax,xMin,u_d,u) 

 

numRows = length(k);   % Set size of stiffness matrix 

for j = 1:numRows      % Compute story yielding condition and stiffness 

    currVel = u_d(j,1);   % Set the current story velocity    

    if j == 1 

        currDsp = u(j,1); % Set the current story displacement 

    else 

        currDsp = u(j,1) - u(j-1,1) ; 

    end 

     

    if yldKey(j) == 0     % System is currently on an elastic branch 

 

        % Yielding in positive direction has occurred 

        if currVel >= 0 

            if currDsp > xMax(j)                 

    yldKey(j) = 1 ;     % Set yield key 

                k(j)= 0.0;          % Set story stiffness to "zero" 

            else 

                yldKey(j) = 0 ;     % System remains elastic 

                k(j)= kElas(j);     % Return story stiffness                

            end 

        else 

            if currDsp < xMin(j) % Yielding in negative direction 

                yldKey(j) = -1 ; % System has yielded in neg. direction 

                k(j) = 0.0;      % Set story stiffness to "zero" 

            else 

                yldKey(j) = 0 ;  % System remains elastic 

                k(j)= kElas(j);  % Return story stiffness 

            end 

        end 

    % Currently on a yielded branch in positive direction     

    elseif yldKey(j) == 1  

     

        if currVel >= 0 

            yldKey(j) = 1 ;   % System continues to yield in (+) 

direction 

            k(j) = 0.0;       % Set story stiffness to "zero" 

        else 

            yldKey(j) = 0 ;   % System unloads to elastic response 

            k(j) = kElas(j);  % Set story stiffness to initial elastic 

            xMax(j)= currDsp ;     % Set max. displacement to current 
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  % Set min. displacement 

xMin(j)=currDsp - 2.0*Vyld(j)/kElas(j); 

        end 

         

    else           % Currently on a yielded branch in (-) direction 

     

        if currVel <= 0 

            % System continues to yield in (-) direction 

yldKey(j) = -1 ;   

            k(j)= 0.0 ;       % Set story stiffness to "zero" 

        else 

            yldKey(j) = 0 ;   % System unloads to elastic response 

            k(j) = kElas(j);  % Set story stiffness to initial elastic 

            xMin(j) = currDsp;% Set min. displacement to current 

            % Set max. displacement 

xMax(j)= currDsp+2.0*Vyld(j)/kElas(j); 

        end  

    end 

end 

 

%------------------------------------------------------------------- 
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Appendix 14 

 

Sub-Function M-File to Calculate Internal Forces in Columns 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                    % 

% internalForce.m                                                    %                                                                             

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fInt,stryFrc] =  

              

internalForce(k,kElas,yldKey,Vyld,xMax,xMin,stryFrc,del_u); 

 

numRows = length(k);   % Set size of stiffness matrix 

 

for j = 1:numRows      % Compute story yielding condition and stiffness 

 

    if j == 1 

        incDsp  = del_u(j,1) ; 

    else 

        incDsp  = del_u(j,1) - del_u(j-1,1) ; 

    end 

     

    if yldKey(j) == 0     % System is currently on an elastic branch 

        stryFrc(j,1) = stryFrc(j,1) + k(j)*incDsp ; 

        if stryFrc(j,1) <= -1.0*Vyld(j) 

            stryFrc(j,1) = -1.0*Vyld(j) ; 

        end 

        if stryFrc(j,1) >= Vyld(j)  

            stryFrc(j,1) = Vyld(j) ; 

        end 

    % Currently on a yielded branch in(+) direction  

    elseif yldKey(j) == 1  

        stryFrc(j,1) = Vyld(j) ; 

    else                % Currently on a yielded branch in(-) direction 

        stryFrc(j,1) = -1.0*Vyld(j) ; 

    end 

end 

 

for j = 1:numRows 

    if j == numRows 

        fInt(j,1) = stryFrc(j) ; 

    else         

        fInt(j,1) = stryFrc(j) - stryFrc(j+1) ; 

    end 

end 

 

% ----------------------------------------------------------------- 
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Appendix 15 

 

Sub-Function M-File to Calculate the Current Damper Force 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                  % 

% DamperForce.m                                                    %                        

%                                                                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [F_d_elas, F_d_visc] = DamperForce(c, alpha, x_d, kDamp, x ) 

 

for i = 1:length(c) 

 

    if i == 1 

        relVel = x_d(i) ; 

        relDsp =   x(i) ; 

    else 

        relVel = x_d(i) - x_d(i-1) ; 

        relDsp =   x(i) -   x(i-1) ; 

    end 

     

    F_d_visc(i) = sign(relVel)*c(i)*(abs(relVel))^(alpha(i)) ; 

    F_d_elas(i) = relDsp*kDamp(i) ; 

end 

%------------------------------------------------------------------- 
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Appendix 16 

 

Sub-Function M-File to Compute the Current Slope in the Damper Force vs. Velocity 

 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                   % 

% DamperSlope.m                                                     %                                                                             

%                                                                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [ F_d_slope ] = DamperSlope( c, alpha, x_d ) 

 

for i = 1:length(c) 

 

    if i == 1 

        relVel = x_d(i) ; 

        if relVel == 0.0 

            F_d_slope(i) = alpha(i)*c(i)*(abs(0.000001))^(alpha(i)-1) ; 

        else 

            F_d_slope(i) = alpha(i) * c(i)*(abs(relVel))^(alpha(i)-1) ; 

        end 

    else 

        relVel = x_d(i) - x_d(i-1) ; 

        if relVel == 0.0 

            F_d_slope(i) = alpha(i)*c(i)*(abs(0.000001))^(alpha(i)-1) ; 

        else 

            F_d_slope(i) = alpha(i)*c(i)*(abs(relVel))^(alpha(i)-1) ; 

        end         

    end 

end 

 

%-------------------------------------------------------------------- 
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Appendix 17 

 

Sub-Function M-File to Assembly the Stiffness Matrix 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                  % 

% assembleK.m                                                      %                       

%                                                                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [K] = assembleK(k) 

 

numRows = length(k);        % Establish number of rows and 

columns 

numCols = length(k); 

 

K(1:numRows,1:numCols) = 0.0 ;  % Initialize the stiffness matrix 

 

for i = 1:numRows              % Compute the upper triangle 

   for j = i:numCols 

      if i == j 

         if i == numRows 

            K(i,j) = k(numRows); 

         else 

            K(i,j) = k(i) + k(i+1); 

         end 

      elseif j > i + 1 

         K(i,j) = 0.0 ; 

      else 

         K(i,j) = -1.0*k(i+1); 

      end 

   end 

end 

 

for i = 1:numRows              % Pick up the lower diagonal 

   for j = i:numCols 

      K(j,i) = K(i,j); 

   end 

end 

%------------------------------------------------------------------- 
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Appendix 18 

 

Sub-Function M-File to Assembly the Damping Coefficient C Matrix 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                             

%                                                                   % 

% assembleC.m                                                       %                     

%                                                                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [C] = assembleC(c) 

 

numRows = length(c);         % Establish number of rows and 

columns 

numCols = length(c); 

C(1:numRows,1:numCols) = 0.0 ;  % Initialize the stiffness matrix 

 

for i = 1:numRows               % Compute the upper triangle 

   for j = i:numCols 

      if i == j 

         if i == numRows 

            C(i,j) = c(numRows); 

         else 

            C(i,j) = c(i) + c(i+1); 

         end 

      elseif j > i + 1 

         C(i,j) = 0.0 ; 

      else 

         C(i,j) = -1.0*c(i+1); 

      end 

   end 

end 

 

for i = 1:numRows              % Pick up the lower diagonal 

   for j = i:numCols 

      C(j,i) = C(i,j); 

   end 

end 

 

%-------------------------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

194 

 

 

Appendix 19 

 

Sub-Function M-File to Calculate the Damage Loss due to Seismic 2in50  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                            

%                                                                    % 

% CalGM2in50.m                                                       %                     

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Function[AvefloorAcc2in50,AvefloorDrift2in50,FDamper_max,FDamper_min]=                                 

CalGM2in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol) 

 

global Story; 

floorAcc2in50 = zeros(5,Story); 

floorDrift2in50 = zeros(5,Story); 

AvefloorAcc2in50 = zeros(Story,1); 

AvefloorDrift2in50 = zeros(Story,1); 

 

fileName ='C:\GAInteger\GM_LA\la2in50\la21.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime] = 

inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef, …  

                            alpha,Vyld,timeEnd,nSol); 

floorAcc2in50(1,1) = max(abs(x_dd(1,:))); 

floorDrift2in50(1,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc2in50(1,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift2in50(1,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper2in50_max(1,i) = max(FDamper(i , :)); 

    FDamper2in50_min(1,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la2in50\la22.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime] =                

inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef, …  

                            alpha,Vyld,timeEnd,nSol); 

floorAcc2in50(2,1) = max(abs(x_dd(1,:))); 

floorDrift2in50(2,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc2in50(2,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift2in50(2,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper2in50_max(2,i) = max(FDamper(i , :)); 

    FDamper2in50_min(2,i) = min(FDamper(i , :)); 
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end 

 

fileName ='C:\GAInteger\GM_LA\la2in50\la26.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=               

inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                            alpha,Vyld,timeEnd,nSol); 

floorAcc2in50(3,1) = max(abs(x_dd(1,:))); 

floorDrift2in50(3,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc2in50(3,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift2in50(3,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper2in50_max(3,i) = max(FDamper(i , :)); 

    FDamper2in50_min(3,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la2in50\la28.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

          inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                             alpha,Vyld,timeEnd,nSol); 

floorAcc2in50(4,1) = max(abs(x_dd(1,:))); 

floorDrift2in50(4,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc2in50(4,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift2in50(4,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper2in50_max(4,i) = max(FDamper(i , :)); 

    FDamper2in50_min(4,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la2in50\la30.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

           inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…   

                             alpha,Vyld,timeEnd,nSol); 

floorAcc2in50(5,1) = max(abs(x_dd(1,:))); 

floorDrift2in50(5,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc2in50(5,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift2in50(5,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper2in50_max(5,i) = max(FDamper(i , :)); 

    FDamper2in50_min(5,i) = min(FDamper(i , :)); 
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end 

 

for i = 1 : Story 

    AvefloorAcc2in50(i) = median([floorAcc2in50(1,i)floorAcc2in50(2,i)…   

           floorAcc2in50(3,i) floorAcc2in50(4,i) floorAcc2in50(5,i)] ); 

 

    AvefloorDrift2in50 (i) = median ([floorDrift2in50(1,i)…   

                     floorDrift2in50(2,i) floorDrift2in50(3,i)… 

                     floorDrift2in50(4,i) floorDrift2in50(5,i)]);  

    FDamper_max(i) = max([FDamper2in50_max(1,i) …   

                     FDamper2in50_max(2,i)FDamper2in50_max(3,i) … 

                     FDamper2in50_max(4,i) FDamper2in50_max(5,i)]); 

    FDamper_min(i) = min([FDamper2in50_min(1,i)…      

                     Damper2in50_min(2,i)FDamper2in50_min(3,i) …  

                     FDamper2in50_min(4,i)FDamper2in50_min(5,i)]); 

 

end 

%---------------------------------------------------------------------- 
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Appendix 20 

 

Sub-Function M-File to Calculate the Damage Loss due to Seismic 10in50  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                            

%                                                                    % 

% CalGM10in50.m                                                      %                     

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function 

[AvefloorAcc10in50,AvefloorDrift10in50,FDamper_max,FDamper_min] = … 

CalGM10in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol) 

 

global Story; 

floorAcc10in50 = zeros(5,Story); 

floorDrift10in50 = zeros(5,Story); 

FDamper10in50_max = zeros(5, Story); 

FDamper10in50_min = zeros(5, Story); 

AvefloorAcc10in50 = zeros(Story,1); 

AvefloorDrift10in50 = zeros(Story,1); 

FDamper_max = zeros(Story,1); 

FDamper_min = zeros(Story,1); 

fileName ='C:\GAInteger\GM_LA\la10in50\la01.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

          inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef, …  

                            alpha,Vyld,timeEnd,nSol); 

floorAcc10in50(1,1) = max(abs(x_dd(1,:))); 

floorDrift10in50(1,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc10in50(1,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift10in50(1,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper10in50_max(1,i) = max(FDamper(i , :)); 

    FDamper10in50_min(1,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la10in50\la02.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

          inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                             alpha,Vyld,timeEnd,nSol); 

floorAcc10in50(2,1) = max(abs(x_dd(1,:))); 

floorDrift10in50(2,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc10in50(2,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift10in50(2,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper10in50_max(2,i) = max(FDamper(i , :)); 

    FDamper10in50_min(2,i) = min(FDamper(i , :)); 

end 
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fileName ='C:\GAInteger\GM_LA\la10in50\la04.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]= 

inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                                alpha,Vyld,timeEnd,nSol); 

floorAcc10in50(3,1) = max(abs(x_dd(1,:))); 

floorDrift10in50(3,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc10in50(3,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift10in50(3,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper10in50_max(3,i) = max(FDamper(i , :)); 

    FDamper10in50_min(3,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la10in50\la08.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

           inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                             alpha,Vyld,timeEnd,nSol); 

floorAcc10in50(4,1) = max(abs(x_dd(1,:))); 

floorDrift10in50(4,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc10in50(4,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift10in50(4,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper10in50_max(4,i) = max(FDamper(i , :)); 

    FDamper10in50_min(4,i) = min(FDamper(i , :)); 

end 

 

fileName ='C:\GAInteger\GM_LA\la10in50\la09.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

           inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…  

                             alpha,Vyld,timeEnd,nSol); 

floorAcc10in50(5,1) = max(abs(x_dd(1,:))); 

floorDrift10in50(5,1) = max(abs(x(1,:))); 

 

for StoryN = 2:Story 

    floorAcc10in50(5,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift10in50(5,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

 

for i  = 1 : Story 

     FDamper10in50_max(5,i) = max(FDamper(i , :)); 

     FDamper10in50_min(5,i) = min(FDamper(i , :)); 

end 
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for i = 1 : Story 

AvefloorAcc10in50(i)= 

median([floorAcc10in50(1,i)floorAcc10in50(2,i)…    

      floorAcc10in50(3,i) floorAcc10in50(4,i) floorAcc10in50(5,i)] ); 

AvefloorDrift10in50 (i) = median([floorDrift10in50(1,i)…   

      floorDrift10in50(2,i) floorDrift10in50(3,i)…  

      floorDrift10in50(4,i) floorDrift10in50(5,i)]);  

      FDamper_max(i) = max([FDamper10in50_max(1,i) …   

      FDamper10in50_max(2,i)FDamper10in50_max(3,i) … 

      FDamper10in50_max(4,i) FDamper10in50_max(5,i)]); 

FDamper_min(i) = min([FDamper10in50_min(1,i)… 

Damper10in50_min(2,i)FDamper10in50_min(3,i) … 

FDamper10in50_min(4,i)FDamper10in50_min(5,i)]); 

end 

 

%-------------------------------------------------------------------- 
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Appendix 21 

 

Sub-Function M-File to Calculate the Damage Loss due to Seismic 50in50  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                            

%                                                                    % 

% CalGM50in50.m                                                      %                     

%                                                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[AvefloorAcc50in50, AvefloorDrift50in50, … 

FDamper_max,FDamper_min] =                                   

CalGM50in50(zeta,freq1,freq2,m,kCol,kDamp,Coef,alpha,Vyld,timeEnd,nSol) 

 

global Story; 

floorAcc50in50 = zeros(5,Story); 

floorDrift50in50 = zeros(5,Story); 

AvefloorAcc50in50 = zeros(Story,1); 

AvefloorDrift50in50 = zeros(Story,1); 

 

fileName = 'C:\GAInteger\GM_LA\la50in50\la42.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

         inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef, … 

                            alpha,Vyld,timeEnd,nSol); 

floorAcc50in50(1,1) = max(abs(x_dd(1,:))); 

floorDrift50in50(1,1) = max(abs(x(1,:))); 

for StoryN = 2:Story 

    floorAcc50in50(1,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift50in50(1,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper50in50_max(1,i) = max(FDamper(i , :)); 

    FDamper50in50_min(1,i) = min(FDamper(i , :)); 

end 

 

fileName = 'C:\GAInteger\GM_LA\la50in50\la43.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

          inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,… 

                            alpha,Vyld,timeEnd,nSol); 

floorAcc50in50(2,1) = max(abs(x_dd(1,:))); 

floorDrift50in50(2,1) = max(abs(x(1,:))); 

 

for StoryN = 2:Story 

    floorAcc50in50(2,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift50in50(2,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper50in50_max(2,i) = max(FDamper(i , :)); 

    FDamper50in50_min(2,i) = min(FDamper(i , :)); 

end 
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fileName = 'C:\GAInteger\GM_LA\la50in50\la45.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

         inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…   

                             alpha,Vyld,timeEnd,nSol); 

floorAcc50in50(3,1) = max(abs(x_dd(1,:))); 

floorDrift50in50(3,1) = max(abs(x(1,:))); 

 

for StoryN = 2:Story 

    floorAcc50in50(3,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift50in50(3,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper50in50_max(3,i) = max(FDamper(i , :)); 

    FDamper50in50_min(3,i) = min(FDamper(i , :)); 

end 

 

fileName = 'C:\GAInteger\GM_LA\la50in50\la46.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

         inelasticMDOF (fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef,…   

                             alpha,Vyld,timeEnd,nSol); 

floorAcc50in50(4,1) = max(abs(x_dd(1,:))); 

floorDrift50in50(4,1) = max(abs(x(1,:))); 

 

for StoryN = 2:Story 

    floorAcc50in50(4,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift50in50(4,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 

 

for i  = 1 : Story 

    FDamper50in50_max(4,i) = max(FDamper(i , :)); 

    FDamper50in50_min(4,i) = min(FDamper(i , :)); 

end 

 

fileName = 'C:\GAInteger\GM_LA\la50in50\la49.txt'; 

[u_g_dd,recTime,solTime,x,x_d,x_dd,intFrc,F_d_elas_time,F_d_visc_time, 

Omega,M,K,Coef,elapsedTime]=  

inelasticMDOF(fileName,zeta,freq1,freq2,m,kCol,kDamp,Coef, …   

              alpha,Vyld,timeEnd,nSol); 

floorAcc50in50(5,1) = max(abs(x_dd(1,:))); 

floorDrift50in50(5,1) = max(abs(x(1,:))); 

 

for StoryN = 2:Story 

    floorAcc50in50(5,StoryN) = max(abs(x_dd(StoryN,:))); 

    floorDrift50in50(5,StoryN) = max(abs(x(StoryN,:)- x(StoryN -1,:))); 

end 

 

FDamper = F_d_visc_time + F_d_elas_time; 
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for i  = 1 : Story 

    FDamper50in50_max(5,i) = max(FDamper(i , :)); 

    FDamper50in50_min(5,i) = min(FDamper(i , :)); 

end 

 

for i = 1 : Story 

AvefloorAcc50in50(i)= median([floorAcc50in50(1,i) 

floorAcc50in50(2,i)…               

      floorAcc50in50(3,i) floorAcc50in50(4,i) floorAcc50in50(5,i)]); 

     AvefloorDrift50in50 (i) = median ([floorDrift50in50(1,i) …  

      floorDrift50in50(2,i) floorDrift50in50(3,i) …  

      floorDrift50in50(4,i) floorDrift50in50(5,i)]);  

 FDamper_max(i) = max([FDamper50in50_max(1,i) …   

      FDamper50in50_max(2,i)FDamper50in50_max(3,i) … 

      FDamper50in50_max(4,i) FDamper50in50_max(5,i)]); 

FDamper_min(i) = min([FDamper50in50_min(1,i)…  

Damper50in50_min(2,i)FDamper50in50_min(3,i) … 

FDamper50in50_min(4,i)FDamper50in50_min(5,i)]); 

 

end 

%-------------------------------------------------------------------- 
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Appendix 22 Wide-Flange Shape Database 
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Appendix 22 Wide-Flange Shape Database (continued) 
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Appendix 22 Wide-Flange Shape Database (continued) 
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