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ABSTRACT 
EEG DURING PEDALING: BRAIN ACTIVITY 

 DURING A LOCOMOTION-LIKE TASK  
IN HUMANS 

 
 

Sanket G. Jain, B.S. 
 

Marquette University, 2009 
 
 

This study characterized the brain electrical activity during pedaling, a locomotor-
like task, in humans.  We postulated that phasic brain activity would be associated with 
active pedaling, consistent with a cortical role in locomotor tasks.  64 channels of 
electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were 
recorded from 10 neurologically-intact volunteers while they performed active and 
passive (no effort) pedaling on a custom-designed stationary bicycle.  Ensemble average 
waveforms, two dimensional topographic maps and amplitude of the β (13-35 Hz) 
frequency band were analyzed and compared between active and passive trials.  The 
absolute amplitude (peak positive-peak negative) of the EEG waveform recorded at the 
Cz electrode tended to be higher in the passive than the active trials (paired t-test; 
p<0.01).  Average power of the center β-band frequency (20-25 Hz) in the active 
pedaling was significantly smaller than passive pedaling (Univariate ANOVA; p<0.01), 
consistent with β desynchronization.  A significant negative correlation was observed 
between the ensemble average EEG waveform for active trials and the composite EMG 
(summated EMG from both limbs for each muscle) of the rectus femoris (r = -0.77, 
p<0.01) the medial hamstrings (r = -0.85, p<0.01) and the tibialis anterior (r = -0.70, p 
<0.01) muscles.  These results demonstrated that substantial sensorimotor processing 
occurs in the brain during pedaling in humans.  Further, cortical activity seemed to be 
greatest during recruitment of the muscles critical for transitioning the legs from flexion 
to extension and vice versa.  This is the first known study demonstrating the feasibility of 
EEG recording during pedaling, and owing to similarities between pedaling and bipedal 
walking, may provide valuable insight into brain activity during locomotion in humans.
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1 INTRODUCTION 
 
 

1.1 Neural Control of Locomotion 

The neural control of locomotion occurs via the combined action of the peripheral 

afferents (Grillner et al. 1978; Duysens et al. 1980; Andersson et al. 1983; Pearson et al. 

1992), spinal locomotor centers (Sherrington 1910; Brown 1911) and supraspinal 

networks (Eidelberg et al. 1981; Jahn et al. 2008). Particularly in humans, the role of 

supraspinal regions in locomotion is not well established compared to other neural 

structures like the peripheral afferents and spinal cord networks. The role of the motor 

cortex during locomotion, particularly, is still a topic of much debate. Therefore, the 

purpose of this thesis is to investigate the role of the human cortex during a locomotor-

type task. Our approach involved the use of electroencephalography (EEG) as an imaging 

modality for recording the cortical activity during a pedaling task. This chapter will 

review the relative contribution of the peripheral afferents, spinal cord networks and 

supraspinal control of locomotion in humans and animals. Furthermore, this chapter will 

discuss EEG as an imaging modality.  

 

1.1.1 Spinal Control of Locomotion  

Previous studies involving spinal-transected cats have shown that neural circuits 

in the spinal cord are capable of producing alternate rhythmic flexion-extension 

movements in the hind limbs in the absence of supraspinal control or phasic afferent 

feedback (Sherrington 1910; Brown 1911). These neural circuits, termed as the ‘Central 

Pattern Generators’ (CPG), are located within the lumbosacral spinal cord and are 

responsible for coordinating basic rhythmic movements during walking and swimming in 
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animals (Pearson 1993). Although CPG are capable of producing basic locomotor 

patterns, it must be emphasized that the CPG alone cannot be responsible for accurate 

control of locomotion in animals. For example, Drew et al. demonstrated that cats with 

bilateral lesions of the dorsolateral funiculi and dorsal columns, unlike the controls, were 

unable to modify their gait pattern in order to overcome obstacles during treadmill 

walking, suggesting the role of supraspinal inputs during gait modifications (Drew et al. 

2002). 

Observations of rhythmic movements in human spinal cord injury (SCI) subjects 

(complete and incomplete) indicate the existence of similar CPG networks in humans. 

For example, a subject with complete spinal cord lesions produces rhythmic contractions 

of the trunk and lower limb muscles (Bussel et al. 1988; Bussel et al. 1996). Peripheral 

stimulation of the flexor reflex afferents modulate these rhythmic movements in the 

subject. Also, electrical stimulation of the spinal cord close to the L2-L3 segments in 

patients with complete SCI evokes rhythmic flexion-extension patterns in the legs 

(Rosenfeld et al. 1995; Dimitrijevic et al. 1998; Shapkova et al. 2001). In incomplete SCI 

subjects, similar involuntary flexion-extension movements have been observed while 

they were undergoing treadmill training. These cyclical movements are reported when the 

subjects are in supine position with extended hips indicating the existence of human CPG 

(Calancie et al. 1994; Dobkin et al. 1995).  

However, unlike animals, human CPG alone do not produce basic locomotor 

patterns. Supraspinal inputs are necessary to activate the CPG networks. Thus,  attempts 

at rehabilitating incomplete spinal cord lesion patients by treadmill training shows 

functional recovery of gait, which is absent in patients with a complete spinal cord lesion 
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(Wernig et al. 1995; Barbeau et al. 2001). Moreover, functional deficits in locomotion 

due to lesions in cortical areas or pyramidal tracts are greater in humans compared to 

those in animals (Porter et al. 1993). Also, peripheral load afferents modulate muscle 

recruitment during walking in normal (Sinkjaer et al. 2000; Dietz et al. 2002), SCI (Dietz 

et al. 2002; Lünenburger et al. 2006; Duysens et al. 1995; Harkema et al. 1997; Gordon et 

al. 2009) and infant (Yang et al. 1998a) subjects. These support the understanding that 

CPG networks in humans do not function independently but rely more on the peripheral 

afferents and the supraspinal networks than in other animals. The next sections provide 

more insights about role of peripheral and supraspinal inputs.  

 

1.1.2 Peripheral Afferent Control of Locomotion 

Peripheral afferents from muscles provide sensory feedback to the CPG during 

locomotion in lower animals.  CPG use this sensory information to time and shape 

different phases of muscle activity during the gait cycle. There are two major types of 

locomotor-related sensory inputs that can activate, block or regulate the output of the 

CPG. The first sensory input is the load receptor input from proprioceptive afferents in 

the ankle muscles and the second sensory input originates from the afferents near the hip 

joint (Pearson 1995; Whelan et al. 1995; Whelan 1996). For instance, positive sensory 

feedback from ankle extensors in chronic spinalized (Pearson et al. 1992) and 

decerebrated (Duysens et al. 1980) cats was found to regulate the length of the stance 

phase while maintaining a constant swing phase during changes in stepping frequency. 

During the late stance period, a decrease of positive feedback from the unloading of the 

ankle joint initiates the swing phase (Whelan et al. 1995; Whelan et al. 1997). Along with 
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ankle extensors, sensory signals from the flexor muscles near the hip are also responsible 

for initiating the transition from stance to swing in chronic spinalized cats (Grillner et al. 

1978; Andersson et al. 1983; Andersson et al. 1981). Hip afferents also provide cues for 

producing rhythmic muscle activity at different frequencies. Studies in spinalized and 

decerebrate cats have demonstrated the entrainment of motor patterns to the frequency of 

the movement applied at the hip joint (Andersson et al. 1983; Andersson et al. 1981; 

Kriellaars et al. 1994). The mechanisms concerning swing to stance transition are less 

understood, but some studies indicate sensory signals play a role in this transition as well 

(Lam et al. 2001; McVea et al. 2005; Stecina et al. 2005). Although the CPG in the spinal 

cords of animals could produce locomotor activity independently, sensory feedback from 

receptors in the joints and muscles helps to bring sudden modification in the gait pattern 

to compensate for disturbances during locomotion (Reviews by (McCrea 2001; Rossignol 

et al. 2006)). 

There are substantial similarities between the role of sensory inputs in locomotion 

of humans and lower animals (Duysens et al. 2000; Pang et al. 2000; Donelan et al. 

2004). Therefore, even in humans, afferent activity is required to shape the ongoing 

locomotor pattern and control phase transitions. For instance, a study by Sinkjaer et al. 

involved unloading the ankle extensors at different times during the stance phase in 

humans. They observed decreased activity in the tibial nerve afferents during the 

unloading of ankle extensors (Sinkjaer et al. 2000), similar to what was found in cat 

studies. Apart from this similarity, unlike the role of group Ib afferents in cats (Conway 

et al. 1987), it is still unclear whether group Ib or group II afferents are responsible for 

sensory feedback in humans (Sinkjaer et al. 2000; Stephens et al. 1996; Faist et al. 2006). 
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Also, sensory feedback from ankle load afferents has been shown to increase hip 

extension during gait in both normal and SCI subjects (Gordon et al. 2009). Similarly, hip 

flexion can be enhanced in SCI subjects by unloading the ankle planterflexor muscles 

following hip extension (Wu et al. 2006). These studies indicate an involvement of the 

sensory feedback from the ankle muscles towards the generation of locomotion pattern in 

humans. Hip position is also responsible for stance to swing transition. During an infant 

study it has been observed that as the hip is extended, the stance phase is completed and 

the swing phase is initiated (Pang et al. 2000). This shows the contribution of hip 

afferents for phase transitions in humans. Such sensory feedback mechanisms can also be 

used to design rehabilitation techniques that could directly modulate the CPG and 

improve walking in subjects with impaired locomotion.  

 

1.1.3 Supraspinal Control of Locomotion 

The role of supraspinal networks is documented for maintaining accurate limb 

placement in response to obstacles and unexpected perturbations during locomotion in 

lower animals (Amos et al. 1987; Amos et al. 1989). For instance, descending commands 

from the motor cortex in cats are responsible for changes in limb trajectory and accurate 

paw placement that is required for stepping over obstacles on the treadmill (Beloozerova 

et al. 1993; Armstrong et al. 1996; Kably et al. 1998). Another study by McVea in cats 

claimed the forebrain to be responsible for long-term (>24 hours) aftereffects developed 

after repetitive presentation of obstacles (McVea et al. 2007). The aftereffect was an 

increase in step height of the hind limb even when no obstacles were present. However, 

they found that decerebrated cats demonstrated virtually no learning aftereffects (<1 



6 
 

min), thereby indicating the role of supraspinal structures in developing long-term 

modifications of locomotion. The corticospinal system is also reported to be important 

for precise modification of the hind-limb trajectory in cats. The loss of corticospinal input 

in cats due to lesions in the corticospinal pathways leads to an inability to overcome 

obstacles (Drew et al. 2002). Furthermore, experiments involving the control of visually-

guided locomotion indicate a contribution of the posterior parietal cortex (PPC) during 

forelimb placement in cats (Lajoie et al. 2007b). This claim is supported by another study 

where lesions in the PPC of cats causes a disruption of the forelimb-hindlimb 

coordination and eventually leads to a failure to overcome obstacles (Lajoie et al. 2007a).  

Supraspinal networks provide corrective motor drive in lower animals like cats 

(Lacquaniti et al. 1984; Jacobs et al. 1996; Matsuyama et al. 2000) and rats (Bolton et al. 

2006). This corrective drive maintains stable movements and optimum body posture in 

unfriendly environments such as inclined surfaces. Experiments in cats have also 

identified the role of the cerebellum in maintaining equilibrium during locomotion 

(Armstrong et al. 1984a; Armstrong et al. 1984b). The nucleus fastigial and nucleus 

interpositus in the cerebellum rhythmically modulate their discharge for maintaining 

equilibrium during locomotion (Orlovsky 1972). Abnormalities in gait cycle and loss of 

equilibrium have been reported with lesions near the midline of the cerebellum (Dow et 

al. 1958; Yu et al. 1983). Along with the cerebellum, the PPC is also involved in 

maintaining balance during locomotion. Strong projections between these two areas 

allow both to maintain balance during locomotion simultaneously (Stein et al. 1992; 

Marple-Horvat et al. 1998; Cerminara et al. 2005). 
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In humans, there is indirect evidence that shows the involvement of supraspinal 

networks in locomotor-type tasks that do not require substantial gait modifications. This 

evidence, however, does not explain the precise role of the structures involved during 

locomotion. Functional imaging techniques such as single photon emission computed 

tomography (SPECT) (Fukuyama et al. 1997), positron emission tomography (PET) 

(Christensen et al. 2000) and near infrared spectroscopy (NIRS) (Miyai et al. 2001; 

Suzuki et al. 2004) display activation in the sensorimotor areas, cerebellum and the 

brainstem in response to walking. However, the precise role of these activated regions is 

unclear. These areas may be involved only during the sensory processing of large 

afferents signals or the generation of motor outputs or both. In the PET study by 

Christensen et al., differences between active and passive walking were computed to be 

localized over the sensorimotor areas, thus indicating the role of the cortex for generating 

motor commands. Observations in patients with corticospinal tract lesions have led to the 

understanding that an intact corticospinal tract is necessary for the proper control of 

locomotion (Nathan 1994). These observations motivated electrophysiological studies 

using transmagnetic stimulation (TMS) that showed the modulation of corticospinal tract 

signals during walking on a flat surface (Schubert et al. 1997; Capaday et al. 1999). 

Another TMS study by Petersen et al. used weak stimuli to activate only the inhibitory 

cortical interneurons during walking. EMG signals recorded from leg muscles in response 

to these stimuli were decreased, demonstrating that efferent signals from the cortex 

regulate locomotion in humans (Petersen et al. 2001). Overall, this indirect evidence 

identifies the role of human cortex and other supraspinal regions during uncomplicated 

locomotion.  
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1.2 Pedaling: An Alternate to Walking Task 

Major constraints for performing walking task under experimental conditions are 

to remain still, achieve stability and balance. As a result, different approaches were 

considered to avoid problems associated with walking (e.g. inability to walk in an MRI 

scanner, and maintaining stability and balance to avoid motion artifacts). These include 

recording brain activity immediately after walking (Fukuyama et al. 1997), during 

imagined walking (Deutschlander et al. 2009; Bakker et al. 2008; Iseki et al. 2008; 

Wagner et al. 2008), during movement of a single lower extremity joint (Dobkin et al. 

2004; Sahyoun et al. 2004; Ciccarelli et al. 2005) and during pedaling a stationary bicycle 

(Christensen et al. 2000; Mehta et al. 2009). Among these approaches, pedaling can be 

considered as a close approximation to performing actual locomotion. Both pedaling and 

walking are rhythmic and reciprocal movements with almost similar frequencies (Winter 

1983; Coast et al. 1985). The timing and intensity of flexion-extension movements of the 

lower extremity along with the sensory feedback generated during pedaling is 

comparable to those observed during walking (Brown et al. 1997; Brown et al. 1998; 

Kautz et al. 1998; Raasch et al. 1997). Furthermore, both tasks demonstrate the same 

phase-dependent modulation of reflexes (Brown et al. 1993). Pedaling experiments can 

be performed either unilaterally or bilaterally with good balance. Also, they can be more 

controlled and manipulated to study changes in neuromuscular functions under different 

loads and speed (Ericson 1988). Thus, pedaling is a practical alternative to study 

locomotion and its control by different parts of the central nervous system.    
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1.3 Objective 

The objective of this project is to understand the role of the human motor cortex 

in a simple locomotor-like task. Specifically, by uncovering the differences between 

active (sensory and motor) and passive (sensory alone) pedaling, we will be able to 

understand the contribution of the cortex toward performing locomotor-like tasks. Our 

approach involves the use of EEG as an imaging modality to identify the cortical regions 

involved in pedaling and also to understand the role of EEG beta frequencies during 

pedaling. EEG was selected due to its non-invasive nature and its high temporal 

resolution. To better appreciate the results of this project, it is necessary to have a clear 

understanding of the EEG and its physiological implications. For this purpose, the next 

section provides with an overview of the fundamentals of EEG.  

 

1.4 Electroencephalography: Cortical Imaging Modality  

Electroencephalography (EEG) belongs to the class of electrophysiological 

modalities that measure the electrical activity of the brain using scalp electrodes with 

high temporal resolution (on the order of milliseconds). This is complimentary to other 

imaging modalities such as fMRI which provide high spatial resolution but relatively low 

temporal resolution. Since the execution of any sensory or motor activity usually involves 

fast synchronization of neural processes in different parts of cortical and sub-cortical 

structures, a high temporal resolution is required to capture these neural events. However, 

most imaging techniques with high spatial resolution are able to provide an understanding 

of the areas involved during the performed task but fail to demonstrate the sequence of 

neural activation due to their relatively poor temporal resolution. Alternatively, due to its 
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high temporal resolution, EEG can differentiate rapidly occurring neural processes and 

hence can be used to study the sequence of activations of the underlying neural structures 

(though with relatively poor spatial resolution). EEG studies can also provide knowledge 

of the involvement of the various frequency bands like alpha (8-12 Hz) and beta (13-35 

Hz) during a motor task. Lately, after the commercialization of high-density EEG 

systems (128-256 channels), there has been an improvement in the spatial resolution 

obtained from EEG.  

Inhibitory and excitatory inputs to neuronal cells produce electrical currents that 

sum up to produce scalp recorded EEG signals (Misulis et al. 2003). The currents across 

the membrane generate secondary ionic currents along the cell membranes in the intra- 

and extra-cellular space. The portion of these currents that flow through the extracellular 

space is directly responsible for the generation of local field potentials. Specifically, 

graded post-synaptic potentials (PSP) of the cell body and large apical dendrites of 

numerous vertically aligned pyramidal cells in cortical areas produce electrical fields in a 

radial direction that can be recorded by the EEG amplifier (Lopes da Silva 1991). The 

PSP’s are different from action potentials that travel along the neuron membranes in that 

they are lower in frequency and amplitude and diffuse over a wider area of the scalp 

(Toga et al. 2002). As a result, the extracellular EEG represents a summation of neural 

activity from the underlying sources.  

The recorded EEG potentials are highly sensitive and variable in nature. EEG is 

not only sensitive to small amplitude neural potentials but also to ambient noise and 

movement artifacts. The strength of the electrical signal at the source, synchronization 

between the cells firing, orientation of the cells firing, amount of attenuation of the 
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electrical signal by overlying neural areas, and the contact impedance of the recording 

electrodes together contribute to the amplitude of the signal recorded on the scalp. These 

factors along with others are responsible for the highly variable nature of EEG (Toga et 

al. 2002).  

The EEG potentials can be represented as vectors of cortical activity and thus 

have both a magnitude and a directional component. For instance, if the superficial layer 

of the cortex has a positive field potential compared to the deeper layers of cortex, then 

scalp potentials can be represented by a vector from the negative field to positive field. 

This vector is termed as a ‘dipole’ in the EEG literature. These dipoles enable us to 

perform source localization and 2-D topographical mapping from EEG potentials in 

response to any neural activity.  

Rhythmicity is a fundamental property of many neurons and neuronal circuits that 

are used for the generation of motor, sensory and cognitive activities. The source and 

span of these EEG rhythms can vary from a single neuron to inter-cortical neural 

structures depending on the activity being performed (Misulis et al. 2003). EEG rhythms 

are normally associated with five bands: Delta (DC- 4 Hz), Theta (4-7 Hz), Alpha (8-12 

Hz), Beta (13-35 Hz), and Gamma (above 35 Hz). Each of these frequency bands have 

significance depending upon the nature of the physiological activity (motor, sensory or 

cognitive) being performed or existence of pathological situations. For our study, we are 

interested in the beta (β) frequency band.  

β band is involved in sensory feedback and motor command processing to execute 

a desired movement (Pfurtscheller 1981). During initiation and execution of movement, 

decrease in the power of β frequencies has been observed. This decrease in the power is 
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restricted to the electrodes overlying the cortical areas corresponding to the moving limb 

(Jasper et al. 1938; Jasper et al. 1949). This phenomenon is termed as Event-related 

Desynchronization (ERD). ERD has been previously associated with voluntary 

movements of hand (Pfurtscheller 1981) and leg (Neuper et al. 1996). After termination 

of the movements, the power in the β frequencies is recovered to the state before the 

initiation of movement. This phenomenon is termed as Event-related Synchronization 

(ERS). ERS has been associated as the rhythms of resting cortex (Pfurtscheller 1992).     

 

1.5 Specific Aim 

The specific aim of this study was to determine whether primary sensorimotor 

cortices are involved in pedaling. To investigate this, we recorded EEG signals from 64 

channels during two conditions of pedaling (1) an active condition, and (2) a passive 

condition. We performed both time and frequency domain analysis on active and passive 

pedaling conditions. In the time domain, we compared the cortical potentials during 

active and passive pedaling. In the frequency domain, we subtracted the results from 

active and passive tasks and tested whether the differences between the two tasks were 

significant. We also performed correlation analysis between average EEG and average 

EMG waveform to find relationship between the two signals. We hypothesize the 

activation of the primary sensorimotor cortices during active and passive pedaling tasks 

to be significantly different across the two conditions thus demonstrating the role of these 

cortices in active pedaling.  
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2 EEG DURING PEDALING: BRAIN ACTIVITY DURING 
A LOCOMOTION-LIKE TASK IN HUMANS 

 
 
2.1 Introduction 

 In humans, the cerebral cortex may play an important role in the control of 

locomotor function.  The role of the cortex may be particularly strong in humans since a 

unique characteristic of human locomotion, in comparison to other primates, is ‘habitual 

bipedalism with the trunk and head in an erect posture’ (reviewed in (Schmitt 2003)).  

This type of locomotion has provided humans with a distinct evolutionary advantage over 

other animals by freeing the upper limbs during locomotion, and significantly decreasing 

the energy cost of walking (Sockol et al. 2007).  However, it has also made the task of 

walking more complex and possibly more dependent on corticospinal function for 

humans, compared to lower animals (reviewed in (Nielsen 2003)).  Consequently, in 

contrast to lower animals (rats, (Little et al. 1988) cats, (Rossignol et al. 2004) rabbits 

(Lyalka et al. 2005), and non human primates (Courtine et al. 2005); (Babu et al. 2008), 

disruption of supraspinal control, as in stroke (Kelly-Hayes et al. 2003) or  spinal cord 

injury (Dobkin et al. 2007), more severely impairs locomotion in humans (reviewed in 

(Rossignol 2000).  Thus, characterization of the cortical contribution to locomotor control 

in humans is important to understanding the pathophysiology of impaired locomotion 

after an injury to the central nervous system.  

Assessing the cortical contribution to locomotor control in humans is challenging 

due to difficulties in quantifying brain activity during walking.  Walking generates head 

movement and requires the subject to be erect and moving in space, with minimal 

constraints.  In order to circumvent these problems, brain activity has been recorded 
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during conditions that differ from actual walking.  Approaches have included recording 

brain activity immediately after walking (Fukuyama et al. 1997), during imagined 

walking (Deutschlander et al. 2009; Bakker et al. 2008; Iseki et al. 2008; Wagner et al. 

2008), during movement of a single lower extremity joint (Dobkin et al. 2004; Sahyoun 

et al. 2004; Ciccarelli et al. 2005) and during pedaling a stationary bicycle (Christensen et 

al. 2000; Mehta et al. 2009).  Pedaling was used in the current study because it involves 

actual movement of the legs, which generates sensory feedback, and the reciprocal, 

cyclical nature of the task is similar to walking. 

Previous measurements of brain activity during pedaling have been limited to 

techniques that are dependent on hemodynamic/metabolic responses, which have 

restricted the temporal resolution of the data.  For example, brain activity has been 

measured during pedaling using positron emission tomography (PET) (Christensen et al. 

2000) and functional magnetic resonance imaging (fMRI) (Mehta et al. 2009), both of 

which indicate that primary cortical structures are active during pedaling.  Since both 

fMRI and PET are based on hemodynamic/metabolic responses, temporal resolution 

necessary to ascertain the timing of the brain activity relative to the pedaling cycle is still 

unknown.  High temporal resolution is essential if brain function is to be associated with 

the patterns of muscle activity during different phases of the pedaling cycle (summarized 

for walking in cats by (Drew et al. 2002)).  Consequently, the use of 

electroencephalography (EEG) to monitor cortical activity during pedaling is appealing, 

since EEG is noninvasive and has the capability of high time resolution. 

In order to characterize cortical activity during a locomotor-like task, high density 

(64 channels) EEG measurements were made while ten young healthy adults pedaled a 
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custom stationary bicycle.  We hypothesized that EEG would demonstrate brain 

activation over anatomically appropriate scalp regions, i.e. over the leg representation 

area of the sensorimotor cortex, with different patterns of activation during active vs. 

passive pedaling.  Further, a correlation between the EEG activity over these regions of 

the brain and activity of the leg muscles was expected.  

 

2.2 Methods 

2.2.1 Study Participants 

Ten young, healthy, neurologically intact subjects (male and female) who were 

comfortable with pedaling for half an hour participated in this study (age 22 to 32 years, 

median 26 years).  The study protocol was approved by the Institutional Review Board of 

Marquette University, Milwaukee, Wisconsin.  Written informed consent was obtained 

from all subjects prior to participation in the study. 

2.2.2 Pedaling Device 

The pedaling device and acquisition of crank position data has been described 

previously (Schindler-Ivens et al. 2008).  Briefly, a custom-designed stationary bicycle 

with a rigid, reclined backboard was used as the pedaling device (Figure 2.1a).  The 

backboard supported the subject’s head and trunk during pedaling, thus reducing 

movement artifacts in the EEG recordings. Optical encoder (BEI Technologies Inc., 

Goleta, CA) was used for digitizing the angular position of the cranks. Digital signals 

from the optical encoder were converted to analog signals using a digital to analog 

converter before sampling by the main data acquisition computer.  
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Figure 2.1 Experimental Setup. (a) Subject is seated on the custom designed bicycle. 
His legs are in the TDC position.  (b) Schematic showing the position of the 64 electrodes 
on the electrode cap (©Compumedics Neuroscan, El Paso TX). The electrodes are shown 
outside the head to indicate their inferior position w.r.t. the other electrodes lying inside 
the head. 
 
 
2.2.3 EEG and EMG Recording Systems 

         The QuikCap electrode cap (Compumedics Neuroscan, El Paso, TX) was used for 

EEG electrode placement (Figure 2.1b).  The stretchable electrode cap contained 64 

sintered Ag-AgCl electrodes arranged according to the modified combinatorial system of 

electrode placement (American Clinical Neurophysiology Society 2006).  The reference 

electrode was positioned near the vertex between the Cz and CPz electrodes and the 
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ground electrode was located over the frontal area of the scalp, between the Fz and FPz 

electrodes.  The Ag-AgCl electrodes were located within small receptacles on the scalp 

side of the cap, which housed sponge-backed felt discs.  The electrodes were connected 

to the EEG amplifier via a headbox, and the headbox was connected to a high input 

impedance Synamps2 amplifier (Compumedics Neuroscan).  Before each recording, 

disposable sponge discs were inserted into electrode receptacles and the QuikCap was 

secured to the subject's head with a chin strap.  The sponge discs were hydrated with 

about 0.2 ml of a proprietary electrolyte solution (Compumedics Neuroscan) which then 

expanded to make contact with the scalp.  Electrode impedances were decreased and 

maintained below 10 KΩ.  The electrodes were connected to the Synamps2   EEG 

amplifier (Compumedics Neuroscan), which in turn, was connected to a PC for data 

acquisition. 

         EMG was recorded bilaterally using bipolar skin electrodes (10 mm length, 1 mm 

width, 1 cm inter-electrode distance, DelSys, Inc., Boston, MA) from the Soleus (SOL), 

Vastus Medialis (VM), Tibialis Anterior (TA), Medial Hamstring (MH) and the Rectus 

Femoris (RF) muscles.  EMG signals were pre-amplified 10X at the electrode site.  

Remote differential amplification at 1000X was done using an EMG amplifier system 

(DelSys Bagnoli-8 EMG System, DelSys, Inc.) with a common mode rejection ratio of 92 

dB and a frequency bandwidth of 20 to 450 Hz.  This amplifier was connected to a PC 

via a 16 bit A/D converter (Micro 1401 mk(II), Cambridge Electronic Design, 

Cambridge, England) for acquiring the EMG signals.  

 

 



18 
 

2.2.4 Experimental Protocol 

         Subjects were seated on the cushioned seat of the stationary bicycle, with their 

back reclined on the rigid backboard.  The subject’s trunk was snugly strapped to the 

rigid backboard and a sandbag was placed around the head.  Each subject participated in 

two pedaling tasks: active and passive, and both recordings were done during a single 

experimental session.  During pedaling, whenever the crank rotated through the top dead 

center position of the right leg (TDC; Right leg completely flexed and Left leg completed 

extended (Raasch et al. 1999), a 5 V pulse was generated by the optical encoder.  This 

pulse was routed to the EEG and EMG recordings to track the start of every pedaling 

cycle. 

(i)Active pedaling 

 For active trials, subjects were asked to pedal in a forward direction at a 

comfortable speed.  The eyes were closed to minimize eye movements, blink artifacts and 

to prevent any visual feedback of the pedaling speed and leg position.  Subjects were 

instructed to pedal at a slow, comfortable rate.  No effort was made to cue or control the 

speed of pedaling in order to prevent EEG activity due to cognitive processes associated 

with matching the pedaling speed to a visual or auditory cue.  The average pedaling speed 

across all subjects was 2.1 s/cycle (±0.5 s/cycle).  The resistance to pedaling was kept at 

minimum for all trials and subjects.  The total duration of the active pedaling was 20 

minutes.  A short break after 10 minutes of pedaling was provided, if required.  

(ii)Passive pedaling 

For the passive trials, the subject’s feet remained strapped to the pedal of the 

bicycle while the crank was rotated by one of the investigators.  The speed of passive 
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pedaling was matched to the average speed of active pedaling for the subject.  The 

subjects were asked to completely relax and EMG from the leg muscles was monitored to 

confirm that subjects were not generating muscle activity during pedaling.  A single trial 

of 10 minutes was recorded.   

 

2.2.5 Data Acquisition and Analysis 

Continuous EEG, EMG and crank position data were recorded during each trial 

(Figure 2.2).  Continuous EEG data were amplified 2010X, filtered at 0.5 Hz (high pass 

filter cutoff frequency) to 500 Hz (low pass filter cutoff frequency), digitized at 2000 Hz 

and recorded on a computer running the Scan 4.3 EEG acquisition/analysis software 

(Compumedics Neuroscan). Crank position and EMG data were sampled at 2000Hz, 

digitized by a 16 bit A/D converter (Micro 1401 mk(II), Cambridge Electronic Design) 

and acquired on a PC running Spike 2.0 software (Cambridge Electronic Design). 
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Figure 2.2 Data Acquisition. (a) Raw continuous EEG data from one subject recorded at 
the Cz electrode. (b) Raw continuous EMG data from one subject recorded at left MH 
muscle. (c) Voltage data recorded from crank encoder representing crank angle during 
pedaling. Figure 2.2(a-c) illustrates continuous raw data for ~11 pedaling cycles. 

 

A complete dataset for one subject was defined as containing EEG, EMG and 

crank position data for both the active and passive trials; with at least 140 EEG epochs in 

each trial. An epoch is the data (EEG or EMG) recorded during a single pedaling cycle. 

Nineteen sets of data (from 10 active trials and 9 passive trials) fulfilled this criterion, and 

further analysis was done on these 19 sets.  Active pedaling trials had 208 to 773 epochs 
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(3 subjects had 208 to 327 epochs, 7 subjects had 465 to 773 epochs) and passive 

pedaling trials had 142 to 381 epochs (1 subject had 142 epochs, 8 subjects had 288 to 

381 epochs).  Data analysis was done using the EDIT 4.3 EEG analysis software 

(Compumedics Neuroscan), the EEGLAB toolbox (Delorme et al. 2004) and custom 

programs written in MATLAB (The Mathworks, Inc., Natick, MA).  

Continuous EEG data (.cnt files) were converted into ASCII (.dat files) format for 

processing.  An event file was generated using the EDIT 4.3 software. Timings of each 

event (each time the right leg reached the TDC position) were used to segregate 

continuous EEG data into epochs.  Each epoch represented EEG activity during one 

complete pedaling cycle, starting from the TDC position. The TDC position was thus the 

origin of each epoch (0 ms and 0° position). 

 Because subjects were allowed to pedal at a comfortable speed, the length of 

each pedaling cycle and therefore, the EEG epochs, varied within each trial.  Assuming 

that EEG activity was time-locked to the cycling phase; EEG epochs from the same trial 

were resized to the same length before they were ensemble averaged to obtain an average 

potential spatiotemporal map for the pedaling cycle.  The following algorithm was 

implemented for resizing the EEG epochs: the mean epoch length was calculated, and 

epochs with lengths within 0.3 s of the mean were selected for further analysis.  This was 

an arbitrary threshold, but it allowed epochs of almost similar lengths to be considered 

for analysis (Mean: 89.7% of total epochs recorded; Range: 13/19 > 90% epochs used, 

17/19 >70% epochs used).  The next step was to resize the selected epochs to one 

standard length.  Three times the length of the longest of the selected epochs was taken as 

a standard epoch length for the trial, and all epochs were resized to this target length 
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using the resample function in MATLAB.  This resulted in the same length for each 

individual epoch, while preserving the overall morphology of each cycle.  Distortion in 

the morphology of the signal for each cycle was observed for about 50 data points (0.3% 

of the original length) at the start and end of each epoch.  These regions were excluded 

from further analysis.  Ensemble-average waveforms for each trial were calculated using 

the resized epochs.  The detrend function in MATLAB was used to correct for slow, 

baseline shifts in the ensemble averaged waveforms.  The averaged waveforms were then 

re-referenced to the whole head (Lehmann et al. 1980). These ensemble averaged 

waveforms for single subject were then resized to an arbitrary length (16384 points). The 

same analysis was performed for every subject and the ensemble averaged waveforms 

were generated with same length. 

 Ensemble average waveforms of each active and passive trial were obtained 

across subjects, generating the group average waveforms for the active and the passive 

trials.  A global linear interpolation algorithm (Neuroscan 2003) was implemented to 

generate two dimensional topographic maps at specific phases of the pedaling cycle (at 

peaks of negative and positive deflections, further described in the results section) in the 

group average waveforms.  These topographic maps represented the voltage distribution 

over the scalp at specific time points across the pedaling cycle. 

The frequency content of the EEG signal was analyzed to calculate the β  band 

desynchronization associated with active and passive pedaling.  This analysis was 

performed using the EEGLAB toolbox (Delorme et al. 2004) for MATLAB. Continuous 

EEG data from each trial were downsampled to 500 Hz and the first 500 s of the data 

were used for this analysis.  Separate topographic maps representing the amplitudes of 
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frequencies between 6 to 35 Hz were plotted using the spectopo function in EEGLAB.  

This function utilized the pwelch (welch periodogram) function from MATLAB which 

divided the continuous time-domain signal into 8 segments using a Hamming window 

with 50% overlap to calculate the amplitude at each frequency.  Average amplitude at 

each frequency was calculated across subjects for the active and passive trials.  Before 

averaging, the amplitudes at each frequency were normalized to the range (maximum 

amplitude recorded for that trial across all 64 channels – minimum amplitude recorded 

for that trial across all 64 channels) for the trial.  Subsequently, the topoplot function in 

EEGLAB was used to calculate interpolated two dimensional topographic maps showing 

the amplitude of the specified frequency over different regions of the scalp.  We expected 

the group-average frequency topographic maps to show a greater desynchronization in 

the β band frequencies for the active as compared to the passive trials.  Further, we 

expected the maximum desynchronization to localize near the electrodes representing the 

leg representation area of the motor cortex (C1, Cz and C2 electrodes). 

 EMG was analyzed using custom MATLAB programs.  Fourth order Butterworth 

filters at 20 to 450 Hz (band pass) and 58-62 Hz (band stop) were used to filter the EMG 

signal (filtfilt  function in MATLAB).  The signals were then rectified and enveloped 

using a 4th order low pass Butterworth filter at 5 Hz.  

Due to the proximity of the locations of the right and left leg representation areas 

of the sensorimotor cortex, we expected the Cz electrode to represent the electrical 

activity from both the left and the right leg representation areas of the cortex.  To explore 

the relation between EEG activity recorded at this electrode and the leg muscle EMG 

activity, composite EMG waveforms representing activity of the same muscle from both 
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legs were generated.  EMGs from the same muscle from the left and right legs were 

added to yield the composite EMG waveform for each muscle.  The group-averaged 

EMG signals from VM, RF, MH and TA muscles were then cross correlated (xcorr 

function in MATLAB) to the group-averaged EEG from all 64 channels. These cross 

correlation coefficients (not normalized by autocorrelation values) for every muscle were 

then interpolated on 2-D topographic maps as described previously.  

   

2.2.6 Statistical Analysis 

Statistical tests were done for the following measures:  

(i) The difference in the amplitude (maximum positive deflection – maximum 

negative deflection) of the EEG voltage waveform at the Cz electrode (Jahanshahi et al. 

1995) for the active versus the passive trials. For each subject, the active and passive 

trials data were normalized with the mean of the two trials. A paired t-test was done to 

test for statistical significance and level of significance was fixed at p < 0.01. 

(ii) The difference in the mean amplitude of the power in the center β band 

frequencies (20-25 Hz) in active versus passive trials. For this analysis, only the 

electrodes over the sensorimotor cortex were considered. Specifically, the central row 

(C3, C1, Cz, C2 and C4), the row anterior to the central row (FC3, FC1, FCz, FC2 and 

FC4) and the row posterior to the central row (CP3, CP1, CPz, CP2 and CP4) were 

considered.  A univariate ANOVA (Task and Electrode and Task*Electrode as fixed 

factors, Subject as a random factor) was performed on the mean power values. Also, 

individual paired t-tests were performed to identify the electrodes with significant 
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difference between the two tasks. Statistical tests for this section were performed using 

SPSS. Level of significance was fixed at p < 0.05 for this test. 

(iii) The correlation between group average composite EMG waveforms for 5 leg 

muscles (SOL, MG, TA, MH, RF and VM) and the group average EEG voltage 

waveform at the Cz electrode.  Separate normalized correlation coefficients (r) and p 

values (testing hypothesis of no correlation) were calculated for each muscle using the 

corrcoef function in MATLAB.  Level of significance was set at p < 0.05 for this test. 
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2.3 Results 

 

Figure 2.3 Time Domain Results. (a) Group average EEG waveform recorded over the 
Cz electrode during active pedaling trials. (b) Group average EEG waveform recorded 
over Cz electrode during passive pedaling trials. The arrows indicate the time within the 
pedaling cycle when the 2-D topographic maps have been generated.  The color map on 
the right of each trace shows the range of voltage amplitudes. In the 2-D maps, the nose 
is pointing upwards, left and right ears are on the left and right side respectively. These 2-
D maps were generated using Scan 4.3 (©Compumedics Neuroscan, El Paso TX) 
 

The ensemble-averaged EEG waveforms at the Cz electrode demonstrated voltage 

changes over the motor cortex leg area throughout the pedaling cycle (Figure 2.3).  The 

group averaged waveforms at the Cz electrode for both the active and the passive 

pedaling trials showed alternate positive and negative potentials, occurring twice during 

the pedaling cycle.  The positive peaks (P1 and P2) occurred around the TDC+90º and 

TDC+270º marks of the pedaling cycle.  The positive peaks were separated by a negative 
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peak (N1) occurring around the BDC (bottom dead center: right leg down and left leg up, 

corresponding to the TDC+180º mark) of the pedaling cycle.  Another negative peak 

occurred at approximately the TDC position, but this peak was not analyzed further, as 

resizing of the epochs led to distortions and rejection of data points at the beginning and 

end of the EEG waveforms corresponding to the TDC position. The amplitude of the 

EEG waveform (maximum positive – maximum negative deflection) was significantly 

greater (p<0.01) in passive as compared to active trials in 9 of 9 subjects (Table 2.1).  The 

passive trials were on average 2.2±0.9 (mean ± standard deviation) times greater than the 

active trials.  

Subject 1 2 3 4 5 6 7 8 9 Mean Std. Dev. 

Active 6.98 14.76 3.02 9.41 9.15 1.27 2.61 12.17 14.36 8.19 5.08 

Passive 8.67 21.72 7.52 24.02 18.83 2.92 4.45 14.53 59.49 18.02 17.29 

Table 2.1: (EEG Amplitude During Active and Passive Pedaling) Amplitude (µV) 
recorded at Cz electrode during active and passive pedaling. 
 

Topography of the voltage distribution at P1 and P2 in group-averaged EEG 

waveforms showed an area of positive potential over the approximate leg representation 

area of the sensorimotor cortices (Insets in Figures 2.3).  Similarly, the voltage 

topography during at N1 showed an area of negative potential over the same area.  The 

areas of positive and negative voltages were better defined in topographic maps derived 

from group average waveforms than from any of the individual trials.  This suggested 

that the areas of voltage changes during pedaling were common across all subjects, with 

preponderant effects over the leg representation area of the sensorimotor cortices. 
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Figure 2.4 Correlation Results. 2-D topographic maps (Left Panel; [a-d]) showing the 
cross correlation coefficients (non-normalized) between the ensemble averaged EEG and 
the composite EMGs from the VM, RF, MH and TA muscles during active pedaling. The 
2-D maps were created by interpolating the correlation coefficients obtained at each of 
the 64 electrodes over the scalp. The color map at the bottom shows range of the 
correlation coefficients. 2-D maps were generated using EEGLAB. The right panel shows 
the EEG waveform at the Cz electrode and the composite EMGs from the VM, RF, MH 
and TA muscles. 
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A significant negative cross-correlation between the group-averaged EEG 

waveform at the Cz electrode during active trials and the composite EMG waveforms (as 

explained above) were observed for the RF (r = -0.77, p < 0.01) the MH (r = -0.85, p < 

0.01) and the TA (r = -0.70, p <0.01) muscles (Figure 2.4).  Also, the cross correlation 

coefficient (between the EEG and EMG waveforms) for these muscles was greatest for 

the electrodes overlying the approximate leg representation area of the sensorimotor 

cortex (Figure 2.4).  Composite EMG waveforms for the VM and SOL muscles also had 

a significant correlation with the EEG waveform at the Cz electrode (r = 0.25, and 0.64 

respectively, and p < 0.01 for both), but the correlation was not at maximum in the 

electrodes over the leg representation area of the sensorimotor cortex for either of these 

muscles. 

 

Figure 2.5 Frequency Domain Results. Group average topographic maps showing the 
amplitudes at selected frequencies within the α and β bands during active (a) and passive 
(b) pedaling. Maps in (c) were obtained by subtracting the passive from the active maps. 
The color map on the right shows the range for the amplitude of all 6 frequencies. These 
group average topographic maps were generated using EEGLAB. 
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Electrode p-value Electrode p-value Electrode p-value 

FC3 0.124 C3 0.80 CP3  0.109 

FC1 0.203 C1 0.034* CP1 0.005* 

FCz 0.938 Cz 0.759 CPz 0.884 

FC2 0.959 C2 0.032* CP2 0.169 

FC4 0.659 C4 0.139 CP4 0.958 

Table 2.2: (P-value table for central electrodes) P-values for paired t-test of the β 
power for active vs passive tasks for electrodes lying in the central rows of the cap.  
Significant differences (P<0.05) indicated by *.  
 

         Desynchrony (i.e. a decrease in amplitude of the power) of the center beta band 

(20-25 Hz) over the sensorimotor cortex was observed during both active and passive 

pedaling (Figure 2.5).  A lower power at the beta band was spread diffusely over the 

scalp in both the active and the passive trials.  However, group average subtraction maps 

(active task–passive task) revealed that lower power (20-25 Hz), consistent with 

desynchronization of the beta band frequencies, was significantly greater in the active as 

compared to the passive trials (ANOVA; P(Task)<0.01; P(Electrode)=0.119; 

P(Task*Electrode)=0.101). Also, paired t-test results (Table 2.2) revealed significantly 

lower β power in the C1, C2 and CP1 electrodes between the active and passive task 

(P<0.05). Note that the difference in the frequency amplitudes in active versus passive 

pedaling was better defined for frequencies near the middle of the β band (21, 23 and 25 

Hz) than for the 10 and 35 Hz frequencies and were also localized near the sensorimotor 

cortices (Figure 2.5).  
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2.4 Discussion 

Our results demonstrate the feasibility of using EEG to identify brain electrical 

activity during a locomotor task (pedaling).  Electrical activity recorded using EEG was 

somatotopically located over the leg representation areas of the sensorimotor cortices and 

demonstrated a temporal pattern indicating an association with the phase of the pedaling 

cycle.  The patterns of EEG signals recorded for the active and the passive trials showed 

similarity, suggesting predominance of cortical processing of sensory information 

generated by movement of the lower limbs.  However, there were also indications that 

cortical activity also contributed to motor commands for pedaling.  The EEG evidence for 

motor cortical activity contributions to active pedaling comprised the following: (i) 

attenuation of the EEG voltage during active pedaling, (ii) greater desynchrony in β band 

frequencies during active pedaling and (iii) correlation between EEG recorded from the 

Cz electrode and EMG from recorded from “transition muscles” during active pedaling.   

 

2.4.1 EEG Ensemble-Averaged Waveform During Active and Passive Pedaling 

The ensemble averaged waveform recorded at the Cz electrode during both active 

and passive pedaling were cyclical in nature, with approximately twice the frequency of 

the pedaling cycle. The cyclical nature of these slow cortical potentials and the 

alternating field potentials (Figure 2.3) suggests modulation of the brain activity during 

different phases of the pedaling cycle.  These cortical potentials are similar to movement 

related brain potentials (MRBP), which are indicative of preparatory and execution stages 

of a voluntary action (Vaughan et al. 1968).  MRBPs are characterized by a negative 

going waveform that indicates cortical activity during motor tasks (Shibasaki et al. 1980; 
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Barrett et al. 1986).  The exact role of the peaks and valleys obtained during the 

oscillatory ensemble averaged waveform is unclear.  The valleys might correspond to the 

motor potential required to drive the muscles, while the peaks might correspond to 

sensory processing. This hypothesis requires further investigation. 

      

2.4.2 The Similarities in Active and Passive Conditions 

As stated above, the similarity in the EEG waveform recorded at the Cz electrode 

during active and passive pedaling suggests that EEG signals during pedaling have a 

large component dedicated to the processing of afferent information from the lower 

limbs.  Previous research quantifying brain activity during active and passive pedaling 

using PET has reported similar findings (Christensen et al. 2000).  Specifically, there is 

increased activity in the bilateral primary motor, primary sensory and supplementary 

motor cortices, during active pedaling as compared to the rest condition.  However, 

activation in identical areas with similar magnitude was also observed during passive 

pedaling (Christensen et al. 2000).  In the current study, activity in the leg representation 

area of the primary motor cortex associated with active pedaling was apparent only after 

subtracting the passive activity patterns from the active trials.  The magnitude of the 

ensemble-averaged voltages from the Cz electrode were also significantly different, with 

lower voltage fluctuations observed during the active condition.  

        One explanation for the similarity in the active and passive EEG waveforms is 

that the subjects might not have fully relaxed during the passive trials.  However, EMG 

recorded during the passive trials did not show any activity suggesting active recruitment 

of the leg muscles.  EMG was not recorded from the trunk muscles and arguably, there 
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could have been efferent corticospinal drive to these muscles for maintenance of trunk 

balance during passive pedaling.  However, this is unlikely to have produced focused 

voltage changes over the leg representation area of the cortex as seen in the topographic 

maps.  

 The passive trials could have triggered imagined movements, which could have 

produced brain signals similar to those associated with active pedaling. The functional 

neuroanatomy associated with active and imagined movements have been previously 

documented to be similar in healthy subjects (Porro et al. 1996; Deiber et al. 1998; 

Stippich et al. 2002; Lacourse et al. 2005). In the current results, it appears unlikely that 

the activity observed during passive trials was due to imagined movements rather than 

afferent signals from the limbs.  Our results indicated a localization of activity during 

passive trials that was posterior to the localization during active trials (insets in Figure 

2.3).  In contrast, motor imagery elicits activation in the prefrontal cortices and 

supplementary motor areas, which lie anterior to the motor cortex (Malouin et al. 2003).  

Thus it is unlikely, that the activity observed during the passive trials is due to the 

imagination of the movements. 

 

2.4.3 The Differences in Active and Passive Conditions 

Despite the apparent similarity between the EEG waveforms of the active and 

passive trials, there was a significant difference in the magnitude of the EEG signals 

generated in the two conditions.  The amplitude (maximum positive - minimum negative 

deflection) of the EEG waveform at the Cz electrode was smaller in the active as 

compared to the passive trials. Topographic maps of the ensemble-averaged signals also 
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suggested the possibility of a slight anterior shift in the signals during the active 

compared to the passive condition (i.e. compare insets in Figure 2.3), consistent with an 

increase in primary motor cortical areas or a decrease in activity within the primary 

somatosensory cortex during the active task.  

We postulate that the attenuation of the EEG waveform during active pedaling 

might have occurred due to centripetal gating of the sensory feedback by the efferent 

corticospinal output.  Gating of sensory input during walking (Duysens et al. 1995; 

Altenmüller et al. 1995; Brooke et al. 1991a) and pedaling (Sakamoto et al. 2004; Brooke 

et al. 1992; Brooke et al. 1991b) had been previously described.  When comparing the 

somatosensory evoked response to sural nerve stimulation during walking as compared to 

standing, a 38% decrease in the P50-N80 complex of the somatosensory evoked potential 

(SSEP) was observed during walking (Duysens et al. 1995).  Further, Altenmuller et al. 

(1995) demonstrated that the early SSEP components (N40 and N40-P50 complex) were 

of similar magnitude during walking and standing, while the later SSEP components 

(P50-N80 and N80-P220) showed significant attenuation and splitting during walking. 

These findings have been interpreted as a gating of the sensory input by motor output at 

the level of the cortex.  The spinal cord may also gate sensory feedback, as inhibition in 

transmission in propriospinal-like neurons at the level of spinal interneurons by 

corticospinal activity has also been observed during walking (Iglesias et al. 2008).  

Irrespective of the site of gating, afferent sensory input is inhibited by corticospinal drive; 

the decreased amplitude of the EEG signal during active pedaling may thus be a marker 

for corticospinal activity during pedaling.   
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2.4.4 Distribution of the Beta Band Frequency Amplitude During Active and 

Passive Pedaling 

We did not see a focused area of decreased β band desynchronization over the leg 

representation of the sensorimotor cortex in either the active or the passive trials.  Akin to 

the ensemble-averaged voltage waveforms, the frequency amplitude topography was 

similar in the active and the passive trials (Figure 2.5(a-b)).  However, subtraction maps 

(β band topography during active trials - β band topography during passive trials) suggest 

that β desynchrony was significantly greater in regions around the leg representation area 

of the sensorimotor cortices in the active as compared to the passive trials (Figure 2.5c).  

These observations indicate a difference in brain activity during active pedaling, 

compared to passive movement of the limbs, and implicates the cortex in the control of 

pedaling movements. 

Notice that the regions implicated in β band desynchronization were not exactly 

over the leg representation area of the motor cortex, but lateral to it (Figure 2.5).  

Christensen et al. have also described significant activation in a cortical area between the 

leg and the shoulder based on PET measurements during pedaling and postulated that this 

represented motor cortical activity driving the proximal leg muscles (Christensen et al. 

2000).  Since β desynchrony, in general, is a marker for voluntary motor activity, greater 

β desynchrony in the active trials may have been a marker for motor cortical activity 

during pedaling (Jasper et al. 1938; Chatrian et al. 1959; Jasper et al. 1949).  Further, 

most of the motor cortical activity may have been directed towards recruiting proximal 

limb muscles. 



36 
 

While cortical motor activity is the most likely explanation for the increased β 

band desynchrony during active pedaling, a difference in the sensory signals produced by 

active pedaling may have contributed to the differences in β band desynchrony.  β band 

desynchrony during times of active motor output is well recognized (Jasper et al. 1938; 

Chatrian et al. 1959; Chatrian et al. 1959; Jasper et al. 1949); however, there is also an 

effect of somatosensory feedback on brain oscillations.  Brief somatosensory stimuli are 

followed by increased desynchronization in the 20 Hz (and 10 Hz) oscillations over the 

bilateral primary sensorimotor cortices, followed by a rebound post-stimulus 

synchronization in the 20 Hz oscillations in the contralateral primary sensorimotor cortex 

and in the supplementary motor area (Pfurtscheller 1981; Jasper et al. 1938; Kuhlman 

1978; Salmelin et al. 1994; Salenius et al. 1997). If the effect of a continuous 

somatosensory input (as occurs in pedaling) on brain oscillations is similar to that of 

somatosensory stimulation, increased β band desynchrony may well have been the result 

of an increased sensory input due to voluntary muscle contractions during active 

pedaling.  β band desynchrony that is caused by sensory afferents would also explain the 

similarities of β band topography between the active and the passive trials.  

 

2.4.5 Correlation Between EEG Activity and EMG From Leg Muscles 

         EEG activity recorded at the Cz electrode had a strong negative correlation with 

the composite (bilateral) EMGs of the RF, MH and TA muscles, transition muscles of 

pedaling (Raasch et al. 1999; Neptune et al. 1997).  Specifically, the association between 

EEG and EMG of these three transition muscles suggests involvement of the motor 

cortex during the relatively challenging task of transitioning between the flexion and 
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extension phases of cycling.  There is some evidence that muscles contributing to limb 

transitions during pedaling may have unique cortical control.  For example, in stroke 

subjects, unilateral pedaling with either the paretic or the non-paretic leg strongly 

activates the muscles contributing to limb transition (e.g. RF and MH) in the stationary 

leg, while the muscles comprising the plantar-dorsiflexor functions are only weakly 

activated under similar conditions (Kautz et al. 2006; Kautz et al. 2002b).  While the 

effect occurs in both legs, it is more pronounced when subjects pedal with the paretic leg 

and in subjects with a more severe stroke (Kautz et al. 2006).  These observations suggest 

that corticospinal output that normally inhibits the excitatory intralimb pathways and 

prevents muscle activity in the stationary leg is lost after stroke (Kautz et al. 2006; Kautz 

et al. 2005b). Since the greatest effect is seen in the activity of the transition muscles, it 

can be presumed that the corticospinal control is more crucial to the activity of these 

muscles during a locomotor like task. 

 

2.4.6 Does the Cortex Participate in the Control of Locomotor Function in 

Humans? 

There is evidence to suggest that processing of sensory information from the 

muscles and skin of lower limbs during locomotion occurs at a cortical level and that 

cortical motor activity is involved in walking.  For example, based on the characteristics 

of the dorsiflexor stretch reflex responses during walking, the brain pathways appear to 

modulate stretch reflexes during walking (Christensen et al. 2001; Petersen et al. 1998).  

Similarly, transcranial magnetic stimulation modulates H-reflexes during walking in a 

phase-dependent manner, supporting the concept of cortical regulation of spinal reflexes 
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during gait (Christensen et al. 2001; Petersen et al. 1998).  Similarly, it has been shown 

that the cutaneous reflex response has a transcortical component that is modulated by the 

phase of gait (Christensen et al. 1999; Nielsen et al. 2002).  Our observations of EEG 

activity that modulates during pedaling, with significant differences during active and 

passive pedaling, are consistent with a role for the sensorimotor cortices in the regulation 

of gait. 

While cortical involvement in the motor control of pedaling might have 

corollaries to cortical control of walking, there remain differences in control of the two 

tasks.  Unlike gait, pedaling is constrained to a circular trajectory, there is minimal need 

for trunk balance (especially with the semi reclining backboard, as used in this study) and 

there is no requirement of balancing on a single leg during any phase of pedaling.  

However, broad similarities in the biomechanics of pedaling and walking and between 

brain activation during pedaling (Christensen et al. 2000) and immediately after walking 

(Fukuyama et al. 1997) has been previously described. Therefore despite the obvious 

dissimilarities between pedaling and walking, pedaling might serve as a reduced model to 

study the cortical control of locomotion and it's impairment after a neurological injury 

(Schindler-Ivens et al. 2008; Kautz et al. 2006; Kautz et al. 2005a; Kautz et al. 2002a; 

Schindler-Ivens et al. 2004).  As demonstrated in this study, EEG can be used to record 

brain activity during pedaling and may therefore provide valuable information if applied 

to these situations. 
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2.5 Conclusion 

In summary, this study demonstrates EEG signals during pedaling that suggest a 

role of cortical activity in pedaling.  However, evidence for motor cortical activity during 

pedaling could only be indirectly ascertained, since a substantial amount of brain activity 

during pedaling appeared to be associated with the processing the sensory information.  

Correlation of the EMG recorded from the transition muscles and the EEG during 

pedaling suggested corticospinal control over the activity of these muscles during 

locomotion.  Thus, transitions from flexion to extension (and vice versa) during walking 

may be the locomotor function most vulnerable to impairment after an injury to the 

cortex, as in stroke. 
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3 FUTURE DIRECTIONS 
 
 
The aim of this study was to demonstrate the role of the sensorimotor cortex in 

locomotor-type activity. This study has successfully established EEG as an imaging 

modality for performing locomotion-related studies. The long-term goals for this project 

are to develop rehabilitative techniques to assist patients with stroke or spinal cord injury. 

However, to achieve this goal a better understanding of the role of supraspinal networks 

during locomotion in normal subjects is required. Although the roles of the CPG and 

peripheral networks are equally important, we will focus on supraspinal networks. Here 

we discuss a few short-term strategies we can implement to improve our study in the 

future: 

 

3.1 Initiation and Termination of Locomotion 

Problem: The neural structure(s) involved in initiating and terminating movement 

in humans is unclear.  

Solution: Animal studies have identified a role of the reticulospinal system in 

producing the descending drive to initiate locomotion. Similarly, we would expect 

movement initiation and termination to be controlled through supraspinal drive. To 

investigate this problem, a basic pedaling experimental setup similar to ours could be 

used with some modifications. Firstly, a block design format similar to what is used in 

fMRI could be implemented. This would allow us to capture movement initiation and 

termination within each pedaling block (which cannot be easily achieved during 

continuous pedaling). Secondly, the pedaling cycle would need to be uniform in length 

(e.g. by timing it to a metronome) while performing the task. This would allow us to 
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compare observations during the initial and end segments of every movement cycle 

across trials. Analyzing these segments would help reveal the neural structures involved 

in the initiation and termination of locomotion.  

 

3.2 Mechanism to Modulate Speed and Power Exerted During Locomotion 

Problem: The mechanism and specific supraspinal structures that modulate speed 

and power during locomotion are unknown. 

Solution: Speed and power exerted during locomotion are important parameters to 

quantify locomotion. To study this, we could accelerate and decelerate the crank in the 

pedaling experiment to record changes in neural activity associated with changes in 

speed. Similarly, resistance during pedaling can be increased and decreased to record 

neural activity associated with changes in power exertion. Analyzing this data may reveal 

mechanisms and neural structures with different activation levels for different levels of 

speed and power, thus indicating their role in controlling these parameters.   

 

3.3 Understanding Relative Timings of Cortical Structures During Locomotion 

Problem: Poor source localization results due to low signal to noise ratio and low 

spatial resolution of EEG.  

Solution: Different methods such as independent component analysis (ICA) and 

dipole source localization can be used to identify different cortical and sub-cortical 

structures involved during different phases of the gait cycle. It is possible that the data 

recorded using EEG may have insufficient signal to noise ratio (SNR) thereby preventing 

reliable source localization. In such cases, the pedaling task can be performed within a 
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magnetoencephalography (MEG) scanner. The MEG is advantageous over fMRI in that it 

has better temporal resolution with good spatial resolution. Also, there are algorithms 

already built to compute source (dipole) localization and ICA using MEG data. Thus, 

MEG can provide a better understanding of the relative timings of the various cortical 

and sub-cortical structures during various phases of the gait cycle.  

Furthermore, MEG would be a reasonable imaging modality in locomotion 

studies to help uncover the neural correlates of movement initiation and termination and 

the neural structures involved in modulating the speed and power of movement.  

 

3.4 Neural Correlates of Fine Control of Limb Trajectory and Foot Placement 

Problem: The neural correlates modulating the fine control of limb trajectory and 

foot placement are unclear.  

Solution: Investigating the fine control of locomotion is not possible inside a 

scanner using a pedaling paradigm. An alternative experimental method could be to use 

treadmill walking while applying somatosensory evoked potentials (SSEP’s) to 

understand cortical activity during gait. A previous study by Duysens et al. (1995) has 

shown the modulation of sensation according to the phase of the gait cycle. For example, 

the SSEP’s recorded are significantly decreased at the start of the stance phase compared 

to the end of the swing phase. Thus, SSEP’s during walking can be used to probe the role 

of the cortex during fine control of locomotion in humans.  

To conclude, the basic question remains to identify the mechanism by which the 

supraspinal networks use sensory information to generate motor commands which in turn 

modify the CPG to control the peripheral muscles. Answering the questions mentioned 
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above would assist the development of rehabilitative techniques for improving gait in 

subjects with stroke or spinal cord injury. 
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APPENDIX 1 
 
 

2-D Topography Mapping Algorithm 

The 2-D topographic maps generated for the time-domain results were generated 

using SCAN 4.3 (Compumedics Neuroscan, El Paso TX). Scan 4.3 generates 2-D 

topographic maps using either of the two interpolation algorithms: 

1) Local interpolation method 

2) Global interpolation method   

The local interpolation algorithm uses EEG potentials recorded at 1-4 nearest 

electrodes to calculate values at any given time point. The global interpolation algorithm 

uses EEG potentials recorded from all 64 electrodes to calculate values at any given time 

point. These values are then used to plot 2-D topographic maps at a particular time point. 

Detailed explanation for global interpolation method (Neuroscan, 2003) is discussed 

ahead. This particular approach provides with smoother maps compared to other 

algorithms like local interpolation algorithm. The time domain results presented 

previously are generated using this global interpolation algorithm. 

 

The Global interpolation function ( , )g x y can be computed as follows 

vyxyx t 1),(),( −= Wwg                            [1] 

Here, ( , )g x y is the globally interpolated value at map coordinates x and y and at a 

given time instance; tyx ),(w is a column vector of 64 elements of inverse distance 

squared weights of the map coordinates with respect to electrode locations (Equation 2). 

The “t” superscript implies transpose operation on vector w. W is a 64 X 64 symmetric 
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matrix of inter-electrode inverse distance squared weights (Equation 3). v is a row vector 

of 64 columns representing the EEG potential measurements across all channels. 

 

Every element of the weight vectors ),( yxw is computed using the formula 

122 ))()((),( −+−+−= ayyxxyxw iii                                                                               [2] 

where xi and yi are coordinates of the ith electrode and a is the average inter-electrode 

distance. 

Every element of the symmetric matrix W is computed using the formula 

122 ))()(( −+−+−= ayyxxW jijiij                                                                                   [3] 

where i and j are indices for electrodes and a is the average inter-electrode distance.   

 

The computation specified in equation 1 will yield a scalar potential value 

( , )g x y corresponding to every map coordinate x and y. This matrix, g, is plotted as a 

color coded 2D map representing the voltage distribution over the scalp at one particular 

time point.  
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