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Abstract 

 

Complexes with cations of the type [Ga(L)2]n+ where L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido and n = 1, 

2, 3 have been prepared and structurally characterized. The electronic properties of each were probed by 

electrochemical and spectroscopic means and were interpreted with the aid of density functional theory (DFT) 

calculations. The dication, best described as [Ga(L–)(L0)]2+, is a Robin-Day class II mixed-valence species. As such, 

a broad, weak, solvent-dependent intervalence charge transfer (IVCT) band was found in the NIR spectrum in 

the range 6390–6925 cm–1, depending on the solvent. Band shape analyses and the use of Hush and Marcus 

relations revealed a modest electronic coupling, Hab of about 200 cm–1, and a large rate constant for electron 

transfer, ket, on the order of 1010 s–1 between redox active ligands. The dioxidized complex [Ga(L0)2]3+ shows a 

half-field ΔMs = 2 transition in its solid-state X-band electron paramagnetic resonance (EPR) spectrum at 5 K, 

which indicates that the triplet state is thermally populated. DFT calculations (M06/Def2-SV(P)) suggest that the 

singlet state is 21.7 cm–1 lower in energy than the triplet state. 

Synopsis 
The structures and spectroscopic properties of a complete valence series of gallium(III) complexes of a 

diarylamine-based redox-active ligand were studied. 

Introduction 
Over the past few decades, the study of mixed-valence (MV) compounds has been pivotal for advancing 

comprehension of long-range electron transfer of importance to both basic biological functions and, potentially, 

to future molecular electronics applications.(1) A majority(2) of the MV complexes studied have been of the 

type Mn+-(bridge)-M(n–1)+ where the bridge is an organic group such as in the Creutz-Taube ion, [(NH3)5RuII(μ-

pyrazine)RuIII(NH3)5]5+.(3) There has also been a great deal of interest in purely organic systems of the type D-OB-

D+·, where OB is an organic bridge and D/D+· are the one-electron redox partners of an organic donor.(4) A 

popular class of such organic derivatives is those with diarylamine donors that flank an organic bridge, 

Figure 1.(5-8) Electronic communication between donor ends of such molecules can vary dramatically by 

changing: (i) the groups, X, along the diarylamine donor;(5c, 5h-5j) (ii) the type of bridge;(7a, 8, 9) (iii) the bridge 



length; or (iv) the geometric disposition of donors about the bridge,(5i, 5j, 9) including the dihedral angle 

between bridging phenylene groups (that also affect the dihedral of orbitals containing the nitrogen lone 

pair).(10) In cases such as A and B in Figure 1, electronic communication can occur via tunneling, superexchange, 

or a “hopping” mechanism whereby the bridge becomes an active participant. The latter is important for longer, 

more highly conjugated and electron-rich bridges. Both through-bond and through-space superexchange 

interactions become important for short bridges such as found in the tetraanisyl-o-phenylenediamine cation 

radical.(9) 

 
Figure 1. (A–C) Diarylamine-based mixed valent compounds. 

An important class of MV complexes is one like Figure 1C (n = 1)(8) that contains organic donors separated by a 

metal bridge.(11) One-electron oxidized or reduced forms of metal dioxolenes,(12) dithiolenes,(13) diimines,(14-

17)o-semiquinones,(18)o-iminosemiquinones,(19) polypyridyls,(20) and tridentate catecholates(21) can all fall 

into this category. Some important aspects of the chemistry of these and related metal complexes of redox-

active ligands were the subjects of a recent special issue of Inorganic Chemistry(22) and of several 

reviews.(23) With relation to the organic derivatives mentioned above, the interjection of the Pt(PEt3)2 bridge 

between (di/tri)arylamine donors, Figure 1C (n = 1), permitted weak electronic coupling (Hab = 350 cm–1) 

between donor ends, but this coupling was weaker than that found for derivatives where a phenylene (Hab = 440 

cm–1)(5c) or a p-dimethoxyphenylene group (Hab = 520 cm–1)(7a) replaces the metal bridge. Thus, despite the 

former possessing fewer number of sigma bonds separating donor ends (and a shorter D···D+· separation) than in 

the pure organic cases, the energetic mismatch between donor and the metal bridge has a small detrimental 

influence on the electron transfer. 

We were interested in further examining how effectively electronic communication could be mediated by using 

only a single atom bridge between two diarylamido groups. In particular, we recently prepared a series of 

diarylamines that have a pyrazolyl group situated at an ortho-position of each aryl (Figure 2). 

 
Figure 2. Di(2–3R-pyrazolyl)-p-arylamines, H(XYR). 



The coordination chemistry of tricarbonylrhenium(I)(24) and rhodium(25) complexes showed that these pincer-

type ligands are electrochemically active and chemically noninnocent. The electronic properties and reactivity of 

the complexes could be predictably fine-tuned by substituting at the pyrazolyl, at the para-aryl positions, or 

even at the metal center. In those studies, only one ligand was bound to a metal center. We envisioned 

constructing molecular wires by assembling strings of M(L = XYR)2 complexes together to give species such as 

LM-[(L-L)M(L-L)]n-ML (n = 0, 1, 2...). Therefore, it became of interest to examine potential electronic interactions 

between two ligands across a single metal ion bridge to inform future wire designs. Our investigations began 

with simple model complexes of redox-silent gallium(III) with the added purpose of obtaining structural and 

spectroscopic markers for ligand-based radicals that should also be of use in future studies that incorporate 

transition metals. Herein, we report on the preparation and properties of the complete valence series of 

[Ga(L)2]n+ complexes (n = 1–3). 

Results and Discussion 
The reaction between 2 mol equivalents of “Li(L)” (formed in situ from Li(n-Bu) and H(L) in THF at −20 °C) and 1 

mol equivalent GaI3 gives blue-luminescent [Ga(L)2](I), rather surprisingly, as the insoluble product and LiI as the 

soluble product, a mixture that can be easily separated by filtration. As the signal for iodide oxidation interferes 

with the ligand oxidation wave in voltammetry experiments (see Supporting Information), an ensuing 

metathetical reaction between [Ga(L)2](I), (1)(I), and TlPF6 afforded [Ga(L)2](PF6), (1)(PF6), in high yield. 

Single crystals of (1)(PF6)·1.75 CH2Cl2 suitable for X-ray diffraction were grown by layering hexanes on a 

CH2Cl2 solution and allowing solvents to diffuse. The compound crystallizes with two crystallographically 

independent (1)(PF6) units. Views of the structure of one of the cations are shown in Figure 3. The gallium center 

in each resides in a compressed octahedral GaN6 environment as a result of the disparate distances associated 

with the two types of Ga–N bonds. Those bonds associated with the diarylamido portion of the ligand, Ga–NAr, 

average 1.949(6) Å which is shorter than found in two independent structure determinations of a related 

hexacoordinate gallium(III) ONO- pincer complex Ga(dbqdi = 3,5-di-tert-butyl-1,2-quinone-1-(2-hydroxy-3,5-

ditert-butyl-phenyl)imine)2 (avg. 2.020(3) Å(21d) and avg. 2.027(3) Å(21e)). As expected, the Ga–NAr bonds in the 

current six-coordinate complex are longer than those in three- or four-coordinate diphenylamidogallium(III) 

complexes which range from 1.85 to 1.91 Å.(26) The gallium–nitrogen bonds in (1)+ associated with pyrazolyl 

groups, Ga–Npz, range from 2.085(2) Å to 2.141(3) Å and average 2.101 Å. These values are in good agreement 

with six-coordinate tris(pyrazolyl)borate complexes of gallium(III).(27) Notably, in (1)+ the amido nitrogen atoms 

are planar with the sum of angles around each of 360°. The six-membered chelate rings (avg. Npz–Ga–Npz bite 

angle, 88(1)o) are nonplanar such as to allow the diarylamido NC2- moieties to be nearly coplanar across the 

gallium bridge. That is, there is a small dihedral angle of 16.6(8)o between the mean plane containing C1–N1–

C31 and that containing C41–N41–C71 (Figure 3, right). Thus, the nitrogen p-orbitals containing the lone-pair 

electrons are expected to be roughly parallel with each other but are separated by 3.897(3) Å (avg. N···N 

distance). This geometry is in contrast to the case of the ONO-pincer complex, Ga(dbqdi)2 whose five-member 

(planar) chelate rings force the two ligands to be orthogonal, with the dihedral angle of 87.05° between mean 

planes containing the C–N–C atoms.(21d, 21e) 



 
Figure 3. Views of one of the two crystallographically independent cations [Ga(L)2]+, (1)+, in the crystal of 

(1)(PF6)·1.5CH2Cl2 (left) with a view approximately down the N1–Ga1–N41 vector showing the small dihedral 

angle between C1–N1–C31 and C41–N41–C71 planes. Selected bond distances (Å): Ga1–N1, 1.947(2); Ga1–N41, 

1.953(2); Ga1–N11, 2.099(2); Ga1–N21, 2.094(2); Ga1–N51, 2.101(2); Ga1–N61, 2.085(2). Selected bond angles 

(o): N1–Ga1–N41, 179.05(11); N11–Ga1–N21, 178.60(9); N51–Ga1–N61, 177.85(9); N1–Ga1–N11, 90.00(10); N1–

Ga1–N21, 89.34(9); N41–Ga1–N51, 89.08(10); N41–Ga1–N61, 88.85(10); N11–Ga1–N51, 92.93(9); N11–Ga1–

N61, 86.49(10); N21–Ga1–N51, 85.85(9); N21–Ga1–N61, 94.75(9). 

Representative cyclic voltammograms of the free ligand, H(L), and of (1)(PF6) in CH2Cl2 are given in Figure 4, 

while a summary of electrochemical data of (1)(PF6) in three different solvents is provided in Table 1. The 

voltammogram of H(L) in CH2Cl2 shows a single irreversible oxidation wave with an anodic peak at ca. 1.2 V 

versus Ag/AgCl (ia/ic > 1), whereas that of [GaIII(L–)2](PF6) in this solvent shows two overlapping, reversible, one-

electron oxidation waves at 0.94 and 1.17 V versus Ag/AgCl. Since gallium(III) cannot be oxidized to gallium(IV), 

the oxidation waves are unequivocally identified as ligand-based affording [GaIII(L–)(L0)]2+, (2)2+, and [GaIII(L0)2]3+, 

(3)3+, respectively. The close proximity of the two ligands connected by a one-atom spacer can give rise to two 

oxidation waves by simple Coulombic means and/or by electronic communication via superexchange or hopping 

mechanisms. Coulombic interactions do not have a spectroscopic marker, whereas electronic communication 

(via superexchange or hopping) leaves a signature in the form of an intravalence charge transfer (IVCT) band 

which is indeed observed in the current case, vide infra. The equilibrium constant for comproportionation 

according to eqs 1 and 2 is on the order of 102 to 103 (determined from the electrochemical data in various 

solvents, Table 1), which indicates a small but significant 

 (1) 

[GaIII(L−)2]+ + [GaIII(L0)2]3+ ↔ 2[GaIII(L−)(L0)]2+ 

(2) 

𝐾com = [(2)2+]2/[(1)+][(3)3+] 

degree of electronic communication in mono-oxidized (2)2+. The relatively small value of Kcom ∼ 103 is one 

indicator that (2)2+ is a Robin-Day class II mixed valent species.(3c, 28) 



 

Figure 4. Overlay of cyclic voltammograms of H(L) and (1)(PF6) in CH2Cl2 obtained at a scan rate of 200 mV/s. 

Table 1. Electrochemical Data for (1)(PF6) in Various Solvents 

solvent E1/2(1), Va,b E1/2(2), Va,b ΔE, Vc Kcomd 

CH2Cl2 0.939(3) 1.173(4) 0.184 1.39 × 103 

PCe 0.838(2) 0.994(5) 0.156 4.62 × 102 

CH3CN 0.888(1) 1.065(1) 0.177 1.06 × 103 
aAverage values obtained for scan rates of 50, 100, 200, and 400 mV/s with 0.1 M NBu4(PF6) as supporting 
electrolyte. 
bV versus Ag/AgCl. 
cΔE = E1/2(1) – E1/2(2). 
dKcom = e(ΔE·F/RT), T = 295 K. 
ePropylene carbonate. 
 

Theoretical Studies 
In order to gain further insight into the nature of the two oxidation waves and to help rationalize the other 

experimental properties of the oxidized species, the cations (1)+, (2)2+, and (3)3+ were studied by density 

functional theory. Four models were examined (M06 or B3LYP functionals with either the LANL2DZ or Def2-

SV(P) basis sets), each also accounted for solvation in dichloromethane by employing the polarizable continuum 

model (PCM). While all gave qualitatively similar trends, the combination (U)M06/Def2-SV(P) gave most 

satisfactory correlation to experimental data (bond distances and spectroscopic parameters) as summarized in 

the Supporting Information. The major findings of these studies are summarized below. First, despite missing 

solvated anions in the theoretical study, a 625 mV difference between first and second oxidation potentials was 

obtained which parallels the experimental finding of two separate oxidation waves. Second, for the doubly 

oxidized (3)3+, the singlet diradical state was found to be 21.7 cm–1 lower energy than the triplet state. Third, the 

major structural changes along the valence series occur for Ga–N bonds (despite a lack of participating orbitals 

on the metal center). Thus, upon successive oxidation, the Ga–N bonds associated with the diarylamido, Ga–NAr, 

lengthen while those associated with the pyrazolyls, Ga–Npz, shorten. The unoxidized and dioxidized complexes 

are more or less symmetric about gallium(III). However, the bond distances associated with each ligand of the 

mono-oxidized species (2)2+ are distinct. One ligand has a longer Ga–NAr bond and a shorter average Ga–

Npz distance than the other ligand. In (2)2+, the longer Ga–NAr bond distance 2.081 Å resembles the average 

distance 2.043 Å calculated for the doubly oxidized complex (3)3+, while the shorter Ga–NAr distance of 1.937 Å 

resembles the average distance of 1.966 Å calculated for the unoxidized complex (1)+. The intraligand C–C bond 

distances also show a similar disparity, but the differences between each ligand in (2)2+ are much less 

pronounced than those distances involving gallium. Therefore, examination of the Ga–N bond distances allows 

one to most easily discern which ligand is oxidized. Electronically, the paramagnetic species are ligand-centered 



radicals with negligible spin density on the gallium center. Finally, time-dependent DFT revealed that in the 

paramagnetic derivatives, a set of pi-radical bands for β-HOMO(-N = 2–7) to SOMO (β-LUMO) transitions should 

be observed in the 590–830 nm range. For the mono-oxidized complex (2)2+, an additional weak (oscillator 

strength, f, ∼ 10–3), low-energy intervalence charge transfer (IVCT) band for a β-HOMO-SOMO (β-LUMO, see 

Figure 5) transition was predicted to be found in the NIR region. Moreover, the IVCT band was predicted to 

show a small solvent dependence, shifting (473 cm–1) from 4237 cm–1 (2657 nm, f = 6.3 × 10–3) in CH2Cl2 to 3764 

cm–1 (2360 nm, f = 5.3 × 10–3) in CH3CN, in line with behavior expected for a Class II mixed valence species. 

 
Figure 5. β-Frontier orbitals for (2)2+ from TD-DFT calculations. 

By careful choice of organic oxidants, it was possible to characterize and isolate either the one- or the two-

electron oxidation products, (2)2+ and (3)3+, respectively, as mixed SbCl6
–/PF6

– salts. For example, 

spectrophotometric titration of (CRET+)(SbCl6–)(29) (E1/2 = 1.09 V versus Ag/AgCl, top of Figure 6) with 

substoichiometric amounts of (1)(PF6) in CH2Cl2 showed the disappearance of the signature bands for the 

organic oxidant at 486 and 518 nm concomitant with the growth of new bands near 590 and 855 nm for pi-

radical transitions of (2)2+ [β-HOMO to SOMO]. The reaction was complete after an equimolar ratio of starting 

materials was achieved verifying the one-electron nature of oxidation of (1)+. The shape and energies of these 

pi-radical bands are nearly identical to those found in the rhenium(I) or rhodium(III) complexes of this oxidized 

ligand.(24, 25) 



 
Figure 6. Preparation of (2)(PF6)(SbCl6) and spectrophotometric titration using organic oxidant (CRET+)(SbCl6–). 

As indicated by the theoretical calculations, an IVCT band was predicted to be found in the NIR spectrum. For a 

weakly coupled Robin-Day Class II mixed valent species, the IVCT band is expected to have a Gaussian shape, be 

of weak intensity, and have an energy that is solvent dependent.(1c, 3c, 30) All of these expectations were met 

for the IVCT band of (2)(PF6)(SbCl6). A representative spectrum for (2)(PF6)(SbCl6) dissolved in CH2Cl2 is shown in 

Figure 7, while a summary of data obtained from multiple analyses using Gaussian fits of bands in three solvents 

(CH2Cl2, PC = propylene carbonate, CH3CN) is given in Table 2. That is, the NIR spectra obtained for bulk samples 

of (2)(PF6)(SbCl6) dissolved in various solvents revealed the presence of a very broad (full-width-at-half-

maximum, Δν̃1/2, ca. 5000 cm–1), weak-intensity (εmax ∼ 40–80 M–1 cm–1) IVCT band in the range of 6390–6925 

cm–1 (green band in Figure 7). It is noteworthy that such a band is absent in the NIR spectra of the doubly 

oxidized derivative (3)3+ and of all (L·+)MXYZ complexes (M = ReI, RhIII) that contain only one singly oxidized 

ligand. It is also worthwhile to note that among the numerous reports on gallium(III) complexes of the type 

[Ga(LR)(LR·)]n+ where LR = a redox active ligand such as N,N-diazabutadiene = DAB(15) variants, di-tert-butyl 

semiquinone = DBSQ(18) or dbqdi,(21) an IVCT band has not been observed. Perhaps, the broadness and weak 

intensity of the IVCT band hinders its identification in these other systems. For (2)(PF6)(SbCl6), the Gaussian 

shape of the IVCT band and the indication of a Robin-Day Class II species from the analysis of Kcom suggest that 

the Hush relations(31) (eqs 3 and 4) can be used to 

 

(3) 

𝐸OP = 𝜆 

(4) 

𝐻𝑎𝑏(cm−1) = [(4.2 × 10−4)𝜀max∆𝑣̃1 2⁄ 𝐸OP]
1 2⁄

/𝑑 

estimate the strength of the electronic interaction. Here, EOP is the energy of the absorption maximum, λ is the 

Marcus reorganization energy, Hab is the electronic coupling element, εmax is the molar extinction coefficient, 

Δν̃1/2 is the full-width-at-half-maximum, and d is the separation between redox centers in Å. The value d = 

3.9735 was used as this represents the distance between amido nitrogen centers obtained by taking into 

account an average of all crystallographic data for unoxidized, mono-oxidized, and dioxidized species in an effort 

to minimize potential errors of a single point structural determination. The following three observations further 

support that (2)(PF6)(SbCl6) is a Robin-Day Class II(A) mixed valent species. First, from the Gaussian fits of the 

IVCT band, the experimental Δν̃1/2 was larger than the theoretical value Δν̃1/2 (HTL) = [16 ln(2)kBTλ]1/2.(3c, 



30) Second, as predicted by dielectric continuum theory, the energy of the IVCT band showed a linear 

correlation with the solvent parameter,(32) γ = 1/εs – 1/n2 where εs is the static dielectric constant and n is the 

refractive index of the solvent (Figure S-4, Supporting Information). Third, the values of Hab (ca. 200 cm–1) and λ 

(6390–6925) cm–1 fall within the accepted limits of 0 < Hab < λ/2 or 0 < 2Hab/λ < (1 – [Δν̃1/2 (HTL)]/2λ) for Class II 

or Class IIA species, respectively.(30) The thermal energy barrier to electron transfer, ΔG*, calculated from 

classical Marcus Theory(33) (eq 5) is 1344–1515 cm–1. The corresponding rate constant for electron transfer ket is 

found to be on the order of (0.76–2.9) × 1010 s–1 from eq 6, where Planck’s constant, h = 3.336 × 10–11 cm–1·s, 

(5) 

∆𝐺 ∗= (𝜆 − 2𝐻ab)2/4𝜆cm−1 

(6) 

𝑘et  =  (2𝐻ab
2 /ℎ)[𝜋3 /𝜆𝑅𝑇]1 2⁄  exp − (𝛥𝐺 ∗/𝑅𝑇) 

and the gas constant R = 0.695 cm–1 K–1. These ket values are comparable to those organic cation radicals with 

diarylamido groups linked by unsaturated 12- to 16-atom (phenylethynyl-) spacers but are of approximately 1–2 

orders of magnitude smaller than found for shorter conjugated spacers such as in Figure 1A and their 

related N,N′-diphenyl-1,4-phenylenediamine cation radical counterparts.(34) 

 
Figure 7. NIR spectrum (blue line) of (2)(PF6)(SbCl6) in CH2Cl2 showing the IVCT band (green), the lowest energy 

pi-radical band (gray), and unidentified bands (yellow), and the sum of all Gaussian bands used to fit the spectra 

(red dotted line). 

Table 2. Summary of IVCT Band Shape Fitting and ET Parameters of (2)(PF6)(SbCl6) in Three Different Solvents 

  CH2Cl2 PC CH3CN 

EOP = λ (cm–1) 6390 (±20) 6725 (±25) 6925 (±25) 

εmax (M–1 cm–1) 79 (±3) 44 (±3) 55 (±5) 

Δν̃1/2 (cm–1) 5192 (±17) 4900 (±100) 4900 (±300) 

oscillator strengtha, fobs (fcalc) 1.9 × 10–3(6.3 × 10–3) 9.9 × 10–4 (n.d.) 1.2 × 10–3(5.3 × 10–3) 

Hab (cm–1), see eq 4 264 196 223 

Δν̃1/2 (HTL)b 3812 3910 3968 

θ = Δν̃1/2/Δν̃Z1/2 (HTL) 1.36 1.25 1.23 

α = Hab/λ 0.0413 0.0291 0.0322 

ΔG* (cm–1), see eq 5 1344 1491 1515 

ket (s–1), see eq 6 2.9 × 1010 7.6 × 109 8.6 × 109 

γ = 1/εs – 1/n2 0.382 0.480 0.582 



afobs = (4.6 × 10–9)εmaxΔν̃1/2, fcalc from DFT calculations. 
bΔν̃1/2 (HTL) = [16 ln(2)kBTλ]1/2 where kB = 0.695 cm–1 K–1 and T = 295 K. 
 

Figure 8 shows that the titration of (OMN+)(SbCl6–)(35) (E1/2 = 1.39 V versus Ag/AgCl) was complete after 1/2 

equiv of gallium complex was added to the oxidant verifying the two-electron nature of oxidation. In 

(3)(PF6)(SbCl6)2, the pi-radical bands persisted in the electronic spectrum indicating a diradical species. The 

effective magnetic moment of the isolated powder, μeff = 2.4 μB (295 K), was lower than the expected spin-only 

value of 2.83 μB, which suggests that the triplet state is probably not wholly thermally populated. Although we 

do not have access to a magnetometer capable of variable (low) temperature magnetic measurements that 

would permit elucidation of the ground state properties, the theoretical calculations of (3)3+ suggest that the 

singlet diradical lies 21.7 cm–1 lower than the triplet. This value is on par with the 23 cm–1 singlet–triplet energy 

difference in a tin(IV) complex of the aforementioned ONO-pincer radical ion, SnIV(dbqdi)2,(21f) or the 64.6 cm–

1 difference in Zn(tmeda)(3,6-DBSQ)(3,6-DBCat).(18b) The presence of a ‘half-field’ signal for a ΔMs = 2 transition 

in the EPR spectra of solid (3)(PF6)(SbCl6)2 acquired at 5 K in both normal and parallel-modes (Figure 9) verified 

that the triplet state is thermally populated even at this low temperature. It is noted that the EPR spectrum of 

an isolated sample of (2)(PF6)(SbCl6) only showed an isotropic signal at g = 2.006, a g-value expected for a ligand-

based radical; see Supporting Information. 

 
Figure 8. Spectrophotometric titration of (3)(PF6)(SbCl6)2 and the organic oxidant (OMN+)(SbCl6–). 

 
Figure 9. (a) X-band (9.63 GHz, 295 K) EPR spectrum of a powder sample of (3)(PF6)(SbCl6)2, (b) ‘half-field’ 

spectrum acquired at 5 K (100 mW) in parallel-mode. 

It was possible to obtain X-ray quality, blue single crystals of the dioxidized complex 

(3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene after mixing (1)(PF6) with 2 equiv of (NO)(SbCl6) in CH2Cl2, layering with 

toluene, and allowing solvents to diffuse. Obviously, solubility issues dictated the unexpected ratio of P- versus 

Sb-centered anions. After numerous attempts, X-ray quality violet crystals of “[Ga(L)2](PF6)1.5·1.05 

toluene·0.65CH2Cl2·0.17H2O” were obtained from an equimolar mixture of (1)(PF6) with (CRET)(SbCl6) in 

CH2Cl2 layered with toluene, as above. After careful scrutiny of the various bond distances (vide infra), this latter 

structure is best described as the solvate of [Ga(L–)2](PF6)/[Ga(L–)(L0)](PF6)2. An overlay of cation structures of 

(1)+, (2)2+, (3)3+ and an intraligand bond labeling diagram are found in Figure 10. Complete structural data are 



found in the Supporting Information. As suggested by calculations, the most significant structural changes along 

the valence series involved the Ga–N bond distances, which serve as oxidation number markers for the ligand. 

The average gallium-amido nitrogen Ga–NAr bond distance increased linearly from 1.947(3) Å in [GaIII(L–)2]+ to 

2.023(5) Å in [GaIII(L0)2]3+ (0.074 Å change), while the average Ga–Npz distance (dative bonds from the pyrazolyls) 

decreased from 2.102(3) Å in [GaIII(L–)2]+ to 2.039(5) Å in [GaIII(L0)2]3+ (0.063 Å change). As described earlier, each 

of these distances fall within ranges reported for other gallium(III) diphenylamido(26) or 

pyrazolyl(27) complexes. The bond length changes within the ligand backbone are much less pronounced, and 

are at the borderline of statistical significance. The most significant change occurs for bond-type G (right of 

Figure 10) between ipso- carbons which on average increases from 1.402(7) Å in [GaIII(L–)2]+ to 1.418(8) Å in 

[GaIII(L0)2]3+ (0.016 Å change). Such a change would imply a bonding interaction between these atoms in (1)+, an 

interaction that is supported by computational studies. 

 
Figure 10. Left: Overlay of cation structures from X-ray diffraction. Key: pale blue, (1)+; green, (2)2+; purple, (3)3+; 

right: Labeling diagram for bonds within the ligand. 

In summary, the homoleptic complex [Ga(L–)2](PF6) and its mono- and dioxidized derivatives have been prepared 

and characterized in solution and in the solid state. The triplet state of the dioxidized species was found to be 

thermally populated even at 5 K. For the paramagnetic, mono-oxidized species (2)(PF6)(SbCl6), electrochemical 

and spectroscopic data established that weak electronic communication occurs between electroactive ligands 

across the gallium(III) bridge. The electronic communication across the diamagnetic metal ion bridge may occur 

either by direct tunneling,(33, 36) by nonresonant charge transfer using the empty, high-energy 4p orbitals on 

gallium as a coupling medium (McConnell superexchange(37)), or by a thermally activated “hopping” 

mechanism.(38) Given the previous magnetic studies of diamagnetic metal complexes of organic diradicals that 

can promote either ferromagnetic or antiferromagnetic interactions with J values of different magnitude 

depending on the metal,(18b) the superexchange mechanism seems to be the most probable pathway for 

electronic communication. Clearly further experimental and theoretical investigations of other 

[M(L)2]n+ complexes of redox silent d10 or d0 metal ions and their oxidized counterparts would be needed to 

elucidate the mechanism. Nevertheless, if oligomeric assemblies of the type LM-[(L-L)M(L-L)]n-ML (n = 0, 1, 2...) 

can be prepared then wire-like behavior is anticipated even for diamagnetic bridging ions. Stronger electronic 

communication is expected for transition metal analogues with available d-orbitals that can engage in dπ–pπ 

interactions with the ligand. Details regarding such monomeric main group and transition metal complexes and 

their oligomeric assemblies will be reported in due course. 

Experimental Section 

General Considerations 
The compounds Li(n-Bu) 1.6 M in hexanes, GaI3, TlPF6, (NO)(SbCl6) were purchased commercially and used as 

received. The compounds H(L),(24) (CRET+)(SbCl6–),(29) (OMN+)(SbCl6–)(35) were prepared according to literature 

procedures. Solvents were dried by conventional means and distilled under nitrogen prior to use. 



Physical Measurements 
Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental analyses. Melting point 

determinations were made on samples contained in glass capillaries using an Electrothermal 9100 apparatus 

and are uncorrected. 1H, 13C, 19F, and 31P NMR spectra were recorded on a Varian 400 MHz spectrometer. 

Chemical shifts were referenced to solvent resonances at δH 5.33, δC 53.84 for CD2Cl2 or δH 1.94, δC 118.9 for 

CD3CN and δH 2.05, δC 29.84 for acetone-d6, while those for 19F and 31P NMR spectra were referenced against 

external standards of CFCl3 (δF 0.00 ppm) and 85% H3PO4 (aq) (δP 0.00 ppm), respectively. Abbreviations for NMR 

and UV–vis br (broad), sh (shoulder), m (multiplet), ps (pseudo-), s (singlet), d (doublet), t (triplet), q (quartet), p 

(pentet), sept (septet). Electrochemical measurements were collected under a nitrogen atmosphere for samples 

as 0.1 mM solutions in CH3CN and in CH2Cl2, each with 0.1 M NBu4PF6 as the supporting electrolyte. A three-

electrode cell comprised of an Ag/AgCl electrode (separated from the reaction medium with a semipermeable 

polymer membrane filter), a platinum working electrode, and a glassy carbon counter electrode were used for 

the voltammetric measurements. Data were collected at scan rates of 50, 100, 200, 300, 400, and 500 mV/s. 

With this set up, the ferrocene/ferrocenium couple had an E1/2 value of +0.53 V in CH3CN and +0.41 V in 

CH2Cl2 at a scan rate of 200 mV/s, consistent with the literature values.(39) Solid state magnetic susceptibility 

measurements were performed using a Johnson-Matthey MSB-MK1 instrument. Electronic absorption (UV–

vis/NIR) measurements were made on a Cary 5000 instrument. Emission spectra were recorded on a JASCO FP-

6500 spectrofluorometer. EPR spectra were obtained on both solid powder samples and as solutions ∼0.2 mM 

in 1:1 CH2Cl2/toluene mixtures using a Bruker ELEXYS E600 equipped with an ER4116DM cavity resonating at 

9.63 GHz, an Oxford instruments ITC503 temperature controller and a ESR-900 helium flow cryostat. The spectra 

were recorded using 100 kHz field modulation unless otherwise specified. 

Syntheses 

[Ga(L)2](I), (1)(I) 
A 3.45 mL aliquot of 1.6 M Li(n-Bu) in hexanes (5.52 mmol) was slowly added via syringe to a solution of 1.814 g 

(5.51 mmol) of H(L) in 15 mL of THF maintained at −78 °C. The resulting bright yellow solution was stirred 15 

min, and then a solution of 1.241 g (2.76 mmol) of GaI3 in 5 mL of THF was added by cannula transfer under 

nitrogen. The mixture was maintained at −78 °C for 2 h, and then the cold bath was removed and the mixture 

was allowed to warm naturally with stirring 12 h. The colorless precipitate (which exhibited bright blue 

luminescence upon irradiation with 354 nm light) was collected by vacuum filtration and was further dried 

under a vacuum 4 h to leave 2.026 g (86%) of (1)(I) as a colorless powder. Anal. Calcd (obs.) for C40H36N10GaI: C, 

56.30 (56.22); H, 4.25 (4.27); N, 16.41 (16.19). 1H NMR (acetone-d6) δH: 8.40 (d, J = 2.6 Hz, 1H, H5-pz), 7.28 (s, 1H, 

H3–Ar), 7.22 (part of AB, 1H, Ar), 7.21 (d, J = 2.5 Hz, 1H, H3pz), 7.09 (part of AB, 1H, Ar), 6.39 (ps t, Japp = 2.5 Hz, 

1H, H4pz), 2.25 (s, 3H, CH3). 13C NMR (acetone-d6) δC: 143.8, 140.3. 132.9, 130.9, 130.7, 130.2, 127.2, 123.5, 

108.3, 20.3. UV–vis (CH2Cl2): nm (ε, M–1 cm–1) 249 (57,800), 267sh (32,300), 322 (24,700), 365 (19,300). Very fine 

needle crystals were grown by layering a CH2Cl2 solution with hexanes and then allowing solvents to slowly 

diffuse. A sample that was exposed to the atmosphere for a few hours analyzed as (1)(I)·H2O. Anal. Calcd (obs.) 

for C40H38IGaN10O: C, 55.13 (55.62); H, 4.40 (4.27); N, 16.07 (15.56). 

[Ga(L)2](PF6), (1)(PF6) 
A 0.618 g (1.77 mmol) sample of TlPF6 was added as a solid to a solution of 1.510 g (1.77 mmol) (1)(I) in 20 mL of 

dichloromethane. After the mixture had been stirred magnetically 1 h, the colorless solution was separated from 

the pale yellow precipitate of TlI by filtration through a pad of Celite. The CH2Cl2 was removed under vacuum to 

give 1.52 g (99%) (1)(PF6) as a pale yellow powder. Mp: 280 °C dec Anal. Calcd (obs.) for C40H36N10F6GaP: C, 54.97 

(55.37); H, 4.15 (4.25); N, 16.03 (15.82). 1H NMR (acetone-d6) δ: 8.34 (d, J = 2.6 Hz, 1H, H5-pz), 7.25 (s, 1H, H3–

Ar), 7.22 (part of AB, 1H, Ar), 7.21 (d, J = 2.4 Hz, 1H, H3pz), 7.09 (part of AB, 1H, Ar), 6.39 (ps t, Japp = 2.5 Hz, 1H, 

H4pz), 2.24 (s, 3H, CH3). 13C NMR (acetone-d6): 143.8, 140.3, 132.8, 130.9, 130.7, 130.2, 127.3, 123.4, 108.4, 



20.3. 19F NMR (acetone-d6): δF −72.6 (d, JFP = 707 Hz). 31P NMR (acetone-d6): δP −144.3 (sept, JP–F = 707 Hz) ppm. 

UV–vis (CH2Cl2): nm (ε, M–1 cm–1) 251 (47,500), 269sh (29,500), 323 (25,500), 366 (19,800). Single crystals of 

(1)(PF6)·1.75CH2Cl2 used for X-ray diffraction were grown by layering a dichloromethane solution with hexanes 

and allowing solvents to slowly diffuse overnight. 

Oxidation Reactions 

[Ga(L)2](PF6)(SbCl6), (2)(PF6)(SbCl6) 
A colorless solution of 0.1055 g (0.121 mmol) of (1)(PF6) in 10 mL of CH2Cl2 was added to a red solution of 0.0732 

g (0.121 mmol) of (CRET)(SbCl6) in 25 mL of CH2Cl2. The flask originally containing (1)(PF6) was washed with 

another 10 mL of CH2Cl2 to ensure quantitative transfer to the reaction mixture. After the resulting royal blue 

solution had been stirred 15 min, solvent was removed under a vacuum. The resulting blue residue was washed 

with three 10 mL portions of hexanes to remove the organic byproduct and then was dried under a vacuum for 

several hours to leave 0.132 g (90%) of (2)(PF6)(SbCl6) as a blue powder. μeff (solid, 295 K): 1.8 ± 0.1 μB. UV–vis 

(CH2Cl2): nm (ε, M–1 cm–1) 250 (59,200), 321 (25,600), 362 (21,600), 596 (1,100), 857 (5,500), 1490 (90). 

Violet needle crystals of [Ga(L)2](PF6)1.5·1.05 toluene·0.65CH2Cl2·0.17H2O (see text) were grown by layering and 

equimolar mixture of (1)(PF6) and (CRET)(SbCl6) in CH2Cl2 with toluene and allowing solvents to diffuse in a −20 

°C freezer. 

[Ga(L)2](PF6)(SbCl6)2, (3)(PF6)(SbCl6)2 
A colorless solution of 0.1382 g (0.159 mmol) of (1)(PF6) in 20 mL of CH2Cl2 was added to a colorless solution of 

0.1156 g (0.317 mmol) of (NO)(SbCl6) in 30 mL of CH2Cl2. After the resulting royal blue solution had been stirred 

15 min, solvent was removed under a vacuum and the blue residue was dried under a vacuum to leave 0.213 g 

(87%) of (3)(PF6)(SbCl6)2 as a blue powder. μeff (solid, 295 K): 2.4 ± 0.1 μB. UV–vis (CH2Cl2): nm (ε, M–1 cm–1) 605 

(1,300), 849 (6,200). 

Blue crystals of (3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene were obtained from by mixing 15 mg (17 μmol) of (1)(PF6), 13 

mg (34 μmol) of (NO)(SbCl6) in 5 mL of CH2Cl2, layering with 15 mL of toluene, and allowing solvents to diffuse. 

Computational Studies 
DFT calculations were performed with the M06 meta-hybrid GGA functional(40) using the def2-SV(P) double-ζ 

basis set.(41) Solvent (DCM) effects were accounted for by using the polarizable continuum model 

IEFPCM,(42) as implemented in Gaussian 09.(43) The chosen model proved superior over other combinations of 

functionals (M06 or B3LYP(44)) and basis sets (def2-SV(P) or 6311-G*/LANL2DZ(45)) for reproducing bond 

distances and spectroscopic data, as summarized in the Supporting Information. Gas phase structures of the 

metal complexes were optimized using the initial geometry from X-ray structural studies. Analytical vibrational 

frequency calculations were also carried out to verify that the optimized geometries were stationary points. 

Time-dependent DFT methodology was used for excitation energy calculations.(46) 

Crystallography 
X-ray intensity data from a colorless prism of (1)(PF6)·1.75CH2Cl2 and a dark blue plate of 

(3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene were collected at 100(2) K with a Bruker AXS 3-circle diffractometer equipped 

with a SMART2(47) CCD detector (Cu Kα radiation, λ = 1.54178 Å). X-ray intensity data from a violet needle of 

(2)(PF6)1.5·1.05 toluene·0.65CH2Cl2·0.17H2O, were collected at 100(2) K with an Oxford Diffraction Ltd. Supernova 

equipped with a 135 mm Atlas CCD detector, by using Cu Kα radiation, λ = 1.54178 Å Raw data frame integration 

and Lp corrections were performed with SAINT+(47) for the data collected from the Bruker instrument but with 

CrysAlisPro(48) for that from the Oxford instrument. Final unit cell parameters were determined by least-

squares refinement of 9343 reflections from the data set of (1)(PF6)·1.75CH2Cl2, 19744 reflections from the data 



set of (2)(PF6)1.5·1.05·toluene·0.65CH2Cl2·0.17H2O, and 5460 reflections from data set of 

(3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene, with I > 2σ(I) for all cases. Analysis of the data showed negligible crystal 

decay during collection in each case. Direct methods structure solutions, difference Fourier calculations and full-

matrix least-squares refinements against F2 were performed with SHELXTL.(49) Numerical absorption 

corrections based on the real shapes of the crystals for (1)(PF6)·1.75CH2Cl2, and 

(3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene were applied using SADABS,(47) while an empirical absorption correction 

using spherical harmonics implemented in the SCALE3 ABSPACK scaling algorithm was used for 

(2)(PF6)1.5·1.05·toluene·0.65CH2Cl2·0.17H2O. The carbon atoms of the highly disordered solvent molecules in 

each structure were refined with isotropic displacement parameters. The remaining non-hydrogen atoms were 

refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized 

positions and included as riding atoms. The X-ray crystallographic parameters and further details of data 

collection and structure refinements are presented in Table 3. 

Table 3. Crystallographic data collection and structure refinement for (1)(PF6)·1.75CH2Cl2, (2)(PF6)1.5·1.05 

toluene·0.65CH2Cl2·0.17H2O, and (3)(PF6)2(SbCl6)·2.33CH2Cl2·toluene 

compound (1)(PF6)·1.75CH2C
l2 

(2)(PF6)1.5·1.05 
toluene·0.65CH2Cl2·0.17H2O 

(3)(PF6)2(SbCl6)·2.33CH2Cl2·t
oluene 

formula C41.75H39.50Cl3.50F6

GaN10 
C47.99H45.68Cl1.3F9GaN10O0.17P1.5 C49.33H48.66Cl10.66F12GaN10P2S

b 

formula weight 1020.10 1098.43 1640.80 

crystal system triclinic monoclinic orthorhombic 

space group P1 ̅ P21/c Pbca 

temp [K] 100(2) 100(2) 100(2) 

a [Å] 12.9440(3) 17.6021(3) 17.5543(5) 

b [Å] 17.4584(4) 24.6732(3) 24.9500(6) 

c [Å] 20.9702(5) 23.2482(4) 29.1682(8) 

α [°] 73.149(2) 90 90 

β [°] 85.8230(10) 108.0987(18) 90 

γ [°] 79.4170(10) 90 90 

V [Å3] 4457.29(18) 9597.2(3) 12775.1(6) 

Z 4 8 8 

Dcalcd [g cm–3] 1.520 1.520 1.706 

λ [Å] (Mo or Cu Kα) 1.54178 1.54178 1.54178 

μ.[mm–1] 3.716 2.644 9.151 

abs correction numerical numerical numerical 

F(000) 2078 4492 6526 

θ range [°] 3.47–67.37 3.30–71.02 3.03–68.05 

reflections collected 37225 53008 107137 

independent 
reflections 

14703 
(Rint 0.0203) 

18009 (Rint 0.0384) 11388 (Rint 0.0813) 

T_min/max 0.4226/0.6243 0.68/0.963 0.2619/0.7110 

data/restraints/para
meters 

14703/63/1231 18009/48/1285 11388/15/790 

goodness-of-fit on F2 0.982 0.914 1.062 

R1/wR2 [I > 2σ(I)]a 0.0484/0.1257 0.0433/0.1067 0.0646/0.1433 

R1/wR2 (all data)a 0.0536/0.1294 0.0731/0.1163 0.0853/0.1528 

largest diff 
peak/hole/e Å–3 

1.763/–0.730 0.84/–0.57 1.79/–1.28 



aR1 = Σ∥Fo| – |Fc∥/Σ|Fo| wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2. 
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