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The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used
to compute quenching cross sections of several rotationally excited states of water molecule by
impact of He atom in a broad range of collision energies, and is tested against the full-quantum
calculations on the same potential energy surface. In current implementation of MQCT method,
there are two major sources of errors: one affects results at energies below 10 cm−1, while the
other shows up at energies above 500 cm−1. Namely, when the collision energy E is below the
state-to-state transition energy �E the MQCT method becomes less accurate due to its intrinsic
classical approximation, although employment of the average-velocity principle (scaling of col-
lision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies,
MQCT is expected to be accurate but in current implementation, in order to make calculations
computationally affordable, we had to cut off the basis set size. This can be avoided by using a more
efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20%
of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision
energies, except near resonances, where the errors are somewhat larger. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4868715]

I. INTRODUCTION

The current paper aims at investigating the use of a mixed
quantum/classical theory (MQCT) for rotational quenching of
a rigid asymmetric top molecule by an atom, applying this
method to H2O + He system, and comparing results against
the full-quantum close-coupling (CC) calculations.

Development of the mixed quantum/classical theories of
inelastic scattering dates back to 1960s and 1970s, when the
focus was mostly on electronic transitions in atom + atom
collisions.1 The work of McCann and Flannery2–4 in 1970s
extended these ideas onto rotational and vibrational transi-
tions in a diatomic molecule collided with an atom, which was
then revisited and further developed by Billing in the 1980s
and 1990s.5, 6 In such mixed quantum/classical methods, the
scattering motion of the atom with respect to the molecule is
always treated classically, but there are two options for treat-
ment of the internal ro-vibrational motion of the molecule.

One option is to restrict quantum mechanical description
to vibrational degrees of freedom only, treating molecular
rotation classically. This approach received most of attention
and was applied to several molecular systems such as
diatomic + atom, triatomic + atom, and diatomic + diatomic
by Billing and his numerous collaborators5–10 and later by
Light.11 In recent years, it was re-introduced by Babikov
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Russia.
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and collaborators12–17 and tested against the full-quantum
calculations in a broad range of scattering energies.18, 19

Another option is to treat rotational motion of the
molecule quantum mechanically, either keeping the vibra-
tional motion frozen (which corresponds to the rigid ro-
tor) or treating it also quantum mechanically, in which case
all the internal molecular degrees of freedom are described
coherently. Surprisingly, this approach received very little
attention. Billing20–22 applied it to the simplest system –
rotational quenching of H2(j = 2) by He impact, and com-
pared his results vs. full-quantum calculations available at that
time (at two values of scattering energies only) and experi-
mental data. Of course, comparison with experiment is the
ultimate goal, but there may be other sources of disagreement
between theory and experiment, besides approximations in-
herent to theoretical approach. It would certainly be desirable
to see how results of this method would compare to results of
full-quantum calculations on the same potential energy sur-
face (PES) in a broad range of collision energies. To the best
of our knowledge such benchmark study has not been carried
out by Billing20–22 or anyone else. Furthermore, it appears that
Billing20–22 used only a simplified version of MQCT, known
as coupled-states (CS) approximation.

Recently, Semenov and Babikov23 published an im-
proved fully coupled version of MQCT for ro-vibrationally
inelastic scattering in both space-fixed (SF) and body-fixed
(BF) reference frames. This development enabled calcula-
tions of rotational quenching and excitation in a broad range
of collision energies in two real diatomic + atom systems,24, 25

one of which had all light atoms, H2 + He, while the other

0021-9606/2014/140(13)/134301/7/$30.00 © 2014 AIP Publishing LLC140, 134301-1
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had all reasonably heavy atoms, N2 + Na. Elastic and in-
elastic, integral and differential (over scattering angle) cross
sections were computed and compared to full-quantum calcu-
lations. Several low-lying and some highly excited rotational
states were tried. Both the fully coupled and the approximate
CS-version of MQCT were tested.25 These extensive bench-
mark studies showed that MQCT is a promising approach to
computational studies of rotationally inelastic scattering.

The next logical step, and the goal of this paper, is to ex-
pand the rotationally inelastic version of MQCT in order to
be able to describe quenching of a rigid asymmetric top rotor
by an atom, apply such theory to a real triatomic molecule,
and compare results of MQCT against the full quantum cal-
culations using the same PES, in a broad range of collision
energies. This has never been done in the past and is not a
trivial problem, since both theory development and extensive
calculations are needed. MQCT theory is simpler to formulate
in the SF reference frame, and we pursue this approach here.

II. THEORY

In a mixed quantum/classical approach, the basic as-
sumption is the existence over the inelastic coupling region of
a common mean trajectory �R(t) for the relative motion, gov-
erned by an appropriate average potential.6 Within this picture
the relative kinetic operator may be omitted from the quantum
Hamiltonian and be replaced by a time-dependent interaction
potential V ( �R(t),�) where � is a collective notation for the
internal rotational degrees of freedom of the molecule, i.e.,
the Euler angles (α, β, γ ) that rotate the space-fixed axis to
an axis system fixed in the frame of the molecule. For the
water molecule, the molecule-fixed axis z is along the sym-
metry axis of the water molecule, and the plane xz is a plane
of symmetry. A general orientation (α, β, γ ) is produced by
rotating the molecule-fixed axis system, beginning at (0,0,0),
by an angle α about the molecule-fixed axis z, followed by a
rotation β about the molecule-fixed axis y, and then another
rotation γ about the molecule-fixed axis z.

Hence, the time-dependent Schrödinger equation govern-
ing the evolution of time-dependent rotational wave function
is

i¯
dψ(�, t)

dt
= [Ĥrot + V ( �R(t),�)]ψ(�, t). (1)

The time-dependent rotational wave function is expanded
over the basis set of unperturbed rotational eigenstates
φjτm(�) that correspond to the eigenvalues Ejτ

ψ(�, t) =
∑
jτm

cjτm(t)φjτm(�) exp(−iEjτ t/¯), (2)

where j is the rotational quantum number of the asymmet-
ric top molecule, τ is the pseudo-quantum number that varies
between −j and j (alternatively, we may use the pseudo-
quantum numbers ka, kc with the correspondence τ = ka

− kc), and m the eigenvalue of the ĵZ operator where Z is the
axis of space-fixed reference frame. The unperturbed asym-
metric top eigenstates φjτm are expressed in terms of symmet-
ric top eigenstates as

φjτm(α, β, γ ) =
∑

k

a
j

τk((2j + 1)/8π2)1/2Dj

km(α, β, γ ),

(3)
where the Dj

km(α, β, γ ) are Wigner rotation functions defined
according to conventions of Silver26 with k the projection of
ĵ on the molecule-fixed z-axis. The coefficients a

j

τk and the
eigenvalues Ejτ are obtained by diagonalizing the Hamilto-
nian of the unperturbed asymmetric rotor

Ĥrot = (2Ix)−1J 2
x + (2Iy)−1J 2

y + (2Iz)
−1J 2

z , (4)

where Iα are the principal moments of inertia in the molecule-
fixed axis and J 2

α the angular momentum operators about the
corresponding axes.27

Substitution of Eq. (2) into Eq. (1) leads to a system of
coupled equations for the time dependent coefficients cjτm(t)

i¯
dcjτm(t)

d t
=

∑
j ′τ ′m′

cj ′τ ′m′(t) exp(−i (Ej ′τ ′ − Ejτ )t/¯)

×〈φjτm(�)|V ( �R(t),�)|φj ′τ ′m′(�)〉. (5)

In the space-fixed reference frame, the relative vector
joining the center of mass of the partners, �R(t) can be ex-
pressed either using polar coordinates (R(t), 
(t), �(t)) or
using Cartesian coordinates (X(t), Y(t), Z(t)). The rela-
tive Cartesian coordinates correspond to Q(t) = qH2O(t)
− qHe(t) with qα(t) the Cartesian coordinates of the center
of mass of the partners in space-fixed reference frame.

The mixed quantum/classical method uses the Ehrenfest
theorem with additional approximations in order to calculate
the trajectory �R(t). The Ehrenfest theorem28 gives the time
evolution of the average of the coordinates q and of the con-
jugate momenta p of a quantum system. If we consider q1, q2,
. . . , p1, p2, . . . and the Hamiltonian of the quantum system is
H(q1, q2, . . . ; p1, p2, . . .), the time evolution of the average
〈qi〉 and 〈pi〉 is given by

i¯
d

d t
〈qi〉 =

〈
∂H
∂pi

〉
, (6)

i¯
d

d t
〈pj 〉 = −

〈
∂H
∂qj

〉
, (7)

where the average is taken over the wave function  that sat-
isfy the time dependent Schrödinger equation involving H.

For the problem at hand, the total Hamiltonian describ-
ing our system depends upon the internal angular coordinates
�, on the centers of mass coordinates qα , on their conjugate
momenta p�, pα and is given by

Htot = T̂ + Ĥrot + V ( �R(t),�), (8)

where T̂ is the kinetic energy operator for translational motion
of the collision partners

T̂ = P 2
H2O

2mH2O
+ P 2

He

2mHe
. (9)

The total wave function satisfying the time-dependent
Schrödinger equation involving Htot can be expanded on
products ψ(�, t)�, where � is the time dependent transla-
tional wave function. In the classical limit, it is assumed that
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the wave packet � is localized enough so that in Eqs. (6)
and (7) we can replace 〈q〉 and 〈p〉 by the classical posi-
tions and momenta qcl and pcl of the centers of mass of the
partners. This is possible if we replace in the second half of
Eqs. (6) and (7) the average

〈�|∂Htot

∂pi

(�, p�; qi, pi)|�〉, (10)

by

∂Htot

∂pi

(�, p�; 〈qi〉, 〈pi〉)

= ∂Htot

∂pi

(�, p�; (qi)cl, (pi)cl). (11)

Here i = 1, 6. Hence, in the classical limit Eq. (6) be-
comes for each center of mass of the partners

i¯
d

dt
qi = pi/mα (12)

with mα being the mass of the partner; and Eq. (7) becomes

i¯
d

dt
pj = − ∂

∂qj

〈φjτm(�)|V ( �R(t),�)|φj ′τ ′m′(�)〉

= − ∂

∂qj

〈φjτm(�)|V (q1, q2, . . . ,�)|φj ′τ ′m′ (�)〉.
(13)

The propagation of Eqs (5), (12), and (13) will pro-
vide the coefficients cjτm(t = ∞) that will allow to calculate
the transition probabilities between rotational energy levels.
Energy of the final rotational wave packet is given by

〈E〉 =
∑
j ′τ ′m′

c2
j ′τ ′m′(t = ∞) Ej ′τ ′ . (14)

Conservation of energy can be expressed as: Ein + Ejτ = Eout

+ 〈E〉, where “in” and “out” label the kinetic energy of clas-
sical trajectory before and after collision, the initial state is
unprimed, final states are primed. Strictly speaking, the sum
in Eq. (14) contains all states of the basis set, including states
of the channels energetically closed at given collision energy.
Indeed, in the mixed quantum/classical approach the total en-
ergy is conserved only on average and, if the transition prob-
ability is small, even a highly excited energetically closed
channel can participate in the process. Usually, transitions to
such energetically closed channels are negligibly weak and
cause no problem,24, 25 but here we found that at low collision
energies (roughly E < �E/2, where �E = Ej ′τ ′ − Ejτ ) the
intensity of transitions to closed channels grows catastrophi-
cally, which is also accompanied by intense transitions to the
low-lying states, due to conservation of the total average en-
ergy. We saw that at low collision energies this internal re-
distribution of energy within the wave packet can be many
times larger than the energy exchange between the molecule
and the colliding atom, which affects strongly the values of
quenching cross sections, and is unphysical. In order to elim-
inate this behavior, one can reduce the size of the basis set
to the open channels only (at given collision energy), using
the condition Ej ′τ ′ < Ein + Ejτ . This is different from the

full-quantum calculations, where some closed channels were
included in order to ensure convergence.

For calculations at high collision energies, the size of the
basis set can be reduced further in order to ease calculations.
This is an issue of convergence (with respect to the basis
set size), and it should be checked by repeating calculations
with different basis set sizes. We used the following condi-
tion: Ej ′τ ′ < Emax + Ejτ , where the value of cut-off energy
was chosen equal to Emax = 500 cm−1. At collision energies
Ein > Emax such cut-off procedure removes some highly ex-
cited states that formally become open, but in practice remain
weekly populated. In order to check the effect of this cut-off,
we carried out additional calculations with Emax = 1000 cm−1

for one transition, from state 11,1 to state 00,0. The differ-
ence was slightly below 5%, and it was decided to use Emax

= 500 cm−1 for all processes studied here.
Thus, calculations at low collision energies involved 4,

6, and 9 states in the basis for the initial states 11,1, 11,0, and
20,2, respectively. At energies E = 500 cm−1 calculations in-
volved 131, 137, and 144 states in the basis, while at en-
ergies E = 1000 cm−1 calculations involved 348, 356, and
365 states in the basis, for the initial states 11,1, 11,0, and 20,2,
respectively.

An efficient Monte Carlo procedure for sampling the ini-
tial conditions for classical degrees-of-freedom was described
in detail in a recent paper by Semenov and Babikov23 (see
Fig. 1 and Eqs. (12)–(15) there). Here, for calculations in the
SF reference frame, the center of mass of water molecule at
the initial moment of time was placed at the origin, while the
initial position of He atom was sampled randomly and uni-
formly in a plane placed at a distance of 20 a0 from the ori-
gin. Note that in MQCT calculations the sampling over impact
parameter replaces summation over orbital quantum number

FIG. 1. Energy dependence of quenching cross section for the first excited
state 11,1 of para-water. Blue symbols (connected by straight lines) represent
final results of MQCT calculations, obtained using the average velocity ap-
proach. Red line gives results of the full-quantum calculations. Grey symbols
represent the raw or unscaled results of MQCT.
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(used in the full-quantum approach).23 In this work, the max-
imum value of impact parameter was determined by conver-
gence studies, for each value of collision energy separately.
It varied from bmax = 8 a0 used for E > 1000 cm−1 to bmax

= 20 a0 used for E < 10 cm−1.

III. MATRIX ELEMENTS OF THE POTENTIAL
ENERGY SURFACE

Both in the semi-classical and the quantum calculations,
we use the ab initio SAPT PES of Patkowski et al.29 that has
been tested by Yang et al.30, 31 to obtain new rate coefficients
for the rotational excitation of lowest 10 levels of ortho/para-
H2O by He.30–32 This PES is calculated in relative coordinates
with respect to the molecular fixed coordinate system de-
scribed in Sec. II. Indeed, as described by Patkowski et al.,29

the water molecule lay in the molecular xz plane, with oxygen
on the positive half of the molecular z axis. The position of
helium is expressed in spherical polar coordinates (R, θ , φ),
so that θ = 0 for He on the oxygen side of the water C2v axis,
and φ = 0 when all four atoms are coplanar.

Within this molecule-fixed coordinate system the PES is
usually expanded in spherical harmonics as

V MF (R, θ, φ) =
∑
p1q1

vp1q1 (R) [Yp1q1 (θ, φ)

+(−)q1 Yp1−q1 (θ, φ)], 0 ≤ q1 ≤ p1.

(15)

Nevertheless, both the MQCT and the full-quantum calcula-
tions require a potential energy surface written in space-fixed
coordinates. Similar to the expression of Phillips et al.,27 re-
duced to a rigid asymmetric top + atom system, the PES is
therefore expanded in space fixed coordinates as

V SF (R,
,�, α, β, γ )

=
∑
p1q1

vp1q1 (R) Tp1q1 (
,�, α, β, γ ), 0 ≤ q1 ≤ p1, (16)

with
Tp1q1 (
,�, α, β, γ )

= 1

1 + δq1,0

∑
r1

Yp1r1 (
,�)
[
Dp1

q1r1
(α, β, γ )

+(−)q1Dp1
−q1r1

(α, β, γ )
]
, (17)

where −q1 ≤ r1 ≤ p1 and where the molecular fixed expres-
sion corresponds to α = 0, β = 0, γ = 0 with 
, � becoming
θ , φ (the collision direction).

The coupling term 〈φjτm(�)|V ( �R(t),�)|φj ′τ ′m′(�)〉
of Eq. (5) is then given by the matrix elements of
V SF (R,
,�, α, β, γ ) over asymmetric top eigenstates
(Eq. (3))

〈φjτm(α, β, γ )|V SF |φj ′τ ′m′(α, β, γ )〉

= 1

1 + δq1,0

∑
p1q1

vp1q1 (R)
∑
kk′

a
j

τka
j ′
τ ′k′[j ][j ′](−)k−m

×
[(

j p1 j ′

−k q1 k′

)
+ (−)q1

(
j p1 j ′

−k −q1 k′

)]

×
∑
r1

Yp1r1 (
,�)

(
j p1 j ′

−m r1 m′

)
, (18)

where [j] = (2j + 1)1/2 and R, 
, � are time-dependent
quantities.

For CC calculations, the potential matrix elements are
taken over the total wave function usually expanded over ba-
sis functions which are eigenfunctions of the total angular
momentum J such as

JM
jτl (
,�, α, β, γ )

=
∑
mml

〈jmlml|JM〉φjτm(α, β, γ )Ylml
(
,�), (19)

where 〈jmlml|JM〉 is a Clebch-Gordan coefficient, and are
diagonal in J and independent of M (space-fixed projection
of Ĵ ). These matrix elements can be obtained by reducing
Eq. (11) of Phillips et al.,27 to an asymmetric top-atom sys-
tem and are given by

〈
JM

jτl |V SF |JM
j ′τ ′l′

〉 = 1√
4π (1 + δq1,0)

∑
p1q1

vp1q1 (R)
∑
kk′

a
j

τka
j ′
τ ′k′[j ][j ′][l][l′][p1](−)J−j ′−j+k

×
[(

j p1 j ′

−k q1 k′

)
+ (−)q1

(
j p1 j ′

−k −q1 k′

)] (
l l′ p1

0 0 0

) {
l l′ p1

j ′ j J

}
, (20)

where [l] = (2l + 1)1/2. This expression is compatible with
Eq. (26) of Green.33

IV. CLOSE COUPLING QUANTUM CALCULATIONS

The full-quantum scattering calculations were performed
using modified versions of both the sequential and par-
allel versions of the MOLSCAT code34, 35 using the Airy
propagator.36 The water molecule is described by a version of

the effective Hamiltonian of Kyro,37 compatible with the sym-
metries of the PES. We use the molecular constants from Ta-
ble I of Kyro37 and our calculated rotational levels of H16

2 O are
identical to those of Green.38 Close coupling calculations are
carried out up to collision energy 8000 cm−1. The rotational
basis set includes, in addition to open channels, 10 closed
channels for all total energies up to 2000 cm−1, and is reduced
to 5 closed channels for higher energies. State-to-state tran-
sition cross sections were converged to better than 1%. Our
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rate coefficients for quenching can be compared to those of
Yang et al.30, 31 obtained with roughly the same methodology
and using the same potential energy surface. For example, for
transition from 11,1 to 00,0 in the temperature range 5–800 K
the difference is below or about 1%.30–32

V. ANALYSIS AND DISCUSSIONS

In Fig. 1, we report results for quenching of the first ex-
cited state of para-water 11,1 onto the ground rotational state
00,0 (�E = −37.14 cm−1). The value of quenching cross
section is presented as a function of collision energy in a
broad range (note that logarithmic scale is used for both axes).
Red line gives results of the full-quantum (CC) calculations,
used here as a benchmark. Two sets of MQCT data are pre-
sented: Gray symbols/line give the raw MQCT data, where
the value of cross section is plotted as a function of trajec-
tory energy in computer simulations. Blue symbols/line give
the final MQCT results, scaled using the average-velocity
principle6, 19 in order to incorporate microscopic reversibility.
Overall, these final MQCT results are in reasonable agree-
ment with full-quantum results in a broad range of collision
energies, from 1 cm−1 to 10 000 cm−1. In this energy in-
terval, the dependence of quenching cross section exhibits
pronounced oscillations, passing through the minimum near
55 cm−1 and the maximum near 500 cm−1. Results of MQCT
calculations reproduce this behavior really well. Even at en-
ergies below 10 cm−1, where the full-quantum cross section
exhibits broad scattering resonances, the results of MQCT
calculations still follow the benchmark data, on average.

In Fig. 2, we report results for quenching of the first ex-
cited state of ortho-water 11,0 onto its ground rotational state
10,1 (�E = −18.60 cm−1), in the same broad range of col-
lision energies. Here, the agreement of MQCT results with
full-quantum benchmark data is even better, particularly in the

FIG. 2. Same as in Fig. 1, but for quenching of the first excited state 11,0 of
ortho-water.

intermediate energy range, from 5 cm−1 to 150 cm−1. At en-
ergies below 5 cm−1 we see that, again, MQCT cross section
exhibits behavior close to average over broad scattering reso-
nances. Overall, the energy dependence of cross section, in-
cluding oscillations, the minimum and the maximum, is well
reproduced by the average-velocity (scaled) MQCT consis-
tent with microscopic reversibility, and not so well by the raw

trajectory data.
In Fig. 3, we report results for quenching of the second

excited state of para-water 20,2. For this state, there are two
quenching pathways: onto the ground rotational state 00,0 di-
rectly (�E = −70.13 cm−1) and through the first excited para-
state 11,1 (�E = −32.97 cm−1). First of these processes is 3–4
times less intense than the second one, and cross sections for
both are presented in Fig. 3. Performance of MQCT method
is similar to what we saw in Figs. 1 and 2. The value of cross
section slightly oscillates (less than in Figs. 1 and 2) through
the energy range from 1 cm−1 to 10 000 cm−1, and this behav-
ior is captured by MQCT. The effect of broad scattering res-
onances at energies below 10 cm−1 is reproduced on average
rather well. Full-quantum calculations also show some very
narrow scattering resonances at higher energies. We did not
try to reproduce those with MQCT (e.g., by repeating calcu-
lations on a fine grid of points) but, from Figs. 1–3 combined
it looks like MQCT may be insensitive to narrow scattering
resonances.

Figure 4 is presented in order to quantify deviations of
MQCT method from the full-quantum benchmark results. In
this figure, the percent-errors for quenching cross sections are
plotted as a function of the ratio E/�E, together for all tran-
sitions discussed above. The data of Fig. 4(a) indicate that
results of scaled MQCT rarely deviate from the full quantum
results by more than 20%. This performance is rather consis-
tent through the entire range of energies considered here. The

FIG. 3. Same as in Figs. 1 and 2, but for quenching of the second excited
state 20,2 of para-water. Three upper curves correspond to transition into the
first excited state 11,1, while three lower curves correspond to transition into
the ground state 00,0.
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FIG. 4. Percent-errors of all MQCT calculations presented in Figs. 1–3.
Frame (a) is for the average-velocity approach (i.e., for the final results),
while frame (b) is for the raw MQCT data. Quenching of 11,1 – blue cir-
cles, quenching of 11,0 – green diamonds, quenching of 20,2 into 11,1 – black
squares, and into 00,0 – red triangles.

average value of error (over all data points of Fig. 4(a)) is less
than 13%, which is very encouraging. In Fig. 4(b), we col-
lected the percent errors of the raw MQCT results. Here, we
better see correlation between the ratio E/�E and the error of
MQCT, but the values of errors are much larger for these raw

results than for scaled results, particularly at lower collision
energies, where the errors approach 100%.

VI. CONCLUSIONS

In this work, we applied the mixed quantum/classical the-
ory to compute quenching cross sections of several rotation-
ally excited states of water molecule by impact of He atom.
To our best knowledge, this is the first study where MQCT
methodology is applied to a real system of asymmetric top

rotor + atom, in a broad range of collision energies, and re-
sults are tested against the full-quantum calculations on the
same potential energy surface. The purpose of this study was
not really to test the numerical efficiency of the method, and
not that much its accuracy, but rather to investigate whether
this method carries potential for consistent theoretical treat-
ment of rotationally inelastic transitions in a broad range of
scattering energies.

In current implementation of the MQCT method, there
are two major sources of errors: One is important at en-
ergies below 10 cm−1, while the other shows up at en-
ergies above 500 cm−1. Indeed, it is known that MQCT
method becomes less accurate at collision energies below
�E, due to its intrinsic approximations.19, 24, 25 This is ex-
pected and cannot be avoided, although we saw that employ-
ment of the average-velocity principle (scaling of collision
energy) in order to satisfy microscopic reversibility19 helps
to improve MQCT results dramatically at low and interme-
diate energies. In contrast, at higher energies MQCT is ex-
pected to be more accurate in principle. The errors we see in
this work at higher energies are due to current implementa-
tion, rather than due to MQCT assumptions. Namely, in this
work we had to cut off the basis set size of MQCT calcu-
lations, in order to make them computationally affordable.
This deficiency can probably be eliminated, by developing
a more efficient version of MQCT (see below). Overall, the
errors of MQCT method are within 20% almost everywhere
through four-orders-of-magnitude range of collision ener-
gies, except near resonances, where the errors are somewhat
larger.

Although the mixed quantum/classical theory is easier
to formulate in the SF reference frame, we found that nu-
merical calculations in SF are extremely demanding com-
putationally. Namely, the state-to-state transition matrix is
complex-valued and is dense,23 so that summation over its
elements in Eqs. (5) and (13) is a costly procedure. Fur-
thermore, each element of the transition matrix depends on
three variables, either polar (R, 
, �) or Cartesian (X, Y, Z),
and these variables change continuously along trajectories.
We considered building splines of all these data (each ma-
trix element as a function of three variables), but found that
memory requirements would make this approach impractical.
Thus, we decided to re-compute matrix elements on the fly,
multiple times per time-step, since gradients are also needed
for classical equations of motion, Eq. (13). This worked, but
was costly in terms of the CPU time and, as a result, our
MQCT calculations came out even more expensive than the
benchmark full-quantum CC calculations! So, at this point
we cannot recommend MQCT as a computationally efficient
method yet, but we have all reasons to expect that MQCT
will be much more efficient in the BF reference frame. In-
deed, in the BF reference frame the state-to-state transition
matrix is real-valued, simply structured around its diagonal
and is very sparse.23 Furthermore, each matrix element de-
pends on one variable only – the molecule-atom distance
R.23 Such matrix elements could be pre-computed once and
then splined efficiently, to use during propagation of MQCT
trajectories. We plan to undertake such study in the near
future.
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