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ABSTRACT 
NONLINEAR CONTROL AND ESTIMATION  
WITH GENERAL PERFORMANCE CRITERIA 

 
 
 

Xin Wang 
 

Marquette University, 2011 
 
 This dissertation is concerned with nonlinear systems control and estimation with 
general performance criteria. The purpose of this work is to propose general design 
methods to provide systematic and effective design frameworks for nonlinear system 
control and estimation problems. First, novel State Dependent Linear Matrix Inequality 
control approach is proposed, which is optimally robust for model uncertainties and 
resilient against control feedback gain perturbations in achieving general performance 
criteria to secure quadratic optimality with inherent asymptotic stability property together 
with quadratic dissipative type of disturbance reduction. By solving a state dependent 
linear matrix inequality at each time step, the sufficient condition for the control solution 
can be found which satisfies the general performance criteria. The results of this 
dissertation unify existing results on nonlinear quadratic regulator, H  and positive real 

control. Secondly, an 2H H  State Dependent Riccati Equation controller is proposed 

in this dissertation. By solving the generalized State Dependent Riccati Equation, the 
optimal control solution not only achieves the optimal quadratic regulation performance, 
but also has the capability of external disturbance reduction. Numerically efficient 
algorithms are developed to facilitate effective computation. Thirdly, a robust multi-
criteria optimal fuzzy control of nonlinear systems is proposed. To improve the 
optimality and robustness, optimal fuzzy control is proposed for nonlinear systems with 
general performance criteria. The Takagi-Sugeno fuzzy model is used as an effective tool 
to control nonlinear systems through fuzzy rule models. General performance criteria 
have been used to design the controller and the relative weighting matrices of these 
criteria can be achieved by choosing different coefficient matrices. The optimal control 
can be achieved by solving the LMI at each time step. Lastly, since any type of controller 
and observer is subject to actuator failures and sensors failures respectively, novel robust 
and resilient controllers and estimators are also proposed for nonlinear stochastic systems 
to address these failure problems. The effectiveness of the proposed control and 
estimation techniques are demonstrated by simulations of nonlinear systems: the inverted 
pendulum on a cart and the Lorenz chaotic system, respectively.  
 
 
Dissertation Supervisor: Prof. Edwin E. Yaz, PhD EECE 
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CHAPTER 1 INTRODUCTION 

 
 
 

1.1 Background 

Nonlinear system theory has been the mainstream of dynamical systems and automatic 

control science due to its extensive industrial applications in the areas of robotics, aerial 

vehicles, underwater vehicles, spacecraft, automotives, navigation, telecommunications, 

signal processing, financial engineering, etc. Broadly speaking, nonlinear system theory 

can be categorized into nonlinear control and nonlinear estimation. Nonlinear control 

deals with the following question: given the nonlinear system dynamics, can one achieve 

the goal of influencing the plant output behavior through the control input in order to 

yield the desired performance? Nonlinear estimation deals with the following question: 

given the values of the measurement signal, can one estimate the values of those state 

vectors, which are not directly measurable, as a function of time? In summary, the goal of 

nonlinear control and estimation is to synthesize controllers and estimators for nonlinear 

dynamical systems to achieve desired performance objectives in the presence of 

disturbances, noises and interferences such as parameter perturbations and unknown 

dynamics.  

 

1.1.1 Overview of Nonlinear Control 

The beginning of modern control theory can be traced back to the 1950s, while classical 

control developed mostly during World War II. Due to the Cold War, two different 

approaches to modern control developed: one is the Lyapunov Function approach 
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developed in the Soviet Union, and the other is the Dynamic Programming and 

Pontryagin Maximum Principle approach developed in the western world [1].  

 The Lyapunov Function approach design relies on an energy type of control 

Lyapunov function for a given nonlinear system which always guarantees control 

stability. Although the construction of the desired Lyapunov function may not be feasible 

or it may be difficult to find, the Lyapunov Function approach always guarantees the 

overall global stability of the system, unlike many other control techniques for nonlinear 

systems.   

The Dynamic Programming was first proposed by Bellman results in Hamilton 

Jacobi Equations. On the other hand, Pontryagin Maximum principle leads to Euler 

Lagrange Equations. It is well known that the optimal control solutions of nonlinear 

systems are conventionally characterized in terms of Hamilton Jacobi Equations (HJEs). 

The solutions of the HJEs provide the necessary and sufficient optimal control conditions 

for nonlinear systems. Furthermore, when the controlled system is linear time invariant 

and the performance index is Linear Quadratic Regulator (LQR), the HJE reduces to 

Algebraic Riccati Equations (AREs). In this sense, the classical 2H  theory, concerning 

the Linear Quadratic Gaussian (LQG) control theory, has been set up in the 1950s and 

1960s, which assumes perfect models and complete statistical knowledge. However, in 

the 1970s, it had been found that LQG controller can be highly non-robust with respect to 

system modeling errors.  

Originally introduced by Zames in 1980s, H  control and estimation theory 

became one of the most significant accomplishments in automatic control theory during 

the 1980s and 1990s [3]. As for H  nonlinear control problems, the optimal solutions are 
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equivalent to solving the corresponding Hamilton Jacobi Inequalities (HJIs). Although 

Hamilton Jacobi Equations and Hamilton Jacobi Inequalities are powerful tools for 

nonlinear optimal control theory, neither of them are well suited for industrial 

applications due to the associated computational complexity. HJEs and HJIs, which are 

first order partial differential equations and inequalities, cannot be solved for more than a 

few state variables. 

Motivated by the success of optimal control methods for linear system, there has 

been a great deal of research involved in approximation of the solutions of HJEs and HJIs 

over the last decade. At the same time, other well-known nonlinear control methods have 

been developed including feedback linearization, adaptive control, gain scheduling, 

nonlinear predicative control, fuzzy control and sliding mode control. However, all these 

approaches are limited in their range of applicability, and the use of one particular control 

technique for a specific system demands tradeoffs between performance, robustness, 

stability, optimality and computational complexity. 

As powerful alternatives to HJE/HJI techniques, the State Dependent Linear 

Matrix Inequality (SDLMI) and the State Dependent Riccati Equation (SDRE) techniques 

provide us very effective algorithms for synthesizing nonlinear feedback controls. Both 

the State Dependent Linear Matrix Inequality and the State Dependent Riccati Equation 

utilize state dependent representations of nonlinear systems and some of the earliest work 

can be found in [30, 31, 41, 42, 46].  

The purpose behind the SDLMI approach is to convert a nonlinear system control 

problem into a convex optimization problem which is solved by Linear Matrix Inequality. 

Recent developments in convex optimization provide very efficient algorithms for 
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solving LMIs. If a solution can be expressed in a LMI form, then there exist optimization 

algorithms providing efficient global numerical solutions [5]. Therefore, if the LMI is 

feasible, then the LMI control technique provides asymptotically stable solutions 

satisfying various design objectives. 

The SDRE control has been emerging as a general design method since the mid-

1990s, and provides a systematic and effective design framework for nonlinear systems. 

Motivated by Linear Quadratic Regulator control using the Algebraic Riccati Equation 

(ARE), Cloutier et al. extended the result to nonlinear quadratic regulator problem by 

using state dependent coefficient matrices [7, 8]. A discrete-time SDRE method has also 

been developed in [14]. Due to the computational advantage, stability and effectiveness 

in control, the SDRE method is of meaningful and practical importance and has already 

been applied in a wide range of applications, including robotics, guidance and navigation, 

control of missiles, aircraft, satellite/spacecraft, unmanned aerial vehicles (UAVs), ship 

systems, autonomous underwater vehicles (AUVs), automotive systems, chemical 

processes and biomedical systems, etc. A recent survey of the developments in SDRE 

method can be found in [6].  

 

1.1.2 Overview of Nonlinear Estimation 

The problem of least square estimation of stochastic processes was first investigated by 

Kolmogorov and Wiener, which can be traced back to 1940s. Wiener is regarded as the 

pioneer for introducing the use of stochastic models and optimization in estimation and 

control. The assumption of both Kolmogorov and Wiener’s work is that extraneous 

noises, disturbances and interferences are stationary and implicitly Gaussian. Moreover, 
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both Kolmogorov and Wiener’s theory is limited to the input-output description of the 

system.  

In the late 1950s and early 1960s, a breakthrough on linear system estimation 

theory was made by Rudolph E. Kalman based on the state space approach. Kalman 

Filter is one of the most widely used methods for linear system state estimation and 

tracking due to its simplicity, optimality and robustness. Kalman filtering has been 

proved to be the optimal 2H  solution for linear systems with extraneous noises, 

disturbances and interferences, either stationary or non-stationary. The theory has been 

proven and widely used in guidance and navigation of space vehicle to which the theory 

was first applied. On the other hand, H  estimation was investigated in 1980s, in order 

to maximize the estimator’s robustness against the external finite energy disturbances 

with unknown statistical descriptions. That is why a wide range of disturbances can be 

accommodated.  

Traditional Kalman filtering proves to be the optimal estimation solution for 

linear systems with additive noise; however, it does not work as well for nonlinear 

systems. Over the past 40 years, the Extended Kalman Filter (EKF), which locally 

linearizes the nonlinear model so that Kalman Filter theory can be applied, has been the 

dominant tool for nonlinear state estimation. However, the EKF is also well-known for 

being difficult to implement, difficult to tune and unstable for severely nonlinear systems.  

Another alternative to EKF, the State Dependent Riccati Equation estimator for 

nonlinear estimation, has been proposed by Cloutier et al. SDRE controllers have been 

widely deployed in recent advanced nonlinear control systems, and have shown to be far 

more robust than LQR based on standard linearization techniques applied to nonlinear 
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systems. The SDRE estimator has been shown to be a powerful alternative to EKF in 

some design applications [6, 7]. 

Recently, researchers have developed the Unscented Kalman Filter (UKF), 

showing better estimation in most applications than EKF, especially for severely 

nonlinear models. As pointed out by Simon J. Julier and Jeffery K. Uhlmann [34], UKF 

is based on the principle that “it is easier to approximate a probability distribution than it 

is to approximate an arbitrary nonlinear function or transformation”.  

Other well-known nonlinear estimation methods have also been developed, 

including Gaussian Filter (GF), Rao-Blackwellised Particle Filter (RBPF), Cubature 

Kalman Filter (CKF), etc. However, all these approaches are limited in the range of 

applicability, and the use of one particular estimation technique for a specific system 

demands tradeoffs between performance, robustness, stability, optimality and 

computational complexity. These nonlinear estimation techniques have been extensively 

applied to ranging from GPS navigation to military sensor networks, from autonomous 

vehicles trajectory planning to wireless communications [77].  

 

1.2 Outline of Dissertation and Summary of Contributions 

This dissertation is concerned with problems of nonlinear control and estimation with 

general performance criteria. As previously mentioned, the goal of nonlinear control and 

estimation is to synthesize controllers and estimators for nonlinear dynamical system and 

measurement models to achieve desired general performance criteria in the presence of 

disturbances, noises and interferences. The purpose of this dissertation research is to 

propose controller and estimators that are stable, optimal, robust and resilient. The 
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controller / estimator design algorithms are verified and demonstrated through computer 

simulations. The logical dependency of each chapter is shown in Fig.1.1, and the 

contributions of each chapter in this dissertation are summarized below: 

The following five chapters deal with optimal and robust nonlinear control. 

 Chapter 2 presents the background theories of nonlinear control, which are 

necessary for the stability analysis and synthesis design of controllers, including 

Hamilton Jacobi Equation theory, dissipative system analysis and convex 

optimization theory with Linear Matrix Inequalities. Moreover, the general 

performance criteria are proposed in Chapter 2 to achieve the mixed performance 

objectives of Nonlinear Quadratic Regulator, H  and dissipativity, which will be 

used throughout the dissertation.  

  Chapter 3 presents the State Dependent Linear Matrix Inequality control 

approach. The general performance criteria are applied to design a controller 

guaranteeing the quadratic sub-optimality with inherent stability property in 

combination with dissipativity type of disturbance attenuation. By solving the 

linear matrix inequality at each time, the optimal control solution can be found to 

satisfy the desired performance objectives. The benchmark under-actuated 

system, the inverted pendulum on a cart, is used to demonstrate the effectiveness 

and robustness of the proposed control techniques. Since any type of controller 

may be subject to actuator failures, the control of nonlinear stochastic systems 

under actuator failures is also investigated in Section 3.3, which shows significant 

improvement over the traditional nonlinear control techniques.   

 The robust and resilient State Dependent Linear Matrix Inequality (SDLMI) 
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control of nonlinear systems with general performance criteria is proposed in 

Chapter 4, which extends the results in Chapter 3. The controller is robust for 

model uncertainties and resilient for control gain perturbations. The general 

performance criteria is a generalization of the Nonlinear Quadratic Regulator, 

H , positive realness and sector bounded constraint performance objectives. The 

results of this chapter unify existing results on nonlinear quadratic regulator, H  

and positive real control. The inverted pendulum on a cart is also used to 

demonstrate the effectiveness and robustness of the proposed control techniques.  

 Chapter 5 presents 2H H  State Dependent Riccati Equation control. The 

traditional SDRE method approaches nonlinear quadratic regulator problem. In 

this chapter, a novel 2H H  State Dependent Riccati Equation control approach 

is developed with the purpose of providing a generalized control framework for 

nonlinear systems. By solving the generalized State Dependent Riccati Equation, 

the optimal control solution is found to satisfy mixed performance criteria which 

guarantees quadratic optimality with inherent stability property in combination 

with H  type of disturbance reduction. The effectiveness of the proposed 

technique is demonstrated by simulations involving the control of inverted 

pendulum on a cart. 

 Chapter 6 presents robust multi-criteria optimal fuzzy control of nonlinear 

systems. To improve the optimality and robustness, optimal fuzzy control 

methods for nonlinear systems with general performance criteria are proposed and 

evaluated. The Takagi-Sugeno fuzzy model provides an effective tool to control 

nonlinear systems through the fuzzy rule models. General performance criteria 
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have been used to design the controller and the relative weighting matrices of 

these criteria can be achieved by choosing different coefficient matrices. The 

optimal control can be obtained by solving LMI at each time. The inverted 

pendulum on a cart problem is used again as an example to demonstrate its 

effectiveness. The simulation studies show that the proposed method provides a 

satisfactory alternative to the existing nonlinear control approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Dependency of each chapter in this dissertation 

Chapter 2  
Overview of 
nonlinear 
control 

Chapter 3  
State Dependent 
Linear Matrix 
Inequality control 

Chapter 4  
Robust and Resilient 
State Dependent 
Linear Matrix 
Inequality control 

Chapter 5  
H2-H∞ State 
Dependent Linear 
Matrix Inequality 
control 

Chapter 6  
Multi-criteria 
optimal fuzzy 
control of 
nonlinear systems 

Chapter 7  
Overview of 
nonlinear 
estimation 

Chapter 8  
Resilient filtering 
for nonlinear 
systems with 
random sensor 
failures 
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The last two chapters deal with optimal and robust nonlinear estimation.  

 Chapter 7 briefly goes over the nonlinear estimation techniques, including EKF, 

UKF and SDRE estimators. Since nonlinear estimators are the dual problems of 

nonlinear controllers, Chapter 7 provides the background of nonlinear estimation 

techniques which bridges nonlinear control theory to the novel resilient stochastic 

nonlinear filtering with sensor failures theory in Chapter 8.  

 Chapter 8 presents resilient filtering for nonlinear systems with random failures. 

Since any type of observer may be subject to the sensor failures, a novel resilient 

filtering technique for nonlinear systems with random sensor failures is proposed 

in Chapter 8, which shows significant improvement over the traditional nonlinear 

estimation techniques.   

Chapter 9 concludes the dissertation and summarized the results, followed by a 

discussion of related future research directions.  

 

1.3 Notation 

The following standard notation is used throughout this work:  

  stands for the set of non-negative real numbers, C  stands for a complex number, n  

stands for the n-dimensional Euclidean space.  P   is the probability of an event. 

 E x x  is the mean/expectation value of a random variable x .  ,x x X�  denotes a 

random variable x  with arbitrary distribution with mean x  and covariance X . k j   is 

the Kronecker delta function; that is, 1k j    when  k j ; and 0k j    when k j . Let 
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A  and B  be n m  matrices, the Hadamard product [13] of A  and B  is denoted by 

A B , and is defined as      ,i j ij ij
A B A B   for 1 ,1i n j m    .  

For nx , the Euclidean norm is  1/2Tx x x  where  T  represents the 

transpose. n m  is the set of n m  real matrices. m nA   denotes an m n  matrix with 

real elements. 1A  is the inverse of matrix A ,  0 0A A   represents A  is a positive 

(negative) definite matrix, and mI  is an identity matrix of dimension m m . 

    min max A A   denotes the minimum (maximum) eigenvalues of the symmetric 

matrix A .  

Continuous-time case: 2L  is the space of finite dimensional vectors with finite energy: 

2

0
( )x t dt


  . Let 2

n
eL  be the extended space of 2L  space defined by: 

2

2

{ :  is a measureable function: ,

 with property that  for all finite T }

n n
e

T

L f f

F f L




  

 
 

where 
( ),   0

( )
0,        T

f t t T
F f t

T t

 
  

  is called the truncation function on  with values in 

n . The inner product in this space is defined by 20
, ,  for ,

T T n
eu v u vdt u v L  . 

Discrete-time case: The inner product on n  is defined by
1

,
n

i ii
u v u v


  . 2l  is the 

space of infinite sequences of finite dimensional vectors with finite energy: 

2

0 kk
x




  .  

The following lemmas are used extensively in derivations in this dissertation: 

Lemma 1.1: 1T T T TAB BA AA BB                                                                       (1.1) 

Proof 
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This can be proven easily by considering 

  1/2 1/2 1/2 1/2 0
T

A B A B                                             (1.2) 

Also, by choosing A, B matrices as
0

,
0

T

T

a
A B

b

   
    
   

, we have 

 
1

0 0

0 0

T T

T T

a b a a

b a b b


 

   
   

   
                                         (1.3) 

Lemma 1.2: Denote 1X P  for positive definite matrix 0P  , then the following 

equality always holds 

XPX X                                                      (1.4) 

This can be proven easily by considering  

       1 1 10
d d d d

I PP P P P P
dt dt dt dt

                               (1.5) 

Note that since P  will be used to describe the energy content for the quadratic energy 

function   TV x x Px , which needs to decrease due to the asymptotic stability 

requirement, 1X P  matrix will be increasing in time. Therefore, we conclude 

0XPX X    . 

Lemma 1.3: Schur’s complement: The matrix inequality 0
T

A B

B C

 
 

 
 is equivalent to 

1 0TA BC B   for 0C  , which is also equivalent to 1 0TC B A B   for 0A  .   

Lemma 1.4: Rayleigh’s Inequality, which is    2 2

min max
TA x x Ax A x   . Matrix 

form of Rayleigh’s inequality [15] can also be stated as: for matrices T n nX X    and 

m nY  , the matrix inequality    min max
T T TX YY YXY X YY    holds.  
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CHAPTER 2 BACKGROUND THEORY FOR NONLINEAR CONTROL 

 
 
 

The nonlinear system control solution leads to a Hamilton Jacobi Equation and Hamilton 

Jacobi Inequality. The classical nonlinear optimal control is reviewed, followed by a brief 

summary of dissipative system analysis and convex optimization theory. More 

importantly, we propose the general performance criteria which will be used throughout 

the dissertation. 

 

2.1 Hamilton Jacobi Equations  

The Principle of Optimality, also commonly referred to as Dynamic Programming, was 

proposed by Bellman in 1952. The Hamilton Jacobi Equation (HJE) is derived using the 

dynamic programming theory for optimal control [31]. Consider the general nonlinear 

system dynamics described by 

   0 0, , ,  and  x f x u t x t t given                                            (2.1) 

Here, nx  represents the state vector, mu  represents the control input, the 

nonlinear function  : , ,n m nf      is continuous differentiable in all of its 

arguments. The optimal control we consider is to determine the admissible control input 

 u t  to minimize the cost function  

          
0

0 0, , , , ,
ft

f f t
V x t u t x t t x u d                             (2.2) 
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where both   ,f fx t t , the penalty at the final state, and     , ,x u     are 

continuously differentiable functions. V is called the performance index. The optimal 

cost function,   * ,V x t t , is the minimal performance index, defined by 

     *

( )
, min , ,

u t
V x t t V x t u t .                                     (2.3) 

By assuming the optimal cost function   * ,V x t t  exists and is continuously 

differentiable with respect to both time and state, the optimal cost must satisfy the 

following partial differential equation: 

         
* *

( )
min , , , ,
u t

V V
x t u t t f x t u t t

t x

  

     
                    (2.4) 

with the boundary condition  

     * , ,f f f fV x t t x t t                                       (2.5) 

(2.4) and (2.5) are referred to as the Hamilton Jacobi Equations or Hamilton Jacobi 

Bellman Equations. The Hamilton Jacobi Equation represents a sufficient and necessary 

condition for an optimal cost function to exist.  

 

2.2 The Nonlinear Minimax Problem  

In this section, we consider the infinite horizon optimal control problem and the input-

affine nonlinear time invariant system, which is a particular form of (2.1), as follows: 

                1 2 0, 0x t f x t g x t u t g x t w t x x                    (2.6) 

where nx  represents the state vector, mu  represents the control input, sw  

represents the external noises and disturbances. Both 1 2,g g  are assumed to be 

continuously differentiable in x  [31].  
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The performance objective is to determine the admissible control input to 

minimize the cost function under the worst possible noises and disturbances effect: 

 
 

             
2

( ) ( ) 0,

2

0

inf sup ,

,

u t w t L

T T

J u w

J u w q x t u t u t w t w t dt

 


  

               (2.7) 

with    0q x t  for all x  and  0 0q  .  w t  is assumed to be 2L  type of disturbance. 

The problem can be viewed as a zero-sum differential game with minimizing the player 

u  and maximizing the player w . The detailed game theory approach to H -optimal 

control can be found in [3].    

The Hamilton Jacobi Equation associated with this problem is  

                  2
1 20 min max T T

xu w
V x f x g x u g x w q x u t u t w t w t             

(2.8) 

Based on completion of the square arguments, we have the following equality 

22
2

1 2 2 2 1 12 2

1 1 1 1
0 min max

2 2 4
T T T T T T T

x x x x x
u w

u g V w g V V f V g g g g V q
 

            
   

 

(2.9) 

Therefore, the minimizing control should be  

   *
1

1

2
T T

xu g x V x                                               (2.10) 

The worst case noise and disturbance is  

   *
22

1

2
T T

xw g x V x


                                             (2.11) 

Substituting (2.10) and (2.11) into (2.8), we obtain the corresponding Hamilton Jacobi 

Equation: 



16 
 

 
 

                 2 2 1 12

1 1
0

4
T T T

x x xV x f x V x g x g x g x g x V x q x


 
    

 
       (2.12) 

 

2.2.1 Nonlinear Regulator Problem 

One of the special cases of minimax control problem is the nonlinear regulator problem, 

in which case there is no noise and disturbance effect, i.e. the coefficient matrix 2 0g  . 

Therefore, the performance index (2.7) becomes: 

         
0

TV x q x t u t u t dt


                                 (2.13) 

The Hamilton Jacobi Equation (2.12) becomes  

              1 1

1
0

4
T T

x x xV x f x V x g x g x V x q x                    (2.14) 

Finally, the optimal control input can be obtained from (2.10) 

   *
1

1

2
T T

xu g x V x                                          (2.15) 

It is also noteworthy that the solution to the nonlinear regulator problem 

corresponds to that of the minimax problem with   . 

 

2.2.2 Nonlinear H  Control Problem 

If we further assume      Tq x h x h x  for some continuous function  h x  with 

 0 0h  , and take 
 h x

z
u

 
  
 

 as our performance output, the performance objective 

becomes                      
 

        
2

2

0( ) ( ) 0,
min max T T

u t w t L
z t z t w t w t dt



 
                        (2.16) 
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which is equivalent to               2 22

0 0
z t dt w t dt K x

 
    

where  0 K x    is a constant, with  0 0K  . We define the pre-Hamiltonian 

          2 22
1 2xK V x f x g x u g x w z w      .                     (2.17) 

The optimal solutions can be obtained based on completion the squares of arguments as 

before. Here, we find the solutions based on the following conditions: 

 0, 0
K K

w u
  
 

 
                                                     (2.18) 

we have                                          *
1

1

2
T T

xu g V                                                     (2.19) 

*
22

1

2
T T

xw g V


                                                       (2.20) 

which has the saddle point property 

     * * * *, , , , , , , , ,x x xK x V u w K x V u w K x V u w                                (2.21) 

This leads to the Hamiltonian  , xH x V given as  * *, , ,xK x V u w , i.e. 

                   2 2 1 12

1 1

4
T T T T

x x xH V x f x V x g x g x g x g x V x h x h x 
 

    
 

    

            (2.22) 

Immediately following from differential game theory [72, 73], the solution of the state 

feedback H  suboptimal control centers around finding solutions to the Hamilton Jacobi 

Inequality,  , 0xH x V  , i.e. 

                   2 2 1 12

1 1
0

4
T T T T

x x xH V x f x V x g x g x g x g x V x h x h x 
 

     
 

 

        (2.23) 
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2.2.3 State Dependent Riccati Equation Control 

The nonlinear quadratic game problem becomes the nonlinear quadratic regulator 

(NLQR) control problem when there exists a weight on the control action in the 

performance index 

          
0( )

min T T

u t
V x x t Qx t u t Ru t dt


                               (2.24) 

In general, weighting matrices ,Q R  can be functions of the state variable.  

Following the previous procedure, we have the Hamilton Jacobi Equation 

       1
1 1

1
0

4
T T T

x x xV x f x V x g R g V x x Qx                            (2.25) 

and the optimal control feedback gain: 

* 1
1

1

2
T T

xu R g V                                                   (2.26) 

When we have a system in linear form: 

( ) ( )x A x x B x u                                                  (2.27) 

The energy function,  ( ) TV x x P x x , for some  P x , is a continuous positive definite 

matrix-valued function. The HJE (2.25) becomes a State Dependent Algebraic Riccati 

Equation (SDRE) as: 

                   1 0T TA x P x P x A x P x B x R x B x P x Q x          (2.28) 

The optimal feedback control (2.26) becomes 

     * 1 Tu R x B x P x x                                            (2.29) 

which is also known as the State Dependent Riccati Equation (SDRE) control approach 

for nonlinear systems. SDRE control has been investigated and applied in aerospace and 
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industrial applications in the past decade with growing popularity, due to its effectiveness 

and robustness for synthesizing nonlinear feedback control [6]. We further advance the 

SDRE approach in Chapter 5, in which 2H H  SDRE control approach will be 

developed. 

 

2.3 Dissipative Systems Analysis and Control  

Dissipative theory provides a framework for the design and analysis of system control 

using an input-output description based on energy related considerations. The application 

of dissipative theory to linear systems has also received considerable attention over the 

past two decades. The concept of dissipative system was first introduced in [93], and 

further generalized in [22]-[25], playing an important role in systems, circuits and 

controls. The theory of dissipative systems generalizes the basic tools for control design 

including the passivity theorem, bounded real lemma, Kalman-Yakubovich lemma and 

circle criterion. Dissipativity performance includes H  performance, passivity, positive 

realness and sector bounded constraint as special cases. Research addressing the 

problems of H  and positive real control systems can be found in [12, 13, 20, 54, 62]. 

Control of uncertain linear systems with 2L -bounded structured uncertainty satisfying 

H  and passivity criteria have been tackled in [37, 50]. More recent developments 

involving the quadratic dissipative control for linear systems problem has been tackled in 

[64, 94]. This section covers the essential dissipative theory to this work. 
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2.3.1 Passive Systems 

Consider the input-output relations of a system with input ( )u t  and output ( )y t  satisfying 

 :H u H u y  , assuming that 2, 2,: e eH L L . The system is passive if there is a 

constant 0   such that the following property holds 

                          
0

T Ty t u t dt                                            (2.30) 

for all functions ( )u t  and all 0T  . If in addition, there are constants 0   and 0   

such that                             
0 0 0

T T TT T Ty t u t dt u t u t dt y t y t dt                 (2.31) 

for all functions ( )u t  and all 0T  , then the system is input strictly passive if 0  , 

output strictly passive if 0  , and very strict passive if 0, 0   . 

Assume that for a given system, there is a continuous energy function 

  0V t  such that  

               
0

0
T TV T V y t u t dt                                       (2.32) 

for all functions ( )u t , for all 0T   and all  0V . Then the system is passive. Assume, in 

addition there are constants 0   and 0   such that   

               
0 0 0

0
T T TT T TV T V y t u t dt u t u t dt y t y t dt                 (2.33) 

for all functions ( )u t  and all 0T  , then the system is input strictly passive if 0  , 

output strictly passive if 0  , and very strict passive if 0, 0   . 
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2.3.2 Bounded Real and Positive Real for Linear Systems 

A transfer function  g s  of a linear time-invariant single input single output system is 

said to be bounded real [36], if 

1.  g s  is analytic in  Re 0s  . 

2.  g s  is real for real and positive s . 

3.   1g s   for all  Re 0s  . 

This definition can be extended to a matrix function,  G s , of a linear time-invariant 

multiple input multiple output system as follows: 

A transfer matrix,   m mG s C  , is bounded real if all elements of  G s  are 

analytic for  Re 0s   and the H  norm satisfies   1G s

  where we recall that 

    maxsupG s G j


 
 
 . Equivalently, the second condition can be replaced by 

    0T
mI G j G j    for all  . Strict bounded realness can be achieved by 

changing the inequality from greater than ( 0 ) to simply greater ( 0 ). 

A transfer function  h s is said to be positive real if  

1.  h s  is analytic in  Re 0s  . 

2.  h s  is real for real and positive s . 

3.  Re 0h s     for all  Re 0s  . 

When the definition of positive realness extends to a multivariable system, the 

transfer matrix,   m mH s C  , is positive real if we have  

1.  H s  has no pole in  Re 0s  . 
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2.  H s is real for all positive real s . 

3.    * 0H s H s  for all  Re 0s  . 

The relation between passivity and positive realness can be stated as follows: 

A system with transfer function,  h s , is passive if and only if the transfer function  h s  

is positive real. 

 

2.3.3 Kalman-Yakubovich-Popov Lemma 

The Kalman-Yakubovich-Popov Lemma (KYP), also known as Positive Real Lemma, is 

considered to be one of the milestones in control and estimation theory, due to its 

extensive applications in stability, dissipativity, passivity, optimal control, adaptive 

control and stochastic control. The importance of the KYP Lemma is that it establishes 

equivalence between the conditions in the frequency domain for a system to be positive 

real and the input-output relationship of that system in the time domain. The KYP 

Lemma presents the conditions on the matrices describing the state space representation 

of the system.    

Lemma 2.1: Consider a linear time invariant system described by the following state 

space representation 

     
     

x t Ax t Bu t

y t Cx t Du t

 


 


                                        (2.34) 

with initial condition   00x x . The Positive Real Lemma can be stated as follows [36]: 

Let the system (2.34) be controllable and observable. The system transfer function 

    1

nH s C sI A B D
    with , , ,n n n m m n m mA B C D       is Positive Real 
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with   ,m mH s s C  , if and only if there exists matrices 0TP P  , n nP  , 

n mL  and m mW  such that  

T T

T

T T

PA A P LL

PB C LW

D D W W

   


  
  

                                            (2.35) 

Notice that the set of equations can also be written as 

0
*

T T
T

T T

LPA A P C PB
L W

D D W

     
          

                      (2.36) 

Proof 

Only the sufficiency portion will be presented in this section; the necessity part of the 

proof involves the Youla factorization. Let equations (2.35) be satisfied, then [36] 

       

       

     

   

   

 

1 1

1 11 1

1 1

1 1

1 1

1

T T T T T T
n n

T T T T T T
n n n n

T T T T
n n

T T T T
n n

T T T T T
n n

T T T
n

H s H s D D B sI A C C sI A B W W

B sI A P P sI A B B sI A LW W L sI A B

W W B sI A P s s PA A P sI A B

B sI A LW W L sI A B

W W B sI A LW W L sI A B

B sI A LL

 

  

 

 

 



       

          

         

  

   


   

     

         

1

1 1

1 11 1

n

T T
n n

T T T T T T
n n n n

sI A B

B sI A P sI A B s s

W B sI A L W L sI A B B sI A P sI A B s s



 

  

 
 
   

   

               

      

(2.37) 

which is positive semidefinite for all  Re 0s  . 
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2.3.4 Dissipative Systems 

The system   is said to be dissipative if there exists an energy storage function   0V x   

such that the following dissipation inequality holds [36]: 

          
0

0 ,
T

V x T V x u t y t dt                                (2.38) 

along all possible trajectories of   starting at  0x , for all 0T  . 

Based on different supply rates     ,u t y t , we have the general supply rate:   

    , T T Tu t y t y Qy u Ru y Su                                  (2.39) 

with ,T TQ Q R R  .  

If 0, , 0,m mQ R I S I      , the system is said to be input strictly passive, i.e.  

       
0 0

T TT Ty t u t dt u t u t dt    .                                 (2.40) 

If 0, , 0,m mR Q I S I      , the system is said to be output strictly passive, i.e.  

       
0 0

T TT Ty t u t dt y t y t dt    .                              (2.41)                         

If , , 0, 0,m m mQ I R I S I          , the system is said to be very strictly passive, 

i.e.                            
0 0 0

T T TT T Ty t u t dt y t y t dt u t u t dt       .                    (2.42)    

                                           

2.4 General Performance Criteria 

Based on the performance criteria found in the literature given above, in this section, we 

now discuss general performance criteria for nonlinear control design, which yields a 

mixed Nonlinear Quadratic Regular (NLQR) in combination with H  or dissipativity 

performance index. The commonly used system performance criteria, including bounded 
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realness, positive realness, sector boundedness and quadratic cost criterion, become 

special cases of the general performance criteria. The general performance criteria 

facilitate the controller and estimator design to allow for better tradeoffs between 

performance, robustness, stability, optimality and computational cost.    

 

2.4.1 Continuous-Time General Performance Criteria 

Before proposing continuous time general performance criteria, let us introduce the 

following quadratic energy supply function 2 2: r p
e eE L L     associated with the 

system equations, defined by [22]-[25]: 

 , , , 2 , ,
T T T

E z w T z Mz z Sw w Nw                               (2.43) 

where r rM  , r pS  , p pN   are the chosen weighing matrices. Next, from the 

definition of dissipativity, we have: 

Given matrices r rM  , r pS  , p pN   with ,M N  symmetric, the system 

with energy function (2.43) is said to be ( , ,M S N )-dissipative if for some real function 

( )   with (0) 0  , 

0 2( , , ) ( ) 0, , 0eE z w T x w L T                                  (2.44) 

Furthermore, if for some scalar 0  , 

0 2( , , ) ( ) , , , 0eT
E z w T x w w w L T                                (2.45) 

The system is said to be strictly ( , ,M S N )-dissipative.  

The following theorem considers general performance criteria to provide us a 

general framework for control design. The special cases of the general performance 

criteria are discussed in Remark 2.1 and Remark 2.2. 
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Theorem 2.1: Consider the quadratic function 0TV x Px  , matrices r rM  , 

r pS  , p pN   with ,M N  symmetric, , 0n nQ Q  , , 0m mR R   with ,Q R  

symmetric, the system control will achieve mixed nonlinear quadratic regulator and 

dissipative performance if the following condition holds: 

 2 0, 0T T T T TV x Qx u Ru z Mz z Sw w Nw T                        (2.46) 

Proof 

By integrating (2.46) from 0 to T, we have 

      
0 0 0

2 ( ) 0 , 0
T T TT T T T Tz Mz z Sw w Nw dt x Qxdt u Rudt V x T V x T                

                   (2.47) 

Let    0 (0)x V x  , ( ) TV x x Px ,  ( ) 0V x T  ,                                                       (2.48)  

implies    00
2 0, 0

T T T Tz Mz z Sw w Nw dt x T      , which is the condition of 

( , ,M S N )-dissipative.  

     By adding the terms T Tx Qx u Ru , we include the nonlinear quadratic regulator 

control performance into the original ( , ,M S N )-dissipative criteria. 

Remark 2.1: Notice that both H  and passivity are special cases of ( , ,M S N )-

dissipativity. The special cases are summarized as follows: 

Case 1: 2, 0,M I S N I    , the strict ( , ,M S N )-dissipativity reduces to H  design 

[13]. The overall control design satisfies mixed NLQR- H performance. 

Case 2: 0, , 0M S I N   , the strict ( , ,M S N )-dissipativity reduces to strict positive 

realness [62]. The overall control design satisfies mixed NLQR-strict positive realness 

performance. 
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Case 3:   2, 1 ,M I S I N I       , the strict ( , ,M S N )-dissipativity reduces to 

mixed H  and positive real performance design, when  0,1  . The overall control 

design satisfies mixed NLQR- H -positive real performance. 

Case 4:    1 2 1 2 2 1

1 1
, ,

2 2
T T TM I S K K N K K K K       , where 1K  and 2K  are 

constant matrices of appropriate dimensions, the strict ( , ,M S N )-dissipativity reduces to 

a sector-bounded constraint [18]. The overall control design satisfies mixed NLQR-sector 

bounded constraint performance. 

Remark 2.2: If the coefficient matrices , ,M S N are scalars, we denote  

, 2 ,M S N                                              (2.49) 

The general performance criteria (2.46) becomes 

0T T T T TV x Qx u Ru z z z w w w                                  (2.50) 

with 0, 0Q R   functions of x .  

Note that upon integration over time from 0 to T , (2.50) yields 

0 0
( ) (0)

T TT T T T TV T x Qx u Ru dt z z z w w w dt V                           (2.51) 

for all 0T  . 

By properly specifying the value of the weighing matrices , , ,Q R C D  and , ,   , 

general performance criteria can be used in nonlinear control design, which yields a 

mixed Nonlinear Quadratic Regular (NLQR) in combination with H  or passivity 

performance index. For example, if we take 1, 0, 0     , (2.50) and (2.51) yield 

0 0

0

( ) (0)

T T T T

T TT T T T

V x Qx u Ru z z w w

V T x Qx u Ru z z dt V w w dt





     

        



              (2.52) 
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which is a mixed suboptimal NLQR- H  design. The possible mixed performance criteria 

which can be used in this framework with different design parameters , ,    are given 

in Tab.2.1.  

Tab.2.1.Various performance criteria in a general framework 

     Performance criteria 

1 0 <0 Suboptimal NLQR−H Design 

0 1 0 NLQR−Passivity Design 
0 1 >0 NLQR−Input Strict Passivity Design 

>0 1 0 NLQR−Output Strict Passivity Design 
>0 1 >0 NLQR−Very Strict Passivity 

 

2.4.2 Discrete-Time General Performance Criteria 

Before proposing discrete time general performance criteria, let us introduce the 

following quadratic energy supply function, E , associated with the system equations, 

defined in [22]-[25]: 

 , , 2 , ,k k k k k k k kE z w z Mz z Sw w Nw                       (2.53) 

where r rM  , r pS  , p pN  are the chosen weighing matrices. Next, from the 

definition of dissipativity, we have: 

Given matrices r rM  , r pS  , p pN   with ,M N  symmetric, the system 

with energy function (2.53) is said to be ( , ,M S N )-dissipative if for some real function 

( )  with (0) 0  , 

0 2( , ) ( ) 0, , 0k kE z w x w l k      .                                (2.54) 

Furthermore, if for some scalar 0  , 

0 2( , ) ( ) , , , 0k k k kE z w x w w w l k       ,                          (2.55) 

the system is said to be strictly ( , ,M S N )-dissipative.  
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The following theorem is the discrete counter part of Theorem 2.2. The special 

cases of the general performance criteria are discussed in Remark 2.3 and Remark 2.4. 

Theorem 2.2: Consider the quadratic function 0T
k k k kV x P x  , matrices r rM  , 

r pS  , p pN   with ,M N  symmetric, , 0n nQ Q  , , 0m mR R   with ,Q R  

symmetric, the system control will achieve mixed nonlinear quadratic regulator and 

dissipative performance if the following condition holds: 

 1 2 0, 0T T T T T
k k k k k k k k k k k kV V x Qx u Ru z Mz z Sw w Nw k           

(2.56) 

Proof 

Note that upon summation over k, we have 

1 1

00 0
2

N NT T T T T
k k k k k k k k k k Nk k

z Mz z Sw w Nw x Qx u Ru V V
 

 
                        (2.57) 

Let  0 0x V  , ( ) T
k k k kV x x P x , 0NV  , (2.57) implies 

   1

00
2 0

N T T T
k k k k k kk

z Mz z Sw w Nw x


                            (2.58) 

which is the condition of ( , ,M S N )-dissipative.  

By adding the terms T T
k k k kx Qx u Ru , we include the nonlinear quadratic regulator 

control performance within the original ( , ,M S N )-dissipative criteria.  

Remark 2.3: Notice that both H  and passivity are special cases of ( , ,M S N )-

dissipativity. The special cases are summarized as follows: 

Case 1: 2, 0,M I S N I    , the strict ( , ,M S N )-dissipativity reduces H  design 

[13]. The overall control design satisfies mixed NLQR−H  performance. 

Case 2: 0, , 0M S I N   , the strict ( , ,M S N )-dissipativity reduces to strict positive 
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realness [62]. The overall control design satisfies mixed NLQR-strict positive realness 

performance. 

Case 3:   2, 1 ,M I S I N I       , the strict ( , ,M S N )-dissipativity reduces to 

mixed H  and positive real performance design, when  0,1  . The overall control 

design satisfies mixed NLQR- H -positive real performance. 

Case 4:    1 2 1 2 2 1

1 1
, ,

2 2

TT T TM I S K K N K K K K       , where 1K  and 2K  are 

constant matrices of appropriate dimensions, the strict ( , ,M S N )-dissipativity reduces to 

a sector-bounded constraint [18]. The overall control design satisfies mixed NLQR-sector 

bounded constraint performance. 

Remark 2.4: If the coefficient matrices , ,M S N are scalers, we denote  

, 2 ,M S N                                              (2.59) 

The general performance criteria (2.56) becomes 

1 0T T T T T
k k k k k k k k k k k k k kV V x Q x u R u z z z w w w                               (2.60) 

with 0, 0k kQ R   being functions of kx . 

Note that upon summation over k , (2.60) yields 

1

00

N T T T T T
N k k k k k k k k k k k kk

V x Q x u R u z z z w w w V  


                            (2.61) 

By properly specifying the value of the weighing matrices , , ,k k k kQ R C D  and 

, ,   , general performance criteria can be used in nonlinear control design, which 

yields a mixed Nonlinear Quadratic Regulator (NLQR) in combination with H  or 

passivity performance index. For example, if we take 1, 0, 0     , (2.60) and 

(2.61) yields 
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1

1 1

00 0

0T T T T
k k k k k k k k k k k k

N NT T T T
N k k k k k k k k k kk k

V V x Q x u R u z z w w

V x Q x u R u z z V w w






 

 

      

        
                     (2.62) 

which is mixed suboptimal NLQR- H design. 

The possible performance criteria which can be used in this framework with 

different design parameters , ,    are summarized in Tab.2.2. Note also that for 

0, 0, 0     , it follows from (2.60) that 
2

0 kk
x




   and therefore, the 

controlled system is exponentially asymptotically stable for all of the criteria given in the 

Tab.2.2. 

Tab.2.2.Various performance criteria in a general framework 

     Performance criteria 

1 0 <0 Suboptimal NLQR−H Design 

0 1 0 NLQR−Passivity Design 
0 1 >0 NLQR−Input Strict Passivity Design 

>0 1 0 NLQR−Output Strict Passivity Design 
>0 1 >0 NLQR−Very Strict Passivity 

 

 

2.5 Convex Optimization and Linear Matrix Inequality 

A Linear Matrix Inequality (LMI) has the form 

  0
1

0
m

i i
i

F x F x F


                                            (2.63) 

where mx  (with ix  as the thi  entry of the vector) is the unknown variable and the 

symmetric matrices T n n
i iF F   , 0,...,i m  are given. The inequality   0F x   

means   0Tx F x x   for all nx .  
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When the matrices, 'iF s , are diagonal, the LMI   0F x   is just a set of linear 

inequalities. Nonlinear convex inequalities are converted into LMI using Schur’s 

complements; the basic idea is given as follows [5]: 

The LMI: 
   

 
0

*

Q x S x

R x

 
 

 
 where        ,T TQ x Q x R x R x   and  S x  

depend affinely on x , is equivalent to 

          10, 0TR x Q x S x R x S x   .                       (2.64) 

and also                                         10, 0TQ x R x S x Q x S x   .                      (2.65)  

Note that symbol “*” denotes the term necessary to make the whole matrix symmetric.   

 

2.6 Summary 

Chapter 2 briefly introduces the background theory of nonlinear dynamic system analysis 

and controls, including Hamilton Jacobi Equation and Hamilton Jacobi Inequality, 

Dissipative theory and Convex Optimization with Linear Matrix Inequalities. Moreover, 

general performance criteria have been introduced in Chapter 2, which will be used 

throughout the dissertation.  
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CHAPTER 3 STATE DEPENDENT LINEAR MATRIX INEQUALITY CONTROL 

APPROACH TO NONLINEAR SYSTEMS 

 
 
 

This chapter presents novel State Dependent Linear Matrix Inequality (SDLMI) control 

designs for both continuous time and discrete time nonlinear dynamical systems with 

general performance criteria. By solving the State Dependent Linear Matrix Inequality at 

each time step, the optimal control solutions can be found to satisfy mixed performance 

criteria guaranteeing quadratic optimality with inherent stability property in combination 

with H  or a passivity type of disturbance reduction. The effectiveness of the proposed 

technique is demonstrated by simulations involving the benchmark underactuated system: 

the inverted pendulum on a cart [78, 83, 87].  

 

3.1 The State Dependent LMI Control of Continuous Time Nonlinear Systems with 

General Performance Criteria 

In this section, we discuss the nonlinear state feedback control problem for continuous 

time nonlinear control systems using the State Dependent Linear Matrix Inequality 

approach. We characterize the solution of the nonlinear continuous time control system 

with State Dependent LMIs, which are essentially equivalent to the classical Hamilton 

Jacobi Inequalities. General performance criteria are used to design the controller in order 

to guarantee quadratic optimality with inherent stability property in combination with 

H  or a passivity type of disturbance attenuation [78]. 
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3.1.1 System Model and Performance Index 

Consider the input-affine continuous-time nonlinear system represented by the following 

differential equation:              ( , , ) ( ) ( ) ( )x F x u w A x x B x u F x w                          (3.1) 

where 

nx   state variable of the dynamical system 

mu   applied input 

qw  2L  type of disturbance 

, ,A B F  known coefficient matrices of appropriate dimensions, which can be 

functions of x  

The performance output pz  is given by 

( ) ( )z C x x D x w                                                  (3.2) 

where ,C D  are in general, state dependent coefficient matrices of appropriate 

dimensions. However, in the following, x -dependence will not be shown for notational 

simplicity. 

It is assumed that state feedback is available. If the state variables are not 

available from the measurement, nonlinear estimators can be set up to obtain the state 

estimates. The state feedback control input is given by  

 u K x x                                                        (3.3) 

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.50). The general performance criteria is given as 

0T T T T TV x Qx u Ru z z z w w w                                  (2.50) 

with 0, 0Q R   functions of x .  
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3.1.2 Continuous Time State Dependent LMI Control 

Theorem 3.1: Given the system model (3.1), performance output (3.2), control equation 

(3.3) and performance index (2.50), if there exist matrices 1 0S P   and Y  for all 

0t  , such that the following state dependent LMI holds: 

11 12 13 14 15

22* 0 0 0

0* * 0 0

* * * 0

* * * *

I

I

I

     
  
  
 
 
  

                                     (3.4) 

where 

 11
T T TSA Y B AS BY       

 12 0.5T TF SC D SC         
/2

13
TSQ   

/2
14

T TY R   
1/2

15
TSC   

 22 0.5T TD D D D I                                                                                    (3.5) 

then the performance criteria inequality (2.50) is satisfied. The nonlinear feedback gain of 

controller is given by                        K Y P                                                           (3.6) 

Proof 

By applying system model (3.1), performance output (3.2) and state feedback input (3.3), 

the performance criteria (2.50) becomes  

   
      0

T T T T

T T T

A x B u F w Px x P A x B u F w x Qx u Ru

C x D w C x D w C x D w w w w  

             

              
              (3.7) 

Equivalently, we have 



36 
 

 
 

  11 12

22

0
TT T T T x

x w x w x w
w

    
                

                      (3.8) 

where 

   11

T T TA BK P P A BK Q K RK C C          

12 0.5T TPF C D C        

 22 0.5T TD D D D I                                                                                     (3.9) 

Therefore, (3.8) is equivalent to matrix 0  . Let us denote the notation 1S P , then 

(3.3) yields 1Y K P K S    .  

By pre-multiplying and post multiplying the matrix   with block { , }diag S I , the 

following inequality holds 

11 12

22

0
*

  
  

                                             (3.10) 

where 

11
T T T T TSA Y B AS BY SQS Y RY SC CS          

12 0.5T TF SC D SC        

 22 0.5T TD D D D I                                                                                   (3.11) 

Equivalently, we have 

 
0.5

* 0.5

0
0

0 0

T T T T T

T T

T T

SA Y B AS BY F SC D SC

D D D D I

SQS Y RY SC CS

 

  



       
 

      
   

  
 

                 (3.12) 

Since 

1/2

/2 /2 1/2
1 1/2

1/2

0
0

0
0 0 0 0 0

0

T T T T T T
Q S

SQS Y RY SC CS SQ Y R SC
I R Y

CS

 





 
       

       
     

 

    (3.13) 
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By applying Schur complement, the LMI solution is obtained 

11 12 13 14 15

22* 0 0 0

0* * 0 0

* * * 0

* * * *

I

I

I

     
  
  
 
 
  

                                    (3.14) 

where 

 11
T T TSA Y B AS BY       

 12 0.5T TF SC D SC         
/2

13
TSQ   

/2
14

T TY R   
1/2

15
TSC   

 22 0.5T TD D D D I                                                                                  (3.15) 

Hence if the LMI (3.14) holds, performance criteria inequality (2.50) is satisfied. 

 

3.1.3 Application to the Inverted Pendulum on a Cart 

The inverted pendulum on a cart system stabilization is a classical control problem and 

has been used widely as a benchmark for testing control algorithms. The pendulum mass 

is above the pivot point which is mounted on a horizontally moving cart. It is used in this 

work to demonstrate the effectiveness and robustness of the State Dependent LMI control 

approach. 

Fig.3.1 shows the physical representation of the inverted pendulum on a cart 

system. A beam attached to a cart can rotate freely in the vertical 2-dimensional plane.  

The angle of the beam with respect to the vertical direction is denoted angle θ. The cart 

can only move in the 1-dimensional track, with position x. The external force F, the 

control input acting on the cart, is used to stabilize this highly nonlinear system while 
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satisfying general performance criteria. The control objective is to find the State 

Dependent LMI control to set the cart position x, the velocity of the cart x , the angle of 

the beam   and the angular velocity   all to zero.  

 
Fig.3.1. Inverted pendulum system diagram 

Traditional nonlinear control techniques assume that   is a very small angle, so 

that    cos 1,sin 0   , and linearize the system equation around its equlibrium point 

afterwards, then apply the traditional linear system control technique. Other nonlinear 

control methods might be applicable as well. However, it can be shown that the control is 

not guaranteed to be optimal or stable. In this dissertation, we will not resort to the usual 

linearization approach. That is why a detailed account of the system modeling is 

provided. Using the Euler-Lagrange Equation technique, the complete equations of 

motion for the inverted pendulum on a cart are found to be  

     
     

2

2

cos sin

sin cos 0

M m x bx mL mL F

I mL mgL mLx

   

  

     


   

  

 
                               (3.16) 

where 
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M    mass of the cart 

m    mass of the pendulum 

b    friction coefficient between cart and ground 

L    length to the pendulum center of mass, length of the pendulum equals 2L   

21
(2 )

3
I m L  inertia of the pendulum 

F    external force, input ot the system 

When the following definitions are made, 1 2 3 4, , ,x x x x x x       and  

 2 2 2
2

1

cosm L
I mL

M m


   


                                             (3.17)      

 2 2 2

2 2

cosm L
M m

I mL


   


                                             (3.18) 

Then the state space model for the system can be written as 

1

22 23 242 2

3

42 43 444 4

0 1 0 0 0

0

0 0 0 1 0

0

x x x

A A Ax Bx x
F

x

A A Ax B

 
 

       
       
          
       
       

       

 

  



 

                  (3.19) 

where 

22
2

b
A  


                                                                                                                    (3.20) 

 
 

 2 2

23 2
2

cos sinm L g
A

I mL

 


 
 

                                                                                        (3.21) 

 
24

2

sinmL
A





                                                                                                         (3.22) 

 
 42

1

cosmLb
A

M m




 
                                                                                                        (3.23) 

 
43

1

sinmgL
A




  


                                                                                                    (3.24) 
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   
 

2 2

44
1

cos sinm L
A

M m

  
 

 


                                                                                       (3.25) 

2
2

1
B 


                                                                                                                        (3.26) 

 
 4

1

cosmL
B

M m


 

 
                                                                                                       (3.27) 

It should be noted that this state space formulation is not a process of 

linearization, but rather a process of state-dependent parameterization. To avoid the 

division by zero, the 
 3

3

sin x

x
 term is substituted when 3 0x  by the limit 

 
3

3

0
3

sin
lim 1
x

x

x
                                                     (3.28) 

 
Assume the following system parameters are given 

2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
        

 
The following design parameters are chosen:   

Mixed NLQR- H  Design (Predominant NLQR) 

 4[0.01 0.01 0.01 0.01], [0.01], , 1, 1, 0, 1C D Q I R            

Mixed NLQR- H  Design (Predominant H )  

4[1 1 1 1], [1], 0.01 , 0.01, 1, 0, 10C D Q I R             

NLQR-Very Strict Passivity 

4[1 1 1 1], [1], , 1, 0.01, 1, 0.01C D Q I R           

Assume the initial condition 1 2 3 41, 0, / 4, 0x x x x    , all of the above mixed 

criteria control performance results are shown in Fig.3.2-3.6, in comparison with the 

traditional Linear Quadratic Regulator (LQR) technique based on linearization. From 
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these figures, we find that the novel State Dependent LMI control has better performance 

compared with the traditional LQR technique based on linearization. Especially, Fig.3.2 

and Fig.3.3 show that the traditional LQR technique loses control of position and velocity 

of the cart respectively. The predominant H  control has the fastest response time. From 

Fig.3.6, we can verify that the predominant NLQR control is much more input energy 

efficient.   
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Fig.3.2. Position trajectory of the inverted pendulum 
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Fig.3.3. Velocity trajectory of the inverted pendulum 
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Fig.3.4. Angle “theta” trajectory of the inverted pendulum 
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Fig.3.5. Angular velocity trajectory of the inverted pendulum 
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Fig.3.6. Control input 
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3.2 The State Dependent LMI Control of Discrete Time Nonlinear Systems with General 

Performance Criteria 

In this section, we discuss the nonlinear state feedback control problem for discrete time 

nonlinear control systems using the State Dependent Linear Matrix Inequalities approach. 

We characterize the solution of the nonlinear discrete time control system with State 

Dependent LMI, which is essentially equivalent to the classical Hamilton Jacobi 

Inequalities. General performance criteria are used to design the controller in order to 

guarantee quadratic optimality with inherent stability property in combination with H  

or a passivity type of disturbance attenuation [83]. 

 

3.2.1 System Model and Performance Index 

Consider the input-affine discrete-time nonlinear system represented by the following 

differential equation 

1 ( ) ( ) ( )k k k k k k k k k k k k kx A x x B x u F x w A x B u F w                       (3.29) 

where  

n
kx    state vector   

m
ku    applied input 

q
kw  :  2L  type of disturbance 

, ,k k kA B F  known coefficient matrices of appropriate dimensions, which can 

be functions of kx  

Notice that the simplified notation for time varying matrices ,k kA B , etc. is used to denote 

the state dependent matrices. The performance output p
kz   is 
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( ) ( )k k k k k k k k kz C x x D x w C x D w                               (3.30) 

where ,k kC D  are, in general, state dependent coefficient matrices of appropriate 

dimensions.  

It is assumed that the state feedback is available. If the state variables are not 

available from the measurement, nonlinear estimators can be set up to obtain the state 

estimates. The nonlinear state feedback control input is given by 

( )k k k k ku K x x K x                                               (3.31) 

The optimal control problem we consider is to determine an admissible control ku  to 

satisfy the performance objective (2.60). The general performance criteria is given as 

1 0T T T T T
k k k k k k k k k k k k k kV V x Q x u R u z z z w w w                        (2.60) 

with 0, 0k kQ R   functions of kx .  

 

3.2.2 Discrete Time State Dependent LMI Control 

Theorem 3.2: Given the system model (3.29), performance output (3.30), control equation 

(3.31) and performance index (2.60), if there exist matrices 1 0k kM P   and kY  for all 

0k  , such that the following State Dependent LMIs hold: 

1613 151412

2322 00 0*

00 0* *
0

00* * *

0* * **

* * * **

k

k

n

m

p

M

M

I

I

I

  
  
 

 
 
 
 
  

                           (3.32) 

where  

12 0.5T T
k k k k kM C D M C        
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13
T T

k k k kM A Y B    
/2

14
T

k kM Q   
/2

15
T T

k kY R   
1/2

16
T

k kM C   

 22 0.5T T
k k k kI D D D D          

23
T

kF                                                                                                                         (3.33) 

and                                                           1k kM M                                                     (3.34) 

then the general performance critieria inequality (2.60) is satisfied. The nonlinear 

feedback gain of the controller is given by 

k k kK Y P                                                     (3.35) 

Proof 

By applying system model (3.29), performance output (3.30) and state feedback input 

(3.31), the performance criteria (2.60) becomes 

   
   

 

1

0

T

k k k k k k k k k k k k k

TT T T
k k k k k k k k k k k k k k k k k

T T
k k k k k k k

A x B u F w P A x B u F w

x P x x Q x u R u C x D w C x D w

C x D w w w w



 

         

          

       

           (3.36) 

Equivalently,  

  11 12

22

0
*

T kT T T T
k k k k k k

k

x
x w x w x w

w

    
              

               (3.37) 

where 

   11 1

T T T
k k k k k k k k k k k k k kA B K P A B K P Q K R K C C         

 12 1 0.5
T T T

k k k k k k k kA B K P F C D C        

 22 1 0.5T T T
k k k k k k kF P F D D I D D                                                                (3.38) 

Therefore, (3.38) is equivalent to matrix 0  , which is equivalent to the inequality 
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 
   1

0.5

0.5 0.5

0

T T T T
k k k k k k k k k k

T T T
k k k k k k k

T

k k k
k k k k kT

k

P Q K R K C C C D C

D C C I D D D D

A B K
P A B K F

F

  

    



      
 

         
 

      
  

                (3.39) 

By adding and subtracting the same term in (3.39), the following inequality results 

 
   

   

1

0.5

0.5 0.5

( )

0

T T T T
k k k k k k k k k k

T T T
k k k k k k k

T

k k k
k k k k k kT

k

T

k k k
k k k k kT

k

P Q K R K C C C D C

D C C I D D D D

A B K
P P A B K F

F

A B K
P A B K F

F

  

    



      
 

         
 

       
  

 
     

  

                (3.40) 

Therefore, subject to 1k kP P  , (3.40) can be rewritten as 

 
   

0.5

0.5 0.5

0

T T T T
k k k k k k k k k k

T T T
k k k k k k k

T

k k k
k k k k kT

k

P Q K R K C C C D C

D C C I D D D D

A B K
P A B K F

F

  

    

      
 

         
       
  

                 (3.41) 

By applying Schur complement result, we obtain 

11 12 13

22 23

33

* 0

* *

   
    
  

                                                (3.42) 

where  

11
T T

k k k k k k kP Q K R K C C      

12 0.5T T
k k kC D C       

 13

T

k k k kA B K P    

 22 0.5 T T
k k k kI D D D D          

23
T

k kF P   

33 kP                                                                                                                          (3.43) 
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By pre-multiplying and post-multiplying the matrix with block diagonal matrix 

 , ,k kdiag M I M , where 1
k kM P , the following inequality follows 

11 12 13

22 23

33

* 0

* *

   
    
  

                                            (3.44) 

where 

 11
T T

k k k k k k k k kM M Q K R K C C M      

12 0.5T T
k k k k kM C D M C       

 13

T

k k k kM A B K    

 22 0.5 T T
k k k kI D D D D          

23
T

kF   

33 kM                                                                                                                        (3.45) 

Equivalently, 

/2 /2 1/2 1/2
12 13

1 1/2
22 23

1/2

0 0

* 0 0 0 0 0 0

* * 0 0 0 0 0

T T T T
k k k k k k k k k k

n m p k k k

k k k

M M Q M K R M C Q M

I R K M

M C M






 

     
             
         

 

(3.46) 

Finally, by applying Schur complement again, the following LMI result is obtained 

1312 15 1614

2322 0* 0 0

0* 0 0*
0

* 0 0* *

** 0* *

** ** *

k

k

M

M

I

I

I

   
  
 

 
 
 
 
  

                                 (3.47) 

where  

12 0.5T T
k k k k kM C D M C        

13
T T

k k k kM A Y B    
/2

14
T

k kM Q   
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/2
15

T T
k kY R   
1/2

16
T

k kM C   

 22 0.5T T
k k k kI D D D D          

23
T

kF                                                                                                                         (3.48) 

and                                                           1k kM M                                                     (3.49)         

Hence, the performance criteria (2.60) is guaranteed to be satisfied, if the inequalities 

(3.47) and (3.49) hold. 

Remark: For the chosen performance criterion among those in Tab.2.2, the LMI (3.47) 

and (3.48) need to be solved at each time step and the state feedback control gain (3.35) 

needs to be applied to control system (3.29) to achieve the desired performance.  

 

3.2.3 Application to the Inverted Pendulum on a Cart 

The inverted pendulum on a cart system will again be used for testing the new control 

algorithms. A dynamical model of the inverted pendulum problem has been derived 

previously in (3.16). For discrete time state space model, we denote the following state 

variables: 

1, 2, 3, 4,( ), ( ), ( ), ( )k k k kx x kT x x kT x kT x kT       

 
By applying the Euler discretization method with sampling period T , and using the 

notation  

2 2 2
3,2

1,

cos ( )k
k

m L x
I mL

M m
   


                                       

2 2 2
3,

2, 2

cos ( )k
k

m L x
M m

I mL
   


                                                                                    (3.50) 

the discrete-time system equation can be written as 
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1, 1 1,

2, 1 2,2322 24 2

3, 1 3,

4, 1 4,42 43 44 4

0 0 01

0

0 0 1 0

0

k k

k k
k

k k

k k

x xT

x xaa a b
u

x xT

x xa a a b









      
      
       
      
      

     

                          (3.51) 

where 

ku  is the thk  sampling instant value of the input force F  and  

22
2,

1
k

b
a T 


                                                                   

2 2
3, 3,

23 2
2, 3,

cos( ) sin( )

( )
k k

k k

m L g x x
a T

I mL x


 
                                     

3,
24 4,

2,

sin( )k
k

k

mL x
a T x


                                                   

3,
42

1,

cos( )

( )
k

k

mLb x
a T

M m


 
                                                       

3,
43

1, 3,

sin( )k

k k

xmgL
a T

x
 


                                                     

2 2
3, 3, 4,

44
1,

cos( )sin( )
1

( )
k k k

k

m L x x x
a T

M m
 

 
                             

2
2,k

T
b 


                                                                            

3,
4

1,

cos( )

( )
k

k

mL x
b T

M m
 

 
                                                                                                    (3.52) 

It should be noted here again that this state space formulation does not involve a 

process of linearization, but a process of state-dependent parameterization. To avoid the 

division by zero, the term 3,

3,

sin( )k

k

x

x
 is substituted when 3, 0kx   by the limit 

3,

3,

0
3,

sin( )
lim 1

k

k

x
k

x

x
 ,                                                 (3.53) 

as was done before. The following system parameters are assumed 
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2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
        

The following design parameters are chosen to satisfy different mixed criteria:   

Mixed NLQR- H Design (Predominant NLQR)  

  40.01 0.01 0.01 0.01 , [0.01], , 1, 1, 0, 5C D Q I R            

Mixed NLQR- H Design (Predominant H ) 

  41 1 1 1 , [1], 0.01 , 0.01, 1, 0, 5C D Q I R              

NLQR-Very Strict Passivity 

  41 1 1 1 , [1], , 1, 0.01, 1, 0.01C D Q I R           

The following initial conditions are assumed 

1,0 2,0 3,0 4,01, 0, / 4, 0x x x x     

All of the above mixed criteria control performance results are shown in the 

Fig.3.7-3.11, in comparison with the traditional Linear Quadratic Regulator (LQR) 

technique based on linearization. From these figures, we find that the novel State 

Dependent LMI control has better performance compared with the traditional LQR 

technique based on linearization. Especially, Figs. 3.7-3.9 show that the traditional LQR 

technique loses control of state variables. It should also be noted that predominant NLQR 

and predominant H  control techniques lead to faster response times than the NLQR-

passivity technique. Fig.3.11 shows that the highest magnitude of control is needed by the 

predominant H  control and the lowest control magnitude is needed by the linearization 

based traditional LQR technique.  
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Fig.3.7. Position trajectory of the inverted pendulum 
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Fig.3.8. Velocity trajectory of the inverted pendulum 



53 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

10

20

30

40

50

time in sec.

an
gl

e 
th

et
a 

in
 r

ad
ia

n

 

 

Predominant NLQR

Predominant Hinfinity

NLQR-Passivity

LQR Based on Linearization

 
Fig.3.9. Angle “theta” trajectory of the inverted pendulum 
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Fig.3.10. Angular velocity trajectory of the inverted pendulum 
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Fig.3.11. Control input 

 

3.3 Nonlinear Control of Stochastic Systems with Actuator Failures 

Designing a robust controller for nonlinear discrete time systems with actuator failures is 

of special importance in applications such as flight controls, unmanned vehicle controls, 

nuclear reactors, robotics, etc. Actuator failures may cause severe system performance 

deterioration or even instability, which should be avoided in these critical situations.  

Adaptive control techniques are most commonly used to address the issues of 

system with actuator failures in existing theory and applications by assuming the system 

model is Linear Time Invariant (LTI), aimed at compensating such uncertainties with 

adaptive tuning of controller parameters based on system response errors. Recently, there 

have been results in control of systems with actuator or component failures in different 
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applications including flight control [33, 43, 44, 69, 70], spacecraft control [71], robotics 

[11], etc.  

In order to address this important issue, a novel robust control technique is 

proposed for discrete time nonlinear systems with actuator failures, which is based on 

state dependent linear matrix inequality approach. Previous studies in state dependent 

linear matrix inequality control can be found in [78, 83]. Without the linearization of the 

nonlinear system, state feedback control technique is developed for nonlinear systems 

with actuator failures characterized by inputs randomly failing to send an actuation 

signal. This controller is optimally robust for actuator failures in achieving general 

performance criteria to secure quadratic optimality with the inherent asymptotic stability 

property together with quadratic dissipative type of disturbance reduction. By solving a 

state dependent linear matrix inequality, a sufficient condition for the control solution can 

be found which satisfies the general performance criteria. The results of this paper unify 

existing results on nonlinear quadratic regulator, H  and passivity control to provide a 

more flexible and less conservative robust control design for systems with random 

actuator failures [87].  

 

3.3.1 System Model and Performance Index 

Consider the following discrete time nonlinear system dynamics 

     1k k k k k k k k k k

k k k k k k k

x A x x B x u F x w

A x B u F w
    

   
                      (3.54) 

where 

n
kx      state vector 
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m
ku      applied input 

q
kw     2l  type of system noise 

, ,k k kA B F  known coefficient matrices of appropriate dimensions, 

which can be functions of kx . 

Denote                                            1 ,..., m
k k kdiag                                                 (3.55) 

1 ,...,
Tq

k k kw w w                                                   (3.56) 

The noise process  kw  is white, zero mean, uncorrelated with the initial state value 0x , 

and has covariance kW : 

 ~ 0,k kw W , T
k j k k jE w w W      , 0 0T

kE w x                           (3.57) 

    The scalar binary Bernoulli distributed random variables i
k , which are used to 

represent the failure of the thi  actuator, have mean i  and variance  1i i   whose 

possible outcomes  1,0  (“1” corresponding to the healthy actuator and “0” 

corresponding to the failed one) are defined probabilistically as  1i
k iP     and 

 0 1i
k iP     . This formulation involves only hard actuator failures, i.e. either the 

actuator works or it fails, and there is no other alternative considered in this work.  

The performance output p
kz   is chosen as 

     k k k k k k k

k k k k k k

z C x x D x u G x w

C x D u G w

  

  
                              (3.58) 

where , ,k k kC D G  are, in general, state dependent matrices of appropriate dimensions. 

The nonlinear state feedback control input is given by  k k k k ku K x x K x  .           (3.59) 



57 
 

 
 

Consider the quadratic energy function T
k k k kV x P x                                                    (3.60) 

For the following performance criteria inequality 

 1 1 0, ,..., 0T T T
k k k k k k k k k kE V x x x V z z z w w w                            (3.61) 

with 0, 0k kQ R   being functions of kx . 

By properly specifying the value of the weighing matrices , ,k k kC D G  and , ,   , 

mixed performance criteria can be used in nonlinear control design, which yields a mixed 

H  or passivity performance index. The possible performance criteria which can be used 

in this framework with different design parameters , ,    are given in Table.1. Note 

also that for 0, 0, 0     , it follows from (3.61) that  2

0 kk
E x




   and 

therefore, the controlled system is mean square exponentially stable for all of the criteria 

given in Tab.3.1. 

Tab.3.1. Various performance criteria in a general framework 

    Performance criteria 

1 0 <0 H Design 

0 1 0 Passivity Design 
0 1 >0 Input Strict Passivity Design 

>0 1 0 Output Strict Passivity Design 
>0 1 >0 Very Strict Passivity 

 

 

3.3.2 State Dependent LMI Control of Nonlinear Stochastic Systems with Actuator 

Failures 

The following theorem provides us a novel approach for controlling the nonlinear 

stochastic system with actuator failures.   



58 
 

 
 

Theorem 3.3: Given the system model (3.54), performance output (3.58), control input 

(3.59) and performance index (3.61), if there exist matrices 1 0k kM P   and kY  for all 

0k  , such that the following State Dependent LMI holds: 

12 13 14

21 22

31

41

0 0

00 0

0 0 0

0 0 0

T
k k

T
k

k k

k L

M Y

F

F M

I

Y

   
   
  
 
 
  

                                     (3.62) 

where  

   12 2

T T

k k k k k k k k kC M D Y G C M D Y
         

13

T

k k k k kA M B Y                     

 1/2
14

T

k k k kC M D Y    

   21 2
T
k k k k k k k k kG C M D Y C M D Y

       

22 2
T T
k k k kG G G G I

          

31 k k k k kA M B Y        

 1/2
41 k k k kC M D Y    

       
1 1

min min min
T T T

L k k k k k k k k k kM B B M Z M B B  
            

   

   1 1
T T T

k k k k k k kZ E B B B B
 

         
                                                                      

    
 

 

1 1

1 1

1 0 0

0
1 ,..., 1

0

0 0 1

m m

m m

diag

 

   

 

 
 
         
 

  



  

  



              (3.63) 
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and                                                          1k kM M                                                      (3.64)                         

then the general performance inequality (3.61) is satisfied. The nonlinear feedback gain 

of the controller is given by                    k k kK Y P                                                     (3.65) 

Proof 

Applying system model (3.54), performance output (3.58) and control input (3.59) to 

inequality (3.61), we have 

   
 

1 1 0, ,...,

0

T

k k k k

x k k k k k k k k k k k

k k k k

TT
k k k k k k k k k k k k k k k k k

T T
k k k k k k k k k k

A x A x

E E B K x P B K x x x x

F w F w

x P x C x D K x G w C x D K x G w

C x D K x G w w w w



 

  

                               

     

    

                    (3.66) 

By adding and subtracting the same term, we have the following equivalent inequality 

 

   
 

1 0
1

, ,...,

0

T

k k k k
k

x k k k k k k k k k k
k k

k k k k

TT
k k k k k k k k k k k k k k k k k

T T
k k k k k k k k k k

A x A x
P

E E B K x B K x x x x
P P
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     

    

              (3.67) 

To satisfy strict dissipation of energy, we must impose 1k kP P  . The sufficient condition 

to (3.67) is 
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                               

     

    

 

          (3.68) 
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By expanding the terms, we have 
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                       (3.69) 

By applying the smoothing property of expectations 

     E E x y E x ,                                                   (3.70) 

Inequality (3.69) yields the following: 

   

   
   

 

TT
k k k k k k k k k k k

TT T T
k k k k k k k k k k k k k k k k

T T T
k k k k k k k k

TT
k k k k k k k k
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                                  (3.71) 

Notice that the first term in the inequality (3.71) can be written as 

   

   

T

k k k k k k k k k

T

k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k k k k

E A B K P A B K

E A B K P A B K

A B K P A B K K E B P B K







     
               

                 

 

 

                                  (3.72) 

Hence, we have 

11 12

21 22

0kT T
k k
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x w
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    
          

                                        (3.73) 
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                               (3.74) 

Equivalently, we have 
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where 
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                              (3.76) 

By applying Schur complement, we have 
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                              (3.77) 
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                              (3.78) 

Denote 1
k kM P , k k kK Y P .                                                                                      (3.79) 
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By pre- and post-multiplying the matrix inequality with the block diagonal matrix 

 , ,kdiag M I I , we have 
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By applying Schur complement twice, we have 
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                                                                               (3.82) 

where 



63 
 

 
 

   

 

   

 

12

13

1/2
14

21

22

31

1/2
41

1

55

2

2

2

T T

k k k k k k k k k

T

k k k k k

T

k k k k

T
k k k k k k k k k

T T
k k k k

k k k k k

k k k k

T T
k k k k k

C M D Y G C M D Y

A M B Y

C M D Y

G C M D Y C M D Y

G G G G I

A M B Y

C M D Y

E B P B






 






     

      

  

     

       

      
  

       
 

                                                       (3.83) 

According to Rayleigh’s Inequality, the following inequality holds  
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                                                   (3.85) 

Replacing 55  with L , we have the sufficient condition as follows: 
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which concludes the proof. 
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Remark 1: If kZ  in (3.86) fails to be invertible, then one can replace it with kZ I  

where 0 1   to make it invertible. With this new term, (3.86) is still a sufficient 

condition for this control solution. 

 

3.3.3 Application to the Inverted Pendulum on a Cart  

The inverted pendulum on a cart problem is used for testing the effectiveness and 

robustness of the novel state dependent linear matrix inequality control for nonlinear 

system with actuator failures. A dynamical model of the inverted pendulum on a cart 

without actuator failure has been derived previously in (3.16). Considering the effect of 

independent actuator failure, for discrete time state space model, we denote the following 

state variables: 

1, 2, 3, 4,( ), ( ), ( ), ( )k k k kx x kT x x kT x kT x kT       

 
By applying Euler discretization method with sampling period T , and using the notation  

2 2 2
3,2

1

cos ( )km L x
I mL

M m
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
                                       

2 2 2
3,

2 2

cos ( )km L x
M m

I mL
   


                                                                                      (3.89) 

the discrete-time system equation can be written as (3.90), with the Bernoulli distributed 

actuator failure rate  11  . 
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2, 1 2,2322 24 2

1 3
3, 1 3,

4
4, 1 4,42 43 44 4

0 0 01

0

0 0 1 0

0

kk k

k k k
k

k k k

k k
k

wx xT

x xa wa a b
u

x xT w
x xa a a b w











       
       
                 
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                   (3.90) 

where 
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The following system parameters are assumed 

2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06

  0.01

M kg m kg b N L m I kg m
m

sampling time T

      


 

The mean values of 1  are 1 0.9  . 

Measurement noise covariance matrix 

1 0 0 0

0 1 0 0
(0.9 )

0 0 1 0

0 0 0 1

k
kW

 
 
  
 
 
 

. 

The following design parameters are chosen to satisfy very strict passivity performance: 

 1 1 1 1 , [1], 0.01, 1, 0.01C D         

The following initial conditions are assumed 
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1 2 3 41, 0, / 4, 0x x x x     

To demonstrate effectiveness and robustness of the proposed method under 

different actuator failure rates, the conditions when mean values of 1 : 1 0.9   and 

2 0.6   are simulated respectively. Simulation results are shown in the Fig. 3.16-3.17. It 

can be seen that the new method effectively stabilizes the inverted pendulum on a cart in 

the case of actuators with different failure rates.  
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Fig.3.12. Position trajectory of the inverted pendulum 
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Fig.3.13. Velocity trajectory of the inverted pendulum 
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Fig.3.14. Angle “theta” trajectory of the inverted pendulum 
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Fig.3.15. Angular velocity trajectory of the inverted pendulum 
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Fig.3.16. Control input when 1 0.6   
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Fig.3.17. Control input when 1 0.9   

 

3.4 Summary 

Chapter 3 presents novel nonlinear state feedback control approaches based on State 

Dependent Linear Matrix Inequality. General performance criteria are used to design the 

controller and relative weighting of these criteria can be achieved by choosing different 

coefficient matrices. The benchmark inverted pendulum on a cart problem is used as an 

example to demonstrate the effectiveness of the control technique. Moreover, the novel 

state dependent control approach for nonlinear systems with random actuator failures is 

proposed in Section 3.3. The proposed methods provide us powerful alternatives to the 

existing nonlinear control approaches. 
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CHAPTER 4 ROBUST AND RESILIENT STATE DEPENDENT LINEAR MATRIX 

INEQUALITY CONTROL OF NONLINEAR SYSTEMS WITH GENERAL 

PERFORMANCE CRITERIA 

 
 
 

Chapter 2 has briefly discussed the dissipative system theory, which is an important 

concept in systems, circuits and controls. The theory of dissipative systems generalizes 

the basic tools including the passivity theorem, bounded real lemma, Kalman-

Yakubovich lemma and circle criterion. Dissipativity performance includes H  

performance, passivity, positive realness, and sector bounded constraint as special case. 

In Chapter 3, State Dependent Linear Matrix Inequality control approaches have been 

introduced for nonlinear systems, which characterize the characteristics of traditional 

Hamilton Jacobi Equations.  

Based on the theoretical analysis in the previous two chapters, we will further 

investigate the robust and resilient State Dependent Linear Matrix Inequality control 

techniques in Chapter 4, thereby extending the results in Chapter 3. The control objective 

is to design a controller which is optimally robust for model uncertainties and resilient 

against control feedback gain perturbations in achieving general performance criteria to 

secure quadratic optimality with inherent asymptotic stability property together with 

quadratic dissipative type of disturbance reduction. For the uncertain nonlinear systems 

model, we consider a general form of 2L -bounded uncertainty description, without any 

standard structure, incorporating commonly used types of uncertainty, such as norm-

bounded and positive real uncertainties as special cases. By solving State Dependent 

Linear Matrix Inequality, the sufficient condition for control solution can be found 
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satisfying the general performance criteria [85, 86].  

 

4.1 Robust and Resilient State Dependent LMI Control of Continuous Time Nonlinear 

Systems 

In this section, we discuss a novel state feedback control problem for continuous time 

nonlinear control systems using the State Dependent Linear Matrix Inequalities approach, 

which is robust for model uncertainties and resilient for gain perturbations. We 

characterize the solution of the continuous time nonlinear system with State Dependent 

LMIs, which are essentially equivalent to the classical Hamilton Jacobi Inequalities. We 

further propose to employ general performance criteria to design the controller 

guaranteeing the quadratic sub-optimality with inherent stability property in combination 

with dissipativity type of disturbance attenuation. The results of this section unify 

existing results on nonlinear quadratic regulator, H  and positive real control to provide 

a more flexible and less conservative robust control design. The effectiveness of the 

proposed technique is demonstrated by simulations of the nonlinear control of inverted 

pendulum on a cart system [85].  

 

4.1.1 System Model and General Performance Criteria  

Consider the following nonlinear dynamical system model and performance output 

equation  

     
      
( , , )

, ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( )A B E

x f x t u t w t

A x t x t x t B x t x t u t E x t x t w t



         


              (4.1) 

        ( ) ,z t g x t w t C x t D w t                                                                            (4.2) 
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where  

  nx t         state variable of dynamical system 

  mu t        applied input 

  pw t        2L  type of disturbance 

  rz t        performance output function 

,f g        smooth real vector function 

n nA  , n mB  , n pE  , r nC  , r pD   state-dependent coefficient matrices 

n n
A

  , n m
B

  , n p
E

   time-varying state dependent 

uncertainty matrices, which may be 

due to modeling errors  

It is assumed that the state feedback is available and the state feedback control 

input is given by                              ( ) , , ( )Ku t K x t x t x t                                     (4.3) 

where K  represents the perturbation on the given matrix which may be due to 

computational errors or drifts in coefficient values.  

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.46). The general performance criteria is given as 

 2 0, 0T T T T TV x Qx u Ru z Mz z Sw w Nw T                        (2.46) 

Before introducing the main result of the paper, the following model of 

uncertainties is introduced. 

Assumption 4.1: The following general form of 2L -bounded unstructured uncertainties is 

considered: 
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; ; ;T T T T
A A A B B B E E E K K KI I I I                               (4.4) 

for nx  and 0t  . 

 

4.1.2 Robust and Resilient State Dependent LMI Control for Continuous Time Nonlinear 

System 

The following theorem summarizes the main result of this section: 

Theorem 4.1: Given the system model (4.1), performance output (4.2) and control 

equation (4.3), if there exist matrices 1 0X P   and Y  for all 0t  , such that the 

following state dependent Linear Matrix Inequality holds: 

11 12

22

33

44

* 0 0
0

* * 0

* * *

TX Y  
   
 
 

  

                                        (4.5) 

where 

   11 2 2T T T T T
A B E A B EW I BB XA AX Y B BY BB I                    

12
T TE XC MD XC S     

22 2T TD MD D S N I       

   1

33 max3 T
KI R I Q C MC 


          

  12
44 I R R


                                                                                                          (4.6) 

Then the performance index inequality (2.46) is satisfied. The nonlinear feedback control 

gain is given by                                      K Y P                                                           (4.7) 

Proof 

In the proof below, the time and state argument will be dropped for notational simplicity. 

By applying system and performance output equations (4.1), (4.2), and state feedback 
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input equation (4.3), the performance index can be formed as follows: 

     
     

   
     2 0

T TT T
A B K E

T T
A B K E

TT T T
K K

T T T

x A B K Px w E Px

x P A B K x x P E w

x Px x Qx x K R K x

Cx Dw M Cx Dw Cx Dw Sw w Nw

          

          

     

      


              (4.8) 

Equivalently, 

  11 12

22

0
*

TT T T T x
x w x w x w

w

    
               

                  (4.9) 

where 

     
   

11

T

A B K A B K

T T
K K

P A B K P P A B K Q

K R K C MC

                         

    


                     

 12
T T

EP E C MD C S       

22 2T TD MD D S N                                                                                              (4.10) 

Pre-multiplying and post-multiplying the matrix   with the block  ,diag X I , where 

1X P , 1Y K P KX   . Then the following matrix inequality holds: 

11 12

22

0
*

  
  

                                                  (4.11) 

where 

     
   

11

T

A B K A B K

T T
K K

X A B K A B K X

XPX XQX X K R K X XC MCX

                      

       
 

 12
T T

EE XC MD XC S       

22 2T TD MD D S N                                                                                               (4.12) 

Applying Lemma 1.2, we have 0XPX  .  

Denote T T TW XA AX Y B BY                                                                               (4.13) 

The sufficient condition for matrix inequality (4.11) to be held is to change term 11  as 
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follows: 

 
 

       
   

11

TT T T
A B K B K

T
A B K B K

T T T T
K K K K

T T

A B A B K B K K B K

T T T T T
K K K K

XA AX Y B BY X K B

K B X XQX Y RY

X RY Y R X X R X XC MCX

W K X X K X B B X

X RY Y R X XQX Y RY X R X XC MCX

              

          

      

                  

         

       (4.14) 

By applying Lemma 1.1 to (4.14) and using Assumption 4.1, we obtain  

     

   1 1
1 1 1 1

T
T T A

A B A B A BT
B

T
T TA

A B A BT
B

I
K X X K X I K X

K

I I
X I K X I X I K X

K K
      

                      
                           

 

1 2 1
2 2 2 2

T T T T T
K K K K KX B B X X X BB X BB               

1 2 1
3 3 3 3

T T T T
K B B K K K B B K BX X X X X I                    

1 2 2 1 2
4 4 4 4

T T T T T
K K K K KX RY Y R X X X Y R Y X Y R Y               

    2
max max

T T
K K K K KX R X X X R R X                                                              (4.15) 

Therefore, we have 

 

  

1 2 1 2 1
11 1 1 2 2 3 3

2 1 2 2
4 4 max

T T
A B K K B

T T T
K K

I
W I X I K X X BB X I

K

X Y R Y XQX Y RY R X XC MCX

          

    

  



              

     

          

 12
T T

EE XC MD XC S       

22 2T TD MD D S N                                                                                               (4.16) 

Using Lemma 1.1 and Assumption 4.1, we have  

55
11

55

00 0

00 0

T
EE E E

T
E

I

II

 
 

      
         

                   (4.17) 

Therefore, applying (4.17), (4.11) is implied by: 
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                  11 12

22

0
*

  
  

                                                  (4.18) 

where  

   

    

1 1 1 2
11 1 1 5 3 1 4

2 1
2 3 4 max 2

1
1 1 5 3

1 1 1 2 1
1 2 3 4 max 1 4 2

T T
A B E B

T T T
K

A B E B

T T
K

I
W I X I K X Y R Y

K

R X BB XQX Y RY XC MCX

W I

X I R I Q C MC X Y R R Y B

         

     

       

        

  





   

                 

         

      

            
TB

12
T TE XC MD XC S     

1
22 52T TD MD D S N I                                                                                     (4.19) 

By applying the Schur complement, we have the final linear matrix inequality solution 

11 12

22

33

44

* 0 0
0

* * 0

* * *

TX Y  
   
 
 

  

                                          (4.20) 

where 

1 1
11 1 1 5 3 2

1 1
2 1 1 5 3

T
A B E B

T T T T
A B E B

W I BB

XA AX Y B BY BB I

        

        

 

 

        
          

 

12
T TE XC MD XC S     

1
22 52T TD MD D S N I        

   1
1

33 1 2 3 4 max
T

KI R I Q C MC     
            

  11 1 2
44 1 4 R R 

                                                                                                (4.21) 

Since positive constants 1 5,...,   are arbitrary, choosing all of them as 1, we obtain (4.5). 

Therefore, if LMI (4.5) holds, the inequality (2.46) is satisfied. This concludes the proof 

of the theorem. 

Remark 4.1: At this point, it is to be noted that other choices of constants 1 5,...,  are 
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possible and can be tried if the value 1 for all these constants does not work.    

                                     

4.1.3 Application to the Inverted Pendulum on a Cart 

The inverted pendulum on a cart problem is used for testing the novel robust and resilient 

State Dependent LMI approach with this system to compare the performance. 

The following system parameters are assumed: 

2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
      

Sampling Time: 0.01secT   

Denote the following state variables: 

1 ( )x x t , 2 ( )x x t  , 3 ( )x t , 4 ( )x t   

The following initial conditions are assumed: 

1 2 3 41, 0, / 4, 0x x x x     

The following design parameters are chosen to satisfy different mixed criteria:   

Mixed NLQR- H Design (Predominant NLQR)  

 4[0.01 0.01 0.01 0.01], [0.01], , 1, 1, 0, 1C D Q I R M S N         

Mixed NLQR- H Design (Predominant H ) 

4[1 1 1 1], [1], 0.01 , 0.01, 1, 0, 10C D Q I R M S N          

Mixed NLQR- H -Positive Real Design (NLQR-Passivity)  

4[1 1 1 1], [1], , 1, 0.01, 1, 0.01C D Q I R M S N        

All of the above mixed criteria control performance results are shown in the Figs.4.1-4.5, 

in comparison with the traditional Linear Quadratic Regulator (LQR) technique based on 

linearization. From these figures, we find that the novel State Dependent LMI control has 
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better performance compared with the traditional LQR technique based on linearization. 

Especially, Fig.4.3 and Fig.4.4 show that the traditional LQR technique loses control of 

the anlge and angular velocity of the pendulum, respectively. Fig.4.5 shows that the 

highest magnitude of control is needed by the predominant H  control and the lowest 

control magnitude is needed by the linearization based LQR technique. 
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Fig.4.1. Position trajectory of the inverted pendulum 
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Fig.4.2. Velocity trajectory of the inverted pendulum 
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Fig.4.3. Angle “theta” trajectory of the inverted pendulum 



80 
 

 
 

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time in second

an
gu

la
r 

ve
lo

ci
ty

 t
he

ta
-d

ot
 in

 r
ad

ia
n/

se
co

nd

 

 

Predominant NLQR

Predominant H-infinity
NLQR-Passivity

LQR Based on Linearization

 
Fig.4.4. Angular velocity trajectory of the inverted pendulum 
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Fig.4.5. Control input 
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4.2 Robust and Resilient State Dependent LMI Control of Discrete Time Nonlinear 

Systems 

In this section, we discuss a novel state feedback control problem for discrete time 

nonlinear control systems using the State Dependent Linear Matrix Inequalities approach, 

which is robust for model uncertainties and resilient for gain perturbations. We 

characterize the solution of the nonlinear discrete time control system with State 

Dependent LMI, which is essentially equivalent to the classical Hamilton Jacobi 

Inequalities. We further propose to employ general performance criteria to design the 

controller guaranteeing the quadratic sub-optimality with inherent stability property in 

combination with dissipativity type of disturbance attenuation. The results of this section 

unify existing results on nonlinear quadratic regulator, H  and positive real control to 

provide a more flexible robust control design. The effectiveness of the proposed 

technique is demonstrated by simulations of the nonlinear control of the inverted 

pendulum on a cart system [86].  

 

4.2.1 System Model and General Performance Criteria 

Consider the following nonlinear dynamical system equation and performance output 

equation  

 
        
     

1 , ,

( ) ( ) ( ) ( )

k k k k

k A k k k B k k k E k k

k A k k B k k E k

x f x u w

A x x x B x x u E x x w

A x B u E w

 

         

        

                          (4.22) 

 ,k k k k k k kz g x u C x D w                                                                                        (4.23) 

where  
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n
kx        state variable of dynamical system 

m
ku       applied input 

p
kw       2l  type of disturbance 

r
kz       performance output function 

,f g       smooth real vector function 

n n
kA  , n m

kB  , n p
kE  , r n

kC  , r p
kD   

state-dependent coefficient matrices 

n n
A

  , n m
B

  , n p
E

   time-varying uncertainty matrices time-

varying state dependent uncertainty 

matrices, which may be due to modeling 

errors 

It is assumed that the state feedback is available and the state feedback control input is 

given by                                k k K k k k K ku K x x x K x                                (4.24) 

The optimal control problem we consider is to determine an admissible control u  to 

satisfy the performance objective (2.56). The general performance criteria is given as 

 1 2 0, 0T T T T T
k k k k k k k k k k k kV V x Qx u Ru z Mz z Sw w Nw k                   (2.56) 

Before introducing the main result of the paper, the following model of 

uncertainties is introduced. 

Assumption 4.2: The following general form of 2l -bounded unstructured uncertainties are 

considered:            ; ; ;T T T T
A A A B B B E E E K K KI I I I                               (4.25) 

for n
kx  and 0k  . 
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4.2.2 Robust and Resilient State Dependent LMI Control for Discrete Time Nonlinear 

System 

The following theorem summarizes the main results of this section: 

Theorem 4.2: Given the system model (4.22), performance output (4.23) and control 

equation (4.24), if there exist matrices 1 0k kX P   and kY  for all 0k  , such that the 

following state dependent linear matrix inequality holds: 

If 0M  , then 

12 13 15

22

33

44

55

66

* 0 0 0

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

T
k k k

T

X Y X

E

   
  
 

 
 

 
 

  

                                               (4.26) 

If 0M  , then 

12 13

22

33

44

66

* 0 0

0* * 0 0

* * * 0

* * * *

T
k k k

T

X Y X

E

  
  
  
 

 
  

                                                         (4.27) 

where 

 

 

12

13

15

22

33

1
44

1
55

11
66

2 1

2

T T
k k k k k

T T T
k k k k

T
k k

T T T
k k k k

T
k B E k k

A K

X C MD X C S

X A Y B

X C

D S S D D MD N I

X I B B

R

M

Q I

 

 







  

  

 

     

     

 

  

   

                                                                           (4.28) 

Then the performance index inequality (2.56) is satisfied. The nonlinear feedback control 
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gain is given by                                      k k kK Y P                                                      (4.29) 

Proof 

In the proof below, the time and state argument will be dropped for notational simplicity. 

By applying system and performance output equations (4.22), (4.23), and state feedback 

input equation (4.24), the performance index can be formed as follows: 

     
     

   
     

1

2 0

T TT T
k k A k B k K k k E k

k A k B k K k k E k

TT T T
k k k k k k k K k K k

T T T
k k k k k k k k k k k k k

x A B K w E P

A B K x E w

x P x x Qx x K R K x

C x Dw M C x Dw C x D w Sw w Nw

             

            

      

      

                       (4.30) 

which can be expanded as 

           
       
       
   

   
     

1

1

1

1

2

TT
k k A k B k K k k A k B k K k

TT
k k E k k A k B k K k

TT
k k A k B k K k k E k

TT
k k E k k E k

TT T T
k k k k k k k K k K k

T T

k k k k k k k k k k k k k

x A B K P A B K x

w E P A B K x

x A B K P E w

w E P E w

x P x x Qx x K R K x

C x D w M C x D w C x D w Sw w









               

         

         

    

      

      0T
k kNw 

    (4.31) 

Equivalently, 

  11 12

22

0
*

T kT T T T
k k k k k k

k

x
x w x w x w

w

    
              

                                          (4.32) 

where 

           
   
11 1

T

k A k B k K k k A k B k K k

T T
k K k K k k

A B K P A B K Q P

K R K C MC

                   

     

       12 1

T T T
k A k B k K k k E k k kA B K P E C MD C S              

     22 1

T T T T
k E k k E k k k kE P E D MD D S S D N                                            (4.33) 
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Denote the following terms: 

    k A k B k K

k K

k E

A B K

K

E

        

   
   

                                                                           (4.34) 

Then (4.32) is equivalent to 

1 1

1

0
* *

T T T T T T
k k k k k k k k

T T T T
k k k k k

P P P Q R C MC C MD C S

P D S S D D MD N
 



           
            

 

(4.35) 

By adding and subtracting kP  term, we have 

    1 0
0

0
*

T

k k k kT

T T T T
k k k k k

T T T
k k k k

I
P P P P I

Q R C MC C MD C S

D S S D D MD N



   
           

     
     

                 (4.36) 

Imposing the property 1k kP P  , the sufficient condition for (4.36) is given as follows: 

   0 0
0 *

T T T T T
k k k k k

k k T T TT
k k k k

I Q R C MC C MD C S
P P I

D S S D D MD N

        
                 

 

(4.37) 

 Hence, we have 

   
 

0
*

T T T T T T
k k k k k k k k

T T T T
k k k k k

P P Q R C MC P C MD C S

P D S S D D MD N

         
  
       

       (4.38) 

Equivalently, we have 

  0
*

TT T T T
k k k k k k

kT T T T
k k k k

P Q R C MC C MD C S
P

D S S D D MD N

       
           

 

(4.39) 

Applying Schur complement, we have 
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 
 

1

* 0

* *

T T T T T
k k k k k k

T T T T
k k k k

k

P Q R C MC C MD C S

D S S D D MD N

P

      
 
     
 
 
 

          (4.40) 

Taking 0M   (the case where 0M   will be considered later), we apply Schur 

complement twice to (4.40), then 

1

1

1

* 0 0

0* * 0 0

* * * 0

* * * *

T T T T T
k k k k k

T T T T
k k k k

k

P Q C MD C S C

D S S D D MD N

P

R

M







    
     
  
 
 
  

              (4.41) 

Let 1
k kX P , by pre- and post-multiplying the above matrix inequality by 

 kdiag X I I I I , we have 

1

1

* 0 0

0* * 0 0

* * * 0

* * * *

T T T T T
k k k k k k k k k k k k

T T T T
k k k k

k

X X QX X C MD X C S X X X C

D S S D D MD N

X

R

M





    
     
  
 
 
  

      (4.42) 

By applying Schur complement again, we have 

1

1

1

* 0 0 0

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

T T T T T
k k k k k k k k k k

T T T T
k k k k

k

X X C MD X C S X X X C X

D S S D D MD N

X

R

M

Q







   
     
 

 
 
 
 
  

           (4.43) 

Denote k k kY K X                                                                                                          (4.44)  

By replacing the variables using (4.34), we have 
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 
   

 

 

1

1

1

* 0 0 0
0

* * 0 0 0

* * * 0 0

* * * * 0

* * * * *

TT
Tk Ak k k T

k k k k K k k kT
k B k Kk k

T T
Tk k

k ET
k k

k

AX C MD
X X X K X C X

B KX C S

D S S D
E

D MD N

X

R

M

Q







                    
   

       
 
 
 
  
  

 

(4.45) 

Equivalently, we have 

   
 

 
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1

1
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* * 0 0 0

* * * 0 0
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* * 0 0 0 0
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* * * * * 0

T T T T T T T
k k k k k k k k k k k k k k k

T T T T
k k k k k

k

T T
k A B k K B K k k

T
E

X X C MD X C S X A Y B X K X C X

D S S D D MD N E

X

R

M

Q

X K B X







  
 
   
 
 
 
 
 
 
 
         
 

 
 

  
 
 
 
  

0

     (4.46) 

By applying Lemma 1.1 and Assumption 4.2, we have  
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1
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1
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 
 

          (4.47) 

Similarly, by applying Lemma 1.1 and Assumption 4.2, we have  
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                    (4.49) 
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   
    

             (4.50) 

By applying (4.47)-(4.50), the sufficient condition for inequality (4.46) is given below 
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 
 
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  
 
 
 
 

       (4.51) 

where 

 11 1 1 4 2
T

K A K k k k kX X Y Y            

22 2I   

 1 1 1 1
33 1 2 3 4

T
B B E k kI I I B B                                                                         (4.52) 

Finally, by applying Schur complement twice, we have 
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                                                  (4.54) 

Notice that (4.53) is derived under the condition that 0M  . However, when strict 

positive realness criteria are chosen for control design, then condition 0M   must be 

satisfied. In this case, LMI condition (4.53) should be replaced by 

12 13
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44

66

* 0 0

0* * 0 0

* * * 0

* * * *

T
k k k

T

X Y X

E

  
  
  
 

 
  

                                   (4.55) 

Since positive constants 1 5,...,  are arbitrary, choosing all of them as 1, we obtain (4.26) 

and (4.27). Therefore, if LMI (4.26) or (4.27) holds under different conditions on Q, the 

inequality (2.56) is satisfied. 
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Remark 4.5: At this point, it is to be noted that other choices of constants 1 4,...,   are 

possible and can be tried if the value 1 for all these constants does not work.    

 

4.2.3 Application to the Inverted Pendulum on a Cart 

We test the novel robust and resilient State Dependent LMI approach with the inverted 

pendulum on a cart to compare the performance of different controllers. 

The following system parameters are assumed 

2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
      

Sampling Time: 0.01secT   

Denote the following state variables: 

1, ( )kx x kT , 2, ( )kx x kT  , 3, ( )kx kT , 4, ( )kx kT   

The following initial conditions are assumed: 

1 2 3 41, 0, / 4, 0x x x x     

The following design parameters are chosen to satisfy different mixed criteria:   

Mixed NLQR- H Design (Predominant NLQR)  

  40.01 0.01 0.01 0.01 , [0.01], , 1, 1, 0, 5C D Q I R M S N         

Mixed NLQR- H Design (Predominant H ) 

  41 1 1 1 , [1], 0.01 , 0.01, 1, 0, 5C D Q I R M S N          

Mixed NLQR- H -Positive Real Design (NLQR-Passivity)  

  41 1 1 1 , [1], , 1, 0.01, 0.5, 0.01C D Q I R M S N         

All of the above mixed criteria control performance results are shown in the 

Figs.4.6-4.10, in comparison with the traditional Linear Quadratic Regulator (LQR) 



92 
 

 
 

technique based on linearization. From these figures, we find that the novel state 

dependent LMI control has better performance compared with the traditional LQR 

technique based on linearization. Especially, Fig.4.6 and Fig.4.7 show that the traditional 

LQR technique loses control of the position and velocity of the cart, respectively. It 

should also be noted that predominant NLQR and predominant H  control techniques 

lead to faster response times than the NLQR-passivity technique. Fig.4.10 shows that the 

highest magnitude of control is needed by the predominant H  control and the lowest 

control magnitude is needed by the linearization based LQR technique. 
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Fig.4.6. Position trajectory of the inverted pendulum 
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Fig.4.7. Velocity trajectory of the inverted pendulum 
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Fig.4.8. Angle “theta” trajectory of the inverted pendulum 
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Fig.4.9. Angular velocity trajectory of the inverted pendulum 
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Fig.4.10. Control input 
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4.3 Summary 

This chapter addresses nonlinear system control design with general nonlinear quadratic 

regulator and quadratic dissipative criteria to achieve asymptotic stability, quadratic 

optimality and strict quadratic dissipativeness. For systems with unstructured but 

bounded uncertainty, the Linear Matrix Inequality based sufficient conditions are derived 

for the solution of general performance criteria control. The relative weighting matrices 

of these criteria can be achieved by choosing different coefficient matrices. The optimal 

control can be obtained by solving LMI. The inverted pendulum on a cart is used as 

examples to demonstrate the effectiveness and robustness of the proposed methods. The 

simulation studies show that the proposed methods provide satisfactory alternatives to the 

existing control techniques. 
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CHAPTER 5 2 H H  STATE DEPENDENT RICCATI EQUATION CONTROL 

APPROACH 

 
 
 

The Hamilton Jacobi Equation (HJE) and Hamilton Jacobi Inequality (HJI) are first order 

partial differential equations and inequalities, which characterize the solutions of optimal 

control of nonlinear systems. However, it is well-known of the difficulty to solve HJE 

and HJI in closed forms for more than a few state variables. As powerful alternatives to 

HJE / HJI techniques, the State Dependent Linear Matrix Inequality (SDLMI) and the 

State Dependent Riccati Equation (SDRE) techniques provide very effective algorithms 

for synthesizing the nonlinear feedback controls. As discussed in Chapters 3 and 4, the 

futher enhancements developed for the SDLMI provide an effective method to synthesize 

nonlinear feedback control in achieving nonlinear quadratic regulator (NLQR), H  and 

positive realness performance criteria.  

The SDRE control has emerged as general design method since the mid-1990s, to 

provide a systematic and effective control design framework for nonlinear systems. 

Motivated by linear quadratic regulator control by Algebraic Riccati Equation (ARE), 

Cloutier et al. extends the result to nonlinear quadratic regulator problem by using state 

dependent coefficient matrices [7, 8]. A discrete SDRE method is developed in [14]. Due 

to the computational advantage, stability and effectiveness in control, the SDRE method 

is of meaningful and practical importance and has a wide range of applications, including 

robotics, missiles, aircraft, satellite / spacecraft, unmanned aerial vehicles (UAVs), ship 

systems, autonomous underwater vehicles, automotives, process control, chaotic systems, 
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biomedical systems, guidance and navigation, etc. A recent survey of the development of 

SDRE method can be found in [6].  

Traditionally, the SDRE method has been used for solving the nonlinear quadratic 

regulation problem. In this chapter, novel 2H H  State Dependent Riccati Equation 

control approaches are presented with the purpose of providing a more general control 

framework for a nonlinear system. By solving the generalized SDRE, the optimal control 

solution is found to satisfy mixed performance criteria guaranteeing quadratic optimality 

with inherent stability property in combination with H  type of disturbance reduction. 

The effectiveness of the proposed technique is demonstrated by simulations involving the 

control of the inverted pendulum on a cart system. 

 

5.1 2 H H  Control of Continuous Time Nonlinear Systems Using SDRE Approach 

A novel 2H H  State Dependent Riccati Equation control approach is presented in this 

section with the purpose of providing a generalized control design framework for 

continuous time nonlinear systems. By solving the generalized Riccati Equations, the 

optimal control solution is found to satisfy mixed performance criteria guaranteeing 

quadratic optimality with inherent stability property in combination with H  type of 

disturbance reduction. The effectiveness of the proposed technique is demonstrated by 

simulations involving the control of inverted pendulum on a cart [88]. 

 

5.1.1 System Model and Performance Index 

Consider the input affine continuous time nonlinear system given by the following 

differential equation: 
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       x t A x x B x u F x w                                          (5.1) 

where  

nx   state of the dynamical system 

mu  applied input 

qw  2L  type disturbance 

, ,A B F   known coefficient matrices of appropriate dimensions, which can be 

functions of x  

The performance output pz  is generalized as follows:  

     z C x x D x u G x w                                                (5.2) 

where the coefficient matrices can also be functions of x .  

It is assumed that the state feedback is available. Otherwise, estimated state 

variable can be obtained from nonlinear state estimator. The nonlinear state feedback 

control input is given by                       

  ( )u K x x                                                           (5.3) 

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.52). The mixed 2H  and H  performance criteria 

is given as 

0 0

0

( ) (0)

T T T T

T TT T T T

V x Qx u Ru z z w w

V T x Qx u Ru z z dt V w w dt





     

        



              (2.52) 

By properly specifying the values of the weighing matrices , , , ,Q R C D G , this 

performance criterion can be used in nonlinear control design, which yields a mixed 2H  

and H  performance. 
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5.1.2 2H H  State Dependent Riccati Equation Control for Continuous Time 

Nonlinear Systems 

In the following, we will drop the argument x  as we have done before to simplify the 

notation. The following theorem summarizes the main results of the paper: 

Theorem 5.1: Given the system dynamics (5.1), performance output (5.2) and control 

input (5.3); the performance index (2.52) can be achieved by using the control feedback 

                                     

 

   

11

1

o T T T T

TT T T T T

K R D G G G I G D D D

B P D G G G I PF C G D C









        
      

                   (5.4) 

where P  is obtained from the generalized SDRE equation: 

    

    

   

1

11 1

1
0

TT T T T T

T T T T T T T T

TT T T T T

PA A P Q C C PF C G G G I PF C G

PB PF C G G G I G D C D R D G G G I G D D D

B P D G G G I PF C G D C



 





 



          

                 
       

 

(5.5) 

Proof 

By applying system model (5.1), performance output (5.2) and control input (5.3), 

performance index (2.52) becomes  

   
    0

TT T T

TT T T

x P Ax BKx Fw Ax BKx Fw Px x Px x Qx

x K RKx Cx DKx Gw Cx DKx Gw w w

      

       


               (5.6) 

Equivalently, we have 
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      11 12

22

0
*

x
x w

w

    
      

                                        (5.7) 

       11

T TTP A BK A BK P P Q K RK C DK C DK            

 12

T
PF C DK G     

22
TG G I                                                                                                                 (5.8) 

By applying the Schur complement result, we have the following inequality: 

        
       

   1
0

T TT

TT TT

P A BK A BK P P Q K RK C DK C DK

PF C DK G G G I PF C DK G


         

              



          (5.9) 

Equivalently, we have 

       

   1

T TT

TT TT

P A BK A BK P Q K RK C DK C DK

PF C DK G G G I PF C DK G P


        

               

              (5.10) 

In order to guarantee the controller stability, the quadratic energy function 

TV x Px  must be decreasing. Therefore, we have 0P  . Since we are trying to 

minimize P , the minimum value is achieved when the inequality (5.10) is satisfied as the 

following equation: 

 
       

   1
0

T TT

TT TT

P A BK A BK P Q K RK C DK C DK

PF C DK G G G I PF C DK G


        

              

         (5.11) 

By collecting terms with the same powers of K , we have 

    
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   

 

1

1

1

1
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TT T T T T

T T T T

TT T T T T T

T T T T T

PA A P Q C C PF C G G G I PF C G

PB PF C G G G I G D C D K

K B P D G G G I PF C G D C

K R D G G G I G D D D K

















         
       

       
       

       (5.12) 
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Equivalently, (5.12) can be simplified as 

0 T T TK K K K                                        (5.13) 

where 

    1 TT T T T TPA A P Q C C PF C G G G I PF C G
           

 

   1T T T TPB PF C G G G I G D C D
        

 

  1T T T TR D G G G I G D D D
       

                                                                   (5.14) 

By completing the squares in controller gain K , we have 

     0
To o oT oK K K K K K                               (5.15) 

For (5.13) to be equal to (5.15), we must have 

oTK K K                                              (5.16) 

Therefore, the optimal feedback gain is found to be 

 

   

1
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1

o T

T T T T

TT T T T T

K

R D G G G I G D D D

B P D G G G I PF C G D C






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

   

      
       

             (5.17) 

When oK K , the minimum P  is defined by the positive definite solution of the 

following Generalized SDRE: 

    
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1

0 oT o

TT T T T T

T T T T T T T T

TT T T T T

K K

PA A P Q C C PF C G G G I PF C G

PB PF C G G G I G D C D R D G G G I G D D D

B P D G G G I PF C G D C


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



 



   

           

                 
      

 

(5.18) 

which concludes the proof. 
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Remark 5.1: As a special case, when no noise is present, then we do not have H  

component in the performance index, i.e. nonlinear quadratic regulator control, then the 

following controller can be derived as a special case: 

If we neglect the noise term, then system equation becomes 

   x A x x B x u                                               (5.19) 

For  F  and G  identically equal to zero, the optimal feedback control gain can be derived 

as                                                        
1o TK R B P                                                    (5.20) 

P  is defined by the positive definite solution of the following State Dependent Riccati 

Equation:                            

   10 T TPA A P Q PBR B P                                        (5.21) 

Therefore, the conventional SDRE solution proposed by Cloutier et al. [7, 8] is 

derived as a special case of our results.  

Remark 5.2: Computationally, this method is fairly easy to implement, and standard 

SDRE solvers can be used to approach the solution of the generalized SDRE to find the 

optimal control gain. To facilitate the computation process, the following notation is 

introduced: 

  1TG G I


    

 
11 1T T T T T T TR D G G G I G D D D R D G G D D D
               

 

  1T T TB F G G I G D B F G D


        

  1T T T T T T TC G G G I G D C D C G G D C D


          
T TF G C     

T T TC G G C                                                                                                   (5.22) 

Then, the equivalent form of the generalized SDRE (5.18) is given as  
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   0
T T T TP A A P Q C C P F F P                           (5.23) 

where the equivalent form of (5.17) is given as following: 

o T TK P                                             (5.24) 

 

5.1.3 Application to the Inverted Pendulum on a Cart 

The dynamics of the inverted pendulum problem can be found in (3.16).  By choosing  

1 2 3 4, , ,x x x x x x       and the state space model for the system can be written as 

(3.19). Assume the following system parameters are given 

2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
        

The following design parameters are chosen:   

Classical SDRE Design (NLQR only) 

 4[1 1 1 1], [1], , 1C D Q I R     

Mixed NLQR- H  Design (Predominant H )  

4[1 1 1 1], [1], [1], 0.5 , 0.5, 0.9C D G Q I R          

Mixed NLQR- 2H  Design (Predominant 2H )  

4[0.8 0.8 0.8 0.8], [0.8], [0.1], , 1, 0.2C D G Q I R         

Assume the initial condition 

1 2 3 41, 0, / 4, 0x x x x     

All of the above mixed criteria control performance results are shown in Fig.’s 5.1-5.5. It 

should be noted that the traditional Linear Quadratic Regulator (LQR) technique based on 

linearization loses control of this nonlinear systems. Simulation results show that the 
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classical SDRE control has the fastest response time. Predominant 2H  control shows 

very similar response with the classical SDRE control. Predominant H  shows better 

capability of disturbance rejection.    
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Fig.5.1. Position trajectory of the inverted pendulum 
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Fig.5.2. Velocity trajectory of the inverted pendulum 
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Fig.5.3. Angle “theta” trajectory of the inverted pendulum 
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Fig.5.4. Angular velocity trajectory of the inverted pendulum 
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Fig.5.5. Control input 
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5.2 2 H H  Control of Discrete Time Nonlinear Systems Using SDRE Approach 

A novel 2H H  State Dependent Riccati Equation control approach is presented in this 

section with the purpose of providing a generalized control design framework for discrete 

time nonlinear systems. By solving the generalized Riccati Equations, the optimal control 

solution is found to satisfy mixed performance criteria guaranteeing quadratic optimality 

with inherent stability property in combination with H  type of disturbance reduction. In 

case when SDRE is not available to be solved, two powerful control alternatives: 

suboptimal 2H H  State Dependent Riccati Difference Equation control and the State 

Dependent Linear Matrix Inequality control are also proposed. The effectiveness of the 

proposed techniques is demonstrated by simulations involving the control of inverted 

pendulum [89]. 

 

5.2.1 System Model and Performance Index 

Consider the input affine discrete time nonlinear system given by the following 

difference equation: 

       
     1k k k k k k k

k k k k k k

x A x x B x u F x w

A x B u F w
   

  
                         (5.25) 

where  

n
kx  :  state vector   

m
ku  :  applied input 

q
kw  :  2l  type of disturbance 
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, ,k k kA B F : known coefficient matrices of appropriate dimensions, which can 

be functions of kx  

Note that the simplified notation for time varying matrices ,k kA B , etc. is used as 

was done before to denote the state dependent matrices. The performance output function 

p
kz   is generalized as follows:                                   

        k k k k k k k k k k k k kz C x x D x u G x w C x D u G w                     (5.26)   

where ,k kC D  are state dependent coefficient matrices of appropriate dimensions in 

general. It is assumed that the state feedback is available. Otherwise, estimates of the 

state variables can be obtained from nonlinear state estimator. The nonlinear state 

feedback control input is given by                                

   ( )k k k k ku K x x K x                                              (5.27) 

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.62). The mixed 2H  and H  performance criteria 

is given as 

1

1 1

00 0

0T T T T
k k k k k k k k k k k k

N NT T T T
N k k k k k k k k k kk k

V V x Q x u R u z z w w

V x Q x u R u z z V w w






 

 

      

        
              (2.62) 

By properly specifying the value of the weighing matrices , , , ,k k k k kQ R C D G , this 

performance criterion can be used in nonlinear control design, which yields a mixed 

Nonlinear Quadratic Regulator (NLQR) in combination with H  performance index. 
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5.2.2 2 H H  State Dependent Riccati Equation Control for Discrete Time Nonlinear 

Systems  

Theorem 5.2 ( 2H H  SDRE Control): Given the system dynamics (5.25), performance 

output (5.26), control input (5.27); the performance index (2.62) can be achieved by 

using the control feedback 

   

   

1

1

1

T T
k k k k k ko

Tk T T T T T T
k k k k k k k k k k k k k k k

T T
k k k k k

TT T T T T T
k k k k k k k k k k k k k k k

R B P B D D
K

B P F D G F P F G G I B P F D G

B P A D C

B P F D G F P F G G I A P F C G











      
       

    
       

       (5.28) 

where kP  is obtained from the generalized SDRE equation: 

 
    

 

1

1

1

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k

T T T T T T T
k k k k k k k k k k k k k k k k k k

P A P A C C Q A P F C G F P F G G I A P F C G

A P B C D A P F C G F P F G G I B P F D G

R B P B D D B P F D G F P F G G I B P













                  

         

          
    

1

1

TT
k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k

F D G

B P A D C B P F D G F P F G G I A P F C G





 

       
          (5.29) 

Proof 

By applying system equation (5.25), performance output equation (5.26), control input 

(5.27), performance index (2.62) becomes  

   

   

1

0

T

k k k k k k k k k k k k k

T T T
k k k k k k k

T T
k k k k k k k k k k k k k k

A B K x F w P A B K x F w

x P x x Qx u Ru

C x D u G w C x D u G w w w

         
   

     

             (5.30) 

Equivalently, we have 
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   11 12

22

0
*

kT T
k k

k

x
x w

w

    
         

                                      (5.31) 

       11 1

T TT
k k k k k k k k k k k k k k k k k kA B K P A B K P Q K R K C D K C D K           

   12 1

T T

k k k k k k k k kA B K P F C D K G      

22 1
T T

k k k k kF P F G G I                                                                                             (5.32) 

Therefore, we have 

          11 12

22

0
*

  
  

                                              (5.33) 

where  

       11 1

T TT
k k k k k k k k k k k k k k k k k kP A B K P A B K Q K R K C D K C D K

             

   12 1

T T

k k k k k k k k kA B K P F C D K G
         

22 1
T T

k k k k kF P F G G I                                                                                         (5.34) 

By applying Schur complement, the following inequality holds: 

       

   

   

1

1

1 1

1 0

T TT
k k k k k k k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k k

TT T

k k k k k k k k k

P A B K P A B K Q K R K C D K C D K

A B K P F C D K G F P F G G I

A B K P F C D K G







 



         

            

     

      

            (5.35) 

Equivalently, we have 

       

   

   

1

1

1 1

1

T TT
k k k k k k k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k k

TT T

k k k k k k k k k

P A B K P A B K Q K R K C D K C D K

A B K P F C D K G F P F G G I

A B K P F C D K G







 



         

            

    

    

(5.36) 
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Since we are trying to minimize kP , the minimum value is achieved when the 

inequality above becomes an equality. Since the iterative solution starts at P  runs 

backward in time, we have 1k kP P   if the iteration converges. Therefore, the difference 

equation becomes algebraic as follows:    

       

   

   

1

T TT
k k k k k k k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k k

TT T

k k k k k k k k k

P A B K P A B K Q K R K C D K C D K

A B K P F C D K G F P F G G I

A B K P F C D K G




         

            

    

       

(5.37) 

By collecting terms, we have 

 
    

 

1

1

1

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k

TT T T T T T T T T
k k k k k k k k k k k k k k k k k k k k k

T T T T T T T
k k k k k k k k k k k k k k k k

P A P A C C Q A P F C G F P F G G I A P F C G

K B P A D C B P F D G F P F G G I A P F C G

A P B C D A P F C G F P F G G I B P F













                  

        

          
    1

TT
k k k k

TT T T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k k

D G K

K R B P B D D B P F D G F P F G G I B P F D G K


 

        
 

(5.38) 

Equivalently, the equation can be simply written as 

                 T T T
k k k k k k k k kP K K K K                                     (5.39) 

where  

 12 TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k kA P A C C Q A P F C G F P F G G I A P F C G


                   

    12 TT T T T T T T
k k k k k k k k k k k k k k k k k k k kA P B C D A P F C G F P F G G I B P F D G


           

    12 TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k kR B P B D D B P F D G F P F G G I B P F D G


          

                         (5.40) 
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By completing the square in controller gain kK , we have 

   To o oT o
k k k k k k k k k kP K K K K K K                             (5.41) 

For (5.41) to be equal to (5.39), we must have 

         oT
k k k k kK K K                                                   (5.42) 

Therefore, the optimal feedback gain 

    
    

1

11

1

o T
k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k

K

R B P B D D B P F D G F P F G G I B P F D G

B P A D C B P F D G F P F G G I A P F C G











   

          

       
        (5.43) 

when o
k kK K , the minimum kP  is defined by the positive definite solution of the 

following generalized State Dependent Riccati Equation: 

 
    

 

1

1

oT o
k k k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k

T T T T T T
k k k k k k k k k k k k k k k k

P K K

A P A C C Q A P F C G F P F G G I A P F C G

A P B C D A P F C G F P F G G I B P F D G

R B P B D D B P F D G F P F G G









    

                 

         

        
    

11

1

TT T
k k k k k

TT T T T T T T T
k k k k k k k k k k k k k k k k k k k k

I B P F D G

B P A D C B P F D G F P F G G I A P F C G









    

       

 

                   (5.44) 

The equation (5.44) is the generalized discrete SDRE equation. By solving kP  from 

(5.44), the 2H H  SDRE control solution can be achieved by (5.43).  

Remark 5.1: In the special case, where we do not have H  component in the 

performance index, i.e. nonlinear quadratic regulator control, then the above derivation 

yields the following: 
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If we neglect the noise term, then system equation becomes 

  1k k k k kx A x B u                                                (5.45) 

The optimal feedback control gain is 

                        1o T T
k k k k k k k kK R B P B B P A


                                    (5.46) 

where kP  is defined by the positive definite solution of the following generalized State 

Dependent Riccati Equation: 

     1T T T T
k k k k k k k k k k k k k k kP A P A A P B R B P B B P A Q


                     (5.47) 

Therefore, the conventional discrete SDRE solution [14] is derived, which is a special 

case of our results.  

Remark 5.2: However, the generalized SDRE (5.44) can be numerically difficult to solve. 

To facilitate the computation process, the following two theorems provide two alternative 

solutions to the generalized SDRE in Theorem 5.2. Theorem 5.3 provides us a suboptimal 

solution by solving the difference State Dependent Riccati Equation (5.49), instead of 

(5.44). Theorem 5.4 provides us a State Dependent Linear Matrix Inequality approach. 

Theorem 5.3 (Suboptimal 2H H  SDRE Control): Given the system dynamics (5.25), 

performance output (5.26), control input (5.27) and performance index (2.62) can be 

achieved by using the control feedback 

   

   

1

1

11

1 1 1

1

1

1 1 1

T T
k k k k k k

Tk T T T T T T
k k k k k k k k k k k k k k k

T T
k k k k k

TT T T T T T
k k k k k k k k k k k k k k k

R B P B D D
K

B P F D G F P F G G I B P F D G

B P A D C

B P F D G F P F G G I A P F C G











  





  

      
       

    
       

     (5.48) 

where kP  is obtained as the steady solution to the following difference SDRE equation: 
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T T
k k i k k k k
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k k i k k k k k i k k k k k i k k k
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k k i k k k
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k k i k k k k k i k k k k k i k k k

T
k k k i k k
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P
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





      
                

     
       
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B P F D G F P F G G I B P F D G
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B P F D G F P F G G I A P F C G











    
       

   
 

       

 (5.49) 

At time step k , the difference equation (5.49) is iterated starting with an arbitrary initial 

condition ,0 0kP   until ,k iP  converges to , 1k iP  , for 1, 2,3,...i  . Hence, the solution to the 

generalized SDRE equation (5.44) can be found using this method. In practical 

applications, we can choose ,0kP I ,                                                                         (5.50)                           

as the starting value for iterations of calculating kP .  

Theorem 5.4 (State Dependent LMI Control): Given the system dynamics (5.25), 

performance output (5.26), control equation (5.27) and performance index (2.62), if there 

exist matrices 1 0k kM P   and kY  for all 0k  , such that the following State 

Dependent LMI hold: 

1613 151412

2322 00 0*

00 0* *
0

00* * *

0* * **

* * * **

k

k

n

m

p

M

M

I

I

I

  
  
 

 
 
 
 
  

                            (5.51) 

where   

12 0.5T T
k k k k kM C D M C       
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13
T T

k k k kM A Y B    
/2

14
T

k kM Q    
/2

15
T T

k kY R   
1/2

16
T

k kM C   

 22 0.5T T
k k k kI D D D D          

23
T

kF                                                                                                                         (5.52) 

and                                   1 ,   where max  . .  k k k k kM M s t M I                              (5.53) 

then the performance criteria inequality (2.62) is satisfied. The nonlinear feedback gain of 

the controller is given by                              k k kK Y P                          

(5.54) 

Proof 

Inequality (5.33) is equivalent to the following inequality: 

   
 

   1

*

0

T
k k k k k T

k k k kT

k k k k k k

T
k k

T

k k k
k k k k kT

k

P Q K R K
C D K G

C D K C D K

I G G

A B K
P A B K F

F





    
    
     

   
       
  

                     (5.55) 

By adding and subtracting the same term in (5.55), the following inequality results 

   
 

   

   

1

*

( )

0

T
k k k k k T

k k k kT

k k k k k k

T
k k

T

k k k
k k k k k kT

k

T

k k k
k k k k kT

k

P Q K R K
C D K G

C D K C D K

I G G

A B K
P P A B K F

F

A B K
P A B K F

F





    
    
     

   
 

       
  

       
  

                    (5.56) 

Therefore, subject to 1k kP P  , (5.61) can be rewritten as 
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   
 

   

*

0

T
k k k k k T

k k k kT

k k k k k k

T
k k

T

k k k
k k k k kT

k

P Q K R K
C D K G

C D K C D K

I G G

A B K
P A B K F

F



    
    
     

   
 

      
  

                     (5.57) 

By applying Schur complement result, we obtain  

11 12 13

22 23

33

* 0

* *

   
    
  

                                             (5.58) 

where  

   11

TT
k k k k k k k k k k kP Q K R K C D K C D K        

 12

T

k k k kC D K G     

 13

T

k k kA B K    

22
T
k kI G G     

23
T

kF   
1

33 kP                                                                                                                         (5.59) 

By pre-multiplying and post-multiplying the matrix with block diagonal matrix 

 , ,kdiag M I I , where 1
k kM P , the following inequality follows 

11 12 13

22 23

33

* 0

* *

   
    
  

                                          (5.60) 

where  
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TT
k k k k k k k k k k k k kM M Q K R K C D K C D K M        

 12

T T T T
k k k k k k k k k k kM C D K G M C G Y D G        

 13

T T T T
k k k k k k k kM A B K M A Y B      

22
T
k kI G G     

23
T

kF   
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33 kM                                                                                                                        (5.61) 

Finally, by applying Schur complement, the following LMI result is obtained 

1613 151412

2322 00 0*

00 0* *
0

00* * *

0* * **

* * * **

k

k

n

m

p
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I

  
  
 

 
 
 
 
  

                          (5.62) 

where   

12
T T T

k k k k k kM C G Y D G     

13
T T T

k k k kM A Y B    
/2

14
T

k kM Q   
/2

15
T T

k kY R   

 16

T T T T
k k k k k k k kM C D K M C Y D      

22
T
k kI G G     

23
T

kF                                                                                                                         (5.63) 

Hence, if the LMI (5.62) holds, inequality (2.62) is satisfied. Therefore, if the generalized 

SDRE (5.44) cannot be solved, the State Dependent LMI provides an alternative solution 

to the generalized SDRE. 

Remark 5.3: Maximizing k  in (5.53) minimizes a bound on kP  and therefore forces the 

solution to be close to the one given in the SDRE (5.44).  

 

5.2.3 Application to the Inverted Pendulum on a Cart 

The dynamics of the inverted pendulum problem can be found in (3.16).  By choosing  

1, ( )kx x kT , 2, ( )kx x kT  , 3, ( )kx kT , 4, ( )kx kT   and the state space model for the 

system can be written as (3.51). The following system parameters are assumed 
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2sec
0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
        

The following design parameters are chosen to satisfy different mixed criteria:   

Classical SDRE Design (NLQR only) 

  41 1 1 1 , [1], , 1C D Q I R     

Suboptimal 2H H  SDRE Design (Difference SDRE)  

  4 0 40.01 0.01 0.01 0.01 , [0.1], [0.01], , 0.5, 0.01,C D G Q I R P I         

State Dependent 2H H LMI Design (Predominant 2H )  

  40.01 0.01 0.01 0.01 , [0.01], [0.01], , 1, 5C D G Q I R         

State Dependent 2H H  LMI Design (Predominant H ) 

  41 1 1 1 , [1], [1], 0.01 , 0.01, 5C D G Q I R          

Linear Quadratic Regulator Based on Linearization (LQR)  

([10,10,50,2]), 1Q diag R   

The following initial conditions are assumed: 

1 2 3 41, 0, / 4, 0x x x x     

All of the above mixed criteria control performance results are shown in the 

Figs.5.6−5.10, in comparison with the traditional Linear Quadratic Regulator (LQR) 

technique based on linearization. From these figures, we find that the 2H H  SDRE has 

better performance compared with the traditional LQR technique based on linearization. 

Especially, Figs.5.6, 5.7 and 5.8 show that the traditional LQR technique loses control of 

the state variables. Fig.5.10 shows that the lowest control magnitude is needed by the 

linearization based LQR technique. 
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Fig.5.6. Position trajectory of the inverted pendulum 
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Fig.5.7. Velocity trajectory of the inverted pendulum 
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Fig.5.8. Angle “theta” trajectory of the inverted pendulum 
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Fig.5.9. Angular velocity trajectory of the inverted pendulum 
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Fig.5.10. Control input 

 

5.3 Summary 

This chapter presents novel 2H H  control of nonlinear systems with SDRE approach. 

The optimal control solution can be obtained by solving the generalized State Dependent 

Riccati Equation. It is shown that the conventional SDRE is the special case of the new 

generalized SDRE, when the performance index is limited to nonlinear quadratic 

regulator. In case when SDRE is no available to be solved, two powerful control 

alternatives: suboptimal 2H H  State Dependent Riccati Difference Equation control 

and the State Dependent Linear Matrix Inequality control are also proposed. The Inverted 

pendulum on a cart, a benchmark under-actuated system is used as an illustrative example 

to demonstrate the effectiveness and robustness of the proposed methods.  
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CHAPTER 6 ROBUST MULTI-CRITERIA OPTIMAL FUZZY CONTROL OF 

NONLINEAR SYSTEMS 

 
 
 
Fuzzy control systems have recently shown growing popularity in nonlinear system 

control applications. A fuzzy control system is essentially an effective way to decompose 

the task of nonlinear system control into a group of local linear controls based on a set of 

design-specific model rules. Fuzzy control also provides a mechanism to blend these 

local linear control problems all together to achieve overall control of the original 

nonlinear system. In this regard, fuzzy control technique has its unique advantage over 

other kinds of nonlinear control techniques. Latest research on fuzzy control system 

design is aimed to improve the optimality and robustness of the controller performance 

by combining the advantage of modern control theory with the Takagi-Sugeno fuzzy 

model.  

In Chapter 6, we address the nonlinear state feedback control design of nonlinear 

fuzzy control systems using the Linear Matrix Inequality (LMI) approach. We 

characterize the solution of the nonlinear control system with the LMI, which provides a 

sufficient condition for satisfying various performance criteria. A preliminary 

investigation into the LMI approach to nonlinear fuzzy control systems can be found in 

works of [66]-[68], [75]. The purpose behind this novel approach is to convert a 

nonlinear system control problem into a convex optimization problem which is solved by 

a Linear Matrix Inequality at each time. The recent development in numerical techniques 

for convex optimization provides efficient algorithms for solving LMIs. If a solution can 

be expressed in an LMI form, then there exist optimization algorithms providing efficient 
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global numerical solutions. Therefore if the LMI is feasible, then the LMI control 

technique provides globally stable solutions satisfying the corresponding mixed 

performance criteria at each time. We further propose to employ mixed performance 

criteria to design the controller guaranteeing the quadratic sub-optimality with inherent 

stability property in combination with dissipativity type of disturbance attenuation. 

 

6.1 Robust Multi-Criteria Optimal Fuzzy Control of Continuous Time Nonlinear Systems 

This section presents novel fuzzy control designs of continuous time nonlinear systems 

with multiple performance criteria. The purpose behind this work is to improve the 

traditional fuzzy controller performance to satisfy several performance criteria 

simultaneously to secure quadratic optimality with inherent stability property together 

with dissipativity type of disturbance reduction. The Takagi-Sugeno type fuzzy model is 

used in our control system design. By solving the Linear Matrix Inequality, the control 

solution can be found to satisfy mixed performance criteria. The effectiveness of the 

proposed technique is demonstrated by simulation of the control of inverted pendulum 

system [82].  

 

6.1.1 Continuous Time Takagi-Sugeno System Model 

The importance of the Takagi-Sugeno fuzzy system model is that it provides an effective 

way to decompose a complicated nonlinear system into local dynamical relations and 

express those local dynamics of each fuzzy implication rule by a linear system model. 

The overall fuzzy nonlinear system model is achieved by fuzzy “blending” of the linear 

system models, so that the overall nonlinear control performance is achieved.   
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The thi  rule of the Takagi-Sugeno fuzzy model can be expressed by the following 

forms:  

MODEL RULE i : 

IF 1( )t is 1iM , 2 ( )t  is 2iM , …, and ( )p t  is ipM , 

THEN, the input-affine continuous-time fuzzy system equation is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,2,3,...,

i i i

i i i

x t A x t B u t F w t

y t C x t D u t Z w t

i r

  
   




                                           (6.1) 

where  

( ) nx t    state vector 

( ) mu t    control input vector 

( ) qy t    performance output vector 

( ) sw t    2L  type of disturbance  

r    total number of the model rules 

ijM     fuzzy set   

n n
iA  , n m

iB  , n s
iF  , q n

iC  , q m
iD  , q s

iZ    

coefficient matrices 

1,..., p   known premise variables which can be functions of state variables, 

external disturbance and time  

It is assumed that the premises are not the function of the input vector ( )u t , which 

is needed to avoid the defuzzification process of fuzzy controller. If we use ( )t  to 

denote the vector containing all the individual elements 1( ),..., ( )pt t  , then the overall 

fuzzy system is 
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   1
1

1

( ( )) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( )

( ( ))

r
ri i i ii

i i i ir i
ii
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x t h t A x t B u t F w t
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
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 
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  

(6.2) 

   1
1

1

( ( )) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( )

( ( ))

r
ri i i ii

i i i ir i
ii

g t C x t D u t Z w t
y t h t C x t D u t Z w t

g t






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

 
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
 

(6.3) 

where 

1 2( ) ( ), ( ),..., ( )pt t t t                                                       (6.4) 

1

( ( )) ( ( ))
p

i ij j
j

g t M t 


                                                     (6.5) 

1

( ( ))
( ( ))

( ( ))
i

i r

ii

g t
h t

g t









                                                      (6.6) 

for all time t . The term ( ( ))ij jM t  is the grade membership of ( )j t  in ijM .   

Since  

1
( ( )) 0

( ( )) 0, 1, 2,3,...,

r

ii

i

g t

g t i r






 


 

                                                  (6.7) 

we have  

1
( ( )) 1

( ( )) 0, 1, 2,3,..,

r

ii

i

h t

h t i r






 


 

                                                  (6.8) 

for all time t .  

It is assumed that the state is available for feedback and the nonlinear state 

feedback control input is given by  

1
( ) ( ( )) ( )

r

i ii
u t h t K x t


                                       (6.9) 

Substituting this into the system and performance output equations, we have 
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 1 1 1
( ) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j i i j i ii j i
x t h t h t A B K x t h t F w t  

  
            (6.10) 

 1 1 1
( ) ( ( )) ( ( )) ( )+ ( ( )) ( )

r r r

i j i i j i ii j i
y t h t h t C D K x t h t Z w t  

  
           (6.11) 

Using the notation 

ij i i jG A B K                                                      (6.12) 

ij i i jH C D K                                                      (6.13) 

then the system equation becomes 

1 1 1
( ) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j ij i ii j i
x t h t h t G x t h t F w t  

  
                (6.14) 

1 1 1
( ) ( ( )) ( ( )) ( )+ ( ( )) ( )

r r r

i j ij i ii j i
y t h t h t H x t h t Z w t  

  
               (6.15) 

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.50). The general performance criteria is given as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T T T TV t x t Qx t u t Ru t y t y t y t w t w t w t                   

                (2.50) 

with 0, 0Q R   functions of x .  

 

6.1.2 Fuzzy LMI Control of Continuous Time Nonlinear System with General 

Performance Criteria 

The following theorem summarizes the main results of this section: 

Theorem 6.1: Given the system model (6.10), performance output (6.11) and control 

input (6.9), if there exist matrices 1 0S P   for all 0t  , such that the following LMI 

holds: 
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11 12 13 14 15

22 23

1

* 0 0

0* * 0 0

* * * 0

* * * *

I

R

I



     
   
  
 
 
  

                                (6.16) 

where 

11

1

2
T T T T T
i j i j i j i i j j j iSA M B SA M B A S B M A S B M             

 12

1

2 4
T T T T T T

i j i j i j i jF F SC M D SC M D
            

1/2
13

1

2
T T T T T T
i j i j i jSC M D SC M D         

 14

1

2
T T
i jM M    

/2
15

TSQ   

 22

1

2

T

i jI Z Z        

1/2
23

1

2

T

i jZ Z                                                                                                         (6.17) 

using the notation 

1
i i iM K P K S                                                 (6.18) 

then inequality (6.17) is satisfied. 

Proof 

By applying system model (6.10) and (6.14), performance output (6.11) and (6.15), and 

state feedback input (6.9), the performance index inequality (2.50) becomes 
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1 1 1 1

1 1

1 1

( ( )) ( ( )) ( ) ( ( )) ( ( )) ( )
( ) ( )

( ( )) ( ) ( ( )) ( )

( ) ( ) ( ( )) ( ) ( ( )) ( )

Tr r r r

i j ij i j iji j i jT

r r

i i i ii i

Tr rT
i i i ii i

h t h t G x t h t h t G x t
P x t x t P

h t F w t h t F w t

x t Qx t h t K x t R h t K x t

   

 

 

   

 

 

      
       
       

     

   
 



1 1 1 1

1 1

1 1

1

( ( )) ( ( )) ( ) ( ( )) ( ( )) ( )

+ ( ( )) ( ) + ( ( )) ( )

( ( )) ( ( )) ( )

+ ( ( )) ( )

Tr r r r

i j ij i j iji j i j

r r

i i i ii i

r r

i j iji j

r

i ii

h t h t H x t h t h t H x t

h t Z w t h t Z w t

h t h t H x t

h t Z w t

   


 

 




   

 

 



 
 

      
    
   
   

  
 
 
 



   
 

 


( ) ( ) ( ) 0

T

Tw t w t w t   

 

 (6.19) 

Inequality (6.19) is equivalent to  

11 12

22

( )
( ) ( ) 0

* ( )
T T x t

x t w t
w t

              
                             (6.20) 

where 

11

T T

i j ij i j ij i i i i
i j i j i i

T

i j ij i j ij
i j i j

h h G P P h h G Q h K R h K

h h H h h H

       
                 

   
     

   

   

 

 

12 2

T T

i i i j ij i i i j ij
i i j i i j

P h F h h H h Z h h H


      
                 

     

22

T T

i i i i i i
i i i

I h Z h Z h Z       
               

                                                                 (6.21) 

Inequality (6.20) can be rewritten as 

11 12

22

0
*

T

i j ij
i j

i j ij i iT
i j i

i i
i

h h H

h h H h Z

h Z



  
                               
    


 


         (6.22) 

where 
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11

T T

i j ij i j ij i i i i
i j i j i i

h h G P P h h G Q h K R h K
                         
     

12 2

T

i i i j ij
i i j

P h F h h H
          

   
   

22

T

i i
i

I h Z   
       

                                                                                                 (6.23) 

By applying Schur complement to inequality (6.23), we have 

1/2
11 12

1/2
22* 0

* *

T

i j ij
i j

T

i i
i

h h H

h Z

I





  
    
  
 

       
 
 
  



                                (6.24) 

Similarly, inequality (6.24) can also be written as 

1/2
11 12

1/2
22* 0 0 0 0

0
* *

T

T
i j ij

i j
i i

iT T

i i i i
i i

h h H
h K

h Z R h K

I





  
                                         
   
    
  




   

        (6.25) 

where 

11

T

i j ij i j ij
i j i j

h h G P P h h G Q
   

       
   
   

12 2

T

i i i j ij
i i j

P h F h h H
          

   
   

22

T

i i
i

I h Z          
                                                                                                 (6.26) 
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By applying Schur complement again to (6.25), we have 

1/2
11 12

1/2
22

1

0* 0

* * 0

* * *

T T

i j ij i i
i j i

T

i i
i

h h H h K

h Z

I

R







             
 

        
 
 
 

 

                            (6.27) 

Equivalently, we have 

11 12 13 14

22 23

1

* 0
0

* * 0

* * *

i j
i j

h h
I

R

    
    
 
 
 

                              (6.28) 

where 

       11

1 1

2 2

T

i i j j j i i i j j j iA B K A B K P P A B K A B K Q                    

     12

1

2 4

T

i j i i j j j iP F F C D K C D K
            

   1/2
13

1

2

T

i i j j j iC D K C D K         

 14

1

2

T

i jK K    

 22

1

2

T

i jI Z Z        

1/2
23

1

2

T

i jZ Z                                                                                                         (6.29) 

Therefore, we have the following LMI 

11 12 13 14

22 23

1

* 0
0

* * 0

* * *

I

R

    
    
 
 
 

                                (6.30) 

By multiplying both sides of the LMI above by the block diagonal matrix 

 , , ,diag S I I I , where 1S P , and using the notation 
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1
i i iM K P K S                                                (6.31) 

we obtain 

11 12 13 14

22 23

1

* 0
0

* * 0

* * *

I

R

    
    
 
 
 

                                     (6.32) 

where 

11

1

2
T T T T T
i j i j i j i i j j j iSA M B SA M B A S B M A S B M SQS              

 12

1

2 4
T T T T T T

i j i j i j i jF F SC M D SC M D
            

1/2
13

1

2
T T T T T T
i j i j i jSC M D SC M D         

 14

1

2
T T
i jM M    

 22

1

2

T

i jI Z Z        

1/2
23

1

2

T

i jZ Z                                                                                                         (6.33) 

By applying Schur complement again, the final LMI is derived 

11 12 13 14 15

22 23

1

* 0 0

0* * 0 0

* * * 0

* * * *

I

R

I



     
   
  
 
 
  

                              (6.34) 

where 

11

1

2
T T T T T
i j i j i j i i j j j iSA M B SA M B A S B M A S B M             

 12

1

2 4
T T T T T T

i j i j i j i jF F SC M D SC M D
            

1/2
13

1

2
T T T T T T
i j i j i jSC M D SC M D         

 14

1

2
T T
i jM M    

/2
15

TSQ   
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 22

1

2

T

i jI Z Z        

1/2
23

1

2

T

i jZ Z                                                                                                         (6.35) 

Hence, if the LMI (6.35) holds, inequality (2.50) is satisfied. This concludes the proof of 

the theorem.  

Remark 6.1: For the chosen performance criterion, the LMI (6.16) need to be solved at 

each time to find matrices ,S M , by using relation (6.18), we can find the feedback 

control gain, therefore, the feedback control can be found to satisfy the chosen criterion.  

 

6.1.3 Application to the Inverted Pendulum on a Cart  

The inverted pendulum on a cart system is used for testing the effectiveness of the 

proposed algorithm. The system model of the inverted pendulum on a cart problem has 

been derived in [4], which is a simplified version of the previous state space model 

(3.16):    

   
1 2 1

2
1 2 1 1

2 22
1

sin sin 2 / 2 cos( )

4 / 3 cos ( )

x x w

g x amLx x a x u
x w

L amL x





  


  
   




               (6.36) 

where 

1x   angle of the pendulum from vertical direction 

2x   angular velocity of the pendulum 

 g   gravity constant   

m  mass of the pendulum 

M    mass of the cart 

L           length to the pendulum center of mass, length of the pendulum equals 2L   
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u   external force, control input to the system 

w   2L  type of disturbance 

a   constant  1/a m M   

1 2,    weighting coefficients of the disturbance 

Due to the system nonlinearity, we approximate the system using the following 

two-rule fuzzy model: 

RULE 1:  

IF 1x  is close to zero, 

THEN 1 1 1( ) ( ) ( ) ( )x t A x t B u t F w t   . 

RULE 2: 

IF  1x  is close to / 2 , 

THEN 2 2 2( ) ( ) ( ) ( )x t A x t B u t F w t   . 

where 

1

0 1

0
4 / 3

A g

L amL

 
 
 

 

, 1

0

4 / 3

B a

L amL

 
 
 

 

, 1
1

2

F


 

  
 

 

 
2

2

0 1

2
0

4 / 3

gA

L amL 

 
   
  

, 2

2

0

4 / 3

B a

L amL




 
 
 

 

, 1
2

2

F


 

  
 

 with cos(80 )o   

The following values are used in our simulation: 

2
1 22 , 8 , 0.5 , 9.8 / , 1, 0m kg M kg L m g m s         

sampling time 0.001T  , 1 2(0) / 6, (0) / 6x x     as the initial conditions. The 

membership functions of Rule 1 and Rule 2 are shown in Fig.6.1.  



134 
 

 
 

 

 
Fig.6.1. Membership functions of Rule 1 and Rule 2 

The following design parameters are chosen to satisfy: 

Mixed NLQR- H criteria:   

 1 1C  , [1]D  , {[100 1]}Q diag , 1R  , 1  , 0  , 5    

Mixed NLQR-passivity criteria:   

 1 1C  , [1]D  , {[100 1]}Q diag , 1R  , 1  , 5  , 0   

The mixed criteria control performance results are shown in the Figs.6.2-6.4. 

From these figures, we find that the novel fuzzy LMI control has satisfactory 

performance. The new technique controls the inverted pendulum very well under the 

effect of finite energy disturbance. It should also be noted that the LMI fuzzy control with 

mixed performance criteria satisfies global asymptotic stability.   
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Fig.6.2. Angle trajectory of the inverted pendulum 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

an
gu

la
r 

ve
lo

ci
ty

 t
he

ta
-d

ot
 in

 r
ad

ia
ns

/s
ec

on
d

time in seconds

 

 

NLQR-Passivity

NLQR-Hinfinity

 

Fig.6.3. Angular velocity trajectory of the inverted pendulum 
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Fig.6.4. Control input applied to the inverted pendulum 

 

6.2 Robust Multi-Criteria Optimal Fuzzy Control of Discrete Time Nonlinear Systems 

This section presents novel fuzzy control designs of discrete time nonlinear systems with 

multiple performance criteria. The purpose behind this work is to improve the traditional 

fuzzy controller performance to satisfy several performance criteria simultaneously to 

secure quadratic optimality with inherent stability property together with dissipativity 

type of disturbance reduction. The Takagi-Sugeno type fuzzy model is used in our control 

system design. By solving the Linear Matrix Inequality, the control solution can be found 

to satisfy mixed performance criteria. The effectiveness of the proposed technique is 

demonstrated by simulation of the control of inverted pendulum on a cart system [84].  
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6.2.1 Discrete Time Takagi-Sugeno System Model 

At time step k , the thi  rule of the Takagi-Sugeno fuzzy model can be expressed by the 

following forms:  

MODEL RULE i : 

IF 1( )k  is 1iM , 2 ( )k  is 2iM , …, and ( )p k  is ipM , 

THEN, the input-affine discrete-time fuzzy system equation is: 

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,2,3,...,

i i i

i i i

x k A x k B u k F w k

y k C x k D u k Z w k

i r

   
   


                                    (6.37) 

where  

( ) nx k   state vector 

( ) mu k   control input vector 

( ) qy k   performance output vector 

( ) sw k   2l  type of disturbance  

r   total number of the model rules 

ijM    fuzzy set   

n n
iA  , n m

iB  , n s
iF  , q n

iC  , q m
iD  , q s

iZ       

coefficient matrices 

1,..., p   known premise variables which can be functions of state variables, 

external disturbance and time  

It is assumed that the premises are not the function of the input vector ( )u k , 

which is needed to avoid the defuzzification process of fuzzy controller. If we use ( )k  
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to denote the vector containing all the individual elements 1( ),..., ( )pk k  , then the 

overall fuzzy system is 

   1
1

1

( ( )) ( ) ( ) ( )
( 1) ( ( )) ( ) ( ) ( )

( ( ))

r
ri i i ii

i i i ir i
ii

g k A x k B u k F w k
x k h k A x k B u k F w k

g k











 
     


 

(6.38) 
  

   1
1

1

( ( )) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( )

( ( ))

r
ri i i ii

i i i ir i
ii

g k C x k D u k Z w k
y k h k C x k D u k Z w k

g k











 
    


 

(6.39) 

where 

1 2( ) ( ), ( ),..., ( )pk k k k                                                   (6.40) 

1

( ( )) ( ( ))
p

i ij j
j

g k M k 


                                                  (6.41) 

1

( ( ))
( ( ))

( ( ))
i

i r

ii

g k
h k

g k









                                                   (6.42) 

for all k . The term ( ( ))ij jM k  is the grade membership of ( )j k  in ijM .   

Since  

1
( ( )) 0

( ( )) 0, 1, 2,3,..,

r

ii

i

g k

g k i r






 


 

                                        (6.43) 

we have  

1
( ( )) 1

( ( )) 0, 1, 2,3,..,

r

ii

i

h k

h k i r






 


 

                                          (6.44) 

for all k .  

It is assumed that the state feedback is available and the nonlinear state feedback 

control input is given by  
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1
( ) ( ( )) ( )

r

i ii
u k h k K x k


                                           (6.45) 

Substituting this into the system and performance output equation, we have 

 1 1 1
( 1) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j i i j i ii j i
x k h k h k A B K x k h k F w k  

  
             (6.46) 

 1 1 1
( ) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j i i j i ii j i
y k h k h k C D K x k h k Z w k  

  
              (6.47) 

Using the notation 

ij i i jG A B K                                                      (6.48) 

ij i i jH C D K                                                      (6.49) 

then the system equation becomes 

1 1 1
( 1) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j ij i ii j i
x k h k h k G x k h k F w k  

  
                  (6.50) 

1 1 1
( ) ( ( )) ( ( )) ( ) ( ( )) ( )

r r r

i j ij i ii j i
y k h k h k H x k h k Z w k  

  
                   (6.51) 

The optimal control problem we consider is to determine an admissible control u  

to satisfy the performance objective (2.56). The general performance criteria is given as 

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

T T

T T T

V k V k x k Qx k u k Ru k

y k y k y k w k w k w k  

    

     
                   (2.60) 

with 0, 0Q R   functions of ( )x k .  

 

6.2.2 Fuzzy LMI Control of Discrete Time Nonlinear System with General Performance 

Criteria 

The following theorem summarizes the main results of the paper: 

Theorem 6.2: Given the closed loop system (6.50), performance output (6.51), if there 

exist matrices 1 0S P   for all 0k  , such that the following LMI holds:  
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151312 14 1611

22 23 24

1

0* 0

0* 0* 0
0

0* 0* *

* 0* **

* * ** *

S

I

R

I



   
    
 

 
 
 
 
  

                            (6.52) 

where  

11 S   

12 4

T

i i j j j iC S DY C S D Y
         

13

1

2

T

i i j j j iA S BY A S B Y        

1/2
14

1

2

T

i i j j j iC S DY C S D Y          

15

1

2

T

i jY Y      

/2
16

TSQ   

 22 2

T

i jI Z Z
      

 1/2
23

1

2

T

i jF F     

1/2
24

1

2

T

i jZ Z                                                                                                         (6.53)                         

and                                                           1S k S k                                                (6.54) 

where    1S k P k , then (2.60) is satisfied with the feedback control gain being found 

by                                                             K k Y k P k                                          (6.55) 

Proof 

The performance index inequality (2.60) can be explicitly written as 
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1 1 1 1

1 1

1 1

( ( )) ( ( )) ( ) ( ( )) ( ( )) ( )

( ( )) ( ) ( ( )) ( )

( ) ( ) ( ) ( )

( ( )) ( ) ( ( )) ( )

Tr r r r

i j ij i j iji j i j

r r

i i i ii i

T T

Tr r

i i i ii i

h k h k G x k h k h k G x k
P

h k F w k h k F w k

x k Px k x k Qx k

h k K x k R h k K x k

   

 

 

   

 

 

      
    
       
 

     

   
 

 

1 1 1 1

1 1

1 1

1

( ( )) ( ( )) ( ) ( ( )) ( ( )) ( )

( ( )) ( ) ( ( )) ( )

( ( )) ( ( )) ( )

( ( )) ( )

Tr r r r

i j ij i j iji j i j

r r

i i i ii i

Tr r

i j iji j

r

i ii

h k h k H x k h k h k H x k

h k Z w k h k Z w k

h k h k H x k
w

h k Z w k

   


 

 




   

 

 




 

      
    
       

  
 
  

   
 

 


( ) ( ) ( ) 0Tk w k w k 

 

(6.56) 

Equivalently,  

0 ( )
( ) ( )

0 ( )

( )
( ) ( )

( )

( ) ( )

( ) ( )

T T

T

T T
i j ij i i i j ij i i

i j i i j i

T

T
i i i i

i i

T T

P Q x k
x k w k

I w k

x k
x k w k h h G h F P h h G h F

w k

x k h K R h K x k

x k w k





          
   

                                         

          

 

   

 

( )

( )

( ) ( ) ( ) 0

T

i j ij i i i j ij i i
i j i i j i

T

T T
i j ij i i

i j i

x k
h h H h Z h h H h Z

w k

x k w k h h H h Z w k

     
      

    

 
     

 

   

 

 

(6.57) 

which can be written, after collecting terms, as 
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11 12

22

( )
( ) ( )

* ( )

( )
( ) ( )

( )

( ) ( )

T T

T

T T
i j ij i i i j ij i i

i j i i j i

T

T T
i j ij i i i j

i j i j

x k
x k w k

w k

x k
x k w k h h G h F P h h G h F

w k

x k w k h h H h Z h h H

              

                                         

 
     

 

   

  
( )

0
( )ij i i

i i

x k
h Z

w k

   
   

  
 

 

(6.58) 

where 

11

T

i i i i
i i

P Q h K R h K
   

          
   

12 2

T

i j ij
i j

h h H
  

   
 
  

22

T

i i
i

I h Z   
      

                                                                                                  (6.59) 

Equivalently, we have 

11 12

22*

0

T

i j ij i i i j ij i i
i j i i j i

T

i j ij i i i j ij i i
i j i i j i

h h G h F P h h G h F

h h H h Z h h H h Z

             
                            

   
      

   

   

   
    (6.60) 

By applying Schur complement, we obtain 

11 12

22

1

*

* *

0

T

i j ij
i j

T

i i
i

T

i j ij i i i j ij i i
i j i i j i

h h G

h F

P

h h H h Z h h H h Z



  
    
  
 

       
 
 
  

   
      

   





   

      (6.61) 
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By applying Schur complement again, we obtain 

1/2
11 12

1/2
22

1

0*

* * 0

* * *

T T

i j ij i j ij
i j i j

T T

i i i i
i i

h h G h h H

h F h Z

P

I







    
      
    
 

              
 
 
 

 

                  (6.62) 

Equivalently, the following inequality holds 

1/2
11 12

1/2
22

1

*

* * 0

* * *

0 0 0 00

0

0

T T

i j ij i j ij
i j i j

T T

i i i i
i i

T

i i
i

i i
i

h h G h h H

h F h Z

P

I

h K

R h K







    
      
    
 

              
 
 
 
  
  
             
 
 
 

 

 




                     (6.63) 

where 

11 P Q    

12 2

T

i j ij
i j

h h H
  

   
 
  

22

T

i i
i

I h Z   
      

                                                                                                 (6.64) 

By applying Schur complement one more time, we have 
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1/2
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1/2
22

1

1

* 0 0

* * 0 0

* * * 0

* * * *

T T T

i j ij i j ij i i
i j i j i

T T
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h F h Z

P

I

R









                   
 

              
 
 
 
  

  

            (6.65) 

By factoring out the ( ) ( )i k j k
i j

h h  term, we have 

1312 14 1511

2322 24

1

1

* 0

* * 0 0 0

* * * 0

* * * *

P

I

R





   
   
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 
 
 
 

                           (6.66) 
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T

ij jiH H
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1
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T
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By pre-multiplying and post-multiplying the matrix with the block diagonal 

matrix   , , , ,block diag S I I I I , where 1S P , and applying Schur complement again, 

the following LMI result is obtained 
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where  
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where 1S P  and feedback gain K Y P  .                   

Hence, if the LMI (6.68) holds, performance criteria inequality (2.60) is satisfied. This 

concludes the proof of Theorem. 

 

6.2.3 Application to the Inverted Pendulum on a Cart 

The inverted pendulum on a cart problem is again used to test the proposed control 

algorithm. The system equation is given in (6.36). Due to the system nonlinearity, we 

approximate the system using the following two-rule fuzzy model: 

RULE 1:  
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IF  1x k  is close to zero, 

THEN 1 1 1( 1) ( ) ( ) ( )x k A x k B u k F w k    . 

RULE 2: 

IF   1x k  is close to / 2 , 

THEN 2 2 2( 1) ( ) ( ) ( )x k A x k B u k F w k    . 
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 with cos(80 )o                             

The following values are used in our simulation: 

2
1 28.0 , 2 , 0.5 , 9.8 / , 1, 0M kg m kg L m g m s         

with the sampling time 0.001T   and initial conditions 1 2/ 6, / 6x x    . The 

membership of Rule 1 and Rule 2 is shown in Fig.6.5.  

 
Fig.6.5. Membership functions of Rule 1 and Rule 2 

 After the system discretization, the feedback control gain can be found from 

(6.55) by solving the LMI (6.52) at each time step. The following design parameters are 
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chosen to satisfy:  

Mixed NLQR- H criteria:   

 1 1C  , [1]D  , {[80 1]}Q diag , 1R  , 1  , 0  , 5    

Mixed NLQR-passivity criteria:   

 1 1C  , [1]D  , {[80 1]}Q diag , 1R  , 1  , 5  , 0   

The mixed criteria control performance results are shown in the Figs.6.6-6.8. 

From these figures, we find that the novel fuzzy LMI control has satisfactory 

performance. The new technique controls the inverted pendulum well under the effect of 

finite energy disturbance.   
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Fig.6.6. Angle trajectory of the inverted pendulum 
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Fig.6.7. Angular velocity trajectory of the inverted pendulum 
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Fig.6.8. Control input applied to the inverted pendulum  
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6.3 Summary 

This Chapter presents novel nonlinear system fuzzy control approaches based on the LMI 

solutions.  We have first applied the Takagi-Sugeno fuzzy model to decompose the 

nonlinear system. Mixed performance criteria have been used to design the controller and 

the relative weighting matrices of these criteria can be achieved by choosing different 

coefficient matrices. The optimal control can be obtained by solving LMI at each time. 

The benchmark inverted pendulum on a cart problem has been used as an example to 

demonstrate its effectiveness. The simulation studies show that the proposed method 

provides a satisfactory alternative to the existing nonlinear control approaches.   
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CHAPTER 7 BACKGROUND THEORY FOR NONLINEAR ESTIMATION 

 
 
 

In 1960, Rudolph E. Kalman published his famous paper describing a recursive solution 

to the discrete data linear filtering problem, which became a major milestone in the 

control science. The Kalman filter is a recursive unbiased filter to estimate the state of a 

process with a linear dynamic model in a way that minimizes the mean square error in 

estimation. The Kalman filter is one of the most widely used methods for linear system 

state estimation and tracking due to its simplicity, optimality and robustness. Traditional 

Kalman filtering proves to be the optimal solution for linear systems with additive noise; 

however, it does not work as well for nonlinear systems. Over the past 40 years, the EKF, 

which locally linearizes the nonlinear model so that Kalman Filter can be applied, has 

been the dominant tool for nonlinear state estimation. However, the EKF is also well-

known for its difficulty to implement, difficulty to tune and instability for severely 

nonlinear systems. Recently, researchers developed the UKF, which shows better 

estimation in some applications than EKF, especially for severely nonlinear models. It is 

based on the principle that “it is easier to approximate a probability distribution than it is 

to approximate an arbitrary nonlinear function or transformation.” We also present 

another alternative to EKF, the discrete SDRE estimator, for nonlinear estimation.  SDRE 

controllers have been widely deployed in recent advanced nonlinear control systems, and 

have shown to be far more robust than LQR based on standard linearization techniques. 

These nonlinear filters have extensive industrial applications from GPS navigation to 

military sensor networks, from autonomous vehicles to wireless communications. In this 

chapter, we discuss and provide a comparative study of these estimation techniques. 
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7.1 Nonlinear Estimation 

7.1.1 Extended Kalman Filter 

Nonlinear estimation can be a very difficult and complex problem. If we extend the 

Kalman filter to a form linearized about the current state estimates, this filter is called the 

Extended Kalman Filter (EKF). Over the past 40 years, EKF has undoubtedly been the 

most widely used nonlinear estimation technique. When it does not work quite well in 

severely nonlinear systems or when the noises have relatively large power, people often 

resort to higher order Extended Kalman Filter, by including the higher order Taylor series 

terms, to improve the performance of EKF at the price of much higher mathematical and 

computational complexity. Since there are many equivalent forms of the Kalman filter, 

we can obtain the corresponding forms of EKF equations. Two sets of commonly used 

discrete time EKF formulations are summarized as follows.  

The two-step updated EKF equations 

1. System and measurement model: 

),0(~

),0(~

),(

),,(1

kk

kk

kkkk

kkkkk

Ww

Vv

wxhy

vuxfx








                                        (7.1) 

At the thk  time step, kx is the state vector and ku  is the input vector. The process 

noise kv is AWGN with zero mean and kV covariance; ky is the measurement vector. 

The measurement noise kw is AWGN with zero mean and kW covariance; 0x , kv and 

kw  are mutually uncorrelated. 

2. Initialization: 
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3. Compute the following partial derivative matrices: 
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4. The time update of state estimate and error covariance (effect of system 

dynamics): 

The priori state and covariance: 
T

kkk
T
kkkk

kkkk

FVFAPAP

uxfx











1

1 )0,,ˆ(ˆ
              (7.4) 

5. Compute the following partial derivative matrices: 
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6. The measurement update of state estimate and error covariance  (effect of 

measurement): 

Kalman gain: 1
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The posteriori state and covariance: 
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
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Equivalently, the second set of EKF equations is shown as follows: 

One-step updated EKF equations (propagation from time step k to (k+1)) 
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       (7.8) 

The second set of EKF equations is equivalent to the first set of equations and has the 

same initial condition as the first set of equations shown previously. Notice that, in this 

form, we have actually combined both time and measurement updates into one step 

update equations. Notice that ˆ ˆ( ) ( )T
k k k k kP E x x x x       is approximately the error 

covariance.  

EKF extends the capability of Kalman filter for nonlinear estimation, but EKF has 

the following drawbacks: 

1. Linearization can produce unstable filter performance if the time sampling step is 

not sufficiently small (the local linearity is not valid).  

2. The computation of Jacobian matrices is nontrivial and in some applications lead 

to unstable performance. 

3. Sufficiently small time step intervals require high sampling rate and high 

computational complexity.  

4. Hardware implementation is difficult and tuning is not possible. 

5. EKF using higher order approximations can be very computationally complicated.  

The SDRE and UKF generally show better performance compared with EKF in 

applications, and provides important tools for nonlinear estimation.   
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7.1.2 State Dependent Riccati Equation Estimation 

As previously mentioned, control and estimation are dual problems. The Linear 

Quadratic Regulator and Kalman Filtering are dual problems, both of which satisfy 2H  

performance.  H  control and H  estimation are dual problems, which maximize the 

capability in rejecting extraneous noises and disturbances. Similarly, we have dual 

problem: SDRE controller and SDRE estimator for nonlinear systems. 

Consider the same discrete time nonlinear system as before: 
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                                            (7.9) 

The procedure for setting up the discrete SDRE estimator can be summarized as below. 

The nonlinear dynamics can be expressed in the following form: 
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)()(1                               (7.10) 

Denote )( kk xA  as kA , )( kk xB  as kB  and )( kk xC  as kC . The covariance matrix kP  is 

solved from the discrete time algebraic Riccati equation: 

T
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T
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T
kkkk FVFAPCGWGCPCCPAAPAP  1)(             (7.11) 

The SDRE filter gain is updated by:  

1)(  T
kkk

T
kkk

T
kkkk GWGCPCCPAK .                            (7.12) 

The state estimate is updated by:  

))ˆ(()ˆ(ˆ)ˆ(ˆ 1 kkkkkkkkkkk xhyKuxBxxAx  .                  (7.13) 
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In order to get a reliable estimation result, the following major stability issues of SDRE 

filter must be considered: 

 The coefficients kA , kB , kC , kF and kG must be bounded in magnitude. 

 In order to get the kP  at every time step, the discrete time algebraic Riccati 

equation must have a unique positive definite solution at every step.  

Notice that essentially, there is no linearization effect and no Jacobian matrices need to 

be calculated in SDRE estimator, which explains the better estimation performance of 

SDRE compared with EKF.  

 

7.1.3 Unscented Kalman Filter 

Nonlinear filtering requires a complete description of the conditional probability density 

maintained; therefore, it requires an unbounded number of sample points to approximate 

the conditional probability density function. The particle filter, essentially an application 

of the Monte Carlo method, can use tens of thousands of points to accurately fulfill this 

process. Therefore, the particle filter is rarely practical in use due to its computational 

burden.  

As mentioned earlier, the EKF is a linearized version using a Kalman filter and is 

based on approximating the nonlinear function or transformation (up to the first order 

term of  Taylor series) instead of the probability density function (PDF); therefore, it 

sometimes produces poor filtering performance if the higher order terms of the Taylor 

series are dominant.  

The recently proposed Unscented Kalman Filter (UKF) exhibits less estimation 

error in many applications. The UKF is based on two important principles. First, it is easy 
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to perform a nonlinear transformation on a single point. Second, it is possible to select a 

set of single points in state space (called sigma points) whose sample PDF can represent 

the true PDF of the state vector. Therefore, based on the information from these sample 

points, we can approximate the statistical properties of the true nonlinear transformation. 

There are many different forms of unscented transformations for UKF.  The commonly 

used forms are summarized as follows. For more detailed information about UKF, please 

refer to references. 

The general UKF equations 

1. System model and measurement model: 
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                                         (7.14) 

At the thk  time step, kx is the n-dimensional state vector and ku is the input vector. 

The process noise kv is AWGN with zero mean and kV  covariance; ky  is the 

measurement vector. The measurement noise, kw , is AWGN with zero mean and kW  

covariance.  Denote as a tuning factor, satisfying 3n . 

2. Initialization: 
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3. The time update equations of state estimate and covariance: 

(a) To propagate from step k to (k+1), the set of translated sigma points need to be 

computed from the nn  covariance matrix 
kP . The n-dimensional state vector 
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kx with mean 
kx̂  and covariance 

kP  is approximated by (2n+1) weighted samples or 

sigma points selected by:  
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 
ikPn  )(  is the thi row or column of the matrix square root of  kPn )(  , and the 

(2n+1) weighting coefficients are given as: 
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(b) Each sigma point is initiated through the process model: 
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(c) The predicted mean is computed by: 
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(d)The predicted covariance, which is the a priori error covariance, is computed as: 
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4. The measurement update equations of state estimate and covariance: 
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(a) Each predicted observation point is initialized using the given observation model. 

The state variables are the sigma points from the time update part shown above. 
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(b) The predicted observation is calculated by:  
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(c) Since the measurement noise is AWGN with covariance 1kW , the covariance of 

the predicted measurement is: 
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(d)The cross correlation is determined by: 
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(e)The final measurement update can be performed using normal Kalman filter 

equations as: 
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7.2 Summary  

Chapter 7 briefly goes over the nonlinear estimation techniques, including the Extended 

Kalman Filter, State Dependent Riccati Equation estimator, Unscented Kalman Filter. It 

should be noticed that nonlinear estimation techniques have been applied in chaotic 

communication applications in recent research studies. A novel nonlinear estimation 

based chaotic communication scheme, proposed in [77, 79, 80, 81], have shown 

significant improvement over traditional chaotic communication techniques. Since 

nonlinear estimators are the dual problems of nonlinear controllers, Chapter 7 serves as 

an intermediate chapter for Chapter 8, in which we propose a novel resilient estimator for 

nonlinear stochastic systems.  
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CHAPTER 8 RESILIENT NONLINEAR FILTERING FOR STOCHASTIC SYSTEMS 

WITH SENSOR FAILURES 

 
 
 
It is well-known that the sensor measurements do not always contain a true signal but 

corrupted signal caused by various reasons such as attenuation, distortion, sensor failures, 

delays, multipath and strong noise interference. The estimation with missing 

measurements was first pointed out in [21, 48], where the missing data were modeled by 

a binary switching sequence specified by a conditional probability distribution. Such a 

problem has recently stirred renewed research attention, due to the extensive deployment 

of sensor networks in various applications. Missing data phenomena have become more 

and more common in today’s data-intensive control engineering, and severely influence 

the overall system performance in applications such as networked control computing 

systems, wireless communication systems, navigation systems, etc.   

In order to address this important issue, several solutions for estimation of linear 

systems with missing measurements have been investigated using different approaches. 

For example, in [55]-[57], the filtering problem with missing data has been investigated 

by using a jump Riccati equation approach. The variance-constrained filtering problem 

has been considered in [91] for discrete-time stochastic systems with probabilistic 

missing measurements subject to norm-bounded parameter uncertainties. The statistical 

convergence properties of Kalman filter with intermittent missing measurements have 

been studied in [59], where a critical value has been shown to exist for the arrival rate of 

the observations. Robust finite-horizon estimator for linear system with missing 

measurements was proposed in [92]. Another alternative approach is proposed in [45] for 
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the problem of state estimation via asynchronous communication with irregular 

transmission times.   

Due to the inherent nonlinearity of physical communication transmitters, receivers 

and channels, the study of nonlinear filtering for discrete time stochastic systems is of 

practical importance. Recent development involving the case of a nonlinear system with 

multiple sensors, which may fail independently, has been investigated by Hounkpevi and 

Yaz in [28, 29], in which the measurements are assumed to be linear functions of the state 

variables. An alternative stochastic observer design for nonlinear models with 

intermittent measurements has been studied by NaNacara and Yaz in [49], requiring the 

upper bounds on the estimation error covariance to be assigned. 

In this chapter, a novel resilient filtering technique is proposed for discrete time 

nonlinear systems with multiple sensors having different failure rates. It should be noted 

that the local unbiased resilient minimum variance estimator is designed for state 

estimation, while both system and measurement model are assumed to be nonlinear.   

 

8. 1 Resilient Nonlinear Filtering for Stochastic Systems with Sensor Failures 

Missing sensor data is a common problem which severely influences the overall 

performance of today’s data-intensive applications. In order to address this important 

issue, a resilient filtering technique is proposed for discrete-time nonlinear stochastic 

system and measurement equations with sensor failures and random gain perturbations. 

The failure mechanisms of multiple sensors are assumed to be independent of each other 

with different failure rates. The local unbiased minimum variance estimation is designed 

for state estimation under these conditions. Lorenz oscillator, a benchmark nonlinear 
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chaotic system, is used to demonstrate the effectiveness and resilience of the proposed 

approach [90]. 

 

8.1.1 Problem Formulation and Preliminaries 

Consider the discrete-time nonlinear stochastic system dynamics and measurement 

equation: 
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                 (8.1) 

where 

n
kx   state vector 

n
kv   system noise 

p
ky   measurement vector 

p
kw   measurement noise 

,f h   differentiable nonlinear vector functions 

The mean of initial state 0x  is  0 0E x x  and covariance 

  0 0 0 0 0

T
X E x x x x     . The noise process  kv and  kw  are white, zero mean, 

uncorrelated with each other and with 0x , and have covariance kV  and kW  respectively: 

 ~ 0,k kv V ,  ~ 0,k kw W  
T

k j k k jE v v V      , T
k j k k jE w w W      , 0T

k jE v w     

0 0T
kE v x    , 0 0T

kE w x                                           (8.2) 
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The scalar binary Bernoulli distributed random variables i
k  are with mean i  

and variance  1i i   whose possible outcomes  1,0  are defined as  1i
k iP     and 

 0 1i
k iP     . The formulation involves hard sensor failures, where 1i   means the 

thi  sensor is properly working and 0i   means it is failing, i.e. either the sensor works 

or it fails. There is no other alternative considered in this work.  

By denoting                                    1 ,..., p
k k kdiag                                                (8.3) 

      1 ,..., p
k k kh x diag h x h x                                         (8.4) 

1 ,...,
Tp

k k kw w w                                                         (8.5) 

the measurement equation can be written as 

 k k k ky h x w                                                          (8.6) 

Our goal is to estimate the state vector kx  based on our knowledge of system 

dynamics and the availability of the noisy measurement ky  under the effect of sensor 

failures. The following discrete-time nonlinear Luenberger observer is considered in this 

work.  

      1ˆ ˆ ˆk k k k k k kx f x K y h x                                        (8.7) 

The predictor part of (8.7) is a replica of the nonlinear plant dynamics. The 

correction term corrects future state estimates based on the present error in estimation of 

the measured value. kK  is the feedback gain with additive uncertainty k . The 

uncertainty k , which arises due to computational or tuning errors, is assumed to have 

zero mean, bounded second moment and be uncorrelated with initial state, process and 
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measurement noises, i.e. 

 T
k kE I    

0 0T
kE x    , 0T

k kE v    , 0T
k kE w                               (8.8) 

The term k  is defined as 

   1,...,k k pE diag                                                (8.9)  

 

8.1.2 Resilient Filtering for Nonlinear Stochastic Systems with Random Sensor Failures 

In this section, we derive the locally unbiased, resilient and minimum variance state 

estimator for the nonlinear system and measurement model based on the structure of the 

estimator (8.7). This means for small error values, the estimator is unbiased, has 

robustness against gain perturbations (8.8) and has minimum estimation error covariance. 

The following theorem summarizes the main result of this chapter. 

Theorem 8.1: Consider the discrete-time nonlinear stochastic system and measurement 

equations given by (8.1) and the Luenberger observer type nonlinear estimator given by 

(8.7), the local unbiased resilient minimum variance estimator is defined as follows: 

1.   Initialization 

 
  

0 0

0 0 0 0 0

ˆ

ˆ ˆ T

x E x

P E x x x x



    
                                    (8.10) 

2.   Computation of Jacobian matrices 

ˆk

k
x x

f
A

x 





, 
ˆk

k
x x

h
C

x 





                                      (8.11) 

3.   For time steps 1,2,3,...k  , the finite horizon filter propagates by calculating the 

feedback gain  
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    1To T T
k k k k k k k k k k k kK C P A C P C Z W


                                  (8.12) 

  from the local estimation error covariance 

      
     

1 max max max
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      (8.13) 

  to be used in updating the state estimate as 

      1ˆ ˆ ˆk k k k k k kx f x K y h x                            (8.14) 

 where 
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                             (8.16) 

Proof 

The estimation error ˆk k ke x x   dynamics is given by: 

         
1 1 1ˆ
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k k k
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                     (8.17) 

Expanding  kf x  and  kh x  into Taylor series at ˆkx , we have 

     
ˆ

ˆ ˆ ...
k

k k k k
x x

f
f x f x x x

x 


   


                                  (8.18) 
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Neglecting higher order terms, and denoting the following Jacobian matrices 
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                                            (8.20) 

we have the following approximations 

   ˆk k k kf x f x A e                                                  (8.21) 

   ˆk k k kh x h x C e                                                  (8.22) 

Using (8.18)-(8.22), (8.17) can be approximated by 

          
      

       

1 ˆ ˆ ˆ

ˆ ˆ

ˆ

k k k k k k k k k k k

k k k k k k k k k k k k

k k k k k k k k k k k k k k

e f x A e v f x K y h x

A e v K h x C e w h x

A K C e v K w K h x

         

           

               

           (8.23) 

where k k k    .                                                                                                     (8.24) 

In order to find the optimal estimator gain kK , we need to consider the estimation 

error covariance matrix  T
k k kP E e e . After applying (8.23), we find the error covariance 

matrix evolves as 
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(8.25) 

By applying (8.2) and (8.8), (8.25) can be simplified as follows 

By applying (8.8) and Rayleigh’s matrix inequality, the term 
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          (8.26) 

Since ,k ke v  are uncorrelated, the term  
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Since ,k ke w are uncorrelated, the term 

        0
TTT T

k k k k k k k k k k k k k k k k k kE A K C e w K K w e A K C                      
 

(8.28) 

Since , ,k k ke    are mutually uncorrelated and   0, 0k kE e E     
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By applying (8.8), the term 

   

   max max

T T T
k k k k k k k k k k k k k

T T T
k k k k k k k k k k k k

V E K W K V K W K E W

V K W K W E V K W K W I  

              
         

      (8.30) 

Since ,k kv w are uncorrelated, the term 

    0
TT T

k k k k k k k kE v w K K w v                                      (8.31) 

Since ,k kv  are uncorrelated and   0kE v  , the term 

       ˆ ˆ 0
TT T T

k k k k k k k k k kE v h x K K h x v          
                    (8.32) 

Since , ,k k kw    are mutually uncorrelated and   0, 0k kE w E     
 , the term 

           ˆ ˆ 0
T TT T T

k k k k k k k k k k k k k kE K w h x K K h x w K             
   

(8.33) 

By applying (8.8), the term 

       

       

        max

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

TT T
k k k k k k k k

T T T T T T
k k k k k k k k k k k k

T T T T T
k k k k k k k k k k

E K h x h x K

K E h x h x K E h x h x

K E h x h x K E h x h x I 

       
             

            

 

   

   

         (8.34) 
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Based on the results of terms (8.26)-(8.34), (8.25) can be reduced to 

     

        

1

max max max

maxˆ ˆ ˆ ˆ

T T T T
k k k k k k k k k k k k k k k kk k

T T T T
k k k k k k k k k k k k k k k

T T T T T
k k k k k k k k k k

k k k k k k

P A K C P A K C K E C P C K

C P C I E C P C I V K W K W I

K E h x h x K E h x h x I

A K C P A

     

 

                  

            

            

     

 

 

   

   

      
 

max max

max

ˆ ˆ

ˆ ˆ

T T T T T
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T T T T T
k k k k k k k k k k k k k k

T
k k k k k

K C K E C P C h x h x K

C P C I E C P C h x h x I

V K W K W I

   

 

            

           

  

   

   

 

(8.35) 

Denote 

    
    

ˆ ˆ

ˆ ˆ

T T

k k k k k k k k k k

T T
k k k k k

Z E h x h x C P C

h x h x C P C

                   

  

   
                  (8.36) 

where 

    
 

 

1 1

1 1

1 ,..., 1

1 0 0

0

0

0 0 1

p p

p p

diag    

 

 

     

 
 
   
 

  



  

  



                                 (8.37) 

Therefore, the error covariance equation can be obtained as 

      
1

max max max

T T
k k k k k k k k k k k k k k

T T T
k k k k k k k k k k

P A K C P A K C V K W K

K Z K C P C W Z I   

              

      
                  (8.38) 

Equivalently, we have 

1
T T T

k k k k k k k k kP K K K K                                       (8.39) 

where 
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      max max max

T T
k k k k k k k k

k k k k k

T T T
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C P C Z W
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A P A V C P C W Z I   

     

  

        

                         (8.40) 

By completing the square in observer gain kK , we have 

   1

To o o oT
k k k k k k k k k kP K K K K K K                             (8.41) 

For (8.41) to be equal to (8.39), we must have 

oT
k k k k kK K K                                                       (8.42) 

Therefore, the optimal feedback gain 

   

1

1

o T
k k k

T T T
k k k k k k k k k k k

K

C P A C P C Z W





  

     
                               (8.43) 

When o
k kK K , the resulting matrix difference equation for the minimum error 

covariance is: 

      
     

1

max max max

1

o oT
k k k k k

T T T
k k k k k k k k k k k

T T T
k k k k k k k k k k k k k k k

P K K

A P A V C P C W Z I

C P A C P C Z W C P A

   




   

       

      

               (8.44) 

This concludes the proof of the theorem. 

Remark 8.1: As a limiting case, if we have no perturbations on the estimator gain, 

i.e. 0  , then the following estimator can be derived following a similar procedure to 

the previously given. In this case, the optimal feedback gain is 

    1To T T
k k k k k k k k k k k kK C P A C P C Z W


                           (8.45) 

The minimum error covariance equation is  

     1

1

TT T T
k k k k k k k k k k k k k k k k k k k kP A P A V C P A C P C Z W C P A



           
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(8.46) 

and the state estimate is updated as  

    1ˆ ˆ ˆk k k k k kx f x K y h x                                        (8.47) 

 

8.1.3 Resilient Estimation for Lorenz Systems with Random Measurement Failures 

The Lorenz oscillator, introduced by Edward Lorenz in 1963, is a 3-dimensional 

dynamical system corresponding to the behavior of chaotic flow. The air flow dynamics 

can be characterized by Lorenz oscillator equation as follows: 

 

 

1
2 1

2
1 3 2

3
1 2 3

dx
x x

dt
dx

x x x
dt
dx

x x x
dt







  

   



 

                                             (8.48) 

The physical meanings of the non-dimensional variables are as follows: 

1x : The dimensionless velocity 

2x : The dimensionless temperature difference between up and down currents 

3x : The dimensionless departure from the conductive equilibrium 

 : The Prandtl number to characterize the momentum diffusivity. 

 : The parameter related to the horizontal wave-number of convective motion 

 : The Rayleigh number  

It is assumed that noise corrupted nonlinear measurements 3 3 3
1 2 3, ,x x x  are available. 

Bernoulli distributed sensor failure rates are      1 2 31 , 1 , 1       respectively. The 

measurement equation is 
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3
1 1 1 1

3
2 2 2 2

3
3 3 3 3

y x w

y x w

y x w







  


 
  

                                                 (8.49) 

The following parameter values are chosen for simulation:  

Sampling time 0.001T   

Lorenz map parameters 828, 10, 3      

Mean values of 1 2 3, ,   are 1 2 30.95, 0.98, 0.9      

Measurement noise covariance matrix 

1 0 0

0 1 0

0 0 1

W

 
   
  

 

The uncertainty bound is taken as 0.0001   

Lorenz oscillator system and the proposed estimator are initialized as follows. 

0 0 0

10 30 2 0 0

ˆ10 , 20 , 0 1 0

10 15 0 0 1

x x X

     
            
          

 

The 3-dimensional phase plot of Lorenz oscillator is shown in Fig.8.1, noted for 

its lemniscates shape. 
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Fig.8.1. 3-dimensional phase plot of Lorenz system 

If the sensor failure rate is zero, i.e. all measurements are the actual values 

contaminated by the additive white noise; the phase plane of the measurement y is shown 

as the blue dash-dotted line in Fig. 8.2. However, when the independent sensor failures 

are included in the simulation, the measurement y is shown as the red solid line in Fig.8.2 

with a lot of “spikes”. The spikes are actually the effect of binary Bernoulli distributed 

sensor failures, since any sensor failure will force the corresponding component of the 

measurement vector to zero.          
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Fig.8.2. 3-Dimensional phase plot of measurement with and without considering the 

effect of sensor failure  

Fig.8.3−8.5 shows the phase plot trajectories of each individual measurement in 

Fig.8.2.  Notice that the red dashed line is the measurement without sensor failure, and 

the blue dash-dotted line is the measurement with sensor failure. Since the sensor failures 

obey the scalar binary Bernoulli distribution, the curve will suddenly “jump” to zero, 

when the corresponding sensor fails to work, therefore, “spikes” appear in Fig.8.3-8.5.  
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Fig.8.3. Phase plot of measurement y1 without sensor failure in comparison with its 
phase plot with sensor failure  
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Fig.8.4. Phase plot of measurement y2 without sensor failure in comparison with its 
phase plot with sensor failure  
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Fig.8.5. Phase plot of measurement y3 without sensor failure in comparison with its 
phase plot with sensor failure  

 
By applying the proposed nonlinear stochastic estimator, the phase plot of the 

estimated state of Lorenz oscillator system is shown as red dashed line in Fig.8.6 in 

comparison with the state phase plot in blue dash-dotted line. Notice that the state 

estimates starting from different initial positions than the actual state, eventually 

converge to the actual state trajectories. 

Figs.8.7-8.9 shows the plots of trajectories of the individual state values and the 

state estimates. As the time increases, the estimated state in blue dash-dotted line 

effectively converges to the state trajectory in red dashed line under the effect of additive 

white noise and sensor failures. It is apparent from these graphs that the newly proposed 

discrete-time nonlinear stochastic estimator shows satisfactory performance in the case of 

system and measurement nonlinearity, noise interference and independent sensor failures. 
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For comparison purposes, the Extended Kalman Filter for the discretized form of the 

nonlinear model (8.46) and (8.47) with no failure information was designed and 

simulated. However, EKF was unstable and failed to tract the trajectories in the presence 

of sensor failures. 
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Fig.8.6. 3-dimensional estimated state phase plot in comparison with the state phase plot 



178 
 

 
 

0 100 200 300 400 500 600 700 800 900 1000
-20

-15

-10

-5

0

5

10

15

20

25

30

 

 

real state x1

estimated state x1

 
Fig.8.7. Estimated state phase plot of x1 in comparison with its state phase plot 
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Fig.8.8. Estimated state phase plot of x2 in comparison with its state phase plot 
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Fig.8.9. Estimated state phase plot of x3 in comparison with its state phase plot 

 

8.2 Summary 

Resilient state estimator design for nonlinear stochastic systems with nonlinear 

measurement equations and sensor failures is proposed in this chapter. The analytic 

solution is derived for local minimum variance unbiased estimator for nonlinear multi-

sensor systems with independent sensor measurement failures. A benchmark chaotic 

nonlinear system, Lorenz oscillator, is used as a simulation example to demonstrate the 

effectiveness and robustness of the proposed approach. Simulation results show that the 

novel resilient state estimator provides better performance than the traditional Extended 

Kalman Filter in the presence of sensor failures. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

 
 
 

The last chapter concludes the dissertation with a brief summary of the results and a 

discussion of related future research directions.   

 

9.1 Summary 

The central issues and challenges of control and estimation problems are to satisfy the 

desired performance objectives in the presence of noises, disturbances, parameter 

perturbations, unmodeled dynamics, sensor failures, actuator failures, time delays, etc. 

The focus of this dissertation is to address the following outstanding issues in robust and 

optimal nonlinear control and estimation:  

 

State Dependent Linear Matrix Inequality Control (Chapter 3, 4) 

Two powerful alternatives for Hamilton Jacobi Equations and Hamilton Jacobi Inequality 

are State Dependent Linear Matrix Inequality control and State Dependent Riccati 

Equation control approach. The valuable insights we have gained about the State 

Dependent Linear Matrix Inequality control are summarized in Chapter 3 and Chapter 4, 

where both continuous and discrete systems are discussed. We further propose general 

performance criteria to design the controller guaranteeing the quadratic sub-optimality 

with inherent stability property in combination with dissipativity type of disturbance 

attenuation. By solving the linear matrix inequality at each time, the optimal control 

solution can be found to satisfy the desired performance objectives. Moreover, any type 

of controller is subject to the actuator failures. The control of nonlinear stochastic 
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systems under actuator failures has also been proposed at the end of Chapter 3, which 

shows significant improvement over the traditional nonlinear control techniques. Chapter 

4 presents a more general solution of the optimal, robust and resilient control State 

Dependent Linear Matrix Inequality control of nonlinear systems with general 

performance criteria. And the controller is robust for model uncertainties and resilient for 

control gain perturbations. The benchmark underactuated system: inverted pendulum on a 

cart is used to demonstrate the effectiveness and robustness of the proposed control 

techniques.  

 

2H H  State Dependent Riccati Equation control (Chapter 5) 

The traditional SDRE approach to nonlinear quadratic regulator problem has been 

applied in a wide variety of military and industrial control applications. Chapter 6 has 

proposed novel 2H H  State Dependent Riccati Equation control approaches with the 

purpose of providing a generalized control framework to nonlinear systems. By solving 

the generalized State Dependent Riccati Equation, the optimal control solution is found to 

satisfy mixed performance criteria guaranteeing quadratic optimality with inherent 

stability property in combination with H  type of disturbance reduction. The 

effectiveness of the proposed technique is also demonstrated by simulations involving the 

control of benchmark inverted pendulum on a cart system. 

 

Multi-criteria Optimal Fuzzy Control of Nonlinear Systems (Chapter 6) 

Fuzzy control has shown growing popularity in both industry and academia. To improve 

the optimality and robustness, we have proposed optimal fuzzy control for nonlinear 
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systems with general performance criteria. Takagi-Sugeno fuzzy model provides us an 

effective tool to control nonlinear systems through the fuzzy rule models. Mixed 

performance criteria have been used to design the controller and the relative weighting 

matrices of these criteria can be achieved by choosing different coefficient matrices. The 

optimal control can be obtained by solving LMI at each time. The benchmark inverted 

pendulum on a cart problem has been used as an example to demonstrate its 

effectiveness. The simulation studies show that the proposed method provides a 

satisfactory alternative to the existing nonlinear control approaches.   

 

Resilient Nonlinear Filtering for Stochastic Systems with Sensor Failures (Chapter 8) 

Any type of observer is subject to the sensor failures. Because of this, resilient nonlinear 

filtering for nonlinear stochastic systems with sensor failures is proposed in Chapter 8, 

which shows significant improvement over the traditional nonlinear estimation 

techniques.  

 

9.2 Future Work 

We have shown that State Dependent LMI, 2H H  State Dependent Riccati Equation 

and Muticriteria Optimal Fuzzy Control with LMI provide tractable ways to synthesize 

controllers for a large class of nonlinear systems in achieving general performance 

criteria. Since controllers and estimators are dual problems, some of our proposed control 

techniques results can be extended to the applications of nonlinear estimation in the 

future, such as optimal fuzzy estimator with general performance criteria. At the same 

time, we feel that the other nonlinear control approaches can be further investigated 
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targeting nonlinear systems with special structures. Another natural followup of all this 

work is to investigate the real time implementation of these proposed control and 

estimation techniques using the latest embedded system platforms such as Digital Signal 

Processors and Field Programmable Gate Arrays.  
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