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ABSTRACT

DISAGGREGATING TIME SERIES DATA FOR ENERGY CONSUMPTION BY

AGGREGATE AND INDIVIDUAL CUSTOMER

Steven R. Vitullo, B.S., M.S.

Marquette University, 2011

This dissertation generalizes the problem of disaggregating time series data

and describes the disaggregation problem as a mathematical inverse problem that

breaks up aggregated (measured) time series data that is accumulated over an

interval and estimates its component parts.

We describe five different algorithms for disaggregating time series data: the

Naive, Time Series Reconstruction (TSR), Piecewise Linear Optimization (PLO),

Time Series Reconstruction with Resampling (RS), and Interpolation (INT). The

TSR uses least squares and domain knowledge of underlying correlated variables to

generate underlying estimates and handles arbitrarily aggregated time steps and

non-uniformly aggregated time steps. The PLO performs an adjustment on

underlying estimates so the sum of the underlying estimated data values within an

interval are equal to the aggregated data value. The RS repeatedly samples a subset

of our data, and the fifth algorithm uses an interpolation to estimate underlying

estimated data values. Several methods of combining these algorithms, taken from

the forecasting domain, are applied to improve the accuracy of the disaggregated

time series data.

We evaluate our component and ensemble algorithms in three different

applications: disaggregating aggregated (monthly) gas consumption into

disaggregated (daily) gas consumption from natural gas regional areas (operating

areas), disaggregating United States Gross Domestic Product (GDP) from yearly

GDP to quarterly GDP, and forecasting when a truck should fill a customer’s

heating oil tank.

We show our five algorithms successfully used to disaggregate historical

natural gas consumption and GDP, and we show combinations of these algorithms

can improve further the magnitude and variability of the natural gas consumption

or GDP series. We demonstrate that the PLO algorithm is the best of the Naive,

TSR, and PLO algorithms when disaggregating GDP series. Finally, ex-post results

using the Naive, TSR, PLO, RS, INT, and the ensemble algorithms when applied to

forecast heating oil deliveries are shown. Results show the Equal Weight (EW)



combination of the Naive, TSR, PLO, RS, and INT algorithms outperforms the

forecasting system Company YOU used before approaching the GasDayTM

laboratory at Marquette University, and comes close, but does not outperform

existing techniques the GasDayTM laboratory has implemented to forecast heating

oil deliveries.
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3.20 Estimated series ŷ using the PLO algorithm . . . . . . . . . . . . . . . . 81

3.21 PLO algorithm adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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CHAPTER 1

Introduction

This chapter begins by stating the disaggregation problem we address and

introduces information and terminology to understand the context of the problem.

After introducing the problem, we describe background information on heating oil,

natural gas delivery systems, types of natural gas and heating oil customers, units of

measure, and cyclical patterns of consumption. Finally, we give a brief outline of

the dissertation.

1.1 Disaggregation Problem Statement

Disaggregation occurs when a quantity is divided into its component parts.

When we learned how to divide in the 3rd grade, we were actually doing a simple

form of disaggregation. For example, imagine a friend uses 50 gallons of heating oil

to heat his home over the last 10 days. Our friend records how many gallons of

heating oil he uses each day but does not tell us. We now have to guess how many

gallons of heating oil our friend uses each day. If we have no knowledge about how

many gallons of heating oil our friend uses each day, our best estimate is to take the

50 gallons and divide it by 10 days yielding five gallons of oil each day. In this case,
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we have 10 equal estimated values over the 10 day period, often called a Naive

disaggregation of our friend’s consumption. With no other information about

factors that might relate to our friend’s oil consumption such as temperature, day of

the week, holidays, and our friend’s personal behavior patterns, we cannot do much

better. Randomly adjusting our estimate without using correlated information

about temperature or other information will not improve the estimates of how many

gallons of heating oil our friend uses each day.

Imagine the same situation, only now we have an additional variable, the

average temperature for each day. Now, without any sort of mathematical model,

we can imagine that we could increase or decrease consumption of heating oil each

day by a few gallons depending on the value of temperature on a given day. For

instance, if on the first day our friend experiences a temperature of 30 degrees

Fahrenheit, we might add five gallons of oil to his consumption and suggest that our

friend consumed ten gallons of oil on the first day. Moreover, on the second day, a

warm front came through and drastically increased the temperature to 80 degrees

Fahrenheit, so we might subtract 10 gallons from the previous consumption estimate

on that day for a total consumption of zero gallons on the second day. Knowing

something about the temperature our friend experiences does not tell us exactly

how much oil he consumes, but it does get us closer to the correct answer.

Disaggregation deals with trying to use correlated variables to make a very
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“educated guess” of what happened each day, realizing that we cannot perfectly

disaggregate the data.

We use both approaches discussed above to disaggregate natural gas

operating area and individual heating oil customer data. By using secondary

variables that are correlated with the primary variable, we are able to disaggregate

the primary variable more accurately than the Naive algorithm.

Figure 1.1 illustrates simple disaggregation. Let i be a time series index

indicating the order of samples in time. Here i begins at one and increases to n, the

length of the disaggregated time series. The values of the disaggregated data are yi.

The ti are the times at which the underlying data is sampled, and Tj are the times

at which data is aggregated. The values of the aggregated data are

Yj =
∑
ti∈Tj

yi. (1.1)

Figure 1.1 shows the intervals of aggregated data have differing lengths in

this example analogous to what we see with heating oil and natural gas data. Here

Y contains all Yj. Each yi is represented by an ‘x’, and each Yj is represented by an

‘o’. Other variables such as economic variables are generally reported daily, weekly,

quarterly, or annually, at regular intervals.

As shown above, disaggregation is generalizable so any aggregated intervals
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Figure 1.1: Interval to daily disaggregation example

can be divided into many subintervals. The only sampling constraint is that the

correlated variables used to disaggregate our aggregated data have to be available at

least at the time sampling of the underlying data.

For our applications, we disaggregate aggregated data with differing

measurement intervals to daily data. There will be a ti for each day, and there will

be a Tj occasionally representing the time the aggregated flow was measured for

several days or as much as several months. For instance, a customer who uses oil for

home heating uses very little oil during the summer and may only get one delivery

for an entire summer. In the winter when temperatures are colder, this same

customer uses a lot of heating oil and receives deliveries every several weeks.
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1.2 Heating Oil

Many customers around the United States use natural gas for heating homes.

Those who do not live in urban areas usually do not have access to natural gas pipe

delivery systems to get natural gas to their homes. Instead, these customers usually

use liquid propane, wood, or heating oil to heat their homes. For confidentiality of

customer information, graphics are scaled to disguise actual data, and we refer to

the heating oil company whose data we are using as Company Your Oil Utility

(YOU). Although we disguise the data, the data we report on is real.

Company YOU provides heating oil to customers in the United States and

operates a fleet of tanker trucks that drives around to Company YOU’s customers

and delivers heating oil. However, Company YOU’s customers do not call Company

YOU when they need a delivery, so Company YOU has to forecast when to send a

truck. This is often difficult, because only about 90% of the oil in a tank is usable

because the remaining 10% of the oil in the bottom of the tank cannot be pumped

out easily. Therefore, Company YOU needs to fill a customer’s tank before it drops

to about 10% remaining.

The “guessing” that Company YOU has to do to determine when to send an

oil truck to fill a customer’s oil tank is a very important business decision. If

Company YOU chooses to send a truck to a customer whose tank is not close to
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empty, Company YOU incurs extra cost for making more deliveries than are

necessary. At the same time, if Company YOU “guesses” wrong, there is a chance

that their customer will run out of heating oil and not be able to heat their

residence. Run-outs occur when a customer’s oil tank reserve falls below about 10%.

Historically, customers that have experienced run-outs have stopped getting heating

oil from Company YOU and started getting their heating oil from another provider.

Before approaching Marquette University’s GasDay Laboratory for help,

Company YOU forecasted five days in advance to determine delivery routes for its

trucks. Company YOU targeted to fill a customer’s tank when the level of oil

reached 35% of its capacity. To schedule customer oil deliveries, Company YOU

estimated heating needs using a single weather station to get temperature data.

The temperature was converted to Heating Degree Days (HDD), which were used to

estimate the rate of oil consumption for each customer based on five previous

delivery amounts and the time between deliveries. Company YOU has some

customers who use heating oil for space and water heating and other customers who

use oil solely for space heating. Customers that use oil for both water and space

heating use oil for heating water even when the temperature is warm. HDD with a

reference temperature of Tref degrees Fahrenheit assumes that no oil is used for

heating when the temperature is equal to or above Tref degrees Fahrenheit [10; 27;

79]. Tk is the average of 24 hourly temperatures throughout the kth day. For
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customers who only heat space,

HDDTref ,k = max (0, Tref − Tk) . (1.2)

For each degree below Tref degrees, the HDD is increased by one degree.

Customers that use oil for both heating and hot water may use

HDDTref ,k = max (5, Tref − Tk) . (1.3)

Heating degree days can be adjusted for wind by calculating

HDDWTref
=


HDDTref ,k ·

(
152+WS

160

)
WS ≤ 8

HDDTref ,k ·
(
72+WS

80

)
WS > 8.

(1.4)

This is preferred to just using wind speed as another input factor to a model because

wind speed has a greater affect on consumption as heating degree days increase [79].

Company YOU calculates a K-factor that measures the number of HDD per

gallon of oil used for each customer. The K-factor K is estimated from the amount

of oil filled on each of the last five delivers. A customer’s daily consumption in

gallons of heating oil on the kth day is

y =
HDDTref ,k

K
+ ϵ, (1.5)
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where ϵ is the residual error. For instance, a customer with a K of five on the kth day

with ten HDD uses two gallons of heating oil for this day. Therefore, the K-factor is

an efficiency rating measured in HDD per gallon of oil consumption. Company

YOU calculates the consumption for each day and subtracts it from the amount of

oil estimated to be in the customer’s tank. When Company YOU estimates that the

oil in the customer’s tank is drained to 35% of its capacity, they add the customer

to their delivery schedule for the next five days. Customers are marked with a level

of urgency based on the estimated amount of oil left in the customer’s tank, which

determines the priority in which customers’ orders are refilled.

Challenges with modeling individual customer consumption include unusual

behaviors, such as changes in the occupancy of the customer. This might include

situations where both parents work, then they have a child, and one of the parents

starts to stay at home. Moreover, a customer might also install a heat pump which

would affect consumption in their residence. Alternatively, people might return to

their residence after spending two months at a winter home or vacation. These

situations can change customer consumption patterns and make modeling

challenging.

This work is motivated by a need to improve the forecasting system that

Company YOU uses so that more accurate predictions can be made of the amount

of heating oil in customers’ tanks. This will help Company YOU to reduce its
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operating costs by having fewer trucks on the road filling customers’ tanks. Each

truck costs Company YOU between 100,000 and 130,000 dollars per year to run.

Reducing the number of trucks Company YOU needs to operate by even one would

provide substantial savings to the company. Secondly, this will help Company YOU

reduce the number of customers that run out of heating oil and the potential for the

loss of such customers to competitors.

By using more factors than just the HDD to disaggregate individual

customer data, we should be able to improve forecast accuracy of individual

customers’ consumption. When data is aggregated, we essentially are summing or

integrating over a set of values to get the aggregate data. When we do a summation

or an integration, we smooth the data. By smoothing the data, we lose a lot of the

variability or information content of the data. If we have correlated time series that

can be used to reintroduce variability and information content which is added back

into the desired disaggregated series, we can partially reverse the smoothing process.

We solve the disaggregation problem described above specifically to answer

the question,“Which external variables can be used to disaggregate time series data

to improve forecasting accuracy, and how can they be integrated into a

disaggregation model?”
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1.3 Natural Gas

In contrast to distributors of home heating oil, natural gas Local Distribution

Companies (LDCs) distribute natural gas to their customers through a network of

pipelines. Figure 1.2 illustrates the natural gas delivery system. Natural gas is

found underground and is refined and processed to remove many hydrocarbons and

sulfur which corrode gas pipelines. According to the American Gas Association

(AGA), Williams Pipeline Company, and Piedmont Natural Gas Company [8; 35;

85], the five customer types as defined by the natural gas industry are

• Residential customers use natural gas principally to heat homes, run

appliances, and use water heaters;

• Commercial customers use natural gas to heat buildings;

• Industrial customers use natural gas to run boilers and as feedstock for

industrial processes;

• Power generators use natural gas to run turbines that drive an electric

generator; and

• Natural gas vehicles use natural gas as a substitute fuel for gasoline or

diesel.
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Figure 1.2: Natural gas distribution system [8]

Residential natural gas and heating oil customers follow the “Diurnal Swing”

cycle as shown in Figure 1.3 [53]. This cycle usually peaks in the morning as people

wake up and use hot water, appliances, and turn up the heat in their homes.

Consumption decreases for the rest of the day until about five p.m. [53; 54]. At

night, consumption reduces significantly [53; 54].

Demand also has weekly patterns; for residential customers, Saturday,

Sunday, and holidays typically see more consumption since people tend to work

during the week and are generally at home more on the weekends and holidays [79;

20]. Yearly cycles are seen with natural gas consumption following a roughly

sinusoidal pattern, correlated with the seasonal temperature changes [53; 79; 20].

The behavior of customer consumption is important to understand when we analyze

the results of disaggregating natural gas consumption in Chapter 3 and heating oil
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Figure 1.3: Natural gas consumption throughout a day [53; 54]

forecasting of individual heating oil customers in Chapter 4. Customers whose

consumption is largely dependent on temperature are called temperature-sensitive

customers. We will provide a way of classifying temperature sensitivity shortly.

Figure 1.6 shows a set of temperature-sensitive customers’ consumption.

Less temperature-sensitive customers generally have a very different type of

consumption profile. Examples of these can be seen in Figure 1.7. Many of these

customers are affected less significantly by temperature and more by weekly or other

periodic cycles [79; 20; 18]. Figure 1.7, shows that most of these customers have less

variability in their consumption pattern than customers in Figure 1.6, and in the

winter when temperature variability is large, non-temperature-sensitive customers

do not show the same kind of variability as the temperature-sensitive customers in

Figure 1.6.
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LDCs generally forecast their customers in aggregate, not individually.

Individual customers are grouped into regional areas called operating areas. Each

operating area may be composed of thousands of individual customers of the

different types previously discussed.

Figure 1.4 shows an example of an operating area in which consumption is

composed primarily of temperature-sensitive customers. We see this by noticing

that in the winter, natural gas consumption increases dramatically. These customers

have lower consumption in the summer, and they tend to have very little variation in

consumption during the summer. Figure 1.5 shows an operating area that has more

non-temperature-sensitive customers. We see much more of a weekly pattern in the

data that suggests a larger amount of industrial consumption in this operating area.
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Figure 1.4: Typical temperature-sensitive operating area
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Figure 1.5: Typical non-temperature-sensitive operating area

Temperature-sensitivity can be measured using Tenneti’s Quantitative

Customer Identification algorithm [75]. The Quantitative Customer Identification

(QCI) algorithm classifies a time series of energy consumption on [0, 1], so 0 is

perfectly non-temperature-sensitive, and 1 is perfectly temperature-sensitive. The

QCI algorithm can be used for individual customers or for operating areas.

Figures 1.6 and 1.7 each show flow time series and corresponding temperature time

series for six different natural gas individual customers. The flows are ordered so

that the first is the most temperature sensitive and the last is the least temperature

sensitive. Not only are there different degrees of temperature sensitivity, but there

are also drastically different patterns to the flow time series of each of these

customers.
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Figure 1.6: Example customer consumption and temperature for temperature-sensi-

tive natural gas customers
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Figure 1.7: Example customer consumption and temperature for non-tempera-

ture-sensitive natural gas customers
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1.4 Units of Measure of Natural Gas and Heating Oil

Many different units are used to measure natural gas. We use this

information in graphs of natural gas flow presented throughout the remainder of our

analysis. The following information is from the AGA [8]. Natural gas can be

measured in different units of energy but most commonly, therms or decatherms

(Dth). One decatherm is approximately 1,000 cubic feet of natural gas. An average

residential customer in Milwaukee uses about one Dth of natural gas each day in the

middle of the winter [79].

Heating oil is measured in gallons of oil instead of Dth. Common tank sizes

for customers are 190, 200, 210, 230, 250, 275, 330, 550, and 600 gallons. One Dth

of natural gas is equivalent to about seven gallons of #2 heating oil [50].

1.5 Organization of Dissertation

Chapter 1 states the disaggregation problem we are solving and discusses

heating oil, natural gas delivery systems, types of natural gas and heating oil

customers, units of measure, and cyclical patterns of consumption. We presented

background information that is required to understand disaggregation and its

application to the natural gas and heating oil industries. Chapter 2 explores

existing methods to disaggregate data and discusses how disaggregation is related to
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forecasting. We explore techniques used for disaggregation including Ordinary Least

Squares (OLS) multiple regression and econometric models. Chapter 3 contains our

main contributions to the field of disaggregating time series data. We present a

formal mathematical definition of the time series disaggregation problem in a more

generalizable form than prior work. We apply five disaggregation models to natural

gas operating area consumption, three disaggregation models to US Gross Domestic

Product (GDP), and examine the performance of these disaggregation algorithms

individually. We also use methods of combining algorithms and apply them to

improve disaggregation accuracy. Evaluations of disaggregation accuracy is made

using a set of quantitative metrics. Chapter 4 investigates disaggregation as it

applies to individual customers’ heating oil consumption data to forecast, and we

evaluate our forecasting accuracy. Chapter 5 presents our conclusions, summary of

our contributions to the disaggregation domain, future extensions, and other

applications.
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CHAPTER 2

Existing Disaggregation and Forecasting Techniques

Now that we understand the disaggregation problem we are trying to solve

and have the necessary background information to understand the context of the

problem, we survey disaggregation methods. We also need to understand why

disaggregation is important in the context of forecasting and how disaggregation is

different from forecasting. Furthermore, we look at the existing methods of

disaggregation from regression, statistics, and econometrics as well as techniques

used to improve forecasts and how they can be used in disaggregation as well as

forecasting. Moreover, we look not only at methods but also at the applications of

disaggregation and forecasting. We present these sections to build the necessary

background to understand the disaggregation algorithms and where the ideas for

their development originated. These disaggregation algorithms appear in Chapter 3.

When we forecast, we try to use information that we know to predict future

values. Forecasting can be as simple as a weather forecast done by looking out the

window in the morning and assuming that the afternoon will be a nice sunny day

with no rain because there are no clouds. Alternatively, forecasting can be made
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more sophisticated by using mathematical and statistical models. Sophisticated

models have been used for decades to forecast the stock market or the weather.

Purely as a motivational example, suppose we want to forecast the

performance of the stock market as represented by the Wilshire 5000 index. Our

goal is to forecast the value of the Wilshire 5000 index at the beginning of each

month. We start with economic theory and know that the stock market is largely

driven by consumer confidence and a set of economic factors. We decide to use

Gross Domestic Product (GDP), Unemployment (UEMP), Prime Interest Rate

(PRIME), Inflation (INF), etc. Economic theory indicates that these variables

should have a significant positive or negative impact on the stock market.

The variables that we believe impact the stock market are at different

frequencies. GDP is reported quarterly, but PRIME, UEMP, and INF are reported

monthly. To apply standard techniques of forecasting, it is necessary to have all

variables at the same frequency as the variable we are trying to predict. In this

example, we want to forecast the monthly value of the Wilshire 5000 index, so we

need to disaggregate GDP to a monthly series. Disaggregation frequently is done for

the purpose of forecasting when data is not at the necessary frequency to make

desired forecasts. Forecasted monthly correlated variables are also necessary to

forecast the Wilshire 5000 index.

When disaggregating data, one should keep in mind that there are two types
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of variables: accumulated variables and index variables [48]. Accumulated variables

add up over time until an instant in time when their value is measured. Examples of

accumulated variables include natural gas consumption, GDP, and HDD, to name a

few. For instance, throughout a month, a gas meter continuously accumulates

consumption. Contrarily, index variables do not accumulate over time. Examples of

index variables are temperature, consumer price index, and sometimes HDD. For

example, suppose we have an interval of length ten days, and the temperature for

each of the days is [10 20 30 40 50 60 70 80 90 100] degrees. If we add up the

temperatures for the ten days we get 550 degrees. However, we do not represent the

temperature for these ten days in this way. Instead we might use the average value

(55 degrees) to represent the temperature for these ten days, an index variable.

Analogous to the previous example, HDD can be an index variable if it is reported

as an average value over ten days. Hence, the previous stock market disaggregation

example mixes both index and accumulated variables. In this example, UEMP,

PRIME, and INF are examples of index variables, and GDP is an example of an

accumulated variable.

2.1 Methods of Disaggregation

Over several studies, researchers have identified a range of disaggregation

techniques [23]. Possibly one of the simpler and better known techniques is the
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Naive algorithm, which calculates an average value of the aggregated series for each

interval [23]. This method assumes that there are no variations in the data across

an entire interval, making the Naive algorithm a simpler algorithm than most other

disaggregation algorithms. A major drawback of this approach for use within the

natural gas domain is that it does not capture the highly variable day-to-day

behavior of natural gas consumption. This variability occurs due to weather fronts

and day-to-day changes in temperature, which can be 20 or 30 degrees during a

single day. We present the Naive algorithm in detail in Section 3.3.1 and use it as

one of our five component algorithms.

Chow and Lin [24] derived and developed a Generalized Least Squares (GLS)

disaggregation technique. Although this method can be extended to disaggregate

from yearly data to quarterly estimates, Chow and Lin’s [24] method cannot

effectively generate daily estimates from monthly values due to the inconsistent

length of each month (28 to 31 days). Chow and Lin’s [24] method can only be

applied with the assumption of a consistent number of days for each interval, such

as 30 days in each month. Wilcox [84] used the method of Chow and Lin [24] to

disaggregate quarterly Gross National Product (GNP) and deflated GNP using

monthly related series of industrial production, real retail sales of nondurable good

stores, a measure of manufacturing payroll, a linear trend, and a deflator related to

consumer price index, a linear trend, and wholesale price index.
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Ginsburgh [36] used a least squares method that maintains consistency

between the sum of the quarterly estimates and actual annual GNP data.

Additionally, using autoregressive least square techniques that minimize squared

first difference or squared second difference, Boot, Feibes, and Lisman [15]

disaggregated annual data into quarterly estimates. Stram and Wei [70] and Cohen,

Muller, and Padberg [25] proposed methods that minimize loss functions under a

compatibility constraint with the aggregated data by applying two methods; when

data series are known at the disaggregated frequency and when data series are

unknown at the disaggregated frequency. Balmer [11] suggested an alternative

procedure that combines the least squares methods of Boot, Feibes, and Lisman [15]

and Ginsburgh [36]. Several other methods such as those by Wei and Stram [81],

Guerrero [39], among others have used disaggregation techniques that assume an

underlying Auto Regressive Integrate Moving Average (ARIMA) process. ARIMA

is discussed in Section 2.2.

De Alba [28] used a Bayesian statistical method to disaggregate time series

GNP data for Mexico and used the disaggregated data to forecast Mexico’s GNP.

Hsiao [46] disaggregated annual data to semiannual data using information from

related series and maximum likelihood methods.

Marx [54] showed that an hourly profile can be used to disaggregate daily

natural gas flow to hourly estimates. Marx [54] used a Piecewise Linear
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Optimization (PLO) algorithm to adjust the sum of the underlying estimates so

they equal the aggregated data. We use Marx’s PLO algorithm as one of our

disaggregation algorithms and give a detailed algorithm in Section 3.3.3.

The problem of disaggregating natural gas consumption from monthly

aggregated consumption to daily estimated consumption is fundamentally different

from the econometrics problem in two ways: daily natural gas consumption is much

more volatile than quarterly or monthly economic series, and monthly intervals do

not contain the same number of days. Although the problem of disaggregating

economic series has been well developed, natural gas disaggreation must account for

these additional constraints. For instance, the commonly used method of Chow and

Lin [24] was used to disaggregate quarterly GNP to monthly GNP, and their method

could be extended to disaggregate yearly GNP to quarterly GNP. For the purposes

of using quarterly data in a disaggregation process, there is an implicit assumption

that quarterly series are of the same underlying length. Chow and Lin’s [24] method

and others previously stated cannot be applied to disaggregate monthly data to

daily data since months are of length 28 to 31 days and are not consistent from

month to month. One could apply the method of Chow and Lin [24] to disaggregate

monthly data to daily estimates, but one would have to assume a consistent number

of days for each interval. For example, there are 30 days in each month.

When dealing with aggregated data, Wilcox [84] points out that, in addition
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to getting model parameter biases, the lag effects in time series data are lost due to

smoothing effects. Because of the smoothing effects, a major motivation to

disaggregate a time series variable is to reintroduce variability in the time series

that is lost in the aggregated series. Hence, using disaggregated estimates that

reintroduce variability and the sample-to-sample lag effects to the time series can

produce more accurate forecasts than trying to forecast using aggregated data if the

high frequency variability is critical, as it is the case for utility data.

2.2 Methods of Forecasting

Methods of forecasting are as diverse as disaggregation methods. Forecasting

methods include Ordinary Least Squares (OLS) and other types of regression [40],

Autoregressive Integrated Moving Average (ARIMA) [17; 43], Vector Autoregressive

(VAR) models [65; 51], exponential smoothing [45; 88], neural networks [89; 42; 71],

and simple trend models [40]. Each method of forecasting has advantages and

disadvantages. Some are good at forecasting linear relationships, and others are

better at forecasting nonlinear relationships. Some forecasting techniques are good

for long term forecasting, while others are very good for short term forecasting.

Many types of forecasting models can be found in econometrics and statistics [40; 5;

56].

Forecasting literature has generated a range of methods of forecasting in the
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electric power [66; 41; 44; 60; 74; 34] and natural gas [53; 79; 19; 62; 21; 82; 49; 52;

67; 80] domains. However, the literature in the electric load forecasting domain is

much more extensive. Taylor [74] provides an introduction to the work of many

researchers in the electric and natural gas forecasting domains.

Hagan [41] and Papalexopoulos [60] employ Box-Jenkins models to do short

term (hourly) load forecasts using factors such as heating degree days, cooling

degree days, and holidays. Engle, Granger, Rice, and Weiss [34] used nonparametric

regression to model the nonlinear relationship between temperature and electricity

use because electricity consumption increases at both high and low temperatures.

Natural gas consumption increases linearly with low temperatures. More recently,

neural networks have been used to forecast short term electric load [44], and

Smith [66] combined forecasts to improve accuracy of load forecasts.

Lyness [52] uses Box-Jenkins methods to forecast short (next several days)

and long term (several years) natural gas demand for the British Gas Company.

Rose [62], Welch [82], and Levary [49] do long term forecasting using regression and

Box-Jenkins models. Vitullo, Brown, Corliss, and Marx [79] and Brown, Li, Pang,

Vitullo, and Corliss [19] give an extensive survey of the financial implications of

forecasting natural gas, the nature of natural gas forecasting, the factors that

impact natural gas consumption, and provide a survey of mathematical techniques

and practices currently used to model 20% of the natural gas demand in the United
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States. Sanchez-Ubeda and Berzosa [67] and Vondracek, Pelikan, Konar,

Cermakova, Ebena, Maly, and Brabec [80] model end-use customers.

The simplest forecasting model is a trend model. This model fits a function

to known time series data. This function is extrapolated to produce forecasts. The

weakness of the trend model is that it does not capture the short term variability in

a time series, so only the long term effects are captured. Additionally, if the trend

changes, this model performs poorly. Common trend models include linear,

quadratic, and exponential trends [40]. An example of a linear trend forecast can be

seen in Figure 2.1. For the first ten days we have gas flow, and on day 11 through

20 we forecast by fitting a line through the points and extend it through day 11

through 20.
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Figure 2.1: Simple trend forecast
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ARIMA models are more complicated than trend models and try to model

the stochastic correlation patterns in the data [40; 43]. The ARIMA model captures

Autoregressive (AR) effects and Moving Average (MA) effects. AR effects occur

when the present time series data depends on previous values of the time series, and

MA effects occur as shock or impulse effects in time series. The major disadvantage

of the ARIMA model is that the time series needs to be stationary to find a time

series pattern. To adjust non-stationary time series, we can take the first or second

difference of the time series (level form), also known as an integrated version of the

series, usually I(1) or I(2). Generally, taking the first or second difference of the

time series is sufficient to make the time series stationary and allow ARIMA

methods to work.

Least squares models such as OLS are fairly easy to calculate. An advantage

of this kind of model is that it is easy to interpret the coefficients.

For a practitioner’s reference to forecasting, see [4], which offers practical

advice for forecasting. Moreover, much of the advice Armstrong provides can be

applied to the disaggregation domain.
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2.3 Linear Regression

Linear regression expresses the dependent variable as a linear combination of

one or more independent variables and generally is solved by the method of least

squares [40]. Ordinary Least Squares (OLS) refers to linear regression using the

method of least squares to solve for model parameters. The discovery of least

squares is generally credited to Carl Friedreich Gauss in the late 1700’s [68].

Let us start our discussion of OLS regression by defining the notation we will

use in this section. In addition to the notation in Table 2.1, we also give definitions

and dimensions of the matrix, vector, and scalar variables.

Table 2.1: Declaration of variables for ordinary least squares regression

n Number of observations 1× 1

m Number of input factors 1× 1

Y Dependent variable n× 1

Ŷ Estimate of dependent variable n× 1

Ȳ Mean of dependent variable 1× 1

X Matrix of independent variables n×m

β Vector of regression parameters m× 1

β̂ Coefficients of least squares fit m× 1

ϵ Residual n× 1

The estimate of the dependent variable is calculated by

Ŷ = Xβ̂, (2.1)
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where β̂ are estimated parameters that indicate how the independent variables are

related to the estimated dependent variable Ŷ , and X is a matrix of independent

variables used to explain the dependent variable. The residual error of the

regression is

ϵ = Ŷ − Y. (2.2)

Traditionally, ϵ is calculated as ϵ = Y − Ŷ , but we calculate ϵ according to

Equation 2.2 so over-estimation produces a positive valued residual, and

under-estimation produces a negative valued residual.

2.3.1 Goodness of Fit Measures

To measure overall fit of the independent variables to the dependent variable,

a “goodness of fit” measure, called the coefficient of determination [40], is

R2 =
β̂TXTY − nȲ 2

Y TY − nȲ 2
. (2.3)

R2 ranges from [0, 1]. A value of one indicates the independent variables explain

100% of the variation in the dependent variable, while a value of zero indicates the

independent variables explain none of the variation in the dependent variable. R2 is

a measure of the fit of a linear relationship between the dependent variable and the

independent variables in a regression model. One needs to be careful using R2 as a
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measure of goodness of fit in multiple regression models since R2 generally improves

as more independent variables are added to the model. Even if the added

independent variables are irrelevant, having no theoretical significance to the model

and low statistical correlation with the dependent variable, R2 still increases.

Alternatively, use adjusted R2 [40],

R̄2 = 1−
(
1−R2

) n− 1

n−m
. (2.4)

In the presence of meaningless variables, adjusted R2 decreases as n increases,

penalizing insignificant variables.

2.3.2 Tests of Significance

Statistical significance tests indicate if it is likely that something (we picked

the right model or independent variables in our case) occurs by chance, and the

probability value (p-value) is the probability of the occurrence by chance [40; 56].

Refer to Montgomery and Runger [56] for an explanation of how to calculate the

p-value. Once the adjusted R2 is calculated, we can calculate the F-statistic, a test

of overall model significance, which tells us if all the parameters of the model are

jointly significant. The F-statistic [40] with numerator degree of freedom m− 1 and
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denominator degree of freedom n−m is computed by

F =

(
R2

m−1

)
(
1−R2

n−m

) . (2.5)

Generally, p-values of 0.05 or smaller are considered significant.

To tell if the independent variables in our regression are relevant or

irrelevant, we consult theory and use statistical hypothesis testing to confirm the

theory [40]. To test the statistical significance of individual variables, we calculate

an estimate of the standard deviation of the dependent variable,

σ̂2 =
ϵT ϵ

n−m
. (2.6)

Hence, the variance-covariance matrix for β̂ is

A = σ̂2(XTX)−1. (2.7)

Taking the square root of the diagonal elements of A yields Ŝ2
β̂
=

[
Ŝ2
β̂1

Ŝ2
β̂2

. . . Ŝ2
β̂m

]
,

the standard errors of the regression parameters.

To test the statistical significance of the pth independent variable, we use a
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t-statistic [40] with degrees of freedom n− 1,

tp =
β̂p

Ŝ2
β̂p

. (2.8)

Higher tp indicates less chance that the pth independent variable (not to be confused

with the p-value from statistical significance) is insignificant. Variables with

t-statistics who’s p-value is greater than 0.05 are insignificant.

Good regression models should be rooted in theory, variable selection should

come from theoretical knowledge, and t-statistics should be significant. We use

adjusted R2, t-statistics, and F-statistics to confirm good variable and model

selection. One should be aware that regression can encounter several problems

which can cause inaccurate statistical tests of significance.

2.3.3 Problems with Regression

Multicollinearity occurs when two or more input variables of a linear

regression have a very high linear correlation indicating that they are collinear, or

nearly linearly dependent [40; 86]. If two factors are collinear, accurate estimates

can be generated, but the t-statistics of the collinear variables will be low. Since

several collinear variables are representing essentially the same information in the

regression, neither may contribute significantly to the model until after the other
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collinear variables are included in the regression. Hence, together they contribute

significantly to the regression.

Multicollinearity problems can be alleviated by removing highly correlated

factors from the regression, using an instrumental (substitute) variable that is less

correlated to the collinear variables than the variable being replaced, or using the

first or second difference of the variables [40]. Alternatively, principal component

analysis or singular value decomposition can used to remove the collinearity.

Although we have not experienced problems with collinearity, if the regression

algorithms described in Chapter 3 were used in an application that had very highly

correlated factors, multicollinearity might be a problem.

Additionally, heteroscedasticity occurs when the variance of the error

changes [40]. This leads to inaccurate standard errors, which yield inaccuate

t-statistics [40]. White’s [83] method corrects the standard errors and t-statistics in

the presence of heteroscedasticity [83]. We use White’s method to produce unbiased

t-statistics for our least squares based algorithms.

We experience problems when measurement errors (errors in variables) in the

dependent variable, one or more independent variables, or both dependent and

independent variables occur [40]. The effect of one of these three cases can lead to

biased parameters. If independent variables contain errors, the errors can cause bias

in the estimated dependent variable. Furthermore, errors in the dependent variable
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generally cause much more severe bias in regression parameters. When both the

dependent and independent variables contain errors, we have to look at the

covariance of the independent variables and the dependent variable. If there are

negative covariances, the parameters are severely biased. However, if the covariances

are positive, the bias in the coefficients is less severe.

For our case, the dependent variables (natural gas consumption or heating oil

deliveries) frequently contain errors. Since temperature and wind forecasts deviate

from the actual values, we are likely to experience errors in variables such as heating

degree days. This is an issue in forecasting, but not in disaggregation since we know

the actual weather. One could argue that even the actual weather measurements

may have minor errors, but for our study, we will assume they do not.

A way to alleviate any error in variable effects is to use an “instrumental”

(substitute) variable that is highly correlated with the variable that has the

measurement error [40]. Errors in variables are common in almost any application

involving data collection, when meters fail to collect data or inaccurately collect

data.
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2.4 Combining Disaggregation Algorithms

Starting in the 1960’s, researchers began to explore using different

forecasting methods in combination (ensemble or composite) to help improve the

accuracy of forecasts [4]. The same combining techniques that have been applied

successfully to the forecasting domain also can be applied to the disaggregation

domain. Little research has been published on combining disaggregation algorithms.

We use combining techniques to show they can help improve the accuracy of

disaggregated time series as we show with our results in Chapters 3 and 4.

2.4.1 Methods for Combining Algorithms

Combining model estimates using an ensemble tends to decrease the model

error. The initial hypothesis that combining models would improve forecast

accuracy began with Laplace in 1818 and was revived more recently by Nobel

laureate Clive W. Granger in 1969 [4; 12].

When combining forecasts, we ask, “How do I combine my forecasts to get

better results?” Unfortunately, a well-defined systematic set of steps to arrive at a

good solution is not clear. Papers and books written on the subject over 40 years of

investigation provide rules of thumb that have been determined empirically from

experimental results with a wide variety of models, data, weighting methods, and
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different numbers of models and applications. Armstrong, Bates and Granger, and

others [4; 12; 87; 3; 9; 16; 29] say factors contributing to the effectiveness of the

combined model quality are

• diversity of data,

• diversity of models,

• number of models,

• procedures for combining models, and

• Eliminating poor models.

The literature on combining models is found mainly in the area of forecasting

and not in the disaggregation literature. However, disaggregation is similar to

forecasting, so we take the idea of combining forecasts and apply it to combine

disaggregation algorithms in the domain of natural gas operating area consumption.

This is one of several of our contributions to the disaggregation domain. At the

beginning of Chapter 5, we list all five of the contributions we make to the

disaggregation domain.

It has been observed that as more models are combined, the combined

ensemble model error tends to decrease. For example, assume that we have two

models, and we combine them with equal weights. Each model contributes to half of
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the combined estimate. Now, if there are three models combined together, each

model contributes one third to the combined estimate, and so on. As the number of

models increases, there is less contribution by adding one more model to the

ensemble. The specific number of models one should use varies from author to

author, but they agree: 1) at least five models should be used, 2) more will

generally tend to decrease model error, and 3) that there is a point of diminishing

return [4]. After about 12 to 20 models are combined, little decrease in error is

realized by adding more models in combination [12]. Bates and Granger [12] show

that combining two forecasts tends to reduce the variance of the error, so the error

is usually less than that of either of the individual models. Dickinson [29] shows a

proof that a combined model will not be worse than the worst component model

used in the combination, but the combination frequently yields better accuracy than

the best component used in the combination.

When combining models, the component models should be diverse. If we

have five of the same model, any kind of weighted average yields the same result as

any one of the individual models. Hence, a wider variety of model types tends to

provide an increased variety of model estimates and leads to a decrease in “average”

error.

Variety of data is also important when combining models. Armstrong [4]

suggests that when the component models have different input data, the overall
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error of the weighted combination usually is lower. An example of this is weather

ensemble modeling. Common practice is to have an ensemble of models, and each

model is given different weather data [73; 37].

Combining several different types of models also helps reduce the correlation

of the model estimates. Ideally, we would like the component models’ estimates to

be negatively correlated with each other. Hence, the estimates tend to move in

opposite directions, and when the estimates are averaged together, they cancel each

other so the combination has less variance in its estimate [3]. This is the ideal

condition, and it is rarely seen in practice.

The procedures for combining models have a large impact on the quality of

the combined estimate. The simplest method to combine several component models

is the Equal Weighting Ensemble (EW) method. The EW method is a good starting

point when combining models. Armstrong [4] suggests that the weights should be

adjusted to give higher weights to those models that have had the best prior

performance when combining. Techniques that vary weighings to combine

component model estimates are weighting by the inverse of the standard deviation

of historical errors [4], principal components [30; 69], regression [40], and neural

networks [89].

Regression and neural networks need a set of historical training data at the

underlying time steps. For cases when little or no training data is available,
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regression and neural network combining techniques cannot be used. A combined

estimate using regression is calculated as

ycomb = β̂1ŷ1 + β̂2ŷ2 + β̂3ŷ3 + . . .+ β̂kŷρ + ϵ, (2.9)

where yρ is the kth component estimate, β̂ρ is the corresponding regression

parameter, and ycomb is the known underlying dependent variable. For this model,

we do not use a constant since we only want parameters (weights) for each of the

component models. The values of β̂1, . . . , β̂ρ are the weights used to combine the

components. The weights are solved for using the known training data for ycomb and

component estimates of ŷ1, . . . , ŷρ. Once weights are obtained using test data, we

evaluate the regression to get the combined estimate

ŷcomb = β̂1ŷ1 + β̂2ŷ2 + β̂3ŷ3 + . . .+ β̂ρŷk. (2.10)

For a neural network, ŷ1, . . . , ŷρ are the inputs, and the neural network is

trained on known ycomb. Once the neural network has been trained, the neural

network can be evaluated using a test set of component model estimates to get a

ŷcomb, the combined estimate. We do not use regression or neural networks due to

lack of available daily training data in our applications.

An alternate approach that Armstrong [4] recommends is to use a trimmed
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mean method, when using at least five models in combination. The trimmed mean

drops the models that give the highest and lowest estimates, and then it calculates

the average of the remaining models’ estimates.

Armstrong [4] also compared 57 different ensemble forecasting models

studied over 40 years. These studies include forecasting a wide variety of application

domains like macroeconomics, gross national product, housing starts,

unemployment, company earrings, capital expenditures, survival of patients,

short-term weather, sales, and attendance at performing arts events. Armstrong

found that 30 of them were able to reduce MAPE error by 12 percent. For some of

these 30 models, there was as much as 20 percent reduction in MAPE.

2.4.2 When Is Combining Models Most Useful?

Beside the probable decrease in model error, why else do we want to combine

models, or when is combining models most useful? Combining models is useful when

• the most accurate model has much uncertainty,

• there is uncertainty with the modeling situation, and

• when making large estimate errors is very expensive.
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Combining forecasts acts something like hedging risk. We look at

experimental model results individually and in combination in Chapters 3 and 4.

2.5 Disaggregation and Forecast Evaluation Methods

Before we introduce a set of metrics for measuring the error in time series

data, we need to discuss what error is in our modeling problem. When we use a

model for estimation, the model produces an estimate, and there is an error

associated with that estimate. When the estimate and the error are added together,

we get the actual quantity we are trying to model. For the modeling application,

the error is either partially known or unknown. For the application to energy

disaggregation, this error is generally not known and is not normally distributed.

Equation 2.8 shows an example of a regression model, where Y is the actual value of

the dependent variable, Xβ̂ is the model, and ϵ is the error. The error is usually

measured by a mathematical norm, which measures a relative deviation from

expectation. Hence, we now present several measures we use to evaluate our model

error [22; 61].

Let n be the number of observations, ŷi be estimated consumption values,

and yi be measured consumption values. Sum of Squared Error (SSE) is

SSE =
n∑

i=1

(ŷi − yi)
2 . (2.11)
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When using a regression model, SSE is the objective function that is minimized to

solve for the model parameter coefficients.

Perhaps the most common error metric used in evaluation of disaggregation

and forecasting accuracy is

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
. (2.12)

Root Mean Square Error (RMSE) has been widely used by practitioners in

the forecasting field [4]. However, Armstrong, Collopy, and Fildes [6; 7] point out

that RMSE can be skewed by a few very large errors.

RMSE is favorable for natural gas forecasting because it reflects the cost of

making large errors in gas purchasing. Utilities buy long term contracts to supply

gas. If a utility does not buy enough gas with their long-term contracts, they have

to buy additional gas each day at a higher price. For example, on a single day when

an LDC under-forecasts its consumption by 100,000 Dth of natural gas, they need

to buy additional natural gas. Hence, the LDC has to buy 100,000 Dth of natural

gas at a market price of about $5 per decatherm and will pay $500,000 for the gas.

However, they will also pay about $0.50 per decatherm per day as a fee for having

no notice service, the right to take the gas from the pipeline with no notice [18].
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Consequently, each day the utility wants 100,000 decatherms of gas available, they

pay a $50,000 reservation fee.

Hence, accurately modeling demand is critical. RMSE is good for measuring

the modeling error for natural gas or heating oil since it retains the units of natural

gas or oil measured in decatherms, therms, or gallons. Additionally, RMSE

penalizes large errors more than small errors.

An alternate to RMSE is Mean Absolute Error (MAE), which does not

square the errors,

MAE =

∑n
i=1 | ŷi − yi |

n
. (2.13)

Granger [38] points out that although Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) commonly are used together to show the

variability in forecast error by taking a ratio of MAE divided by RMSE, he

demonstrates that most of the time, the ratio of MAE divided by RMSE is close to

0.78 and does not provide much additional information. Since the sensitivity of this

ratio is very low, neither RMSE or MAE provides a percentage difference, Mean

Absolute Percentage Error (MAPE) is frequently used.

MAPE = 100×
∑n

i=1 |
ŷi−yi
yi

|
n

%. (2.14)
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Utilities frequently like to know on average how much error they have in

their forecasts in terms of a percentage error, making MAPE a commonly used error

metric. MAPE frequently is used in electric power forecasting [73; 33; 64]. MAPE is

not very reliable for natural gas prediction because in the summer gas flow tends to

be low compared to flow in the winter, and errors in the summer tend to be

amplified more than they should be since the winter months are more important to

forecast accurately due to heating load. As an alternative, Weighted Mean Absolute

Percentage Error(WMAPE) weights the winters more than the summers.

WMAPE = 100×
∑n

i=1 | ŷi − yi |∑n
i=1 yi

%. (2.15)

Theil [76; 77] presented an alternate way of measuring RMSE which provides

more information that potentially can be useful to determine the nature of the kinds

of errors that are being made in the forecasts. Theil’s inequality coefficient scales

RMSE so that it is between 0 (perfect forecast) and 1 (forecasting the mean of the

time series). The Theil inequality coefficient is

U =

√∑n
i=1(ŷi − yi)2/n√∑n

i=1 ŷi
2/n+

√∑n
i=1 y

2
i /n

. (2.16)

One advantage of the Theil inequality coefficient is that it can tell us about

the kind of error that we are making in our forecasts. U can be decomposed into
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three components: a bias term (Ub), a variance term (Uv), and a covariance term

(Uc) such that

Ub + Uv + Uc = 1, (2.17)

yielding the net error of the forecast. The bias term

Ub =

((∑n
i=1 ŷi
n

)
−
(∑n

i=1 yi
n

))2

∑n
i=1(ŷi−yi)

2

n

, (2.18)

tells us the error between the mean of the forecast series and the mean of the actual

time series.

When evaluating forecasting models, we also can evaluate how accurately we

forecast the variability in the time series. Hence, the Theil variance term measures

the difference between the variability of the forecasted series and the variability in

the actual time series. The Theil variance term is

Uv =
(Sŷ − Sy)

2∑n
i=1(ŷi−yi)

2

n

, (2.19)

where Sŷ and Sy are the standard deviations of ŷ and y, respectively.

The remaining term of the Theil’s decomposition contains all the remaining

error that is not explained by Ub and Uv, usually referred to as the nonsystematic or
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stochastic part,

Uc =
2 (1− ρ)SŷSy∑n

i=1(ŷi−yi)
2

n

, (2.20)

where ρ is the correlation coefficient between y and ŷ.

We use the Theil inequality coefficient and its decomposition in Chapter 3 to

evaluate the quality of our disaggregation algorithms. Ub, Uv, and Uc are used to

evaluate whether we are capturing the variability in the disaggregated data that the

underlying series should have.

2.5.1 Error Evaluation on Unusual Events

For some applications, there may be unusual events that occur in the

underlying data. Often, these unusual events are the most important components of

the underlying series.

For example, with natural gas or heating oil consumption disaggregation, we

should consider unusual day types: coldest, colder than normal, warmer than

normal, windier than normal, colder today than yesterday, warmer today then

yesterday, first cold days, and first warm days. These day types represent days with

drastic or quickly changing weather patterns or impacts of human behavior. These

are generally the days when forecasting demand is most difficult. If insufficient gas

is bought by a gas purchaser at a utility, a severe penalty is paid to get the needed
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gas. Unusual events in the economic domain are recessions, depressions, and periods

of economic growth and expansion. Whatever the application context, many

applications have some kind of unusual events that are the most important data

points to observe and analyze.

In Chapter 3 we evaluate the performance of our disaggregation algorithms

on unusual events. We show that while our disaggregation algorithms do well on our

test sets, they also perform well on the unusual days within the test set. Accurately

estimating values for unusual events can be very important if the estimates

generated by our disaggregation algorithms are used to train forecasting models.

Hence, having accurate estimates on the unusual days increases forecasting accuracy.

Now that we have a basic knowledge of least squares regression, its problems,

and methods for evaluating disaggregated and forecasted time series, we can define

mathematically the disaggregation problem and discuss a variety of models we use

to disaggregate historical natural gas consumption for operating areas.
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CHAPTER 3

Disaggregation Applied to Historical Data

In Chapter 1, we discussed the problem of disaggregating time series data for

the applications of heating oil and natural gas, and Chapter 2 discussed methods of

disaggregating and forecasting time series data. Chapter 3 starts by providing a

mathematical statement of the disaggregation problem. Several algorithms for

disaggregating historical time series and applications to disaggregating natural gas

data and Real Gross Domestic Product (GDP) are presented. Chapter 3 focuses on

presenting disaggregation as a mathematical problem and a set of algorithms that

can be used to disaggregate natural gas data from monthly consumption values to

estimates for daily consumption. Additionally, we examine the use of combinations

of individual algorithms in weighted combination as a way to improve the quality

and accuracy of disaggregated estimates.

3.1 Mathematical Disaggregation Statement

Suppose we have a (not necessarily equally spaced) time series Y whose time

steps are relatively long, and what we need is y, an underlying time series of higher

frequency data for analysis and forecasting. Unfortunately, the underlying time
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series y is unavailable, so we obtain a disaggregated series ŷ, an estimate of y. For

example, we might want an underlying time series, but only a time series of

aggregates is available. To understand relationships of underlying (unknown) time

series y, estimated (disaggregated) time series ŷ, and aggregated series Y , we show

Figure 3.1.

t0 t1 t2 . . . −→ time

y1 y2 . . .

Y1 . . . Y2

at ti1 . . . ti2

T1 . . . T2

Figure 3.1: Illustration of disaggregation

The first aggregate Y1 is on time interval (t0, ti1 ] = T1. In general, an

aggregate Yj is on an interval Tj =
(
tij−1

, tij
]
.

i is the index of underlying times ti and time series values yi,

j is the index of aggregated times Tj and time series values Yj,

Tj is the time interval spanned by aggregate time series value Yj.

t = (t0, t1, . . .], and T = [T1, T2, . . .] ≈ [ti0 , ti1 , . . .]. We define ti as a measure of time

corresponding to the frequency of sampling for y and ŷ.

To give a more formal mathematical statement of the disaggregation
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problem, consider an underlying time series y and aggregate it over given

aggregated time steps T . This defines an aggregation operator

Y = A (y, T ) . (3.1)

The aggregation operator takes a set of aggregated time steps T , underlying series

y, and aggregates y for each aggregated time step in T to give a time series of

aggregates Y = {Yj}, where Yj =
∑

ti∈Tj yi.

The inverse of the aggregation operator is the disaggregation operator,

y = A−1 (Y, T ) . (3.2)

The disaggregation operator takes an aggregated series Y and its corresponding

aggregated time steps T , and it produces a disaggregated series y. A is not 1-1, so

A−1 is not well defined, but we proceed to estimate

ŷ = A−1(Y, T ) + ϵ = Â−1(Y, T ). (3.3)

Since A−1 is the true disaggregation operator our goal is to find a good

estimate of the true disaggregation operator Â−1. Disaggregation is estimating the

unknown y from the known Y . When the interval lengths n are constant for all
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aggregated time steps, they often are called the order of aggregation [2]. Figure 3.2

illustrates the idea of disaggregation. The aggregated time series Y is denoted by

‘o’, and the disaggregated time series y is denoted by ‘x’. The sum of the underlying

time series is equal to the aggregated value at the end of the aggregated time step.

We generalize to allow n to be arbitrary and vary in interval length. Additionally, Y

can contain underlying data values of length one, the same frequency as y and ŷ.
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Figure 3.2: Interval to daily disaggregation example

Table 3.1 shows the notation used in describing the disaggregation problem

and the mathematical operations of aggregation and disaggregation.

The disaggregation problem is ill-posed since we only have aggregated data

for each aggregated time step, and we have no knowledge of the underlying series

within each aggregated time step. Furthermore, disaggregation belongs to a general

class of mathematical inverse problems, which often admit multiple solutions [14;



53

Table 3.1: Declaration of variables for disaggregation

Y Aggregated time series, e.g., monthly gas consumption or quarterly

GDP

j Aggregated index

Yj Element of aggregated time series Y , e.g., a month’s gas consumption

or a quarter of GDP

y Underlying time series, e.g., daily gas consumption or monthly GDP

i Underlying index

yi Element of underlying time series y, e.g., daily gas consumption or a

month of GDP

ŷ Estimated (disaggregated) time series, e.g., estimate of daily

gas consumption or monthly GDP

ŷi Element of estimated (disaggregated) time series ŷ,

e.g., daily gas consumption or a month of GDP

ti Underlying time step of y, e.g., daily (gas) or monthly (GDP)

T Aggregated time steps, e.g., quarterly, monthly

A Aggregation operator

A−1 Disaggregation operator

55]. Depending on the method of disaggregation, we can get different estimates, and

some are “better” than others.

3.2 Disaggregating Historical Data

Historical data disaggregation becomes necessary when data is needed at a

higher resolution than what is available. Under these circumstances, disaggregation

becomes a method of estimating what the data would have been if it were originally
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measured at the underlying (desired) time steps. We present several algorithms to

disaggregate data in Section 3.3.

In this chapter, we focus on presenting the disaggregation problem applied to

disaggregate historical natural gas operating area consumption and US real GDP

data. In subsequent chapters, we look at disaggregation as it applies to forecasting

individual heating oil customers. We describe several disaggregation algorithms that

we use and evaluate their performance individually and in weighted combination.

When disaggregating aggregated data, there are three different cases that

can occur. The series of aggregated data can contain entirely aggregated data,

contain entirely underlying data, or can contain a mix of underlying data and

aggregated data. The algorithms that follow, while used to disaggregate entirely

aggregated data, can disaggregate a mix of underlying data and aggregated data.

Additionally, the following algorithms can disaggregate data sets that contain

entirely daily data. If entirely daily data is known, there is no need to disaggregate

the data, and the algorithms will output the same data values that were input to

the disaggregation algorithms.
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3.3 Different Disaggregation Algorithms

To disaggregate historical data, we need aggregated data and underlying

variables correlated to the aggregated data. For the purposes of describing our

algorithms, let us consider Tables 3.2 and 3.3. These tables represent variable

formats in MATLAB that are used as inputs to our disaggregation algorithms. The

following discussion is integral to understand the five disaggregation algorithms and

how to use their implementations in MATLAB.

Table 3.2 has three rows. The top row gives an underlying date indicator, an

Excel date code for our case. The second row is the dependent variable (aggregated

data). Aggregated data values appear on the last day of each interval, and every

other cell in this row uses MATLAB’s not a number representation (NaN). The last

row is an indicator that tells if the flow value for a particular day is an aggregated

flow (1), part of an interval (0), or missing (-1).

For instance, the third row of Table 3.2 has a row of zeros followed by a one.

The one indicates where the end of the interval occurs. Hence, for the example

illustrated, the first interval is three days long and occurs from Excel date code

37785 (June 13, 2003) through Excel date code 37787 (June 15, 2003). The value of

one on Excel date code 37787 (June 15, 2003) represents that day is the last in the

interval.
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Table 3.2: Example aggregated data

Date 37785 37786 37787 37788 . . . 37795 . . .

Dependent variable NaN NaN 100.5 NaN . . . 1 . . .

Aggregated 0 0 1 -1 . . . 1 . . .

Table 3.3: Example underlying correlated independent variables

Date 37785 37786 37787 37788 . . . 37795 . . .

Correlated variable 1 1 1 1 1 . . . 1 . . .

Correlated variable 2 1 2 3 4 . . . 11 . . .

Correlated variable 3 56.3 49.2 32.8 27.9 . . . 29.3 . . .

Correlated variable 4 46.3 39.2 22.8 17.9 . . . 19.3 . . .
...

...
...

...
...

...
...

...

In addition to the aggregated data inputs, Table 3.3 shows the underlying

correlated variables we use as factors to disaggregate the aggregated data. The first

row of Table 3.3 matches the first row of Table 3.2, giving a series of underlying

dates represented by an Excel date code. The second through the last rows of

Table 3.3 contain correlated variables, one per row. These variables should match

the underlying dates in the first row. For this example, underlying correlated

variable 1 is a constant, variable 2 is a linear trend, and variables 3 and 4 are

heating degree variables.

Selection of good correlated variables is important, but it is not sufficient to

just select any variables correlated to the underlying series. Correlated variables

should be selected with a large degree of domain knowledge. Additionally,

correlated variables must be sampled frequently enough to be able to recreate an
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estimate of the underlying series. For example, heating degree days is a good

correlated variable because it is sampled at the frequency of the underlying series.

Day of the week sinusoidal functions (representing harmonics of a Fourier series),

though correlated to the underlying series, would be poor choices for correlated

variables because we do not have representative training data to capture the day of

week effects, since we only know aggregated data values in an application setting.

We hypothesize that if we built an underlying regression model (using daily data),

and built an aggregated regression model, the parameters will be nearly the same in

value, as demonstrated in Section 3.3.2. However, we hypothesize that for poor

correlated variables like day of the week sinusoidal variables, the parameters would

not match between the underlying and aggregated regression models. We leave

confirmation of this hypothesis for future work.

Disaggregation is not restricted to a single algorithm. As we saw in

Chapter 2, there are many algorithms for disaggregating time series data. This

section describes several different algorithms that we use to disaggregate time series

data. The simplest of the five algorithms is the Naive algorithm, which calculates a

simple average value per interval. Then, we describe the Time Series Reconstruction

algorithm, which uses a least squares model. The Piecewise Linear Optimization

(PLO) algorithm adjusts the output of the TSR algorithm so that the aggregated

values match the sum of the underlying values within each aggregated time step.
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The fourth algorithm uses the TSR algorithm and successively resamples subsets of

our aggregated data, and the fifth algorithm does an interpolation. To understand

these disaggregation algorithms, we define additional notation in Table 3.4 that

adds to the notation already defined previously in Table 3.1.

Table 3.4: Declaration of variables for disaggregation algorithms

ỹ (Tj) Naively estimated (disaggregated) data value for aggregated time step Tj

nj The number of samples in aggregated time step Tj

ỹ Naively estimated (disaggregated) series

m The number of independent variables

q Number of aggregated time steps

X Columnwise aggregated correlated independent variables for fitting model

β Vector of model parameters

x Columnwise underlying independent variables for evaluating model

ŷ Estimated (disaggregated) series

3.3.1 Naive Algorithm

We briefly discussed the Naive algorithm in Chapter 2, but present a more

detailed algorithmic description of the Naive algorithm in this section.

Input: Aggregated data Y and underlying correlated variables X in the

formats described in Section 3.3.

Output: Underlying estimate ỹ.
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The Naive algorithm starts by taking the aggregated series Y and divides

each aggregate Yj by the length of each interval nj to get an average value over

interval Tj, which is then replicated nj times, as

ỹ (Tj) = ones(1, nj)
Yj

nj

. (3.4)

The naively disaggregated series is

ỹ = [ỹ (T1) ỹ (T2) . . . ỹ (Tq)]
T . (3.5)
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Figure 3.3: Aggregated data

The aggregated data shown in Figure 3.3 is monthly aggregated natural gas

consumption measured in decatherms. The aggregated data is disaggregated naively
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Figure 3.4: Estimated series ỹ using the Naive algorithm

into Naive estimates as seen in Figure 3.4. The data in Figure 3.4 is about 1
30

the

magnitude of the corresponding data in Figure 3.3. The Naive algorithm does not

do an adequate job of recreating the variability in the data. Most of the time, the

magnitudes of the naively estimated consumption data will not be very

representative of the underlying data. The Naive algorithm is simple, and it is

computationally inexpensive, making it advantageous when little or no prior

knowledge of underlying correlated variables is available to use in other more

sophisticated models such as least squares. A better alternative, the Time Series

Reconstruction (TSR) algorithm uses least squares and underlying correlated

variables.
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3.3.2 Time Series Reconstruction Algorithm

The Time Series Reconstruction (TSR) algorithm does a better job of

recreating the variability that the Naive algorithm lacks when correlated variables

are used. The TSR algorithm is an extension of Vitullo’s [78] Flow Reconstruction

algorithm. The TSR algorithm is a more generalized algorithm that handles

arbitrary aggregated time steps and can handle irregularly aggregated time steps.

Input: Aggregated data Y and underlying correlated variables X in the

formats described in Section 3.3.

Output: Underlying estimate ŷ.

Given ap (ti), i = 1, 2, . . . nj, p = 1, 2, . . .m, variables correlated to y, we

aggregate each variable for a given Tj so

Ap (Tj) =
∑
ti∈Tj

ap (ti) . (3.6)

Repeat Equation (3.6) for each Tj. Next, we form

Ap = [Ap (T1) Ap (T2) . . . Ap (Tq)]
T . (3.7)
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Furthermore, we repeat Equation (3.6) and Equation (3.7) for each of the m

variables. Then form

X = [A1 A2 . . . Am] , (3.8)

which is used for fitting our regression model. Here X contains the aggregated

correlated variables that are input to the TSR algorithm. A vector of regression

coefficients β̂ =
[
β̂1 . . . β̂m

]T
is found by solving in a least squares sense

Y = Xβ̂ + ϵ. (3.9)

Fitting aggregated correlated variables, we obtain estimated model parameters β̂.

Using β̂ and underlying correlated variables

x = [a1 (ti) a2 (ti) . . . am (ti)] , (3.10)

we evaluate

ŷ = xβ̂, (3.11)

The output of the model evaluation yields ŷ, an estimate for the underlying time

series y as seen in Figure 3.5.

While the Naive algorithm maintains consistency between aggregated data

and the sum of the estimated data within an aggregated time step, it removes all
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Figure 3.5: Estimated series ŷ using the TSR algorithm

variability in the estimated series. The TSR algorithm was developed to reintroduce

the variability the Naive algorithm lacks, but the TSR algorithm does not maintain

consistency between the aggregated data and the sum of the estimated data within

an aggregated time step. Hence, if some underlying data of length one are known,

we replace their corresponding estimated counterpart in ŷ. For these replaced

values, the aggregated data values and the estimated data values will be equal.

Analysis of TSR Algorithm

This section gives analysis of the TSR algorithm and how effective it is at

disaggregating time series data using correlated variables. Figure 3.6 shows a scatter

plot of the underlying daily gas flow and the daily average flow by month versus 65
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degrees minus the temperature. Figure 3.6 illustrates that there is a linear

relationship between gas flow and daily average flow by month. This suggests that

there is a strong relation between the parameter values for a regression model using

aggregated data and one that uses underlying data.
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Figure 3.6: Daily gas flow and daily average gas flow by month

The least squares optimizer for the aggregated and underlying models is

min
n∑

i=1

r2i , (3.12)

where ri is the i
th element of the residuals ϵ. Hence, we want to minimize the sum of

all squared residuals. However, the optimizer of the aggregated data model and the

optimizer of the underlying data model in general yield slightly different results
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since the sum of the underlying model residuals is different from the sum of the

aggregated model residuals.

Hence, if we fit two models – one using underlying and one using aggregated

data – we hypothesize that the model parameters will be relatively close if we select

“good” variables. We use three different sets of variables for the following analysis:

1) a simple three parameter model using a constant and heating degree day 55 and

65 wind adjusted terms; 2) a six variable model using a constant, growth, growth

times modified heating degree day, heating degree day 55 and 65 wind adjusted, and

cooling degree day 65; and 3) a nine parameter model using a constant, growth,

heating degree day 55 and 65 wind adjusted, cooling degree day 65, and four day of

year terms. We use two different heating degree reference temperatures to model

the fact that each operating area has a different reference temperature. For each of

these three variable selections, we examine how the parameters for a regression built

on underlying data and another on aggregated data compare.

Table 3.5 shows the coefficients for the nine parameter model we obtain from

two regression models, one using underlying data, and the other using aggregated

data. The model coefficients are not close to equal. The correlation coefficients

between the underlying series and all correlated variables except the constant are

-0.0371, 0.9804, 0.9864, -0.4522, 0.8354, 0.2696, 0.3048, and -0.0281, in order.

Figure 3.7 shows the parameters of the the TSR algorithm using recursive
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Table 3.5: Nine parameter underlying versus aggregated model parameters

Underlying Aggregated Difference

Regression Regression

β̂1 1632.5805 1050.4485 582.1320

β̂2 -264.2780 -223.8676 -40.4104

β̂3 1162.8965 1661.7761 -498.8796

β̂4 5805.6691 7894.8814 -2089.2123

β̂5 -77.7247 82.7430 -160.4677

β̂6 468.9665 -230.4081 699.3746

β̂7 123.1806 -101.2389 224.4195

β̂8 207.9232 -6.2059 214.1291

β̂9 43.7388 -66.5970 110.3358

fitting. This allows us to see how the parameters of the aggregated model vary with

sample size of 10 up to 30. When the sample size is smaller, the parameters

experience sensitivity when a single data value is added. As more data values are

added, the sensitivity decreases.

Figure 3.8 is similar to Figure 3.7, except it shows the parameters of the

underlying model recursively fit at the aggregated time steps. Hence, when the

aggregated model adds one aggregated data sample in the recursive fit, the

underlying model adds the underlying data values for the corresponding aggregated

time step. In Figure 3.8, we see that there is a lot of parameter sensitivity in the

underlying model. The model parameters for both the underlying and aggregated

models do not converge to similar values as shown in Table 3.5 and is seen

comparing Figure 3.7 and 3.8. Furthermore, β̂5 – β̂9 change sign between underlying

and aggregated model coefficients indicating sensitivity in these variables.
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Figure 3.7: Nine parameter recursive aggregated regression model parameters

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Underlying observations evaluated at aggregated time steps

P
ar

am
et

er
 v

al
ue

s

 

 
C
G
HDDW

65

HDDW
55

CDD
65

DOY
c,1

DOY
c,2

DOY
s,1

DOY
s,2

Figure 3.8: Nine parameter recursive parameters for underlying regression model

parameters

Additionally, we present equivalent tables and graphic for the three variable

and six variable models. Table 3.6 shows the parameters for the six parameter
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underlying and aggregated models. We observe that the parameters of the

underlying and aggregated models when using the six parameter model compared to

the nine parameter model have similar parameter values. This suggests that the day

of year terms may not be good variables to use to disaggregate natural gas.

However, this model also includes the growth times modified heating degree day

term, and further investigation will have to be done to make definitive conclusions.

We leave this as an opportunity for future extensions of this work.

Table 3.6: Six parameter underlying versus aggregated model parameters

Underlying Aggregated Difference

Regression Regression

β̂1 1179.6617 1136.1074 43.5543

β̂2 -73.9234 -63.7328 -10.1905

β̂3 -645.1066 -647.0610 1.9544

β̂4 2768.6158 2164.6018 604.0140

β̂5 5951.6918 6924.9227 -973.2308

β̂6 -132.5799 -71.1407 -61.4392

Figures 3.9 and 3.10 show the recursive parameters for the six parameter

underlying and aggregated models. We see the parameters of the two models are

much closer in value.

Table 3.7 shows the underlying and aggregated model parameters for the

three parameter model with a constant and two heating degree day terms. Similarly

to the six parameter model, the coefficient values are similar when comparing the

two three parameter models, but are not as close as the six parameter model.
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Figure 3.9: Six parameter recursive aggregated regression model parameters
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Figure 3.10: Six parameter recursive underlying regression model parameters

Figures 3.11 and 3.12 show the recursive parameters for the three parameter

underlying and aggregated models.

Hence, if both underlying and aggregated regression models have similar

parameter values and signs, we hypothesize, we will get a more accurately
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Table 3.7: Three parameter underlying versus aggregated model parameters

Underlying Aggregated Difference

Regression Regression

β̂1 1106.5796 1087.7068 18.8728

β̂2 2728.3726 1928.0135 800.3591

β̂3 5637.6116 6797.6150 -1160.0034
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Figure 3.11: Three parameter recursive aggregated regression model parameters

disaggregated series. Although it is possible that a different linear combinations of

our independent variables can give different coefficients between the underlying and

aggregated models, we want them to match so our model will have low sensitivity

and model physical phenomena. The TSR algorithm employs this property by using

the parameters that are obtained from fitting aggregated dependent and aggregated

independent variables and evaluates the regression model using underlying

correlated variables, yielding estimated data values. When we present our test set

disaggregation results, we show full results for all 16 operating areas using the six
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Figure 3.12: Three parameter recursive underlying regression model parameters

parameter model, but we also give summary results for the three and nine

parameter models and show that both the six and nine parameter models are

relatively close in performance. The three parameter model is not as good as the six

or nine parameter models. Another potential extension for future consideration is to

examine for individual series when to use the six parameter versus the nine

parameter model. One model may be better for different data sets.

Figures 3.13 through 3.18 show the Sum of Squared Error (SSE) compared to

the value of β1 through β6 (These represent the parameters of the constant, growth,

growth times modified heating degree day, wind adjusted heating degree day with

reference temperature of 65 and 55 degrees, and cooling degree day, respectively) for

the six parameter underlying and aggregated models. The red circles show the least

squares optimal parameter (while holding all other parameters constant), for each
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recursive fit. The top subfigure shows the aggregated model parameters, and the

lower subfigure shows the underlying model parameters. Each least squares optimal

value is at the minimum of a polynomial curve that traces out the SSE with up to a

10% positive and 10% negative change in the parameter values. As the number of

samples increases, the curves have higher SSE. The horizontal movement of the

optimal values changes as we recursively add additional data values to the

regression. Additionally, Figures 3.13 through 3.16 also show when the entire

sample of data values is fit for the underlying and the aggregated models, the

optimal parameters (yellow dots) for each are nearly equal. Hence, if the yellow dots

are close to the same value, we have matched our coefficient values well. This

observation demonstrates why the TSR algorithm works to disaggregate time series

data since aggregated data and underlying correlated variables can be used to

obtain very close approximations to the underlying model parameters.
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Figure 3.13: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β1
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Figure 3.14: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β2
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Figure 3.15: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β3



75

1800 2000 2200 2400 2600 2800 3000 3200 3400
0

1

2

3

4
x 10

8

S
S

E

β
4

1800 2000 2200 2400 2600 2800 3000 3200 3400
0

5

10
x 10

7

β
4

S
S

E

Figure 3.16: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β4
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Figure 3.17: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β5



76

−300 −200 −100 0 100 200 300 400
0

0.5

1

1.5

2
x 10

8

S
S

E
β

6

−300 −200 −100 0 100 200 300 400
0

2

4

6

8
x 10

7

β
6

S
S

E

Figure 3.18: SSE for underlying (bottom) and aggregated (top) model recursive pa-

rameter β6

Another idea to consider for future investigation is if the parameters match

well between underlying and aggregated models, can this be used in surrogate data

transformation where we want to transform flow data from one operating area to

look like it could have occurred for another operating area. This allows for a richer

data set that includes more unusual days. For example, if we have aggregated data,

I can learn the model coefficients for a daily model. The parameter values of the

daily model describe the flow characteristics for an operating area. So only knowing

aggregated data, we can construct the daily flow characteristics for an operating

area, which can then be scaled to look like another area’s flow.

To maintain consistency between the aggregated data and the sum of the
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estimated data, a Piecewise Linear Optimization (PLO) algorithm can be used to

adjust the estimated data so that the sum of the estimated data values within an

aggregated time step are equal to its aggregated data value.

3.3.3 Piecewise Linear Optimization Algorithm

The Piecewise Linear Optimization (PLO) algorithm was developed by

Marx [54] and used to model a continuous daily profile of natural gas consumption.

The PLO algorithm can be applied to the estimated output from the TSR algorithm

as a post-processing stage. The PLO algorithm adjusts the underlying estimates so

that the sum of the adjusted underlying estimates ŷ are equal to the aggregated

data Y , but at the same time, it does not distort the shape of the underlying

estimates significantly, while maintaining the variability in the estimated series.

Input: Underlying estimate ŷ, the output of the TSR algorithm.

Output: Underlying estimate ŷ, the output of the PLO algorithm.

We now present the PLO algorithm by making an adjustment to the input

time series by adding a perturbation ai to the estimate. To minimize the distortion

of the estimated series ŷ, we use a piecewise linear and continuous perturbation

from aggregated time step to aggregated time step.
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Table 3.8: Declaration of variables for piecewise linear optimization

t index vector relating the index of ŷ to the index of Y ,

for example, t0 = 0, t1 = 31, t2 = 61, etc.

rj sum of residuals for aggregated time index j

µj(i) piecewise linear spline fit for aggregated time index j

a unknown coefficients

p index of the input factors

l index of the basis functions

Table 3.8 shows the variables we use to describe the PLO algorithm. These

variables are intended to be general so the PLO algorithm can be adapted to

different applications. First, we wish to set the sum of the residuals for each

underlying time step to zero as

rj = Yj −
t(j+1)∑

i=t(j)+1

(ŷi + µj(i)) = 0, for j = 1 to l. (3.13)

Equation 3.13 constrains the sum of the perturbed estimates ŷ plus the sum

of the perturbations aj to equal the aggregated data value Yj. We define a piecewise

linear spline as

µj(i) =
aj(tj+1 − i) + aj+1(i− tj)

tj+1 − tj
, for j = 1 to l. (3.14)

Equation 3.14 defines l + 1 unknown coefficients, aj, Equation 3.13 defines l

equations, and Equation 3.15 uses the remaining degree of freedom to minimize the
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perturbations, aj as

min
l+1∑
j=1

a2j . (3.15)

Substituting Equation 3.14 into Equation 3.13 and rearranging yields

sj −
t(j+1)∑

i=t(j)+1

ŷi =

t(j+1)∑
i=t(j)+1

aj(tj+1 − i) + aj+1(i− tj)

tj+1 − tj
. (3.16)

Multiplying both sides of Equation 3.16 by a common denominator yields

(tj+1 − tj)

sj −
t(j+1)∑

i=t(j)+1

ŷi

 =

t(j+1)∑
i=t(j)+1

(aj(tj+1 − i) + aj+1(i− tj)) . (3.17)

Equation 3.17 is a (constrained) quadratic programming problem with l

linear equality constraints and l + 1 unknowns. This constrained quadratic

programming problem is solved numerically using the MATLAB routine fmincon,

since this cannot be solved explicitly.

The output of the PLO algorithm is an estimated series. Figure 3.19 shows

the estimate ŷ, Figure 3.20 shows the estimate after applying the PLO algorithm to

the output of the TSR algorithm, and Figure 3.21 shows the PLO adjustment. Since

the PLO algorithm uses splines to interpolate, estimates from the PLO algorithm

tend to oscillate, as seen in Figure 3.21. The disadvantage of the PLO algorithm is

the output does not look like the underlying data due to the oscillations. Examining
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Figure 3.21, we see that the oscillations in the adjustment look similar to the

response of a differential equation describing a mechanical motion of a system.
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Figure 3.19: Estimated series ŷ using the TSR algorithm

3.3.4 Time Series Reconstruction with Resampling Algorithm

The Time Series Reconstruction with Resampling (RS) algorithm is a

modification of the TSR algorithm. This algorithm was motivated by the central

limit theorem from statistics [56]. The idea behind this algorithm is instead of using

all data observations in a regression, just use a sampling (with replacement) of

observations and repeat this sampling many times. Each time we sample, we get a

different set of model parameters. Then, select the median of each set of parameters.

We sample with replacement because if we do not sample with replacement, there is
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Figure 3.20: Estimated series ŷ using the PLO algorithm

a possibility of running out of sample observations. As samples are removed from

the set of observations, the distribution of sample data points will change, but we

want the distribution to be constant over all sample sets. When sampling, there is a

chance of selecting repeated observations, which can lead to having linearly

dependent rows in the regression and can lead to an interpolation situation.

Input: Aggregated data Y and underlying correlated variables X in the

formats described in Section 3.3.

Output: Underlying estimate ŷ.
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Figure 3.21: PLO algorithm adjustment

Given ap (ti), i = 1, 2, . . . , nj, p = 1, 2, . . . ,m, variables correlated to y, we

aggregate each variable for a given Tj so

Ap (Tj) =
∑
ti∈Tj

ap (ti) . (3.18)

Repeat Equation (3.6) for each Tj. Next, we form

Ap = [Ap (T1) Ap (T2) . . . Ap (Tq)]
T . (3.19)

Furthermore, we repeat Equation (3.18) and Equation (3.19) for each of the m

variables. Then form

X = [A1 A2 . . . Am] . (3.20)



83

X is one of the two inputs to the RS algorithm. We sample with replacement

the same m+ 1 rows from X and Y to form our sample sets XRS and YRS. We

empirically chose m+ 1 for our sample size since it was observed that smaller

sample sizes increased algorithm performance, and seven is the minimum sample

size that can be used without resorting to interpolation for the six parameter model,

or an exact fit with no degrees of freedom (an equal number of equations and

unknowns). If the sample size is equal to the observation size, there are no degrees

of freedom, and an exact fit will occur. XRS contains aggregated correlated

variables. A vector of regression coefficients β̂i =
[
β̂1 · · · β̂m

]T
is found by solving

YRS = XRSβ̂i + ϵ. (3.21)

This completes one iteration of the TSR algorithm. Fitting aggregated

correlated variables, we obtain estimated model parameters β̂i. Now, we repeat

1,000 iterations of sampling X and Y and solving for β̂i, for i = 1, . . . , 1000. Hence,

β̂RS =
[
β̂1 . . . β̂1000

]
. We calculate β̂ as the median of β̂RS. Using β̂ and underlying

correlated variables

x = [a1 (ti) a2 (ti) . . . am (ti)] , (3.22)

we evaluate

ŷ = xβ̂. (3.23)
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The output of the model evaluation yields ŷ, an estimate for the

disaggregated time series y as seen in Figure 3.22. Similar to the TSR algorithm, if

some aggregated time steps of length one are known, we replace their corresponding

estimated counterpart in ŷ. Alternatively, the Time Series Reconstruction with

Interpolation algorithm can do an exact fit and be used to disaggregate time series

data.
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Figure 3.22: Estimated series ŷ using the RS algorithm

3.3.5 Time Series Reconstruction with Interpolation Algorithm

The Time Series Reconstruction with Interpolation (INT) algorithm is a

modification of the RS algorithm, where the sample size is equal to the number of

correlated variables m that are used for model fitting. This algorithm does an exact
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fit to the data by having the number of inputs equal the number of observations in

the regression. This means there are no degrees of freedom in the regressions and an

exact fit to the data will be achieved. Generally, when there are large measurement

errors in the dependent or independent regression variables, an interpolation does

not work well, but it may if the data does not contain large measurement errors.

Input: Aggregated data Y and underlying correlated variables X in the

formats described in Section 3.3.

Output: Underlying estimate ŷ.

The output of the model evaluation yields ŷ, an estimate for the underlying

time series y as seen in Figure 3.23. Like the TSR and RS algorithms, if some

underlying data values are known, we replace their corresponding estimated

counterpart in ŷ with the known underlying values.

Next, we look at variables used in the TSR, RS, and INT algorithms for

disaggregating natural gas consumption.
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Figure 3.23: Estimated series ŷ using the INT algorithm

3.4 Correlated Variables Used for Disaggregating Natural Gas

Consumption

One application of the disaggregation algorithms disaggregates aggregated

(monthly) natural gas consumption to underlying (daily) consumption estimates.

For this application, we use a subset of ten correlated variables as input factors to

the TSR, RS, and INT algorithms.

We use a constant, a linear trend, linear trend times modified heating degree

day adjusted for wind, heating degree days with reference 55 and 65 and wind

adjustment, cooling degree days with reference 65, and day of year. Day of the year
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is represented by the first and second harmonics of a Fourier series. These are cosine

and sine yearly periodic functions.

In the summer, there is little variability in gas consumption since there are

few heating degree days, but cooling degree days help account for some of the

variation we get in the summer from air conditioning load.

Here is a list of equations that show how we calculate the values of each of

the correlated variables on underlying (daily) time scale t . The constant

C = [1 1 1 . . . 1]T (3.24)

is a vector with n rows and one column.

To account for growth or decline in consumption over time, we include a

linear trend. We model growth by calculating

G = [1 2 3 . . . n]T , (3.25)

where G is a vector with n rows and one column.

We calculate heating degree day by averaging the 24 hourly temperatures

(measured in degrees Fahrenheit), T , and converting them to HDD55 and HDD65 by
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calculating

HDD55 = max (0, 55− T ) , (3.26)

and

HDD65 = max (0, 65− T ) . (3.27)

Wind speed contributes to heat loss in buildings [79; 18]. When the wind

blows, drafty buildings lose heat quickly. By adjusting HDD for wind speed

(measured in miles per hour), we get increased correlation compared to HDD alone.

Next, a Wind Speed (WS) adjustment is calculated as

HDDW55 =


HDD55 ·

(
152+WS

160

)
WS ≤ 8

HDD55 ·
(
72+WS

80

)
WS > 8,

(3.28)

and

HDDW65 =


HDD65 ·

(
152+WS

160

)
WS ≤ 8

HDD65 ·
(
72+WS

80

)
WS > 8.

(3.29)

Using two heating degree day factors create a better fit to gas consumption

and also helps account for changes in the heating degree day reference temperature

of an operating area over time.

To not only fit the growth of the base load, but also to account for growth in

the heat load, we use modified heating degree day calculated as
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G ·MHDDW = G ·
(
HDDW65 +HDDW55

2

)
. (3.30)

In addition to using HDDW55 and HDDW65, we also calculate the cooling

degree day with a reference temperature of 65 degrees calculated as

CDD65 = max (0, T − 65) . (3.31)

We use four nonlinear transformations to model day of year (DOY ) defined

as

DOYc,1 = cos

(
2 · π ·D
365

)
, (3.32)

DOYs,1 = sin

(
2 · π ·D
365

)
, (3.33)

DOYc,2 = cos

(
4 · π ·D
365

)
, (3.34)

DOYs,2 = sin

(
4 · π ·D
365

)
, (3.35)

where D is periodic from 1 to 365 based on the day of the year.

Next, we evaluate our algorithms and ensembles. We discuss training and

testing procedures, and results are shown.
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3.5 Experimental Results

In this section, we present how we apply several data sets for training and

testing our disaggregation algorithms, and we evaluate our algorithms using a varied

set of error metrics. Most capture a mathematical norm of the deviation from the

mean, but some also break down the error into components, which are useful for

algorithm evaluation.

3.5.1 Development, Training, Testing, and Production

For this chapter, we disaggregate natural gas operating area consumption. In

an actual application environment where the underlying series y is unknown, we

initiate our disaggregation algorithms by taking a series of aggregates Y with

aggregated time steps T of varying length, and apply each algorithm to obtain an

underlying estimated (disaggregated) series ŷ. The disaggregated series ŷ and a set

of correlated variables can be used for modeling (forecasting), and analysis can be

performed on the forecasts, as illustrated in Figure 3.24.

Figure 3.24: Disaggregation algorithm process when y is unknown
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For purposes of evaluating all of our component and ensemble algorithms, we

simulate aggregated data by taking a known underlying series y of daily operating

area natural gas consumption and aggregate it into monthly intervals of varying

length. This produces an aggregated series Y with aggregated time steps T , as seen

in Figure 3.25. Taking this series of aggregates Y , we apply each algorithm to

obtain an estimate of the underlying estimated (disaggregated) series ŷ. After

obtaining ŷ, we calculate error metrics by comparing ŷ and y. Figure 3.26 illustrates

the testing process.

Figure 3.25: Disaggregation algorithm testing process when y is known

Figure 3.26: Process used for aggregating time series data to test the disaggregation

algorithms

We first apply developmental data sets to our disaggregation algorithms for

the purpose of developing our algorithms; then, we apply the same algorithms to a

different data set which is used for training (learning model parameters coefficients).



92

The developmental data set consists of data for 14 different operating areas from a

utility in the midwestern United States from January 1, 2003, to December 31, 2010

and is used to in developing and evolving the TSR, RS, and INT algorithms. The

training and test set contains 16 operating areas for a different utility in the

southern United States from April 1, 2004, to August 31, 2010. The training process

fits the aggregated data for each operating area to learn the model parameters, and

then the testing process evaluates the model with the parameters found in the

training process on underlying data to generate underlying estimates.

The Naive, TSR, PLO, RS, and INT algorithms are evaluated individually.

Additionally, we evaluate ensembles using Equal Weight (EW), Principal

Components (PC), and a Trimmed Mean (TM).

We tried using regression and neural nets to combine algorithm estimates by

assuming we knew several years worth of daily gas consumption to train our

algorithms. Then, we evaluated our regression and neural network models using a

year of test data exclusive of that used to train. While the regression performed

well, and it is recommended if daily training data is available, the neural net did not

perform well. We observed that the neural network algorithms had some of the best

performance the majority of the time, occasionally we would have a very bad neural

network whose test set error was exceptionally high. We decided that neural

networks are not good for combining component estimates since it is not worth
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getting an occasional bad neural network for minor improvements on all other

neural networks. We believe this occurs because occasionally, we combine

component algorithms that are not well represented in the neural network training

sets. Furthermore, we used a continuous set of daily observations for several years.

Most of the time, we will have only a small amount of daily data, if at all.

3.5.2 Statistical Error Metrics

In this section, we present the quantitative results of the Naive, TSR, PLO,

RS, and INT algorithms. The EW, PC, and TM ensemble methods are applied to

the test set and evaluated. The ensembles combine the Naive, TSR, PLO, RS, and

INT estimates. Detailed results using six correlated variables (constant, growth,

growth times modified heating degree day adjusted for wind, heating degree day 55

and 65 with wind adjustment, and cooling degree day 65) are included in Tables 3.9

– 3.13.

We apply a series of metrics to evaluate our test set and make conclusions

based on what the majority of the error metrics indicate from test set results shown

in Tables 3.9 – 3.13. Comparing RMSE, MAE, MAPE, WMAPE, U, Ub, Uv, and

Uc, we see the Naive algorithm does not perform as well as the TSR or PLO

algorithms with the exception of operating areas 3 and 10. Operating areas 3 and

10 are highly non-temperature-sensitive using Tenneti’s Quantitative Customer
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Identification (QCI) algorithm [75], and so temperature-based algorithms such as

the TSR, PLO, RS, and INT do not perform well. Additionally, the reason that the

MAPE is so large for operating area 10 is that there are several values of gas

consumption very close to zero, and their corresponding residuals are very large.

These large residuals make the MAPE very large. Furthermore, the consumption

data we have for operating area 10 may have measurement errors. While the Naive

algorithm works marginally better than the other components for these operating

areas, it still does not estimate them well.

Table 3.13 displays average and median error metric values for the 16

different operating areas. We can conclude that the TSR and RS algorithms have

the lowest error of our component algorithms, and the EW ensemble technique has

the lowest error of the ensemble techniques. We highlight in bold the algorithms

that had the lowest error according to each error metric. Indeed, the combining

techniques enhance the estimates as seen by lower Theil variance terms than the

component algorithms. This indicates the EW ensemble does a better job capturing

the variation in the underlying series than the individual components.

Figure 3.27 shows a bar graph with a set of bars for operating area number

one. Each set of bars represents Weighted Mean Absolute Percent Error (WMAPE)

for each of the component and ensemble algorithms. We chose to show WMAPE

because it weights the heating season more than the summers and gives percentages
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Table 3.9: Error metrics for test set evaluation using six correlated variables for

operating areas 1 – 4

Algorithm RMSE MAE MAPE WMAPE U Ub Uv Uc

1 Naive 303.4 160.4 17.96 22.78 0.180 0.000 0.115 0.885

TSR 122.7 74.2 9.12 10.54 0.069 0.000 0.169 0.831

PLO 130.1 90.8 13.22 12.90 0.073 0.000 0.177 0.824

RS 105.3 65.9 8.48 9.36 0.061 0.038 0.003 0.959

INT 143.9 83.0 9.78 11.79 0.080 0.010 0.353 0.637

EW 79.4 48.3 6.30 6.86 0.046 0.000 0.002 0.998

PC 88.7 54.3 6.98 7.71 0.051 0.000 0.033 0.967

TM 107.0 64.4 8.00 9.15 0.061 0.001 0.093 0.907

2 Naive 5.3 3.0 24.18 27.55 0.184 0.000 0.084 0.916

TSR 3.7 2.3 19.29 20.56 0.118 0.000 0.138 0.863

PLO 3.7 2.6 28.00 23.45 0.120 0.000 0.161 0.840

RS 3.6 2.2 18.09 19.77 0.116 0.000 0.120 0.880

INT 3.8 2.3 19.05 20.93 0.121 0.003 0.193 0.805

EW 2.5 1.5 13.73 14.01 0.083 0.000 0.030 0.970

PC 2.9 1.7 15.40 15.91 0.093 0.000 0.073 0.927

TM 3.4 2.1 16.91 18.70 0.111 0.000 0.133 0.867

3 Naive 43.9 32.7 13.24 12.70 0.083 0.000 0.123 0.877

TSR 47.1 36.1 15.06 14.04 0.088 0.000 0.011 0.990

PLO 66.0 51.4 21.16 19.95 0.122 0.000 0.049 0.951

RS 48.1 36.5 14.91 14.16 0.092 0.017 0.309 0.674

INT 46.3 35.3 15.26 13.72 0.086 0.014 0.110 0.877

PC 42.9 33.6 14.00 13.05 0.081 0.000 0.076 0.924

TM 42.2 32.9 13.85 12.78 0.079 0.000 0.143 0.857

4 Naive 24.5 14.2 17.02 20.20 0.150 0.000 0.097 0.903

TSR 19.2 12.1 16.14 17.15 0.113 0.000 0.077 0.924

PLO 18.9 12.3 16.33 17.40 0.111 0.000 0.117 0.883

RS 19.6 12.1 16.22 17.25 0.115 0.002 0.082 0.917

INT 18.2 11.5 15.57 16.28 0.110 0.011 0.001 0.989

EW 14.3 8.7 11.58 12.38 0.086 0.000 0.000 1.000

PC 15.5 9.5 12.49 13.47 0.093 0.000 0.011 0.989

TM 17.4 10.6 13.77 15.08 0.103 0.000 0.036 0.964
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Table 3.10: Error metrics for test set evaluation using six correlated variables for

operating areas 5 – 8 (continued)

Algorithm RMSE MAE MAPE WMAPE U Ub Uv Uc

5 Naive 3.8 2.2 24.96 28.24 0.192 0.000 0.095 0.906

TSR 2.4 1.5 20.37 20.01 0.114 0.000 0.097 0.904

PLO 2.4 1.6 24.22 21.07 0.111 0.000 0.122 0.879

RS 2.6 1.6 20.84 21.43 0.123 0.010 0.177 0.814

INT 2.5 1.6 21.78 20.90 0.118 0.024 0.134 0.843

EW 1.8 1.1 15.10 14.31 0.085 0.005 0.014 0.981

PC 2.0 1.2 16.47 16.01 0.094 0.005 0.053 0.942

TM 2.3 1.4 18.11 18.47 0.108 0.006 0.108 0.886

6 Naive 22.8 13.6 12.44 14.36 0.111 0.000 0.091 0.909

TSR 16.7 11.0 11.36 11.61 0.079 0.000 0.080 0.920

PLO 15.8 11.0 11.27 11.55 0.075 0.000 0.140 0.860

RS 18.4 11.7 11.80 12.35 0.086 0.017 0.145 0.839

INT 19.6 12.3 12.33 13.00 0.091 0.028 0.067 0.905

EW 12.2 8.1 8.48 8.55 0.058 0.008 0.010 0.982

PC 13.5 8.9 9.15 9.37 0.064 0.008 0.038 0.954

TM 15.6 10.0 10.05 10.58 0.074 0.008 0.072 0.920

7 Naive 44.5 25.2 19.59 23.06 0.172 0.000 0.108 0.892

TSR 22.9 15.3 13.61 14.02 0.084 0.000 0.109 0.892

PLO 22.5 15.6 14.86 14.30 0.083 0.000 0.171 0.829

RS 21.4 13.8 11.82 12.62 0.083 0.090 0.131 0.780

INT 21.7 13.7 11.86 12.60 0.084 0.046 0.050 0.904

EW 14.9 9.7 8.80 8.89 0.057 0.023 0.129 0.849

PC 15.5 10.3 9.37 9.43 0.059 0.020 0.035 0.946

TM 17.5 11.6 10.41 10.61 0.067 0.026 0.011 0.963

8 Naive 15.2 10.5 22.08 20.66 0.139 0.000 0.149 0.851

TSR 10.2 8.0 18.30 15.70 0.091 0.000 0.000 1.000

PLO 12.9 10.2 23.55 20.14 0.115 0.000 0.016 0.985

RS 10.2 7.9 18.33 15.64 0.093 0.005 0.138 0.857

INT 10.1 7.8 18.41 15.30 0.090 0.010 0.014 0.977

EW 9.4 7.5 17.72 14.74 0.085 0.000 0.097 0.904

PC 9.5 7.5 17.86 14.89 0.086 0.000 0.057 0.943

TM 9.6 7.6 17.82 14.91 0.087 0.000 0.040 0.960
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Table 3.11: Error metrics for test set evaluation using six correlated variables for

operating areas 9 – 12 (continued)

Algorithm RMSE MAE MAPE WMAPE U Ub Uv Uc

9 Naive 238.3 138.0 14.73 17.22 0.123 0.000 0.048 0.952

TSR 175.1 114.7 14.09 14.31 0.088 0.000 0.087 0.913

PLO 181.4 126.7 17.43 15.81 0.091 0.000 0.104 0.897

RS 159.8 106.8 13.57 13.33 0.081 0.011 0.010 0.979

INT 162.8 109.3 14.08 13.64 0.082 0.004 0.033 0.963

EW 120.2 80.5 10.43 10.05 0.061 0.002 0.002 0.996

PC 127.8 85.4 11.03 10.65 0.065 0.002 0.008 0.990

TM 154.3 100.3 12.45 12.52 0.078 0.002 0.032 0.966

10 Naive 5.7 4.0 196.79 23.97 0.140 0.001 0.040 0.959

TSR 8.5 6.4 373.33 38.60 0.213 0.000 0.063 0.937

PLO 10.6 7.9 314.50 48.16 0.246 0.000 0.076 0.924

RS 8.4 6.4 354.06 38.58 0.215 0.005 0.095 0.900

INT 8.8 6.9 359.10 42.07 0.225 0.015 0.026 0.960

EW 6.8 5.2 301.62 31.25 0.171 0.002 0.081 0.918

PC 6.8 5.1 298.40 31.16 0.170 0.002 0.066 0.933

TM 7.2 5.5 314.94 33.24 0.183 0.003 0.096 0.901

11 Naive 8.0 4.7 17.01 20.34 0.141 0.000 0.060 0.940

TSR 5.8 3.8 16.30 16.68 0.099 0.000 0.110 0.891

PLO 6.3 4.5 23.16 19.85 0.107 0.000 0.120 0.880

RS 6.2 3.9 15.41 17.08 0.105 0.001 0.152 0.847

INT 6.1 3.8 15.07 16.73 0.103 0.001 0.131 0.868

EW 4.2 2.7 11.98 12.01 0.072 0.000 0.033 0.968

PC 4.6 3.0 13.16 13.30 0.080 0.000 0.060 0.940

TM 5.6 3.5 14.20 15.46 0.096 0.001 0.113 0.886

12 Naive 1.5 0.9 21.50 25.90 0.179 0.000 0.082 0.918

TSR 0.9 0.5 15.18 16.55 0.098 0.000 0.123 0.877

PLO 1.0 0.7 26.25 21.41 0.110 0.000 0.123 0.877

RS 0.9 0.5 14.47 15.99 0.096 0.002 0.085 0.913

INT 0.9 0.6 14.97 16.99 0.102 0.001 0.178 0.822

EW 0.6 0.4 11.59 11.71 0.072 0.000 0.011 0.989

PC 0.7 0.4 12.83 13.12 0.079 0.000 0.043 0.957

TM 1.0 1.0 13.48 15.31 0.094 0.000 0.107 0.893
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Table 3.12: Error metrics for test set evaluation using six correlated variables for

operating areas 13 – 16 (continued)

Algorithm RMSE MAE MAPE WMAPE U Ub Uv Uc

13 Naive 12.0 7.2 24.38 26.87 0.171 0.000 0.074 0.927

TSR 6.5 4.1 14.76 15.23 0.088 0.000 0.134 0.866

PLO 6.8 4.8 22.54 17.80 0.092 0.000 0.140 0.860

RS 6.6 4.1 14.77 15.29 0.089 0.001 0.125 0.874

INT 6.9 4.3 15.08 16.02 0.092 0.003 0.175 0.823

EW 4.3 2.7 10.81 10.21 0.060 0.000 0.018 0.982

PC 4.9 3.1 11.87 11.40 0.066 0.000 0.053 0.947

TM 6.3 3.9 13.67 14.40 0.084 0.000 0.127 0.873

14 Naive 0.3 0.2 34.37 29.63 0.173 0.000 0.070 0.930

TSR 0.2 0.1 18.01 15.59 0.085 0.000 0.092 0.909

PLO 0.2 0.1 26.86 16.62 0.083 0.000 0.116 0.884

RS 0.2 0.1 17.99 15.46 0.086 0.012 0.039 0.949

INT 0.2 0.1 18.51 15.63 0.088 0.059 0.001 0.940

EW 0.1 0.1 14.72 10.57 0.058 0.012 0.006 0.982

PC 0.1 0.1 15.09 11.25 0.062 0.011 0.000 0.989

TM 0.2 0.1 16.58 13.76 0.077 0.009 0.027 0.964

15 Naive 0.7 0.4 21.11 24.98 0.172 0.000 0.076 0.924

TSR 0.5 0.3 15.69 17.92 0.111 0.000 0.113 0.887

PLO 0.5 0.3 20.75 19.86 0.111 0.000 0.125 0.875

RS 0.5 0.3 14.86 17.99 0.114 0.012 0.070 0.918

INT 0.5 0.3 14.70 17.83 0.113 0.002 0.094 0.905

EW 0.4 0.2 11.55 12.95 0.082 0.002 0.009 0.990

PC 0.4 0.2 12.59 14.27 0.090 0.002 0.032 0.966

TM 0.5 0.3 13.87 16.67 0.106 0.001 0.086 0.913

16 Naive 4.7 2.8 21.48 24.89 0.167 0.000 0.074 0.926

TSR 2.7 1.7 15.38 15.39 0.091 0.000 0.085 0.915

PLO 2.9 2.0 22.27 18.33 0.096 0.000 0.102 0.898

RS 2.6 1.6 14.80 14.92 0.089 0.000 0.058 0.942

INT 2.7 1.7 14.64 15.12 0.092 0.016 0.024 0.960

EW 2.0 1.2 11.31 10.95 0.067 0.002 0.000 0.999

PC 2.1 1.3 12.28 11.84 0.071 0.002 0.006 0.992

TM 2.5 1.5 13.53 13.90 0.085 0.001 0.051 0.949
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Table 3.13: Summary of error metrics for test set evaluation using six correlated

variables

Algorithm RMSE MAE MAPE WMAPE U

Mean Naive 45.9 26.2 31.43 22.71 0.155

TSR 27.8 18.3 37.87 17.12 0.102

PLO 30.1 21.4 39.15 19.91 0.109

RS 25.9 17.2 36.28 16.95 0.103

INT 28.4 18.4 36.89 17.41 0.105

EW 19.7 13.2 29.96 12.63 0.076

PC 21.1 14.1 30.56 13.55 0.081

TM 24.5 16.0 32.60 15.35 0.093

Median Naive 10.0 5.9 21.29 23.52 0.169

TSR 7.5 5.2 15.54 15.65 0.091

PLO 8.7 6.4 22.41 19.09 0.108

RS 7.5 5.2 14.89 15.55 0.093

INT 7.9 5.6 15.07 15.82 0.092

EW 5.6 4.0 11.59 11.86 0.072

PC 5.8 4.1 12.71 13.08 0.079

TM 6.7 4.7 13.81 14.66 0.086

which allow direct comparison across operating areas. The sets of bars are ordered

by operating area temperature sensitivity. The operating areas are ranked using

Tenneti’s QCI algorithm [75] from lowest (left) to highest (right) temperature

sensitivity. The temperature sensitivity of each operating area are listed on the

horizontal axis. The order of the operating areas is

[10 3 4 8 6 5 15 2 11 7 9 12 16 14 13 1] from left to right. We see the errors

generally decrease as temperature sensitivity increases.

Table 3.14 and Table 3.15 show summary mean and median results when

using the three and nine parameter models discussed in Section 3.3.2, respectively.
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Figure 3.27: Test set WMAPE for all 16 operating areas in order of temperature

sensitivity
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Table 3.14: Summary of error metrics for test set evaluation using three correlated

variables

Algorithm RMSE MAE MAPE WMAPE U

Mean Naive 45.9 26.2 31.43 22.71 0.155

TSR 32.0 21.6 40.43 18.63 0.110

PLO 33.7 24.0 44.04 21.53 0.117

RS 38.5 23.9 44.74 19.87 0.121

INT 35.7 23.1 48.51 19.63 0.119

EW 23.9 16.0 34.47 14.02 0.084

PC 27.3 18.1 35.43 15.36 0.092

TM 29.4 19.5 37.65 16.74 0.101

Median Naive 10.0 5.9 21.29 23.52 0.169

TSR 8.0 5.4 16.50 16.42 0.098

PLO 9.6 7.3 23.56 18.99 0.105

RS 8.4 5.9 17.75 16.70 0.100

INT 7.9 5.5 17.81 17.02 0.102

EW 5.9 4.1 12.67 12.57 0.075

PC 6.3 4.4 13.75 13.61 0.081

TM 7.1 4.8 14.88 15.41 0.092
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Table 3.15: Summary of error metrics for test set evaluation using nine correlated

variables

Algorithm RMSE MAE MAPE WMAPE U

Mean Naive 45.9 26.2 31.43 22.71 0.155

TSR 27.4 17.5 33.45 15.35 0.092

PLO 30.4 21.3 38.73 19.54 0.106

RS 27.4 17.6 31.68 15.88 0.095

INT 28.3 17.9 32.86 16.59 0.098

EW 19.8 13.0 26.72 12.22 0.073

PC 21.6 14.1 27.35 12.94 0.077

TM 25.6 16.1 27.85 14.03 0.086

Median Naive 10.0 5.9 21.29 23.52 0.169

TSR 6.0 4.3 14.76 14.75 0.089

PLO 8.4 6.2 21.93 18.33 0.102

RS 6.2 4.5 14.84 15.25 0.093

INT 7.0 5.2 15.16 15.86 0.092

EW 5.0 3.6 12.00 12.21 0.071

PC 5.2 3.7 12.85 13.01 0.078

TM 5.6 3.9 13.28 13.87 0.085
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3.5.3 Error Evaluation on Unusual Days

Previously, we looked at the overall error on the complete test set. For

energy data disaggregation applications, the unusual day types are the most

important to disaggregate accurately. With natural gas consumption

disaggregation, we should consider unusual day types: coldest, colder than normal,

warmer than normal, windier than normal, colder today than yesterday, warmer

today than yesterday, first cold days, and first warm days. According to gas

purchasers and supply managers, these are the days that are hardest to forecast and

can cause a large expense to the utility’s customers when they are not forecast

accurately. For our test set and each day type, we evaluate the 5% of the most

extreme unusual days in the data set for each operating area. For each day type, the

error evaluated on the 116 most extreme days is shown in Figure 3.28. This figure

shows WMAPE for all five components as well as the combinations of these five

components for operating area number one.

Figure 3.29 shows a time series of the daily average temperature for the test

set period. Figure 3.30 shows a corresponding scatter plot of gas consumption and

average temperature for operating area number one. The unusual day types are

highlighted in both figures.

Since the Naive algorithm has a substantially higher error than the other
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Figure 3.28: Test set WMAPE for operating area number one on unusual days

algorithms, we plot Figure 3.31 without the Naive algorithm. Otherwise Figure 3.31

is the same as Figure 3.28. This is solely for the purpose of making it easier to

differentiate the errors of the other algorithms. Figure 3.31 shows that the EW

combination greatly reduces error on the unusual days in the test set for operating

area number one. While Figure 3.31 only shows results for operating area one, all

the other operating areas also had reduced error using the EW combination. We

observed the greatest improvements were on the more temperature-sensitive

operating areas. This suggests that if the estimates generated from the EW

ensemble where used for training a neural network or a linear regression model, the
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Figure 3.29: Temperature time series with unusual days for operating area number

one

model probably would forecast better than the same models trained on data that

was estimated using the other disaggregation algorithms or ensembles.

Now that we have evaluated our component and ensemble algorithms using

natural gas operating area data, we look at these same algorithms applied to US

real Gross Domestic Product (GDP) data from first quarter 1948 through fourth

quarter 2010.
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Figure 3.31: Test set WMAPE for operating area number one (ensemble combina-

tions)

3.6 Disaggregating Historical Real Gross Domestic Product

In this section, we apply the Naive, TSR, PLO algorithms and the EW, PC,

and TM ensemble combination strategies to disaggregate yearly aggregated real

(inflation adjusted) GDP to quarterly estimates. We compare the disaggregated

quarterly estimates to the measured real GDP values and calculate error metrics.

Then, we disaggregate measured quarterly real GDP to monthly real GDP. Monthly

real GDP data does not exist, but one might want to do this to get real GDP
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sampled monthly for forecasting purposes. Since there is no measured monthly real

GDP, our set of error metrics cannot be applied. One way to evaluate the success of

our disaggregated GDP series is to ask experts if the disaggregated series resembles

a monthly GDP series.

Instead of the factors described in Section 3.4, we use a constant, a linear

trend, a recession indicator variable, US personal income less transfer payments, US

nonfarm employment, US manufacturing sales and trade, and US industrial

production as our seven factors in the TSR algorithm from first quarter 1948

through fourth quarter 2010. We use a recession indicator for underlying (monthly)

time scale by a one or zero indicating there was or was not a recession during each

month. Additionally, for aggregated (quarterly) time scale, we indicate the number

of recessionary months within each quarter as a number between zero and

three [58]. We obtain data for US personal income less transfer payments and US

gross domestic product from the the Bureau of Economic Analysis [57], US nonfarm

employment from the Bureau of Labor Statistics [59], US manufacturing sales, and

trade and US industrial production from Bloomberg [13]. We give a brief definition

of each of these coincidental economic indicators [1].

• Personal income: All income to persons from wages, investments, and

dividends, excluding transfer payments (social security, medicare, etc.) from

the government.
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• Industrial production: Reported monthly by the Federal Reserve Board and

measures total output of US factories and mines.

• Nonfarm employment: Reported by the US Bureau of Labor Statistics

representing the total number of paid US workers of any business, excluding

general government employees, private household employees, employees of

nonprofit organizations that provide assistance to individuals, and farm

employees.

• Manufacturing sales and trade: Gives values of trade and business sales and

product inventories for manufacturers, retailers, and wholesalers.

We use the Naive, TSR, and PLO algorithms using yearly aggregated real

GDP and our coincidental economic indicators. Industrial production, personal

income, nonfarm employment, and manufacturing sales and trade are correlated to

real GDP with correlation coefficients of 0.9914, 0.9991, 0.2453, and 0.9903,

respectively. The correlation coefficients for the trend and the recession dummy

variable are 0.9794 and -0.1072, respectively. We evaluate the disaggregation

algorithms using quarterly measured real GDP and a constant, linear trend, a

recession indicator, US industrial production, US personal income less transfer

payments reported monthly, nonfarm employment, and manufacturing sales and

trade. Personal income is only reported quarterly; therefore, we take quarterly

personal income and disaggregate it using the Naive algorithm to get an estimate of
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personal income. We use the naive estimate of personal income as an instrumental

(proxy) variable for the real monthly personal income.

Table 3.16 is similar to Table 3.5, except the aggregated (yearly) and

underlying (quarterly) regression models use our economic variables, where β̂1 to β̂7

are the coefficients of the constant, trend, recession dummy variable, industrial

production, personal income, nonfarm employment, and manufacturing trade and

sales, respectively. The coefficients presented in Table 3.16 are scaled. For each

model (underlying or aggregated), we take each independent variables and scale it

by the maximum element of each of the underlying independent variables. This

allows us to make relative comparisons on the parameters, since all the parameters

have different units. These scaled independent variables are then used as input to

the underlying and aggregated models. We observe that for the economic variables,

we get agreement between the parameters of the two models.

Table 3.16: Underlying versus aggregated model parameters

Underlying Aggregated Difference

Regression Regression

β̂1 241.6178 220.8301 20.7877

β̂2 109.9153 21.3654 88.5499

β̂3 -95.6354 -128.7782 33.1428

β̂4 -110.4813 -354.2054 243.7240

β̂5 11466.1414 11974.4701 -508.3287

β̂6 121.6909 126.9243 -5.2334

β̂7 1875.9949 1709.7644 166.2305
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Table 3.17 shows the error of the component estimates, EW, PC, and TM

ensemble estimates evaluated by disaggregating yearly real GDP to quarterly real

GDP. We see from Table 3.17 that the TSR algorithm does not perform as well for

real GDP as it does for natural gas. Hence, the Naive algorithm quantitatively does

better than the TSR algorithm, but the disaggregated series output from the Naive

algorithm does not look like real GDP data. Figures 3.32 – 3.34 show the time

series of quarterly measured real GDP compared to each of the component

estimates. Figure 3.35 shows the algorithm residuals of the three components and

three ensemble algorithms. Looking at the residuals of each algorithm and

ensemble, we can see that the PLO and EW ensemble have the smallest residual

and therefore have the best performance of the six algorithms employed.
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Figure 3.32: Measured quarterly real GDP and naively estimated quarterly real GDP

Now that we have disaggregated yearly real GDP to quarterly real GDP for
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Figure 3.33: Measured quarterly real GDP and TSR estimated quarterly real GDP
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Figure 3.34: Measured quarterly real GDP and PLO estimated quarterly real GDP

the purposes of evaluating our algorithms, what we really want to do is disaggregate

quarterly real GDP to monthly real GDP. Figure 3.36 shows the monthly

disaggregated real GDP using the PLO algorithm (best of six algorithms for
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Figure 3.35: Residuals for quarterly estimated real GDP
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Table 3.17: Error metrics for estimated US real GDP data

Algorithm RMSE MAE MAPE WMAPE U Ub Uv Uc

Naive 74.85 55.24 0.9279 0.8534 0.0051 0.0000 0.0001 0.9999

TSR 117.14 94.30 1.64 1.46 0.0079 0.0000 0.0002 0.9998

PLO 51.15 37.89 0.7602 0.5853 0.0035 0.0000 0.0000 1.0000

EW 52.75 41.18 0.7507 0.6362 0.0036 0.0000 0.0006 0.9994

PC 52.75 41.18 0.7506 0.6361 0.0036 0.0000 0.0006 0.9994

TM 55.68 40.13 0.7450 0.6199 0.0038 0.0026 0.0102 0.9872

disaggregating yearly real GDP) output. This is an estimate of monthly US real

GDP. Figures 3.32 – 3.36 use the MATLAB Econometrics toolbox function tsplot

developed by LeSage [48].
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Figure 3.36: PLO monthly estimated real GDP

In Chapter 3, we have generalized the time series disaggregation problem,

shown two existing disaggregation algorithms and three of our own algorithms, and

applied these algorithms and combinations of these algorithms to disaggregated
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natural gas consumption and GDP data. We showed that using combining

techniques greatly improved the accuracy of our underlying estimated natural gas

consumption data and to a greater extent on the unusual days. In Chapter 4, we

look at disaggregation as it applies to individual customers and an application to

heating oil delivery forecasting.
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CHAPTER 4

Disaggregation Applied to Forecasting

This Chapter relates disaggregation to forecasting and demonstrates an

application of the disaggregation models from Chapter 3 to forecast heating oil

deliveries. Chapter 4 is split into four sections. Section 4.1 provides a brief

explanation of the problem of forecasting individual heating oil customers for

Company YOU. Section 4.2 presents a description of the data we have available,

and Section 4.3 describes the backtesting procedure we use to evaluate ex-post

forecasts of individual heating oil customers. We conclude in Section 4.4 with an

evaluation of our forecasts and present results from backtesting.

4.1 Forecasting Heating Oil Deliveries

Company YOU approached the GasDayTM Laboratory at Marquette

University to help them improve their process of delivering heating oil to their

customers. Their goal was to reduce the number of trucks required to deliver

heating oil, while not increasing the number of run-outs their customers experience.

Stated more formally, we want to forecast the daily consumption of Company



117

YOU’s customers to estimate when each customer will be low on oil so Company

YOU can send a truck to fill their tank prior to them running out of oil.

Forecasting heating oil can be broken down into two cases:

1. when new customers sign up for heating oil delivery service and have no, or

little, delivery history, and

2. when customers have a history of deliveries which can be used to employ a

forecasting algorithm.

The first (transient) case was investigated by Sakauchi [63] and Corliss,

Sakauchi, Vitullo, and Brown [26] by using a Bayesian forecasting algorithm. The

focus of this chapter is to look at the second (steady state) case when a history of

deliveries has been established for a customer. We only forecast customers who have

six deliveries or more, and we skip and do not forecast customers with fewer than

six deliveries.

4.2 Available Data

Prior to applying forecasting algorithms to individual heating oil customer

deliveries, it is important to understand what data we use to forecast heating oil

consumption. We have customer-specific daily heating degree days with wind
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adjustment, and we have a history of dates and heating oil delivery amounts (in

gallons) for each individual customer. Additionally, we know the number of oil

tanks each customer has and the size of each customer’s tank(s). If a customer has

multiple tanks, the tanks are combined into one as a preprocessing step. Next, we

need to understand the relation between disaggregation and forecasting and the

process we use for evaluating the quality of our forecasts.

4.3 Backtesting

Solving the heating oil forecasting problem is not trivial and presents several

challenges. First, we have aggregated deliveries and know the time between

deliveries, but we do not know the daily consumption of each customer. To forecast

how much oil a customer consumes each day, and how much is remaining in their

tank, we need to know the customer’s historical daily consumption. Hence, we need

a daily forecasting model, but we do not have daily consumption to build a daily

forecasting model. We solve this problem by using several disaggregation algorithms

and ensembles described in Chapter 3. These algorithms and ensembles can be used

to fit least squares models to aggregated data and evaluate them using daily

correlated variables to generate ex-post forecasts.

For evaluation purposes, we use a process called backtesting to evaluate our

forecasting accuracy. Backtesting is used frequently in financial market forecasting
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to test a stock trading strategy using an ex-post or out-of-sample forecast instead of

an ex-ante or in-sample forecast [47; 72]. Hence, backtesting mimics how a

forecasting algorithm would have performed in the past by comparing past forecasts

with actual consumption. Backtesting is fundamentally different from ex-ante

forecasts, which produce forecasts in the future where forecast evaluation cannot be

done until the actual values are observed. Backtesting is necessary because when we

forecast oil consumption, we do not know what the actual daily consumption is for

each customer, making forecast evaluation challenging. Hence, backtesting fits a

model using historical oil deliveries and correlated variables. Then, we evaluate our

forecasting algorithm forward in time. For example, we use 07/01/2007 through

06/30/2008 as our backtesting period for Company YOU. We chose this period of

time arbitrarily, but wanted a full year so we have a complete seasonal cycle

represented.

An algorithmic description of the backtesting process:

Loop for each customer

Loop for each day in the backtest period

1. Fit an algorithm using all deliveries before today

2. Evaluate algorithm yielding a forecast consumption for the current day

3. If we receive a delivery today, sum of all forecasts since last delivery and store
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value for calculating error later

End loop for each day in backtest period

End loop for each customer

The next example shows the backtesting process. For a given customer, we

use all of the historical delivery amounts prior to July 1, 2007, to fit a daily model.

Then the daily model is evaluated using daily correlated variables starting on the

day after the last delivery in the historical delivery data. Daily forecast estimates

are generated, a day at a time, until the next delivery in the backtest period. Then,

the daily forecast estimates are aggregated since the last delivery to get an estimated

delivery amount. Next, we fit our model with the same historical deliveries as we

did for the prior iteration with the addition of the actual delivery we just estimated

on the last iteration. We repeat this process for all deliveries in the backtest period.

The backtesting process described has a one-day-ahead forecasting horizon.

Additionally, the daily forecasts generated do not span the backtest period; instead

they begin on the day after the delivery before the beginning of the backtest period

and end on the day of the last delivery within the backtest period. In a sense, there

is a division of training and testing data, but each iteration through the backtesting

process increases the training set size and decreases the test set size, each by one.

Company YOU has two sets of customers. Set 1 composes about 3530
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customers, and set 2 composes about 3360 customers. Set 1 is composed of a set of

customers that Company YOU forecasts when to send a truck to refill the

customers tank. If the customer experiences a run-out, Company YOU guarantees a

free tank of oil to the customer. According to the Massachusetts Energy and

Environmental Affairs Department, the price of heating oil in 2011 has been

approximately $ 4 per gallon [31]. To fill a customer’s 250 gallon tank with heating

oil costs Company YOU about $ 1,000. Set 2 is composed of customers from

Company YOU, but these customers have a less expensive service. For this service,

Company YOU does not give any guarantee for no run-outs, but these customers

are forecasted with the same forecasting algorithms. We use these two different sets

of data to report our forecasting results.

Figure 4.1 shows a customer A from set 1. Customer A’s deliveries are shown

(black circles), and the vertical blue lines indicate the backtesting period. Customer

A’s deliveries are scaled to disguise the data throughout all the figures. When

backtesting, we forecast the customer’s daily consumption beginning at the first

delivery before the beginning of the backtest period through the last delivery in the

backtest period.

Figure 4.2 shows the backtest period (vertical blue lines), the delivery before

and after the backtest period, and the deliveries during the backtest period.
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Figure 4.1: Backtesting example

Additionally, the red trace (close to zero on the vertical axis) shows the estimated

daily consumption (burn) for Customer A.

Figure 4.3 magnifies the daily consumption (burn) for customer A. We can

see in the summers there is little consumption. In the Spring, Fall, and Winter there

is increased consumption.

Figure 4.4 is similar to Figures 4.2 and 4.3, but instead of showing estimates

of daily usage, it shows the cumulative daily usage since the last delivery. Hence,

the last ‘x’ that occurs on the day of a delivery is the estimated delivery amount.

Figure 4.5 shows a linear relationship between the delivered gallons per day

versus cumulative heating degree days per day. Both deliveries and accumulated
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Figure 4.2: Daily consumption ex-post forecasts

daily estimates are shown. For example, if a delivery is received 10 days after the

last delivery, the delivery amount is 100 gallons of oil, and there are 200 cumulative

heating degree days for the period, the deliveries per day is 10 gallons and the

cumulative heating degree days per day is 20.

We conclude from Figure 4.5 that there is a linear trend relating the

consumption and the heating degree days. Hence, we use heating degree days with a

reference of 60 degrees Fahrenheit in our algorithms. Due to the limited number of

deliveries many customers have, we only use one and two parameter models in our

algorithms.
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Figure 4.3: Daily consumption ex-post forecasts magnified

4.4 Forecast Evaluation

We evaluate two algorithms against the TSR, RS, and INT algorithms.

Algorithm A is similar to the algorithm that Company YOU used before

approaching the GasDayTM Laboratory at Marquette University. This algorithm

uses the K-factor described in Section 1.2. Algorithm B is

ŷ = β0 + β1 × HDDW60, (4.1)

where ŷ is the estimated daily oil consumption, and HDDW60 is wind adjusted

heating degree days with a reference temperature of 60 degrees. Additionally, older
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Figure 4.4: Cumulative daily consumption ex-post forecasts

data is aged using

min
(
1, (age− 1)(−0.200)

)
, (4.2)

where age indicates the age of the data in years. We also apply our TSR, RS, and

INT algorithms to both customer data sets, using HDDW60 as a correlated variable,

and examine performance of combinations of these three algorithms. The only

difference between Algorithm B and the TSR algorithm with a single heating degree

day factor is that Algorithm B ages the data so more weight is given to more recent

data.

Table 4.1 shows error metrics (RMSE, MAE, MAPE, and WMAPE) for

customer sets 1 and 2. The metrics we use are calculated for each customer and
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Figure 4.5: Deliveries per day versus cumulative heating degree days per day

averaged to get an overall error across all customers in each set. From Table 4.1, we

see that Algorithm B has the lowest error. From the algorithms we tried, the INT

and RS algorithms have higher error than the existing algorithm Company YOU

used. When combinations are applied, the TM algorithm worked almost as well as

Algorithm B for customer sets 1 and 2. While not surpassing the performance of

Algorithm B, it is a great improvement over Algorithm A, which Company YOU

was using. Additionally, we tried combining Algorithms A and B with the TSR, RS,

and INT methods, but saw little improvement in results with greater algorithmic

complexity. According to Tan, Steinbach, and Kumar [71] Occam’s Razor suggests

that the simpler algorithm is the better algorithm to use since the simpler
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Table 4.1: Error metrics for customer set 1 and 2

Set # RMSE MAE MAPE WMAPE

Algorithm A 1 25.42 20.80 28.56 17.44

2 26.21 21.72 43.99 19.85

Algorithm B 1 20.69 17.11 21.07 14.90

2 22.75 18.50 33.89 17.09

TSR 1 24.83 21.06 24.17 18.45

2 24.53 19.98 31.56 18.46

RS 1 26.39 21.98 25.61 19.47

2 25.26 20.29 35.09 18.93

INT 1 30.71 25.67 28.81 22.48

2 30.94 25.23 37.67 23.69

EW 1 25.69 21.82 25.47 19.39

2 24.59 19.94 32.72 18.61

PC 1 25.74 21.88 25.55 19.46

2 25.88 19.98 32.51 18.50

TM 1 21.70 18.21 19.25 16.37

2 25.44 19.43 30.96 17.96

algorithms should be chosen between two competing algorithms if their performance

is similar.

From the results presented, it appears Algorithm B has the best forecasting

accuracy and is currently being used by Company YOU. In Chapter 5 we conclude

with a summary of our contributions and future extensions to disaggregating time

series data.
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CHAPTER 5

Conclusions

Our goal was to make a set of algorithms to disaggregate natural gas and

individual heating oil deliveries presented in Chapters 3 and 4, respectively. We

forecast heating oil customer deliveries using the TSR, RS, and INT algorithms to

forecast daily consumption of Company YOU’s customers to determine when

Company YOU’s customers are getting low on oil and need to be refilled. The EW

ensemble performed very well when evaluated using RMSE, MAPE, MAE, and U for

natural gas customers, and the TM ensemble has performed moderately well when

evaluated on heating oil customers’ forecasts. We presented results of our algorithms

and ensembles versus Company YOU’s existing forecasting techniques and other

algorithms employed by the GasDayTM Laboratory at Marquette University.

5.1 Contributions

The contributions of this dissertation to the disaggregation domain are:

1. a generalization of the disaggregation problem to include irregular

measurement intervals,
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2. the Time Series Reconstruction (TSR), TSR with Resampling, and

Interpolation algorithms,

3. using ensembles to combine algorithms in the disaggregation domain,

4. application of algorithms and ensembles to disaggregating natural gas

consumption and GDP time series data and forecasting heating oil deliveries,

and

5. analysis of algorithms and ensembles that shows ensembles work well,

especially on unusual days, when disaggregating natural gas consumption and

disaggregating GDP time series.

5.2 Future Enhancements

While this work has demonstrated that we can forecast heating oil individual

customer deliveries and disaggregate natural gas customer data and economic

variables, there is still further work that can be done to improve the accuracy of the

disaggregation and heating oil customer forecasting. We list several improvements

which can be made and future extensions of this research topic. Additionally, we

discuss related applications of the disaggregation algorithms outside of the natural

gas, heating oil consumption, and real GDP disaggregation domains. Improvements

for future consideration include:
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• Confirm the hypothesis that the underlying and aggregated models should

have parameters that are close in value as we discussed in Section 3.3.

• Develop a test that can be used to determine well-correlated variables by

using an aggregated regression model and an underlying regression model to

see if the parameters match.

• Investigate whether adding one or two heating degree lag variables would

improve the performance of the the TSR, RS, and INT algorithms.

• Investigate whether a linear trend times modified heating degree day is a good

choice for disaggregating natural gas as discussed in Section 3.3.2.

• Investigate if the 9 parameter model yields improved estimates than the 6

parameter model under certain conditions as discussed in Section 3.3.2.

• Improve the performance of the TSR algorithm in the summers, where we see

a relatively constant consumption with little to no variability. This is largely

caused by not having any HDD in the the summer, and the TSR algorithms

are largely dependent on HDD, increasing the variability in the summers will

improve the current TSR algorithm but should be a low priority as it will not

improve the model error significantly.

• Investigate algorithms for disaggregating non-temperature-sensitive operating

areas or individual customers. As shown, the Naive, TSR, PLO, RS, and INT

algorithms do not do well disaggregating operating areas that have a QCI
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algorithm value of about 0.9 or less. More investigation should be done to

discover better methods for disaggregating these operating areas that have

large industrial load components.

• Potentially, a new disaggregation algorithm can be developed to maintain

series variability while maintaining consistency between aggregated data

values and the sum of the underlying estimates. At the same time, the

algorithm should not have the large oscillatory jumps that are seen in the

PLO algorithm.

• Investigate the correlation between pairwise component disaggregation model

residuals. There may be a connection between the correlation of the

component model residuals that we can use to improve the the ensemble

estimates. I suspect that having model residual that are uncorrelated or

negatively correlated will improve the combination accuracy.

• Add a data aging factor into each component algorithm to improve the

accuracy of the ensemble estimates which may outperform Algorithm B when

forecasting heating oil deliveries.

• Add the RS and INT algorithms to the ensemble when disaggregating GDP.

This will probably yield improved results.

• When we disaggregated GDP, we naively disaggregated the personal income

data to get monthly personal income as an input into the disaggregation
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algorithms. This introduced an error in our personal income variable. When

disaggregating GDP, we should use monthly personal income which is

available from the Bureau of Economic Analysis. Using monthly personal

income data should reduce the disaggregated GDP series error and improve

our ensemble techniques.

• When we disaggregated GDP, we should use not only real GDP but also

deflated coincidental indicators. Deflated versions of these coincidental

indicators will adjust these series for inflation and will probably increase the

correlation between the real GDP and the coincidental indicators yielding

improved disaggregation estimates.

5.3 Other Applications

Several other applications for disaggregation exist including disaggregating

electric power consumption data, forecasting, and economics.

5.3.1 Natural Gas Applications

• Another extension to the TSR algorithm is to apply it to individual natural

gas customer billings. This would allow a natural gas company to get an

estimate of how much gas each of their customers uses each day when it is not

feasible to read their meter every day. LDC or natural gas transportation
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companies which read meters on a rolling monthly window could use a

consumption disaggregation algorithm.

• Investigation into the improvement in underlying estimates by using hourly

flow and hourly correlated variables. This may improve disaggregation

accuracy by using higher resolution data.

• Hurricanes have affected the oil and natural gas supply of the United States

substantially reducing oil and natural gas production in the Gulf of Mexico.

In the summer of 2005, for example, several hurricanes significantly reduced

natural gas and oil production [32]. The resulting effect caused natural gas

and oil prices to increase significantly. Natural gas rose to over $ 15 per

decatherm. Natural gas bills for residential customers increased significantly.

Fortunately, the winter was mild, and we did not get severe winter weather in

the United States. If we did, it could have been catastrophic. If we had a

natural gas forecasting system for the United States, we could help the Federal

Energy Regulatory Commission (FERC) and the Department of Energy

(DOE) make more educated forecasts about system capacity when hurricanes

or other natural disasters limit production and supply of natural gas. To build

a daily national forecasting model, monthly state consumption needs to be

disaggregated into daily estimates. Then forecast for each of the 50 states can

be generate and aggregated together to get a daily national forecast.
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5.3.2 Electric Power Applications

With all the forecasting research in the electric power load forecasting

domain, the problem of disaggregating time series data should be even more

applicable than it is for natural gas. If we want to disaggregate electric power billing

data, we could using the techniques presented earlier. Electric power is used to run

appliances, air conditioners, and heat pumps. Factors such as heating degree days

and cooling degree days effect electric power consumption. Additionally, electric

power customers have some similar behavior patterns to natural gas customers,

showing weekly and yearly patterns, with large consumption in the summer for air

conditioning load and less consumption in the winter.

5.3.3 Economics and Forecasting Applications

Often, in the economics domain, we want to forecast economic series, but

underlying data is not available. Alternatively, economic variables over time may

change the frequency with which they are reported, and the data that is not as

frequent may need to be disaggregated to have a single set of data at an unknown

resolution.
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5.4 Final Remarks

We have demonstrated that several algorithms can be used to disaggregate

time series data with success. When disaggregation of time series natural gas flow is

necessary, the EW combination of the Naive, TSR, PLO, RS, and INT algorithms

should be used. We recommend using the PLO algorithm for disaggregating GDP

data and recommend Algorithm B for forecasting oil deliveries.
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