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ABSTRACT 

PREPARATION OF CYCLOHEXENONES FROM ACYCLIC 

(PENTADIENYL)IRON(1+) CATIONS: SYNTHESIS OF CARVONE 

METABOLITES AND SYNTHETIC STUDIES DIRECTED TOWARD 

DIHYDROTACHYSTEROLS 

 

 

Charles Felix Manful, BSc. 

 

Marquette University, 2013 

 

 

Six-membered carbocycles are abundant in natural products.  This structural 

feature is present in terpenes, secosteroids, antibiotics, and even imbedded in the 

polycyclic framework of complex alkaloids.  A wide variety of methodologies have been 

utilized for the preparation of six-membered carbocycles including Robinson annulation, 

Diels-Alder cycloaddition, Dieckmann condensation, ring closing metathesis, 
photochemical carbonylation of alkenylcyclopropanes, addition of soft nucleophiles to 

acyclic (η
5
-pentadienyl)iron cations, etc.  

Acyclic (η
5
-pentadienyl)iron(+1) cations were first prepared about 50 years ago. 

The reactivity of these complexes is of continuing interest, particularly for the synthesis 

of conjugated polyenes and 2-cyclohexenones. These types of cationic complexes are 

powerful electrophiles and the site of nucleophilic attack is dependent on substituents on 

the pentadienyl ligand, the nature of the nucleophile, counter ion and “spectator” ligands 

on the complex.    Tricarbonyl(η
5
-1-methylpentadienyl)iron(+1), tricarbonyl(η

5
-1-

phenylpentadienyl)iron(+1), tricarbonyl(η
5
-3-methylpentadienyl)iron(+1), and 

tricarbonyl(η
5
-1,5-dimethylpentadienyl)iron(+1) cations were prepared following 

literature procedures. 

The reactivity of these substituted acyclic (pentadienyl)iron cations with 

malonate, nitroacetate, sulfonate and phosphonoacetate nucleophiles were examined as 

potential routes to synthesis of natural product possessing six-membered carbocycles. 

Addition of stabilized/soft carbon nucleophiles occurs preferentially at the internal 

positions to afford cyclohexenones via (pentenediyl)iron intermediates. Nucleophilic 

addition at the terminal positions affords (2,4-dienoate)iron complexes mostly as minor 

products. This observed regioselectivity was explained mainly on the basis of FMO vs 

charge control. 

In order to synthesize the oxygenated terpene (±)-10-Hydroxycarvone a ketoester 

was synthesized in five steps starting from commercially available 2,4-hexadienal. 

Deprotonation of the keteoester followed by DIBAL-reduction gave (±)-10-

Hydroxycarvone.  Alternatively, saponification of the ketoester afforded (±)-carvonic 

acid.   

Furthermore to synthesize the dihydrotachysterol A-ring fragment, a 

cyclohexenone was synthesized in five steps from commercially available ethyl 3-

methyl-4-oxocrotonate. Luche and catalytic reductions of the cyclohexenone gave 



diastereomeric mixture of cyclohexanols. Protection followed by desulfonylation of the 

diastereomeric mixture gave a single diastereomer. α-Selenylation of this diastereomer 

followed by NaIO4 oxidation gave a racemic mixture dihydrotachysterol A-ring 

fragments. 
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CHAPTER 1 

 

 

1A.1. General Introduction 

 
 

The coordination of a tricarbonyl moiety [Fe(CO)3] to conjugated diene ligands 

results in the formation of complexes (1 and 2) (Fig. 1) that are stable for long periods of 

time, are easy to handle, and are easily prepared on large scales using inexpensive 

reagents.
1
 Donation of electron density from the ligand to the iron tricarbonyl group can 

activate the diene system and allow reactions such as nucleophilic additions to take place 

on the ligand which would hitherto not normally occur.
2
  

 

 

 

 

 

Fig. 1: Structures of diene-complexes 

 

 

  Additionally, coordination of 1,3-dienes  to a Fe(CO)3 group also provides a 

means of protecting the unsaturated diene system towards catalytic hydrogenation, 

hydroboration,  electrophilic additions and Diel-Alder reactions.
2, 3

 The Fe(CO)3 moiety 

can also influence the reactivity of functional groups attached to the diene system in 

terms of chemo- and stereoselectivity.
 4-7 
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1A.2. Fe(CO)3 as Protective Groups for Dienes  

 
 

The high stability of the Fe(CO)3 moiety towards many chemical reagents makes 

it particularly useful as a protecting group for 1,3-dienes. Although (diene)Fe(CO)3 

complexes can react with strong nucleophiles, radicals, and strong electrophiles, they are 

unreactive toward many organic transformations such as DIBAL reduction, Swern 

oxidation, hydroboration, hydration, osmylation, hydrogenation, epoxidation, 

cyclopropanation. Several examples will be noted below.
8
 

Barton, et al.
3
 demonstrated that the C22-C23 double bond of ergosteryl acetate 3 

can be selectively hydrogenated by the Fe(CO)3 protection of the ring B diene to afford 4 

(Eqn. 1). 

 

 

              
 

 

Formation of the iron tricarbonyl adduct, allowed selective reduction of the C22-

C23 double bond by catalytic hydrogenation with retention of the C5-C8 diene system. 

Additionally, Takemoto, et al.
9  

have reported the dihydroxylation of the 

uncomplexed olefin in triene 5 with OsO4 gave the dienediol complex 6 (Eqn. 2). This 

reaction was used for the total synthesis of the marine metabolite halicholactone.
10 
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Attempts to esterify 7 with 2-methylhexa-3,5-dienoic acid 10 were unsuccessful 

and generally led to the recovery of 7 and the more thermodynamically stable conjugated 

diene 2-methylhexa-2,4-dienoic acid 11 (Eqn. 3).      

 

 

            
 

 

Va and Roush have reported the esterification of 7 with [(2S,3R)-2-methylhexa-

3,5-dienoic acid]Fe(CO)3 8 to give the complex 9.
11 

In this synthesis the Fe(CO)3 moiety  

on 8 was utilized to protect the hexa-3,5-dienoic acid against conjugation (Eqn. 4).
10 
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1A.3. Fe(CO)3 as  Stereo/Regio-directing Groups in Diene Systems 

 
 

Many reactions of (diene)Fe(CO)3 complexes proceed with a high degree of regio 

and diastereoselectivty.
12-16

 This selectivity is attributed to the steric bulk of the Fe(CO)3 

moiety, which forces a wide variety of reagents to approach the diene complex on the 

face opposite/anti  to the Fe(CO)3 and on the least sterically crowded terminal diene 

carbon. In this regard, the Fe(CO)3  moiety can be used as a stereo-directing group for the 

functionality in close proximity to the (diene)Fe(CO)3 system. 

Wada, et al.,
17

 have reported the formation of a single product 14 from the 

reaction of 12 with the lithium enolate of ethyl acetate 13 (Eqn. 5) in the synthesis of 

retinoic acids. 

 

 

             
 

 

         Iwata and Takemoto
16

 have also accomplished the asymmetric syntheses of (+)- 

and (-)-frontalin,
18-22

 an aggregation pheromone of the south pine beetle (Dendrotonus 

brevicomis) starting from a chiral (diene)Fe(CO)3 complex 15. In this synthesis the 

diastereoselective addition of MeMgBr to 15 gave the desired tertiary alcohol complex 16 

with the methyl group adding anti to the Fe(CO)3 group (Eqn. 6). 
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  (Diene)Fe(CO)3 complexes have also been used for total syntheses of insect 

pheromones having (E)- and (E,E)-l,3-diene skeletons. Knox, et al.,
23

 have shown that 

tricarbonyl(butadiene)iron and derivatives undergo electrophilic addition under Friedel-

Crafts conditions with the possible formation of stereochemically pure (dienone)Fe(CO)3 

complexes. 

 

 

           

 

 

Acylation of tricarbonyl(butadiene)iron (17) with the acid chloride (18) and 

AlC13 gave the (E)-syn-keto-ester (19).
23

 The presence of the Fe(CO)3 moiety “controls” 

the reaction, since uncomplexed dienes are usually polymerized under these reaction 

conditions.
24

 The reaction also occurs on the terminal non-substituted carbon, mainly for 

steric reasons (Eqn. 7).
25

 

 

1A.4. Preparation of Iron Diene Complexes 

 
 

Reihlen and co-workers first prepared an acyclic (butadiene)(tricarbonyl)iron (1) 

(Fig. 1) complex in 1930.
26-28

 The structure of this complex was confirmed by X-ray 
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crystallography in 1963.
1
  From a synthetic perspective, a variety of methods for the 

preparation of ironcarbonyl complexes of dienes have been described in the literature.
29 

Many of these are restricted to special substrates, e.g., metal-vapor synthesis,
30

 

rearrangement of ligands,
31-33

 reaction of iron carbonyls with halogen compounds,
34-36

 

and ligand exchange reactions.
  

The conventional method is to heat or irradiate a mixture of diene (conjugated or 

non-conjugated) and iron carbonyl, either Fe(CO)5 or Fe2(CO)9, normally with solvent 

(Eqn. 8).
37

 The use of Fe3(CO)12/Fe(CO)5 and controlled amounts of Me3NO has also 

been reported.
1, 38

 In some cases, an improved yield is obtained by using (dba)Fe(CO)3
39, 

40
 or an 1-azadiene-Fe(CO)3 complex

41
 as the Fe(CO)3 donor, or by using iron carbonyl 

in the presence of an 1-azadiene as catalyst.
42

 Recently, a convenient procedure was 

reported using silica gel as the medium for the complexation.
43 

 

 

           

 

 

The Fe(CO)5/UV method is especially useful for preparing [Fe(CO)3(diene)] 

complexes without substituents containing hetero atoms (yields usually 65-85%).
29

 

However, isomerizations and side reactions tend to occur for ligands which contain a 

carbonyl group. In this case, the use of Fe2(CO)9 at elevated temperature provides better 

results, although yields tend to be somewhat lower (48-80%). In some cases, this 
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limitation was overcome by the addition of an excess of Fe2(CO)9 after about half of the 

reaction time.
29

 
 

The yield of the complexation reaction is mainly controlled by two effects, 

electron density and steric hindrances in the s-cis-1,3-diene ligand.  Yields are lower for 

dienes with terminal substituents with a (Z)-arrangement relative to the central C-C bond. 

This is attributed to the considerable conformational rearrangement which must occur on 

complexation. On the other hand, a -CN group attached to the diene dramatically reduces 

the reactivity of the ligand, even if no steric strain is present. As a general rule, yields 

decrease as the mesomeric effect of the substituent increases.
29 

In some cases, the tendency to avoid steric strain on complexation results in the 

formation of unexpected products.
 
Thus, the complexation of (E)-6-methyl-3,5-

heptadien-2-one (22)  is presumably hindered by the interference of the CH3 group with 

the Fe(CO)3 moiety; in addition to 23 a considerable amount of the unstable dark-red 

enone complex 24 is formed (Eqn. 9).
2, 29  

 

 

             
 

 

1A.5. Cationic Pentadienyl-Iron Complexes 

 
 

Acyclic (pentadienyl)iron(1+) cations 25 and 26 were first reported by Pettit and 

co-workers.
44

 The Fe(CO)3 moiety in such cases stabilizes carbocation centers adjacent to 
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the diene. Complexes of these types (25 and 26), have found great utility in the synthesis 

of natural products (Figure 2).
10

  

 

 

     
 

 

         Fig. 2: Structures of dienyl-iron complexes 

 

 

The most convenient method for preparing the acyclic (pentadienyl) iron (1+) 

cations (25 and 26) is by acid treatment of a tricarbonyliron complexed pentadienol 

complex 27 (Scheme 1). Protonation of the alcohol moiety results in the loss of a 

molecule of water, affording the transoid cation AA. The transoid cation rearranges to the 

cisoid form which is more thermodynamically stable. Hexafluorophosphoric acid is often 

the acid of choice because it provides a large noncoordinating anion and affords a stable 

salt. The reaction is easily performed on the laboratory bench top and requires no 

purification other than precipitation from the reaction mixture and filtration.
44 
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Scheme 1: Mechanism of preparation of generic acyclic iron cation 

 

 
1A.6. Reactivity of acyclic (pentadienyl) iron cations 

 
 

Nucleophilic attack on coordinated polyenes is one of the paradigms of π-

organometallic chemistry.
45

 The regioselectivity of nucleophilic attack depends on the 

nucleophile, substituents present on the pentadienyl ligand, and “spectator” ligands on 

iron.
46

  

In solution, acyclic (pentadienyl) iron cations exist in an equilibrium between the 

cisoid form and the corresponding less stable transoid form.
47

 Nucleophilic attack can 

take place on the cisoid form at either terminus, to afford E,Z-diene complexes or on the 

internal atoms of the ligand. Alternatively, because the transoid form exists in 

equilibrium with the cisoid form, nucleophilic attack on the transoid pentadienyl cation 

generates E,E-diene complexes only. Examples of nucleophilic attack at the terminal 

position of acyclic (pentadienyl) iron cations are illustrated in the following (Eqns. 10, 

11).
48  

 

 



10 
 

 

                          

                 
 

 

Nucleophilic addition to the terminal position of a pentadienyl cation is also 

exemplified in Donaldson’s synthesis of the leukotriene, 5-hydroxyeicosatetranoic acid 

(Scheme 2).
49

 The E,Z-stereochemistry of the 6,8-diene portion is established by 

nucleophilic addition to the  (pentadienyl)Fe(CO)3 cation 29 which resulted in iron 

complex 30 (Scheme 2)  

 

 

   
 

 

 Scheme 2: Donaldson’s synthesis of 5-HETE-methyl ester 
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A similar regioselective nucleophilic addition to a pentadienyl cation is 

exemplified in Donaldson’s synthesis of the (3Z)-3-methyl-1,3-dienyl side-chain of the 

originally proposed structure
50-52

 of heteroscyphic acid A (Scheme 3). 

 

 

           
 

 

          Scheme 3: Donaldson’s synthesis of the (3Z)-3-methyl-1,3-dienyl diterpene skeleton 

 

 

Generation of the ester enolate anion from 33 and addition to the Fe(CO)2PPh3-

ligated pentadienyl cation 34 gave complex 35. As in 5-HETE, nucleophilic attack at one 

of the pentadienyl terminal carbons of 34 afforded iron complex 35. Oxidation of the iron 

with cerium ammonium nitrate liberated the diene 36 (Scheme 3).
10, 46  

 

1A.7. (3-Pentene-1,5-diyl)iron Complexes 

 
 

While much less common than tricarbonyl(diene)iron complexes, tricarbonyl(3-

pentene-1,5-diyl)iron complexes of the general structure 38 and 39 (Eqn. 12) have 

recently begun to be utilized in organic synthesis. A variety of routes to these complexes 

has been reported and will be discussed below.
10, 48, 53-56  
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1A.8. Preparation and Stability of (3-Pentene-1,5-diyl) complexes 

 
 

Aumann in 1974
57 

synthesized and successfully isolated two thermally unstable 

iron carbonyl complexes from the reaction of vinylcyclopropane system 43 with iron 

carbonyls. These included 4,5-η-vinylcyclopropaneiron tetracarbonyl 44 which possessed 

an intact cyclopropane ring and 3,4,5,6-η-hex-4-en-3,6-yl-6-one-iron tricarbonyl 45 

resulting from the cleavage of a C-C bond of the cyclopropane ring (Scheme 4). 

Complexes 44 and 45 were isolated at -20 
0
C and their structures corroborated by NMR, 

IR, MS and elemental analysis.  The fact that 44 does not rearrange to 45 suggest that 44 

and 45 are formed by competing reactions of 43 with different iron carbonyl species 

generated on photolysis of Fe(CO)5
58, 59

 in ether. 

The tetracarbonyliron complex 44 decomposes to 43 and Fe3(CO)12 at 

temperatures above 0 
0
C. Additionally, 44 on prolonged warming under CO-deficient 

conditions gave the (1,3-pentadiene)Fe(CO)3 complexes 46 and 47 (Scheme 4).
57
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Scheme 4: Reaction of vinylcyclopropane with iron carbonyl 

 

 

CO saturated hexane solutions of 45 decompose reversibly by loss of CO at 25 
0
C 

to give 1,3,4,5-η-pent-4-ene-3,1-yliron tricarbonyl complex (48). Furthermore, solutions 

of 45 may also decompose to 2-cyclohexenone (51) under the influence of air or if a 

positive pressure of CO (20 atm) is applied (Scheme 5). 

 

 

 

 

 

Scheme 5: Reactivity of (3,4,5,6-η-hex-4-en-3,6-yl-6-one)iron complex 45 

 

 

In 1978, Sarel and coworkers
60

 reported an alternative route to cyclohexenones 

through a photochemically initiated ring rearrangement-carbonylation of 

alkenylcyclopropanes. This reaction proceeds through oxidative insertion of iron into one 

of the proximal vinylcyclopropane bonds (“b” or “a”) of 52 to generate (pentenediyl)iron 
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intermediates 54 and 55, respectively.
10, 61

 The reaction typically gives three regioisomers 

from the photochemically initiated Fe(CO)5 carbonylation (Scheme 6).
62  

 

 

 
 

 

Scheme 6: Generation of cyclohexenones via Fe-mediated carbonylation of 52 

 

 

Cleavage of the less substituted vinyl cyclopropane bond “b” is favored and 

results in the formation of 5-benzyloxymethylene cyclohexenone 57 as the major product 

(61%) via the (pentenediyl)iron intermediate 54. Cleavage of the “a” bond results in the 

formation of 6-benzyloxymethylene cyclohexenone 58 as a minor product (17%) via 

intermediate 55. “Fe-H” isomerization of 52 results in the formation of the 3-

benzyloxymethylene cyclohexenone 59 (10%) also as a minor product. The formation of 

the latter is significantly reduced by running the reaction in 2-propanol.
61-63

 Because the 

major product (57) arises from the cleavage of the less substituted vinylcyclopropane 
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bond “b”, use of the enantiomerically enriched (>99% ee) vinylcyclopropane 52 as 

starting material led to (+)-57 in enantiomerically form (95% ee).
10, 61

  

(3-Pentene-1,5-diyl)iron complexes 60-63 have been prepared by addition of 

stabilized carbon and nitrogen nucleophiles to unsymmetrical (pentadienyl)iron (+1) 

cation  37 (Scheme 7).
10, 64 

The selectivity of nucleophilic addition to 37 depends on 

several factors including the strength of nucleophile,
64 

substituents on the diene ligand, 

nature of peripheral ligand L,
65

 solvent,
66

 steric bulk of nucleophile, nucleophile-counter 

ion,
46, 48

.  Examples of these are below (Scheme 7): 
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Scheme 7: Synthesis of (3-pentene-1,5-diyl)iron complexes 

 

 

Nucleophilic addition to the (1-methoxycarbonyl pentadienyl)iron (1+) cation 37 

with soft nucleophiles such as malonate anions results the in the formation of 

(pentenediyl)iron complexes via attack at C-2 (e.g. 60-63 Scheme 7). 2-Methyl and 2-

vinyl substituted (pentenediyl)iron complexes 62 and 63 were also prepared by reaction 

of 37 with organolithium or Grignard reagents.  

The differences in regioselectivity for addition of stabilized/soft nucleophiles to 

37 are qualitatively rationalized as follows: the strongly electron withdrawing 

methoxycarbonyl substituent (CO2Me) lowers the relative energy of the pentadienyl 

LUMO, thus allowing for a better energy match with the metal d-orbitals. This effects a 

greater transfer of electron density from the metal to the pentadienyl ligand at C1, C3, 

and C5. Thus, formation of the pentenediyl products 38 and 39 from nucleophilic attack 

at C2 of 37 is the result of charge control (i.e., greater δ+ charge at C2/C4).
10, 64
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Additionally, the values of the 
13

C NMR data
67

 for 37 indicate that C2 and C4 

appear at the lowest chemical shift (Figure 3a). While the 
13

C NMR chemical shift of a 

particular carbon depends on several factors, downfield chemical shifts generally 

correspond to less electron density at the atom in consideration. Similarly, calculations of 

the charge distribution over the pentadienyl ligand by density functional theory (B3LYP 

method, Fig. 3b) are in concert with the 
13

C NMR data.
68

 Hence, “soft” carbon-stabilized 

nucleophiles would attack the most electron deficient carbon-2/4. 

 

 

 
 

 

Fig. 3: (a) 
13

C NMR spectral data and (b) calculated partial charges 

 

 

(3-Pentene-1,5-diyl)iron complex 66 may also be generated from the thermal 

reaction between the (vinylketene)iron complex 64b and an electron-deficient olefin 65 

(Eqn. 13).
10, 69, 70  
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Mechanistically the reaction between vinylketene 64b and an electron-deficient 

alkene  proceeds as follows: Decarbonylation of the vinylketene complex 64b gives the 

η
3
-vinylcarbene intermediate 67.

71
 This is the rate determining step and requires 

temperature greater than 80 
0
C. Formation of the vinylcarbene complex 67 is followed by 

styryl dissociation to give the 16-electron η
1
-vinylcarbene complex 68, external alkene 

coordination to give 69 and a formal [2+2] cycloaddition to give the 16-electron 

ferracyclobutane 70. This then collapses to the 18-electron (pentenediyl)iron complex 71 

(Scheme 8).
70

 

Alternatively, direct interaction between the vinylcarbene intermediate 64b and 

the external alkene would lead straight to the (pentenediyl)iron complex 66. 

 

 

 
 

 

Scheme 8: Generation of (3-pentene-1,5-diyl)iron complex 66 

 

 

1A.9. Oxidative decomplexation of Isolable (pentenediyl)iron complexes 

 
 

Treatment of (diene)iron complexes 40 and 41 with oxidizing agents (e.g. CAN) 

liberates the Fe(CO)3 from the (diene)iron complexes to afford free diene ligand.
72, 73

 

However, oxidation of (3-pentene-1,5-diyl)iron complexes bearing an electron 
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withdrawing group at C1 (e.g. 38) leads to the formation of the vinylcyclopropane 

carboxylate 72 (Scheme 9). 
55, 74, 75

 

The oxidation of complex 38 with Ce
4+

 results in reactive intermediate 71 which 

undergoes reductive elimination to give the 72. The reductive elimination step proceeds 

with retention of configuration at C1 and C3 such that the nucleophile group is trans to 

the ester group and cis to the vinyl group. The present of an electron withdrawing group 

(e.g. methoxycarbonyl group) at C1 of 38 slows the rate of CO insertion compared to the 

rate of reductive elimination.
74, 75

 

 

 

             
 

 

Scheme 9: CAN-mediated oxidation of 38             

               

 

  1A.10. Reactivity of tricarbonyl(3-methylpentadienyl)iron (+1) 

 
 

As part of a program to develop synthetic methodology for the rapid introduction 

of a 3-methyl-1,3-(Z)-pentadienyl side chain present in certain terpene natural products, a 

previous coworker examined the reactivity of tricarbonyl(3-methylpentadienyl)iron (+1) 

(32) (Scheme 10) with dimethyl malonate anion.
48 
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              Scheme 10: Reaction of 32 with sodium and lithium dimethyl malonate 

 

 

These studies revealed that:  (1) nucleophilic attack by dimethyl malonate anion 

gave two products 73 and 74 and (2) the regioselectivity of the nucleophilic attack 

depended largely on the nature of the counterion.
49

 Thus reaction of 32 with lithium 

dimethyl malonate gave the 1,3-Z-diene complex 73 while the 4,5-disubstituted 

cyclohexenone 74 was formed when sodium was used as a counterion (Scheme 10).
10

  

The (1,3-Z-diene)iron complex (73) arises from a  nucleophilic attack at the 

terminal either C1/C5  of  32 whilst the cyclohexenone (74) is formed by a nucleophilic 

attack at either  C2/C4 internal carbon (Scheme 11). The mechanistic rational for the 

formation of 74 is that the addition of the malonate anion occurs on the face of the cation 

anti to the Fe(CO)3 group to generate 75a. Rapid carbonyl insertion affords the pi-sigma 

acyl complex 75b. Reductive elimination gives cyclohex-3-en-1-one (75c). Workup with 

methanolic NaHCO3 then effects conjugation of the C2-C3 double bond of 75c to give 

the 4,5-disubstituted cyclohexenone 74 (Scheme 11).
10, 48
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Scheme 11: Mechanistic rational for formation of 74 

 

 

The difference in regioselectivity for nucleophilic attack (i.e. C1 vs. C2) is due to 

the degree of association of the malonate anion with the counterion. Generally strongly 

associated counterions (e.g., Li
+
 or Zn

2+
) attack at C1/C5 of cation 32 to give complex 73 

whilst weakly associated counterions (e.g., Na
+
 or Li

+
/12-crown-4) afford cyclohexenone 

(74) from  nucleophilic attack at C2/C4 of 32. It was proposed that for the weakly 

associated malonate nucleophile that nucleophilic attack takes places on the dienyl 

carbon bearing the greatest partial positive charge. 
13

C NMR spectroscopy correlation 

studies
67, 76

 and DFT  calculations
77

 have revealed that the C2 and C4 carbons of the 

pentadienyl ligand of 32 bear a greater partial positive charge than C1, C3 and C5 

carbons.  

Alternatively for the more strongly associated counterion, nucleophilic attack was 

proposed to be under frontier orbital control. The LUMO coefficients derived from MO 

calculations of dienyl(iron)cation indicate greater orbital contribution from C1 and C5 

than from C2 and C4 carbons.
78, 79
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The aim of this research is to expand the scope of this cyclohexenone formation 

reaction, extend range of nucleophiles, and prepare dihydrotachysterol A-ring fragments 

as well as terpene metabolites. 
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1B.1. The Chemistry of the D vitamins 

 
 

The D vitamins have received considerable chemical and biochemical attention 

over the past decades.
80-84

 The generic term “Vitamin D”, refers to a molecule of the 

general structure derived from cyclopentanoperhydrophenanthrene ring structure (76) for 

steroids with differing side chain structures (Fig. 4).  

Technically vitamin D is a seco-steroid. Seco-steroids are molecules wherein one 

of the rings of the cyclopentanoperhydrophenanthrene ring structure has been broken, and 

in vitamin D, the C9-C10 bond of the ring B is broken, and it is indicated by the inclusion 

of “9,10-seco” in the official nomenclature. The structural features combined with their 

biological activity makes vitamin D and structural analogs appealing synthetic targets.  
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Figure 4: Forms of Vitamin D showing the basic steroidal (76) skeleton 

 

 

1B.2. Discovery, Sources and Biological Activity of vitamins D2 and D3 

 
 

In 1931 Askew and coworkers isolated vitamin D2 from ergosterol by ultraviolet 

irradiation.
85, 86

 Windaus, et al., successfully synthesized 7-dehydrocholesterol, and from 

this substance isolated vitamin D3 after UV irradiation.
87, 88

 These two represent the truly 

natural and nutritionally relevant forms of vitamin D and exhibit similar antirachitic 

potency in man.  

In addition to dietary sources, Vitamin D3 (cholecalciferol) can also be derived 

from 7-dehydrocholesterol in the skin following exposure to sunlight (270-300 nm 

range).
89, 90

 Similarly Vitamin D2 (ergocalciferol) is obtained from ergosterol in the skin 

upon UV irradiation. The structural difference between vitamin D2 and vitamin D3 is in 
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their side chains. The side chain of vitamin D2 contains a double bond between C22 and 

C23, and a methyl group on C24.
84, 91

  

           Vitamin D in its natural form requires activation to its hormonal form in order to 

perform its homeostasis role.
92

 The activation processes involve first, 25-hydroxylation in 

the liver, followed by 1α-hydroxylation in the kidney, to make the biologically active 

hormones 1α,25-(OH)2D3 and 1α,25-(OH)2D2, respectively (Scheme 12).
90

 There is little 

evidence that these two active forms differ in their mode of action.  

 

 

 
 

 

Scheme 12: Steps involved in activation of vitamin D3.
93

 

 

 

1B.3. The Dihydrovitamins D and Dihydrotachysterols (DHT) 

 
 

Dihydrovitamins D are a class of compounds derived by reduction of the natural 

vitamin D3 (77), vitamin D2 (78), and their unnatural 5-(E) isomers (5,6-trans derivatives) 

(Fig. 5).
94

 Among them, dihydrotachysterol2 (DHT2, 79), first isolated by von Werder in 

1939
95

 by reduction of tachysterol2 with sodium in propanol,
96

 is considered an 

interesting analog of 1α,25-dihydroxyvitamin D3 (81), the hormonal form of vitamin D3, 

because the former’s 3β-OH group has a similar topological orientation to that of the 

latter’s 1α-OH.
97, 98
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Fig. 5: Vitamin D (77 and 78) and DHT (79 and 80). 

 

 

The dihydrotachysterols [DHT2 (79) and DHT3 (80)], may collectively be 

considered to be reduction products of the D vitamins and can be produced by direct 

reduction of vitamin D.
99

 The resultant conjugated diene bears an A-ring inverted 180
0
 

with respect to parent vitamin D.  Of the many possible reduction products of the vitamin 

D triene, the dihydrotachysterol diene is the only known biologically active 

configuration.  

Dihydrotachysterols, like vitamin D, requires hepatic enzymatic hydroxylation in 

position C-25 before it becomes biologically effective, however unlike vitamin D this 

transformation is not under feedback control.
96, 100

 This distinction may explain why 

DHT3 has a greater hypercalcemic effect than vitamin D at high dosages.
101

 In the 

absence of further 1-hydroxylation by the kidney, chemically synthesized 25-(OH)-DHT3 

possesses an affinity for intestinal and bone receptor sites equal to that of 1α,25-(OH)2D3 

(Scheme 13). Chemically synthesized 25-(OH)-DHT3 is thus more potent, faster acting 

and more antirachitic than DHT3 and vitamin D3 in the mobilization of bone, renal and 

intestinal calcium.
102, 103
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                      Scheme 13: Metabolic Activation of Vitamin D3, 1α,-(OH) D3 and DHT2.
103

  

 

 

1B.4. Previous Synthetic Studies of Dihydrotachysterols 

 
 

 Several synthesis of DHT2 (79) and DHT3 (80) and other closely related 

hydrovitamins D have been reported. Summaries of these follow: 

In 1992, a synthesis of 25-(OH)-DHT2 was reported by Hanekamp, et al. 
104

 The 

synthesis started with vitamin D2. Ozonolysis of natural vitamin D2 followed by 

borohydride reduction afforded the C and D rings as diol (82). Benzoylation of 82 and 

subsequent selective debenzoylation of the 1
0
 benzoate group with ethanolic potassium 

hydroxide gave 83. Pyridinium chlorochromate oxidation of 83 afforded 84 (4 steps, 

78%, Scheme 14).
105
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         Scheme 14: Synthesis of the CD-ring of 25-(OH)-DHT2 

 

 

Wittig olefination of 85
106

 with 84 gave 86 (Scheme 15). Protection of the tertiary 

hydroxyl group followed by subsequent removal of the benzoate group with lithium 

aluminum hydride gave 88. Oxidation of 88 with pyridinium chlorochromate afforded the 

MOM-protected 25-OH Windaus and Grundmann’s ketone 89.       
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Scheme 15: Synthesis of Windaus and Grundmann's ketone (89) 

 

 

The Hanekamp, et al., synthesis of the A-ring fragment of 25-(OH)-DHT2 started 

with reduction of commercially available S-(+)-carvone (Scheme 16).
107

 The preparation 

of 91 via Wittig-Horner reaction of 90a with ethyl (diethyloxyphosphinyl)acetate 

proceeded cleanly in near quantitative yield. Conversion of the isopropenyl group to a 

hydroxyl group, protection of the secondary hydroxyl group, followed by hydride 

reduction gave allylic alcohol 93. Conversion of 93 to an allyl diphenylphosphine 

followed by peroxide oxidation afforded the phosphine oxide 94. 
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Scheme 16: Synthesis of TBS-Protected A-ring 

 

 

Finally, coupling of ketone 89 with the anion generated from phosphine oxide 94 

afforded a bis-protected 25-OH-DHT2 (Eqn. 14).
108, 109

 Removal of methoxymethyl- and 

tert-butyldimethylsilyl protective moieties afforded the 25-hydroxylated 

dihydrotachysterol2 95.  

 

 

 
 
 
A second synthesis of 25-(OH)-DHT2 was reported by Mourino et al. in 1992.

110
 

This synthesis like Hanekamp, et al.’s was based on Wittig-Horner coupling of a TBS-

protected A-ring (94) and the Windaus and Grundmann's ketone.
80, 111
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  Addition of lithium ethyl acetate
112

 to trans-dihydrocarvone (90a)
113

 gave 97 

(Scheme 17). Ozonolysis 97 in MeOH afforded the hydroperoxy ketal 98.
110

 Acylation of 

98 with p-nitrobenzoyl chloride and subsequent Criegee rearrangement
114, 115

 gave the 

acetate 99 which on hydrolysis afforded diol 100. The selective protection of 2
0
-OH 

group of 100 gave 101 which on dehydration with Martin’s sulfurane
116

 gave the (E)-

unsaturated ester 102.  Reduction of 102 with diisobutylaluminum hydride afforded the 

allylic alcohol 93 (Scheme 17). Transformation of 93 to a TBS-protected A-ring (94)
117

 

was accomplished in 63% yield as in Hanekamp’s synthesis.
80 

 
 

                    
 

 

Scheme 17: Synthesis of TBS-Protected A-ring 
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Coupling of ketone 89 and 94 afforded a bis-protected 25-OH-DHT2 in 60% 

yield. Removal of methoxymethyl- and tert-butyldimethylsilyl protective moieties 

afforded the 25-hydroxylated dihydrotachysterol2 95 (Eqn.15).
94 

 

 

              
 

 

A synthesis of DHT2 was reported by Okamura and Mourinò in 1977
118, 119

 

involving iodine-catalyzed
120

 isomerization of vitamin D2 to 5,6-trans-vitamin D2 (103, 

Scheme 18). Benzoylation of 103 gave 104 which on selective hydroboration
121

 afforded 

105 and 106. Tosylation of 106 followed by reduction and hydrolysis of the benzoate 

ester  gave 107 in 26% yield (Scheme 18).
95, 118
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Scheme 18: Synthesis of DHT2 

 

 

Another synthesis of DHT2 was reported by Castedo et al. in 1998
94

 involving 

selective Ti-catalyzed hydrogenation
122-126

 of 5,6-trans-vitamin D2
118

  103 to give 107 as 

the major product (Scheme 19).
94 

 
 

        
 

 

  Scheme 19: Synthesis of DHT2 

 

 

In 1969 DeLuca and Blunt reported the synthesis of 25-(OH)-DHT3.
127-129

  

 

 

Acetylation of 25-(OH)-7-dehydrocholesterol (108)
129, 130

 gave 109a as the major 

diacetate product (Scheme 20). Lithium aluminum hydride reduction of 109a gave diol 
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110 which on irradiation and reductive rearrangement gave 25-(OH)-DHT3 (112) in 32% 

overall yield.  

 

 

          
 

 

Scheme 20: Synthesis of 25-(OH)-DHT3 

 

 

A second synthesis of 25-(OH)-DHT3 112 was reported by DeLuca and Suda et 

al.
131

 in 1970 starting from 26-nor-cholesten-3β-ol-25-one (113, Scheme 21). Acetylation 

of 113 gave 114 which upon bromination/dehydrobromination
132

 followed by 

nucleophilic addition of methyl magnesium iodide afforded cholesta-5,7-diene-3β,25-diol 

(110). UV irradiation of diol (110) gave tachysterol 111 which upon reduction afforded 

25-OH-DHT3 (112) (Scheme 21).
130, 131
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Scheme 21: Synthesis of 25-(OH)-DHT3 

 

 

In 1986, Solladié and Hutt
133

 reported the total synthesis of 25-OH-DHT3 based 

on a low-valent titanium-induced reductive elimination (Scheme 22).
120, 134

 The synthesis 

started with natural vitamin D3. Ozonolysis of vitamin D3 gave Grundmann’s ketone
135

 

116 in 90% yield. Addition of ethynyl magnesium bromide gave 117 which on 

methylation afforded 118 (Scheme 22). 
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   Scheme 22: Construction of CD-fragment of DHT3 

 

 

The Solladié, et al., synthesis of the A-ring fragment started with reduction of 

commercially available S-(+)-carvone to trans-dihydrocarvone 90a which on acetalation 

gave 119 (Scheme 23).
133

 Ozonolysis of 119 afforded ketone 120. Baeyer-Villiger 

oxidation of 120 with meta-chloroperbenzoic acid (m-CPBA) gave the desired acetate 

121 with complete retention of configuration. Hydrolysis of the acetate group of 121 

followed by protection of the OH group afforded 122. Deacetalation of 122 gave the 

MEM-protected A-ring (123) (5 steps total, 85 % overall). 
133
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Scheme 23: Synthesis of MEM-Protected A-ring 

 

 

Addition of the anion derived from 118 to 123 followed by removal of the 

methoxyethoxymethyl (MEM) protecting group on the A-ring afforded 124 as a mixture 

of two diastereomers resulting from the non-stereospecific addition 118 to the carbonyl 

group of 123. Reduction of the triple bond of 124 with lithium aluminum hydride gave 

125.
133

  

 

 

              
 

 

Scheme 24: Synthesis of intermediate 125 
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Ti
(0)

 catalyzed reductive elimination of 125 gave a mixture of (5Z,7E)-

dihydrovitamin D3 (126a) and (5E,7E)-DHT3 (126b) (Eqn. 16).
135-138

  

 

 

         
 

 

Mechanistically, Ti
(0)

 is the active catalytic species in this reduction reaction 

which occurs by a single electron transfer on the Ti
(0)

 surface.
118, 139, 140

 A generic Ti
(0)

 

induced reductive elimination mechanism is shown in Scheme 25. 

 

 

               
 
 

Scheme 25: Generic Ti
(0)

 induced reductive elimination 

 

 

The formation of 126b at elevated temperature arises from rotation about the C5-

C6 bond of the allylic radical 125b prior to elimination of –OMe thereby releasing steric 

interactions between C10-Me and C7-H groups to form 125c (Scheme 26).
140, 141
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Scheme 26: Formation of DHT3 
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CHAPTER 2 

 

 

2A.1. Racemic A-Ring Synthons 

 

 

In an effort to prepare protected DHT A-ring fragments, cation 32 was prepared 

from ethyl-3-methyl-4-oxo-2-butenoate 127 following the literature procedure.
48

 Ethyl 

(E)-3-methyl-2,4-pentadienoate (±)-128 was prepared from the commercially available  

ethyl-3-methyl-4-oxo-2-butenoate 127 via a modification to the literature procedure.
 
The 

following modifications led to significantly improved yields (from 47%
48

 to 78-83%): (1) 

addition of n-butyllithium to a suspension of methyltriphenylphosphonium bromide in 

tetrahydrofuran at -78 
0
C instead of 0 

0
C,

29
 (2) addition of 127 to the resulting wine-red 

methylenetriphenylphosphorane solution at -78 
0
C instead of 0 

0
C and (3) allowing the 

reaction mixture to rise to room temperature with vigorous stirring for 4 h instead of 

refluxing for 24 h. These modifications ensured shorter reaction times and easier/cleaner 

work-up. The diene product (±)-128 thus obtained was sufficiently pure and was used in 

the complexation step without further purification. Complexation of 

diironnonacarbonyl
142

 129 with (±)-128 gave tricarbonyl(ethyl-3-methyl-(2E)-penta-2,4-

dienoate)iron (±)-130. Much lower yields (26-31%) of the (diene)iron complex (±)-130 

were obtained when the solvent was changed from tetrahydrofuran  to diethyl ether 

(Et2O).  

Reduction of the (diene)iron complex 130 followed by dehydration of (±)-131 

gave a carbocation which was trapped as the hexafluorophosphorate salt (±)-32 (5-steps 

total, 59%, Scheme 27). The structures of (±)-128, (±)-130, (±)-131 and (±)-32 were 

assigned by comparison of their NMR spectral data with the literature values.
29, 48
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Scheme 27: Synthesis of (pentadienyl)iron cation (±)-32 

 

 

Previously in chapter 1 (sec. A.10), we discussed the mechanistic rational for 

formation of cyclohexenone (±)-75 from the reaction of (±)-32 with sodium dimethyl 

malonate. To test the scope of the cyclohexenone formation from the reaction of 

stabilized nucleophiles with (±)-32 as well as their application to synthesis of protected 

DHT A-ring fragments, the reaction of cation (±)-32 with anions of  malonate, 

phosphonoacetate and sulfonyl acetate nucleophiles was examined  (Eqns. 18 and 20). 

 

2A.2. Synthesis of A-Ring synthon (±)-142 

 

 

Nucleophilic attack of sodium dimethyl malonate at either C2/C4 internal 

positions of the symmetric cation (±)-32 gave cyclohexenone (±)-75 as the major 

regioisomer along with a trace of the (1,3Z-diene)iron complex (±)-74 (Eqn. 18). 
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The identity of (±)-75 was confirmed by comparison of its NMR spectral data 

with the literature values.
48

 In particular, the signals at δ 6.11 (dd, J = 6.1, 10.1 Hz, 1H) 

ppm and δ 5.81 (d, J = 10.1 Hz, 1H) ppm were diagnostic of H
3
 and H

2
 olefinic protons 

respectively. These chemical shifts were consistent with the literature values
143

 for cis-

4,5-dimethyl-2-cyclohexenone (±)-132 (Fig. 6). 

 

 

        
 
 

Fig. 6: Characteristic 
1
H NMR data for 4,5-disubstituted-2-cyclohexenone 

 

 

Furthermore, the 
3
J

 
= 6.1 Hz coupling constant was consistent with a pseudo-

equatorial disposition for H
4
.
143

 A smaller 
3
JH

3
-H

4 
 coupling constant (~ 2-3 Hz) would 

have been  indicative of pseudo-axial deposition for H
4
.
48, 143

 The implication of this is 

that the C4 and C5 side bonds will be cis to each other (Fig. 6). Such an arrangement of 

the C3-methyl group and the C4-propanedioate group minimizes the steric repulsions of 

the gauche pentane interactions between these groups (Fig. 7). 
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Fig. 7 Coupling constants for H
3
 (cis vs trans 4,5-disubstituted cyclohexenones 

 

 

It is also noteworthy to mention that for the known trans-4,5-dimethyl-2-

cyclohexenone (±)-133, the H
3 

signal (δ 5.90 ppm) appears as  ddd (J = 10.2, 2.2, 0.7 

Hz), where 2.2 Hz coupling is the characteristic of  the pseudo-axial disposition of H
4
.
144

 

The absence of a methyl-singlet at ca. δ 1.70-1.90 ppm, rules out the isolation of 

either 3-cyclohexenone or 4-cyclohexenone (±)-135-(±)-136 products both of which have 

been reported under similar reaction conditions with substituted (pentadienyl)iron cations 

(Eqn. 17).
64                                                                  

 
 

 

 
 

Reduction of cyclohexenone (±)-75 under Luche conditions
145

 gave cyclohexenol 

(±)-139 as a single diastereomer. Hydride addition to C=O is anticipated under these 

conditions due to the coordination  of Ce
3+

 to both C=O and BH4
-
.The C2-C3 double 
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bond of (±)-139 was smoothly reduced with activated palladium on carbon and hydrogen 

gas at 45 psi to give cyclohexanol (±)-140 as a single diasteroisomer (Scheme 28).  

Alternatively, catalytic hydrogenation of cyclohexenone (±)-75 gave the 

cyclohexanone (±)-141 which upon hydride reduction with NaBH4 gave the same 

cyclohexanol (±)-140. The overall yields for these two step sequences (68% compared to 

71%) are comparable. 

 

 

 
 
 

            Scheme 28:  Synthesis of cyclohexanol (±)-140 

 

 

The relative stereochemistry about the ring of cyclohexanol (±)-140 was assigned 

on the basis of its 
1
H NMR spectral data. In particular, the signal for the alcohol methine 

proton of (±)-140 which appears at δ 3.60 ppm, exhibited two large couplings (δ 3.60, tt, 

J = 2.8, 10.3 Hz) which were assigned as axial-axial couplings indicating that the 

hydroxyl group occupies an equatorial orientation. It was further assumed that the lowest 
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energy conformation of (±)-140 would have the more bulky propanedioate substituent in 

an equatorial orientation and the cis C-2 methyl group in an axial orientation. 

 

 

 
 
 

Scheme 29: Krapcho decarbomethoxylation of cyclohexanol (±)-140 

 

 
Preliminary efforts at decarbomethoxylation of cyclohexanol (±)-140 with sodium 

cyanide and lithium iodide
146

 were unsuccessful with eventual decomposition of the 

starting material on prolonged heating. In general, dimethyl and diethyl 

cyclohexylmalonates reportedly exhibit very  little tendency to decarbomethoxylate under 

Krapcho conditions.
146

 Substituents adjacent to the carbon bearing the geminal diester 

groups sterically inhibit water attack at one of the ester carbonyl groups.
 
Additionally 

nucleophilic substitution of the hydroxyl functionality by either iodide or cyanide anions 

could possibly be a competing side reaction (Scheme 29). 

In contrast, decarbomethoxylation
146

 of cyclohexanol (±)-140 proceeded smoothly 

with lithium chloride in refluxing dimethyl sulfoxide (Scheme 29) to afford methyl 

(cyclohexyl)acetate (±)-142. Structural assignment of (±)-142 was made on the basis of 

its 
1
H and 

13
C NMR spectral data. In particular, signals at δ 2.36-2.17 (m, 2H) ppm in the 

1
H NMR spectrum and δ 36.1 ppm in the 

13
C NMR spectrum of (±)-142 were assigned to 

the methylene protons alpha to the CO2Me group. Additionally, the signal at δ 174.0 ppm 
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was assigned to the CO2Me group compared to δ 169.3 ppm and δ 168.9 ppm for the 

precursor propanedioate. 

 

 

 
 
 

                   Scheme 30: Reaction of cation 32 with stabilized nucleophiles 

 

 

Treatment of cation 32 with sodium triethyl phosphonoacetate, sodium diethyl 

(phenylsulfonyl)methanephosphonate, or sodium methyl (phenylsulfonyl)acetate 

[prepared from sodium hydride and appropriate precursor] in anhydrous THF gave the 

cyclohexenones (±)-143, (±)-145 and (±)-146 respectively in good yields along with a 

trace of the C1/C5 nucleophilic addition products (±)-144  or (±)-147 (Scheme 30). 

Cyclohexenones (±)-143, (±)-145 and (±)-146 were each isolated as a mixture of two 

diastereomers at the indicated (*) carbon.  

The structures of (±)-143, (±)-145 and (±)-146 were assigned based on their NMR 

spectral data. The signals at ca. δ 6.95-7.05(dd, 1H) ppm and ca. δ 5.9-6.0 (d, J = 6 Hz, 

1H) ppm were assigned to the sp
2
 olefinic hydrogens of each. The 3JH

3
-H

4
 ~ 6 Hz coupling 

constant for each was consistent with a pseudo-equatorial disposition for H
4
 proton and 
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thus a cis arrangement of the C3-methyl and C4-substituent  was assigned. These 

assignments are consistent with that for the product obtained for the reaction of cation 32 

with sodium dimethylmalonate, (±)-75. 

It was not possible to assign the signals in the 
13

C NMR spectrum of (±)-143 or 

(±)-145 to each of the carbon atoms due to the presence of two sets of signals and further 

complicated by coupling with the phosphorus atom in each.  

 

 

 
 
 

Horner-Emmons olefination of the mixture of diastereomer (±)-143 with 

paraformaldehyde in anhydrous THF gave the enoate (±)-148 (Eqn. 18). Since carbon 2 

is not a chiral center, (±)-148 was isolated as a single diastereomer instead of a mixture of 

diastereomers. The structure of (±)-148 was assigned based on its NMR spectral data. 

The 
1
H NMR spectrum of (±)-148 evidenced signals at δ 6.39 (s, 1H) ppm and δ 5.48 (s, 

1H) ppm which were assigned to the diastereotopic methylene olefinic hydrogens. 

Additionally, the signals at δ 7.02 ppm (dd, J = 4.1, 9.5 Hz, 1H) ppm and δ 5.99 ppm (d, 

J = 9.5 Hz, 1H) were assigned to the two sp
2
 cyclohexenyl protons. The magnitude of the 

H
3
-H

4
 vicinal coupling (J = 4.1 Hz) is intermediate to that anticipated for cis-3,4-

disubstituted and trans-3,4-disubstituted 2-cyclohexenones (6 Hz vs. 2 Hz). While this 
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coupling was not diagnostic in assigning the relative ring stereochemistry it was deemed 

unlikely that the Horner-Emmons reaction conditions would lead to epimerization at 

either C3 or C4. The signals at δ 155.6, 140.9, 127.6, 125.3 ppm in the 
13

C NMR 

spectrum of (±)-148 corresponded to the four olefinic carbons. 

 

 

        
 
 

Scheme 21: Horner-Emmons olefination of (±)-149 

 

 

Luche reduction
145

 of (±)-145 gave cyclohexenol (±)-149 which was subjected 

Horner-Emmons olefination to afford (±)-150 (Scheme 21). The structure of (±)-150 was 

assigned based on its 
1
H and 

13
C NMR spectral data. The 

1
H NMR spectrum of (±)-150 

had signals at ca. δ 6.39 (s, 1H) and 5.48 (s, 1H) ppm which were assigned to the 

diastereotopic sp
2
 hydrogens. Additionally, the signals at δ 5.66 ppm (dddd, 1H) and δ 

5.54 (dd, 1H) ppm were assigned to the two sp
2
 cyclohexenyl protons. Assignment of the 

13
C NMR signals to individual carbons was not attempted due to the presence of two sets 

of signals and further complications arising from coupling to the phosphorus atom.  
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Scheme 22: Summary of nucleophilic addition products of cation 32 

 

 

 

 

 

 

 

 

 

 



50 
 

 

2B.1. Synthesis of Protected DHT A-ring Fragments 

 

 

Elaboration of the cyclohexenone (±)-146 to a DHT A-ring fragment was 

attempted (Scheme 31). To this end, Luche reduction of the diastereomeric mixture of 

cyclohexenones (±)-146 gave the cyclohexenol (±)-152 as a as a mixture of diastereomers 

at the C* position. Catalytic hydrogenation of (±)-152 gave the cyclohexanol (±)-153 also 

as a mixture of diastereomers. Alternatively, the cyclohexanol (±)-153 was prepared by 

catalytic hydrogenation of the diastereomeric mixture of cyclohexenones (±)-146 to 

afford the cyclohexanones (±)-154, followed by hydride reduction to afford (±)-153 as a 

mixture of diastereomers. While these compounds were isolated as a mixture of 

diastereomers at the exocyclic carbon, a clean sample of one or both diastereomers was 

isolated for (±)-146, (±)-152 and (±)-153 after careful column chromatography. 

 

 

 
 

 

                         Scheme 31: Synthesis of cyclohexanol (±)-153 
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The structures of the cyclohexenol (±)-152 and cyclohexanone (±)-154 

intermediates were established on the basis of their IR, 
1
H and 

13
C NMR spectral data. In 

particular, the signals in the 
1
H NMR spectrum of 152 at δ 5.76 (ddd, J = 1.2, 4.5, 10.2 

Hz, 1H) ppm and δ 5.61 (d, J = 10.2 Hz, 1H) ppm were assigned to the two olefinic 

protons. Additionally the absence of a carbonyl signal at ca. δ 190-210 ppm in the 
13

C 

NMR spectrum of cyclohexenol (±)-152 was consistent with reduction of the 

cyclohexenone (±)-146. For cyclohexanone (±)-154 the absence of olefinic signals at ca. 

δ 5.0-6.0 ppm in the 
1
H NMR spectrum as well as the absence of signals at δ 156.9 and 

127.8  ppm in the 
13

C NMR spectrum also confirmed the saturation of the C2-C3 double 

of the starting cyclohexenone (±)-146.  

The structure of cyclohexanol (±)-153 was assigned based on its 
1
H and 

13
C 

spectral data. In particular signals at δ 167.7 [166.7] ppm in the 
13

C NMR spectrum were 

assigned to the diastereomeric carbomethoxyl carbons of (±)-153. While the cluster of 

signals at ca. δ 140-129 ppm correspond to the aromatic carbons, and signals at ca. δ 70-

71 ppm corresponded to the 6-membered alcohol carbon. The 
1
H NMR spectrum of (±)-

153 had signals in the range of δ 7.9-7.6 ppm which integrated to five protons 

corresponded to the aromatic protons. The relative stereochemistry about the cyclohexyl 

ring of cyclohexanol (±)-153 was assigned on the basis of its 
1
H NMR spectral data. In 

particular, the signal for the alcohol methine proton of cyclohexanol (±)-153 exhibited 

two small couplings and two large couplings (δ 3.58, tt, J = 2.8, 10.3 Hz). These larger 

values correspond to axial-axial couplings indicating that the hydroxyl group occupies an 

equatorial orientation. The signal for the alcohol methine proton of the other diastereomer 

of cyclohexanol (±)-153 is relatively broad and appears at a similar chemical shift δ 
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(3.68-3.57, m) indicative of an equatorial orientation for the alcohol functionality in this 

diastereomer as well. 

 

 

 
 

 

           Scheme 32: Desulfonylation of cyclohexanol (±)-153 

 

 

Reaction of the mixture of diastereomers (±)-153 with t-butyldiphenylsilyl 

chloride afforded the silyl ether (±)-155 as a mixture of diastereomers. While the 

diastereomeric mixtures could be separated by careful column chromatography in certain 

cases, it was more convenient to carry these mixtures forward. Notably, reductive 

desulfonylation of the mixture of diastereomers (±)-155 gave (±)-156 as a single 

diastereomer (Scheme 32).  

The structure of (±)-156 was assigned on the basis of its 
1
H and 

13
C NMR spectral 

data. In particular, signals in the range of 7.8-7.3 ppm in the 
1
H NMR spectrum which 

integrated to 10 protons were assigned to the aromatic protons, while the sharp singlet at 

δ 1.09 (s, 9H) ppm was assigned to the t-butyl group. Additionally, the signals at δ 51.5 

ppm in the 
13

C NMR spectrum and δ 2.26-2.20 (2xdd, 2H) ppm in the 
1
H NMR spectrum 

were assigned to the α-methylene carbon and its attached protons.  

Deprotonation of (±)-156, followed by reaction with phenylselenyl chloride gave 

a mixture of diastereomeric α-phenylselenyl esters 157/157’, which upon oxidation and  
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syn elimination of phenylselenic acid gave an equimolar mixture of stereoisomeric 

enoates (Z)-158 and (E)-158 (Scheme 33). 

 

 

   
 

 

Scheme 33: Attempted synthesis of protected DHT A-ring fragment (E/Z)-(±)-158 

 

 

The structure of the α-phenylseleno esters (±)-157/157’ was assigned based on its 

1
H and 

13
C NMR spectral data. In particular, the signals at δ 3.37 (d, J = 12.0 Hz, 1H) 

ppm and 3.39 (d, J = 11.8 Hz, 1H) ppm were assigned to the α-selenyl proton for each of 

the two diastereomers, while signals at ca. δ 49.3 [49.2] ppm in the 
13

C NMR spectrum 

were assigned to the α-seleno acetate carbon.  

The structural assignment for (E/Z)-(±)-158 was based on its 
1
H and 

13
C NMR 

spectral data. In particular, the pair of singlets at δ 5.73 (s, 1H) and δ 5.36 (s, 1H) ppm 

were assigned to the α-olefinic protons, while the pair of multiplets at δ 4.05 (m, 1H) and 

δ 3.98 (s, 1H) ppm were assigned to the H-5 protons. Additionally the signals at 3.64 (s, 

3H) and 3.63 (s, 3H) ppm were each assigned to the carbomethoxyl protons. Signals at δ 

1.07 (s, 9H) and δ 1.04 (s, 9H) ppm corresponded to the t-butyl protons. The signals at δ 

1.13 (d, J = 7.8 Hz, 3H) and δ 1.11 (d, J = 6.0 Hz, 3H) ppm were assigned to the C2- 

methyl protons.  
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2B.2. Protected DHT A-ring fragments 

 

 

Next we sought to prepare a DHT A-ring synthon that had the C-2-methyl and C-

5 hydroxyl groups mutually trans. To this end reaction of diastereomeric mixture of 

cyclohexanols (±)-153 with p-nitrobenzoic acid under Mitsunobu conditions
147 

gave an 

equimolar mixture of benzoate esters (±)-159 which were diastereomeric at the * carbon 

(Scheme 34). These reaction conditions are known to proceed with inversion at the 

carbinol carbon.  

 

 

   
 

 

Scheme 34: Desulfonylation of cyclohexanol (±)-153 

 

 

The structural assignment for (±)-159 was based on its 
1
H and 

13
C NMR spectral 

data (Scheme 4). In particular narrow multiplets at δ 5.41-5.40 and δ 5.31-5.30 ppm with 

half-width of 7.4 Hz in the 
1
H NMR spectrum of (±)-159 was assigned to the H

5
 proton. 

The narrowness of these signals reflects the lack of any large axial-axial couplings and 

thus H
5
 was assigned an equatorial orientation (therefore OPNB is axial). Additionally, 
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sets of signals at δ 4.02 (br s, 1H) and δ 4.00 (dd, J = 3.3 Hz, 1H) ppm corresponded to 

the epimeric α-phenylsulfonyl methine protons. The C-4 methyl protons corresponded to 

the signals at δ 1.05 (d, J = 7.0 Hz, 3H) and δ 0.96 (d, J = 7.0 Hz, 3H) ppm. In the 
13

C 

NMR spectra of (±)-159 the signals at δ 71.3 [70.9] ppm were assigned to the C5 carbinol 

carbons of each diastereomer. 

The attempted desulfonylation of a diastereomeric mixture of cyclohexanols (±)-

159 gave a complex 
148

mixture of decomposition products. The Mg/MeOH 

desulfonylation system has also been reported to effect smooth removal of p-benzoate 

groups (Scheme 34).
149, 150

  

 

 

 
 

 

Scheme 35: Synthesis of methyl (cyclohexyl)acetate (±)-142 

 

 

Reductive desulfonylation of the diastereomeric mixture of silyl protected 

cyclohexanols (±)-163 gave (±)-164 as a single diastereomer in quantitative yield 
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(Scheme 35). Deprotection of (±)-164 with TASF gave the cyclohexanol (±)-142 

(Scheme 35). 

 Reaction of cyclohexanol 142 with p-nitrobenzoic acid under Mitsunobu 

conditions gave (±)-165 as a single diastereomer (Scheme 36). α-Deprotonation of (±)-

165, followed by reaction with phenyl selenyl chloride gave α-phenylselenyl ester (±)-

166, which upon oxidation and elimination of phenylselenic acid afforded the enoate (Z)-

167 only (Scheme 36). 

 

 

   
 
 

Scheme 36: Attempted synthesis of protected DHT A-ring fragment (Z)-(±)-167 

 

 

            The structural assignment for (±)-167 was based on its 
1
H NMR spectral data. In 

particular, the singlet at δ 5.61 ppm which integrated to one proton was assigned to the α-

olefinic proton, while the multiplet at δ 5.44 ppm was assigned to H-5. The assignment of 

this latter signal was further supported by COSY crosspeaks with the signal for H-6ax 

and H-6eq (δ 2.78 and 2.46 ppm respectively). Assignment of the broad multiplet at δ 

4.25-4.15 ppm to H-2 was aided by a COSY crosspeak with the Me-2 doublet at δ 1.22 

ppm. 

  The lack of any NOESY crosspeaks between  the α-olefinic  proton signal  (δ 

5.61 ppm) and the signals for Me-2 or H-2, and the appearance of a crosspeak with H-6eq 
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(δ 2.46 ppm) lead to the assignment  of the Z-stereochemistry for the exocyclic olefin 

(Scheme 37). Enoate (±)-167 exits predominantly in the Me-2/OPNB diaxial conformer 

is evidenced by (i) the narrow half-width of the signal for H-5 (½W = 7.4 Hz) indicative 

of a lack of axial-axial couplings, (ii) a NOESY crosspeak between the signal for Me-2 

and H-6ax, and (iii) the relatively large downfield shift for H-2 due to the deshielding 

anisotropy of the Z-enoate functionality. A similar methyl axial conformational 

preference has been reported for (Z)-(2-methylcyclohexylidene)acetic acid.
151

 The higher 

energy of the Me-2/OPNB diequatorial conformer YY is due to the 1,3-allylic strain 

between the ester substituent and Me-2 present in this conformer; this strain is absent in 

the Me-2/OPNB diaxial conformer (±)-167. 

 

 

                      
 

 

Scheme 37: Structure of (Z)-167 (Solid double-headed arrows correspond to COSY 

interactions; dashed double-headed arrows correspond to NOESY interactions 

 

 

 Exclusive formation of the Z-stereoisomer is rationalized in the following 

manner. Electrophilic attack of the phenylselenyl chloride on the ester enolate (±)-165’ 

derived from (±)-165 occurs preferentially on the face opposite to the steric bulk of the 
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Me-2 substituent to afford the α-selenyl ester (±)-166. Oxidation of (±)-166 leads to an α-

selenyloxide which undergoes a syn elimination to generate YY, which undergoes a 

chair-chair inversion to the more stable conformer (±)-167. 
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2C.1. Preliminary Efforts at Chiral Cyclohexenones Synthesis 

 

 

Chiral phosphine ligands on iron and chiral nucleophiles have been used in the 

desymmetrization of symmetrical (cyclohexadienyl) and (cycloheptadienyl)iron(1+) 

cations.
152

 Deprotonation of the N-acyloxazolidinone, reaction with the (cyclohexadienyl) 

cation 168 and  removal of the chiral auxiliary afforded the methyl ester 169  in 77%  

yield and 57% enantiomeric excess (Eqn. 19).
153 

        

 

 

 
 
 

The reaction of symmetrical cation 32 with chiral (±)-methyl phenylsulfinyl 

acetate anion (±)-170 was examined (Eqn. 20). The pKas of malonates (16.4)
154  

and 

phenylsulfinyl acetates (18.3)
155

 are relatively similar and  as such cyclohexenone 

formation was anticipated. However the reaction afforded mainly the unreacted 

nucleophile and a trace amount of the (1,3-Z-pentadienyl)iron complex (±)-171 arising 

from nucleophilic attack at C1/C5 of 32. 
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Surprisingly, cyclohexenone formation was also not observed with ethyl nitro 

acetate, the reaction affording only a trace of the (1,3-Z-pentadienyl)iron complex (±)-

151 (Scheme 22). 

 

2C.2. Chiral Protected DHT A-ring Synthons 

 

 

A previous group member had discovered that the reaction of cation 32 with the 

sodium salt of bis(8-phenylmenthyl) malonate
152

 gave an enantiomerically pure 

cyclohexenone (173) in good yield as a single diastereomer (Eqn. 21).
64

 However, the 

absolute configuration at the C4 cyclohexenone methyl group was opposite to that 

required for the correct configuration of DHT2. 
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Since ent-8-phenyl menthol is not commercially available and is difficult and 

laborious to prepare, an alternative route was designed based on the 2-phenyl cyclohexyl 

group. 

 

 

 
 

 

Scheme 38: Preparation of precursor chiral nucleophile (-)-178 

 

 

To synthesis the chiral A-ring fragments, chiral nucleophile (-)-178 was prepared 

in three steps from the commercially available achiral 1-phenylcyclohexene. Diol (-)-175 

was obtained by dihydroxylation of 1-phenylcyclohexene (174) under Sharpless 

conditions.
156, 157

 Reduction of diol (-)-175 with Raney nickel gave (+)-176 in moderate 

yield. Structural assignment of (+)-176 was based mainly on comparison of its 
1
H and 

13
C 

NMR spectral data with literature values.
148
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The reaction of phenyl sulfonyl acetic acid 177 with oxalyl chloride gave phenyl 

sulfonylacetyl chloride which was further reacted with 2-phenyl cyclohexenol (+)-176 to 

afford (-)-178 as a single enantiomer in moderate yield (Scheme 38). The structure of (-)-

178 was assigned based on its 
1
H and 

13
C NMR spectral data. The signals at ca. δ 7.8-7.4 

ppm in the 
1
H NMR spectra were assigned to the aromatic protons of the phenylsulfonyl 

group whilst those at δ 7.18 (m, 5H) ppm corresponded to the aromatic protons of other 

phenyl group. Notably, the signals at δ 4.86 (dt, J = 4.2, 10.5 Hz, 1H) ppm were assigned 

to the carbinol methine proton whilst the two diastereotopic α-methylene protons appear 

at δ 3.76 ppm and δ 3.70 ppm as second order doublets (J = 14.4 Hz). Similarly, the 

signals at δ 78.8 ppm and 62.0 ppm in the 
13

C NMR spectra corresponded to the carbinol 

and α-methylene carbons whilst the signal at δ 49.0 ppm was assigned to the other 

methine carbon. 

Additionally, the chiral nucleophile (+)-180 was successfully prepared via a 

modified literature procedure.
48, 152

 Reaction of commercially available malonyl 

dichloride 179 with chiral alcohol (+)-176 gave the chiral nucleophile (+)-180 in 

moderate yield (Scheme 39). 

 

 

 
 

 

Scheme 39: Preparation of precursor chiral nucleophile (+)-180 
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Structural assignment for (+)-180 was based on its 
1
H and 

13
C NMR spectral data. 

Notably, the signals at ca. δ 7.22 ppm in the 
1
H NMR spectra which integrated to 10 were 

assigned to the aromatic protons whilst those at δ 4.98 (dt, J = 4.2, 10.6 Hz, 2H) ppm 

corresponded to the carbinol methine protons of the cyclohexyl ring. The two α-

methylene protons were assigned to the signal at δ 2.78 (s, 2H) ppm. Additionally, the 

signal at δ 2.61 (dt, J = 3.4, 11.6 Hz, 2H) ppm were assigned to the H-2 protons of the 

cyclohexyl ring. The cluster of signals ranging from ca. δ 2.0-1.2 ppm in the 
1
H NMR 

spectra of (+)-180 which integrated to 16 corresponded to the methylene protons of the 

cyclohexyl rings. Furthermore, the signals at δ 166.0 ppm in the 
13

C NMR spectra of (+)-

180 was assigned to the C=O functionality whilst those ranging from ca. δ 143-126 ppm 

corresponded to the aromatic carbons of the phenyl ring. The carbinol signal was at δ 

77.2 ppm whilst the α-methylene carbon corresponded to the signal at δ 49.6 ppm in the 

13
C NMR spectra. The signal at δ 41.7 ppm was assigned to the methine carbon of the 

cyclohexyl ring whilst the remaining 4 signals ranging from ca. δ 34-25 ppm 

corresponded to the four methylene carbons of the cyclohexyl ring. 
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                       Scheme 40: Synthesis of chiral cyclohexenones 

 

 

Reaction of cation 32 with the sodium enolate of (-)-178 was carried as in 

previous cyclohexenone syntheses to afford a mixture of diastereomeric cyclohexenones 

181, 182, 183 and 184 in good yield (Scheme 40). While diastereomers 181-184 were 

obtained as an inseparable mixture, signals in the 
1
H NMR spectrum of a single isolated 

diastereomer of this mixture aided the assignment of the cyclohexenone fragments. In 

particular, the signals at ca. δ 7.8 ppm and ca. δ 5.8 ppm in the 
1
H NMR spectrum 

corresponded to the two olefinic protons, while signals at ca. δ 197 ppm in the 
13

C NMR 

spectra was diagnostic for the C=O of the ketone functionality.  

Due to the inseparable nature of this mixture we deemed more convenient to 

reduce the number of possible diastereomers by further chemical manipulation. As such, 

the mixture of cyclohexenones 181-184 was reduced under Luche conditions to afford a 

mixture of four diastereomeric cyclohexenols 185-188 in good yield. This mixture was 

used without further characterization. Catalytic reduction of 185-188 proceeded smoothly 
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in excellent yield to afford an inseparable mixture of diastereomer 189-192. 

Desulfonylation of this diastereomeric mixture afforded an inseparable equimolar 

mixture of two diastereomeric ester 193 and 194 in quantitative yield (Scheme 41).  

Structural assignment for 193 and 194 was based on its 
1
H NMR spectral data. 

Notably, the signals at ca. δ 7.28 ppm in the 
1
H NMR spectra of 193 and 194 which 

integrated to 10 protons corresponded to the aromatic protons of the two enantiomers. 

Additionally, δ 5.16-4.99 (m, 2H) ppm signal corresponded to the carbinol methine 

proton of the chiral side group whilst the signal at δ 3.31 ppm which integrated to 1 

proton corresponded to the carbinol methine proton of the cyclohexyl ring. Most 

importantly, the C-4 methyl groups of the two diastereomers gave rise to two doublets at 

δ 0.72 and δ 0.59 ppm both of which integrated to 3 protons each. 

 

 

 
 

 

                     Scheme 41: Synthesis of DHT A-ring synthons 193/194  
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 Alternatively, the diastereomeric mixture of chiral cyclohexenones 181-184 was 

reduced catalytically using H2 and palladium on carbon to afford a mixture 

cyclohexanones 195-198 (5 : 2 : 2 : 1 ratio) in moderate yield. This mixture was treated 

with Mg/MeOH to effect desulfonylation. The latter step afforded an inseparable nearly 

equimolar mixture of two diastereomeric cyclohexanols 199/200 in moderate yield 

(Scheme 42). 

 

 

                 
 

 

                   Scheme 42: Synthesis of DHT A-ring synthons 199/200 

 

 

Structural assignments for 199/200 were based on their 
1
H and 

13
C NMR spectral 

data. In particular, signals at δ 7.24 ppm in the 
1
H NMR spectra of 199/200 which 

integrated to 10 protons were assigned to the aromatic protons of the two diastereomers. 

The signals at δ 5.08-4.94 (m, 2H) ppm in the 
1
H NMR spectra corresponded to the 

carbinol protons of the 2-phenylcyclohexyl group of 199/200.  Most importantly, the 

signals at δ 0.79 (d, J = 6.8 Hz, 3H) ppm and δ 0.65 (d, J = 6.9 Hz, 3H) ppm 

corresponded to the C-4 methyl protons of the diastereomers 199/200. Integration of 

these signals indicated that they are formed in nearly equimolar ratio.  
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2C.3. The Synthesis of Protected Chiral DHT A-Ring Fragment 

 

 

Reaction of the chiral malonate nucleophile (+)-180 (sodium salt) with 32 was 

carried out in a fashion similar to the reaction with dimethyl malonate anion. This 

reaction gave a diastereomeric mixture of two cyclohexenones 201 (less polar/minor) and 

202 (more polar/major) in moderate yield and selectivity (Scheme 43). While the mixture 

of diastereomers was not separable by column chromatography, the structures of 201 and 

202 were assigned by comparison of their 
1
H and 

13
C NMR spectral data with that of 

other cyclohexenones previously described.
 
The signals at δ 6.66 (dd, J = 4.0, 6.5, Hz, 

1H) and δ 5.73 (d, J = 10.9 Hz, 1H) ppm in the 
1
H NMR spectra of 202 corresponded to 

the cyclohexenone olefin protons. The signal at δ 2.74 (d, J = 13.1 Hz, 1H) ppm 

corresponded to the α-methine proton of the propanedioate group. Of particular role is the 

far upfield shifted signal for the C4-methyl protons which appeared at δ 0.14 (d, J = 7.0 

Hz, 3H) ppm. This upfield shift is attributed to the anisotropy of the aromatic portion of 

the 2-phenylcyclohexyl groups. Additionally, signals at δ 198.9 and δ 166.9 ppm in the 

13
C NMR spectrum of 202 corresponded to the C=O functionality of the ketone and ester 

groups. Similar chemical shifts for diastereomer 201 led to its structural assignment. 
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                    Scheme 43: Synthesis and Derivatization of (-)-201 and (+)-202 

 

 

Luche reduction of the diastereomeric mixture of 201 and 202 gave a mixture of 

diastereomeric cyclohexenols (+)-203 and (-)-204 in moderate yield which were 

completely separable by column chromatography (Scheme 43). The structural 

assignments of the cyclohexenol fragments of 203 and 204 were made by comparison of 

their 
1
H NMR spectral data with that for (±)-161.  

Assignment of the absolute stereochemistry at the carbinol carbon of (+)-203 was 

accomplished by 
1
H NMR analysis of the corresponding (S)- and (R)-Mosher esters. 

Reaction of the more polar cyclohexenol (+)-203 with S-(-)-(α)- and R-(+)-(α)-Mosher 

acids following literature procedures 
158

 gave the Mosher esters 205 and 207 respectively 
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in quantitative yields (Scheme 43). Transformation of the less polar cyclohexenol (-)-204 

to its corresponding S-(-)-(α)- and R-(+)-(α)-Mosher esters 206 and 208 respectively was 

accomplished in similar fashion in excellent yields. 

The stereochemical assignment of the carbinol methine proton of (+)-203 was 

made based on the relative chemical shifts of the alkenyl proton (H
2
) of the derived (S)- 

and (R)-Mosher esters 205 and 207 (δ 5.42 and 5.32 ppm, respectively). These relative 

chemical shifts are consistent with an (S)-stereochemical assignment at C1-carbinol 

carbon and therefore C5 is assigned as (R).
158

 Since the minor diastereomer (-)-204 

originated from the same 1S,2R-2-phenylcyclohexanol auxiliary the cyclohexenone ring 

formed may be inferred to have an opposite stereochemical relationship to (+)-203.  

 The difference in diastereoselectivity for the addition of the chiral phenylsulfonyl 

acetate and malonate nucleophiles to cation 32 is rationalized in the following fashion 

(Figs. 8 and 9). Nucleophilic attack occurs on the face of the pentadienyl ligand opposite 

to the Fe metal and the C2 chiral malonate anion is aligned synclinal with respect to the 

electrophilic π-system (i.e., the C1-C2 bond) (Fig. 8). Steric interaction between the 

phenyl substituent and the pentadienyl ligand present in TS2 is expected to raise the 

energy of this transition state compared to TS1. 
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         Fig. 8: Diastereomeric transition states for formation of 201 and 202 

 

 

For the chiral phenylsulfonyl acetate nucleophile (-)-178, reaction can proceed via 

approach on the re-face (i.e., TS3 and TS4) or on the si-face (TS5 and TS6) (Fig. 9). It is 

anticipated that approach of the nucleophile from either re- or si-faces is equally 

probable, and that once nucleophilic attack begins that the reaction proceeds irreversibly. 

For approach on the re-face of the nucleophile, steric interaction between the 

phenylsulfonyl group and the pentadienyl ligand in TS4 results in this being a higher 

energy/”disfavored” pathway compared to TS3. Alternatively, for approach on the si-face 

of the nucleophile, the steric interaction between the phenylsulfonyl group and the 

pentadienyl ligand in TS5, and the steric interaction between the phenyl group of the 2-

phenyl cyclohexyl ester in TS6 would seem to indicate that the two transition states are 

relatively similar in energy. Thus a lack of diastereoselectivity for reaction of (-)-178 

with cation 32 is due to only minor differences in the energies of these transition states. 
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      Fig. 9: Diastereomeric transition states for formation of (±)-181-184 

 

 

Catalytic reduction of cyclohexenol (+)-203 proceeded smoothly to afford 

cyclohexanol (+)-209 in good yield as a single diastereomer. Protection of the hydroxyl 

group of (+)-209 with t-butyldiphenylsilyl chloride gave (+)-210 in quantitative yield also 

as a single diastereomer (Scheme 44). 
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                Scheme 44: Synthesis of Chiral Protected DHT A-ring synthon 212 

 

 

Structural assignment of the protected cyclohexyl portion of (+)-210 was made by 

comparison of  its 
1
H NMR spectral data with that previously obtained for (±)-155. 

Notably, the signals at ca. δ 7.70-7.30 ppm in the 
1
H NMR spectra of (+)-210 which 

integrated to a total of 10 were assigned to aromatic protons of the t-butyldiphenylsilyl 

group whilst those at δ 7.29-7.07 (m, 10H) ppm corresponded to the aromatic protons of 

chiral auxiliary. The signals at δ 5.01-4.81(m, 2H) were assigned to the carbinol methine 

protons of the chiral auxiliary.  The carbinol methine proton and the C-4 methyl protons 

of the cyclohexyl ring were assigned the signals at ca. δ 3.44 ppm and δ 0.11 ppm 

respectively. 

Preliminary efforts at hydrolysis of (+)-210 under acidic conditions with aqueous 

hydrochloric acid (0.5 N) at room temperature or reflux resulted in the removal of the t-

butyldiphenylsilyl group. Furthermore, the use of LiOH with tetrahydrofuran, methanol 

or water also resulted in the deprotection of (+)-210. Similar results were obtained with 

KOH and methanol. Hydrolysis of (+)-210 was however achieved albeit with 

deprotection of the starting material to a lesser extent in refluxing (85-95 
0
C) aqueous 
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sodium hydroxide (~0.5 N) solution to give the diacid (+)-211 quantitatively as a single 

diastereomer. The structure of (+)-211 was assigned based on its 
1
H and 

13
C NMR 

spectral data. In particular, signals at δ 7.70-7.30 ppm in the 
1
H NMR spectrum of (+)-

211 which integrated to 10 was assigned to the aromatic protons of the phenyl groups. 

The carbinol methine proton was assigned the signal at δ 3.50 (m, 1H) whilst the C-4 

methyl protons were assigned the signal at δ 0.81 (br s, 3H). Additionally, the signals at δ 

175.5 ppm and δ 174.4 ppm in the 
13

C NMR spectrum of (+)-211 corresponded to the 

two C=O functionalities. The cluster of 8 signals ranging from ca. δ 135-128 ppm was 

assigned to the aromatic carbons whilst the carbinol carbon of the cyclohexyl ring was 

assigned the signal at δ 73.0 ppm. Furthermore, the α-methylene carbon of (+)-211 was 

assigned the signal at δ 50.9 ppm in the 
13

C NMR spectrum. The diacid (+)-211 was 

converted to the monoacid -212  upon reaction with 1,1′-carbonyldiimidazole with great 

difficulty owing to the removal of the t-butyldiphenylsilyl during the course of the 

reaction resulting in very low yields of the anticipated product. As such the monoacid 

212 (26 mg) was carried forward without further purification. Partial structural 

assignment of -212 was made on the basis of its 
1
H and 

13
C NMR spectral data. In 

particular, the signals at ca. δ 7.70-7.30 ppm in the 
1
H NMR spectrum of -212 which 

integrated to 10 were assigned to the aromatic protons of the two phenyl rings. Similarly, 

the multiplet at δ 4.61 (m, 1H) ppm corresponded to the carbinol methine proton of the 

cyclohexyl ring. The C4-methyl protons were also assigned to the signal at δ 0.85 (d, J = 

6.2 Hz, 3H) ppm. Additionally, the signal at δ171.5 ppm in the 
13

C NMR spectrum of 212 

was assigned to the C=O functionality of the carboxylic acid. 
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Scheme 45: Synthesis of chiral protected A-ring fragments (E/Z)-215 

 

 

Reaction of the monoacid 212 with excess trimethylsilyldiazomethane solution 

afforded 213 which after filtration through a celite pad was carried forward to the next 

step without further purification. Deprotonation of 213, followed by reaction with 

phenylselenyl chloride gave an equimolar mixture of diastereomeric α-phenylselenyl 

esters 214/214’, which upon oxidation and elimination of phenylselenic acid gave an 

inseparable equimolar mixture of stereoisomeric enoates (Z)-215 and (E)-215 in 

quantitative yield (Scheme 45). The structures of (Z)-215 and (E)-215 were assigned 

based on their 
1
H and 

13
C NMR spectral data which were identical with that previously 

obtained for the racemic protected DHT A-ring fragment (±)-158. 
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2D.1. Preparation of 2-methyl-2-cyclohexenones 

 

 

The reaction of stabilized carbon nucleophiles with the (1-

methylpentadienyl)iron(+1) cation 219 were also examined. Cation 219 was prepared 

starting from the commercially available 2,4-hexadienal 216 following literature 

procedure (Scheme 46).
49

 Complexation of diironnonacarbonyl 129 with 216 gave 

tricarbonyl(η
4
- 2,4-hexadienal)iron (±)-217 in excellent yield. Hydride reduction of 217 

gave (±)-218. Dehydration of 218 with acetic anhydride gave a carbocation which was 

trapped as the hexafluorophosphorate salt (±)-219 (3-steps total, 58%, Scheme 46). 

 

 

 
 

 

                                      Scheme 46: Synthesis of cation (±)-219 

 

 

The reactions of cation 219 with phosphorus stabilized nucleophiles to form 

cyclohexanones were examined as potential synthons for the synthesis of carvone 

metabolites and DHT A-ring synthons (Scheme 47).   



76 
 

 

               
 

 

      Scheme 47: Synthesis of cyclohexenones from phosphorous-stabilized nucleophiles 

 

 

Thus reaction of cation 219 with sodium trimethyl phosphonoacetate [prepared 

from the reaction of trimethyl phosphonoacetate and sodium hydride] afforded an 

inseparable mixture of regioisomeric cyclohexenones (±)-220a and (±)-220b in good 

yield and selectivity. No (diene)iron complexes  C or D were isolated after column 

chromatography. Cyclohexenone 220a arises from the nucleophilic attack at the C5 

(Scheme 48) whilst 220b is formed by the nucleophilic attack at the C3 position of cation 

219 (Scheme 49). 

The structural assignment for the major cyclohexenone 220a was made based on 

its 
1
H NMR spectral data. In particular, the multiplet at δ 6.73-6.63 (m, 1H) ppm was 

assigned to the C-3 olefinic proton. The methyl ester protons corresponded to the signals 

at ca. δ 3.77 ppm which integrated to 9. The α-methine proton was also assigned to the 

signal at δ 3.03-2.92 (dd, J = 8.3, 8.5 Hz, 1H) ppm. Owing to the presence of two 

diastereomers, as well as 
31

P coupling, interpretation of the 
13

C NMR spectrum of 220a 

was not attempted.  
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Cyclohexenones 221a/b - 224a/b were also prepared following a similar protocol 

(Scheme 47). The structures of the other cyclohexenones were assigned based on their 
1
H 

NMR spectral data and by comparison with previously reported 2-methyl-2-

cyclohexenones. 

 

 

 
 
 
   Scheme 48: Mechanistic ration for formation of cyclohexenone A 

 

 

Nucleophilic attack at the C5 position generates the (pentenediyl)iron complex 

A’. The absence of a strongly electron-withdrawing substituent at C1 implies that the 

relative rate of carbonyl insertion into the Fe-C σ-bond will be faster than reductive 

elimination of the Fe(CO)3 group.
64

 Thus rapid CO insertion into the Fe-C σ-bond affords 

the π-allyl-σ-acyl complex A’’. Reductive elimination followed by conjugation affords 

cyclohexenone A. 

Conversely, attack at the C3 position of cation 219 will lead to cyclohexenone B 

(Scheme 12). Nucleophilic attack at either of the terminal C2/C6 positions of cation 219 

will result in (diene)iron complexes C and D. 
64 
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                 Scheme 49: Mechanistic ration for formation of cyclohexenone B 

 

 

2D.2. Synthesis of Carvone Metabolites: 10-Hydroxycarvone and Carvonic acid 

 

 

10-Hydroxycarvone has been isolated from Hyssopus cuspidatus, a plant used in 

Chinese folk medicine for the treatment of fever and broncusus asthma.
159

 This terpene 

has also been isolated as a minor carvone metabolite from cultured cells of the 

Madagascar periwinkle, Catharanthus roseus,
160

 and as an excreted metabolite of 

carvone in the urine of rabbits,
161

 and human volunteers,
162, 163

 while carvonic acid has 

also been isolated as a human metabolite of carvone.
162, 163

  

Horner-Emmons olefination
164

 of 220a/b with paraformaldehyde afforded (±)-225 

as a single diastereomer in excellent yield (Scheme 50).  The structure of 225 was 

assigned based on its 
I
H and 

13
C NMR spectral data.  

In particular, the signal at δ 6.73 (m, 1H) ppm in the 
1
H NMR spectrum of 225 

was assigned to the C-3 olefinic proton of the cyclohexenone ring whilst the pair of 
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singlet signals at δ 6.26 and 5.57 ppm were assigned to the exocyclic olefinic protons. 

Furthermore,  the signals at δ 199.0 ppm and δ 166.8 ppm in the 
13

C NMR spectrum of 

225 were assigned to the C=O functionality of the ketone and ethyl ester groups 

respectively.  The cluster of four signals from ca. δ 144.0-124 ppm was assigned to the 

olefinic carbons. 

 

 

 
 
 

Scheme 50: Syntheses of carvone metabolite (±)-226 and (±)-227 

 

 

Hydrolysis of (±)-225 proceeded smoothly to afford carvonic acid (±)-226 in 

moderate yield. Structural assignment of 226 was made based on its 
1
H and 

13
C NMR 

spectral data.  Notably, the signals at δ 6.76 (m, 1H) ppm in the 
1
H NMR spectrum of 226 

corresponded to the C-3 cyclohexenone olefinic proton. Similarly, the two exocyclic 

diastereotopic exocyclic protons were assigned to the singlets at δ 6.44 and 5.72 ppm. 
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The absence of the methoxyl protons at δ 3.70 ppm was also confirmative. These 

assignments were also consistent with literature values.
162, 163 

 

To synthesize 10-hydroxycarvone (±)-227, we initially explored the reduction of 

carvonic acid 226 with borane. This reaction however gave a complex mixture of reaction 

products (Scheme 50). 10-Hydroxycarvone (227 was eventually prepared by α-

deprotonation of 225 with lithium diisopropylamide to afford the enolate 225’ which was 

reduced in situ with diisobutylaluminum hydride. Aqueous workup of the reaction 

mixture gave 10-hydroxycarvone 227 as a single diastereomer. The structural assignment 

of 227 was based on its 
1
H and 

13
C NMR spectral data. In particular, the signal at δ 4.15 

(s, 2H) ppm in the 
1
H NMR spectrum of 227 corresponded to the allylic carbinol protons. 

The signal at δ 65.1 ppm in the 
13

C NMR spectrum was also assigned to the carbinol 

carbon. The 
1
H and 

13
C NMR spectral data of 227 were also consistent with literature 

values.
162, 163

  

 

 

2D.3. Synthesis of 5-alkenyl-2-methyl-2-cyclohexenones via Horner-Emmons 

Olefination 

 

 

With the successful synthesis of oxygenated carvones we sought to utilize the 

other phosphonates 221-224 in Horner-Emmons olefination
164

 reactions. Thus reaction of 

the anions of 221-223 with paraformaldehyde gave the olefin products 228-230 

respectively. Unfortunately, attempted olefination with 224 led to a complex mixture of 

products (Scheme 51). 
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      Scheme 51: Synthesis of Carvone Synthons  

 

 

 The structure assignments of the oxygenated products (±)-228-230 were made by 

comparison of their 
1
H and 

13
C NMR spectral data with that obtained for 225. In 

particular, the C-3 cyclohexenone olefinic protons were assigned to the signal at ca. δ 

6.70 ppm whilst the two exocyclic diastereotopic protons were assigned to the signals 

ranging from ca. δ 6.50-5.50 ppm in the 
1
H NMR spectra. The C4-methyl protons were 

assigned to the signals ranging from ca. δ 1.60-1.80 ppm. 

 The reaction of cation 219 with stabilized carbon nucleophiles was also examined. 

The results are summarized in Scheme 52. The attack of “soft” nucleophiles to cation 219 

proceeded at both terminal and internal carbons of the pentadienyl ligand to give 

mixtures of pentenediyl complexes A’/B’ and (diene)iron complexes C/D. In general, 

increasing the substitution on the malonate nucleophile (e.g. dimethyl malonate vs. 

dimethylpropagyl malonate) led to a small decrease in the percent nucleophilic attack at 

the pentadienyl terminus.
64

 Also the regioselectivity of nucleophilic attack was largely 

independent of the nucleophile counterion used as was the case when Li
+ 

and K 
+
 were 

used counterions. 
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      Scheme 52: Synthesis of cyclohexenones from stabilized malonate nucleophiles 

 

 

The reaction of cation 219 with nitrogen-stabilized and other stabilized carbon 

nucleophiles all resulted in the formation of the dimeric (diene)iron complex (±)-236 

(Eqn. 22). 
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  The reactivity of tricarbonyl(η
5
-
 
1,5-dimethylpentadienyl)iron cation (+1)  (±)-237 

and tricarbonyl(η
5
-5-phenylpentadienyl)iron cation (+1)  (±)-238 with stabilized 

nucleophiles was also examined. To this end cations 
 
237

165
 and  238

49, 166
 were prepared 

in 58 % and 59 % yields respectively following literature procedures. Generally the yields 

of products arising via for nucleophilic addition to these cations were significantly lower 

compared to cations 32 and 219 (Scheme 53).  

Nucleophilic attack at the internal (C3/35) positions of cation 237 afforded 

cyclohexenones albeit in significantly low yields. Formation of (diene)iron products  

from the terminal (C2/C6) nucleophilic attack was sterically disfavored (Scheme 53).  

No nucleophilic attack was observed for reactions of cation 238 with nucleophiles 

used. In all cases the tricarbonyl(η
4
-5-phenyl-2,4-pentadienol)iron complex was isolated 

as the major fraction after column chromatography.  
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                                           Scheme 53: Synthesis of cyclohexenones 
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EXPERIMENTAL 

 

 

General Data 

 

 

            All non-aqueous reactions were carried out under a nitrogen atmosphere. 

Spectrograde solvents were used without purification with the exception of dry diethyl 

ether which was distilled from calcium hydride. Dichloromethane was distilled from 

calcium hydride (CaH2) whilst tetrahydrofuran was distilled from sodium and 

benzophenone. Anhydrous N,N-dimethylformamide (DMF), anhydrous dimethyl 

sulfoxide (DMSO), and anhydrous toluene were purchased from VWR. Column 

purification was performed on silica gel 60 (60-200 mesh Dynamic Adsorbents, Inc.). 

Thin layer chromatography plates were detected by one of the following methods; 

ultraviolet light or iodine vapor. Melting points were obtained on a Mel-Temp melting 

apparatus and are uncorrected. Infrared spectra were obtained on a Nicolet Magna IR 560 

Spectrometer. All 
1
H and 

13
C NMR spectra were recorded on either a Varian Mercury 

Series 300 or Varian Inova Series 400 Spectrometers at the appropriate frequency. High 

resolution mass spectra were obtained from Old Dominion University COSMIC Lab, 

Norfolk, Virginia. 
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Ethyl 3-methyl-(2E)-2,4-pentadienoate (128): In a 250 mL flame-dried round bottom 

flask was suspended methyltriphenylphosphonium bromide (8.1 g, 22 mmol) in dry 

tetrahydrofuran (75 mL). The suspension was then maintained under N2 and cooled to -78 

0
C using an acetone-liquid nitrogen bath. A solution of n-BuLi (2.50 M in hexanes, 9.2 

mL, 23 mmol) was added dropwise by means of a syringe. The mixture was warmed to 0 

0
C and stirred for 1 h. The reaction mixture was cooled again to -78 

0
C and 3-methyl-4-

oxocrotonate (3.0 g, 21 mmol) (127) added dropwise. The mixture was stirred at this 

temperature for 2 h after which it was warmed to room temperature and stirring continued 

overnight. The reaction was quenched with H2O, extracted several times with Et2O, dried 

(MgSO4) and concentrated. The crude extracts were purified by flash column 

chromatography (SiO2, ethyl acetate-hexanes = 0-5% gradient) to afford 128 as a 

yellowish oil (2.3 g, 78%). 

IR (neat) 2926, 1716, 1659, 1605, 988, 919 cm
-1

;
 1

H NMR (CDCl3, 400 MHz) δ 6.41 (dd, 

J = 10.6, 17.3 Hz, 1H), 5.79 (s, 1H), 5.61 (d, J = 17.3 Hz, 1H), 5.39 (d, J = 10.6 Hz, 1H), 

4.12 (q, J = 7.3 Hz, 2H), 2.27 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H);
 13

C NMR (CDCl3, 100 

MHz) δ 167.0, 152.1, 140.2, 120.1, 119.5, 60.0, 14.6, 13.3.
 

 The 
1
H and 

13
C NMR spectra matched those reported in the literature.

29 
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Diiron nonacarbonyl (129): A 1000 mL round bottom flask was charged with glacial 

acetic acid (500 mL). The solvent was deoxygenated by bubbling N2 through for about 

10-15 min. Iron pentacarbonyl (100 mL) was added and the solution irradiated with a 

medium pressure mercury vapor lamp for 4 h. Diiron nonacarbonyl formed as thin golden 

flakes which were then separated by suction filtration through a sintered glass funnel. The 

residue collected was washed with diethyl ether and stored in an amber glass container at 

0-5 
0
C. The acetic acid-iron pentacarbonyl filtrate was resubjected to UV irradiation and 

the procedure repeated several times. From the 100 mL of iron pentacarbonyl, 80 g of 

diiron nonacarbonyl was obtained. This compound was used without further 

characterization. 

 

 

 
 

 

Tricarbonyl(ethyl 3-methyl-(2E)-penta-2,4-dienoate)iron (130): To a 500 mL round 

bottom flask equipped with a reflux  condenser and a magnetic stirring bar  was added a 

solution of  dienoate  128 (2.47 g, 17.6 mmol)  in benzene (150 mL). Nitrogen was 

bubbled through this solution for 15 min and diiron nonacarbonyl 129 (16.0 g, 44.1 mmol) 

was added. The mixture was gently heated at reflux until TLC confirmed disappearance of 
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all starting material. The mixture was subsequently concentrated under reduced pressure, 

redissolved in CH2Cl2, filtered through a pad of celite and the pad washed several times 

with CH2Cl2. The filtrate was concentrated under reduced pressure, and the residue was 

purified by flash column chromatography (SiO2, ethyl acetate-hexanes = 5-10% gradient) 

to afford 130 as a yellowish oil (4.01 g, 81%).  

IR (neat) 2058, 1985, 1712 cm
-1

; 
1
H NMR (CDCl3, 300 MHz) δ 5.23 (br t, J = 7.9 Hz, 

1H), 4.13 (q, J = 7.1 Hz, 2H), 2.55 (s, 3H), 1.84 (dd, J = 2.6, 6.8 Hz, 1H), 1.28 (br t, J = 

7.1 Hz, 3H), 0.72 (s, 1H), 0.52 (dd, J = 2.6, 9.1 Hz, 1H); 
13

C NMR CDCl3, 75 MHz) δ 

209.2, 171.9, 104.6, 86.0, 60.3, 48.8, 38.6, 19.0, 14.5.  

The 
1
H, 

13
C and IR spectra matched those reported in the literature.

29  

 

 

 
 

 

Tricarbonyl(3-methyl-2(E),4-pentadien-1-ol)iron (131): In a flame dried 250 mL 

round bottom flask,  3 (7.31 g, 26.1 mmol) was dissolved in dry CH2Cl2 (100 mL) and 

the solution  cooled to -78 
0
C in a dry ice-acetone bath under an N2 atmosphere. A 

solution of DIBAL in hexanes (1.00 M, 80 mL, 80 mmol) was added slowly and carefully 

via syringe. The reaction mixture was stirred at -78 
0
C for 2 h. After this time methanol 

(20 mL) was added, followed by water. The mixture was warmed to room temperature 

and extracted several times with CH2Cl2, dried (MgSO4) and concentrated under reduced 

pressure. The bright yellow semi-solid residue was purified by flash column 
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chromatography (SiO2, ethyl acetate-hexane = 0-20% gradient) to afford 131 as pale 

yellow oil (6.1 g, 97%). 

1
H NMR (CDCl3, 400 MHz) δ 5.15 (t, J = 8.1 Hz, 1H), 3.77 (m, 2H), 2.40 (br s, 1H), 

2.19 (s, 3H), 1.66 (dd, J = 2.7, 7.0 Hz, 1H), 0.92 (t, J = 7.1 Hz, 1H), 0.25 (dd, J = 2.7, 9.0 

Hz, 1H); 
13

C NMR (CDCl3, 100 MHz): δ 211.3, 102.7, 83.7, 61.8, 61.7, 37.8, 18.3.  

The 
1
H and 

13
C spectra matched those reported in the literature.

29
  

 

 

 
 

 

Tricarbonyl(η
5
-3-methylpentadienyl)iron(+1) hexafluorophosphate (32): To a cold 

stirring solution of 131 (6.1 g, 25 mmol) in ether (30 mL) was added dropwise acetic 

anhydride (13 mL). The reaction mixture was stirred at 0 
0
C for 20 min after which a 

solution of hexafluorophosphoric acid (60.0% w/w solution, 8.6 mL) in acetic anhydride 

(13 mL) was added. The mixture was stirred for 30 min at 0 
0
C during which time a pale 

yellow precipitate appeared. The reaction mixture was transferred into ether (200 mL) to 

induce precipitation. The precipitate was isolated by suction filtration to give 32 as a 

bright yellow solid (7.9 g, 85%). 

mp 130-135 
0
C (decomposes); IR (KBr) 2119, 2068 cm

-1
; 

1
H NMR (acetone-d6, 300 

MHz): δ 6.49 (t, J = 11.5 Hz, 2H), 3.81 (dd, J = 3.2, 10.1 Hz, 2H), 2.87 (s, 3H), 2.44 (dd, 
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J = 2.9, 12.6 Hz, 2H); 
13

C NMR (acetone-d6, 75 MHz): δ 117.9, 104.5, 64.2, 22.4. The 

signal for Fe-CO was not observed.  

The spectral data matched those reported in literature.
48  

 
 

 
 

 

Reaction of cation 5 with sodium dimethyl malonate (±)-75: To an ice-cold stirring 

suspension of NaH (37 mg, 0.92 mmol) in dry THF (10 mL) was added dimethyl 

malonate (0.081 g, 0.62 mmol). The mixture was stirred at 0 
0
C for 10-15 min, the solid 

cation 32 (0.150 g, 0.410 mmol) was added in one portion and reaction mixture stirred for 

2 h at room temperature. The reaction mixture was diluted with CH2Cl2 (10 mL) and 

saturated solution of methanolic NaHCO3 (10 mL), and stirred overnight at room 

temperature. The reaction was quenched with H2O, extracted several times with CH2Cl2, 

dried (MgSO4) and concentrated. The residue was purified by flash column 

chromatography (SiO2, diethyl ether-hexanes = 50-75% gradient) to afford 75 as a light 

yellow oil (80 mg, 81%) and a trace of 74 (diene). 

IR (neat) 1734, 1676 cm
-1

; 
1
H NMR (CDCl3, 300 MHz) δ 6.11 (dd, J = 6.1, 10.1 Hz, 1H), 

5.81 (d, J = 10.1 Hz, 1H),  3.31 (d, J = 10.9 Hz, 1H), 3.23 (s, 3H), 3.20 (s, 3H), 3.03 (m, 

1H), 2.47 (dd, J = 3.8, 16.7 Hz, 1H), 2.31 (m, 1H), 2.10 (dd, J = 13.5, 16.7 Hz, 1H), 0.55 

(d, J = 7.4 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz): δ 195.6, 167.9, 167.8, 153.5, 127.9, 

54.6, 52.2, 52.1, 37.5, 37.3, 31.6, 12.2.  
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The 
1
H and 

13
C spectra matched those reported in the literature.

48 

 

 

 
 
 

IR (neat) 2046, 1966, 1736 cm
-1

; 
1
H NMR (CDCl3, 300 MHz): δ 5.33 (t, J = 8.4 Hz, 1H),  

3.71 (s, 3H), 3.70 (s, 3H), 3.29 (dd,  J = 6.1, 8.8 Hz, 1H), 2.40 (dd, J = 1.5, 4.3 Hz, 1H), 

2.17 (m, 1H), 2.09 (s, 3H), 1.73 (dd, J = 3.3, 7.6 Hz, 1H), 1.61 (m, 1H), 1.28 (dd, J  = 

3.2, 9.2 Hz, 1H); 
13

C NMR (CDCl3, 75 MHz): δ 210.6, 169.1, 168.9, 104.2, 90.8, 57.1, 

54.3, 52.8, 52.7, 37.7, 29.0, 25.7.  

The 
1
H and 

13
C spectra matched those reported in literature.

48  

 

 

 
 

 

Dimethyl 2-(5-hydroxy-2-methylcyclohex-3-en-1-yl)propandioate (±)-139: To a 

stirring solution of (±)-75 (33 mg, 0.14 mmol) in methanol (2.5 mL) was added 

CeCl3.7H2O (57 mg, 0.15 mmol). The mixture was stirred until all the inorganic salt had 

dissolved completely. Solid NaBH4 (25 mg, 0.65 mmol) was added in one portion and the 

solution stirred at room temperature for 2 h. The reaction was quenched with H2O, 
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extracted several times with ether, dried (MgSO4) and concentrated. The crude residue 

was purified by flash column chromatography (SiO2, diethyl ether-hexanes = 0-75% 

gradient) to afford (±)-139 as a pale yellow oil (26 mg, 78%). 

IR (neat) 3404, 2856, 2877, 1735, 1435, 1315, 1257 cm
-1

; 
1
H NMR (CDCl3, 300 MHz) δ 

5.70 (dd, J = 1.7, 10.5 Hz, 1H), 5.60 (dd, J = 1.9, 10.5 Hz, 1H), 4.26 (ddd,  J = 1.9, 4.0, 

9.9 Hz, 1H), 3.75 (s, 3H), 3.73 (s, 3H), 3.37 (d,  J = 6.7 Hz, 1H), 2.56 (dqd,  J = 1.7, 6.6, 

9.9 Hz, 1H), 2.32 (dddd,  J = 2.1, 6.7, 9.9, 10.1 Hz, 1H) 1.77 (ddd,  J = 2.1,  4.0, 13.5 Hz, 

1H), 1.68 (br s, 1H), 1.45 (ddd, J = 9.9, 10.1, 13.5 Hz, 1H), 0.91 (d,  J = 6.6 Hz, 3H). 
13

C 

NMR (CDCl3, 75 MHz) δ 169.3, 168.5, 134.6, 129.9, 68.2, 55.2, 52.9, 52.8, 36.3, 31.3, 

30.8, 14.6.  

These spectral data were compared to those of a similar compound reported by our 

group.
48 

 
 

 
 

 

Dimethyl 2-(5-hydroxy-2-methylcyclohexyl)propandioate (±)-140: The cyclohexenol 

(±)-139 (56 mg, 0.23 mmol) was dissolved in methanol (8 mL) and the resultant solution 

transferred into a small heavy-walled hydrogenation flask.  Palladium on activated carbon 

(10 % w/w, 10 mg) was added and the flask was connected to a Parr hydrogenation 

apparatus. The reaction mixture was maintained under H2 (45 psi) and stirred for 5 h after 
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which the pressure was released and the solvent removed. The residue was suspended in 

ethyl acetate (10 mL) and filtered through a pad of celite. The filter bed was washed 

several times with ethyl acetate and the extracts concentrated under reduced pressure to 

afford (±)-140 as a colorless oil (52 mg, 91%). 

IR (neat) 3471, 2910, 1675, 1448 cm
-1

; 
1
H NMR (CDCl3, 400 MHz): δ  3.72 (s, 6H), 3.60 

(tt, J = 2.8, 10.3 Hz, 1H), 3.31 (d, J = 5.5 Hz, 1H), 2.32 (tdd, J = 2.8, 5.5, 10.3 Hz, 1H), 

1.83 (m, 1H), 1.70 (m, 3H), 1.57 (m, 2H), 1.51 (br s, 1H), 1.39 (m, 1H), 0.87 (d, J = 6.7 

Hz, 3H); 
13

C NMR (CDCl3, 100 MHz) δ 169.3, 168.9, 70.7, 55.7, 52.7, 39.6, 33.7, 31.0, 

29.5, 28.4, 12.2. 

 

 

 
 

 

Dimethyl 2-(2-methyl-5-oxocyclohexyl)propandioate (±)-141: The cyclohexenone (±)-

75 (112 mg, 0.467 mmol) was dissolved in methanol (10 mL) and the resultant solution 

transferred into a small heavy-walled hydrogenation flask.  Palladium on activated carbon 

(10 % w/w, 15 mg) was added and the flask was connected to a Parr hydrogenation 

apparatus. The reaction mixture was maintained under H2 (45 psi) and stirred for 24 h 

after which the pressure was released and the solvent removed. The residue was 

suspended in ethyl acetate and filtered through a pad of celite. The filter bed was washed 

several times with ethyl acetate and the extracts concentrated under reduced pressure. 
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The crude residue was purified by flash column chromatography (SiO2, ethyl acetate-

hexanes = 15-30% gradient) to afford (±)-141 as a pale yellow oil (82 mg, 73%). 

IR (neat) 3439, 2957, 2085, 1990, 1735, 1666, 1435, 1259 cm
-1

; 
1
H NMR (CDCl3, 300 

MHz) δ 3.75 (s, 3H), 3.72 (s, 3H), 3.39 (d, J = 5.7 Hz, 1H), 2.72 (dd, J = 10.2, 15.8 Hz, 

1H), 2.48 (m, 1H), 2.31 (m, 1H), 2.25 (m, 2H), 1.12 (m, 1H), 1.87 (m, 2H), 1.06 (d, J = 

6.9 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz): δ 209.5, 169.3, 168.4, 55.5, 52.9, 49.3, 40.9, 

36.5, 31.7, 28.8, 11.9.      

 

 

 
 

 

Dimethyl 2-(5-hydroxy-2-methylcyclohexyl)propandioate (±)-140: To a stirring 

solution of the cyclohexanone (±)-141 (36 mg, 0.15 mmol) in methanol (5 mL) was 

added solid NaBH4 (6 mg, 0.1 mmol) at room temperature. The reaction mixture was 

stirred for a further 2 h under room temperature. The reaction was quenched with H2O, 

extracted several times with ether, dried (MgSO4) and concentrated. The crude residue 

was purified by flash column chromatography (SiO2, ethyl acetate-hexanes = 30-50% 

gradient) to afford (±)-140 as a pale yellow oil (31 mg, 93%).   

The 
1
H and 

13
C NMR spectra for this product were identical to those previously obtained. 
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Methyl 2-(5-hydroxy-2-methylcyclohexyl)acetate (±)-142:  To a stirring solution of 

(±)-140 (40 mg, 0.17 mmol) in DMSO (10 mL) was added LiI (70 mg, 1.4 mmol) and 

H2O (70 mg, 3.9 mmol). The reaction mixture was stirred at room temperature until all 

the inorganic salts had dissolved and then heated to reflux at 150 
0
C for 24 h. After 

completion the reaction mixture was cooled to room temperature, diluted with water and 

extracted with CH2Cl2. The combined organic extracts were washed with 10% aqueous 

HCl (15 mL) followed by saturated aqueous NaHCO3 (38 mL), dried (MgSO4) and 

concentrated under reduced pressure to afford (±)-142 as a colorless oil (23 mg, 79%). 

IR (neat) 2965, 1723, 1467, 1311, 1186 cm
-1

; 
1
H NMR (CDCl3, 300 MHz) δ 3.69 (s, 3H), 

3.68-3.57 (m, 1H), 2.36-2.17 (m, 2H), 2.14-1.99 (m, 1H), 1.88-1.78 (m, 8H), 0.86 (d, J = 

7.4 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 174.0, 70.8, 51.8, 38.8, 36.1, 36.0, 30.8, 30.4, 

29.8, 12.5. ESI-HRMS m/z 209.1148 (calcd. for C10H18O3Na (M+Na) m/z 209.1148). 
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Triethyl 2-(2-methyl-5-oxocyclohex-3-en-1-yl)phosphonoacetate (±)-143 a/b: To an 

ice-cold stirring suspension of NaH (13.5 mg, 0.546 mmol) in dry THF (10 mL) was 

added triethyl phosphonoacetate (0.122 mg, 0.546 mmol). The mixture was stirred at 0 
0
C 

for 10-15 min. Solid cation 32 (0.20 g, 0.55 mmol) was added in one portion and the 

reaction mixture stirred for 2 h at room temperature. The reaction mixture was diluted 

with CH2Cl2 and saturated methanolic NaHCO3 (10 mL each) and stirred overnight at 

room temperature. Water (20 mL) was added and the mixture extracted several times 

with CH2Cl2. The combined extracts were dried (MgSO4) and concentrated. The residue 

was purified by flash column chromatography (SiO2, diethyl ether-hexanes = 0-50% 

gradient) to afford 143a as a yellowish oil (164 mg, 84%) as well as an unquantified trace 

of 143b (diene). 

IR (neat) 2960, 2890, 1730, 1680, 1258 cm
-1

; 
1
H NMR

 
(CDCl3, 300 MHz) δ 6.99 (dd, J = 

6.1, 10.1 Hz, 1H), 5.92 (d, J = 6.1 Hz, 1H), 4.32-4.03 (m, 6H), 3.08-2.73 (m, 5H), 1.37-

1.19 (m, 9H), 1.10 (d, J = 6.7 Hz, 3H). ESI-HRMS m/z 355.1281 (calcd. for 

C12H25O6PNa (M+Na) m/z 355.1285). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted.  
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Ethyl 2-(2-methyl-5-oxocyclohex-3-en-1-yl)propenoate (±)-148: To an ice-cold stirring 

suspension of NaH (43 mg, 0.11 mmol) in dry THF (5 mL) was added 143a (40 mg, 0.11 

mmol). The mixture was stirred at 0 
0
C for 30 min, and paraformaldehyde (3.2 mg, 0.11 

mmol) added. The reaction mixture was stirred for 1 h at room temperature.  The reaction 

mixture was diluted H2O (10 mL) and extracted several times with CH2Cl2. The 

combined extracts were dried (MgSO4) and concentrated. The residue was purified by 

flash column chromatography (SiO2, diethyl ether-hexanes = 0-25% gradient) to afford 

(±)-148 as a pale yellowish oil (20 mg, 98%). 

IR (neat) 2964, 2874, 1714, 1252, 1143 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) δ 7.02 (dd, J = 

4.1, 9.5 Hz, 1H), 6.39 (s, 1H), 5.99 (d, J = 9.5 Hz, 1H), 5.48 (s, 1H), 4.22 (q, J = 7.5 Hz, 

2H), 3.54-3.41 (m, 1H), 2.94-2.81 (m, 1H), 2.66-2.53 (m, 1H), 2.39-2.28 (m, 1H), 1.31 (t, 

J = 7.1 Hz, 3H), 0.88 (d,  J = 6.6 Hz, 3H); 
13

C NMR (CDCl3, 100 MHz) δ 199.3, 168.0, 

155.6, 140.9, 127.6, 125.3, 60.9, 38.1, 37.1, 32.1, 14.2, 12.6. ESI-HRMS m/z 439.2091 

(calcd. for (C12H16O6)2Na (M+Na) m/z 439.2100). 
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Diethyl [(2-methyl-5-oxocyclohex-3-en-1-yl)(phenylsulfonyl)methyl]phosphonate 

(±)-145: To an ice-cold stirring suspension of NaH (28.4 mg, 0.710 mmol) in dry THF 

(13 mL) was added diethyl (phenylsulfonyl)methanephosphonate (0.16 g, 0.55 mmol). 

The mixture was stirred at 0 
0
C for 10-15 min, solid cation 32 (0.20 g, 0.55 mmol) was 

added in one portion and the reaction mixture stirred for 2 h at room temperature.  The 

reaction mixture was diluted with CH2Cl2 (13 mL), a saturated solution of methanolic 

NaHCO3 (26 mL) was added, and the mixture was stirred overnight at room temperature. 

Water (20 mL) was added, and the mixture was extracted several times with CH2Cl2. The 

combined extracts were dried (MgSO4) and concentrated. The residue was purified by 

flash column chromatography (SiO2, diethyl ether-hexanes = 0-90% gradient) to afford 

(±)-145a as a bright green oil (108 mg, 61%) and an unquantifiable amount of diene 

complex 14b. 

IR (neat) 2925, 1675, 1448, 1311, 1255, 1156, 1021 cm 
-1

; 
1
H NMR (CDCl3, 300 MHz) δ 

8.05-7.94 (m, 2H), 7.72-7.64(m, 1H), 7.62-7.53 (m, 2H), 6.96 (dd, J = 5.7, 9.5 Hz, 1H), 

5.96 (d, J = 9.5  Hz, 1H), 4.17 (q, J = 7.1 Hz, 4H), 3.63 (d, J = 6.4 Hz, 1H), 3.33-3.16 (m, 

1H),  3.02-2.87 (m, 1H), 2.84-2.72 (m, 1H), 2.60 (dd, J = 2.6, 15.9 Hz, 1H), 1.27 (t, J = 

7.1 Hz, 6H), 1.17 (d, J = 7.2 Hz, 3H). 
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 Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted. 

 

 

 
 

 

Diethyl [(5-hydroxy-2-methylcyclohex-3-en-1-

yl)(phenylsulfonyl)methyl]phosphonate (±)-149: The cyclohexenone 145a (147 mg, 

0.367 mmol) and CeCl3. 8H2O (136.7 mg, 0.3670 mmol) were dissolved in MeOH (10 

mL). The mixture was stirred until all the inorganic salt had dissolved completely. Solid 

NaBH4 (14 mg, 0.38 mmol) was added in one portion and the solution stirred at room 

temperature. The reaction mixture was stirred for a further 2 h under room temperature. 

The reaction was quenched with water (50 mL) and the mixture extracted several times 

with ether. The combined extracts were dried (MgSO4) and concentrated. The crude 

residue was purified by flash column chromatography (SiO2, ethyl acetate-hexanes = 0-

75% gradient) to afford (±)-149 as a pale green oil (106 mg, 72%). 

IR (neat) 3422, 3055, 2983, 1652, 1558, 1265, 909 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) δ 

8.02-7.94 (m, 2H), 7.68-7.61 (m, 1H), 7.57-7.50 (m, 2H), 5.63 (dd, J = 6.2, 10.9 Hz, 1H), 

5.56 (d, J = 11.1 Hz, 1H), 4.24-4.16 (m, 1H), 4.14-4.03 (m, 4H), 3.63-3.50 (m, 1H), 2.77-

2.64 (m, 1H),  2.95-2.34 (m, 1H), 2.24-2.14 (m, 1H), 2.13-2.03 (m, 1H), 1.84-1.70 (m, 
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1H), 1.33-1.25 (m, 6H), 1.00 (d, J = 7.2 Hz,  3H). ESI-HRMS m/z 425.1158 (calcd. for 

C18H27O6PSNa (M+Na) m/z 425.1162). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted. 

 

 

 
 

 

4-Methyl-5-[1-(phenylsulfonyl)ethenyl]cyclohex-2-enol (±)-150: To an ice-cold stirring 

suspension of NaH (8.20 mg, 0.205 mmol) in dry THF (8 mL) was added (±)-149 (55 

mg, 0.14 mmol). The mixture was stirred at 0 
0
C for 30 min, and then paraformaldehyde 

(8.2 mg, 0.27 mmol) was added slowly at such a rate that the temperature remained 

below 30 
0
C and then reaction mixture was stirred for 1 h at room temperature.  The 

reaction mixture was diluted with H2O (10 mL) and the mixture was extracted several 

times with CH2Cl2. The combined extracts were dried (MgSO4) and concentrated. The 

residue was purified by flash column chromatography (SiO2, diethyl ether-hexanes = 0-

75% gradient) to afford (±)-150 as a pale yellowish oil (20 mg, 53%). 

IR (neat), 3426, 2925, 2853, 1447, 1302, 1082 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) δ 7.86 

(ddd, J = 0.8, 1.5, 8.0 Hz, 2H), 7.64 (tt, J = 1.5, 7.5 Hz, 1H), 7.61 (ddd, J = 0.8,  7.5, 8.0 

Hz, 2H), 6.46 (d, J = 2.3 Hz, 1H), 5.71 (d, J = 2.3 Hz, 1H), 5.66 (dddd, J = 1.9, 6.2, 10.4, 

10.9 Hz, 1H), 5.54 (dd, J = 1.8, 10.3 Hz, 1H), 4.23-4.17 (m, 1H), 2.78 (dddd, J = 7.7, 8.8, 
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15.2, 19.7 Hz, 1H), 2.40 (qdd, J =  1.9, 3.9, 6.9 Hz, 1H), 1.73-1.65 (m, 1H),  1.63-1.52 

(m, 2H), 0.72 (d, J = 6.9 Hz, 3H). ESI-HRMS m/z 579.1846 (calcd. for (C15H18O3S)2Na 

(M+Na) m/z 579.1855). 

 

 

 
 

 

Methyl 2-(3’-methyl-6’-oxo-1’-cyclohexen-4’-yl)-2-phenylsulfonylacetate (±)-146a/b: 

To a stirring suspension of NaH (33 mg, 0.82 mmol) in freshly distilled THF (13 mL) at 

0 
0
C was added dropwise methyl phenylsulfonylacetate. The reaction mixture was stirred 

at this temperature under N2 for 1 h. Tricarbonyl(η⁵-3-methyl-pentadienyl)iron(+1) 

hexafluorophosphate cation 32 (200 mg, 0.546 mmol) was added in one portion and the 

mixture stirred at room temperature for 2 h. The reaction was diluted with CH2Cl2 (13 

mL) and saturated NaHCO3/MeOH (26 mL) and stirred at room temperature for 24 h. 

The reaction was finally quenched with water and the organic components extracted into 

CH2Cl2, dried (Na2SO4) and concentrated. The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 4:1) to afford a mixture of two 

diastereomeric cyclohexenones 146a and 146b (~ 1:1) partially separable on silica (126 

mg, 72%) as a yellow oil in addition to an unquantifiable trace of iron diene product 147. 

IR (neat) 2954, 1739, 1482, 1145 cm
-1

; 
1
H NMR (CDCl3, 300 MHz) 146a  δ 7.85 (d, J = 

7.6 Hz, 2H), 7.72 (t, J = 7.4 Hz, 1H), 7.59 (t, J = 7.6 Hz,  2H), 7.13 (dd, J = 5.8, 10.4 Hz, 

1H), 5.98 (d, J = 10.4 Hz, 1H), 4.26 (d, J = 9.6 Hz, 1H), 3.46 (s, 3H), 3.21-3.15 (m, 2H), 
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2.37 (dd, J = 13.4, 16.8 Hz, 1H), 2.13 (dd, J = 3.6, 16.8 Hz, 1H), 1.22 (d, J = 6.4 Hz, 3H); 

13
C NMR (CDCl3, 75 MHz) δ 197.1, 167.3, 156.9, 138.5, 135.2, 129.1, 127.8, 72.4, 53.2, 

38.7, 36.4, 31.8, 31.7, 12.4; 
1
H NMR (CDCl3, 300 MHz) 146b δ 7.82 (d, J  = 7.4 Hz, 

2H), 7.64 (t, J = 7.3 Hz,  1H), 7.48 (t, J = 7.6 Hz, 2H), 6.85 (dd, J = 6.3, 9.9 Hz, 1H), 

5.98 (d, J = 9.9 Hz, 1H), 4.23 (d, J = 11.7 Hz, 1H), 3.44 (s, 3H), 3.19 (dd, J = 13.4, 16.5 

Hz, 1H), 3.12-2.98 (m, 1H), 2.52 (dd, J = 13.5, 17.1 Hz, 1H), 2.27-2.41 (m, 1H), 1.11 (d, 

J = 6.9 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 198.8, 166.1, 154.2, 137.5, 134.8, 129.6, 

128.3, 74.1, 53.3, 36.7, 36.3, 31.9, 31.2, 12.3. ESI-HRMS m/z 345.0767 (calcd. for 

C16H18O5SNa (M+Na) m/z 345.0772). 

 

 

 
 

 

Methyl 2-(2’-methyl-5’-oxocyclohexyl)-2-(phenylsulfonyl)acetate (±)-154a/b: The 

mixture of diastereomeric cyclohexenones 146a and 146b (378 mg, 1.17 mmol) was 

dissolved in MeOH (20 mL) and the solution transferred into a small heavy-walled 

hydrogenation flask.  Palladium on activated carbon (10 % w/w, 115 mg) was added and 

the flask connected to a Parr hydrogenation apparatus. The mixture was maintained under 

H2 (45 psi) with stirring for 24 h after which the pressure was released and the solvent 

removed. The residue was suspended in ethyl acetate (25 mL) and filtered through a 

celite pad. The filter bed was washed several times with ethyl acetate and the extracts 

concentrated. The residue was purified by flash column chromatography (SiO2, ethyl 
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acetate-hexanes = 0-80% gradient) to afford a mixture of two diastereomeric 

cyclohexanones (±)-154a/b inseparable on silica as a green oil (370 mg, 98%). 

1
H NMR (CDCl3, 400 MHz) 154a/b δ 7.89 (d, J = 8.6 Hz, 4H), 7.69 (t, J = 8.4 Hz, 2H), 

7.57 (t, J = 7.7 Hz, 4H), 4.07 (d, J = 11.9 Hz, 1H), 4.02 (d, J = 11.1 Hz, 1H), 3.57 (s, 

3H), 3.53 (s, 3H), 3.07 (br d, J = 17.1 Hz, 1H), 2.91-2.82 (m, 1H), 2.79-2.69 (m, 2H), 

2.44-2.35 (m, 3H), 2.34-2.24 (m, 3H), 2.05 (br d, J = 12.5 Hz, 1H), 1.94-1.77 (m, 5H), 

1.17 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 20c/d δ 

208.3 [208.2], 166.3 [166.1], 137.8 [137.6], 134.7 [134.6], 129.6 [129.5], 129.5 [129.4], 

75.1 [73.0], 53.2 [53.1], 40.5 [40.3], 39.9 [39.8], 36.6 [35.9], 31.4 [31.2], 29.2 [28.7], 

11.9 [11.8]. Diastereomeric signals in brackets. ESI-HRMS m/z 347.0924 (calcd. for 

C16H20O5SNa (M+Na) m/z 347.0921). 

 

 

 
 

 

Methyl 2-(3’-methyl-6’-hydroxy-1-cyclohexen-4’-yl)-2-phenylsulfonylacetate (±)-

152a/b: To a solution of diastereomeric cyclohexenones 146a and 146b (83 mg, 0.26 

mmol) in methanol (10 mL) was added cerium chloride heptahydrate (97 mg, 0.26 

mmol). The mixture was stirred until the cerium salt had dissolved completely. Solid 

NaBH4 (10 mg, 0.28 mmol) was added slowly with vigorous stirring. After addition was 

complete, the mixture was stirred under N2 for 3 h. The reaction was quenched with 

water (5 mL) and the organic components extracted several times with diethyl ether. The 
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combined extracts were washed (brine), dried (MgSO4) and concentrated. Purification of 

the residue by flash column chromatography (SiO2, hexanes-ethyl acetate = 20:1 → 4:1 

gradient) afforded an inseparable mixture of diastereomers (152a and 152b, ~3:4) as a 

pale yellow oil (78 mg, 94% yield). A pure diastereomer (152a) could be isolated by 

careful rechromatography: 

νmax (CH2Cl2)/cm
-1

 3397, 2955, 1739, 1447, 1310, 1144; 
1
H NMR (CDCl3, 300 MHz) 

152a δ 7.90 (d, J = 7.8 Hz, 2H), 7.69 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2H), 5.76 

(ddd, J = 1.2, 4.5, 10.2 Hz, 1H), 5.61 (d, J = 10.2 Hz, 1H), 4.35-4.25 (br m, 1H), 4.09 (d, 

J = 9.6 Hz, 1H), 3.49 (s, 3H),  2.80-2.68 (m, 2H), 1.70-1.55 (m, 2H), 1.44 (dt, J = 10.2, 

12.3 Hz, 1H), 1.07 (d, J = 6.6 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 152a δ 166.8, 166.7, 

138.2, 138.0, 134.6, 129.4, 129.3, 73.2, 68.4, 53.0, 35.7, 31.5, 31.2, 14.8. ESI-HRMS m/z 

347.0924 (calcd. for C16H20O5SNa (M+Na) m/z 347.0921). 

 

 

 
 

 

Methyl 2-(2’-methyl-5’-hydroxy-1-cyclohexyl)-2-phenylsulfonyl)acetate (±)-153a/b: 

The mixture of diastereomeric cyclohexenols (±)-152a/b (35 mg, 0.11 mmol) was 

dissolved in MeOH (5 mL) and the solution transferred into a small heavy-walled 

hydrogenation flask.  Palladium on activated carbon (10 % w/w, 15 mg) was added and 

the flask connected to a Parr hydrogenation apparatus. The mixture was maintained under 

H2 (45 psi) with stirring for 5 h after which the pressure was released and the solvent 
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removed. The residue was suspended in ethyl acetate (25 mL) and filtered through a 

celite pad. The filter bed was washed several times with ethyl acetate and the extracts 

concentrated. The residue was purified by flash column chromatography (SiO2, hexanes-

ethyl acetate = 20:1 → 1:1 gradient) to afford a mixture of two diastereomeric 

cyclohexanols (153a and 153b) partially separable on silica as a pale yellow oil (27 mg, 

78%). 

νmax (CH2Cl2)/cm
-1

 3446, 2952, 1740, 1652, 1448, 1325, 1145; 
1
H NMR (CDCl3, 300 

MHz) 153a δ 7.88 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.4 Hz, 2H), 

4.02 (d, J = 10.1 Hz, 1H), 3.63-3.48 (m, 1H), 3.44 (s, 3H), 2.54-2.41 (m, 2H), 1.79-1.21 

(m, 7H), 0.98 (d, J = 6.9 Hz, 3 H); 
13

C NMR (CDCl3, 75 MHz) 153a δ 167.0, 138.5, 

134.9, 129.4, 129.3, 73.7, 70.7, 52.8, 38.6, 33.4, 30.9, 29.3, 28.3, 12.1; 
1
H NMR (CDCl3, 

300 MHz) 153b δ 7.89 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.3 Hz, 1H), 7.55 (t, J = 7.5 Hz, 

2H), 4.00 (d, J =11.7 Hz, 1H), 3.71-3.58 (m, 1H), 3.42 (s, 3H), 2.57-2.42 (m, 2H), 1.80-

1.21 (m, 7H), 0.88 (d, J = 7.1 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 153b δ 166.7, 138.2, 

134.5, 129.4, 129.3, 75.1, 70.3, 25.9, 38.5, 33.6, 30.8, 29.4, 28.9, 12.5. 

ESI-HRMS m/z 349.1080 (calcd. for C16H22O5SNa (M+Na) m/z 349.1080). 

 

 

 
 

 

Methyl 2-[5’-(t-butyldiphenylsilyl)oxy-2’-methylcyclohexyl]-2-phenylsulfonylacetate 

(±)-155a/b: To a solution of diastereomeric cyclohexanols 153a/b (435 mg, 1.33 mmol) 
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in CH2Cl2 (50 mL) at 0 
0
C was added imidazole (182 mg, 2.67 mmol). The reaction 

mixture was stirred under N2 for 15 min. Liquid t-butyldiphenylsilyl chloride (561 mg, 

2.00 mmol) was added slowly with vigorous stirring. After addition was complete the 

mixture was stirred at room temperature overnight and quenched with water. The 

resulting mixture was extracted several times with Et2O, and the combined extracts dried 

(MgSO4) and concentrated. The residue was purified by column chromatography (SiO2, 

hexanes-acetone = 20:1 → 4:1 gradient) to afford a mixture of protected cyclohexanols 

155a and 155b as a colorless oil (744 mg, 99%) partially separable on silica. 

1
H NMR (CDCl3, 300 MHz) 155a δ 7.75-7.35 (m, 15H), 3.96 (d, J = 11.4 Hz, 1H), 3.55-

3.45 (s & m, 4H total), 2.47 (br d, J = 12.9 Hz, 1H), 2.20-2.15 (m, 1H), 1.63-1.20 (m, 

6H), 1.08 (s, 9H), 0.87 (d, J = 7.2 Hz, 3H); 
1
H NMR (CDCl3, 300 MHz) 155b δ 7.85-

7.30 (m, 15H), 3.97 (d, J = 10.5 Hz, 1H), 3.65-3.53 (m, 1H), 3.30 (s, 3H), 1.65-1.20 (m, 

8H), 1.02 (s, 9H), 0.97 (d, J = 6.9 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 155a/b δ 167.9 

[167.8], 139.6 [139.3], 137.06 [137.0], 136.9 [136.8], 135.7 [135.6], 135.5 [135.4], 135.4 

[131.2], 131.0 [130.4], 130.4 [130.3], 130.2 [129.0], 128.9 [128.7], 76.1 [74.3], 73.7 

[73.3], 53.3 [53.2], 40.0 [39.9], 34.9 [34.4], 31.8 [31.7], 30.7 [30.5], 30.4 [29.7], 27.7 

[27.6], 20.1 [20.0], 12.6 [12.5]. Diastereomeric signals in brackets. ESI-HRMS m/z 

587.2258 (calcd. for C32H40O5SiSNa (M+Na) m/z 587.2256). 
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Methyl 2-[5’-(t-butyldiphenylsilyl)oxy-2’-methylcyclohexyl]acetate (±)-156: To a 

solution of cyclohexanols 155a/b (68 mg, 0.12 mmol) in MeOH (10 mL) was added Mg 

metal (21 mg, 0.87 mmol). The reaction mixture was heated at 50 
0
C until gas evolution 

started at which stage the heating source was removed and stirring continued at room 

temperature. Additional Mg metal (21 mg, 6X) was added at 50 
0
C successively until all 

starting material had been consumed as indicated by TLC. The solvent was removed and 

the mixture redissolved in CH2Cl2. The mixture was filtered, washed with brine, dried 

(MgSO4) and concentrated to give (±)-156  as a single diastereomer (54 mg, quant.). This 

compound was used in the next step without further purification. 

1
H NMR (CDCl3, 300 MHz) δ 7.75-7.70 (m, 4H),  7.40-7.35 (m, 6H), 3.70-3.62 (s & m, 

4H total), 2.26 (dd, J = 7.8, 15.0 Hz, 1H), 2.20 (dd, J = 8.1, 15.0 Hz, 1H), 2.00-1.85 (m, 

1H), 1.79-1.30 (m, 7H), 1.09 (s, 9H), 0.88 (d, J = 7.5 Hz, 3H); 
13

C NMR (CDCl3, 75 

MHz) δ 173.6, 136.0, 135.8, 134.9, 129.7, 129.6, 127.7, 127.6, 127.5, 72.2, 51.5, 38.6, 

36.3, 36.0, 30.6, 30.3, 30.1, 27.2, 19.3, 12.6. ESI-HRMS m/z 447.2326 (calcd. for 

C26H36O3SiNa (M+Na) m/z 447.2324). 
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Methyl 2-[5’-(t-butyldiphenylsilyl)oxy-2’-methylcyclohexyl]-2-phenylselenylacetate 

(±)-157a/b: To a stirring solution of LDA (2.0 M in heptanes, 0.08 mL, 0.2 mmol) in dry 

THF (2 mL) at -78 
0
C was added dropwise a solution of  crude (±)-156 (30 mg, 0.071 

mmol) in dry THF (2 mL). The mixture was stirred at -78 
0
C under N2 for 30 min. A 

solution of PhSeCl (27 mg, 0.14 mmol) in dry THF (0.5 mL) was added dropwise rapidly 

with vigorous stirring. The reaction mixture was slowly   warmed to room temperature 

and stirred for 24 h under N2. The reaction was quenched with water. The resulting 

mixture was extracted several times with Et2O, and the combined extracts washed with 

saturated NaHCO3, dried (MgSO4) and concentrated. The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 20:1) to afford a mixture of two 

diastereomeric phenylseleno compounds 157a and 157b (~1:1) (38 mg, 92%) partially 

separable on silica as a bright green oil. 

1
H NMR (CDCl3, 300 MHz) 157a δ 7.78-7.70 (m, 4H), 7.50-7.20 (m, 11H), 3.57 (s, 3H), 

3.58-3.48 (m, 1H), 3.37 (d, J = 12.0 Hz, 1H), 2.31 (br d, J = 12.0 Hz, 1H), 1.75-1.20 (m, 

7H), 1.08 (s, 9H), 0.82 (d, J = 4.4 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 157a δ 172.9, 

136.2, 136.0, 134.8, 134.7, 129.8, 129.7, 129.1, 128.7, 128.1, 127.8, 127.7, 72.7, 52.0, 

49.3, 40.3, 34.1, 31.2, 29.3, 27.2, 19.4, 12.0; 
1
H NMR (CDCl3, 75 MHz, deconvoluted 
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from 157a/b) 157b δ 7.68-7.54 (m, 7H), 7.46-7.19 (m, 8H), 3.63-3.61 (m, 1H), 3.45 (s, 

3H), 3.39 (d, J = 11.8 Hz, 1H), 2.25-2.17 (m, 1H), 1.90-1.23 (m, 7H), 1.04 (s, 9H), 0.85 

(d, J = 4.9 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz, deconvoluted from 157a/b) 157b δ 

173.0, 136.1, 136.0, 134.9, 134.8, 129.9, 129.8, 129.7, 129.4, 129.3, 129.2, 72.4, 52.1, 

49.2, 40.2, 35.0, 31.1, 29.3, 27.3, 19.4, 11.9. ESI-HRMS m/z 603.1804 (calcd. for 

C32H40O5SiSeNa (M+Na) m/z 603.1802). 

 

 

 
 

 

(E/Z)- Methyl 2-[5’-(t-butyldiphenylsilyl)oxy-2’-methylcyclohexylidene]acetate 

(158a/b): To a stirring solution of the phenylseleno compounds 157a/b (27 mg, 0.046 

mmol) in MeOH (3 mL) was added NaIO4 (23 mg, 0.11 mmol). The mixture was stirred 

vigorously under N2 overnight. The reaction was quenched with water. The resulting 

mixture was extracted several times with Et2O, and the combined extracts washed with 

saturated NaHCO3, dried (MgSO4) and concentrated. The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 20:1) to afford a mixture of unsaturated 

esters 158a and 158b (~1:1) as a colorless oil inseparable on silica (15 mg, 77%). 

1
H NMR (CDCl3, 300 MHz) δ 7.67 (br d, J = 7.8 Hz, 8H), 7.48-7.33 (m, 12H), 5.73 (br s, 

1H), 5.36 (br s, 1H), 4.05-3.98 (m, 1H), 3.91-3.80 (m, 1H), 3.64 (s, 3H), 3.63 (s, 3H), 

2.61-2.40 (m, 2H), 2.27-2.11 (m, 2H), 1.77-1.47 (m, 10H), 1.13 (d, J = 6.0 Hz, 3H), 1.11 
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(d, J = 7.8 Hz, 3H), 1.07 (s, 9H), 1.04 (s, 9H); 
13

C NMR (CDCl3, 75 MHz) δ 167.6 

[166.9], 164.7 [163.6], 136.1 [136.0], 135.9 [134.9], 134.54 [134.52], 134.4 [134.3], 

129.9 [129.8], 129.7 [128.8], 127.7 [127.6], 114.3 [113.8], 73.2 [71.2], 51.1 [51.0], 42.9 

[42.8], 39.4 [39.3], 36.8 [32.3], 31.2 [30.3], 29.9 [29.8], 29.7 [29.4], 27.2 [27.1], 19.4 

[19.3], 18.6 [18.4]. Diastereomeric signals in brackets. ESI-HRMS m/z 445.2169 (calcd. 

for C26H34O3SiNa (M+Na) m/z 445.2168). 

 

 

 
 

 

3-(2-Methoxy-2-oxo-1-(phenylsulfonyl)ethyl)-4-methylcyclohexyl-4-nitrobenzoate 

(±)-159a/b: To a mixture of cyclohexanols 153a/b (172 mg, 0.526 mmol) was added 4-

nitrobenzoic acid (353 mg, 2.11 mmol) and triphenylphosphine (554 mg, 2.11 mmol). 

Freshly distilled THF (10 mL) was added and the mixture stirred at room temperature 

until homogeneous. The mixture was cooled to 0 
0
C and diethyl azodicarboxylate (1.03 

mL, 2.1 mmol, 40 w/v in toluene) was added slowly over a 30 min period with stirring. 

After addition was complete the reaction mixture was slowly   warmed to room 

temperature and stirred for 16 h under N2. The reaction mixture was then stirred at 40 
0
C 

for 4 h. The reaction mixture was diluted with Et2O, washed with saturated NaHCO3, 

dried (MgSO4) and concentrated. The crude residue was suspended in Et2O (10 mL) and 

allowed to stand overnight and the by-products precipitated by addition of hexane. The 
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mixture was filtered and concentrated and the residue purified by column 

chromatography (SiO2, hexanes-Et2O = 5:1) to afford a mixture of p-nitro benzoate esters 

159a/b (~1:1) as a colorless oil (230 mg, 92%). 

1
H NMR (CDCl3, 300 MHz, deconvoluted from 159a/b) 159a δ 8.34-8.26 (m, 4H), 7.94-

7.64 (m, 5H), 5.41-5.40 (m, 1H), 4.02 (br s, 1H), 3.56 (s, 3H), 3.04-2.93 (m, 1H), 2.66-

2.61 (m, 1H), 2.08-1.79 (m, 6H), 1.05 (d, J = 7.0 Hz, 3H); 
1
H NMR (CDCl3, 300 MHz, 

deconvoluted from 159a/b) 159b δ 8.25-8.13 (m, 4H), 7.63-7.37 (m, 5H), 5.31-5.30 (m, 

1H), 4.00 (d, J = 3.3 Hz, 1H), 3.41 (s, 3H), 2.84-2.73 (m, 1H), 2.60-2.56 (m, 1H), 1.78-

1.44 (m, 6H), 0.96 (d, J = 7.0 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) 159a/b δ 166.8 

[166.6], 164.1 [164.0], 150.8 [150.7], 138.1 [137.8], 136.3 [136.2], 134.5 [134.4], 131.1 

[130.9], 130.0 [129.4], 129.2 [129.1], 123.9 [123.8], 75.5 [73.6], 71.3 [70.9], 53.1 [52.9], 

35.2 [35.0], 29.6 [29.4], 28.3 [28.2], 27.9 [27.8], 24.0 [23.7], 11.7 [11.6]. Diastereomeric 

signals in brackets. 

 

 

 
 

 

Methyl 2-(5-hydroxy-2-methylcyclohexyl)acetate (±)-160: To a mixture of 

cyclohexanols 153a/b (230 mg, 0.480 mmol) in methanol (30 mL) was added activated 

Mg metal (85 mg, 3.5 mmol). The reaction mixture was heated at 50 
0
C until gas 

evolution started at which stage the heating source was removed and the reaction stirred 

at room temperature. Additional Mg metal (85 mg, 3.5 mmol, 8X) was added at 50 
0
C 
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until all starting material had been consumed as indicated by TLC. The solvent was 

removed and the mixture redissolved in Et2O. The mixture was filtered, washed with 

brine, dried (MgSO4) and concentrated to give the crude product as a single diastereomer 

(120 mg). The residue was purified by column chromatography (hexanes-ethyl acetate = 

3:1) to afford a single diastereomer as a brown oil (39 mg 25%) in addition to a complex 

mixture of unidentifiable reaction products. The 
1
H and 

13
C NMR spectral data for this 

product are consistent with those obtained for a product formed via a different route (vide 

supra). 

 

 

 
 

 

Methyl 2-(5’-hydroxy-2’-methylcyclohexyl)acetate (±)-142: To a stirring solution of 

the protected silyl ether (±)-155a/b (57 mg, 0.13 mmol) in DMF (2 mL) at 0 
0
C was 

added TSAF (60 mg, 0.22 mmol). The reaction mixture was stirred at 0 
0
C for 2 h after 

which the ice bath was removed and stirring continued at room temperature for 24 h. 

Upon completion of the reaction, as indicated by TLC the solvent was removed under an 

N2 stream and the mixture applied to a silica pad. The product was eluted (ethyl acetate-

hexanes = 1:5) to afford the unprotected cyclohexanol (±)-142 as a colorless oil (24 mg, 

96%). 

The 
1
H and 

13
CNMR spectra for this compound matched with those previously obtained. 



113 
 

 

 
 

 

3-(2-Methoxy-2-oxoethyl)-4-methylcyclohexyl 4-nitrobenzoate (±)-165: To (±)-142 

(27 mg, 0.15 mmol) was added p-nitrobenzoic acid (99.3 mg, 0.594 mmol) and 

triphenylphosphine (156 mg, 0.594). Freshly distilled THF (5 mL) was added and the 

mixture stirred at room temperature under N2 for 15 min until homogeneous. The reaction 

mixture was cooled to 0 
0
C and a solution of diethyl azodicarboxylate (259 mg, 40 % wt 

solution in toluene) added slowly over a 10 min period. The mixture was then stirred 

vigorously at 0 
0
C for 30 min after which the cold bath was removed and stirring 

continued at room temperature for 24 h. Upon completion of the reaction, as indicated by 

TLC, the solvent was removed under a N2 stream and the residue applied to a silica pad. 

The product was eluted (ethyl acetate-hexanes = 0-40% gradient) to afford (±)-165  as a 

pale green oil (46 mg, 94%). 

1
H NMR (CDCl3, 300 MHz) δ 8.33-8.17 (m, 4H), 5.30-5.21 (m, 1H), 3.68 (s, 3H), 2.55-

2.42 (m, 3H), 1.99-1.64 (m, 6H), 1.48-1.36 (m, 1H), 0.92 (d, J = 6.9 Hz, 3H); 
13

C NMR 

((CD3)2SO, 75 MHz) δ 173.5, 164.5, 150.9, 136.2, 131.6, 124.6, 72.1, 51.9, 36.3, 33.5, 

32.3, 31.6, 28.1, 26.6, 14.2. ESI-HRMS m/z 358.1261 (calcd. for C17H21NO6Na (M+Na) 

m/z 358.1260). 
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3-(2-Methoxy-2-oxo-1-(phenylselenyl)ethyl)-4-methylcyclohexyl 4-nitrobenzoate (±)-

166: To a stirring solution of LDA (2.0 M in heptane, 0.26 mL, 1.3 mmol) in dry THF (1 

mL) at -78 
0
C was added dropwise a solution of the crude (±)-165 (35 mg, 0.10 mmol) in 

dry THF (2 mL). The mixture was stirred at -78 
0
C under N2 for 30 min. A solution of 

PhSeCl (40 mg, 0.21 mmol) in dry THF (0.5 mL) was added dropwise rapidly with 

vigorous stirring. The reaction mixture was slowly   warmed to room temperature and 

stirred for 24 h under an N2. The solvent was removed under N2 stream and the residue 

purified by column chromatography (SiO2, hexanes-ethyl acetate = 0-20% gradient) to 

afford a mixture of two diastereomeric phenylseleno compounds  as a green oil (46 mg, 

~1:1 ratio, 90%). Owing to the susceptibility of the latter to slow oxidation by air the 

crude compound (±)-166 was used without thorough column purification. 
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(Z)-3-(2-Methoxy-2-oxoethylidene)-4-methylcyclohexyl 4-nitrobenzoate (±)-167: To a 

stirring solution of the crude phenylseleno compound (15 mg, 0.031 mmol) in MeOH (2 

mL) was added NaIO4 (13 mg, 0.61 mmol). The mixture was stirred vigorously under N2 

for 6 d. The reaction was quenched with water. The resulting mixture was extracted 

several times with Et2O, dried (MgSO4) and concentrated under a N2 stream. The residue 

was purified by column chromatography (SiO2, diethyl ether-hexanes = 0-10% gradient) 

to afford (±)-167 as a single isomer as a pale yellow oil (10 mg, 98%). 

1
H NMR (CDCl3, 300 MHz) δ 8.31-8.12 (m, 4H), 5.61 (s, 1H), 5.46-5.40 (m, 1H), 3.69 

(s, 3H), 2.81-2.72 (m, 1H), 2.48-2.39 (m, 2H), 2.07-1.87 (m, 4H), 1.22 (d, J = 7.5 Hz, 

3H); 
13

C NMR (CDCl3, 75 MHz) δ 166.6, 164.2, 162.2, 150.8, 136.2, 131.0, 123.8, 

116.1, 73.2, 51.3, 36.8, 30.4, 29.9, 27.4, 18.2. ESI-HRMS m/z 356.1105 (calcd. for 

C17H19NO6Na (M+Na) m/z 356.1104). 
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(1S,2S)-1-Phenylcyclohexane-1,2-diol (-)-175: To a flame dried 1000 mL 3-necked 

round bottom flask  was added H2O (166 mL), K3Fe(SCN)6 (109.3 g), K2CO3 (46 g), 

CH3SO2NH2 (11 g), K2OsO4·2H2O (24 mg) and (DHQ)PHAL (216 mg). The mixture 

was stirred vigorously at room temperature for 20 min. The reaction mixture was cooled 

to 0 
0
C and 1-phenyl-1-cyclohexene (16.5 g, 0.104 mol) added with stirring. The mixture 

was kept stirring at 0 
0
C and the progress of the reaction monitored by TLC. The reaction 

was quenched with water and the organic components extracted into ethyl acetate. The 

organic extracts were washed with 5 M KOH, dried (MgSO4) and concentrated. 

Purification of the residue by column chromatography (SiO2, ethyl acetate-hexanes 0-

50% gradient) afforded the diol (-)-175 as a colorless solid (18.3 g, 91%). 

 

mp 117-120 
0
C (Lit.

156 
122-123 

0
C); 

1
H NMR (CDCl3, 300 MHz) δ 7.56-7.23 (m, 5H), 

3.98 (dd, J = 4.8, 4.6 Hz, 1H), 1.88-1.37 (m, 10H); 
13

C NMR (CDCl3, 75 MHz): δ 147.2, 

128.5, 126.6, 124.1, 76.8, 68.9, 39.7, 28.9, 25.0, 22.8. 
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(1S,2R)-2-Phenylcyclohexanol (+)-176: Into an oven dried 3-necked round bottom flask 

was added a slurry of Raney nickel (100 g) in water. The (1S,2S)-1-phenylcyclohexan-

1,2-diol (19.0 g, 98.4 mmol) was added.  A solution of absolute ethanol (140 mL) in 

water (60 mL) was added and the mixture stirred mechanically for 15 min at room 

temperature. The mixture was heated at reflux vigorous with stirring for 7 d. The mixture 

was filtered through a celite pad. The pad was washed several times with absolute ethanol 

and ethyl acetate. The organic extracts were separated, washed (brine), dried (Na2SO4) 

and concentrated. Purification of the residue by column chromatography (SiO2, ethyl 

acetate-hexanes = 0-20% gradient) afforded the alcohol (+)-176 as a colorless crystalline 

solid (12.3g, 71%). 

 

mp 58-60 
0
C (Lit.

156
 64-66 

0
C); 

1
H NMR (CDCl3, 400 MHz): δ 7.21-7.38 (m, 5H), 3.64 

(m, 1H), 2.41 (m, 1H), 2.16 (m, 1H), 1.83-1.78 (m, 3H), 1.49-1.26 (m, 5H); 
13

C NMR 

(CDCl3, 100 MHz): δ 143.2, 128.8, 128.0, 126.9, 74.4, 53.2, 34.5, 33.3, 26.0, 25.0. 
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(1S,2R)-2-Phenylcyclohexyl 2-(phenylsulfonyl)acetate (-)-178: Into a 100 mL round 

bottom flask was added phenylsulfonyl acetic acid 177 (100 mg, 0.499 mmol). Oxalyl 

chloride (78 mg, 0.050 mmol) was added dropwise with stirring. The mixture was stirred 

at room temperature under a nitrogen atmosphere for 1 h. The excess oxalyl chloride was 

removed under vacuum and the crude acid chloride used without further purification. The 

residue was redissolved in benzene (5 mL). The (1S,2R)-2-phenylcyclohexanol (105 g, 

0.599 mmol) prepared previously was added in one portion and the resulting mixture 

heated to reflux for 48 h. The solvent was removed under vacuum and the residue 

purified by column chromatography (ethyl acetate-hexanes = 0-20% gradient) to afford (-

)-178 a dark brown viscous oil (115 mg, 64%).       

 

1
H NMR (CDCl3, 300 MHz) δ 7.78 (d, J = 8.5 Hz, 2H), 7.62-7.43 (m, 3H), 7.24-7.13 (m, 

5H), 4.98-4.85 (m, 1H), 3.76 (d, J = 14.4 Hz, 1H), 3.70 (d, J = 14.4 Hz, 1H), 2.62-50 (m, 

1H), 2.19-1.88 (m, 1H), 1.85-1.64 (m, 3H), 1.49-1.20 (m, 4H); 
13

C NMR (CDCl3, 75 

MHz) δ 162.5, 144.3, 138.6, 134.8, 129.6, 128.0, 127.2, 126.4, 178.6, 78.8, 62.0, 48.9, 

34.8, 32.5, 26.3, 25.0. ESI-HRMS m/z 381.1131 (calcd. for C20H22O4SNa (M+Na) m/z 

381.1127).  
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(1S,2R)-2-Phenylcyclohexyl 2-(2-methyl-5-oxocyclohex-3-en-1-

yl)phenylsulfonylacetate (±)-181-184: To a stirring suspension of NaH (83 mg, 2.1 

mmol) in freshly distilled THF (34 mL) at 0 
0
C was added dropwise (1S,2R)-2-

phenylcyclohexyl phenylsulfonyl acetate (-)-178 (542 mg, 1.51 mmol).  The reaction 

mixture was stirred at this temperature under a N2 for 1 h. Solid (3-

methylpentadienyl)iron(+) cation 32 (500 mg, 1.37 mmol) was added in one portion and 

the mixture stirred at room temperature for 2 h. The reaction was diluted with CH2Cl2 (34 

mL) and saturated NaHCO3/MeOH (44 mL) and stirred at room temperature for 24 h. 

The reaction was finally quenched with water and the organic components extracted into 

CH2Cl2, dried (Na2SO4) and concentrated. The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 4:1) to afford a mixture of 4 

diastereomeric cyclohexenones A, B, C and D (0.1: 0.3: 0.3:0.3 ratio) as a dark brown 

oil inseparable on silica (560 mg, 87%). This mixture was used in the next step without 

further characterization. 
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(1S,2R)-2-Phenylcyclohexyl 2-[(1S,2S,5R)-5-hydroxy-2-methylcyclohexyl]acetate and 

(1S,2R)-2-Phenylcyclohexyl 2-[1R,2R,5S)-5-hydroxy-2-methylcyclohexyl]acetate (±)-

193/194: To a solution of the isomeric cyclohexenones A, B, C and D (146 mg, 0.312 

mmol) in methanol (10 mL) was added cerium trichloride heptahydrate (1.49 g, 4.0 

mmol). The mixture was stirred until the cerium salt had dissolved completely. Solid 

NaBH4 (18 mg, 0.47 mmol) was added slowly with vigorous stirring. After addition was 

complete, the mixture was stirred under N2 for 3 h. The reaction was quenched with 

water and the organic components extracted several times with diethyl ether. The 

combined ether extracts were washed with brine, dried (MgSO4) and concentrated. 

Purification of the residue by flash column chromatography (SiO2, hexanes-ether = 0-

25% gradient) afforded an inseparable mixture of 4 diastereomeric cyclohexenols 

(0.1:0.1:0.4:0.4 ratio) as a colorless foamy solid (118 mg, 80%). This material was used 

in the next step without further characterization. 

The mixture of isomeric cyclohexenols (118 mg, 0.252 mmol) was dissolved in MeOH 

(10 mL) and the solution transferred into a small heavy-walled hydrogenation flask.  

Palladium on activated carbon (100 mg, 10 % w/w) was added and the flask connected to 

a Parr hydrogenation apparatus. The mixture was maintained under H2 (40-45 psi) with 

stirring for 12 h after which the pressure was released and the solvent removed. The 

residue was suspended in ethyl acetate (150 mL) and filtered through a celite pad. The 



121 
 

 

filter bed was washed several times with ethyl acetate and the extracts concentrated. The 

residue was purified by flash column chromatography (SiO2, acetone-hexanes = 0-20 

gradient) to afford a mixture of 4 diastereomeric cyclohexanols A, B, C and D 

(0.1:0.1:0.4:0.4 ratio) as a colorless foamy solid (113 mg, 95%). This material was used 

in the next step without further characterization. 

To an isomeric mixture of cyclohexanols A, B, C and D (63 mg, 0.081 mmol) in MeOH 

(10 mL) was added activated Mg (15 mg, 0.62 mmol). The reaction mixture was stirred at 

50 
0
C until gas evolution started at which stage the heating source was removed and the 

reaction stirred at room temperature. Additional Mg (63 mg, 0.081 mmol, 6X) was added 

at 50 
0
C until all starting material had been consumed as indicated by TLC. The solvent 

was removed and the mixture redissolved in CH2Cl2. The mixture was filtered, washed 

with brine, dried (Na2SO4) and concentrated to give the crude product (120 mg). The 

residue was purified by column chromatography (hexanes-ethyl acetate = 4:1) to afford 

an inseparable mixture of 2 diastereomers (±)-193/194 (1:1 ratio) (quant.) as a colorless 

oil. 

1
H NMR (CDCl3, 300 MHz) δ 7.37-7.18 (m, 10H), 5.16-4.99 (m, 2H), 3.40-3.22 (m, 2H), 

2.66-2.60 (ddd, J = 3.4, 3.5, 4.0 Hz, 2H), 2.18-1.65 (m, 12H), 1.64-1.20 (m, 24H), 0.72 

(d, J = 6.8 Hz, 3H), 0.59 (d, J = 7.3 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 173.6, 173.2, 

143.7, 143.5, 127.8, 127.6, 125.7, 76.2, 71.4, 71.2, 50.1, 50.0, 39.7, 39.6, 37.2, 36.1, 36.0, 

35.2, 35.0, 33.5, 32.1, 32.0, 31.9, 31.7, 26.5, 26.0, 12.7, 12.5. ESI-HRMS m/z 353.2087 

(calcd. for C21H30O3Na (M+Na) m/z 353.2083). 
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(1S,2R)-2-Phenylcyclohexyl 2-(2-methyl-5-oxocyclohexyl)acetate (±)-199/200: The 

mixture of 4 isomeric cyclohexenones A, B, C and D (182 mg, 0.388 mmol) was 

dissolved in MeOH (20 mL) and the solution transferred into a small heavy-walled 

hydrogenation flask.  Palladium on activated carbon (100 mg, 10 % w/w) was added and 

the flask connected to a Parr hydrogenation apparatus. The mixture was maintained under 

H2 atmosphere (40-45 psi) with stirring overnight after which the pressure was released 

and the solvent removed. The residue was suspended in ethyl acetate (150 mL) and 

filtered through a celite pad. The filter bed was washed several times with ethyl acetate 

and the extracts concentrated. The residue was purified by flash column chromatography 

(SiO2, acetone-hexanes = 0-25 gradient) to afford an inseparable mixture of 4 isomeric 

cyclohexanones A, B, C and D (0.5, 0.2, 0.2, 0.1 ratios) as a colorless foamy solid (141 

mg, 78%). This mixture was used in the next step without further characterization. 

 To the above isomeric mixture of cyclohexanones (145 mg, 0.309 mmol) in MeOH (10 

mL) was added activated Mg (54.2 mg, 2.25 mmol). The reaction mixture was stirred at 

50 
0
C until gas evolution started at which stage the heating source was removed and the 

reaction stirred at room temperature. Additional Mg (54.2 mg, 2.25 mmol, 7X) was added 

at 50 
0
C until all starting material had been consumed as indicated by TLC. The solvent 
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was removed and the mixture redissolved in Et2O. The mixture was filtered, washed 

(brine), dried (MgSO4) and concentrated to give the crude product (88 mg). The residue 

was purified by column chromatography (SiO2, ethyl acetate- hexanes = 1:4) to afford an 

inseparable mixture of 2 diastereomers (±)-199/200 (~1:1) as a colorless oil (68 mg, 

67%). 

1
H NMR (CDCl3, 300 MHz) δ 7.36-7.12 (m, 10H), 5.08-4.94 (m, 2H), 2.73-2.57 (m, 2H), 

2.27-2.17 (m, 2H) 2.15-1.69 (m, 17H), 1.65-12.5 (m, 17H), 0.79 (d, J = 6.8 Hz, 3H), 0.65 

(d, J = 6.9 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 210.9, 210.8, 171.8, 171.5, 143.4, 

143.3, 128.6, 128.5, 127.7, 127.6, 126.8, 126.7, 77.5, 76.3, 50.1, 50.0, 43.9, 43.6, 38.4, 

38.3, 38.0, 37.9, 37.5, 37.0, 34.4, 34.3, 32.6, 33.2, 33.1, 32.5, 31.7, 31.3, 30.9, 30.3, 26.0, 

25.0, 13.5, 12.8. ESI-HRMS m/z 351.1926 (calcd. for C21H28O3Na (M+Na) m/z 

351.1926). 

 

 

 
 

 

Bis-(2-Phenylcyclohexyl) malonate (+)-180:  To a stirring solution of the chiral alcohol 

(+)-176 (360 mg, 2.03 mmol) in freshly distilled CH2Cl2 at 0 
0
C was added triethylamine 

(206 mg, 2.03 mmol). The reaction mixture was stirred at 0 
0
C under N2 for 1 h. Malonyl 

dichloride (143 mg, 1.02 mmol) was added dropwise over a 5 min period. Upon complete 

addition the mixture was stirred at 0 
0
C for 30 min and at room temperature for 24 h. On 

completion of the reaction as indicated by TLC the solvent was removed under a N2 
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stream. The residue was purified by column chromatography (SiO2, ethyl acetate-hexanes 

= 1:5) to afford the ester (+)-180 as a colorless crystalline solid (208 mg, 76%).  

 

mp 114-116 
0
C; 

1
H NMR (CDCl3, 300 MHz) δ 7.33-7.11 (m, 10H), 4.98 (dt, J = 4.2, 10.6 

Hz, 2H), 2.78 (s, 2H), 2.61 (dt, J = 3.4, 11.6 Hz, 2H), 2.15-205 (m, 2H), 1.98-1.73 (m, 

6H), 1.66-1.25 (m, 8H); 
13

C NMR (CDCl3, 75 MHz) δ 166.0, 143.1, 128.5, 127.7, 126.7, 

77.2, 49.6, 41.7, 34.0, 32.2, 25.9, 24.9. ESI-HRMS m/z 443.2193 (calcd. for C27H32O4Na 

(M+Na) m/z 443.2193). 

 

 

 
 

 

Bis((1R,2S)-2-phenylcyclohexyl)-2-((1S,2R)-2-methyl-5-oxocyclohex-3-en-1-

yl)propanediaote (±)-201/202: To a cold stirring suspension of NaH (48 mg, 1.1 mmol) 

in freshly distilled THF (10 mL) at 0 
0
C was added a solution of the chiral ester (320 mg, 

0.761 mmol) in THF (3 mL) dropwise. The reaction mixture was stirred at 0 
0
C and under 

N2 atmosphere for 1 h. Solid (3-methylpentadienyl)iron(+1) cation 32 (418 mg, 1.14 

mmol) was added in one portion. The reaction mixture was stirred at 0 
0
C for 2 h. The 

mixture was then diluted with CH2Cl2 (13 mL) and saturated methanolic NaHCO3 (15 
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mL) and stirred at room temperature for 24 h. The reaction was quenched with H2O and 

extracted several times with CH2Cl2. The combined extracts were dried (Na2SO4) and 

concentrated. The residue was purified by flash column chromatography (SiO2, ethyl 

acetate-hexanes = 0-25% gradient) to afford an inseparable mixture of two diastereomeric 

cyclohexenones (±) as a colorless crystalline solid (241 mg, 1:0.2 ratio, 60%). 

mp 144-146 
0
C; 

1
H NMR (CDCl3, 300 MHz, major  isomer) (+)-202 δ 7.35-7.04 (m, 

10H), 6.66 (dd, J = 4.0, 6.5 Hz, 1H), 5.73 (d, J = 10.9 Hz, 1H), 4.97-4.84 (m, 2H), 2.74 

(d, J = 13.1 Hz, 1H), 2.64-2.46 (m, 2H), 2.28-2.01 (m, 3H), 1.94-1.67 (m, 8H), 1.49-1.23 

(m, 9H), 0.14 (d, J = 7.0 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz, major isomer)  (+)-202 δ 

198.9, 166.9, 155.3, 143.4, 143.2, 129.4, 129.0, 128.4, 128.2, 127.3, 125.9, 125.2, 55.5, 

49.8, 49.2, 38.3, 35.8, 35.6, 32.4, 32.0, 31.6, 25.7, 25.2. ESI-HRMS m/z 551.2768 (calcd. 

for C34H40O5Na (M+Na) m/z 551.2757). 

 

 

 
 

 

Bis((1R,2S)-2-phenylcyclohexyl)-2-((1S,2R)-5-hydroxy-2-methylcyclohex-3-en-1-

yl)malonate 203/204: To the mixture of chiral cyclohexenones (201 and 202, 100 mg, 

0.189 mmol) in MeOH (10 mL) at 0 
0
C was added CeCl3.7H20 (1.49 mg, 4.00 mmol). 
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The mixture was stirred vigorously until homogeneous (~15 min). Solid NaBH4 (29 mg. 

0.76 mmol) was added in small portions and stirring continued at room temperature for 3 

h. The reaction was quenched with H2O, extracted several times with Et2O, and the 

combined extracts dried (MgSO4) and concentrated. Purification of the residue by flash 

column chromatography (SiO2, ethyl acetate-hexanes = 0-40% gradient) afforded two 

completely separable diastereomeric cyclohexenols (-)-204 (less polar, 21 mg, 24%) and 

(+)-203 (more polar, 65 mg, 76%) both as colorless oils.  

More Polar isomer/(+)-203: 

 

1
H NMR (CDCl3, 300 MHz) δ 7.16-7.38 (m, 10H), 5.39 (s, 2H), 5.28-4.97 (m, 2H), 3.42 

(m, 1H), 2.60 (d,  J = 6.4 Hz, 1H), 2.58-2.45 (m, 2H), 2.15-1.63 (m, 9H), 1.62-1.20 (m, 

10H), 0.86-0.75 (m, 1H), 0.63-0.43 (m, 1H), 0.09 (d, J = 6.7 Hz, 3H); 
13

C NMR (CDCl3, 

75 MHz) δ 166.7, 166.0, 144.2, 143.0, 139.9, 128.6, 128.2, 126.6, 126.1, 125.8, 125.3, 

78.2, 77.3, 68.5, 56.3, 49.8, 49.6, 35.2, 35.0, 34.8, 33.7, 32.6, 30.7, 25.3, 24.8, 14.9. 

Less Polar Isomer/(-)-204: 

 

1
H NMR (CDCl3, 300 MHz) δ 7.18-7.35 (m, 10H), 5.38-5.13 (m, 2H), 5.14-4.89 (m, 2H), 

3.81(t, J = 5.2 Hz, 1H), 2.79 (d, J = 7.9 Hz, 1H), 2.65-2.57 (m, 2H), 2.14-1.65 (m, 9H), 

1.58-1.10 (m, 11H), 0.57-0.42 (m&d, 4H); 
13

C NMR (CDCl3, 75 MHz) δ 166.8, 166.5, 

144.0, 143.7, 130.1, 128.6, 128.4, 127.3, 127.0, 126.8, 126.3, 77.5, 77.1, 68.5, 51.3, 49.6, 

49.0, 35.1, 35.0, 34.9, 33.5, 33.3, 30.6, 30.1, 25.3, 25.0, 14.8.  
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Reaction of (-)-204 with S-(-)-(α)-MTPA: To a solution of the less polar cyclohexenol (-

)-204 (15 mg, 0.028 mmol) in freshly distilled THF (3 mL) was added S-(-)-(α)-MTPA 

(26 mg, 0.11 mmol). The mixture was homogenized. DCC (23 mg, 0.11 mmol) and 

DMAP (0.5 mg, 0.004 mmol) were added successively with stirring. After 4 h the 

reaction mixture was heated at reflux for 12 h.  Upon completion consumption of the 

starting material the solvent was removed under N2 stream. The residue was purified by 

column chromatography (SiO2, ethyl acetate-hexanes = 0-20% gradient) to afford a 

colorless oil quantitatively. 

1
H NMR (CDCl3, 300 MHz) δ 7.58-6.98 (m, 15H), 5.41-5.36 (m, 1H), 5.34-5.21 (m, 2H), 

5.13-4.96 (m, 2H), 3.53 (s, 3H), 2.65 (d, J = 7.4 Hz, 1H), 2.63-2.58 (m, 2H), 2.12-1.75 

(m, 8H), 1.48-1.18 (m, 10H), 1.11-0.65 (m, 2H), 0.52 (d, J = 7.6 Hz, 3H); 
13

C NMR 

(CDCl3, 75 MHz) δ 166.7, 166.4, 166.0, 143.8, 143.5, 138.7, 133.5, 129.8, 129.0, 128.6, 

127.2, 126.8, 122.8, 78.3, 73.7, 55.1, 54.9, 50.1, 49.8, 35.8, 35.0, 34.8, 33.2, 33.0, 31.0, 

30.8, 27.2, 25.3, 25.0, 14.9. 
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Reaction of (-)-204 with R-(+)-(α)-MTPA: Esterification of the less polar cyclohexenol 

(-)-204 (15 mg, 0.028 mmol) with R-(+)-(α)-MTPA (26 mg, 0.11 mmol) was carried out 

in a fashion similar to that for formation of the (S)-MTPA ester. The product was purified 

by column chromatography (SiO2, ethyl acetate-hexanes = 0-40 % gradient) to afford a 

colorless crystalline solid quantitatively. 

mp 132-135 
0
C; 

1
H NMR (CDCl3, 300 MHz) δ 7.57-6.85 (m, 15H), 5.43-5.28 (m, 3H), 

5.71-4.88 (m, 2H), 3.55 (s, 3H), 2.69-2.51 (d & m, 3H), 2.02-1.70 (m, 9H), 1.54-1.26 (m, 

8H), 1.13-1.03 (m, 1H), 0.95-0.70 (m, 2H), 0.48 (d,  J = 7.2 Hz, 3H); 
13

C NMR (CDCl3, 

75 MHz) δ 167.2, 167.0, 166.3, 143.2, 142.8, 138.4, 132.6, 129.8, 128.9, 128.6, 128.4, 

127.7, 127.6, 127.5, 126.8, 126.7, 123.2, 77.6, 77.0, 73.4, 55.9, 55.6, 49.8, 49.4, 35.1, 

34.4, 34.0, 32.0, 31.9, 29.7, 25.9, 24.8, 13.6. 
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Reaction of (+)-203 with S-(-)-(α)-MTPA: Esterification of the more polar cyclohexenol 

(+)-203 (15 mg, 0.028 mmol) with S-(-)-(α)-MTPA (26 mg, 0.11 mmol) was carried out 

in a fashion similar to the reaction of (-)-204 with (S)-MTPA. The product was purified 

by column chromatography (SiO2, ethyl acetate-hexanes = 0-40% gradient) to afford a 

colorless oil quantitatively. 

1
H NMR (CDCl3, 300 MHz) δ 7.58-7.16 (m, 15H), 5.49 (dd, J = 5.2, 6.4 Hz, 1H), 5.42 

(d, J = 7.0 Hz, 1H), 5.13-4.95 (m, 3H), 3.56 (s, 3H), 2.71 (d, J = 7.4 Hz, 1H), 2.66-2.60 

(m, 2H), 2.17-1.65 (m, 10H), 1.54-0.89 (m, 10H), 0.00 (d,  J = 7.5 Hz, 3H); 
13

C NMR 

(CDCl3, 75 MHz) δ 167.2, 167.0, 166.3, 143.2, 143.1, 138.6, 132.2, 129.7, 129.5, 128.4, 

128.0, 127.9, 123.3, 78.3, 77.9, 73.8, 55.1, 55.0, 50.2, 50.0, 35.3, 35.0, 34.9, 34.8, 34.63, 

33.6, 33.4, 30.1, 25.1, 25.0, 24.9, 13.8. 
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Reaction of (+)-203 with R-(+)-(α)-MTPA: Esterification of the more polar 

cyclohexenol (+)-203 (15 mg, 0.028 mmol) with R-(+)-(α)-MTPA (26 mg, 0.11 mmol) 

was carried out in a fashion similar to (-)-204 with (S)-MTPA. The product was purified 

by (SiO2, ethyl acetate-hexanes = 0-40% gradient) to afford a colorless solid 

quantitatively. 

mp 130.0-132.0 
0
C; 

1
H NMR (CDCl3, 300 MHz) δ 7.56-7.14 (m, 15H), 5.57 (dd, J = 5.4, 

6.0 Hz, 1H), 5.32 (d, J = 6.8 Hz, 1H), 5.16-4.85 (m, 3H), 3.57 (s, 3H), 2.78-2.56 (d & m, 

3H), 2.16-1.65 (m, 10H), 1.47-0.89 (m, 10H), 0.00 (d, J  = 7.4 Hz, 3H); 
13

C NMR 

(CDCl3, 75 MHz) δ 167.6, 167.4, 166.8, 143.2, 143.0, 138.4, 132.5, 129.9, 129.8, 128.4, 

128.0, 129.9, 123.6, 78.0, 77.6, 73.8, 55.0, 51.4, 51.0, 35.1, 35.0, 33.2, 33.0, 30.1, 26.0, 

25.0, 13.7. 
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Bis[(1S,2R)-2-Phenylcyclohexyl] 2-[5(R)-hydroxy-2(S)-methyl-1(R) 

cyclohexyl]propanedioate (+)-209: The more polar (major isomer) cyclohexenol (+)-

203 (320 mg, 0.603 mmol) was dissolved in MeOH (10 mL) and the solution transferred 

into a small heavy-walled hydrogenation flask.  Palladium on activated carbon (10 % 

w/w, 150 mg) was added and the flask connected to a Parr hydrogenation apparatus. The 

mixture was maintained under H2 (45 psi) with stirring for 24 h after which the pressure 

was released and the solvent removed. The residue was suspended in ethyl acetate (50 

mL) and filtered through a celite pad. The filter bed was washed several times with ethyl 

acetate and the extracts concentrated. The residue was purified by flash column 

chromatography (SiO2, ether-hexanes = 0-50% gradient) to afford a cyclohexanol (+)-209 

as a colorless solid (284 mg, 89%). 

mp 135-138 
0
C; 

 

1
H NMR (CDCl3, 300 MHz) δ 7.29-7.11 (m, 10H), 5.12-4.97 (m, 2H), 2.95-2.81 (m, 1H), 

2.78-2.55 (d & m, 3H), 2.08-1.98 (m, 1H), 1.92-1.68 (m, 8H), 1.50-1.18 (m, 9H), 1.15-

0.94 (m, 4H), 0.90-0.80 (m, 1H), 0.74-0.56 (m, 1H), 0.73-0.28 (m, 1H), 0.09 (d, J = 7.1 
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Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 167.3, 167.0, 143.3, 143.0, 128.7, 128.5, 127.7, 

127.6, 126.9, 126.7, 77.6, 76.7, 55.5, 49.7, 49.5, 40.0, 39.8, 36.1, 34.7, 34.6, 32.3, 31.9, 

31.1, 27.7, 25.9, 24.8, 11.1. 

 

 

 
 

 

Bis [(1S,2R)-2-Phenylcyclohexyl] 2-[5(R)-(t-butyldiphenylsilyl)oxy-2(S)-methyl-1(R)-

cyclohexyl]propanedioate (+)-210: To a solution of the pure cyclohexanol (+)-209 (250 

mg, 0.469 mmol) in CH2Cl2 (10 mL) at 0 
0
C was added imidazole (64 mg, 0.94 mmol). 

The reaction mixture was stirred under N2 for 15 min. t-Butyldiphenylsilyl chloride (194 

mg, 0.704 mmol) was added slowly with vigorous stirring. After addition was complete 

the mixture was stirred at room temperature overnight and quenched with water. The 

resulting mixture was extracted several times with CH2Cl2, and the combined extracts 

were dried (MgSO4) and concentrated. The residue was purified by column 

chromatography (SiO2, acetone-hexanes = 0-5% gradient) to afford the protected 

cyclohexanol (+)-210 as a colorless oil (359 mg, quant.). 

 

1
H NMR (CDCl3, 300 MHz) δ 7.67-7.64 (m, 4H), 7.49-7.34 (m, 6H), 7.29-7.07 (m, 10H), 

5.01- 4.81 (m, 2H), 3.51-3.37 (m, 1H), 2.76-2.41 (d & m, 3H), 2.09-1.99 (m, 1H), 1.98-
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1.69 (m, 6H), 1.62-1.20 (m, 11H), 1.16-0.87 (m & s, 15H), 0.11 (d, J = 7.0 Hz, 3H); 
13

C 

NMR (CDCl3, 75 MHz) δ 168.4, 167.4, 143.4, 143.3, 136.0, 135.9, 135.0, 134.9, 129.8, 

197.7, 128.6, 128.5, 127.8, 127.7, 127.65, 127.6, 126.6, 126.5, 76.3, 72.4,  55.4, 49.5, 

49.4, 39.5, 34.9, 34.8, 33.6, 32.3, 31.7, 30.8, 29.7, 27.6, 27.2, 26.1, 26.0, 24.9, 24.8, 19.4, 

11.6. 

 

 

 
 

 

2-([5(R)-((tert-Butyldiphenylsilyl)oxy)-2(S)-methyl-1(R)-cyclohexyl)malonic acid 

(+)-211: To a solution of the diester (+)-210 (95 mg, 0.16 mmol) in methanol (5 mL) was 

added NaOH (93 mg, 2.3 mmol). The reaction mixture was heated at reflux (85-95 
0
C) 

for 4 d. Upon completion of the reaction, as indicated by TLC, the mixture was acidified 

with 6 M HCl (6 mL) and the mixture extracted several times with ethyl acetate, washed 

with brine, dried (Na2SO4) and concentrated. Purification of the residue by flash column 

chromatography (SiO2, methanol-ethyl acetate = 0-40% gradient) gave the diacid (+)-211 

as a pale colorless semi solid quantitatively. 

 

1
H NMR (d6-DMSO, 300 MHz) δ 7.65-7.55 (m, 4H), 7.52-7.34 (m, 6H), 3.57-3.43 (m, 

1H), 2.62 (br d, J = 11.0 Hz, 1H), 1.95-1.08 (m, 8H), 0.97 (s, 9H), 0.81 (br s, 3H). The 

signals for the COOH protons were not observed; 
13

C NMR (DMSO, 75 MHz) δ 175.5, 
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174.4, 135.9 135.8, 134.8 134.4, 130.4 130.3, 128.4 128.3, 73.0, 50.9, 44.8, 36.3, 33.7, 

33.5, 31.3, 27.5, 20.1, 19.4. 

 

 

 
 

 

(E/Z)-Methyl 2-(5-((tert-Butyldiphenylsilyl)oxy)-2-methylcyclohexylidene)acetate 

(215): To a solution of the diacid (+)-211 (36 mg, 0.079 mmol) in freshly distilled THF 

(3 mL) was added CDI (28 mg, 0.17 mmol). The mixture was vigorously stirred at room 

temperature for 2 h. Aqueous NaOH (3N, 2 mL) was added at this stage and stirring 

continued for 6 h. On completion of the reaction, as indicated by TLC, the reaction 

mixture was acidified with 6 M HCl (10 mL), extracted several times with CH2Cl2, dried 

(Na2SO4) and concentrated to afford a brown oil. The crude product (+)-212 (26 mg) was 

used without further purification. 

To a solution of the acid (+)-212 (26 mg, 0.063 mmol) in dry toluene (2.4 mL) 

and anhydrous methanol (1.6 mL) was added a solution of trimethylsilyldiazomethane 

(2.0 M in hexane, 0.1 mL, 0.20 mmol) slowly. The reaction mixture was stirred at room 

temperature and the progress of the reaction monitored by TLC. Upon completion the 

solvent was removed, the residue redissolved in CH2Cl2 and filtered through a silica pad 

to afford 33 mg of the crude product (+)-213 which was used for the next step without 

purification. 
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To a stirring solution of LDA (2.0 M in heptane, 0.2 mL, 032 mmol) in dry THF 

(2 mL) at -78 
0
C was added dropwise a solution of the crude (+)-213 (33 mg, 0.080 

mmol) in dry THF (2 mL). The mixture was stirred at -78 
0
C under N2 for 30 min. A 

solution of PhSeCl (31 mg, 0.16 mmol) in dry THF (0.5 mL) was added dropwise rapidly 

with vigorous stirring. The reaction mixture was slowly   warmed to room temperature 

and stirred for 24 h under N2. Upon completion of the reaction (as indicated by TLC) the 

solvent was removed under an N2 stream and the crude product 214/214’ (19 mg) used 

for the next step without purification 

To a stirring solution of the crude phenylseleno compound (19 mg, 0.033 mmol) 

in MeOH (4 mL) was added NaIO4 (150 mg, excess). The mixture was stirred vigorously 

under N2 over night. The reaction mixture was concentrated and the residue purified by 

column chromatography (SiO2, hexanes- ethyl acetate 20:1) to afford a mixture of 

unsaturated esters (E/Z)-215 as colorless oil inseparable on silica (15 mg, 

quantitative~1:1). 

The 
1
H and 

13
C NMR spectral data for this product were identical with that previously 

obtained for the racemic material. 

 

 

 
 

 

Tricarbonyl(η
4
-2,4-hexadienal)iron (217):  A flame dried round bottom  flask was 

charged with 2,4-hexadienal (6.00 g, 62.2 mmol). Benzene (140 mL) was added and the 
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system flushed with N2 for 15 min. Diirron-nonacarbonyl (30 g, 81 mmol) was added. 

The mixture was heated at reflux under a N2 atmosphere for 2 h. The reaction mixture 

was cooled to room temperature and additional diirron-nonacarbonyl (16 g, 44 mmol) 

added. The reaction mixture was heated at reflux until no starting material was left as 

indicated by TLC. The reaction mixture was cooled to room temperature, filtered through 

celite pad and concentrated. Careful vacuum distillation at room temperature afforded an 

orange viscous liquid (14 g, 95%).   

1
H NMR (CDCl3, 300 MHz) δ 9.24 (d, J = 4.8 Hz, 1H), 5.80-5.78 (m, 1H), 5.30-5.26 (m, 

1H), 1.78-1.62 (m, 1H), 1.55 (s, 3H), 1.23-1.21 (m, 1H); 
13

C NMR (CDCl3, 75 MHz) δ 

198.1, 90.2, 82.3, 64.3, 55.7, 19.9. The signal for the Fe-CO was not observed. 

These spectral data are consistent with the literature values.
49 

 
 

 
 

 

Tricarbonyl(η
4
-2,4-hexadienol)iron (218): To a solution of 217 (13 g, 55 mmol) in 

methanol (80 mL) at room temperature was added NaBH4 (3.5 g, 80 mmol) in small 

quantities with the evolution of  hydrogen gas. The reaction mixture was stirred at this 

temperature for 2 h after which TLC indicated all starting material had been consumed. 

The reaction was quenched with MeOH/H2O (1:1, 50 mL), extracted several times with 

ether, dried (Na2SO4) and concentrated. Purification of the residue by column 

chromatography (SiO2, ethyl acetate-hexane = 2:3) afforded 218 a yellow oil (11.7, 89%). 
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1
H NMR (CDCl3, 300 MHz) δ 5.21-5.01 (m, 2H), 3.79-3.59 (m, 2H), 1.65-1.48 (m, 1H), 

1.60 (d, J = 6.8 Hz, 3H), 1.35-1.20 (m, 1H), 1.18-1.10 (m, 1H); 
13

C NMR (CDCl3, 75 

MHz) δ 211.0, 88.2, 54.6, 67.3, 61.6, 59.9, 20.0. 

These spectral data are consistent with the literature values.
49 

 
 

 
 

 

Tricarbonyl(η⁵-1-methyl-pentadienyl)iron(+1) hexafluorophosphate (219): To a 

solution of 218 (11.7 g, 49 mmol) in diethyl ether (70 mL) at 0 
0
C was added acetic 

anhydride (15 mL). The mixture was stirred for 15-20 min and a solution of 

hexafluorophosphoric acid (60 % w/w, 10 mL) and acetic anhydride (9 mL) was added 

slowly. A yellow solid began to precipitate after about 20 min of stirring. The reaction 

mixture was stirred at 0 
0
C for an additional 30 min. The thick yellow mixture was 

poured into ether (1 L) and filtered through a sintered glass funnel to afford a bright 

yellow solid (11.9 g, 69%).  

These spectral data are consistent with the literature values.
49 
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Dimethyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)propanedioate (235a) and dimethyl 2-

(2-methyl-3-oxocyclohex-4-en-1-yl)propanedioate (235b): To an ice cold stirring 

suspension of   NaH (25 mg, 0.62 mmol) in freshly distilled THF (10 mL) was added 

dimethylmalonate (55 mg, 0.41 mmol) slowly. The resultant mixture was stirred at 0 
0
C 

for 45 mins. The solid cation 219 (150 mg, 0.409 mmol) was added slowly.  The reaction 

mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with   

CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The reaction was stirred for 24 

h. The reaction was quenched with water (10 mL). The organic portions were extracted 

several times with CH2Cl2, washed with brine, dried (Na2SO4) and concentrated. 

Purification of the residue by flash column chromatography (SiO2, acetone-hexane = 0-

25% gradient) afforded an inseparable mixture of regioisomeric cyclohexenones (76 mg, 

~1:0.0.2 ratio, 77%). 

1
H NMR major isomer, deconvoluted from the mixture (CDCl3, 300 MHz) 235a δ 6.75 

(br s, 1H), 3.71 (s, 6H), 3.38 (d, J = 7.4 Hz, 1H), 2.75-2.79 (m, 1H), 2.57-2.38 (m, 2H), 

2.30-2.17 (s & m, 2H), 1.72 (s, 3H); 
13

C NMR major isomer, deconvoluted from the 

mixture (CDCl3, 75 MHz) 235a δ 198.1, 168.1, 144.0, 135.9, 56.0, 52.8, 41.9, 35.2, 30.1, 

15.9. 
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Hydrolysis of (±)-235a/b: To mixture of the two isomeric cyclohexenones 235a/b (2.1 g, 

8.7 mmol) was added aqueous HCl (~1N, 10 mL). The mixture was heated at reflux (85-

95 
0
C) and the progress of the reaction monitored by TLC. When all starting material had 

been consumed (3 d) the mixture was concentrated under a N2 stream. The organic 

components were extracted into ether, dried (Na2SO4) and concentrated. Purification of 

the residue by flash column chromatography (SiO2, ethyl acetate-hexanes = 0-60% 

gradient) afforded the 244a (1.42 g, 97%) as a brown oil and 244b (24 mg, 1%) as a dark 

brown oil. 

244a: 
1
H NMR (acetone-d6, 300 MHz) δ 6.90 (br s, 1H), 2.67-2.22 (m, 7H), 1.81 (s, 3H); 

13
C NMR (acetone-d6, 75 MHz) δ 198.3, 172.8, 144.6, 135.3, 43.9, 39.5, 32.6, 31.8, 14.9. 

244b: 
1
H NMR (acetone-d6, 75 MHz) δ 6.91 (br s, 1H), 3.53 (d, J = 6.4 Hz, 1H), 2.87-

2.36 (m, 5H), 1.79 (s, 3H); 
13

C NMR (acetone-d6, 75 MHz) δ 197.3, 170.0, 144.4, 135.3, 

55.8, 42.2, 35.4, 32.8, 15.1. 

The signals for the COOH protons were not observed. 
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Methyl 2-(4-methyl-5-oxocyclohex-3-en-1-yl) acetate (±)-245: To a solution of the 

crude monoacid (±)-244 (37 mg, 0.22 mmol) in a methanol:toluene solvent system (2:3, 4 

mL) was added dropwise an excess of trimethylsilyldiazomethane solution (0.35 mL, 2.0 

M in hexanes, 0.70 mmol). The reaction mixture was stirred vigorously and the progress 

of the reaction monitored by TLC. Upon completion of the reaction, 1 h, the mixture was 

concentrated and the residue purified by flash column chromatography (ethyl acetate-

hexanes = 0-40% gradient) to afford (±)-245 as bright yellow oil (39 mg, 97%). 

1
H NMR (CDCl3, 300 MHz) δ 6.71 (br s, 1H), 3.69 (s, 3H), 2.64-2.42 (m, 3H), 2.38 (d, J 

= 6.1 Hz, 2H), 2.26-2.06 (m, 2H), 1.78 (s, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 199.2, 

172.6, 144.0, 135.9, 52.2, 44.2, 40.0, 32.7, 32.0, 16.0. 

 

 

 
 

 

Methyl 2-(6-methyl-5-oxo-7-oxabicyclo[4.1.0]heptan-3-yl) acetate(±)-246: To a 

solution of (±)-245 (37 mg. 0.20 mmol) in MeOH (0.8 mL) was added 2 M aqueous 

NaOH (0.04 mL, 0.08 mmol). The mixture was stirred at 0 
0
C for 20 min under N2 

atmosphere. Hydrogen peroxide (0.08 ml, 50% v/v) was added dropwise with stirring at 0 

0
C. The mixture was stirred at this temperature and the progress of the reaction monitored 
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by TLC. Upon completion as indicated by TLC (~4 h) the mixture was diluted with H2O, 

extracted several times with Et2O and concentrated. The residue was purified by column 

chromatography (SiO2, ethyl acetate-hexanes = 0-50% gradient) to afford the epoxide  as 

a colorless liquid (35 mg, 87%). 

1
H NMR (CDCl3, 300 MHz) δ 3.68 (s, 3H), 3.41-3.39 (m, 1H), 2.70-2.53 (m, 2H), 2.42-

2.23 (m, 3H), 1.93-1.69 (m, 2H), 1.41 (s, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 205.1, 

172.4, 61.3, 59.1, 52.0, 42.5, 39.7, 29.8, 26.0, 15.5.  

 

 

 
 

 

Methyl 2-(4-methyl-5-oxocyclohex-3-en-1-yl)-2-(phenylsulfonyl)acetate (±)-247a/b:  

To a stirring suspension of methyl phenylsulfonylacetate (117 mg, 0.546 mmol) in THF 

(10 mL) at 0 
0
C was added dropwise a solution of butyl lithium (2.5 M in hexanes, 0.26 

mL, 0.66 mmol). The solution was stirred at this temperature under nitrogen atmosphere 

for 30 min during which a pale white precipitate formed. The solid cation 219 (200 mg, 

0.546 mmol) was added slowly. The reaction mixture was stirred at room temperature for 

2 h. The reaction mixture was diluted with   CH2Cl2 (10 mL) and saturated 

NaHCO3/MeOH (10 mL). The reaction was stirred for 24 h. The reaction was quenched 

with water (10 mL). The organic portions were extracted several times with CH2Cl2, 

washed with brine, dried (Na2SO4) and concentrated. Purification of the residue by flash 
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column chromatography (SiO2, ethyl acetate-hexane = 0-60% gradient) afforded an 

inseparable mixture of regioisomeric cyclohexenones as a pale green oil (46 g, 26%). 

1
H NMR (CDCl3, 300 MHz) 247a/b δ 7.97-7.83 (m, 4H), 7.74-7.64 (m, 2H), 7.63-7.52 

(m, 4H), 6.96-6.88 (m, 1H), 6.77-6.62 (m, 1H), 6.01 (d,  J = 10.8 Hz, 1H), 4.16-4.10 (m, 

1H), 4.03-3.94 (m, 1H), 3.71-3.37 (m, 6H), 3.24-2.74 (m, 5H), 2.57-2.19 (m, 4H), 1.76 

(s, 3H), 1.26-1.10 (m, 3H); 
13

C NMR (CDCl3, 75 MHz) 247a/b δ 200.4, 198.2, 164.9, 

168.5, 139.2, 138.6, 137.1, 136.0, 135.5, 134.5, 133.7, 133.6, 129.7, 128.9, 128.3, 128.0, 

76.2, 72.9, 54.8, 56.1, 40.1, 38.3, 28.3, 29.6, 16.4, 16.0, 15.3, 15.8.  

The reaction was repeated using sodium methyl phenylsulfonylacetate (127 mg, 72%) 

and potassium methyl phenylsulfonylacetate (65 mg, 49%). 

 

 

 
 

 

Dimethyl 2-methyl-2-(4-methyl-3-oxocyclohex-4-en-1-yl)propanedioate (231a/b): To 

an ice cold stirring suspension of   NaH (25 mg, 0.60 mmol) in freshly distilled THF (10 

mL) was added slowly dimethyl methylmalonate (60.5 mg, 0.409 mmol). The resultant 

mixture was stirred at 0 
0
C for 1 h. The solid cation 219 (150 mg, 0.409 mmol) was 

added slowly. The reaction mixture was stirred at room temperature for 2 h. The reaction 

mixture was diluted with   CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The 

reaction was stirred for 24 h. The reaction was quenched with water (10 mL). The 
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organic portions were extracted several times with CH2Cl2, washed with brine, dried 

(Na2SO4) and concentrated. Purification of the residue by flash column chromatography 

(SiO2, acetone-hexane = 0-30% gradient) afforded an inseparable mixture of 

regioisomeric cyclohexenones 231a and 231b (1.0:0.3 ratio) (72 mg, 69%). 

1
H NMR major isomer, deconvoluted from the mixture (CDCl3, 300 MHz) δ 6.69 (s, 1H), 

3.68 (s, 6H), 2.84-2.70 (m, 1H), 2.48-2.21 (m, 4H), 1.72 (s, 3H), 1.38 (s, 3H); 
13

C NMR 

major isomer, deconvoluted from the mixture (CDCl3, 75 MHz) δ 199.1, 171.5, 171.4, 

144.7, 135.7, 56.5, 52.9, 40.2, 39.8, 28.0, 17.6, 15.8.  

 

 

 
 

 

Dimethyl 2-allyl-2-(4-methyl-3-oxocyclohex-4-en-1-yl)propanedioate (±)-(232a) and 

dimethyl 2-allyl-2-(4-methyl-3-oxocyclohex-1-enyl)propanedioate (±)-(232b): To an 

ice cold stirring suspension of   NaH (25 mg, 0.66 mmol) in freshly distilled THF (10 

mL) was added dropwise dimethyl allylmalonate (72 mg, 0.01 mmol). The resultant 

mixture was stirred at 0 
0
C for 45 min. The solid cation 219 (150 mg, 0.409 mmol) was 

added slowly. The reaction mixture was stirred at room temperature for 2 h. The reaction 

mixture was diluted with   CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The 

mixture was stirred for 24 h. The reaction was quenched with water (10 mL). The organic 

portions were extracted several times with CH2Cl2, washed with brine, dried (Na2SO4) 
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and concentrated. Purification of the residue by flash column chromatography (SiO2, 

acetone-hexane = 0-30% gradient) afforded an inseparable mixture of regioisomeric 

cyclohexenones (±)-232a and (±)-232b (~1:1 ratio) (64 mg, 56%). 

1
H NMR (CDCl3, 300 MHz) δ 6.75-6.70 (m, 1H), 5.99 (m, 1H), 5.94-5.59 (m, 2H), 5.17-

5.06 (m, 3H), 3.80-3.70 (m & s, 11H), 2.87-2.00 (m, 12H), 1.76 (s, 3H), 1.14 (d, J = 8.2 

Hz, 2H); 
13

C NMR (CDCl3, 75 MHz) δ 201.8,  198.7, 170.4, 170.2, 169.1, 169.0, 157.9, 

144.5, 135.4, 132.7, 132.2, 128.0, 119.3, 119.1, 64.4, 60.6, 25.9, 25.4, 41.2, 40.4, 38.4, 

38.2, 37.6, 31.1, 27.7, 15.6, 14.9. 

 

 

 
 

 

Dimethyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)-2-(prop-2-yn-1-yl)propanedioate 

(233a) and Dimethyl 2-(4-methyl-3-oxocyclohex-1-enyl)-2-(2-propyn-1-

yl)propanedioate (233b): To a solution of sodium dimethyl  propargylmalonate 

[prepared from sodium  hydride (25 mg, 0.62 mmol) and dimethyl propargylmalonate] 

(73 mg, 0.40 mmol)] in THF (10 mL) at 0 
0
C was added solid  cation 219 (150 mg, 0.409 

mmol). The mixture was stirred at room temperature for 2 h. Saturated methanolic 

NaHCO3 (10 mL) and CH2Cl2 (10 mL) were added and the reaction mixture stirred for 24 

h. Water (10 mL) was added and the mixture extracted several times with CH2Cl2. The 
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combined organic extracts were washed with brine, dried (Na2SO4) and concentrated. 

Purification of the residue by flash chromatography (SiO2, acetone-hexanes = 0-25% 

gradient) gave a separable mixture of alkene regioisomers (±)-233a (56 mg, 50 %) and 

(±)-233b (16mg, 14%) both as colorless oils. 

1
H NMR (CDCl3, 300 MHz) 233a δ 6.74 (d, J = 6.3 Hz, 1H), 3.75 (s, 6H), 3.06-2.94 (m, 

1H), 2.88 (d, J = 2.7 Hz, 2H), 2.76-2.67 (m, 1H), 2.62-2.49 (m, 1H), 2.34-2.15 (m, 2H), 

2.04 (t, J = 2.6 Hz, 1H),  1.77 (s, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 198.8, 169.9, 169.8, 

144.8, 135.6, 78.5, 72.4, 59.6, 53.1, 53.0, 40.6, 37.8, 28.1, 23.1, 15.8; 
1
H NMR (CDCl3, 

300 MHz) 233b δ 6.04 (s, 1H), 3.80 (s, 6H), 3.00 (s, 2H), 2.56-2.46 (m, 2H), 2.45-2.32 

(m, 1H), 2.16-2.02 (m, 1H), 1.83-1.66 (m, 2H), 1.15 (d, J = 6.8 Hz, 3H); 
13

C NMR 

(CDCl3, 75 MHz) B δ  200.0, 168.6, 156.8, 128.6, 79.1, 72.1, 63.7, 53.5, 41.4, 31.0, 27.6, 

24.7, 15.2. ESI-HRMS m/z 301.1046 (calcd.  for C15H18O5Na (M+Na) m/z 301.1047). 

 

 

 
 

 

Methyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)-3-oxobutanoate (±)-248a/b: To an ice 

cold stirring suspension of   NaH (25 mg, 0.62 mmol) in freshly distilled THF (10 mL) 

was added dropwise methyl acetoacetate (53 mg, 0.40 mmol. The resultant mixture was 

stirred at 0 
0
C for 45 min. The solid cation 219 (150 mg, 0.409 mmol) was added slowly. 

The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was 
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diluted with   CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The reaction was 

stirred for 24 h. The reaction was quenched with water (10 mL). The organic portions 

were extracted several times with CH2Cl2, washed with brine, dried (Na2SO4) and 

concentrated. Purification of the residue by flash column chromatography (SiO2, acetone-

hexane = 0-25% gradient) afforded an inseparable mixture of diastereomeric 

cyclohexenones (±)-248a/b as a pale yellow oil (48 mg, 52%). 

1
H NMR (CDCl3, 300 MHz) δ 6.74-6.67 (m, 1H), 3.75 (s, 3H), 3.40 (d, J = 10.2 Hz, 1H), 

2.96-2.79 (m, 1H), 2.57-2.33 (m, 2H), 2.29-2.04 (m & s, 5H), 1.77 (s, 3H); 
13

C NMR 

(CDCl3, 75 MHz) δ 199.1 [199.0], 195.6 [195.5], 166.3 [166.1], 141.5 [141.2], 133.6 

[133.4], 61.8 [61.4], 50.4 [50.3], 39.7 [39.4], 32.3 [32.2], 27.6 [27.4], 27.3 [27.2], 13.2 

[13.1]; Diastereomeric signals are in brackets. ESI-HRMS m/z 247.0948 (calcd. for 

C12H16O4Na (M+Na) m/z 247.0941). 

 

 

 
 

 

Trimethyl-2-(4-methyl-3-oxocyclohex-4-en-1-yl)phosphonoacetate (±)-220a/b: To an 

ice cold stirring suspension of   NaH (27 mg, 0.67 mmol) in freshly distilled THF (10 

mL) was added dropwise trimethyl phosphonoacetate (84 mg, 0.45 mmol). The resultant 

mixture was stirred at 0 
0
C for 45 min. The solid cation 219 (200 mg, 0.450 mmol) was 
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added slowly. The reaction mixture was stirred at room temperature for 2 h. The reaction 

mixture was diluted with CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The 

reaction was stirred for 24 h. The reaction was quenched with water (10 mL). The 

organic portions were extracted several times with CH2Cl2, washed with brine, dried 

(Na2SO4) and concentrated. Purification of the residue by flash column chromatography 

(SiO2, acetone-hexane = 0-50% gradient) afforded an inseparable mixture of 

regioisomeric cyclohexenones 220a/b (114 mg, ~1.0:0.3 ratio, 87%) as a colorless oil. 

IR (neat) 3460, 2958, 1734, 1670, 1437, 1253, 1031 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) δ 

6.73-6.63 (m, 1H), 3.82-3.71 (m, 9H), 3.03-2.92 (dd, J = 8.3, 8.5 Hz, 1H), 2.84-2.61 (m, 

3H), 2.54-2.18 (m, 2H), 1.73 (s, 3H); ESI-HRMS m/z 603.1734 (calcd. for 

(C12H19O6P)2Na (M+Na) m/z 603.1734). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted. 

 

 

 
 

 

Triethyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)phosphonoacetate (±)-221a and triethyl 

2-(4-methyl-3-oxocyclohex-1-enyl)phosphonoacetate (±)-221b: Reaction of the sodium 
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salt of triethyl phosphonoacetate (122 mg, 0.108   mmol) with cation 219 (200 mg, 0.450 

mmol) was carried out in a fashion similar to that for the reaction of 35 with trimethyl 

phosphonoacetate. Purification of the residue by flash column chromatography (SiO2, 

acetone-hexane = 0-50% gradient) afforded an inseparable mixture of regioisomeric 

cyclohexenones 221a and 221b (~1:1 ratio)  as a greenish oil (124 mg, 68%). 

1
H NMR (CDCl3, 300 MHz): 221a/b δ 6.91-6.79- (m, 1H), 6.69-6.60 (m, 1H), 5.93 (d, J  

= 10.9 Hz, 1H), 4.17-4.01 (m, 12H), 3.26-3.02 (m, 1H), 2.93-2.82 (m, 1H), 2.79-2.61 (m, 

4H), 2.53-2.14 (m, 5H), 1.68 (s, 3H), 1.28-1.17 (m, 18H), 1.12 (d, J = 6.2 Hz, 3H). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted.    

 

 

 
 

 

Diethyl (1-(4-methyl-3-oxocyclohex-4-en-1-yl)-2-oxopropyl)phosphonate (±)-222a/b: 

To an ice cold stirring suspension of   NaH (25 mg, 0.62 mmol) in freshly distilled THF 

(10 mL) was added dropwise diethyl 2-oxopropylphosphonate (79  mg, 0.41   mmol) in 

drops. The resultant mixture was stirred at 0 
0
C for 45 min. The solid cation 219 (150 mg, 

0.409 mmol) was added slowly. The reaction mixture was stirred at room temperature for 
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2 h. The reaction mixture was diluted with   CH2Cl2 (10 mL) and saturated 

NaHCO3/MeOH (10 mL). The reaction was stirred for 24 h. The reaction was quenched 

with water (10 mL). The organic portions were extracted several times with CH2Cl2, 

washed with brine, dried (Na2SO4) and concentrated. Purification of the residue by flash 

column chromatography (SiO2, ethyl acetate-hexane = 0-60% gradient) afforded an 

inseparable mixture of regioisomeric cyclohexenones (±)-222a and (±)-222b (~1.0:0.1 

ratio) as a colorless oil (89.7 mg, 74%). 

1
H NMR (CDCl3, major isomer, 300 MHz) δ 6.75-6.62 (m, 1H), 4.18-4.07 (m, 4H), 3.22 

and 3.15 (2xdd, J  = 8.7, 9.3 Hz, 1H total), 2.89-2.66 (m, 2H), 2.43-2.21 (m, 3H), 2.33 

and 2.29  (2xs, 3H total), 1.75 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H); ESI-HRMS m/z 325.1175 

(calcd. for C14H23O5PNa (M+Na) m/z 325.1175). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted.    

 

 

 
 

 

Diethyl ((4-methyl-3-oxocyclohex-4-en-1-yl)(phenylsulfonyl)methyl)phosphonate 

(±)-223a/b: To an ice cold stirring suspension of   NaH (25 mg, 0.62 mmol) in freshly 
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distilled THF (10 mL) was added dropwise diethyl (phenylsulfonyl)methylphosphonate 

(116 mg, 0.409 mmol). The resultant mixture was stirred at 0 
0
C for 45 min. The solid 

cation 219 (150 mg, 0.409 mmol) was added slowly. The reaction mixture was stirred at 

room temperature for 2 h. The reaction mixture was diluted with   CH2Cl2 (10 mL) and 

saturated NaHCO3/MeOH (10 mL). The reaction was stirred for 24 h. The reaction was 

quenched with water (10 mL). The organic portions were extracted several times with 

CH2Cl2, washed with brine, dried (Na2SO4) and concentrated. Purification of the residue 

by flash column chromatography (SiO2, ethyl acetate-hexane = 0-80% gradient) afforded 

an inseparable mixture of regioisomeric cyclohexenones (±)-223a and (±)-223b (~1.0:0.3 

ratio) as a pale green oil (76 mg, 47%). ESI-HRMS m/z 423.1002 (calcd. for 

C18H25O6SPNa (M+Na)  m/z 423.1002). This compound was used in the olefination 

reaction without further characterization. 

 

 

 
 

 

Ethyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)-2-nitroacetate (±)-234: To an ice cold 

stirring suspension of   NaH (25 mg, 0.62 mmol) in freshly distilled THF (10 mL) was 

added dropwise ethyl nitroacetate (56 mg, 0.41 mmol). The resultant mixture was stirred 

at 0 
0
C for 45 min. The solid cation 219 (150 mg, 0.409 mmol) was added slowly. The 

reaction mixture was stirred at room temperature for 2 h. The reaction mixture was 

diluted with   CH2Cl2 (10 mL) and saturated NaHCO3/MeOH (10 mL). The reaction was 
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stirred for 24 h. The reaction was quenched with water (10 mL). The organic portions 

were extracted several times with CH2Cl2, washed with brine, dried (Na2SO4) and 

concentrated. Purification of the residue by flash column chromatography (SiO2, acetone-

hexane = 0-25% gradient) afforded an inseparable mixture of diastereomeric 

cyclohexenones as a colorless oil (61 mg, 62%). 

1
H NMR (CDCl3, 300 MHz) δ 6.73 (br s, 1H), 5.08 (t, J = 5.9 Hz, 1H), 4.32 (q, J = 7.1 

Hz, 2H), 3.19-3.03 (m, 1H), 2.71-2.25 (m, 4H), 1.81 (s, 3H), 1.32 (t, J = 7.3 Hz, 3H); 
13

C 

NMR (CDCl3, 75 MHz): δ 196.5 [196.4], 163.2 [163.1], 142.7 [142.5], 136.5 [136.4], 

90.8 [90.5], 63.7 [63.6], 40.2 [40.1], 36.3 [36.2], 28.4 [28.1], 15.9 [15.8], 14.2 [14.1]; 

Diastereomeric signals in brackets. ESI-HRMS m/z 264.0842 (calcd. for C11H15NO5Na 

(M+Na) m/z 264.0843). 

 

 

 
 

 

Diethyl (cyano(4-methyl-3-oxocyclohex-4-en-1-yl)methyl)phosphonate (±)-224a/b: 

To an ice cold stirring suspension of   NaH (33 mg, 0.82 mmol) in freshly distilled THF 

(10 mL) was added dropwise diethyl (cyanomethyl)phosphonate (99 mg, 0.55 mmol). 

The resultant mixture was stirred at 0 
0
C for 45 min. The solid cation 219 (200 mg, 0.546 
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mmol) was added slowly. The reaction mixture was stirred at room temperature for 2 h. 

The reaction mixture was diluted with   CH2Cl2 (10 mL) and saturated NaHCO3/MeOH 

(10 mL). The reaction was stirred for 24 h. The reaction was quenched with water (10 

mL). The organic portions were extracted several times with CH2Cl2, washed with brine, 

dried (Na2SO4) and concentrated. The residue was purified by flash column 

chromatography (SiO2, acetone-hexane = 0-25% gradient) afforded an inseparable 

mixture of regioisomeric cyclohexenones (±)-224a/b (~1:1 ratio) as a pale brown oil 

(118 mg, 76%). 

1
H NMR (CDCl3, 300 MHz) δ 6.98-6.88 (m, 1H), 6.77-6.68 (m, 1H), 6.11-6.03 (dd, J = 

2.3, 2.8 Hz, 1H), 4.34-4.16 (m, 8H), 3.29 and 3.21 (2xd, J = 2.8 and 3.0 Hz, 1H total), 

3.07-2.66 (m, 5H), 2.63-2.38 (m, 5H), 1.77 (s, 3H), 1.44-1.33 (m, 12H), 1.18 (d, J = 6.4 

Hz, 3H). 

Due to the presence of two diastereomers, as well as 
31

P coupling, interpretation of the 

13
C NMR spectrum was not attempted.    

 

 

 
 

 

Methyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)acrylate (±)-225: To an ice-cold stirring 

suspension of NaH (43 mg, 1.1 mmol) in dry THF (20 mL) was added (±)-220a/b (210 

mg, 0.721 mmol). The mixture was stirred at 0 
0
C for 30 min, and then paraformaldehyde 
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(43.4 mg, 1.447 mmol) was added slowly at such a rate that the temperature remained 

below 30 
0
C and the reaction mixture stirred for 1 h at room temperature.  The reaction 

mixture was diluted with H2O (20 mL) and the mixture extracted several times with 

CH2Cl2. The combined extracts were dried (MgSO4) and concentrated. The residue was 

purified by flash column chromatography (SiO2, diethyl ether: hexanes = 50-75% 

gradient) to afford (±)-225 as a pale yellowish oil (88 mg, 97%). 

IR (neat) 3470, 2924, 2853, 1717, 1675 1457, 1375 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) δ 

6.75-6.71 (m, 1H), 6.26 (s, 1H), 5.57 (s, 1H), 3.76 (s, 3H), 3.28-3.19 (m, 1H), 2.64-2.52 

(m, 2H), 2.48-2.39 (m,  1H), 2.34-2.23 (m, 1H), 1.78 (s, 3H); 
13

C NMR (CDCl3, 100 

MHz)  δ 199.0, 166.8, 144.3, 142.3, 135.5, 124.6, 52.0, 42.9, 36.7, 31.6, 15.6. ESI-

HRMS m/z 411.1786 (cald. for C11H14O3Na (M+Na) m/z 411.1778S). 

 

 

 
 

 

Ethyl 2-(4-methyl-3-oxocyclohex-4-en-1-yl)acrylate (±)-228: To an ice-cold stirring 

suspension of NaH (21 mg, 0.53 mmol) in dry THF (10 mL) was added (±)-221a/b  (118 

mg, 0.355 mmol). The mixture was stirred at 0 
0
C for 30 min, paraformaldehyde (15 mg, 

0.46 mmol) was added slowly at such a rate that the temperature remained below 30 
0
C 

and the reaction mixture stirred for 1 h at room temperature.  The reaction mixture was 

diluted H2O (10 mL) and the mixture extracted several times with CH2Cl2. The combined 
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extracts were dried (MgSO4) and concentrated. The residue was purified by flash column 

chromatography (SiO2, ethyl acetate-hexane = 0-60% gradient) to afford an inseparable 

mixture of regioisomers 228a/b as a colorless oil (50 mg, ~1:1 ratio, 68%). 

1
H NMR 228a deconvoluted from 228a/b (CDCl3, 300 MHz) δ 6.78-6.72 (m, 1H), 6.27 

(s, 1H), 5.57 (s, 1H), 4.22 (q, J = 6.5 Hz, 2H), 3.32-3.119 (m, 1H), 2.67-2.52 (m, 2H), 

2.50-2.38 (m, 1H), 2.37-2.23 (m, 1H), 1.80 (s, 3H), 1.31 (t, J = 7.3 Hz, 3H); 
13

C NMR 

228a deconvoluted from 228a/b (CDCl3, 75 MHz) δ 199.1, 167.8, 141.2, 140.7, 136.1, 

125.3, 61.5, 40.9, 30.3, 28.4, 15.9, 14.6. 

 

 

 
 

 

2-Methyl-5-(1-methylene-2-oxopropyl)-2-cyclohexenone and 6-Methyl-5-(1-

methylene-2-oxopropyl)-2-cyclohexenone (±)-229a/b: To an ice-cold stirring 

suspension of NaH (12 mg, 0.29 mmol) in dry THF (5 mL) was added (±)-222a/b (74 

mg, 0.25 mmol). The mixture was stirred at 0 
0
C for 30 min, paraformaldehyde (14 mg, 

0.47 mmol) was added slowly at such a rate that the temperature remained below 30 
0
C 

and the reaction mixture stirred for 1 h at room temperature.  The reaction mixture was 

diluted H2O (10 mL) and the mixture extracted several times with CH2Cl2. The combined 

extracts were dried (MgSO4) and concentrated. The residue was purified by flash column 
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chromatography (SiO2, ethyl acetate-hexane: 0-60% gradient) to afford an inseparable 

mixture of regioisomers as a pale green oil (39 mg, ~1.0:0.2 ratio, 89%). 

1
H NMR (CDCl3, 300 MHz) 229a δ 6.75-6.69 (m, 1H), 6.14 (s, 1H), 6.01 (s, 1H), 3.42-

3.28 (m, 1H), 2.58-2.42 (m, 2H), 2.41-2.30 (m & s, 4H), 2.26-2.12 (m, 1H), 1.78 (s, 3H); 

13
C NMR (CDCl3, 75 MHz) δ 199.5, 199.3, 150.7, 144.6, 135.6, 125.2, 43.1, 35.4, 32.1, 

26.6, 15.9; spectral data (partial) for minor regioisomer 229b δ 6.93-6.84 (m), 6.20 (s), 

6.05-5.98 (m), 6.87 (s), 3.13-2.99 (m), 2.72-2.60 (m); ESI-HRMS m/z 201.0886 (calcd. 

for C11H14O2Na (M+Na) m/z 201.0887). 

 

 

 
 

 

2-Methyl-5-(1-phenylsulfonylethenyl)-2-cyclohexenone (±)-230: To an ice-cold 

stirring suspension of NaH (6 mg, 0.2 mmol) in dry THF (3 mL) was added (±)-223 (50 

mg, 0.13 mmol). The mixture was stirred at 0 
0
C for 30 min, paraformaldehyde (14 mg, 

0.47 mmol) was added slowly at such a rate that the temperature remained below 30 
0
C 

and the reaction mixture stirred for 1 h at room temperature.  The reaction mixture was 

diluted H2O (10 mL) and the mixture extracted several times with CH2Cl2. The combined 

extracts were dried (MgSO4) and concentrated. The residue was purified by flash column 

chromatography (SiO2, ethyl acetate-hexane = 0-45% gradient) to afford (±)-230 as a 

greenish oil (25 mg, 72%). 
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1
H NMR (CDCl3, 300 MHz) δ 7.85 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 8.3 Hz, 1H), 7.55 (t, J 

= 7.7 Hz, 2H), 6.66 (d, J = 5.8 Hz, 1H), 6.53 (s, 1H), 5.89 (s, 1H), 3.08-2.95 (m, 1H), 

2.67-2.55 (m, 1H), 2.43-2.23 (s & m, 3H), 1.74 (s, 3H); 
13

C NMR (CDCl3, 75 MHz): δ 

197.8, 153.1, 143.8, 138.9, 135.8, 134.1, 129.7, 128.3, 124.5, 43.6, 35.6, 33.0, 15.9. ESI-

HRMS m/z 299.0712 (calcd. for C15H16O3SNa (M+Na) m/z 299.0709). 

 

 

 
 

 

Carvonic acid (±)-226: The ester (±)-225 (69 mg, 0.46 mmol) was dissolved in a mixture 

of THF, methanol and water (4 mL, 2:2:1). Lithium hydroxide monohydrate (116 mg, 

2.77 mmol) was added in small portions with stirring. The reaction mixture was stirred 

for 1 h (TLC indicated complete consumption of the starting material). Dilute 

hydrochloric acid (~1 N) was added slowly until a yellow solution was obtained. The 

organic portions were extracted several times with ethyl acetate, washed with brine, dried 

(Na2SO4) and concentrated. Purification of the residue by flash column chromatography 

(SiO2, acetone-hexanes 0-50% gradient) gave the acid (±)-226 (43 mg, 52%). 

1
H NMR (CDCl3, 300 MHz) δ 6.80-6.72 (m, 1H), 6.44 (s, 1H), 5.72 (s, 1H), 3.32-3.17 

(m, 1H), 2.71-2.26 (m, 4H), 1.80 (s, 3H). The signal for the COOH proton was not 

observed; 
13

C NMR (CDCl3, 75 MHz) δ 199.1, 170.9, 144.5, 141.7, 135.7, 127.2, 43.1, 

36.7, 31.2, 15.9. 
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The 
1
H NMR spectral data for this compound are consistent with literature

162, 167 
values. 

 

 

 
 

 

10-Hydroxycarvone (±)-227: To a stirring solution of LDA (0.91 mL, 1.8 mmol, 2.0 M 

in heptanes) in THF (5 mL) at -78 
0
C was added dropwise a solution of (±)-225 (91 mg, 

0.61 mmol) in THF (1 mL). The reaction mixture was stirred at this temperature for 30 

min after which a solution of DIBAL–H (2.8 mL, 1.0 M hexanes, 2.8 mmol) was added 

slowly. The reaction mixture was stirred at -78 
0
C for an additional 3 h after which the 

cold bath was removed and the mixture stirred at room temperature for 1 h. The reaction 

was quenched with H2O, extracted several times with CH2Cl2, washed with brine and 

concentrated. Purification of the residue by flash column chromatography (SiO2, acetone-

hexanes = 0-35% gradient) afforded (±)-227 as a yellow oil (56 mg, 76%). 

1
H NMR (CDCl3, 300 MHz) δ 6.79-6.72 (m, 1H), 5.15 (s, 1H), 4.96 (s, 1H), 4.15 (s, 2H), 

2.89-2.75 (m, 1H), 2.67-2.34 (m, 5H), 1.78 (s, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 199.3, 

150.5, 144.7, 135.7, 110.7, 65.1, 43.4, 38.8, 31.9, 16.0. 

The 
1
H and 

13
C NMR spectral data for this compound are consistent with literature

162, 167 

values. 
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Tricarbonyl(η⁵ -1,5-dimethylpentadienyl)iron(+1) hexafluorophosphate (237): The 

preparation cation 237 started with (η
4
-2,4-hexadienal)Fe(CO)3  (216) which was 

prepared as in cation 219. To a solution of the complexed aldehyde 217 (4.3 g, 18 mmol) 

in dry ether (60 mL) was added dropwise a solution of methyl magnesium bromide (7.5 

mL, 1.0 M in THF, 7.5 mmol).  A dark viscous reaction mixture formed which was 

stirred for 2 h. The reaction mixture was quenched with water, extracted several times 

with CH2Cl2, dried (Na2SO4) and concentrated.  Purification of the residue by flash 

column chromatography (ethyl acetate-hexanes = 0-40% gradient) afforded two separable 

alcohols (3.1 g, 68%). This product was used in the next step without further 

characterization. A portion of the alcohol complex (2.8 g, 11 mmol) was dissolved in dry 

ether (30 mL) and cooled to 0 
0
C.  Acetic anhydride (3.5 mL) was added and the reaction 

mixture stirred for 20 min. A mixture of hexafluorophosphoric acid (60 % w/w, 3.5 mL) 

and acetic anhydride (3.5 mL) were added slowly with stirring.  A dark brown precipitate 

formed. The reaction mixture was poured into dry ether (1 L) and filtered through a 

sintered glass funnel to afford 237 as a light brown solid (1.6 g, 58%).  

The spectral data matched those reported in the literature.
165 
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Dimethyl 2-(2,4-dimethyl-3-oxocyclohex-4-en-1-yl)propanedioate (±)-242: To an ice-

cold stirring suspension of NaH (36 mg, 0.90 mmol) in dry THF (10 mL) was added 

dropwise dimethyl malonate (79 mg, 0.60 mmol) in drops. The mixture was stirred at 0 

0
C for 30 min. The solid cation 237 (150 mg, 0.60 mmol) was added and the reaction 

mixture stirred for 1 h at room temperature.  Saturated   NaHCO3/MeOH (10 mL) was 

added and the reaction stirred for 24 h. The reaction was quenched with water (10 mL). 

The organic portions were extracted several times with CH2Cl2, washed with brine, dried 

(Na2SO4) and concentrated. Purification of the residue by flash column chromatography 

(SiO2, acetone-hexanes = 0-25% gradient) afforded cyclohexenone as a greenish oil (39 

mg, 26%).  

1
H NMR (CDCl3, 300 MHz) δ 6.63 (br s, 1H), 3.74 (s, 6H), 3.63 (d, J = 5.8 Hz, 1H), 

2.64-2.36 (m, 4H), 1.77 (s, 3H), 1.19 (d, J = 6.6 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 

200.6, 169.2, 168.6, 142.8, 134.7, 53.3, 52.8, 44.5, 40.9, 27.1, 16.4, 13.8.  
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Methyl 2-(2,4-dimethyl-3-oxocyclohex-4-en-1-yl)-2-(phenylsulfonyl)acetate (±)-243: 

To an ice-cold stirring suspension of NaH (36 mg, 0.90 mmol) in dry THF (10 mL) was 

added dropwise methyl phenylsulfonylacetate (79 mg, 0.60 mmol). The mixture was 

stirred at 0 
0
C for 30 min. The solid cation 237 (150 mg, 0.60 mmol) was added and the 

reaction mixture stirred for 1 h at room temperature.  Saturated   NaHCO3/MeOH (10 

mL) was added and the reaction stirred for 24 h. The reaction was quenched with water 

(10 mL). The organic portions were extracted several times with CH2Cl2, washed with 

brine, dried (Na2SO4) and concentrated. Purification of the residue by flash column 

chromatography (SiO2, acetone-hexanes = 0-25% gradient) afforded a diastereomeric 

mixture of cyclohexenones as a colorless oil (38 mg, 27%).   

1
H NMR (CDCl3, 300 MHz) δ 7.95-7.84 (m, 2H), 7.74-7.53 (m, 3H), 6.66 (br s, 1H), 

4.13 (d, J = 3.6 Hz, 1H), 3.60 and 3.40 (2xs, 3H total), 3.15-2.62 (m, 3H), 2.53-2.28 (m, 

1H), 1.80-1.74 (2xs, 3H total), 1.22-1.11 (2xd, J = 7.5 Hz, 3H total); 
13

C NMR (CDCl3, 

75 MHz) δ 198.5, 164.9, 141.8, 137.1, 135.4, 133.7, 129.7, 128.3, 75.8, 51.9, 45.3, 26.2, 

21.2, 16.2, 11.7. 
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Trimethyl 2-(2,4-dimethyl-3-oxocyclohex-4-en-1-yl)phosphonoacetate (±)-240: To an 

ice-cold stirring suspension of NaH (36 mg, 0.90 mmol) in dry THF (10 mL) was added 

dropwise trimethyl phosphonoacetate (79 mg, 0.60 mmol). The mixture was stirred at 0 

0
C for 30 min. The cation 237 (150 mg, 0.60 mmol) was added and the reaction mixture 

stirred for 1 h at room temperature.  Saturated   NaHCO3/MeOH (10 mL) was added and 

the reaction stirred for 24 h. The reaction was quenched with water (10 mL). The organic 

portions were extracted several times with CH2Cl2, washed with brine, dried (Na2SO4) 

and concentrated. Purification of the residue by flash column chromatography (SiO2, 

acetone-hexanes, 0-25% gradient) afforded cyclohexenone as a brownish oil (32 mg, 

18%). 

1
H NMR (CDCl3, 300 MHz) δ 6.71-6.61 (m, 1H), 3.84-3.76 (m, 9H), 3.38-3.16 (m, 1H), 

2.81-2.36 (m, 4H), 1.79 (s, 3H), 1.19 (d, J = 7.8 Hz, 3H); 
13

C NMR (CDCl3, 75 MHz) δ 

198.9, 171.3, 142.8, 135.4, 53.2, 50.2, 48.2, 44.6, 28.9, 17.2, 14.0, 12.2. 
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 Tricarbonyl(η⁵-5-phenylpentadienyl)iron(+1) hexafluorophosphate (238): To flame 

dried round bottom flask  was added 5-phenylpentadienoic acid (10.0 g, 70.7 mmol). 

Oxalyl chloride (10.7 mg, 84.8 mmol) was added and the reaction mixture stirred for 1 h. 

Methanol (37 mL) was added and stirring continued until the starting material was 

completely consumed as indicated by TLC. Purification by flash column chromatography 

(SiO2, ethyl acetate- hexanes = 0-20%) afforded a yellow crystalline solid (8.5 g, 64 %). 

This product was used in the next step without further characterization. A mixture of 

methyl 5-phenyl-2,4-pentadienoate (13.3 g, 70.7 mmol), FeCl3.6H2O (45 mg) and diiron 

nonacarbonyl (34 g, 91 mmol) in ether (200 mL) was taken in a 500 mL round bottom 

flask fitted with a reflux condenser. The flask was placed in an ultrasonic cleaning bath 

and sonolysed under nitrogen for 24 h.  The mixture was filtered through celite and the 

solvent was removed on a rotary evaporator. The crude residue was purified by flash 

column chromatography (ethyl acetate-hexanes = 15-20% gradient) to afford 

tricarbonyl(η
4
-methyl 5-phenyl-2,4-pentadienoate)iron complex (17.2 g, 74% yield). This 

product was used in the next step without further characterization. 

To a solution of tricarbonyl(methyl η
4
-5-phenyl-2,4-pentadienoate)iron (17.2 g, 52.3 

mmol) in ether (150 mL) was slowly added a solution of DIBAL-H (167 mL, 1.0 M in 

hexanes, 167 mmol). The reaction mixture was stirred at room temperature for 3 h. Upon 

completion of the reaction as indicated by TLC, the excess hydride was cautiously 
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quenched with a mixture MeOH/H2O (1:1). The organic portions were extracted with 

CH2Cl2, dried (Na2SO4), and concentrated. Purification of the residue by column 

chromatography ((SiO2, ethyl acetate- hexanes = 1:1) gave the alcohol (9.3 g, 5%) as a 

bright yellow oil. This product was used in the next step without further characterization. 

The tricarbonyl(η
4
-5-phenyl-2,4-pentadienol)iron  complex (9.3 g, 30 mmol) was 

dissolved in dry ether (20 mL) and cooled to 0 
0
C.  Acetic anhydride (18 mL) was added 

and the reaction mixture stirred for 20 min. A solution of hexafluorophosphoric acid (60 

% w/w, 9 mL) in acetic anhydride (9 mL) was added slowly with stirring.  A dark brown 

precipitate formed. The reaction mixture was poured into dry ether (1.5 L) and filtered 

through a sintered glass funnel to afford 238 (11.6 g, 85%) a bright yellow solid. The 
1
H 

NMR spectral data of 56 were consistent with the literature values.
44, 49

 

NB: No Nucleophilic attack was observed for reactions of cation 238 with nucleophiles 

used. In all cases the tricarbonyl(η
4
-5-phenyl-2,4-pentadienol)iron complex was isolated 

as the major fraction after column chromatography.  
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