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ABSTRACT  
PREDICTIVE PATTERN DISCOVERY IN DYNAMIC DATA SYSTEMS 

Wenjing Zhang, B.S., M.S. 
 

Marquette University, 2013 
 
 

This dissertation presents novel methods for analyzing nonlinear time series in 
dynamic systems. The purpose of the newly developed methods is to address the event 
prediction problem through modeling of predictive patterns. Firstly, a novel 
categorization mechanism is introduced to characterize different underlying states in the 
system. A new hybrid method was developed utilizing both generative and discriminative 
models to address the event prediction problem through optimization in multivariate 
systems.  

 
Secondly, in addition to modeling temporal dynamics, a Bayesian approach is 

employed to model the first-order Markov behavior in the multivariate data sequences. 
Experimental evaluations demonstrated superior performance over conventional methods, 
especially when the underlying system is chaotic and has heterogeneous patterns during 
state transitions.  

 
Finally, the concept of adaptive parametric phase space is introduced. The 

equivalence between time-domain phase space and associated parametric space is 
theoretically analyzed.
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CHAPTER 1 INTRODUCTION 

This dissertation studies new computational methods with the goal of forecasting 

events and detecting temporal patterns in a dynamic data system (DDS) [1]. The focus of 

this research is to identify the temporal patterns predictive of future events of interest in 

the DDS. The methods introduced in this dissertation are major contributions in the field 

of machine learning and DDS analysis. The new methods extend the original univariate 

reconstructed phase space (RPS) framework [2, 3], based on the unsupervised clustering 

method, by incorporating a new mechanism of data categorization based on the definition 

of events. Furthermore, a Multivariate Reconstructed Phase Space (MRPS) is introduced 

to overcome the limitation of the univariate RPS approach by considering multivariate 

data sequences in the DDS. In addition to modeling temporal dynamics in a multivariate 

phase space, a Bayesian approach [4] is applied to model the first-order Markov behavior 

in multi-dimensional data sequences.  

1.1 Background  

A data sequence is a series of sequential observations representing the 

measurements of a DDS:  

{ ,  , , ..., }tX x t N= = 1 2 ,                                                 (1.1) 

where t is the time index, and N is the total number of observations. This sequence 

contains the events of interest of the underlying dynamic system that are usually complex. 

These events are related closely to time-ordered structures, called temporal patterns in the 

sequence. In a multivariate dynamic system with m explanatory variables,  multiple data 

sequences ( )tX  representing data measurements can be written as: 
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( ) [ ,, ,..., , ] , , , ,T
t t mt ett x x x x t N= = 1 2 1 2X                                   (1.2) 

where t is the time index; N is the total number of observations; ,{ ,  }, , ,e tx t N= 1 2  

denotes the event sequence containing events of interest; and 

{ , }, , , , , , ,itx t N i m= = 1 2 1 2  denotes multivariable sequences. 

Discovering temporal patterns related closely to the events in a DDS is important 

for many applications. For example, in financial applications, significant interest has 

focused on determining the timings of positions of securities [5] and forecasting 

economic growth and outlook [6]. In the medical fields, medical anomaly detection [7, 8] 

has been used widely for monitoring the health conditions of patients. The interpretation 

of underlying system dynamics for preventing abnormal events is another area of interest 

[9, 10].  

There are two major research directions: univariate and multivariate temporal 

pattern approaches.  

Among the univariate methods, existing frequency domain approaches using a 

Discrete Fourier Transform (DFT) [11] or a Discrete Wavelet Transform (DWT) [12, 13] 

to classify or match time sequence data are based on spectral patterns to reduce the 

dimensions of the feature space. The frequency domain transformation chooses fewer but 

better coefficients to characterize the DDS. Since these approaches focus on the overall 

dynamic characteristics of the system, data sequences with different nonlinear dynamic 

patterns, but similar power spectra, may not be distinguished. The method using a 

piecewise linear representation in [14] is based on representing patterns as a set of simple 

templates and requires a priori knowledge of the internal structures of the DDS. 
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 Multivariate approaches to temporal pattern identification include nonlinear 

classification using neural networks [15, 16], decision trees [17, 18], and clustering 

algorithms [19]. However, since the central focus of these methods is on the point-by-

point “curve-fitting” strategy, not enough attention has been given to the exploration of 

dynamic relationships between the data sequence segments – temporal patterns – and the 

critical occurrences of the events of interest. 

Studies in dynamic systems and chaos theory provide a new pattern identification 

approach based on the RPS [1, 20]. The RPS is capable of representing temporal patterns 

of nonlinear dynamic sequence data. The underlying theory discussed in [21, 22] 

guarantees that such an embedding in the RPS can describe the dynamics of a system 

given that the dimension of the phase space is greater than twice the box-counting 

dimension of the underlying system. Time Series Data Mining (TSDM) [2, 3, 7, 23] is an 

effective approach to detect the temporal pattern. The objective is to identify the hidden 

characteristics that lead to special events of interest in the DDS. The hidden 

characteristics under discussion are observed in terms of temporal patterns, and such 

patterns can be applied to forecast future events. Event functions were used to define and 

characterize the eventness at each time step.  

The definition of events usually depends on the specific applications. However, 

there are several commonly used functions, called event characterization functions:  

1. Next step thresholding: 

( )t tg x c+= - >x 1 0  .                                                     (1.3)  

2. Multiple step thresholding: 

( ) max{ , , }t t t kg x x c+ += - >x 1 0  .                                          (1.4)  
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3. Next step difference thresholding (typically used in stock price prediction): 

( ) t t
t

t

x x
g c

x
+=

-
- >x 1 0  .                                                (1.5) 

In Eqns. (1.3)-(1.5), mRÎx  represents a RPS embedding, g is a scalar event function, 

and c > 0  and k > 0  are given constants. 

The algorithm design under the RPS frameworks typically involves a phase space 

embedding by selecting the time delay [24], embedding dimension [25], and the 

optimization algorithm [26, 27] that maximizes the objective function. Fig. 1.1 illustrates 

the general procedure in temporal pattern identification.  

 

 
 

Figure 1.1: General procedure in a temporal pattern identification system 

Although the existing RPS-based approach has proven effective for univariate 

DDS, much less research has been on multivariate case where multiple data sequences 

are present and correlated. Often in the area of data mining and pattern analysis, we are 

interested not only in detecting the events in the event data sequence, but also in 

exploring the causal relationship with the underlying factors and variables. This 

dissertation addresses some of the major challenges of univariate and multivariate 

temporal pattern detection and explores the relationships between causal variables and 

events of interest. 
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1.2 Research Objective 

In this dissertation, we address the problem of detecting predictive temporal 

patterns in a complex DDS. Due to significant nonlinearity, techniques for the discovery 

of underlying hidden patterns need to be designed carefully. In this work, we present 

several fundamental contributions in designing robust algorithms for predictive pattern 

detection in DDS. 

The major contributions of this dissertation include: 

1) A new RPS transformation and associated similarity measure definition.  

Since the similarity measure defined by the Euclidean distance in existing 

methods was unable to identify similar patterns when data sequences have 

certain trends, the proposed transformation is capable of preserving the 

similarity between patterns by eliminating the effect of trending. Furthermore, 

the new transformation still gives a faithful representation of the underlying 

dynamic system. 

2) The development of data sequence categorization based on event function. 

This approach introduces a new definition of multiple states in the DDS, 

including normal state, pattern state, and event state. This new definition of 

underlying states provides a new perspective so that the complex systems can 

be interpreted better in terms of multiple state transitions.  

3) The new MRPS framework for the temporal pattern detection in multivariate 

DDS.  

By incorporating multiple data sequences in a DDS, we are able not only to 

explore internal dynamics within a single variable, but also the relationship 
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between the target event sequence and causing variable data sequences. This 

method considers a multivariate data system and addresses the temporal 

pattern identification problem by solving a regularized optimization problem. 

The problem of finding patterns is transformed into a pattern classification 

problem. A classifier is designed to take into account both the time-dependent 

and time-independent factors within the DDS. This generalization from the 

univariate case to the multivariate RPS opens up the applicability of the RPS-

based method to a wide range of multivariate applications.  

4) The establishment of equivalency between the state space and the RPS 

representation. 

A new relationship is established between the mean and covariances of 

temporal cluster in the RPS and that in the corresponding state space 

represented by the parameters of dynamic time domain model, for example, 

the autoregressive parameter of phase space. 

1.3 Dissertation Outline  

This dissertation is organized as follows: 

Chapter 2 presents the background theory of traditional time series analysis, the 

RPS, and various recently developed approaches. We also present the basic optimization 

concepts that are essential tools in developing efficient and high performance algorithms.  

Chapter 3 presents a kernel-based method for temporal pattern detection in a 

univariate data system. The new method takes advantage of a Support Vector Machine 

(SVM) and a Gaussian Mixture Model (GMM) to design a classifier for detecting 

temporal patterns. In addition, by applying a SVM to the RPS, the classifier finds an 



7 
 

optimal classifier to determine the decision boundary between the patterns of interest and 

other unrelated ones. Moreover, a Maximum A Posterior (MAP) classifier can be 

constructed via the GMM. A final classification decision can be made by combing 

outputs from both classifiers.  

Chapter 4 presents the new MRPS method. Whereas existing methods under the 

RPS are applicable only for a univariate system, the MRPS method can be applied for 

more general cases with multivariate input data sequences. The new method applies a 

convex exponential loss function together with a quadratic penalty term placed on the 

parameters. This new formulation avoids the need to optimize a complex nonconvex 

problem, which is typically sensitive to initial conditions. Furthermore, we introduce a 

new classifier design that considers both the time-dependent similarity measure of 

patterns and time-independent factors, such as probabilistic distributions.  

Chapter 5 presents a new formulation of the Parametric Reconstructed Phase 

Space (PRPS). It is shown that the new space preserves the statistical properties, such as 

mean and covariances. Compared with the existing univariate approach, this new method 

gives an estimation of local temporal dynamics.  

Chapter 6 gives a conclusion of this work and discusses the potential research 

directions and work that could be performed. 
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CHAPTER 2  LITERATURE REVIEW 

This chapter reviews several conventional research areas related to time series 

analysis and temporal pattern recognition in the DDS. In Section 2.1, the fundamentals of 

traditional time series analysis, such as the Autoregressive Moving Average (ARMA) 

model [29], are presented. In Section 2.2, a nonlinear approach to time series analysis 

based on the theory of dynamical systems is discussed. The theory of nonlinear 

dynamical systems provides not only a direct link between chaos theory [1] and the real 

world DDS in terms of nonlinear dynamics, but also new tools and a theoretical 

foundation for the RPS framework, specifically Takens’ theorem [20] and Sauer’s 

extension [21], to characterize complex time series data. In Section 2.3, we discuss the 

recent research developments in the field of temporal pattern identification. Finally, in 

Section 2.4, we review the fundamental concepts of kernel methods and optimization 

theory.   

2.1 Review of Time Series Analysis 

The primary objective of time series analysis is to develop mathematical models 

that reveal patterns in the underlying system and make forecasts. The time domain 

approach to analyze a data system is motivated generally by the presumption that the 

correlation between adjacent points in time can be explained in terms of a dependence of 

the value at a current time on the values in the past. This time domain approach focuses 

on modeling some future values or events in a data system as a function of the current 

and past values. Therefore, this approach can be used as a forecasting tool in various 

applications, such as in financial markets and in economic forecasting. 
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Box and Jenkins [30] developed a class of models called ARMA models, in which 

the observed time series data are assumed to result from the products of factors involving 

difference equation operators responding to a white noise input.  

A time series { , , ....}tx t =1 2  is ARMA (p,q) if it is stationary and  

t t p t p t q t q tx x x e e ef f q q- - - -= + + + + + + 1 1 1 1 ,                       (2.1) 

with es >2 0 , and { , , ....}te t =1 2 as Gaussian white noise. In particular, the ARMA (p, q) 

model in Eqn. (2.1) can then be rewritten in a compact form: 

( ) ( )t tB x B ef q=  ,                                                     (2.2) 

where the autoregressive operator is 

( ) p
pB B B Bf f f f= - - - -2

1 21  ,                                  (2.3) 

and the moving average operator is  

( ) p
qB B B Bq q q q= + + + +2

1 21  .                                  (2.4) 

Several steps fit an ARMA model to time series data:  

1) Construct a time plot of the data and inspect the graph for any anomalies.  

2) Transform the data; for example, if the variability in the data grows with time or 

the underlying process evolves as a small percentage change. 

3) Identify the orders of dependence of the model, such as values of the 

autoregressive order p and the order of the moving average q. 

4) Estimate model parameters using methods such as the Yule–Walker [31] method 

or a numerical optimization technique [26].  

5) Test the model using statistical methods, such as the F-test. 
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The properties of an ARMA model are only well understood if the input noise 

sequence { , , ....}te t =1 2  is Gaussian distributed, that is, it is Gaussian white noise. 

However, for many real world applications, the noises in the data are not Gaussian 

distributed. Furthermore, although it is possible to reproduce the data better if a higher 

order of the model is used, it is essential to limit the number of orders in the model to 

prevent over-fitting. Additionally, in ARMA models, it is assumed generally that the 

system generating the data is stationary, i.e., the mean and variance of the system do not 

change over time. However, in many applications, a data system is not stationary.  

In existing statistical tools, such as the ARMA model, the central focus is on a 

point-by-point “curve-fitting” strategy. However, not enough attention has been given to 

the exploration of dynamic relationships between the time series segments in the data 

sequences and the critical occurrences of the events of interest. As a result, the 

applicability of ARMA models in such scenarios is limited due to the underlying 

assumptions of the system. 

2.2 Nonlinear Time Series Analysis  

A DDS can be described by a set of temporal states with underlying rules to 

govern how the system may switch from one state to another [1]. A vector QRÎs  usually 

specifies a state, and a set of first-order ordinary differential equations acting on a Q-

dimensional vector space defines the dynamic system. For the discrete case, the next state 

can be described by a function of current state:  

( )t tf+ =s s1 .                                                              (2.5) 

For the continuous case, the dynamics of the underlying process can be described by 
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( ) ( ( ))
d

t f t
dt

=s s .                                                          (2.6) 

Studies in dynamic systems and chaos theory provide a new pattern identification 

approach based on the RPS. A RPS is a dimensional metric space into which a data 

sequence is unfolded [21]. Given a sequence of observations of state variables in a 

dynamic system, it was proven that the chaotic dynamics of the system could be 

reconstructed in a phase space in which hidden temporal patterns can be detected [20]. 

Specifically, Takens [20] showed how lagged variables of a single time series can be 

used as proxy variables to reconstruct patterns for an underlying dynamic system.  

Takens Theorem [20]: Let M be the state space of a Q dimensional dynamic 

system. For pairs ( , )yj , :M Mj  is a map that describes the dynamics of the system 

state, and :y M R is a twice continuously differentiable function that represents the 

observation of a single variable, then the mapping  

                  ( , ) ( ) ( ( ), ( ( )),..., ( ( )))Q
y x y x y x y xj j jF = ,                               (2.7) 

is an embedding. 

Takens showed that if the embedding dimension is large enough, the phase space 

is capable of capturing the intrinsic structure of the state space from which a data 

sequence is generated. Therefore, given a data sequence{ , , ....}tx t =1 2 , a time-delay 

embedding of observations can reconstruct a state space. This provides the theoretical 

justification for reconstructing state spaces using a time-delay embedding.   
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2.3 Recent Research Developments 

In [2,3], data mining and optimization techniques have been applied under the 

RPS framework to identify temporal patterns in dynamic systems, especially complex 

and chaotic systems. These approaches are able to overcome the limitations of existing 

time series methods. It was shown that the RPS-based methods have better performance 

than traditional neural network and decision tree methods in many applications, such as 

welding droplet and financial market predictions. This section gives a brief review of 

these RPS frameworks. 

2.3.1 Definition of an Event and an Event Function  

In a DDS, an event is an important occurrence or observation reflecting the 

internal state of the system. For example, in a water treatment plant, a spike in the 

reading of a chemical might indicate a malfunctioning of the plant. A consecutive 

negative reading of the quarterly growth of the GDP is an important event that indicates a 

recession of the economy. However, the “eventness” of a system needs to be predefined 

depending on specific applications so that a quantitative treatment to the underlying 

problem can be obtained.  

The event function is introduced to characterize and measure the “eventness”. The 

event characterization function represents the value of future “eventness” for the present 

time index. Therefore, an event function is defined a priori to address the specific goal of 

the time series being considered. For example, to formalize the concept of a one-step or 

k-step prediction problem, an event function g(•) can be defined as  

( )t tg x +=x 1 ,                                                                (2.8) 
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or a k-step forward event function, 

( ) max{ , ,..., }t t t t kg x x x+ + +=x 1 2 ,                                         (2.9) 

respectively. Another event function can be defined to measure the actual occurrence of 

the event at the current time index, 

( )t tg x=x ,                                                                (2.10) 

where vector ( )( , , )t t t t Qx x xt t- - -=x 1  is an embedding in phase space with time-delay t  

and dimension Q.  

For example, if the event function ( )tg x has a value higher than a predetermined 

threshold c at current time step t, we say the defined event occurs. To make a forecast, we 

can evaluate ( )tg x in one or multiple time steps ahead using Eqns. (2.8) or (2.9). In some 

applications, such as the prediction of future security movement in a financial application, 

the primary focus is on the percentage change rather than the actual values. In such a case, 

an event function also can be defined by the percentage change in the next step, 

( ) /t t tg x x+= -x 1 1.                                                         (2.11) 

Thus, the definition of event function can provide a useful quantitative 

measurement of an event.  

2.3.2 Phase Space Embedding and Parameter Estimation 

Given a univariate data sequence, a phase space can be reconstructed by a process 

called time-delay embedding [1]. The phase space vectors in RQ are represented by:  
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 ,                 (2.12) 

where t  is the time delay, and Q is the dimension of the embedding vectors. 

The time delay t  can be calculated by using the first minimum of the mutual 

information function, which provides the quantitative characteristics of spatial patterns in 

the phase space [24]. The minimum of the mutual information function was found to be 

effective in estimating the time delay. Given a data sequence and time delay t , the data 

can be summarized in a contingence table or a histogram, and the mutual information is 

computed by  

          
,

( )
( , ) ( ) ln ij

t t ij
i ji j

p
M x x p

p p
t

t
t-

æ ö÷ç ÷= ç ÷ç ÷çè ø
å                                         (2.13) 

where ip  is the probability that tx  falls in the ith interval, and ( )ijp t  is the joint 

probability that tx  falls into the nth interval and tx t-  falls into the jth interval. 

The dimension Q  of the RPS is determined using a false nearest-neighbors 

technique [25, 32]. The percentage of false nearest-neighbors changes with different 

choice of the embedding dimension Q . The smallest Q  that gives the lowest percentage 

of false nearest-neighbors is selected as the optimal embedding dimension. Specifically, 

for each data point  in QR , a difference measure is 

 ,                                (2.14) 

where 
 
is the Euclidean distance between  and  

Q
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Q Q Q Q
i j i j

i
Q Q
i j

r
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 .                                         (2.15) 

Q
ix  is marked as having a false nearest neighbor if ir  exceeds a given threshold r . The 

criterion for an adequate embedding dimension Q  is the number of data points for which 

ir r>  is smallest in RQ. 

2.3.3 Formulation of Objective Function 

Objective functions can have different formulations for temporal pattern 

identification. By optimizing an objective function with respect to parameters, such as the 

center and radius of clusters, a unique classifier can be determined to categorize patterns 

related to and not related to events, respectively. Under such a formulation, the problem 

of searching for predictive temporal patterns in the phase spaces can be transformed into 

an optimization problem maximizing or minimizing the objective function with respect to 

the underlying parameters.  

 The objective function can take different forms depending on the goal of the 

pattern identification. In [2], several objective functions are presented for different 

pattern identification tasks. 

(1)  The maximal event characterization function [3] was defined as 

otherwise,

                                 , if

( , )
( )  

M i

M

M N

f M
g g

N

m d b
d

m
b

ì - < ³ïïïï= íï - +ïïïî

x v

v
0 0

                       (2.16) 

 where g0  is the smallest event value in the cluster [3],  

M is the number of data points in the cluster,  

N denotes the number of total data points,  

,

argmin
Q
j

Q Q Q
j i j

i j¹
= -

x

x x x
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b is the rate of the minimum cluster size [3], and 

           Mm is the mean of the event function within the cluster. 

(2)  The statistical significance of patterns is evaluated by a t-test, which represents the 

difference between two independent means, 

( ) ( )

,( , )
Mc Mc

Mc Mc

C Mc C Mc

f
ss

m m
d

-
=

+
v

22





  

                                              (2.17) 

  where Mc represents the set of data points within cluster,  

Mc  is the set of data points outside of the cluster,  

( )C Mc and ( )C Mc are the number of data points in these two sets,  

Mcm and Mcm  are the mean event values of the two sets, and 

            Mcs and Mcs  are the standard deviations of Mc and Mc , respectively. 

(3)  The overall accuracy can be useful in problems where the accuracy of the 

predictions that an event occurs is of primary importance. The overall accuracy is 

defined as 

( , ) ,
tp tn

f
tp tn fp fn

s
+

=
+ + +

v                                              (2.18) 

   where tp represents the number of true positives,  

tn represents the number of true negatives,  

fp represents the number of false positives, and 

         fn represents the number of false negatives, respectively. 

(4)  Fuzzy-set objective function [3], which takes the density of patterns into 

consideration and can be robust to noisy data points: 
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                                     (2.19) 

             where v  represents the center of the fuzzy cluster, 

d  represents the radius of the fuzzy cluster,  

N denotes the number of total data points,  

b  is the rate of the minimum cluster size [3], and 

           Mm is the mean of the event function within the cluster. 

2.4 Pattern Classification and Optimization Theory  

In this section, we discuss three key components in developing the new methods: 

Bayesian decision theory, kernel methods, and optimization theory. The detailed 

applications will be discussed in Chapters 3 and 4. 

2.4.1 Bayesian Decision Theory 

Bayesian decision theory [4, 19, 33] is a statistical approach based on quantifying 

the tradeoffs between classification decisions to tackle the problem of pattern recognition. 

This theory uses probability and the costs to measure the tradeoffs that accompany 

classification decisions. For instance, given multiple possible hypotheses, we can apply 

Bayesian decision theory to find the optimum decision rule for deciding which hypothesis 

is correct.  
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Table 2.1: A list of decision theory notation 

-dimensional feature vector

{ , , , } set of  classes/categories

{ , , , } set of  possible actions

( | ) cost of action  if class  is true

( ) decision rule/function

( | ) posterior di

d

c

a

ij i j

j

R d

c

a

i j

P

w w w

a a a

l l a w

a

w

Î

=

x

x

x





1 2

1 2

stribution of class  given  j x  

Given a classification task of c classes, , , , cw w w1 2  and an unknown pattern, 

which is represented by a feature vector x , we can form c conditional probabilities 

( | ), 1,2,...,jP j cw =x . They are also referred to as a posteriori probabilities, and each of 

them represents the probability that the unknown pattern belongs to the respective class 

jw .  

 Without loss of generality, we consider a two-class problem with each class 

denoted by 1w  and 2w . We assume that the priori probabilities of these two classes 

1( )P w  and 2( )P w  are known. Even if they are not known under some circumstances, 

priori probabilities can easily be estimated from training datasets.  

The Bayes’ formula is 

( | ) ( )
( | ) ,

( )
j j

j

P P
P

P

w w
w =

x
x

x
                                                (2.20) 

where in the case of two categories, 1,2,j =  and  

2

1

( ) ( | ) ( )j j

j

P P Pw w
=

= åx x .                                                  (2.21) 

The Bayesian classification rule can be stated as  
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Furthermore, the Bayesian classifier also is optimal with respect to minimizing 

the classification error probability. If we have the decision rule to pick the class with a 

maximum a posteriori (MAP) probability ( | )jP w x , the posterior probability of error is  

( )
1

( | ) 1 ( | ) ( )
c

i i

i

P error P Pw w
=

= -åx x ,                                (2.22) 

and the total overall probability of error is 

 ( ) ( | ) ( )P error P error P dx
¥

-¥

= ò x x .                                     (2.23) 

The idea of the posterior probability of error can be generalized to include the 

concept of variable costs for taking different actions. If ia  is an action, and 

( | )ij i jl l a w=  is the cost of taking action ia  in situation jw , then the resulting expected 

value of the cost, called the conditional risk, is given by 

 
1

( | ) ( | )
c

i ij j

j

R Pa l w
=

= åx x ,                                           (2.24) 

and the expected value of the risk over all data is then  

( )( ) ( )R R P dxa= ò x x .                                               (2.25) 

The minimum risk (i.e., the minimum expected cost) decision rule chooses the lowest-

risk action for each possible x , 

1... 1

Select action arg min ( | ) ( | )
c

i ij j
i a j

i R Pa l w
= =

ì üï ïï ï= =í ýï ïï ïî þ
åx x .                    (2.26) 

This is called the Bayes’ decision rule, and the resulting overall risk is called the Bayes’ 

risk. 
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2.4.2 Kernel Methods 

In Section 2.4.1, Bayesian decision theory is discussed in designing classifiers 

based on probability density functions. However, not all problems are well suited to this 

approach. For example, in some cases, the probability density functions in the problem 

are so complicated that direct estimation is not an easy task.  

In this section, designing a classifier using kernel method [4, 34-41] is discussed. 

One of the major advantages of kernel-based classifiers is their simplicity and 

computational attractiveness. In addition, these classifiers do not involve the estimation 

of distribution functions in the data. For example, one kernel-based model is the Parzen 

probability density model [42] comprised of a linear combination of kernel functions, 

each one centered on one of the training data points. 

Given two vectors  and ¢x x  in a high dimensional space and a fixed nonlinear 

basis function ( )f x , the kernel function ( , )k ¢x x  is given by the relation, 

( , ) ( ) ( )k f f¢ ¢=x x x x .                                                 (2.27) 

With this definition, we can also see that ( , )k ¢x x  is symmetric, for example, 

( , ) ( , )k k¢ ¢=x x x x . There are several forms of kernel functions: 

1) A polynomial kernel of order p,  

                ( , ) (1 ) pk ¢ ¢= +x x xx .                                              (2.28) 

2) A Gaussian radial-basis function kernel, 

                 

2

2
( , ) exp

2
k

s

æ ö¢- ÷ç ÷ç¢ ÷= -ç ÷ç ÷÷çè ø

x x
x x .                                          (2.29) 

3) A sigmoid kernel, 
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                 1 2( , ) tanh( )k b b¢ ¢= +x x xx .                                           (2.30) 

In the context of machine learning and pattern recognition, the Representer 

Theorem [4] shows how the kernel functions can be applied in the design of classifiers.  

Theorem 2.1 : (Representer Theorem) [4]  

Denote by :[0, ) RW ¥  , a strictly monotonic increasing function, by a set C , 

and by 2: ( ) { }mL C´  È ¥   an arbitrary loss function,   is the reproducing 

kernel Hilbert space associated with kernel K . Then each minimizer f Î of the 

regularized risk, 

1 1 1(( , , ( )), , ( , , ( )) ( )m m mL x y f x x y f x f+W


, 

admits a representation of the form 

1

( ) ( , )
m

i i

i

f x K x xa
=

= å .
 

This theorem states that although working in a high-dimensional space, the 

minimizer of the loss function, for example, the optimal solution, can be expressed as a 

linear combination of only finite kernels placed at the training points.  

One of the popular kernel methods is the SVM classification method [33-35], 

which has received considerable interest, both in terms of theory and applications. See 

Vapnik [34] and Burges [38] for details.  

In a two-class classification problem, our training dataset includes vectors 

, , , ,i i l=x 1 2  with an indicator vector { , }iy Î + -1 1  and slack variables ix . We can 

define a hyperplane by  

( ) ( )y bf= +x w x .                                                       (2.31) 
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where ( , ) ( ) ( )T
i j i jk f fºx x x x is the kernel function.   

After the problem in Eqn. (2.33) is solved, we can use the primal-dual relationship 

to obtain the optimal coefficients w that satisfy 

1

( )i

l

i i

i

ya f
=

= åw x ,                                                       (2.34) 

and the resulting decision rule is  

  Tsgn( ( ) )bf +w x ,                                                        (2.35) 

which can also be written in the form of kernel functions as 

                     sgn ( , ) .
l

i i i

i

y k ba
=

æ ö÷ç + ÷ç ÷ç ÷è øå x x
1

                                                (2.36) 

Therefore, a classifier can be constructed using kernel functions according to Eqn. (2.36). 

2.4.3 Optimization Theory 

In the previous section, we reviewed the kernel methods applied widely in the 

machine learning community. The method of optimization [26, 27], in general, is also a 

powerful tool that can deal with various kinds of pattern recognition tasks. Optimization 

is well rooted as a principle underlying the analysis of many complex decision-making or 

resource allocation problems. From a mathematical perspective, optimization is to 

maximize or minimize a real-valued objective function with or without constraints on its 

variables. When no constraints are placed on its variables, the problem is called 

unconstrained optimization; otherwise, it is called constrained optimization.  
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The general mathematical programming problem is  

minimize ( )

subject to ( ) 0, 1,2,...,

( ) 0, 1, 2,...,

.

i

j

f

h i m

g j r

S

= =

£ =

Î

x

x

x

x

  

In this formulation, x  is an n-dimensional vector of unknowns, 1 2( , ,..., )nx x x=x , and 

,  ,  1,2,..., ,  and ( ) 0,  1,2,..., ,i jf h i m g j r= £ =x  are real-valued functions of the 

variables 1 2, ,..., nx x x . The set S is a subset of an n-dimensional space. The function f is 

the objective function of the problem, and the equations, inequalities, and set restrictions 

are constraints. 

Now that basic concepts of decision theory, kernel methods, and optimization 

methods for pattern identification are reviewed, in the following Chapters 3 and 4 the 

event prediction problem will be addressed based on event characterization and temporal 

pattern classification.  
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CHAPTER 3 ENHANCED TEMPORAL PATTERNS IDENTIFICATION USING 
A GAUSSIAN MIXTURE MODEL AND A SUPPORT VECTOR MACHINE 

 

In this chapter, a new approach is presented for identifying temporal patterns that 

are predictive of events, i.e., temporal predictive patterns, in univariate data sequences. 

This approach employs an event function to define quantitatively the problem and events 

based on specific application.  A hybrid model using a Gaussian Mixture Model (GMM) 

and a Support Vector Machine (SVM) is applied to predict events based on identification 

of temporal patterns in the RPS. Since temporal patterns typically are hidden in noise or 

unrelated signals, directly embedding time series data into the phase space may produce 

unsatisfactory results since the patterns of interests cannot be separated from unrelated 

embeddings. Therefore, it is desirable to apply a filtering method to preprocess the 

original data sequence based on the statistical properties of the underlying data sequence 

and events.  

Most previous work considered temporal patterns forming spherical clusters in the 

phase space. This assumption may not be appropriate if patterns in the phase space form 

irregular non-spherical clusters. Since the goal is to predict events using temporal 

patterns and not to make point-by-point predictions, it is advantageous to separate the 

event patterns from unrelated nonevent patterns or noise.  

3.1 New Event Function for Temporal Pattern Classification 

A dynamic data system can be considered to have three different states, e.g., a 

normal state, a pattern state, and an event state. Consequently, data points in the system 

can be clustered into three categories of signals, each of them belong to a normal state, a 
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pattern state, and an event state, respectively. In the following, we denote , , and n p ew w w  

as three class labels for the normal state, the pattern state, and the event state, respectively.  

Consider a univariate data sequence defined as { ,  , , }.tX x t N= = 1 2  A general 

form of the event function is 

if  max

( ) if  max

if  

 and { , , }

 and { , , }

,
t

t t t k

t t t k

t

x x x

g x x x

x

c c

c c

c

+ +

+ +

ì+ <=ïïïï= - <=íïïïïî

>
<=

>
x



1

1

1

1

0
                  (3.1) 

where k is the time-step ahead, and c is the defined threshold of the event. A constant k is 

predetermined to specify the maximum forecasting time horizon.  

In the training stage, based on the event function in (3.1), each observation tx  can 

be associated with a label, which takes a value in { 1, 1,0}+ - , representing the true 

occurrence of the event within a k step time horizon. Each observation vector tx  is 

assigned a label and a category: 

1. Predictive temporal patterns are data points labeled +1 and categorized as class pw ,  

2. Non-predictive points are data points labeled ‒1 and categorized as class nw .   

3. Event points are data points labeled 0 and categorized as class ew .   

In summary, based on the definitions above, a vector tx  can be classified as 

, , or p e ew w w  according to Eqn. (3.1). A data sequence can be considered a mixture of 

three classes of signals representing three recurring states: , , and n p ew w w .   

For most applications, a primary focus is to predict events based on temporal 

patterns when the underlying system is not in an event state. Thus, for identification of 

predictive patterns in the training stage, our focus is on the classification of two 
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categories of data that are pw  and nw . Then, in the testing stage, if a temporal pattern is 

classified as pw , a forecast that an event will occur is made.  

3.2 Algorithm Design 

Previous work under the RPS was able to characterize the temporal structures of 

the patterns by an unsupervised clustering approach. However, there is a lack of literature 

applying a supervised classification approach under a RPS framework to predict events. 

In this section, a new hybrid classification method is presented by employing a SVM [33-

39] and a GMM [4]. Given the assumption that a data sequence can be considered a 

mixture of three classes of variables – , , and n p ew w w , a GMM is well suited to make 

statistical inferences of underlying probability distributions of three underlying classes. A 

Maximum A Posterior (MAP) classifier then can be used based on the estimations of 

underlying distributions from the GMM to separate event patterns from nonevent patterns 

or noise. SVM [37-39] is a popular nonlinear model for two class classification problems 

based on pattern similarities, which is a central focus of the RPS-based methods. Fig. 3.1 

shows the overall diagram of GMM-SVM method.  

The GMM-SVM method can be summarized as follows:  

1. Determine the dimension Q of the phase space and the lengths of the temporal 

patterns τ.  

2. Using the Expectation Maximization (EM) algorithm [52] to estimate the three 

mixtures of normal, pattern, and event, a GMM is learned from the RPS training 

dataset.  
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3. Apply a MAP classifier to determine the decision threshold for classifying the three 

mixtures. Then for a data point tx  classified as a pattern point, the time sequence 

--( - ) - -( - ) -( , , )tt Q t Qx x xt t 11 1 2 1  is embedded into the phase space as vector p
t-x 1 .  

4. Apply a SVM to classify the temporal pattern structure in the phase space based on 

the true event occurrence defined by the event function. This second stage 

classification finds the decision function that separates the “false” and “true” patterns 

predictive of events with high confidence.  

We will discuss each of these steps in turn in the following subsections. The 

overall procedure of this method is illustrated in Figs. 3.1 and 3.2. 

 

1
Q
tX 1

Q
tX

1
Q
tX

 

Figure 3.1: A detailed block diagram of the GMM-SVM. 
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Figure 3.2: An overview diagram of the GMM-SVM. 

 

3.3 Initial Parameter Estimation for Embedding 

The time delay t  can be calculated by using the first minimum of a mutual 

information function that provides the quantitative characteristics of spatial patterns in 

phase space [24]. The minimum of the mutual information function was found to be 

effective in estimating the time delay. Given a data sequence and time delay t , the 

mutual information is computed by: 

,

( )
( , ) ( ) ln ij

t t ij
i ji j

p
M x x p

p p
t

t
t-

æ ö÷ç ÷= ç ÷ç ÷çè ø
å  ,                                (3.2) 

where ip  is the probability that tx  falls in the ith interval, and ( )ijp t  is the joint 

probability that tx  falls into the nth interval and tx t-  falls into the jth interval. 

The dimension Q  of the RPS is determined using a false nearest-neighbors 

technique [25, 32]. The percentage of false nearest-neighbors changes with different 

choice of the embedding dimension Q . The smallest Q  that gives the lowest percentage 

of false nearest-neighbors is selected as the optimal embedding dimension. 
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3.4 Probability Density Estimation Based on GMM  

In this approach, DDS is considered to have three different recurring states: 

, , and n p ew w w . Data points in the system can be clustered into three categories of signals, 

each of them belonging to , , or n p ew w w , respectively. To predict events by temporal 

patterns, we apply a MAP algorithm [4] to preprocess the data sequence so that nonevent 

related data of nw  can be filtered out. To construct a MAP algorithm, the distribution of 

the three categories of data in the sequence needs to be estimated. A GMM can be well 

suited for this goal of probability density estimation of three mixtures: , , and n p ew w w .  

The EM algorithm [52] is used to estimate the parameters of the GMM:  
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where  

( ) ( )
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with ˆˆ( | , ) ˆˆ( , )k i i i ip x m mS S . One advantage of the GMM is that it can represent many 

distributions. For many cases, in the limit as c  ¥ , it can represent any possible 

distribution [4].  

Given the distribution of the three states using a GMM, we can construct a MAP 

algorithm [4] to classify the data points as or n pw w  in a given data sequence. A data 

point kx  is classified into one of the three categories that give the highest posterior 

likelihood: 

( )
{ , , }

ˆˆ ˆˆ arg max ( | , )k i i i
i n p e

p x pw m w
Î

= S  ,                                          (3.5) 

where each component distributed as ( , )i im S  with a mean im  and covariance matrix

iS , and ( )ip w  is the marginal distribution for the ith component of the mixtures, with 

constraint ( )i ip wS =1 . By using a MAP classifier, we can determine the Bayesian 

optimal thresholds that separate the three states. The classification applied here provides 

a filtering of data points before phase space embedding is applied. 

3.5 Pattern Classification in the RPS using a SVM 

Previous RPS-based methods typically use a clustering method together with an 

event function to separate the event and nonevent patterns. These methods are based on 

an unsupervised method by grouping phase space patterns into a number of clusters. This 

approach performs well for data sets in which temporal patterns share close similarity, 

that is, those that are homogenous, but it may not work well when the underlying system 

has multiple time-varying dynamics that can generate volatile temporal patterns with low 

degree of similarities, that is, heterogeneous data sets. Under such circumstances, well-
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defined spherical clusters may not exist in a phase space embedding. In the SVM-GMM 

approach, a first stage MAP classifier filtering based on the GMM reduces the number of 

data points embedded in the phase space effectively. As a result, this approach typically 

results in sparse and separable embeddings, well suited for a SVM classification task. 

Given phase space embedding ,  , ,i i l=x 1 2  , with an event function 

{ , }( )ig Î + -x 1 1  and slack variables ix ,  we can apply a support vector classifier [33] to 

the phase space. The support vector classifier solves the following optimization problem:  

, ,

T

min

subject to  ( )( ( ) )
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By using the Karush–Kuhn–Tucker (KKT) condition, we can reformulate 

problem (3.10) as a dual problem: 

max ( ) ( ) ( , ),

subject to  ( )
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                         (3.11) 

where ( , ) ( ) ( )T
i j i jK f fºx x x x  is the kernel function.  Therefore, according to this 

formulation, the phase space vector px  is classified as pw  if 

( ) ( , ) ,
l

p p
i i i

i

g K ba
=

+ >å x x x
1

0                                                       (3.12) 

where ia  is the solution of the dual problem. 

For a general application of classification problem, a support vector classifier has 

more generalizability than a neural network method. This is because the optimization 
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method used in a SVM results in a sparse solution, which avoid the overfitting problem 

neural network models typically have. The following experiments can illustrate the 

effectiveness of using a SVM and a GMM. 

3.6 Experimental Results  

In this section, to show its effectiveness, the GMM-SVM method is applied to 

several benchmark applications: chaotic series predictions [1] in example (a)-(c) and 

Sludge Volume Index (SVI) prediction [10] in example (d). Examples (a) and (b) are 

used for illustrative and explanatory purposes and present prediction performances of our 

GMM-SVM method. In examples (c) and (d), a comparative study is conducted and the 

performance of the GMM-SVM method is evaluated compared with the baseline TSDM 

method [2]. 

Chaotic time series are defined by the state equations [1, 3] with adjustable 

parameters. Since chaotic data systems are defined strictly according to state equations, 

the underlying systems are therefore deterministic instead of completely random. Thus, 

chaotic series are predictable for a limited number of iterations or time horizon. By 

identifying temporal patterns associated with events of interest, the underlying 

deterministic relationship between temporal patterns and events can be revealed and then 

used for future predictions. For each example, three thousand data points are simulated, 

with the first 2000 used as a training set. The remaining 1000 data points are used as a 

testing set for validation.  

Example (a): Consider the Henon map defined by (3.13) and illustrated in Figs. 3.3 and 

3.4. Denoting by 2
xs  the variance of the x  component of Henon map, in Fig. 3.4, 10% 
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Gaussian white noise 2(0, /10)xe s  corrupts the Henon map. The Henon map is 

defined by 

2

.

dx
x by a

dt

dy
x

dt

ìïï = - + +ïïïíïïï =ïïî

                                                  (3.13) 

For example, we take 1.4 and 0.3a b= = . 

In this explanatory example, the x component of Henon map is chosen as the 

target series, and the goal is to predict that in the next time step, x  exceeds 1.0. The event 

characterization function therefore is defined as 

1

1

1 1.0
( )

1 1.0.

t

t

t

x
g

x

+

+

ì+ >ïïï=íï- <=ïïî
x                                             (3.14) 

 

Figure 3.3: ( )x t plot of a Henon map without noise. 
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Figure 3.4: ( )x t plot of a Henon map with 10% Gaussian white noise added. 

To determine the time delay for the embedding, the minimum mutual information 

method [24] is applied to the Henon map. By using the mutual information method, we 

can explore the dependence of tx t+  on the value of tx . A high mutual information value 

indicates a strong dependence, whereas a low mutual information value suggests a low 

dependence. Figure 3.5 presents the value of the mutual information between delayed x

values under different values of the time delay t .  The mutual information fluctuates and 

decreases as the time delay increases from 1 to 10. This means that the correlation 

between delayed embeddings vanishes as the time delay increases. Several local minima 

are located at 2,4,7,8t = . As Fraser and Swinney [24] suggest, the first local minima at 

2t =  is preferred to later local minima to avoid over-estimation. 
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Figure 3.5: Mutual information of the Henon map with different time delays t . 

 

Figure 3.6: The trajectory of ( )x t  in the Henon map and patterns (with a time delay 

2t = ) 
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Figure 3.7: The trajectory of ( )x t  in the Henon map and patterns (with a time delay 

5t = ) 

 

Fig. 3.6 highlights the predictive temporal patterns, i.e., embeddings with event 

function values  +1 in Eqn. (3.14) and displays the trajectory of the Henon map ( )x t  

without noise in the phase space with a time delay 2t = . Fig. 3.8 shows the phase space 

embedding under a time delay 5t = . It shows that a higher choice of time delay results 

in overlap between patterns of interest and unrelated data points.  Therefore, for the 

purpose of pattern classification and events predictions based on predictive patterns, the 

embedding time series with a larger t  value does not lead necessarily to better 

separability between event-related and nonevent-related phase space points. Thus, a large 

time delay is not always suitable for the goal of finding predictive patterns.   

We have discussed the case when we assume no noise is added into the chaotic 
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white noise is added into the signal. Under this setting, we simulate the Henon map with 

added noise. In Fig. 3.8, we present the phase space embeddings of the Henon map with 

10% Gaussian white noise. As expected, in some areas in the phase space with added 

noise, the event-related patterns now overlap with low eventness points. Event-related 

patterns now have a range of (–0.6, 0.3) for the tx  dimension and (–0.5, 0.2) for the 1tx +  

dimension. 

 

Figure 3.8: The trajectory of the x  dimension in the Henon map with 10% Gaussian 

white noise added (time delay 2t = ).  
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counting dimension is an obvious lower bound of the dimension, the theory in [20, 21] 

does not state explicitly what an appropriate upper bound for an embedding dimension 

should be. For our goal of pattern identification and event prediction, today’s computing 

power enables us to use a cross-validation method running multiple scenarios to estimate 

the best choice for the embedding dimension. Tables 3.1 and 3.2 and Fig. 3.9 display the 

prediction accuracy with respect to the value of the embedding dimension Q. 

 

Q True Positive True Negative False Positive False Negative Acc (%)

1 104 755 70 68 86.16 

2 140 819 3 31 96.58 

3 142 812 6 29 96.46 

4 142 806 9 28 96.24 

5 143 801 10 27 96.23 

6 141 794 13 29 95.70 

7 141 784 20 28 95.07 

8 137 781 19 32 94.74 

9 136 774 23 32 94.30 

10 131 771 22 37 93.86 

Table 3.1: Event prediction accuracy of the Henon map (no noise) with different values 
of the embedding dimension Q. 
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Q True Positive True Negative False Positive False Negative Acc (%)

1 112 747 75 63 86.16 

2 135 797 22 39 93.86 

3 136 798 17 38 94.44 

4 137 792 20 36 94.31 

5 133 791 17 40 94.19 

6 128 788 17 44 93.76 

7 125 787 15 46 93.73 

8 123 781 17 48 93.29 

9 123 778 17 47 93.37 

10 125 771 20 45 93.24 

Table 3.2: Event prediction accuracy of the Henon map (10% noise) with different values 
of the embedding dimension Q. 

 

Figure 3.9: Prediction accuracy of events in the Henon map with different values of the 
embedding dimension Q. 
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In Fig. 3.9, prediction accuracy increases when embedding dimension Q increases 

from 1 to 2 and decrease as Q increases from 2 to 10. This observation suggests that the 

choice of embedding dimension can affect the prediction performance. A high embedding 

dimension does not necessarily result in higher prediction accuracy. Comparing the 

performance of the GMM-SVM method in the noise-free and in the 10% additive 

Gaussian noise cases, we can observe from Tables 3.1 and 3.2 that prediction accuracy is 

consistently higher in the noise-free case than that in the additive noise case. However, 

the difference between these two situations is within 0 to 2.5%, and the GMM-SVM 

method still can achieve prediction accuracies above 92% in the noisy setting.  

 
Example (b): The second example is the Rossler map as illustrated in Figs. 3.10 and 3.11. 

In Fig. 3.10, the Rossler map is not corrupted by noise, and in Fig. 3.11, the Rossler map 

is corrupted by 10% Gaussian white noise. The Rossler map is defined by 

( ) .

dx
y z

dt

dy
x ay

dt
dz

z x c b
dt

ìïï = - -ïïïïïïí = +ïïïïïï = - +ïïî

                                                   (3.15) 

For example, we take 0.3, 0.5,  and 5a b c= = = . 

For the Rossler map, the z  component in the system state variables is chosen as 

the target series. In this simulation experiment, the goal is to predict that in the next time 

step, z  exceeds 10. The event characterization function therefore is defined as: 

1

1

1 10
( )

1 10.

t

t

t

z
g

z

+

+

ì+ >ïïï=íï- <=ïïî
x                                                    (3.16) 



43 
 

 

Figure 3.10: The z component of a Rossler map without noise. 

 

Figure 3.11: The z component of a Rossler map with 10% Gaussian white noise. 
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From Figs. 3.10 and 3.11, the Rossler map takes several time steps in an upward 

direction to reach an event, whereas in the case of Henon map shown in Figs. 3.3 and 3.4, 

the data sequence has a relatively higher level of fluctuation or volatility with respect to 

time. Similarly, we apply the minimum mutual information method to the Rossler map. 

Fig. 3.12 displays the value of the mutual information between the delayed x  values 

under different values of time delay t . The mutual information decreases consistently as 

the time delay increases from 1 to 5 and increases after reaching local minima at 5t = . 

This indicates that the correlation between delayed embeddings is at its smallest at a time 

delay of 5. Therefore, the time delay for the Rossler map is chosen as 5. 

 

Figure 3.12: The mutual information for the Rossler map with different time delays. 
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Figure 3.13: The trajectory of the z  dimension of the Rossler map and its associated 
patterns (time delay 5t = ).  

 

Figure 3.14: The trajectory of the z  dimension of the Rossler map with 10% Gaussian 
white noise and its associated patterns (time delay 5t = )  
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Fig. 3.13 highlights the predictive temporal patterns, i.e., embeddings with event 

function values  +1 in Eqn. (3.16) and displays the trajectory of the Rossler map z  series 

without noise in the phase space with a time delay of 5. The predictive patterns generally 

have high value of 1tx + , ranging from 0.1 to 1.5. For pattern classification purpose, this 

means that there is good class separability between the predictive temporal patterns and 

nonevent-related embeddings in the phase space. 

Fig. 3.14 shows the phase space embeddings of the z  dimension in the Rossler 

map with added noise. In this case, there are small overlapped regions between the event 

related patterns and nonevent related points in phase space.  

In this experiment, we simulated 3000 data points and used the first 2000 data as a 

training set. The remaining 1000 data points were used as a testing set for validation. 

Again, we apply a cross-validation method running multiple scenarios to estimate the 

best choice of embedding dimension. Tables 3.4 and 3.5 and Fig. 3.15 display the 

prediction accuracy with respect to the value of the embedding dimension Q. 
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Q True Positive True Negative False Positive False Negative Acc (%)

1 74 418 15 16 94.07 

2 89 432 0 1 99.81 

3 89 431 0 1 99.81 

4 89 421 0 1 99.80 

5 85 415 0 1 99.80 

6 85 409 0 0 100.00 

7 83 408 1 2 99.39 

8 79 408 1 6 98.58 

9 80 400 2 5 98.56 

10 81 391 2 3 98.95 

Table 3.3: The event prediction accuracy of the Rossler map (without noise) with 
different values of the embedding dimension Q. 

 

Q True Positive True Negative False Positive False Negative Acc (%)

1 71 527 16 18 94.62 

2 84 535 4 5 98.57 

3 82 531 3 7 98.39 

4 82 527 2 7 98.54 

5 79 522 2 6 98.69 

6 77 513 2 8 98.33 

7 76 509 2 9 98.15 

8 77 502 3 8 98.14 

9 76 497 1 9 98.28 

10 76 489 1 8 98.43 

Table 3.4: The event prediction accuracy of the Rossler map (with 10% Gaussian white 
noise) with different values of embedding dimension Q. 
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Figure 3.15: The prediction accuracy of events in a Rossler map with different Q. 
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GMM-SVM method in two more complex datasets, Lorenz map [3], and Sludge Volume 

Index (SVI) [10].  

Example (c): The third example is the Lorenz map as illustrated in Fig. 3.16. The Lorenz 

map is defined by 

( )

( )

.

dx
y x

dt

dy
x z y

dt
dz

xy z
dt

s

r

b

ìïï = -ïïïïïïí = - -ïïïïïï = -ïïî

                                            (3.17) 

In the simulation, the Lorenz time series is generated by setting the initial values 

of 0 0 00, 0.01,  and 0.01,x y z= = - =  and the parameters of 9, 25,s r= = and 3.3b = . 

For the Lorenz map, the x component in the system state variables is chosen as the target 

series. In this simulation experiment, the goal is to predict that in the next time step, x  

exceeds 11. The event characterization function therefore is defined as: 

1

1

1 if  
1 if  
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-

>
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=x                                           (3.18) 

Similar to examples (a) and (b), the time delay was estimated as 6t = , and the 

embedding dimension as Q = 3. Fig. 3.17 illustrates the temporal patterns of the Lorenz 

map.  
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Figure 3.16: Time series generated by a Lorenz map. 

 

Figure 3.17: Temporal patterns of a Lorenz map in a 3D phase space. 
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Predicted as events Predicted as nonevents 

Actual events True Positive = 49 False Negative = 5 

Actual 
nonevents 

False Positive = 3 True Negative = 436 

Table 3.5: The test results of the GMM-SVM method for the Lorenz map. 

Training Set Test Set 

 
GMM-SVM TSDM GMM-SVM TSDM 

Prediction Accuracy 99.56% 99.86% 89.09% 77.35% 

True Positive Rate 87.45% 62.35% 84.48% 58.52% 

Table 3.6: Results of the prediction performance comparison. 

The results of the GMM-SVM method and the TSDM method proposed by 

Povinelli and Feng [2] are presented in Tables 3.5 and 3.6. The prediction accuracy 

measure and true positive rate measure are defined as:  

Prediction Accuracy = ( True Positives + True Negatives ) / ( True Positives + True 

Negatives + False Positive + False Negative),  

True Positive Rate = True Positives / (True Positives + False Negative). 

Table 3.6 presents the results of the GMM-SVM method and the previous TSDM 

method. By comparing two methods, it can be observed that for event prediction in the 

Lorenz map, the GMM-SVM method outperforms the TSDM method by 25.96% in true 

positive rate and 11.74% in overall prediction accuracy in the testing phase.  In addition, 

the testing prediction performance of the GMM-SVM is consistent with the training 

results, whereas the TSDM method shows significantly lower accuracy predicting events 

in the testing dataset due to overfitting.  
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Example (d): The fourth example is the Sludge Volume Index (SVI) series illustrated in 

Fig. 3.18.  SVI is an empirical measurement for the sludge-bulking problem. A Sludge-

bulking anomaly is one of the primary causes of water treatment plant failure, as the 

abnormal bulking conditions can result in exceeding discharge permit limits. If sludge 

bulking occurs, it can generate a high SVI value. Efforts have been made to design a 

monitoring system for the sludge-bulking conditions of water treatment plants to provide 

early alerts. The cause of this problem has been studied from a biological point of view, 

but due to its complexity, a deterministic causal relationship has not been formulated. 

The modeling approaches applied include stochastic models and artificial neural systems 

[10]. With data from 2003 to 2008 provided by a Chicago water treatment company, the 

first three years data are used as a training data set, and the remaining three years data are 

used as a testing set for validation. 

 

Figure 3.18: An example of a SVI time series. 
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Denoting the SVI daily sequence as tS , the goal is to predict that within the next 

three time steps SVI,  exceeds 150.  The event function is defined as 

3

3

1

1

1 max{ } 150.0
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1 max{ } 150.0

, ,

, ,
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  .                              (3.19) 

The time delay was estimated as 5t = and the embedding dimension as Q = 4. Fig. 3.19 

shows the SVI daily sequence tS  from 2002 to 2008 with its identified temporal patterns.   

By examining Fig. 3.19, it is tempting to consider applying a simple threshold rule, for 

example 120tS >= , to forecast the sludge bulking events. However, this simple rule can 

result in significantly more false alarms, which can trigger substantial costs associated 

with shutting down the water treatment plant and other related costs. 

 

 

Figure 3.19: Identified temporal patterns of SVI. 
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  Training Set Test Set 

  GMM-SVM TSDM GMM-SVM TSDM 

Prediction Accuracy 90.25% 75.32% 81.25% 65.73% 

True Positive Rate 75.35% 63.58% 70.56% 51.28% 

Table 3.7: Prediction performance comparison between the GMM-SVM and TSDM. 

 
In Fig. 3.19, SVI testing series are plotted with the diamond boxes marking the 

temporal patterns. The last point of the pattern is the predicting point, which indicates a 

high probability of the sludge bulking. Table 3.7 presents the results of the GMM-SVM 

method and the TSDM method. By comparing the two methods, it can be observed that 

for SVI prediction, the GMM-SVM method outperforms the TSDM method by 15.52% 

in overall prediction accuracy and 19.25% in true positive rate in the testing phase.  

In addition, by examining the temporal patterns plotted in Fig. 3.19, we see that 

the patterns that relate to the events are not consistent in their structures or shapes. 

Instead, the temporal patterns are time-evolving and therefore not obvious to capture by 

traditional approaches. The results demonstrate that the GMM-SVM approach can be 

applied in a monitoring system to provide early alerts for the potential sludge-bulking 

problems in water treatment plants. 

In summary, the GMM-SVM method provides a discriminative approach that 

uses both by GMM and SVM techniques to classify temporal patterns that are predictive 

of events in a dynamic data system. Experiments compared with the baseline TSDM 

method show that the new method yields significant improvements in the prediction 

accuracy of future events. 
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CHAPTER 4 IDENTIFICATION OF TEMPORAL PATTERNS IN 
MULTIVARIATE DATA SEQUENCES 

 

In this chapter, a new approach is presented to identify multivariate temporal 

patterns predictive of future events of interest in a multivariate dynamic data system. The 

new Multivariate Reconstructed Phase Space (MRPS) method is based on the 

multivariate RPS transformation, data categorization, and the nonlinear optimization.  

One major limitation of traditional RPS approaches is that temporal patterns 

typically are assumed to exist only in the event sequence. Although this assumption may 

be true for some problems, there are applications where multivariate data sequences can 

result in a higher event identification rate or better performance. For example, in 

monitoring a patient with severe cardiovascular conditions, besides measuring the 

electrocardiography signals, other measurements, such as blood pressure and body 

temperature, are also monitored constantly to track the patient’s overall conditions.  

Theoretically, if a Dynamic Data System (DDS) has two partially correlated 

components, e.g., a scalar output component ( )y t  and a control component ( )u t , the 

temporal dynamics in ( )y t  can only describe the overall system partially unless dynamics 

from both ( )y t  and ( )u t  are included. Therefore, compared with a univariate modeling 

approach, modeling the system dynamics using multivariate data sequences can provide 

more insights and a better understanding of the overall system. 

4.1 Event Functions for Multivariate Data Systems 

As discussed in Chapter 3, a dynamic data system can be considered to have three 

different states, e.g., a normal state, a pattern state, and an event state. Consequently, data 
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points in the system can be clustered into three categories of signals, a normal state, a 

pattern state, and an event state, respectively. In the following, we denote , ,n pw w and ew  

as three class labels for the normal state, the pattern state, and the event state, respectively.  

Consider p-variable data sequences with the jth variable sequence defined as:  

{ ,  , , ,  , , , },j tjX x t N j p= = = 1 2 1 2                                 (4.1)  

where t is the time index, and N is the total number of observations. For each time 

instance t, a multidimensional observation vector ( , , , )t t t tpx x x=x 1 2 is measured. In 

this multivariate system, a target event sequence needs to be specified. This target event 

sequence contains the events or critical points that we want to predict by detecting the 

hidden patterns. The target sequence eY is denoted by  

 { , , , , },e tY y t N= = 1 2                                         (4.2)  

where the subscript e indicates the sequence containing events of interest. Based on the 

target sequence, we can define an event function using a multiple step forward threshold 

function:  

if  max

( ) if  max

if  

 and { , , }

 and { , , }
,

t

t t

t

t t k

t t kg

y c y y c

y c y y c

y c

+ +

+ +

ì+ïïïï= -íïïïïî

<= >
<= <=
>

x



1

1

1

1

0
                  (4.3) 

where k is the time horizon, and c is the predefined threshold of the event.  

In the training stage, with the event function in Eqn. (4.3), each multidimensional 

observation tx is associated with a label, which takes values in{ 1, 1,0}+ - , representing 

the true occurrence of the event in the k step horizon. Each observation vector tx  is 

assigned a label and a category: 
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1. Predictive multivariate temporal patterns are data points labeled +1 and categorized 

as class pw ,  

2. Non-predictive points are data points labeled ‒1 are and categorized as class nw .   

3. Event points are data points labeled 0 and categorized as class ew .   

Under this formulation, a multidimensional vector tx  can be classified as , ,p ew w

or ew  according to Eqn. (4.3). A data sequence can be considered as a mixture of the 

three classes of variables representing the three recurring states: , , and n p ew w w .  

For most applications, a primary focus is to predict events based on temporal 

patterns when the underlying system is not in an event state. Thus, for identification of 

predictive patterns in the training stage, our focus is on the classification of two 

categories of data that are pw  and nw . Then, in the testing stage, predictions can be made 

based on the classifier trained from the training data set.  

4.2 The Multivariate Reconstructed Phase Space 

In Chapter 3, we considered the univariate phase space embedding and the 

method for parameter estimation. In this chapter, univariate phase space embedding is 

extended into the multivariate case, which is more suitable for applications with more 

than one variable in the system. The idea of mining temporal patterns using RPS 

approach in a multi-dimensional system was first proposed in [56] by embedding 

multiple data sequences using the same time-delay and embedding dimension. In this 

research, the MRPS method employs a different formulation by estimating the time-delay 

and the embedding dimension individually for each variable sequence. In other words, 

the time-delay and the embedding dimension can be different for different data sequences. 
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Given a multivariate data system as in Eqn. (4.1), with p explanatory variables and one 

target variable, all p N´ observations from t = 1 to N can be represented by an 

observation matrix X: 

N

N

p p pN p N

x x x

x x x

x x x
´

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ë û

X




   


11 12 1

21 22 2

1 2

.                                       (4.4)

. 

In addition to the explanatory variable sequences in the observation matrix, it is 

advantageous to include the event sequence in the observation matrix so that the causal 

relationship between events and temporal patterns within an event sequence can be 

identified. Hence, the new augmented observation matrix, including the event sequence, 

can be expressed as:  

( )

N

N

p p p pN

e N p N

X x x x

X x x x

X x x x

Y y y y
+ ´

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úê ú ê úë û ë û

X

1 11 12 1

2 21 22 2

1 2

1 2 1




    



.                             (4.5) 

To construct the MRPS, the time delay jt  and the embedding dimension jQ need 

to be estimated for each variable sequence { ,..., },j jt NX x t= =1 . Similar to the univariate 

case in Section 3.6, the minimum mutual information method is applied to estimate the 

multiple time-delays. Recalling the univariate case, the cross-validation method was used 

to select the embedding dimension. However, in the multivariate case, the estimation of 

multiple embedding dimensions by cross validation is not efficient for a large dataset 

with multiple input variables. Thus, we apply the false nearest-neighbor method [25, 42] 
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to estimate the embedding dimension for each variable sequence assuming no correlation 

between each embedding dimension. 

After selecting the time delay jt  and the embedding dimension jQ for each 

sequence defined in Eqn. (4.1), the resulting embedding for each sequence becomes      

, , ( )[ ]
j j jjt jt j t j t Qx x xt t- - -=x  1  ,                               (4.6) 

where , , , , , ,t N j p= ¼ = ¼ +1 2 1 2 1 . The multivariate phase space embedding then can 

be constructed as: 

,( , ,..., , , )t tt jt pt t= x x x x1 2X y  ,                                  (4.7) 

at each time t, where jtx  represents the phase space embedding for the  jth variable jx

given in Eqn. (4.1) with the time delay jt  and dimension jQ  at time i. The dimension Q

of the multivariate embedding is the sum of each embedding dimension jQ , .j jQ Q= å  

4.3 Similarity Measure of Temporal Patterns 

One of the challenges when embedding a data sequence into the RPS is that 

similar temporal patterns may fall into different regions, whereas they are supposed to be 

categorized as the same patterns. There are many potential reasons for this problem 

depending on the specific application. One explanation is that the difference in the 

starting values between temporal patterns is large, which could be because there is a trend 

in the data sequence. As a result, this means that the Euclidean distance between those 

patterns in the RPS also can be large even if they have the same temporal structure. 

However, these patterns representing the same dynamics should be considered as the 

same category of patterns. For example, in the existing embedding approaches discussed 
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in [2,3], similar temporal patterns can fall in different regions in the RPS if the difference 

in the starting values of these patterns is sufficiently large. To address this problem, we 

consider a phase space embedding on differenced data series such a transform usually 

results in a detrended representation of the data sequence, removing any trend in the data 

sequence. By the theorem of filtered delay embedding prevalence in Sauer et al. [21], 

given a linear constant transformation, the resulting filtered delay mapping also gives a 

valid representation of the underlying dynamic system. Moreover, the linearly 

transformed embedding can preserve the same local dynamics as the regular embedding 

of the original dataset. Therefore, by eliminating the effects of a trend, a linearly 

transformed embedding can provide a better representation of the data system since the 

similarity of transformed embeddings does not depend on the initial starting values. As a 

result, the Euclidean distance in the newly transformed RPS is capable of measuring the 

similarity between temporal patterns correctly. 

Definition: Consider two temporal pattern embeddings in a RPS with embedding 

dimension Q  and time delay t , and starting values and t tx x0 1  , respectively, 

( ){ , , }t t t Qx x xt t+ + -=x1 0 0 0 1 , ( ){ , , }t t t Qx x xt t+ + -=x2 1 1 1 1 . 

The similarity measure of two temporal patterns is defined by  

( ) ( )( , ) ( )
Q

i
t Q i t Q id x x dt t

=
+ - + -= å - -x x

1

2
01 2 0 1 ,                            (4.8) 

where ( )t td x x= -0 0 1  is the initial difference of the two embeddings.  

   This new similarity measure captures the similarity of the temporal structure 

independent of the initial starting values. Based on this new similarity measure, we 

introduce a new phase space constructed by applying a linear transformation on the 
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original RPS embedding. The resulting phase space has the property that the Euclidean 

distance in the new phase space is equivalent to the distance defined by the similarity 

measure in Eqn. (4.8). Furthermore, since the transformation is linear, according to the 

Filtered Delay Embedding Prevalence Theorem [21], the resulting embedding in this new 

space gives a faithful representation of the underlying dynamic system. 

In the following, we will show that by applying a transformation on a regular 

embedding ( ){ , , }t t t Qx x xt t+ + - 1 , the Euclidean distance in the new space is equivalent 

to the similarity measure defined in Eqn. (4.8) between the two sampled data sequences. 

Lemma 4.1: Given the dimension of the embedding of Q, there exists a transformation

( ) : , ( ) ,Q Q TR Rf f- =x x A x1  such that the Euclidean distance between any two 

embeddings ( ) and ( )f fx x1 2  in the transformed phase space is equivalent to the 

similarity measure ( , )d x x1 2 defined in Eqn. (4.8). 

Proof: The similarity measure in Eqn. (4.8) can be rewritten as
            

        

( ) ( ){( ) ( )}
Q

t Q i t t Q i t

i

x x x xt t+ - + -
=

- - -å 2
0 0 1 1

1

.                                   (4.9) 

For each i, the first term in Eqn. (4.9) can be decomposed into a summation of 

differences: 

  ( ) ( ) ( ) ( ) ( )( ) ( ) ... ( )t Q i t t Q i t Q i t Q i t Q i t tx x x x x x x xt t t t t t+ - + - + - - + - - + - - +- = - + - + + -0 0 0 0 1 0 1 0 2 0 0 . 

Therefore, Eqn. (4.9) can be rewritten as  

( ) ( ){ [( ) ( )]} .
Q Q i

t j t j t j t j

i j

x x x xt t t t

- -

+ + - + + -
= =

- - -å å
1

2
0 0 1 1 1 1

1 1

                     (4.10) 

Denoting differenced embeddings as ( ) ( ) ( )( , , )t Q t Q t Q t tx x x xt t t t+ - + - + - + = - -x 1 1 2  , by 

some algebraic operations, Eqn. (4.10) can be written in a quadratic form,  
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                 ( , ) ( ) ( ( ))Td  = - -x x x x P x x1 2 1 2 1 2 ,
                                   

(4.11) 

where             

     

Q Q

Q Q

é ù- -
ê ú
ê ú- -ê ú= ê ú
ê ú
ê ú
ë û

P

1 2 1

2 2 1

1

1 1 1 1




  
 

, 

Since P is a symmetric positive definite matrix, we can find a Cholesky 

decomposition of matrix P, such that TL L=P . Eqn. (4.11) then becomes  

( , ) ( ( )) ( )Td L L = - -x x x x x x1 2 1 2 1 2 .                              (4.12) 

Defining a linear transformation: 

L=A ,                                                       (4.13) 

we can obtain a new embedding vector,  

( ) Tf = Ax x .                                                  (4.14) 

As a result, the Euclidean distance in the new space ( )f x  is equal to the similarity 

measure in Eqn. (4.8).                                                                                                         

Q.E.D.                                                                                                

Since the operations L  and  are linear matrices for a given Q, the 

transformation L=A  is also a matrix. This means that according to the Filtered Delay 

Embedding Prevalence Theorem [14], the new embedding can also preserve the same 

dynamics as a regular embedding does.  
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4.4 Optimization Algorithm 

Another important component in the new MRPS method is the optimization of the 

classifier. The existing optimization methods in [2,3] showed effectiveness in some 

applications. However, these methods typically employ a nonconvex objective function 

and result in multiple local minima. To overcome this difficulty, heuristic rules have been 

applied based on application-specific domain knowledge to limit the solution space in a 

certain range.  

4.4.1 Objective Function and Classifier Design 

In the new MRPS method, to achieve robustness and stability in the optimization 

procedure, the following convex exponential loss function is proposed: 

{ }min ( ( ), ( )) min exp( ( ) ( ))
N

t t

t

L g f g f
h

=

= - +åx x x x 2

1 2b b
b  ,                 (4.15) 

where ( , ( ))L g f x is the objective function defined as the weighted exponential sum of an 

event function and a classification result for each tx . The classifier ( )tf x in Eqn. (4.15) 

is defined as:  

2

1 02
1

( ) ( )
( ) exp ( )

N
i

i

i

f
f f

b a j a
s=

æ ö- ÷ç ÷ç= - + +÷ç ÷ç ÷çè ø
å

x x
x x   ,                     (4.16) 

where ( ) log( ( | ) / ( | ))p np pj w w=x x x , ( )1 1 0, ,n= b b a ab . The first term in the 

classifier denotes the similarity of the differenced data series represented by the kernel 

estimation in the phase space. The second term denotes the Gaussian mixture log-

likelihood score. This formulation considers both the local temporal dynamics of the data 

sequence and the statistical interpretation given by a Gaussian Mixture Model (GMM). 



 

f

o

t

w

f

v

 

 

The 

function wit

objective fu

take the form

where ( ,iL y

functions. 

In fa

viewed as a

 

objective fu

th a penalty

unction belo

m:  

( ))if x is a lo

act, many w

a particular o

Figure 

unction in E

y term placed

ngs to a mo

min
f Î

oss function

well-known e

optimization

4.1: A com

Eqn. (4.15) t

d on the coe

ore general c

n ( , (
N

i

i

L y f
=

é
ê
êë
å
1

n, ( )J f is th

existing clas

n method wi

mparison of d

takes the for

efficients of

class of regu

( )) (ix J fh+

he penalty fu

ssifications 

ith a special

different fiv

rm of a regu

f the classifi

ularization p

)f
ù
ú
úû
,              

unction, and

and regress

lly designed

ve loss funct

ularized obje

ier ( )tf x . Th

problems [3

                  

d  is a spac

sion method

d of loss fun

tions. 

64 

ective 

his 

3] that 

      (4.17) 

ce of 

ds can be 

nction.  

 



65 
 

The following is a short list of examples: 

1. The squared error loss function:  ( ( ))y f x- 2 , 

2. Support Vector Machine (SVM) loss function [34]: ( , ( )) [ ( )]L y f x yf x += -1 , and 

3. Logistic regression loss function [4]: ( )( , ( )) log[ ]yf xL y f x e-= +1 . 

Fig. 4.1 shows a comparison of five different categories of loss functions.  

The parameters ib  and 1a  in Eqn. (4.16) determine the constraints of the temporal 

dynamics and the statistical correlations between features, respectively. In general, large 

weights in ib  indicate the events are more likely relevant to the local dynamics of the 

system, whereas a large weight in 1a  suggests the cause of events is correlated more with 

the feature variables than with the temporal dynamics.  

4.4.2 Classifier Optimization 

The parameters ib , 1a , and 0a can be determined by minimizing the objective 

function ( ( ), ( ))L g fx x  defined in Eqn. (4.15). The gradient of the objective function 

( ( ), ( ))L g f x x with respect to ia  is given by: 

2

2
1

( ) ( )( , ( ))
( ) exp exp( ( ) ( ))

N
i

j j j i
i j

L g f
g g f

f f
hb

b s=

æ ö-¶ ÷ç ÷ç= - - - +÷ç ÷ç¶ ÷çè ø
å

x xx
x x x .     (4.18) 

The gradient of the objective function with respect to 1b  is expressed by:

 
1

1 1

( , ( ))
( ) ( ) exp( ( ) ( ))

N

i i i i

i

L g f
g g fj ha
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¶
= - - +

¶ åx
x x x x  .                 (4.19) 

The gradient of the objective function with respect to 0b  is: 

0
0 1

( , ( ))
( ) exp( ( ) ( ))

N

i i i

i

L g f
g g f ha

a =

¶
= - - +

¶ åx
x x x  .                    (4.20) 
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Given the gradient of the objective function, a second-order quasi-Newton 

method is used to search for the optimal coefficients ( )1 1 0
ˆ ˆ ˆ ˆ ˆ, ,n= b b a ab  to minimize 

the cost function in Eqn. (4.15). Using a Taylor expansion, the function 1( )kL +b can be 

approximately by  

1
1

2
( ) ( ) ( ) ( )T

k k k k k k ksL L L s H s+ = + +b b b b  ,                      (4.21) 

where 1k k ks += -b b , and ( )kH b is the Hessian matrix at iteration k.  

The iterative algorithm to estimate b  can be represented as  

1
1 ( )k k k kH s-

+ = -b b b .                                      (4.22) 

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula [26, 27] was used to obtain 

1( )kH- b , an approximation to the inverse of the Hessian matrix 

1 1
1 1

1 1
( ) ( )

T
k k k k k k

k k T T
k k k k k

l l H s s H
H H

l s s H s

- -
- -

+ -= + -b b ,                    (4.23) 

where 1( ) ( )k k kl L L+=  -b b . 

4.5 The Algorithm Design  

The MRPS framework can be summarized and is illustrated in Fig. 4.2.  

4.5.1 Pre-Processing Stage 

1. Divide the multivariate data sequences into training and testing datasets. 

2. Define the event function in Eqn. (4.3) based on the domain knowledge of a 

specific application. 

3. Partition the training data set into three categories of data: , , and p e ew w w  according 
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to the defined event function Eqn. (4.3)  

4. For each variable sequence { ,..., },j ji NX x i= =1 , determine the dimension jQ of the 

phase spaces and the delay τ of the temporal patterns. 

4.5.2 Training Stage 

5. Construct the multivariate embedding by combining all individual embeddings for 

each sequence into an MRPS vector , ,( , ,..., , , )i ii ji mi e i= x x x x x1 2 X as in Eqn. 

(4.7). 

6. Transform the multivariate embedding iX  by applying the operator L=A

defined in Eqn. (4.13) to obtain the trend invariant embedding ( )tf X . 

7. Given the data partition in Step 3, construct the GMM from the training dataset, 

using the EM algorithm [52] to estimate mixtures of the three categories of data: 

normal, pattern, and event points. 

8. Perform the optimization according to Eqn. (4.15) to obtain the minimizer and the 

corresponding classification function that can identify the predictive temporal 

patterns. 

4.5.3 Test Stage 

In the testing stage, we apply the predictive pattern classifier obtained in the 

training stage to predict the events in the target sequence. At each time t, based on the 

classification decision, a forecast will be made whether an event will occur.  



68 
 

jQ jt

 

Figure 4.2: Overview of the MRPS method. 

 

4.6 Experimental Results  

In this section, similar to Section 3.6, several benchmark applications – chaotic 

series predictions [1] in examples (a)-(c) and Sludge Volume Index (SVI) prediction [10] 

in example (d) – are used as examples to demonstrate the effectiveness of the MPRS 

method. Examples (a) and (b) are used as for illustrative and explanatory purposes and to 

present prediction performances of the MRPS method. In examples (c) and (d), we 
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evaluate the performance of the MRPS method by comparing it to two baseline methods, 

one based on Artificial Neural Networks (ANN) [4] and one based on Time Series Data 

Mining (TSDM) [2].  

Similar to Section 3.6, for each example (a)-(c), three thousand data points are 

simulated, with the first 2000 used as a training set. The remaining 1000 data points are 

used as a testing set for validation. For example (d), the Sludge Volume Index (SVI) data 

from 2003 to 2008, the first three years data are used as a training data set, and the 

remaining three years data used as a testing set for validation. 

For these two types of problems, the majority of the existing literature has focused 

on the one-dimensional case, in which we simply use the original sequence to predict or 

characterize the event. In the following paragraphs, it will be shown that by using a 

multi-dimensional vector sequence, we can describe and characterize the DDS better and 

hence achieve higher event prediction accuracy.  

In addition, as discussed in Section 4.2, to construct a multivariate phase space for 

pattern detection in a multivariate dynamic system, we estimate the time-delay and 

embedding dimension for each individual data sequence. We will apply the false nearest-

neighbor method [25, 42] to estimate the embedding dimension of each sequence.  

Example (a): The first example is the Henon map as illustrated in Figs. 4.3 and 4.4. In 

Fig. 4.3, noise does not corrupt the Henon map. Denoting 2
xs  the variance of the x  

component of Henon map, in Fig. 4.4, 10% Gaussian white noise 2(0, /10)xe s  

corrupts the Henon map.  The Henon map is defined by: 
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2

.

dx
x by a

dt

dy
x

dt

ìïï = - + +ïïïíïïï =ïïî

                                          (4.25) 

For example, we take 1.4 and 0.3a b= = . 

In this explanatory example, the x component of Henon map is chosen as the 

target series, and the goal is to predict that in the next time step, x  exceeds 1.0. Both the 

x  and y  components are used to predict the events in a x  time series. The x  and y

components are shown in Fig. 3.4-3.5 and Fig. 4.4-4.5, respectively. Denoting the 

combined embedding ( ) ( )( , ,..., , , ,..., )
x x x y y yt t t t Q t t t Qx x x y y yt t t t- - - - - -=x 1 1 , the event 

characterization function therefore is  

1

1

1 1.0
( )

1 1.0.

t

t

t

x
g

x

+

+

ì+ >ïïï=íï- <=ïïî
x                                              (4.24) 

By using the mutual information method, we can explore the dependence of ty t+

on the value of ty . Fig. 4.5 presents the value of the mutual information between delayed 

y values under different values of the time delay t . The mutual information fluctuates 

and decreases as the time delay increases from 1 to 20. As suggested by Fraser and 

Swinney in [24], the first local minima at 2t =  is preferred to later local minima. 
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Figure 4.3: The y component of a Henon map without added Gaussian noise. 

 

Figure 4.4: The y component of a Henon map with 10% Gaussian white noise added. 
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Figure 4.5: Mutual information of the y component of a Henon map with different time 

delays. 

 

Figure 4.6: The trajectory of the y dimension in the Henon map and patterns (with time 

delay 2t = ). 
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Fig. 4.6 highlights the predictive temporal patterns, i.e., embeddings with event 

function values  +1 in Eqn. (4.24) and displays the trajectory of the Henon map without 

noise in a phase space with a time delay 2t = . Comparing with the patterns in the x

time series in Fig. 3.5, the patterns in the y component are located in different regions in 

the phase space but are still clearly separable from low eventness phase space 

embeddings. Hence, from the y component, we can identify patterns related to events in 

the x sequence. By using this added information from the y component, we can achieve 

better accuracy compared with univariate case, as we will see in the testing stage. 

The Henon map we simulated in this example is under the assumption that no 

noise is added into the chaotic signal. In many real systems, we do not have such an ideal 

situation without measurement errors. Therefore, we consider a case when 10% white 

noise is added into the signal. Fig. 4.7 illustrates different values of mutual information 

between the delayed time series in the y dimension under different values of the time 

delay t .   

The simulated Henon map with 10%  Gaussian white noise added and a time 

delay 2t =  is displayed in Fig. 4.8. As expected with the added noise, the event related 

patterns have overlapping areas with low eventness points in the phase space. High 

eventness points, that is, event related patterns, are separated into several regions in a 

range of (–0.35, 0.35) in the ty  dimension and (0.15, 0.4) in the ty t+  dimension. 
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Figure 4.7: The mutual information of the y component of the Henon map (10% 

Gaussian noise added) with different time delays. 

 

Figure 4.8: The trajectory of the y dimension in the Henon map with 10% white noise 

added (time delay 2t =  ). 
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In the next step, we need to determine the embedding dimension of the Henon 

map both in x  and y dimensions. In Chapter 3, we considered the univariate case in 

which we applied a cross validation method to choose the best dimension Q that could 

generate the highest prediction accuracy. However, in the multivariate case, it is not 

feasible to estimate the embedding dimensions of each variable by running hundreds or 

thousands times of cross validations for even a medium dataset with 50–100 input 

variables. Instead, we will apply the false nearest-neighbor method described in [25] to 

estimate the embedding dimension of each sequence. Figs. 4.9 and 4.10 present the 

results of the false nearest-neighbor algorithm of the Henon map in the x and y

dimensions, respectively. 

 

 

Figure 4.9: False nearest neighbors of the x component of the Henon map (10% Gaussian 
noise added) with different embedding dimensions. 

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Embedding Dimension  Q

P
er

ce
nt

ag
e 

of
 F

al
se

 N
ea

re
st

 N
ei

gh
bo

rs
 (

%
)



76 
 

 
 

In Fig. 4.9, the percentage of false nearest neighbors decreases from 1 to less than 

0.1, as the embedding dimension increases from 1 to 4. After that, the percentage slowly 

increases as the dimension increases from 4 to 10. This means an embedding dimension 

of 4Q =  is a sufficient choice to embed the time series in the x dimension. 

Similarly in Fig. 4.10, the percentage of false nearest neighbors decreases as the 

embedding dimension increases in the range of 1 to 4 and achieves a minimum at 4Q = . 

Hence, the dimension 4Q =  is a sufficient choice to embed the time series in the y

dimension. Although for the Henon map, the embedding dimension is the same for both 

the x  and y  dimensions, this is not always the case, as we will see in the Rossler map 

example. 

 

Figure 4.10: False nearest neighbors of the y component of the Henon map (10% 

Gaussian noise added) with different embedding dimensions. 
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In this multivariate case experiment, we included 3000 data points with both x

and y components of the Henon map. The first 2000 data are used as a training set, and 

the remaining 1000 data are used as a testing set for validation. As discussed in Section 

4.5, in the optimization step, a radial basis kernel function is used to construct the 

classifier to predict events. Choice of parameter s  in the definition of radial basis kernel 

function is problem specific. In practice, typically cross validation is applied to determine 

this tuning parameter. At the training step, multiple scenarios are tested with different 

values of s . Recall that in the definition of the classifier, one component is a kernel 

function of the transformed multivariate phase space, and the other component is the 

GMM log-odds function. Simulation results with the GMM component are presented in 

Tables 4.1 and 4.2, whereas Tables 4.3 and 4.4 present the classification results when the 

GMM component is not included. The results show that the event prediction accuracy is 

higher when both components are included in the model than in the case without the 

GMM component. Thus, the results provide a good justification of including a GMM 

component in the design of a classifier. 
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s  True positive True negative False Positive False Negative Acc (%)

0.2 167 814 4 4 99.19 

0.25 167 813 5 4 99.09 

0.3 167 813 5 4 99.09 

0.35 167 812 6 4 98.99 

0.4 166 810 8 5 98.69 

0.45 166 809 9 5 98.58 

0.5 165 805 13 6 98.08 

0.55 167 802 16 4 97.98 

Table 4.1: Event prediction accuracy of the Henon map (no noise) with different svalues. 

s  True positive True negative False Positive False Negative Acc (%)

0.2 150 785 30 24 94.54 

0.25 151 786 29 23 94.74 

0.3 151 787 28 23 94.84 

0.35 151 788 27 23 94.94 

0.4 149 786 29 25 94.54 

0.45 148 785 30 26 94.34 

0.5 149 784 31 25 94.34 

0.55 146 780 35 28 93.63 

Table 4.2: Event prediction accuracy of the Henon map (10% noise) with different s
values. 
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s  True positive True negative False Positive False Negative Acc (%)

0.2 167 813 5 4 99.09 

0.25 167 813 5 4 99.09 

0.3 167 812 6 4 98.99 

0.35 165 810 8 6 98.58 

0.4 163 808 10 8 98.18 

0.45 163 808 10 8 98.18 

0.5 161 806 12 10 97.78 

0.55 159 802 16 12 97.17 

Table 4.3: Event prediction accuracy of the Henon map (no noise) without a GMM 
component with respect to different s  values. 

 

 

s  True positive True negative False Positive False Negative Acc (%)

0.2 147 786 29 27 94.34 

0.25 146 787 28 28 94.34 

0.3 144 784 31 30 93.83 

0.35 140 784 31 34 93.43 

0.4 139 783 32 35 93.23 

0.45 135 785 30 39 93.02 

0.5 136 783 32 38 92.92 

0.55 132 781 34 42 92.32 

Table 4.4: Event accuracy of the Henon map (10% noise) without a GMM component 
with respect to different s  values. 
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Figure 4.11: Event prediction accuracy of events in a Henon map with different s  values. 

The MRPS method achieved a high accuracy (99.1%) for the no noise case and 

94.94% for the 10% noise case. This indicates a good performance of this new algorithm 

in predicting events in a complex chaotic series that is representative of a range of 

multivariate nonlinear system identification problems. Comparing with the univariate 

results in Chapter 3, the accuracy is also improved with added information in the y

component of the Henon map. In Chapter 3, by applying univariate RPS approach to the 

no additive noise Henon map, the highest prediction accuracy and true positive rates are 

96.58% and 81.87%, respectively, whereas for 10% additive noise Henon map, the 

highest prediction accuracy and true positive rates are 94.44% and 78.16%, respectively. 

This means that including multivariate data sequence information impacts on the overall 

event prediction performance. 
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Example (b): The second example is the Rossler map as illustrated in Fig. 4.12. The 

Rossler map is defined by: 

( ) .

dx
y z

dt

dy
x ay

dt
dz

z x c b
dt

ìïï = - -ïïïïïïí = +ïïïïïï = - +ïïî

                                                (4.26) 

For example, we use 0.3, 0.5,  and 5a b c= = = . 

For the Rossler map, the z  component in the system state variables is chosen as 

the target series. In this simulation experiment, the goal is to predict when in the next 

time step the z  time series value exceeds 10. As an illustrative example, we choose the 

x  and z  component to predict the events in z  time series. The event characterization 

function is defined as: 

1

1

1 10
( )

1 10.

t

t

t

z
g

z

+

+

ì+ >ïïï=íï- <=ïïî
x                                                  (4.27) 

 
Similarly, we apply the minimum mutual information method to the Rossler map 

and apply the false nearest-neighbor method to estimate the embedding dimension of 

each sequence. Fig. 4.13 displays the value of the mutual information between delayed x

values under different values of time delay t . The mutual information decreases 

consistently as the time delay increases from 1 to 7 and increases after reaching a local 

minima at 7t = . This indicates that the correlation between delayed embeddings is 

smallest at a time delay of  7.  
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Figure 4.12: The ( )x t  component of a Rossler map. 

 

Figure 4.13: Mutual information of the ( )x t  component of a Rossler map with time 

delays. 

0 100 200 300 400 500
-8

-6

-4

-2

0

2

4

6

8

10

12

t

x(
t)

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time delays

M
ut

ua
l i

nf
or

m
at

io
n



83 
 

 

Figure 4.14: False nearest neighbors of the ( )x t  component of the Rossler map with 

different embedding dimensions. 

 

In Fig. 4.14, the percentage of false nearest neighbors decreases from 10 as the 

embedding dimension increases from 1 to 3. This indicates that an embedding dimension  

Q of 3 is a sufficient choice to the embed time series in the x dimension. 

In this multivariate case experiment, we included 3000 data points with both x

and z  components of a Rossler map. The first 2000 data are used as a training set, and 

the remaining 1000 data are used as a testing set for validation. At the training step, 

multiple scenarios are tested with different values of s . Table 4.5 presents the prediction 

accuracy results with respect to s  for the Rossler map. 
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s  True positive True negative False Positive False Negative Acc (%)

0.2 96 399 1 0 99.80 

0.25 96 399 1 0 99.80 

0.3 96 399 1 0 99.80 

0.35 96 399 1 0 99.80 

0.4 96 399 1 0 99.80 

0.45 96 400 0 0 100.00 

0.5 96 400 0 0 100.00 

Table 4.5: The event prediction accuracy of a Rossler map with different s  values.  

 

 

Figure 4.15: Event prediction accuracy of events in a Rossler map with different s  
values. 
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The MRPS method achieved a high accuracy (99.8%) for Rossler map. The 

results presented in Table 4.5 and Fig. 4.15 demonstrate a good performance of MRPS. 

Comparing with univariate case in Chapter 3, both methods achieved 100% accuracy for 

Rossler map.  

Now that we have illustrated how the MRPS method can be applied to two basic 

chaotic time series, in the following two examples (c) and (d) we compare the MRPS 

method in two more complex datasets, Lorenz map [3], and Sludge Volume Index (SVI) 

[10].  

Example (c): The third example is the Lorenz map as illustrated in Fig. 3.17. The Lorenz 

map is defined by: 

( )

( )

.

dx
y x

dt

dy
x z y

dt
dz

xy z
dt

g

r

b

ìïï = -ïïïïïïí = - -ïïïïïï = -ïïî

                                                  (4.28) 

In the simulation, the Lorenz time series is generated by setting the initial values,

0 0 00, 0.01,  and 0.01,x y z= = - =  and parameters, 9, 25,g r= = and 3.3b = . For the 

Lorenz map, the overall strategy was to detect temporal patterns in the multivariate 

sequence ( , )t t tx y=x  to predict the events in the tx  sequence. Multivariate sequences 

( , )t t tx y=x  are embedded into the MRPS, and the optimization method applied to 

classify the patterns. In this simulation experiment, the goal is to predict that in the next 

time step the x  time series value exceeds 11. The event characterization function is 

defined as 
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Similar to examples (a) and (b), the time delay was estimated as 6t = , and the 

embedding dimension Q = 3 for both x  and y  dimensions.   

 

 

Figure 4.16: Time series and temporal patterns of a Lorenz map. 
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that our new approach is not only capable of identifying similar patterns but also of 

identifying patterns rather different in structure and initial starting values.  

This is because the new approach is not constrained by searching individual 

clusters, but rather finds a decision boundary that includes all the predictive patterns that 

20 40 60 80 100 120

-15

-10

-5

0

5

10

15

t

x(
t)



87 
 

are significantly correlated with events. To evaluate the performance of the new MRPS 

approach, we compared the results of our MRPS method with the TSDM method 

proposed by Povinelli and Feng [2]. Also included in the comparison was the Artificial 

Neural Network (ANN) with three layers with 6 neurons in the input layer and 12 

neurons in the hidden layer. In the input and hidden layers, a sigmoid activation function 

was used. A threshold function was applied to convert the output to a binary decision 

output. Tables 4.6 and 4.7 present the comparative results of the MRPS method and 

previous methods.  

 

 
Predicted as events Predicted as nonevents 

Actual events TP = 55 FN = 6 

Actual nonevents FP = 5 TN = 435 

Table 4.6: Test results of the Lorenz map. 

 

 
  Training Set Test Set 

Method True Positive 
Rate (%) 

Accuracy 
(%) 

True Positive 
Rate (%) 

Accuracy 
(%) 

MRPS 94.72 98.36 90.17 97.21 

TSDM 72.45 96.32 65.65 93.52 

ANN 87.00 94.35 78.30 92.59 

Table 4.7: Comparison of the prediction performance  
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The accuracy measure and true positive rate measure are defined as True Positive 

rate = TP/(TP + FN) and Accuracy = (TP + TN)/(TP + FN + TN + FP), where TP, TN, 

FP, and FN represent the number of true positive, true negative, false positive, and false 

negative predictions, respectively. The results demonstrate that the MRPS method has a 

better and more consistent performance over the other two methods in both training and 

testing, whereas the other two methods had lower rates of accuracy. Another observation 

is that our new MRPS framework outperforms the other two methods by a large margin 

in predicting the events correctly, as shown by the significantly higher TP rate in the 

testing phase. Since new MRPS framework is based on modeling both the temporal 

dynamics and time-independent discriminative information in multivariate data 

sequences, from the experimental results we conclude that the MRPS method is superior 

when the underlying data system is complex and includes heterogeneous patterns.  

 

s bmax Center f(x) associated 
with bmax a1 a0 L(s, b) 

0.15 4.69 (0.80 0.58 4.74) 6.12 4.16 468.99 

0.20 4.31 (0.80 0.58 4.74) 6.93 3.71 456.36 

0.25 3.97 (0.80 0.58 4.74) 7.58 3.32 454.00 

0.30 3.62 (0.80 0.58 4.74) 8.06 2.90 465.12 

0.35 3.15 (0.80 0.58 4.74) 8.27 2.29 465.12 

0.40 2.63 (0.80 0.58 4.74) 8.12 1.59 462.77 

0.45 2.11 (0.80 0.58 4.74) 7.79 0.84 467.47 

0.50 1.70 (0.80 0.58 4.74) 7.48 0.20 469.38 

0.55 1.55 (-0.21 -0.19 -1.17) 7.21 -0.17 475.99 

Table 4.8: Objective loss function values for Lorenz dataset with different s  values. 
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b Center f(x)  j(x)  

3.97 (0.80 0.58 4.74) 0.24 

1.36 (0.38 0.29 0.59) 0.15 

1.29 (–0.62 –0.06 –1.13) –0.19 

1.12 (–0.71 -0.02 –1.07) –0.39 

1.12 (0.06 0.22 0.27) 0.24 

1.07 (1.35 0.17 –0.82) 0.05 

1.07 (–0.71 –0.01 –1.06) –0.15 

1.06 (1.06 0.31 –1.33) –0.19 

Table 4.9: Phase space vector with large weights for Lorenz dataset with different b  

values. 

 

It can also be concluded that the performance of RPS-based approaches is 

superior to the neural network method in identifying temporal patterns predictive of 

events in general. This is because the RPS-based methods are capable of modeling the 

temporal dynamic structures that neural network methods usually cannot capture fully.   

In our approach, the parameter  s  in the classifier has to be predetermined. To see 

the effect of choosing the correct value of  s , we performed experiments by varying the 

value of  s  and reporting the value of the objective loss function in Table 4.8. We can see 

that the value of objective function decreases and then increases as s increases from 0.15 

to 0.55. The objective loss function has the smallest value when s = 0.25. This result 

indicates that a proper choice of s  gives a better performance. Table 4.9 presents the 

estimated results of the eight largest weight coefficients b  with their associated phase 

space center ( )f x  and ratio ( )j x . The center ( )f x  in the phase space associated with 

the largest weight maxb  remains the same with regards to the varying of parameter s . 
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This indicates that our algorithm is robust in identifying  the multivariate temporal 

patterns in the transformed phase space.  

Example (d): The fourth example is the SVI series, and the MRPS approach is applied to 

tackle the sludge-bulking problem as discussed in Section 3.6. There are many potential 

causal factors to the sludge bulking, and one causal factor is the level of Dissolved 

Oxygen (DO). In this experiment, among 25 potential variables, we consider two data 

sequences: the SVI and the DO indices as the probable factors related to the sludge-

bulking problem. With data from 2003 to 2008 provided by a Chicago water treatment 

company, the first three years data are used as a training data set, and the remaining three 

years data are used as a testing set for validation. We denote the two-dimensional 

sequence, consisting of SVI and DO, as ( , )t t tS D=x . The events are defined as 

3

3

1 2

1 2

1 max{ } 150.0
( )

1 max{ } 150.0

, ,

, ,
t

t
t

t t

t t

S S S

S S S
g

+

+

+ +

+ +

ì+ ³ïï= íï- <ïî
x  .                            (4.29) 

The time delay was estimated as 5t = , and the embedding dimension as Q = 4. 

In Fig. 4.17, the two-dimensional patterns are plotted, with each point in the figure 

representing a two-dimensional data ( , ).t t tS D=x  Fig. 4.17 shows a decision boundary 

separating the event-related patterns and normal points based on the estimation of the 

GMM. Instead of using a hard decision boundary, our framework includes a log-odds 

ratio estimated from the GMM to exploit the time-independent discriminative structure 

hidden in the multivariate data sequences.  
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Figure 4.17: Two-dimensional temporal patterns of the SVI index. 

 

 

Figure 4.18: The Receiver Operating Characteristic (ROC) performance analysis. 
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We plot the Receiver Operating Characteristic (ROC) curves of the MRPS 

together with the TSDM and ANN in Fig. 4.19. The areas under the ROC curves are 

0.968, 0.935, and 0.925 for MRPS, TSDM, and ANN, respectively. These ROC curves 

show TP rates with respect to the FP rates in the SVI series test dataset. Since the 

event/samples ratio is relatively small, the ROC curves are displayed in a region with a 

low FP ratio. Fig. 4.19 shows that the performance in the ROC curves of the TSDM and 

ANN methods are below that of the MRPS in general. The TSDM method performs fairly 

close to the ANN method for lower FP rates and slightly better for higher FP rates. 

Compared with the ANN ROC curve, the relative FP rate reduction for the MRPS 

approach is about 40%, and the increase of TP rates is about 15%.  

Table 4.10 presents the confusion matrix results of MRPS method. Similar to 

example (c), we evaluated the performance of the new MRPS method by comparing it 

with the TSDM method and the neural network results, as illustrated in Table 4.11. The 

results show that the MRPS method outperforms the other two methods in both accuracy 

and rates of TPs. The MRPS method generates a higher TP rate by a large margin in both 

training and testing, whereas the other two methods had lower rates. 

 

 
Predicted as events Predicted as nonevents 

Actual events TP=29 FN=5 

Actual nonevents FP =6 TN=1605 

Table 4.10: The confusion matrix of the SVI dataset. 
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Method TP Rate (%) TN Rate (%) Accuracy (%) 

MRPS 83.86 99.63 99.09 

TSDM 65.53 98.85 97.57 

ANN 61.37 98.45 97.26 

Table 4.11: A comparison of the testing set results of the SVI dataset. 

 

 
 

s bmax Center f(x) associated with bmax  a1 a0 L(s, b) 

0.01 7.60 (–2.17 –0.27 0.14 –0.44 0.24) 1.74 –2.16 23.18 

0.04 7.59 (–2.17 –0.27 0.14 –0.44 0.24) 1.74 –2.14 23.03 

0.07 7.48 (–2.17 –0.27 0.14 –0.44 0.24) 1.71 –2.10 22.01 

0.1 7.10 (–2.17 –0.27 0.14 –0.44 0.24) 1.64 –1.86 21.39 

0.13 6.70 (–2.17 -0.27 0.14 –0.44 0.24) 1.60 –1.56 22.28 

0.16 6.36 (–2.17 –0.27 0.14 –0.44 0.24) 1.56 –1.27 25.40 

0.19 6.02 (–2.17 –0.27 0.14 –0.44 0.24) 1.52 –0.99 30.52 

0.22 5.71 (–2.17 –0.27 0.14 –0.44 0.24) 1.49 –0.73 36.84 

0.25 5.45 (–2.17 –0.27 0.14 –0.44 0.24) 1.45 –0.52 43.56 

0.28 5.24 (–2.17 –0.27 0.14 –0.44 0.24) 1.42 –0.37 50.02 

Table 4.12: Objective loss function values for SVI dataset with different s  values. 
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b Center f(x) associated with b j(x) associated with b 

7.48 (–2.17 –0.27 0.14 –0.44 0.24) 0.24 

6.68 (–0.95 –0.14 0.27 –0.34 0.15) 0.15 

5.76 (–0.55 0.17 0.29 –0.68 –0.19) –0.19 

4.83 (0.17 0.34 0.39 0.00 –0.39) –0.39 

4.68 (0.35 0.32 0.34 –0.34 0.24) 0.24 

4.19 (0.11 0.18 –0.08 –0.68 0.00) 0.00 

4.12 (0.70 0.25 0.35 –0.15 0.05) 0.05 

3.93 (0.37 0.04 0.18 0.73 –0.15) –0.15 

3.89 (0.72 0.27 0.27 –0.10 0.00) 0.00 

3.23 (–0.43 0.11 0.13 –0.78 –0.19) –0.19 

Table 4.13: Phase space vector with large weights for SVI dataset with different b values. 

 

To see the effect of choosing the correct value of s , in Table 4.12, we show the 

value of the objective loss function with respect to different values of s . We can see that 

the value of the objective function decreases and then increases as s increases from 0.01 

to 0.28. The objective loss function has the smallest value whens = 0.1; therefore, a 

proper choice of s  gives a better performance. To see the robustness of MRPS method, it 

can be observed from Table 4.12 that the center ( )f x  in the phase space associated with 

the largest weight maxb  remains the same with varying values of parameters .  

Table 4.13 shows the results of the ten largest weight coefficients b and their 

associated phase space center ( )f x  and ratio ( )j x . We observe that while some patterns 

have large phase space weights, indicating high importance as temporal patterns, they do 

not necessarily have large weights in the Bayesian log-odds ratio. In other words, 

applying a discriminative method alone would not identify these temporal patterns. This 

demonstrates that by modeling temporal dynamics through RPS, the MRPS approach can 
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provide additional information that a discriminative method does not capture.  

In this chapter, the MRPS method is presented for identification of predictive 

temporal patterns in a multivariate dynamic data system. The new MRPS method extends 

the original univariate reconstructed phase space framework, which is based on a fuzzy 

unsupervised clustering method, by incorporating a new mechanism of data 

categorization based on the definition of events.  The new method uses an exponential 

loss objective function to optimize a classifier which consists of a radial basis kernel 

function and a log-odds ratio component. Experimental results demonstrated the 

effectiveness of this new approach. The results in this chapter have been published in 

[89].  
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CHAPTER 5 EQUIVALENCE ANALYSIS OF PHASE SPACE AND THE 
ASSOCIATED PARAMETRIC SPACE 

 

Although pattern detection in a traditional RPS through optimization has been a 

proven effective approach, theoretical validation or the exploration of the underlying 

dynamics in terms of traditional time series analysis methods, such as parametric AR 

models, is still an open issue. To explore such a relationship, we introduce a parametric 

space constructed using adaptively estimated AR type parameters.  

There are several possible approaches to adaptive parameter estimation, such as 

least squares (LS) [4], Kalman filters [30], and Recursive Least Squares (RLS) methods 

[30]. Since the underlying system is unknown, a Kalman filter approach is not applicable 

in the absence of information regarding the transition matrix and the variances of noises. 

Moreover, in most cases, the length of the temporal patterns is typically short; as a result, 

the number of data points is not large enough to make a sufficiently reliable or accurate 

estimation using a simple sliding window LS method. In contrast, the RLS method does 

not require detailed structural information of the system and can solve the estimation 

problem adaptively by keeping historical estimates. 

5.1 Equivalence Analysis 

To solve a pattern detection problem, the RPS approach assumes that temporal 

patterns, with dimension Q  and time delay t , in the form of ( 1)( , ,..., )t t t t Qx x xt t- - -=x  

are statistically predictive of the magnitude of a k-step future value t kx +  in terms of an 

event function, ( )t kg x + , typically against a certain threshold. In other words, such 

temporal patterns represent hidden underlying dynamics that at least are correlated, if not 
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causal, to the future values in the data sequence. In other words, there is a linear or 

nonlinear relationship between ( 1)( , ,..., )t t t t Qx x xt t- - -=x  and t kx + .  

Let us consider a data sequence, ,...,,  t t Nx =1 , with embedding dimension Q  

and time delay t , and assume every k-step ahead future value t kx + can be represented as 

a linear, or linearized for a nonlinear system, summation of temporal pattern vectors, 

( )( , ,..., )t t t Qt x x xt t- - -=x 1  by  

1, 2, , ( 1) 0,... ,t k t t t t Q t t Q t tx x x xt tb b b b e+ - - -= + + + +                         (5.1) 

where , , , , ...,( , ,..., ),  t t Q tt t Nb b b == 1 2 1b , are the linear coefficients. These linear 

coefficients are assumed stochastic, as they are representative of constantly changing 

underlying system states over time, but when a system is in a certain state, the change is 

assumed to be sufficiently small. Without loss of generosity, it is assumed that k =1 and 

that the system occupies a certain state from time 2t Qt-  to t . Combining Q  equations, 

and each is t step delayed, we have 
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              (5.2) 

Eqn (5.2) can then be rewritten in a vector form,  

1 1t k t t t Q t tt t+ - - -
é ù= +ê úë ûx x x x ( ) b e  ,                         (5.3) 

where 1 2 0, , , ,

T

t t t Q t tb b b bé ù= ê úë ûb ,  and [ ]( )t t t t Qx x xt t- - -=x 1 .  
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Assuming the model in Eqn. (5.3), and taking the expected value of both sides, we 

have 

, , , ,...t t Q t tb b b= + + + +1 2 0m m m m b ,                               (5.4) 

where { }tE= xm . Rewriting both sides, we get 

,

, , ,( ... )
t

t t Q tb b b
=

- - - -
0

1 21

bm  .                                        (5.5) 

Thus, the mean or center of the RPS embedding cluster can be calculated using 

Eqn. (5.5). This relationship in Eqn. (5.5) shows a one-to-one and onto mapping t b m  

from the mean of a parameter space cluster to the mean of a RPS embedding cluster. 

Therefore, the new parameter space preserves the important first-order statistic, that is, 

the mean of the original RPS cluster. 

Given the results in Eqn. (5.5), we can rewrite Eqn. (5.4) as 

, , ,( ) ( ) ... ( )t t t t t Q t t Q tt t tb b b- - -- = - + - + + - +x x x x1 2 2m m m m n  .            (5.6) 

By multiplying t k- -x m  and taking expectations of both sides, we have 

,

,

{( )( )} {( )( )} ...

                                   {( )( )} {( ) }.

t k t t t k t

Q t t k t Q t k t

E E

E E

t

t

b
b

- - -

- - -

- - = - - +
+ - - + -

x x x x

x x x

1m m m m
m m m n

 

Denoting {( )( )}t t k kE -- - =x xm m g , we obtain 

, , ,...k t k t k Q t k Qt t tb b b- - -= + + +1 2 2g g g g  .                                (5.7) 

Since the second-order moment of the sequence can be obtained from Eqn. (5.7), 

this shows a direct mapping  t kb g  between the center of parameter space cluster to 

the covariance of corresponding RPS cluster. Hence, the new parameter space can also 

preserve the important second-order statistics of the original RPS.  
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5.2 Simulation Example 

The following experimental example illustrates how the mean value of traditional 

phase space can be estimated using the mean value of parametric space. Consider the 

following third-order autoregressive series: 

1 3 10.2 0.5 0.2t t t tx x x e- - += + + + .                                   (5.8) 

For this system, from Eqn. (5.8), we can see two lagging components 1tx -  and 

3tx -  with a two-step delay between them. Thus, we choose dimension 2Q = and time 

delay 2t =  to embed this series.  

Fig. 5.1 illustrates the parametric space composed of estimated coefficients 

associated with Eqn. (5.8). The mean in each dimension is estimated as 

1 2 00.1426, 0.3537, and 0.3615b b b= = = . By the relationship in Eqn. (5.5), the center 

in the original phase space is estimated as 0 1 2ˆ[ ] / (1 ) 0.7177t xE x m b b b= = - - = . 

Fig. 5.2 displays the traditional phase space embedding in a two-dimensional 

space. The means of the embeddings in both dimensions are 0.7227tx =  and 

0.7254tx t+ = . The results suggest the experimental results in both dimensions match 

closely with the theoretical estimates. 
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Figure 5.1: Parametric space of a third-order autoregressive series. 

 

Figure 5.2: RPS embedding of a third-order autoregressive series. 
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The simulation results in Fig. 5.2 show that the center of the parametric space has 

a sufficiently close mapping relationship with the center of the RPS. Thus, the 

relationship defined in Eqns. (5.5) and (5.7) establishes time-domain equivalence 

mapping between the RPS and its associated parametric space. The formulation in Eqn. 

(5.4) shares a similar form as a vector autoregressive model, which partly explains why 

the phase space approach has been successful in identifying temporal patterns. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

In this dissertation, several novel methods were presented for identifying temporal 

patterns predictive of events in a dynamic data system. These new methods are original 

contributions to the field of nonlinear time series analysis and machine learning. The key 

components in these methods include the categorization of event functions, a phase space 

transformation, supervised classification of temporal patterns, kernel radial basis 

functions in phase space, as well as classifier design through optimization of an 

exponential loss function. 

In Chapter 3, we developed a new GMM-SVM method addressing event 

prediction and pattern detection problem in univariate data systems. This new method 

uses both generative and discriminative models to provide a two-stage pattern 

classification for event prediction in a nonlinear system. We demonstrated that the new 

method has improved performance compared with conventional methods. 

In Chapter 4, we introduced a new multivariate reconstructed phase space (MRPS) 

method. The new MRPS method extends the original univariate reconstructed phase 

space framework, which is based on a fuzzy unsupervised clustering method, by 

incorporating a new mechanism of data segmentation based on the categorical definition 

of event functions.  In addition to modeling temporal dynamics in a multivariate phase 

space, a Bayesian approach is applied to model the first-order Markov behavior in the 

multi-dimensional data sequences. The method uses an exponential loss objective 

function to optimize a hybrid classifier which consists of a radial basis kernel function 

and a log-odds ratio component. Compared with a univariate modeling approach, 
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modeling the system dynamics using multivariate data sequences provides more insights 

and a better understanding of the overall system. This dissertation has demonstrated the 

effectiveness of the MRPS method by applying it to several experiments and showed 

significant improvements in event prediction and predictive pattern identification 

compared with baseline methods.  

In Chapter 5, an equivalence analysis of phase space and the associated 

parametric space was presented. An equivalence mapping was established between the 

time-domain RPS and its associated parametric space. It was shown that the new 

parametric space can preserve the first-order and the second-order statistics of the 

original RPS. 

Although this dissertation has demonstrated the effectiveness of several novel 

methods, further work still can be done to enhance the performance of prediction and 

pattern detection. Future work will include: 

 The MRPS method can be extended to be applicable in a wider range of multivariate 

event prediction problems. Although a thresholding event function was used, a 

relaxation of the assumption of thresholding event function can be done by applying 

more complex event functions to improve the applicability of RPS-based methods in 

other multivariate applications. 

 Although we have employed a Gaussian Mixture Model as the generative model 

component in the methods, in further study, the Gaussian distribution assumption can 

be extended to other distributions.  



104 
 

 Since the parametric phase space preserves the same first and second order statistics 

of the time domain RPS, in future work, parametric pattern detection through 

adaptive parameter estimation and prediction can be investigated. 

 Since computational complexity of the optimization in MRPS method increases as the 

size of datasets increases, alternative optimization methods can be applied to ensure a 

fast convergence and a better computational performance. 
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