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ABSTRACT 

SUPRAMOLECULAR POLYSACCHARIDE COMPOSITE MATERIALS: GREEN 

AND RECYCLABLE SYNTHESIS, CHARACTERIZATION, ANALYTICAL AND 

BIOMEDICAL APPLICATIONS 

 

 

Simon Duri, BSc. (Hons.), MSc.  

 

Marquette University, 2013 

 

 

A simple novel recyclable synthetic method was successfully developed for the 

synthesis of polysaccharide composite materials. The method involves the use of 1-butyl-

3-methylimidazolium chloride [BMIm
+
Cl

-
], a simple ionic liquid, as the sole solvent. 

Naturally abundant and renewable materials such as cellulose (CEL) and chitosan (CS) 

were used for the preparation of the composite materials. CEL is the most abundant 

compound on earth, while CS is a product of deacetylation of chitin, which is the second 

most abundant material on earth. [BMIm
+
Cl

-
] is relatively non toxic, non volatile and 

stable over a wide range of temperature eliminating one of the major pathways to 

environmental contamination, making the method developed here environmentally 

friendly. In addition, at least 88% of the [BMIm
+
Cl

-
] used can be recovered for re-use, 

making the method much cheaper and green compared to methods employing traditional 

organic solvents. CEL and CS are attractive materials for their natural abundance, 

biodegradability and biocompatibility. While CEL is known for its superior mechanical 

properties, CS has been widely investigated and applied in adsorption of both organic and 

inorganic pollutants, antimicrobial, hemostasis, wound dressings and drug delivery 

systems. Composite materials made from CEL and CS are therefore expected to have 

combined advantages and qualities of both of these materials. Dissolution of both CEL 

and CS and successful regeneration was followed by X-ray diffraction. FT-IR, NIR and 
13

C CP MAS NMR spectroscopy were used to characterize the chemical composition of 

the regenerated composite materials. The morphology of the regenerated materials was 

evaluated using SEM. Results of tensile strength measurements showed that indeed, 

addition of CEL, a material of superior mechanical strength, to CS leads to considerable 

improvement in the strength of the materials. Up to 5 times increase in tensile strength 

was achieved by adding 80% CEL to CS. Doping the materials with cyclodextrins was 

found to not only improve their pollutant adsorption capacity, but also impart some size 

selectivity to the materials. Results of antimicrobial studies showed activity against a 

number of both gram negative and gram positive bacteria, while the blood absorption 

properties of these materials are comparable to commercially available products. 
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Chapter 1. INTRODUCTION 

1.1. Background 

For a very long time, the synthetic polymer industry has offered some great 

benefits to society. Unfortunately, synthetic polymers come from petroleum resources 

and these are not unlimited. In addition, non-biodegradable plastics have become a major 

threat to the environment. As a result, a lot of attention is now being paid to the 

exploitation and exploration of natural polymers. Natural polymers possess some unique 

properties which make them much more attractive than synthetic polymers for a variety 

of applications. Some of these attractive features are listed below: 

 Biodegradable – Naturally occurring polymers produced by all living organisms. 

They show no adverse effects on the environment or human being. 

 Biocompatible and non-toxic  

 Economic - They are cheaper and their production cost is less than synthetic 

materials. 

 Safe and devoid of side effects – They are from a natural source and hence, safe 

and without side effects. 

 Easy availability – They are abundant in nature and in many countries, they are 

produced in large quantities due to their application in many industries. 

It is because of these unique and attractive features that natural polymers are gaining 

more and more attention and are even tipped to replace synthetic polymers in numerous 

applications. Such considerations have prompted the initiation of this study which seeks 
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to develop a novel synthetic procedure to prepare polysaccharide composite materials. 

Cellulose (CEL) was chosen not only for its natural abundance, but also because it is 

biocompatible and biodegradable. In addition, the superior mechanical and rheological 

properties of CEL will be used to improve the corresponding properties of the resultant 

multi-component composite materials. Another natural polymer that will be used in the 

composite materials is Chitosan (CS). As will be described in later sections, CS also has 

some unique properties that could be exploited in a variety of applications for the 

resultant composite materials. These include excellent adsorbent capability, wound 

healing, hemostasis, blood adsorption, antimicrobial activity and drug delivery.
1–11

 

Selectivity is a very special feature to have in any material especially if they are to be 

used for adsorption of small compounds. Cyclodextrins (CDs), have unique cavities that 

allow them to form guest-host complexes with a wide range of analytes.
12,13

 Accordingly, 

CDs will also be incorporated into our composite materials and experiments will be 

designed and carried out to determine whether by doping our composites with CDs, we 

can confer some size and shape selectivity to our composite materials. One of the biggest 

limitations in the processing of natural polymers such as CEL and CS is the lack of a 

solvent or solvent system that can be used to dissolve such polymers under relatively 

mild conditions. However, the advent of ionic liquids (ILs) seems to be changing that. 1-

butyl-3methylimidazolium chloride [BMIm
+
Cl

-
] is one such ionic liquid. It is made from 

chlorobutane and 1-methylimidazole both of which are easily available and can be easily 

purified by normal and vacuum distillation respectively. In addition to that, [BMIm
+
Cl

-
] 

can dissolve both CEL and CS allowing the use of a single solvent to dissolve both 
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polymers.
14–17

 A brief description of the chemistry and some selected properties of CEL, 

CS, CDs and ILs is given in the following sections.  

1.2. Cellulose 

Cellulose (CEL) is the principal structural component of cell walls of plants as 

illustrated in Figure 1.1. It is a natural polysaccharide and the most abundant renewable 

bio-organic substance on earth. It is non-toxic, renewable, modifiable, biocompatible and 

biodegradable, which make it one of the most promising feedstock for industry in the 

future 
18–20

.  Cellulose has a number of traditional applications including its use in 

furniture, clothing and medical products. Chemically, cellulose structure consists of β-

(1→4)-linked glucose residues leading to the formation of polydisperse linear polymer 

chains which form hydrogen-bonded structures. An example of such a structure is 

depicted in Scheme 1.1. 
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Figure 1.1: Natural sources of cellulose
21
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Scheme 1.1: Cellulose polymer chain, n is typically 400-1000(left) and triple strand 

of cellulose showing H-Bonds (right).  

 

Cellulose is stabilized by intra- and inter-molecular hydrogen bonds so as to form 

very tough bundles. Multiple hydrogen bonding between cellulose molecules results in 

the formation of highly ordered crystalline regions. Furthermore, these are mixed or 

covered by lignin
22

. It is therefore almost impossible to solubilize cellulose with water 

and common organic solvents. This property causes difficulties in improving the 

processability and functionality of cellulose. The efficient dissolution of cellulose is a 

long-standing goal in cellulose research and development. To date, only a limited number 

of solvent systems for cellulose have been found. These include dimethylacetamide in 

lithium chloride (DMAc/LiCl)
23

, DMF/N2O4
24

, nitrogen-methylmorpholine nitrogen 
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oxide (NMNO)
25

, DMSO/TBAF
26

, and some molten salt hydrates such as 

LiClO4.3H2O
27

.
 
Some mixed systems composed of organic solvents, water and salts have 

also been proposed.
22

 In spite of the utility of these solvent systems, there remain some 

drawbacks such as volatility, generation of poisonous gas or waste, and difficulty to 

recover solvent(s) for reuse as well as instability in application and processing.
14

 

1.3. Chitosan 

Chitosan (CS), a natural biomaterial, is an N-deacetylated product of chitin. 

Chitin (which is the structural element in the exoskeleton of crustaceans, such as crabs 

and shrimp and cell walls of fungi) is the second most abundant natural polymer after 

cellulose. Both chitin and chitosan have a structure similar to cellulose.
28

 Chitin has two 

hydroxyl groups and an acetamido group while chitosan has two hydroxyl groups and 

one amino group in their repeating hexosaminide residue. Chitosan is produced 

commercially by deacetylation of chitin, (Scheme 1.2). The degree of deacetylation 

(%DD) can be determined by FT-IR and NMR spectroscopy, and the %DD in 

commercial chitosans ranges from 60 to 100%. On average, the molecular weight of 

commercially produced chitosan is between 3800 and 20,000 Daltons. A common 

method for the synthesis of chitosan is the deacetylation of chitin using sodium hydroxide 

in excess as a reagent and water as a solvent. This reaction pathway, when allowed to go 

to completion (complete deacetylation) yields up to 98% product.
29
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Deacetylation NaOH

 

Scheme 1.2: Commercial production of chitosan by the deacetylation process. 

The amino group in chitosan has a pKa value of ~6.5, which leads to protonation 

in acidic to neutral solution with a charge density dependent on pH and the %DA-value. 

Just like cellulose, chitosan is biocompatible and biodegradable. Chitosan and its 

derivatives, such as trimethylchitosan (where the amino group has been trimethylated), 

have been used in nonviral gene delivery.
30

 Trimethylchitosan, or quaternized chitosan, 

has been shown to transfect breast cancer cells, with increased degree of trimethylation 

increasing the cytotoxicity; at approximately 50% trimethylation, the derivative is the 

most efficient at gene delivery. Oligomeric derivatives (3-6 kDa) are relatively nontoxic 

and have good gene delivery properties.
30
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1.4. Biomedical uses of chitosan 

Chitosan's properties allow it to clot blood rapidly.
31,32

 This occurs when the 

negatively charged outer membrane of the red blood cells attaches and fuses to the 

positively charged chitosan. Chitosan has recently gained approval in the United States 

and Europe for use in bandages and other hemostatic agents.
33

 Chitosan hemostatic 

products have been shown in testing by the U.S. Marine Corps to quickly stop bleeding 

and to reduce blood loss, and result in 100% survival of otherwise lethal arterial wounds 

in swine.
33

 Chitosan hemostatic products reduce blood loss in comparison to gauze 

dressings and increase patient survival.
7
 Chitosan hemostatic products have been sold to 

the U.S. Army and are currently used by the UK military. Both the US and UK have 

already used the bandages on the battlefields of Iraq and Afghanistan.
33

 Chitosan is 

hypoallergenic and has natural antibacterial properties, which further support its use in 

field bandages.
32

 

Chitosan hemostatic agents are often chitosan salts made from mixing chitosan 

with an organic acid (such as succinic or lactic acid).
34

 The hemostatic agent works by an 

interaction between the cell membrane of erythrocytes (negative charge) and the 

protonated chitosan (positive charge) leading to involvement of platelets and rapid 

thrombus formation.
35

 The chitosan salts can be mixed with other materials to make them 

more absorbent (such as mixing with alginate),
36

 or to vary the rate of solubility and bio 

absorbability of the chitosan salt.
34

 The chitosan salts are biocompatible and 

biodegradable making them useful as absorbable hemostats. The protonated chitosan is 
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broken down by lysozyme in the body to glucosamine
35

 and the conjugate base of the 

acid (such as lactate or succinate) are substances naturally found in the body.  

Chitosan's properties also allow it to be used in transdermal drug delivery; it is 

mucoadhesive in nature, reactive (so it can be produced in many different forms), and 

most importantly, has a positive charge under acidic conditions. This positive charge 

comes from protonation of its free amino groups. Lack of a positive charge means 

chitosan is insoluble in neutral and basic environments. However, in acidic environments, 

protonation of the amino groups leads to an increase in solubility. The implications of 

this are very important to biomedical applications. The chitosan molecule will maintain 

its structure in a neutral environment, but will solubilize and degrade in an acidic 

environment. This means chitosan can be used to transport a drug to an acidic 

environment, where the chitosan packaging will then degrade, releasing the drug to the 

desired environment. One example of this drug delivery has been the transport of 

insulin.
37

 

In recent years, there has been much scientific and industrial interest in utilizing 

chitin and Chitosan for a diverse range of applications such as pharmaceutical, waste 

water treatment, cosmetics, drug delivery, heavy metal chelation, heterogeneous catalysts 

and many other attractive utilizations.
38–40

 For these applications, especially when 

chemical modification of these biopolymers is needed, it is essential to form stable 

homogenous solutions so as to improve efficiency of modification.
41

 However, just like 

with cellulose, strong intra- and intermolecular hydrogen bonding decreases their 

solubility in many organic solvents. Traditionally, concentrated solutions of hydrochloric 

acid and sulfuric acid,
42

 and an alkaline-ice mixture were used to dissolve chitin. 
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However, these solvents are highly corrosive and the resulting polymer solutions are not 

stable because chitin undergoes hydrolysis in strongly acidic conditions. Chitosan is an 

easily soluble polymer and is soluble in dilute aqueous solutions of organic and mineral 

acids, but an alkaline treatment process is necessary to remove the acid after the process. 

Furthermore, the polyelectrolyte solutions formed had limited application as transition 

metal sorbents
43

 and drug carriers.
44

 As a result, new processing strategies for developing 

potential applications of these bio renewable resources are required. In our composite 

materials, the poor mechanical and rheological properties of chitosan will look to be 

improved by cellulose. 

1.5. Cyclodextrins 

Unlike cellulose, cyclodextrins (sometimes called cycloamyloses) are a family of 

compounds made up of sugar molecules bound together in a ring (cyclic 

oligosaccharides) (Scheme 1.3a.). They are named according to the number of glucose 

units making up each molecule. α Cyclodextrin has 6 glucose units, β cyclodextrin 

consist of 7 glucose units and γ cyclodextrin is made up of 8 glucose units. Structurally 

cyclodextrins can be topologically represented as toroids (Scheme 1.3b.) with the larger 

and the smaller openings of the toroid exposing to the solvent secondary and primary 

hydroxyl groups respectively. Because of this arrangement, the interior of the toroids is 

not hydrophobic, but considerably less hydrophilic than the aqueous environment and 

thus able to host other hydrophobic molecules. In contrast, the exterior is sufficiently 

hydrophilic to impart cyclodextrins (or their complexes) water solubility. 

 

http://en.wikipedia.org/wiki/Oligosaccharides
http://en.wikipedia.org/wiki/Alcohol#Primary.2C_secondary.2C_and_tertiary_alcohols
http://en.wikipedia.org/wiki/Alcohol#Primary.2C_secondary.2C_and_tertiary_alcohols
http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Hydrophilic
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Scheme 1.3: Structure of cyclodextrins  

1.6. Applications of cyclodextrins 

Cyclodextrins are able to form host-guest complexes with hydrophobic molecules 

given the unique nature imparted by their structure. As a result, these molecules have 

found a number of applications in a wide range of fields including pharmaceutical 

industry.  

In the food industry cyclodextrins are employed for the preparation of cholesterol-

free products: the bulky and hydrophobic cholesterol molecule is easily lodged inside 

cyclodextrin rings that are then removed. Alpha-cyclodextrin (6 membered ring), beta-

cyclodextrin (7 membered ring), and gamma-cyclodextrin (8 membered ring) are all 

generally recognized as safe by the FDA. Weight loss supplements are marketed from 

alpha-cyclodextrin which claim to bind to fat and be an alternative to other anti-obesity 

medications.
45,46

 Other food applications include the ability to stabilize volatile or 
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unstable compounds and the reduction of unwanted tastes and odor. Alpha-cyclodextrin 

is used as emulsifier in food and cosmetic applications. Reportedly cyclodextrins are used 

in alcohol powder, a powder for mixing alcoholic drinks. Beta-cyclodextrin complexes 

with certain carotenoid food colorants have been shown to intensify color, increase water 

solubility and improve light stability.
47,48

 

The strong ability of complexing fragrances can also be used for another purpose: 

first dry, solid cyclodextrin microparticles are exposed to a controlled contact with fumes 

of active compounds, and then they are added to fabric or paper products. Such devices 

are capable of releasing fragrances during ironing or when heated by human body.
49

 Such 

a device commonly used is a typical 'dryer sheet'. The heat from a clothes dryer releases 

the fragrance into the clothing.
49

 

The ability of cyclodextrins to form complexes with hydrophobic molecules has 

led to their usage in supramolecular chemistry
50

. In particular they have been used to 

synthesize certain mechanically-interlocked molecular architectures, such as rotaxanes 

and catenanes, by reacting the ends of the threaded guest. The photodimerization of 

substituted stilbazoles has been demonstrated using γ-cyclodextrin as a host. Based on the 

photodimer obtained, it is established that the halogen-halogen interactions, which are 

plays interesting role in solid state, can be observed in solution. Existence of such 

interactions in solution has been proved for the first time by V.Ramamurthy's group by 

selective photodimerization of dichloro substituted stiblazoles in cyclodextrin and 

cucurbiturils.
51
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The application of cyclodextrin as supramolecular carrier is also possible in 

organometallic reactions. The mechanism of action probably takes place in the interfacial 

region.
52

 Wipff also demonstrated by computational study that the reaction occurs in the 

interfacial layer.
49

 The application of cyclodextrins as supramolecular carrier is possible 

in various organometallic catalyses. 

Another common application of cyclodextrins is in chiral chromatography. β-

Cyclodextrins are used to produce HPLC columns allowing chiral enantiomers 

separation.
53

  

Cyclodextrins however are highly soluble in water,
54

 and also have poor 

mechanical and rheological properties which makes it impossible to process them into 

films. For our composite materials, cyclodextrins will be incorporated into cellulose and 

chitosan and take advantage of the film forming properties of these compounds to prepare 

cyclodextrin containing composite films. 

1.7. Ionic Liquids 

Ionic liquids (ILs) are organic salts designed to melt below 100 
0
C, or preferably 

near room temperature. Compared to molecular liquids, ILs have various advantages that 

include extremely low volatility, low flammability and high thermal stability. The most 

fascinating nature of ILs are their structural diversity. The physicochemical properties of 

ILs, including viscosity,
55

 polarity,
56

 and other properties
57

 vary according to their ionic 

structures. As a result, their physicochemical properties can be tuned by exploiting the 

diversity of component organic 
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cations and organic or inorganic anions. ILs have consequently been described as 

designer solvents. Appropriate ILs might therefore act as eco-friendly polar solvents for 

cellulose and most other biopolymers. Because of these promising features, ILs should 

have diverse applications, and they have been extensively studied.
58

 ILs have been 

studied as solvents in chemistry, especially for catalytic reactions. Examples of some ILs 

are shown in figure 1.1 below. 
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Figure 1.2: Structure of some common Ionic Liquids.  

Ionic Liquids have received much attention as green and designable solvents with 

the development of green chemistry and the requirement of environmental protection. ILs 

have been applied as alternative solvents in many catalytic organic transformations.
59,60

 

Owing to their special structures, ionic liquids possesses many unique solubility 

characteristics. In particular, the 1-butyl-3-methylimidazolium chloride [BMIm
+
Cl

-
] and 

dicyanamide ionic liquids have a strong ability to disrupt hydrogen bonds, and hence can 

be used to dissolve biological macromolecules that are linked together by strong intra- 

and inter-molecular hydrogen bonds such as carbohydrates, cellulose, wool keratin and 

silk fibroin.
14,17,61–64

 
 
The development of a green and recyclable method to synthesize 
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novel polysaccharide composite materials using [BMIm
+
Cl

-
] as the sole solvent will be 

described in Chapter 2. The complete characterization of the regenerated composite 

materials using various spectroscopic techniques will also be described in Chapter 2. 

Techniques such as FT-IR, near IR, XRD, solid state NMR, AFM and SEM were used 

for the characterization of the composite materials. Tensile strength measurements were 

used study the effect of adding cellulose on the mechanical and rheological properties of 

the composite materials. In Chapter 3, the application of the regenerated composite 

materials to the adsorption of pollutants from aqueous solution would be described. 

Pollutants such as microcystin-LR, chlorophenols and bisphenol A were used for this 

study. Bulky 3, 4 dichlorophenol was used to investigate the effect of cyclodextrin on 

size selectivity of the regenerated composite materials. The possible application of our 

composite materials in controlled drug release systems and in the enantiomeric resolution 

of amino acids will be discussed in Chapter 4. Ciprofloxacin was used as a model drug 

compound for the drug release studies while tryptophan, tyrosine, histidine and 

phenylalanine were used in the investigation of the enantioselectivity of our composite 

materials. 

Chapter 5 describes previous projects that were done for the applications of near 

IR spectroscopy and near IR multispectral imaging spectroscopy. 
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Chapter 2. SYNTHESIS, CHARACTERIZATION AND PROPERTIES 

OF BIOCOMPATIBLE AND BIODEGRADABLE POLYSACCHARIDE 

COMPOSITE MATERIALS 

 

2.1. Background 

2.1.1. Cellulose and Chitosan 

As described in the Introduction, chitosan (CS) is a linear amino polysaccharide, 

obtained by N-deacetylation of chitin. Chitin is the second most abundant naturally 

occurring polysaccharide after cellulose (CEL)
1–4

.  CS structure allows it to have some 

unique properties including antimicrobial, drug delivery, wound healing, hemostasis and 

pollutant adsorbant.
5–25

 In addition, CS is also biocompatible and biodegradable. Despite 

all these attractive properties, there are some limitations to the application of CS. CS is 

relatively easier to dissolve, being soluble in dilute solutions of organic acids such as 

acetic acid. Subsequent alkaline treatment is required to neutralize the acidic solutions.
2–6

 

Such treatments (acid and alkaline) are undesirable as they may inadvertently lead to 

structural modifications which may alter some of the unique properties of the material. In 

addition, CS is structurally weak and is known to swell in wet environments. While the 

swelling is good for the diffusion of small molecules and compounds through the CS 

network, it also further weakens the CS structure in these wet environments. In fact, most 

commercial CS products are strengthened by grafting man-made polymers to the CS. 

While this improves the strengths of these products, grafting of man-made polymers may 

lessen the unique properties of CS and reduce its biocompatibility. This calls for a novel 

method to synthesize mechanically superior CS materials using natural materials that 
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preserves or enhance its unique properties. In CEL, the extensive hydrogen bonding 

network is responsible for giving it its superior mechanical strength, but it also 

inadvertently leads to challenges with the solubility of CEL. In fact, CEL is not soluble in 

most common organic solvents. Solubility of CEL is achievable in strong solvents such 

as methylmorpholine-N-oxide, dimethylthexylsilyl chloride or LiCl in dimethylacetamide 

(DMAc). The use of strong solvents for CEL is also undesirable as it may lead to some 

structural changes which can also affect its properties. Composite materials made from 

CS and CEL may be an alternative substitute to synthetic polymers. This is because 

[CEL+CS] composites are all natural, their preparation does not involve the use of 

volatile organic solvents with complicated grafting reactions, and since they are all 

natural, their individual unique properties are expected to remain intact including their 

biocompatibility. 1 Butyl-3-methylimidazolium chloride [BMIm
+
Cl

-
] is a simple ionic 

liquid that has been shown to be able to dissolve both CEL and CS.
26,27

 This creates a 

unique opportunity to use a single solvent to process both CEL and CS. 

2.1.2. Butyl methylimidazolium chloride ionic liquid 

Butyl methylimidazolium chloride ([BMIm
+
Cl

-
]) belongs to a group of 

compounds known as ionic liquids (ILs).  As described in Chapter 1, ILs are organic salts 

that are liquid at room temperature
28–34

.  They have unique chemical and physical 

properties. These include their high solubilizing power, high stability, low reactivity and 

virtually zero vapor pressure. These properties, especially their extremely low vapor 

pressure eliminates a major pathway for environmental contamination. As a result, ILs 

can be used as green recyclable alternatives to the volatile organic compounds 
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traditionally used as solvents.
28–31,33–36

  Due to their advantages, ILs have been used for 

applications which are not possible with other chemicals.  For example, as described 

above, IL such as [BMIm
+
Cl

-
] can dissolve both CEL and CS.

31,33–36
  This discovery is of 

particular significance as it makes it possible for the first time that CEL and CS can be 

dissolved, regenerated and chemically modified by use of a simple and green solvent 

which has high solubility power and low toxicity.   

This shows that it may be possible to develop a novel and green method to 

prepare novel strong, biocompatible and biodegradable polysaccharide composite 

materials for effective adsorption and removal of pollutants, hemostasis, wound healing, 

bactericidal and drug delivery.  This has prompted the initiation of this study which seeks 

to exploit the advantages of a simple IL such as [BMIm
+
Cl

-
] to develop a novel, 

environmentally friendly and recyclable method to prepare polysaccharide composite 

materials containing CEL and CS while retaining the unique properties of the materials.  

2.1.3. Cyclodextrin-doped Composites 

Supramolecular chemistry refers to chemical systems made up of a discrete 

number of assembled molecular subunits or components. The forces responsible for the 

spatial organization may vary from weak (intermolecular forces, electrostatic or hydrogen 

bonding) to strong (covalent bonding), provided that the degree of electronic coupling 

between the molecular component remains small with respect to relevant energy 

parameters of the component.
37,38

 While traditional chemistry focuses on the covalent 

bond, supramolecular chemistry examines the weaker and reversible noncovalent 

interactions between molecules. These forces include hydrogen bonding, metal 
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coordination, hydrophobic forces, van der Waals forces, pi-pi interactions and 

electrostatic effects. Important concepts that have been demonstrated by supramolecular 

chemistry include molecular self-assembly, folding, molecular recognition, host-guest 

chemistry, mechanically-interlocked molecular architectures, and dynamic covalent 

chemistry.
39

 Macrocycles are very useful in supramolecular chemistry, as they provide 

whole cavities that can completely surround guest molecules and may be chemically 

modified to fine-tune their properties. Cyclodextrins, calixarenes, cucurbiturils and crown 

ethers are readily synthesized in large quantities, and are therefore convenient for use in 

supramolecular systems.
40–45

 Supramolecular composite materials containing 

cyclodextrins (CDs) are of particular interest because CD ((-, - and -CD) are known 

to form selective inclusion complexes with a variety of different compounds with 

different sizes and shapes
46,47

. CDs are highly soluble in water, and cannot be processed 

into films because of their poor mechanical and rheological strength.  However, 

encapsulating CDs into polysaccharide composite materials can proved a way to make 

solid forms of CD based supramolecules in which the encapsulated CDs fully retain their 

unique properties. These types of CD based supramolecular composite materials will not 

only be superior to their man-made counterparts for their simplicity in preparation but 

they will also be based on all natural materials making them biocompatible as well. This 

chapter describes a novel method that has been developed to incorporate CDs into CEL 

and CS polysaccharide composite materials. The structures of the different CDs used in 

this method are shown in Scheme 2.1.  
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Scheme 2.1: Structures of tri-O-acetyl-cyclodextrins (TCDs) 

These CD derivatives were particularly chosen because they are insoluble in water, and 

as will be discussed in the preparation procedure, this is particularly important so that the 

CDs are retained in the composite material rather than leak out into water during the 

washing step. 
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2.2. Materials and Methods 

2.2.1. Chemicals 

Cellulose (microcrystalline powder or Avicel, DP≈ 300
48

) and chitosan 

(MW≈310-375kDa, 75% degree of deacetylation, Sigma-Aldrich), microcystin-LR (Enzo 

Life Sciences) were used as received. Heptakis(2,3,6-tri-O-acetyl)-β-cyclodextrin (β-

TCD) (TCI America, Portland, OR), hexakis(2,3,6-tri-O-acetyl)-α-cyclodextrin (α-TCD) 

and octakis(2,3,6-tri-O-acetyl)-γ-cyclodextrin (γ-TCD) (Cyclodextrin-Shop, The 

Netherlands) were also used as received. 1-methylimidazole and 1-chlorobutane (Alfa 

Aesar) were further purified by vacuum and normal distillation respectively. [BMIm
+
 Cl

-
] 

was synthesized from freshly distilled 1-chlorobutane and freshly distilled 1-

Methylimidazole using method previously reported
30,49

.  Briefly, a 1:1 mole ratio mixture 

was refluxed in a three-neck flask under nitrogen at 70
o
C for 3 days. Initially 2 layers 

were formed in the reaction flask but at the end of the reaction only one layer remained. 

After 3 days, the resulting viscous ionic liquid was cooled to room temperature and then 

washed 3 times with ethyl acetate. Residual ethyl acetate was removed at the rotor vapor 

before drying the ionic liquid at 70
o
C under vacuum overnight. This IL is known to be 

hygroscopic and because any water presence is known to decrease its ability to dissolve 

polysaccharides
27

, it was dried under vacuum at 70C overnight before use.  
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2.2.2. Instruments 

 UV-visible spectra were measured on a Perkin Elmer Lambda 35 UV/Visible 

spectrometer.  NIR spectra were taken on a home-built NIR spectrometer based on an 

acousto-optic tunable filter. Information on this NIR spectrometer was described in detail 

in previous papers
50,51

.  Normally, each spectrum was an average of 1000 spectra taken at 

2-nm intervals from 1300 to 2350 nm.  FTIR spectra were measured on a PerkinElmer 

100 spectrometer at 2 cm
-1

 resolution with either KBr or by a ZnSe single reflection ATR 

accessory (Pike Miracle ATR).  Each spectrum was an average of 64 spectra.   

X-ray diffraction (XRD) measurements were taken on a Rigaku MiniFlex ΙΙ 

diffractometer utilizing the Ni filtered Cu Kα radiation (1.54059Å). The voltage and 

current of the X-ray tube were set at 30 kV and 15 mA respectively.  The samples were 

measured within the 2θ angle range from 2.0
o
 to 60.0

o
. The scan rate was 5

0
 per minute. 

The spectra were processed and analyzed with the Jade 8 program package
52

.  Scanning 

electron microscopic images of surface and cross section of the polysaccharide composite 

materials were taken under vacuum with an accelerated voltage of 3 kV using Hitachi 

S4800 scanning electron microscope (SEM). Samples were coated with 3 nm Pd prior to 

measurement on SEM. AFM images were recorded with a Veeco Innova Atomic Force 

Microscope system. Measurements were done in the tapping mode. Tensile strength 

measurements were performed on an Instron 5500R Tensile Tester on the air-dried 

samples. TGA was measured using a TA instruments SDT Q600 using a heating rate of 

10 
o
C/min. The samples were measured in alumina sample holders under N2 atmosphere. 
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DSC measurements were performed using a NETZSCH DSC200 F3 instrument. Heating 

rate of 10 
o
C/min was also used.  

2.2.3. Swelling behavior of the polysaccharide composite materials 

Swelling behavior of [CEL+CS] composite materials was determined using a 

procedure previously reported
53,54

.  Essentially, dried composite films measuring about 2 

cm x 2 cm were accurately weighed  before they were immersed in 100 mL of de-ionized 

water.   At specific time intervals, the films were taken out from water, quickly blotted 

with a filter paper to remove water on the surface and then weighed immediately before 

being returned to the de-ionized water. The swelling ratio (S%) of the composite films in 

de-ionized water was calculated from the following equation
53,54

: 

100)(%
d

ds

W

WW
S


  

where Ws and Wd represent the weight of the swollen and dry films respectively.  

The equilibrium water content (EWC) was calculated using the following equation
53,54

: 

100)((%)
e

de

W

WW
EWC


  

where We and Wd represent the weight of the swollen film at equilibrium and the dry film 

respectively. 

 

(2.1) 

(2.2) 
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2.3. Preparation of CEL, CS and [CEL+CS] composite films 

The CS used in this study was specified by the manufacturer (Sigma-Aldrich) as 

having a degree of deacetylation (DA) value of 75%.  Physicochemical properties of CS 

such as size, zeta potential, morphology and complex stability are known to be closely 

related to the degree of deacetylation.
55,56

 Experiments were carried out to determine the 

exact degree of deacetylation of the CS that was used in our experiments. Two different 

methods, FT-IR and 
1
H NMR, were employed for the determination

57–61
.  For FT-IR 

method, the spectra were measured on a PerkinElmer 100 spectrometer at 2 cm
-1

 

resolution.  The CS sample was vacuum dried at 50
o
C for 2 days. A small amount of the 

dried sample was then ground in KBr and pressed into a pellet for FT-IR measurements. 

Eight KBr pellets were prepared and their spectra were recorded.  Degree of 

deacetylation (DA) was calculated from the eight spectra, and average value is reported 

together with standard deviation.  The DA value was calculated based on the following 

equation:
57,58 

    ( )      [(           )          ]  (2.3) 

where A1655 and A3450 are the absorbances at 1655 cm
-1

 of the amide C=O and 3450 cm
-1

 

of the OH band respectively. The factor 1.33 denotes the value of the ratio of A1655/A3450 

for fully N-acetylated chitosan. Each spectrum was corrected for baseline according to a 

procedure previously reported.
62,63

 A schematic representation of the baseline correction 

procedure is shown in Figure 2.1.  
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Figure 2.1: Baseline correction procedure used in the calculation of the DA from 

FT-IR spectra. 
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Figure 2.2: FT-IR spectra of CS used to calculate the Degree of Acetylation  

Table 2.1: Degree of Acetylation calculated using FT-IR spectra shown in figure 2.2  

Spectrum %DA 

Spectrum 1 77 

Spectrum 2 78 

Spectrum 3 81 

Spectrum 4 83 

Spectrum 5 85 

Spectrum 6 86 

Spectrum 7 77 

Spectrum 8 79 

Average 81 

Standard Deviation 3 

 

As illustrated in table 2.1, an average % DA of 81±3% was obtained by this method. 
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For
 1

H NMR determination, the spectra were taken on a VNMRS 400 

spectrometer at 70
o
C.  About 5 mg of chitosan sample which was previously vacuum 

dried at 50 
o
C for 2 days, was dissolved in 0.5 mL of 2 wt.% DCl/D2O solution at 70

o
C. 

The degree of deacetylation (DA) was evaluated from the following equation using the 

integral intensity, ICH3, of the CH3 residue of N-acetyl, and the sum of the integral 

intensities, IH2-H6, of protons 2-6 of the chitosan residue:
61 

  ( )  [  (
 

 
     

 

 
      )]       (2.4) 

For the determination of DA by the 1H NMR method, a single solution was made and its 

NMR spectrum is shown in Figure 2.3 below. Using this method, the % DA of the CS 

was calculated to be about 78%. This value is very similar to the 75% DA specified by 

the manufacturer for this CS material. 
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Figure 2.3: 1H NMR spectrum of CS dissolved in 2% w/w DCl/D2O at 70oC.  
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Scheme 2.2: Preparation procedure for the polysaccharide composite materials. 

Scheme 2.2 summarizes the procedure used to dissolve and to regenerate films of 

CEL and/or CS with [BMIm
+
Cl

-
] as solvent. Homogeneous viscous solutions of CEL, CS 

or their composite mixtures were obtained by dissolving the polysaccharides in [BMIm
+
 

Cl
-
] ionic liquid under magnetic stirring at 100 – 110

 o
C.  Dissolution was performed in a 

50 mL 3-neck round bottomed flask under Ar or N2 atmosphere. For example, 15.0 g of 

[BMIm
+
 Cl

-
] ionic liquid was weighed into a 50 mL 3-neck round bottomed flask. 0.15 g 

(1%) of CS or CEL was added to the flask and the mixture stirred at about 200rpm at 100 
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o
C until the CS or CEL had completely dissolved. It was observed that CS would take 

longer to dissolve than CEL. Generally it would take just about one hour to completely 

dissolve a 1% w/w portion of CEL at 100
0
C. However, it would take about 2.5 to 3 hr to 

dissolve the same amount of CS at the same temperature. A second portion of 0.15 g CS 

or CEL was then added to the flask and completely dissolved. Finally, a third portion of 

0.15 g CS or CEL was added, bringing the total % wt. of the polysaccharides in the ionic 

liquid to 3%. The CS and CEL were dissolved in small portions. Each portion being 

approximately 1% w/w of the ionic liquid, as described in the example above. Each 

portion was completely dissolved before the next portion was added. 1% portions of 

either CEL or CS can be continued to be added to the flask until the desired concentration 

has been reached. For composite films, CEL was dissolved to the desired concentration 

first before dissolving CS. Using this procedure, solutions of CEL (containing up to 10% 

w/w (of IL)), CS (up to 4% w/w) and composite solutions containing CEL and CS in 

various proportions were prepared in about 6-8 hours. As described above, the actual 

time would depend on the final concentration of the composite that is being prepared.   

Upon complete dissolution, the homogeneous solutions of the polysaccharides in 

[BMIm
+
 Cl

-
] were cast in to PTFE molds measuring about 105 mm x 79 mm x 3 mm on  

Mylar  

sheets to produce  thin films of the same dimensions with different compositions and 

concentrations of CEL and CS.  If very thin films were desired, the homogeneous 

solutions of the polysaccharides in [BMIm
+
 Cl

-
] was cast on glass slides or Mylar sheets 

using a RDS stainless steel coating rod with appropriate size (RDS  Specialties, Webster, 

NY) to produce the thin films.  
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The composites were then kept at room temperature for 24 hours to allow the 

solutions to undergo gelation . After 24 hours at room temperature, the polysaccharide 

composite solutions solidified to form GEL Films. The surface of the GEL films are 

sometimes covered by ionic liquid expelled from the gel matrix as they solidify. At this 

stage, the GEL films contain both the polysaccharides and the [BMIm
+
Cl

-
] ionic liquid. 

Taking advantage of the solubility of [BMIm
+
Cl

-
] in water, the ionic liquid was removed 

from the GEL films by a simple washing process in de-ionized water to yield  

“[BMIm
+
Cl

-
]-free” WET Films. The films were washed by soaking them in deionized 

water and stirring at about 250rpm. The ratio of water to gel film used during the washing 

process was about 50ml/g and the washing water was replenished with fresh deionized 

water once each day during the course of the 3-day washing period. As illustrated in 

Scheme 2.2, the [BMIm
+
 Cl

-
] used can be recovered by distilling the washed aqueous 

solution. Also taking advantage of the non-volatility property of the IL, the water can be 

easily distilled under vacuum at 100
o
C. The recovered [BMIm

+
Cl

-
] was dried under 

vacuum at 70
o
C overnight before reuse. If needed, recovered [BMIm

+
Cl

-
] can be 

decolorized by heating at 70C with activated charcoal before removing the charcoal by 

filtration.  

The amount of [BMIm
+
Cl

-
] that can be recovered from 1 synthesis cycle was 

calculated using two different composite films, a 100% CEL and 100% CS film. In this 

experiment, both CEL and CS were dissolved to 3% w/w using 38.7510g of [BMIm
+
Cl

-
] 

for each sample using the procedure described above. The samples were cast on Mylar 

substrates and left overnight. Each sample (now a gel film) was placed in a 2L beaker and 

about 1L of de-ionized water was added. The samples were then stirred on a magnetic 
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stirrer at room temperature and the washing water was replaced with fresh de-ionized 

water periodically. For this experiment, the washing water was replenished 3 times on the 

first day of washing and 2 times on day 2 and day 3. The UV spectrum of each washing 

solution was measured to determine the presence of [BMIm
+
Cl

-
] ionic liquid.  Figure 2.4 

shows the UV spectra obtained for a 100%CEL sample. The UV absorption spectrum of 

[BMIm
+
Cl

-
] is also included for reference. As expected, the amount of [BMIm+Cl-] in 

the washing solutions, indicated by the absorption bands around 214 nm and 290 nm 

progressively decreases with each washing solution. After 3 days of washing (6
th

 and 7
th

 

washing) there was hardly any [BMIm
+
Cl

-
] detectable by the UV measurement. 

 

 

Figure 2.4: UV absorption spectra showing the progressive decrease in the amount 

of [BMIm+Cl-] present in the washing water at different stages of washing process 

for a 100%CEL sample. 
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 Table 2.2: Amount of [BMIm+Cl-] recovered from the synthesis of 2 

different composite films.  

 

Sample [BMIm
+
Cl

-
] used Recovered [BMIm

+
Cl

-
] % Recovery 

100% CEL 38.7510g 34.4109g 88.80% 

100% CS 38.7510g 33.8641g 87.40% 

Average % Recovery 88.10% 

 

The water in each washing solution was distilled to recover the ionic liquid and all the 7 

portions were combined. Finally, the recovered ionic liquid was dried under vacuum at 

70
0
C overnight. After cooling to room temperature, the recovered ionic liquid weighed on 

a balance and the % recovery was calculated. Table 2.2 shows the amount of [BMIm
+
Cl

-
] 

used, the amount recovered and the calculated % recovery for each sample. As illustrated, 

the % recovered for the two films are very similar, giving an average % recovery of about 

88.10%. The ability to recover a relatively high amount of the ionic liquid used is 

extremely important to the whole process because, in addition to the IL being non-

volatile, it makes the whole process green and recyclable. The regenerated [CEL+CS] 

composite materials were then dried at room temperature in a chamber with humidity 

controlled at 60% to yield DRY Films. Drying time was found to be dependent on the 

thickness of the films but generally was in the range of 3 – 5 days.  It was found that 

humidity control is important to ensure that the films do not become brittle and cracked 

during drying.  

 The amount of water remaining in the dried films was analyzed by Thermal 

Gravimetric Analysis (TGA). For this experiment, films were dried in the humidity 
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controlled chamber as described above for 5 days. After 5 days, the films were divided 

into 2. One piece was analyzed for the water content by TGA, and the other piece was 

placed in a desiccator and further dried under vacuum overnight, after which it was also 

analyzed for the water content by TGA. The two TGA curves are plotted together for 3 

different composites in Figure 2.5. The film that was further dried in desiccator is shown 

in red and the other sample is shown in blue. The amount of water in the films appears as 

the first weight loss centered around 120
0
C in the TGA curves. As illustrated in Figure 

2.5, there seems to be little differences in the water content of the two films. The films 

that were further dried in the desiccator have lower water content than those that were 

only dried inside the humidity chamber. This is as expected considering the desiccant and 

low pressure inside the desiccator. More quantitative results can be obtained by further 

analysis of the TGA curves. An example of one such analysis, that was done using the 

TA Instruments weight loss analysis software, is show in Figure 2.6 below. Such analysis 

can give the amount of water lost during the heating ramp. The % water contend is 

obtained directly from this analysis. Results for the different samples are shown in Table 

2.3.  
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Figure 2.5: TGA curves showing water content in a film after drying in the humidity 

controlled chamber (blue curves) and after further drying in a desiccator (red 

curves).  
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Figure 2.6: Illustration of the analysis of the water content in a given sample using 

TGA curve  
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Table 2.3: Comparison of the % water content in a normal dried film and after 

further drying in desiccator. 

 

 

  Film composition 

 Sample treatment 100% CS 50% CS 0% CS 

Dry film  10.4% 9.5% 9.0% 

Further Dried (Desiccator under vacuum 

overnight) 8.9% 8.5% 7.4% 

 

The results in Table 2.3 indicate that further drying the samples in desiccator reduces the 

water content of the films by only about 1%. This is an indication of the effectiveness of 

the humidity chamber in drying the films. Another interesting trend observed from these 

results is the amount of water retained by films of different compositions. These results 

show that as the amount of CS in the composite is increased, the amount of water 

retained is also increased. It can be observed from Table 2.3 that 100%CS film has about 

1.5% more water than its CEL counterpart. 

Film composites with a porous, more open structure were obtained by 

lyophilizing the wet films instead of air-drying them. To lyophilize, the wet films in their 

PTFE molds were placed into a lyophilizing flask of appropriate size and cooled to liquid 

nitrogen temperature by immersing the lyophilizing flask containing the composites in 

liquid nitrogen for about 10 minutes. When the composites were equilibrated at the liquid 

nitrogen temperature, the flask was taken out and connected to the freeze-drying machine 

where the composites are freeze-dried under vacuum over 24 hrs.                                                                     
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2.4. Characterization of [CEL+CS] Composites 

Scheme 2.2 contains photographs of CEL, CS and [CEL+CS] composite materials 

at various stages of preparation.  Images of one-component  (CEL or CS) film composites 

and two component  [CEL+CS] film composites GEL films are shown in top center-right 

of the Scheme.  After soaking in water for 3 days, [BMIm
+
Cl

-
] was removed from the gel 

film to yield corresponding wet films (shown on the bottom-right of the scheme).  

Finally, dried films (bottom-left) were obtained when the wet film was allowed to dry at 

room temperature in a humidity controlled chamber.  

 Various spectroscopic techniques including XRD, FTIR, NIR and  
13

C Cross 

polarization-magic angle spinning NMR (CP-MAS-NMR) were used to follow and 

confirm the dissolution process, regeneration and to characterize the films. Details of the 

findings are described in the sections below.  

2.4.1. XRD Spectroscopy 

Powder XRD spectroscopy was used to confirm both the dissolution of the 

polysaccharides in [BMIm
+
Cl

-
] IL and their regeneration into solid dried films. Dried 

films were cut into small square pieces measuring about 2cm x 2cm and measured 

directly on the X-ray Diffractometer. A custom made holder was used to hold the 

samples in position during the measurement. [BMIm
+
Cl

-
] and GEL films were placed 

onto the normal XRD quartz sample holder and measured directly. Since [BMIm
+
Cl

-
] is 

viscous at room temperature, it was possible to measure this up to 2θ angles of about 60
o
 

without losing any of the sample. Figure 2.7A shows the XRD spectra of CEL 



44 

 

 

composites at different stages of preparation. As illustrated, when microcrystalline CEL 

was dissolved in [BMIm
+
Cl

-
] (red spectrum), its crystalline diffraction peaks around, 

14.7ᵒ, 16.3ᵒ, 22.5ᵒ and 34.6ᵒ completely disappears. In fact, the spectrum of the CEL gel 

is very similar to that of the [BMIm
+
Cl

-
] ionic liquid. This is confirmation of the 

dissolution of CEL in the ionic liquid. Similar results were also obtained for CS (Figure 

2.7B), where the spectrum of the CS gel is similar to that of the [BMIm
+
Cl

-
] ionic liquid, 

meaning that this ionic liquid was able to completely dissolve the CS powder. The XRD 

spectra of the regenerated CEL film and 10:3 CEL:CS shows diffraction bands shifted 

from those of the microcrystalline CEL. The spectra seem to suggest that the 

morphological structure of the regenerated CEL films is less crystalline than that of the 

starting microcrystalline powder. The regenerated CS films however have XRD spectra 

much more similar to that of the starting CS powder. 

As alluded to earlier, [BMIm
+
Cl

-
] is totally miscible with water, with an octanol-water 

partition coefficient (logP) of about -2.5. It is therefore easy to remove the [BMIm
+
Cl

-
] 

from the Gel Films by simply washing the films with water.  Washing water (2L for a 

composite film of about 10cmX10cm) was repeatedly replaced with fresh water every 24 

hrs until it was confirmed by monitoring UV absorption of the IL at 214 nm and 290 nm, 

that the IL was not detected in the washing water.  It was found that after washing for 72 

hours, no IL was detected in the washing water by UV measurements.  Figure 2.8 shows 

the UV absorption spectra of the washing water taken over the 3 day washing period, one 

spectrum every 24 hrs. It can be observed from this figure that the UV spectrum of the 

washing water taken after 72 hrs does not have the characteristic UV absorption bands 

attributable to [BMIm
+
Cl

-
] which were clearly visible during the earlier stages of the 
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washing process. This is an indication that indeed, [BMIm
+
Cl

-
] can be removed to levels 

not detectable by UV by washing the films in water for about 3 days 

 

 

 

Figure 2.7: A) XRD spectra of microcrystalline CEL, regenerated [CEL+CS] film, 

CEL gel film, regenerated CEL film and [BMIm+Cl-] ionic liquid. B) XRD spectra 

of CS powder, regenerated [CEL+CS] film, CS gel film, regenerated CS film and 

[BMIm+Cl-] ionic liquid.  
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Figure 2.8: Disappearance of the [BMIm+Cl-] ionic liquid bands during washing.  

2.4.2. Near-IR and FT-IR Spectroscopy 

NIR and FT-IR techniques were also used to characterize the composite films. 

Figure 2.9A show the NIR spectra of three different types of gel films. At the gel stage of 

preparation, [BMIm
+
Cl

-
] ionic liquid is the major component in the films. Expectedly, the 

NIR of these gel films exhibit mostly the [BMIm
+
Cl

-
] indicator bands. These include the 

overtone and combination bands of the aliphatic C-H groups around 1388 nm and 1720 

nm
64
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Figure 2.9: A) Near-IR spectra of  [CEL+CS] Gel Film (purple), CEL Gel Film 

(red), CS Gel Film (green) and [BMIm+Cl-] ionic liquid (blue). B) Near-IR spectra 

of  CEL Regenerated Dry Film (red), CS Regenerated Dry Film (green) and 

[BMIm
+
Cl

-
] ionic liquid (blue). C) FT-IR spectra of  CEL Regenerated Dry Film 

(red), CS Regenerated Dry Film (green) and [BMIm+Cl-] ionic liquid (blue)  
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Figure 2.9B shows the NIR spectra of regenerated CS and regenerated CEL 

(dried) films. The NIR spectrum of the ionic liquid is also included for reference. It is 

clear from this figure that the NIR spectra of the regenerated films are much different 

from that of the ionic liquid. None of the [BMIm
+
Cl

-
] indicator bands are present in the 

NIR spectra of the CS and CEL regenerated films. This is also confirmation that the IL 

was successfully removed from the films to levels not detectable by the NIR technique. 

FT-IR of the same films further confirms this finding. Shown in Figure 2.9C are the FT-

IR spectra of the same samples shown in Figure 2.9B with the spectra of [BMIm
+
Cl

-
] also 

included for reference. This IL has several FT-IR bands which can be attributed to 

aromatic C-H bending (756 cm
-1

), -C=N- stretch (1173 cm
-1

), aromatic C-H in plane 

bending (1468 cm
-1

) and C=C stretch (1572 cm
-1

). As illustrated in Figure 2.9C, these 

distinct IL bands are not present in the FT-IR spectra of the regenerated films. This 

further confirms the conclusion that by washing the films in water, the IL liquid is 

successfully removed from these films.   

As previously described in the preparation section, the IL used was recovered by 

distilling the washed aqueous solution. As indicated in Figure 2.4, the UV spectra of the 

washing solutions does not show any more bands attributable to [BMIm
+
Cl

-
] ionic liquid 

after 72 hrs of washing (6
th

 and 7
th

 washing in Figure 2.4). The results in Table 2.2 

showed that a similar amount of recovered from both 100%CS and 100%CEL films. The 

recovered [BMIm
+
Cl

-
] was dried under vacuum at 70

o
C overnight before reuse. If 

needed, recovered [BMIm
+
Cl

-
] can be discolored by heating at 70C with activated 

charcoal.     As indicated in Table 2.2 at least 88% of [BMIm
+
Cl

-
] was recovered for 

reuse.  As such, the method developed here is recyclable because [BMIm
+
Cl

-
] is the only 
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solvent used in the preparation and it is recovered for reuse.   This is particularly 

important to the method developed here as it is not only green and recyclable, but is also 

economical in comparison to use of traditional solvents. 

FT-IR and NIR spectroscopy were also used to analyze the chemical nature of the 

regenerated films. A comparison of the FT-IR spectra of the regenerated CEL film and 

the starting microcrystalline CEL is shown in Figure 2.10A. Similar comparison for CS 

powder and regenerated CS film is shown in Figure 2.10B. Microcrystalline CEL has 

bands characteristic bands for O-H vibrations (3400 cm
-1

), C-H vibrations (2850 cm
-1

 – 

2900 cm
-1

) and the ether (-O-) group (890 cm
-1

 – 1150 cm
-1

).
65–67

 The regenerated CEL 

film exhibit similar bands, meaning that CEL was successfully regenerated without any 

chemical modifications. CS powder (Figure 2.10B) has characteristic FT-IR bands for O-

H stretch (3400 cm
-1

), N-H stretch (3250 cm
-1

 – 3350 cm
-1

), C-H stretch (2850 cm
-1

 – 

2900 cm
-1

), C=O, amide 1 (1650 cm
-1

), N-H deformation (1595 cm
-1

), CH3 deformation 

(1380 cm
-1

), C-N stretch, amide III (1319 cm
-1

) and –O-, ether bending (890 cm
-1

 – 1150 

cm
-1

).
65–67

 It can be observed from Figure 2.10B that the FT-IR spectrum of the 

regenerated CS film is very similar to that of the starting CS powder, exhibiting all the 

characteristic bands described above. 

 A comparison of the NIR results of the same films further confirms the 

regeneration of the CS and CEL composite films without chemical modification. Shown 

in Figure 2.10C is a comparison of the NIR spectra of regenerated CEL film and 

microcrystalline CEL. CEL NIR band around 1492 nm, 1938 nm and 2104 nm can be 

attributed to overtone and combination bands for the O-H group. These bands are present 

in both the regenerated CEL film and the starting microcrystalline CEL. Figure 2.10D 



50 

 

 

also shows that the NIR spectra of CS powder and regenerated CS film are similar 

exhibiting bands around 1548 nm and 2028 nm in addition to the characteristic O-H 

bands described above for CEL. The additional bands in CS arise from the –NH 

modes.
50,51,67,68
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Figure 2.10: FTIR spectra (A and B) and NIR spectra (C and D) of microcrystalline CEL (blue), regenerated CEL film 

(red), CS powder (blue) and regenerated CS film (green) respectively  
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2.4.3. Characterization by solid state 
13

C NMR spectroscopy 

In the solid state, CEL exists in a variety of polymorphic forms, with two most 

common being cellulose I and cellulose II.
69

  Cellulose I is the natural (native) polymorph 

and invariably occurs with a high degree of crystallinity; depending on the source,
69

 the 

crystallinity can range from 60% to 90%. The cellulose II polymorph is obtained by 

mercerization or regeneration of cellulose from solution. If regeneration is carried out at 

high temperatures, cellulose IV can be produced. All regenerated celluloses have a much 

lower degree of crystallinity (e.g., ~40%) than the native form.
69

 Several attempts at 

elucidating the three-dimensional structures of cellulose I and II have been made by using 

modern fiber diffraction methodology and sophisticated computer modeling.
70

 The  

techniques of cross-polarization and magic-angle spinning have been developed in recent 

years to yield high-resolution NMR spectra of dilute nuclei (e.g., 
I3

C) in the solid state.
69

 

In the particular case of cellulose, spectra have been reported by Earl and Vander Hart
69

 

and by Atalla and coworkers
71

 that clearly indicate the utility of the technique. Both 

groups reported characteristic splittings for C- 1 in these spectra due to solid-state effects, 

giving rise to two peaks at 106.2 ppm and 107.9 ppm. In their study of cellulose II, Atalla 

and co-workers
71,72

 interpreted the existence of two peaks for C-1 in terms of a 

nonequivalence of alternate glycosidic linkages along the molecular chain. This 

interpretation requires that dimeric anhydrocellobiose rather than anhydroglucose be 

considered the basic repeat unit of the cellulose II crystalline structure. It is clear from 

these studies that 
13

C NMR technique can be used to study both structural and 

morphological nature of samples. We saw from the XRD results in Figure 2.7 that our 
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regenerated composite films do not exhibit the same crystalline morphology as that of the 

starting materials. 
13

C CP-MAS-NMR technique was therefore employed to further 

confirm the chemical and morphological structure of our regenerated polysaccharide 

composite materials.   Shown in Figure 2.11 are 
13

C CP-MAS-NMR spectra obtained for 

regenerated dried films of CEL (purple spectrum D), CS (red spectrum B) and 5:3 

CEL:CS composite (light blue spectrum A) together CS powder (green spectrum C) 

amorphous cellulose powder (black spectrum E) and microcrystalline cellulose powder 

(dark blue spectrum F).  Chemical shifts of all six samples are listed in Table 2.4.  As 

expected, the spectra of CS powder, amorphous CEL powder and microcrystalline CEL 

powder agree with the results previously reported
73–75

. As described above, Dudley et 

al.
69

 and Atalla et al.
71,72

 reported that in highly crystalline cellulose, the alternate 

glycosidic linkages along the chain are non-equivalent, giving rise to two peaks for C-1. 

Our results for both the microcrystalline cellulose and the regenerated cellulose films do 

not show any splitting for the C-1. This is an indication that our regenerated cellulose 

films and the starting microcrystalline cellulose powder are not as crystalline as those 

reported by Dudley et al.
69

 and Atalla et al.
71,72

 The 13C NMR spectrum of our 

regenerated cellulose film is very similar to that of the amorphous cellulose reported by 

Murata et al.
76

 (black spectrum in Figure 2.11) which did not have splitting for the C-1 

peak. The amorphous nature of the regenerated cellulose films observed here by 13C 

NMR also confirms the results obtained by XRD described in the previous section for the 

same films. 
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Table 2.4: 
13

C NMR chemical shifts for different polysaccharides and regenerated 

films  

 

 

 

Carbon chemical shifts (ppm) 

 

C1 C2 C3 C4 C5 C6 CH3 

Regenerated cellulose 

film 104.6 74.1 74.1 83.2 74.1 62.0 

 Amorphous cellulose 

powder 105.7 74.8 74.8 84.4 74.8 63.0 

 Microcrystalline 

cellulose powder 104.9 72.1 74.6 

83.7, 

88.7 74.6 

64.7, 

62.3 

 Regenerated chitosan 

film 104.7 56.3 75.4 83.5 75.4 61.0 22.7 

Chitosan powder 104.9 57.3 74.7 82.8 74.7 60.1 23.4 

Regenerated 

cellulose+chitosan 

film 104.5 56.4 75.5 83.9 75.5 61.5 23.0 

 

The observed similarity between spectra and chemical shifts of corresponding carbons of 

regenerated dried films of CS and CEL to those of powder CS and powder of amorphous 

CEL is a clear indication that CEL and CS were successfully regenerated.  Of particular 

interest is the fact that the spectrum of regenerated CEL film is similar to that of the 

amorphous CEL powder, and is distinctly different from that of microcrystalline powder.  

This can be clearly seen at band corresponding to C4 which is only a broad single band at 

83.9 ppm, 84.4 ppm, respectively for regenerated CEL and amorphous CEL, but a 
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doublet at 88.7 ppm and 83.7 ppm for crystalline CEL powder.   These results seem to 

indicate that when microcrystalline CEL was dissolved by and regenerated from the IL, 

the regenerated CEL has relatively lower crystallinity than the microcrystalline CEL 

because IL disrupted inter- and intramolecular hydrogen bond network during the 

dissolution process. As a consequence, the regenerated CEL adapts an amorphous 

structure.  

 

 

Figure 2.11: 
13

C CP MAS NMR spectra of regenerated CEL, CS, [CEL+Cs] 

composite films, CS powder, Microcrystalline CEL, and amorphous CEL  
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These results not only confirm conclusion based on XRD results presented in previous 

section but also are in agreement with other previous studies
73–75

.   CEL has relatively 

different chemical shifts compared to those of CS, particularly C2 and C6; i.e., in CEL, a 

single C6 band is at 62.0 ppm, C2 is together with C3 and C5 in a large band at 74.1 ppm 

whereas in CS, C2 and C6 are together in a band at around 61.0 ppm, and the large band 

at 75.4 ppm is due only to C3 and C5.  Since these bands can be resolved into individual 

bands corresponding to C2, C3, C5 and C6 for each CEL and CS component of 

composite materials, it is possible to determine concentration of each polysaccharide 

component in composite materials using the CP-MAS-NMR technique.  Of particular 

interest is the presence of the band corresponding to carbon of CH3 group in CS and 

CEL:CS composite material (but not in CEL) at around 22.7 ppm.  This band can be 

attributed to remaining acyl groups of chitin, namely, chitosan obtained from commercial 

sources is not 100% but, as specified by the manufacturer in our case, is only >75% 

converted from chitin.  As reported earlier, the % DA of the chitosan used here was 

calculated to be 78% by 
1
H NMR and 81% by FT-IR spectroscopy, meaning that indeed 

there are still some residual CH3 groups which can give rise to the observed band at about 

22.7ppm. 
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2.4.4. Morphological analysis of the [CEL+CS] composite materials 

Scanning Electron Microscopy (SEM) 

A scanning electron microscope (SEM) produces images of a sample by scanning 

it with a focused beam of electrons. The electrons interact with atoms in the sample, 

producing various signals that can be detected and that contain information about the 

sample's surface topography and composition. The types of signals produced by a SEM 

include secondary electrons, back-scattered electrons, characteristic X-rays, light 

(cathodoluminescence) (CL), specimen current and transmitted electrons. Secondary 

electron detection is standard in all SEMs, but it is rare that a single machine would have 

detectors for all possible signals. These various signals result from interactions of the 

electron beam with atoms at or near the surface of the sample. If a sample is made up of 

different compounds with different electrical properties, each compound can give rise to 

a different SEM signal. This can therefore yield information about the chemical 

composition of the sample. In the most common or standard detection mode, secondary 

electron imaging or SEI, the SEM can produce very high-resolution images of a sample 

surface, revealing details about the surface structure of a sample.  SEM can be used to 

study both the surface and cross section of samples depending on the orientation of the 

sample during measurement. SEM was therefore used to study the morphological 

structure and chemical composition of the regenerated CEL, CS and [CEL+CS] 

composite materials. Shown in Figure 2.12 are surface images (left) and cross section 

images (right) of regenerated one component CEL film (top) and CS film (middle) as 

well as 50:50 CEL:CS composite film (bottom) images.  One aspect that can be clearly 
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seen from the images is that in both the surface and cross section images, the 100%CEL 

and 100%CS composites are homogeneous.  Even though the chemical difference 

between the CS and CEL are the few –NH2 groups in CS, the SEM images of these two 

materials have some interesting morphological differences.   CS seems to exhibit a much 

smoother structure, with CEL arranging itself into a fibrous structure with fibers having 

diameter of about ~0.5–1.0 micron.   
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     SEM Surface                                                         SEM Cross section 

 

 

 

 

 

 

 

 

 

 

 

        

         

Figure 2.12: SEM images of surface (left) and cross section (left) of regenerated 

CEL film (top),  regenerated CS film (middle) and 50:50 [CEL+CS] composite film 

(bottom)  

CS 

CEL+CS 

CEL 
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The 50:50 CEL:CS composite material is interesting in that it is not only homogeneous 

but it is more similar to the structure of CS than that of CEL, namely, it has a rather 

smooth structure with much fewer fibrous forms than CEL. The results show that CEL 

and CS composite materials with a homogeneous morphological surface and cross 

section structure have been successfully prepared by dissolution in [BMIm
+
Cl

-
] ionic 

liquid and regeneration from water. 

Analysis by Atomic Force Microscopy (AFM) 

 Surface-morphology characterization of polymeric films is essential because the 

surface properties influence the interactions that may occur between the film and the 

external environment. Advances in a number of scanning probe microscopy techniques 

have made obtaining nanoscale lateral information of surfaces possible for polymeric 

materials.
77–80 

Although scanning tunneling microscopy is effective for characterizing conducting 

materials, atomic force microscopy (AFM) is suited for examining nonconducting 

materials.  

 In AFM, a probe consisting of a sharp tip (nominal tip radius on the order of 10 

nm) located near the end of a cantilever beam is scanned across the sample surface using 

piezoelectric scanners. Changes in the tip-sample interaction are often monitored using 

an optical lever detection system, in which a laser is reflected off of the cantilever and 

onto a position sensitive photodiode. During scanning, a particular operating parameter is 

maintained at a constant level, and images are generated through a feedback loop 
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between the optical detection system and the piezoelectric scanners.
 
Three imaging 

modes can be used to produce topographic 

images of sample surfaces. These are contact mode, noncontact mode, and tapping mode 

AFM (TMAFM). TMAFM tends to be more applicable to general imaging of soft 

samples, such as biological and polymeric materials, under ambient conditions
77,79,81–87

 

and was used exclusively in this work. 

In tapping mode, the cantilever oscillates close to its first bending mode 

resonance frequency (normally on the order of 100 kHz) so that the tip makes contact 

with the sample only for a short duration in each oscillation cycle. As the tip approaches 

the sample, the tip-sample interactions alter the amplitude, resonance frequency, and 

phase angle of the oscillating cantilever. During scanning, the amplitude at the operating 

frequency is maintained at a constant level, called the set-point amplitude, by adjusting 

the relative position of the tip with respect to the sample. This method of operation results 

in lower surface forces, particularly lateral forces, compared to those of contact mode so 

less surface damage is inflicted while maintaining higher lateral resolution than can often 

be achieved with noncontact mode.
77

 

One recent development in TMAFM is the use of the changes in phase angle of 

the cantilever probe to produce a second image, called a phase image or phase contrast 

image. This image often provides significantly more contrast than the topographic image 

and has been shown to be sensitive to material surface properties, such as stiffness, 

viscoelasticity, and chemical composition.
78,81,88,89

 In general, changes in phase angle 

during scanning are related to energy dissipation during tip-sample interaction
90 

 and can 

be due to changes in topography, tip-sample molecular interactions, deformation at the 
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tip-sample contact, and even experimental conditions.
91 

However, while the relationship 

between changes in energy dissipation and changes in material properties is not well 

understood, the enhanced contrast that can be obtained often allows for distinguishing 

different material phases and constituents.
78,81

 The tapping phase and topography images 

of cellulose, chitosan and [CEL+CS] composite films are shown in Figure 2.13. The 

dimensions of the images are 2 μm x 2 μm. 
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              Tapping Phase Images                                                Topography Images 

  

  

  

Figure 2.13: AFM tapping phase(left) and topography images (right) for 100%CEL 

(top) 100%CS (middle) and [CEL+CS] composite materials. All images are 2 μm x 2 

μm.  

100%CEL 

100%CS 

[CEL+CS] 
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As illustrated above, the tapping phase image of the 100%CEL shows that the surface of 

this film is not smooth but is relatively ‘rough’ across its whole surface. Besides the 

roughness of the surface, the sample seems to appear the same throughout. This could be 

an indication that while the surface may be rough and not smooth, the sample itself may 

be homogeneous. In contrast, the AFM tapping phase image of the 100%CS sample 

appears to be much smoother than that of the 100%CEL sample. However, this sample 

also appears to be homogenous. These results are also confirmed by the topography 

images of the samples shown on the right in Figure 2.13. The 100%CEL topography 

images clearly shows some ‘valley’ areas (appear dark in the image) and some ‘high’ 

areas (which appear bright in the image). The 100%CS topography image however is 

smooth and bright across its center and is darker on the edges. This could be caused by a 

curved sample, where the center of the sample is curving upwards (hence appear bright) 

and the edges curving downwards (hence appear dark). The AFM images of the 

[CEL+CS] composite film appear somewhat intermediate between those of the 

100%CEL and 100%CS. The [CEL+CS] images are not as smooth as the 100%CS 

images, but they also are not as rough as the 100%CEL. The AFM results obtained here 

are in complete agreement with the SEM results, which also showed a smoother surface 

for the 100%CS sample, whereas the 100%CEL appeared much less smooth with some 

fibrous structures. 
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2.5. Properties of CEL, CS and [CEL+CS] Composites 

2.5.1. Mechanical properties 

As described above, the mechanical strength of CS is so poor that practically it 

cannot be used by itself for applications based on its unique properties.  Measurements 

were made to determine tensile strength of pure CS film and (CS+CEL) composite films 

with different CEL concentrations in order to determine if by adding CEL into CS, the 

[CEL+CS] composite material would have adequate mechanical strength for practical 

applications.  Results obtained, shown in Table 2.5 and graphically in Figure 2.14, clearly 

indicate that adding CEL into CS substantially increase its tensile strength.  For example, 

up to 5X increase in tensile strength can be achieved by adding 80% of CEL into CS, and 

that the tensile strength of the composite material can be adjusted by adding judicious 

amount of CEL.  The tensile strengths of [CS+CEL] composite materials made by our 

method are comparable with those of existing CS materials including those prepared by 

either grafting or copolymerization with other chemicals
92–97

.   
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Table 2.5: Mechanical strength of [CEL+CS] composite materials 

 

  

%CS %CEL Tensile strength(MPa) 

100 0 12±4 

67 33 17±4 

50 50 23±5 

40 60 41±9 

29 71 52±9 

20 80 72±5 

0 100 83±5 

 

 

Figure 2.14: Plot of tensile strength as a function of CEL concentration in 

[CS+CEL] composite films  
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2.5.2. Rheological properties 

The swelling of CS in water is good for the diffusion of small molecules through 

its structure for some applications such as pollutant adsorption and drug delivery systems. 

However, this seemingly attractive feature of CS inadvertently leads to a further 

weakening of the CS structure. The tensile strength measurements showed that addition 

of CEL to CS improves the mechanical properties of the resultant composites. Since CEL 

still undergoes swelling in water, it was important to investigate the rheological 

properties of the [CEL+CS] composite in order to determine the best possible 

composition which has good mechanical and rheological properties but still retaining the 

attractive CS properties. Kinetics of swelling of different [CEL+CS] composites were 

measured. The results are shown in Figure 2.15A. The results show that swelling in water 

occurred rapidly for all composites, reaching equilibrium in about 120 minutes. However, 

the swelling ratio was found to be proportional to the concentration of CEL in the 

composite.  The results of the kinetics of swelling are shown in Table 2.6. 100%CEL had 

the highest swelling ratio of about 270% while 100%CS had the least value of about 

80%. The equilibrium water content (EWC%) gives a more quantitative of the amount of 

water absorbed by the composites during swelling. EWC values are plotted together with 

tensile strength results in Figure  2.15B. While tensile strength increases with CEL 

concentration, EWC decreases with CEL concentration. Interestingly, the increase in 

tensile strength with CEL content is much larger than the decrease in EWC. This is 

particularly important as it allows the synthesis of composite materials with substantial 

tensile strength by adding only a small amount of CEL. Also, both the tensile strength 
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and the swelling properties of the [CEL+CS] composite materials can be ‘tuned’ to a 

desired level by carefully adjusting the concentration of CEL in the composites. 
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Table 2.6: Parameters of swelling kinetics of [CEL+CS] composite materials  

  Pseudo 2
nd

 order Swelling Power 

  

Equilibrium 

Swelling, 

Seq(%) 

Equilibrium 

water 

content, 

EWC(%) 

Initial swelling rate 

(dS/dt)0, gwater(ggel)
-

1
min

-1
 

Swelling rate 

constant, k, 

ggel(gwater)
-

1
min

-1
 r

2
 

Swelling 

exponent, 

n 

Swelling 

constant, 

K r
2
 

100% 

CS 282.1 73.6 110.0 0.00138 0.9993 0.52 1.49 0.9939 

67% CS 229.9 69.9 141.5 0.00268 0.9999 0.61 1.33 0.9891 

50% CS 163.3 62.2 80.4 0.00302 0.9999 0.51 0.64 0.9636 

29% CS 141.3 58.5 82.9 0.00415 0.9999 0.71 0.77 0.9934 

0% CS 86.6 46.4 166.4 0.02219 0.9997 0.69 0.57 0.9943 
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Figure 2.15: A) Swelling kinetics of different [CEL+CS] composite films. B) Plot of 

tensile strength and equilibrium water content (EWC%) as a function of CEL 

concentration   
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However, the relative increase in the tensile strength is much larger than the decrease in 

the swelling.  For example, tensile strength of 100% CEL is 82.6 MPa which is 588% 

higher than that of 0% CEL (12.0 MPa) whereas its EWC% value of 46.4% is only 58% 

lower than the value for 73.6% for 0%CEL.  This finding is particularly important 

because it clearly indicates that mechanical strength of the composite can be substantially 

strengthened by adding CEL.  The composite still can retain its unique properties which 

are due solely to CS. 

2.5.3. Thermal properties 

Thermal gravimetric analysis (TGA) was also performed to determine thermal 

properties of the composite materials. The results are shown in Figure 2.16. Also shown 

as an insert in Figure 2.16 is % weight loss for composite films plotted as a function of 

CEL content in the films. Two main weight loss steps are seen in the Figure 2.16. The 

first weight loss occurs around 100
o
C and is predominant in low CEL containing films 

and is attributed to loss of moisture. The second major weight loss occurs from about 

250
o
C to 350

o
C. This weight loss is associated with chemical transformation leading to 

thermal degradation of the films. As illustrated by the insert in the figure, the onset of this 

degradation occurs at higher temperatures for high CEL containing films (greater than 

70% CEL) than for low CEL containing films. In fact the decomposition temperature is 

generally the same from 0% CEL to about 70% CEL, thereafter it increased with 

increasing CEL content. Figure 2.17 shows the derivative of the TGA weight loss curves, 

which shows in more detail the various steps in the degradation process. As illustrated in 

this figure, the 0% CEL (i.e., film with only CS) has only one major degradation step at 
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about 287
o
C. Hundred percent CEL also shows one major degradation step at about 

323
o
C. However, composite films have two major degradation steps. As illustrated for a 

50:50 CEL:CS composite film in the insert in Figure 2.17, the two steps in the 

degradation of this composite film seem to correspond to that of CS and CEL, 

respectively.  

 

 

Figure 2.16: Thermal gravimetric analysis (TGA) weight loss curves of different 

compositions of [CEL+CS] composite materials. Insert:  Plot of decomposition 

temperature as a function of CEL content in [CEL+CS] composite films  
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Figure 2.17: Thermal gravimetric analysis (TGA) derivative weight loss curves of 

different compositions of [CEL+CS] composite materials.   
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Figure 2.18: Differential Scanning Calorimetric (DSC) curves for different 

[CEL+CS] composite materials. Insert: Table showing the position of the 

exothermic and endothermic peaks.  

 

The Differential Scanning Calorimetric (DSC) for the various [CEL+CS] composite 

materials was measured and the results are shown in Figure 2.18. The table inserted in the 

top right corner of this figure shows the positions of the peaks on the temperature scale. 

There are two major peaks in the [CEL+CS] composite films. An endothermic peak that 

is around 165
0
C and an exothermic peak around 300

0
C.  Except for the 50% CEL and the 

100% CEL film which have endothermic peaks at about 172
0
C, the rest of the composites 
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have their exothermic peak around 165
0
C. Another trend observed from the DSC 

measurement is the emergency of a small second endothermic peak for compositions 

containing 71% CEL and above. The position of this small peak increases with CEL 

composition from about 240
0
C in 71% CEL to about 267

0
C in 100 % CEL films. The 

position of the exothermic peak seems to be depended upon the amount of CEL in the 

composite films. The peak seems to shift from about 300
0
C for a 0 % CEL (100%CS) to 

about 337
0
C for the 100% CEL composite film. This exothermic peak seems to be 

associated with the thermal degradation of the composite materials. The fact that this 

degradation is occurring at progressively higher temperatures is another indication of the 

improved stability that CEL brings to the composite materials. 

The results presented above clearly indicate that a novel, green and recyclable and 

economically viable method has been developed that can be used to prepare all natural 

biocompatible polysaccharide composite materials. Addition of CEL into CS was found 

to substantially improve the mechanical strengths, swelling properties and thermal 

stability of the resultant [CEL+CS] composite materials. This is a major step in 

overcoming one of the major drawbacks of current CS materials, i.e., its structural 

weakness. Of particular importance is the fact that this has been achieved not by using 

man-made polymers but by adding CEL, another natural polymer of unlimited 

abundance. This is expected to preserve most the unique properties of CS, especially its 

biocompatibility. 
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2.6. Preparation of cyclodextrin-doped polysaccharide composite films 

As was described earlier, cyclodextrins (CDs) can confer some extra unique 

properties such as size and shape selectivity, which CEL and CS do not have by 

themselves. To investigate this concept further, CEL and CS composite materials doped 

with hexakis(2,3,6-tri-O-acetyl)-α-cyclodextrin (α-TCD), heptakis(2,3,6-tri-O-acetyl)-β-

cyclodextrin (β-TCD) and octakis(2,3,6-tri-O-acetyl)-γ-cyclodextrin (γ-TCD) were 

prepared and their performance in several applications were investigated and compared to 

non-doped composites. The 2,3,6-tri-O-acetyl- derivatives were used instead of the native 

CDs because these are insoluble in water and will not be lost (or washed off) during the 

washing step. Initially, native (underivatized) β-CD was used to dope CEL and CS films. 

However, attempts to positively confirm the presence of the β-CD in the regenerated 

films did not yield any positive results. Figures 2.19 and 2.20 below show the results of 

an attempt to positively confirm the presence of β-CD in CS and CEL composites by FT-

IR spectroscopy. To increase the sensitivity, the films in this figure were measured in the 

transmission mode and the β-CD powder (included for reference) was mixed with KBr 

and pressed into a pellet. Chemically, CEL and β-CD are the same, but are structurally 

very different, with CEL being linear and CD being cyclic. Structurally, CS is similar to 

CEL but it contains some NH2 (and some residual –NH-CO(CH3)) groups. The similarity 

of the chemical composition of CDs to both CEL and CS makes it extremely hard to 

positively confirm the presence of CD in either CEL or CS. However, as illustrated in 

Figure 2.19 and 2.20, the cyclic nature of CDs seem to be enough to cause some subtle 

shifts and differences in the FT-IR spectra of these compounds. Figure 2.19A is a 
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comparison of the FT-IR spectra of a 100%CS film, [CS+β-CD] film and β-CD powder. 

A closer view of the region 650 cm
-1

 to 1900 cm
-1

 is shown in Figure 2.19B. The vertical 

lines in this figure shows the indicator FT-IR bands and the very subtle shifts in some 

bands, whose presence in a β-CD doped film would have confirmed the successful 

regeneration of composite films doped with native β-CD. Unfortunately, as illustrated in 

Figure 2.19B, the FT-IR spectrum of the [CS+β-CD] film is identical to that of the 

100%CS film with none of the bands that could be attributed to the β-CD. Similar results 

(shown in Figure 2.20) were obtained for CEL where none of the β-CD indicator bands 

are present in the FT-IR spectrum of [CEL+β-CD] composite film. These results led us to 

believe that β-CD was not successfully incorporated into the composite materials, but 

was somehow being lost at one of the stages during the preparation procedure. The 

solubility of native β-CD is reported to be about 1.85g/100mL.
98

 While this is a relatively 

small solubility, the large amounts of water used during the washing step and the constant 

replenishment of this washing water with fresh de-ionized water could be enough to 

cause the β-CD to leak out of the composite materials during this washing step. Also 

some interactions may occur between the [BMIm
+
Cl

-
] and β-CD which can aid the 

solubility of this CD in water. As a result, a decision was made to use the 2,3,6-tri-O-

acetyl- derivatives, which are completely insoluble in water , instead of the native CDs. 
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Figure 2.19: FT-IR spectra of 100CS film compared to that of a CS film doped with 

native β-CD.  
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Figure 2.20: FT-IR spectra of 100CEL film compared to that of a CEL film doped 

with native β-CD.  
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[CEL+α-TCD, β-TCD and γ-TCD] and [CS+α-TCD, β-TCD and γ-TCD]   

composite materials were synthesized using a procedure similar to the one described 

above for the synthesis of  CEL, CS and [CEL+CS]
99–101

. Essentially, as shown in 

Scheme 2.3, [BMIm
+
 Cl

-
], was again used again as the solvent to dissolve CEL, CS, α-

TCD, β-TCD and γ-TCD.  Dissolution was performed at 100C and under Ar or N2 

atmosphere. Similarly, all polysaccharides were added in portions of approximately 1% 

w/w of the ionic liquid. Succeeding portions were only added after the previous addition 

had completely dissolved until the desired concentration has been reached. For these 

composite films, the components were dissolved one after the other, with CEL (or CS) 

being dissolved first and TCDs last.  

 

 

Scheme 2.3: Procedure used to prepare cyclodextrin-doped polysaccharide 

composites 
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2.7. Characterization of CEL/CS +α-TCD, β-TCD and γ-TCD composites 

  As described above in the preparation procedure, [BMIm
+
 Cl

-
] was used as the 

sole solvent to dissolve CEL, CS and the different TCDs to prepare the [CEL+-TCD] and 

[CS+-TCD] composite materials.  Similar to the procedure described above for 

[CEL+CS] composites, [BMIm
+
 Cl

-
] was also removed from the Gel Films of the TCD 

composites by washing the films with water.  Again, the washing water was repeatedly 

replaced with fresh water until it was confirmed by UV measurement that there no ionic 

liquid remaining in the washing solution. The IL used can also be recovered by 

distillation of the washings, and dried under vacuum at 70
o
C overnight before it can be 

reused.  

2.7.1. XRD spectroscopy of the TCD-doped composites 

The dissolution of CS and TCD in [BMIm
+
Cl

-
] ionic liquid and their regeneration in the 

composite materials was followed and studied by X-ray diffraction. Figure 2.21 shows 

the XRD spectra of the different [CS+TCD] composites at various stages of preparation. 

The XRD spectra of the α-, β- and γ-TCD (powders) suggest that these starting materials 

have different structural morphologies. While the XRD spectrum of the β-TCD powder is 

consistent with a highly crystalline structure, the XRD spectra of α-TCD and γ-TCD 

suggest that these two CDs have more of an amorphous structure.
102

 The XRD pattern of 

the gel films was measured to determine the dissolution of the CS and TCDs in the 

[BMIm
+
Cl

-
] ionic liquid. As illustrated in Figure 2.21, the XRD spectra of the gel films 

do not exhibit any of the CS or TCD diffraction peaks. Similar to what was observed for 
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the CEL and CS composites, the XRD spectra of the gel films is just identical to the XRD 

pattern of [BMIm
+
Cl

-
] ionic liquid. The non-appearance of the X ray diffraction peaks of 

CS and TCDs and the similarity between the spectrum of the gel films to that of the 

[BMIm
+
Cl

-
] ionic liquid clearly indicates that [BMIm

+
Cl

-
] was able to disrupt the inter- 

and intramolecular hydrogen bonds of CS and was able to completely dissolve both CS 

and the TCDs. The XRD spectra of the regenerated composite films (DRY films)  are 

also shown in Figure 2.21 (light blue spectra). Interestingly, the XRD spectra of the 50:50 

CS: α-TCD and 50:50 CS:β-TCD regenerated composite films exhibit some X ray 

diffraction peaks which can be attributed to the α-TCD and β-TCD respectively. 

However, the XRD spectrum of the 50:50 CS: γ-TCD regenerated composite film does 

not show a similar pattern, with the spectrum being very similar to the 100%CS film. 

Taken together, these results suggest that while the γ-TCD is regenerated in an 

amorphous form, the α-TCD and the β-TCD seem to be regenerated in a more crystalline 

form. The amorphous or crystalline nature of these TCDs in the composite materials 

could affect the way they interact with other compounds and can be a critical factor in 

their technological applications. Figure 2.22 shows the XRD spectra of the composites at 

different stages of preparation for CS:β-TCD (Figure 2.22A) and CS:γ-TCD (Figure 

2.22B) composites. What is interesting about this figure is the ability of the XRD 

technique in revealing the morphological changes that the samples undergo during the 

various stages of preparation. Since the XRD spectra of the GEL film, WET film and 

DRY film are all different, it can be taken to mean that the samples have different 

morphological structure at these various stages of preparation. 
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Figure 2.21: X-ray powder diffraction spectra of [BMIm+Cl-], CS powder, α-TCD, 

β-TCD and γ-TCD  powder, and regenerated [CS+α-TCD] (A), [CS+β-TCD] (B) 

and [CS+γ-TCD] (C) composite materials at different stages of synthesis  
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Figure 2.22: X-ray powder diffraction spectra of [CS+β-TCD] (A) and [CS+γ-TCD] 

(B) composite materials at different stages of synthesis  
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2.7.2. Near-IR and FT-IR spectroscopy of the TCD-doped composites 

FT-IR and NIR spectroscopy was used to characterize the chemical composition 

of the regenerated TCD composite films. The FT-IR spectra of the [CS+TCD] composite 

materials are shown in Figure 2.23. As illustrated, the FT-IR spectrum of a 100%CS 

dried film display characteristic CS bands for O-H stretching vibrations as already 

described in the previous section for [CEL+CS] composites. These include characteristic 

bands for O-H stretch (3400 cm
-1

), N-H stretch (3250 cm
-1

 – 3350 cm
-1

), C-H stretch 

(2850 cm
-1

 – 2900 cm
-1

), C=O, amide 1 (1650 cm
-1

), N-H deformation (1595 cm
-1

), CH3 

deformation (1380 cm
-1

), C-N stretch, amide III (1319 cm
-1

) and –O-, ether bending (890 

cm
-1

 – 1150 cm
-1

).
65–67

 The FT-IR spectra of α-, β- and γ-TCD are also shown in the same 

figure. As expected, the three spectra are very similar to each other since the three 

compounds only differ in the number of glucose moieties making up the ring. The 

dominant absorption bands are those due to C=O stretching vibration at ~ 1746 cm
-1

, the 

medium and weak bands at ~ 1372 cm
-1

 and 1434 cm
-1

 can be attributed to the symmetric 

and asymmetric deformation of CH3 group of acetates, C – O asymmetric stretching 

vibration of acetates at ~ 1216 cm
-1

 and the asymmetric stretching vibration of the O – 

CH2 – C groups for acetates.
103,104

 It is clear from the FT-IR spectra of the [CS+TCD] 

composites that these spectra have FT-IR bands that can be attributed to both CS and 

TCDs as described above. 

Results from NIR measurements further confirm the successful incorporation of 

the TCDs into CS (Figure 2.24). The 100% CS film exhibits NIR absorption bands  
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Figure 2.23: FT-IR spectra of [CS+TCD] composite materials. A) α-TCD, B) β-TCD 

and C) γ-TCD  
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Figure 2.24: NIR spectra of [CS+TCD] composite materials. A) α-TCD, B) β-TCD 

and C) γ-TCD  
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Figure 2.25: A) FT-IR and B) FT-NIR spectra of [CEL+β-TCD] composite materials   

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4508501250165020502450285032503650

A
b

so
rb

an
ce

 

wavenumber, cm-1 

100%CEL

Triacetyl Beta CD (βTCD) powder 

50:50 CEL:β-TCD 

A 

0.0

0.1

0.1

0.2

0.2

0.3

0.3

1000 1200 1400 1600 1800 2000 2200 2400

A
b

so
rb

an
ce

 

wavelength, nm 

Triacetyl Beta CD (βTCD) powder 

100%CEL

50:50 CEL:β-TCD 

B 



89 

 

89 

 

around 1492 nm, 1938 nm and 2104 nm which can be assigned to the overtone and 

combination transitions of the –OH group
52,67,101,104

. In addition, CS also exhibits bands 

~1548 nm and 2028 nm, which is due to the –NH groups.
68

.  

Similar to FT-IR, the NIR spectra of α-, β- and γ-TCD are also very similar. The 

major bands for these are around 1415 nm (first overtone of methyl -CH group), 1680 nm 

and 1720 nm (first overtone of -CH group), 1908 nm and 2135 nm (-C=O, acetyl 

group)
105

.  As shown in Figure 2.24, the NIR spectra of [CS+α-TCD], [CS+β-TCD] and 

[CS+γ-TCD] composite materials contain bands due to both CS and TCDs.  

Similarly, FT-IR and NIR results also confirm that α-TCD, β-TCD and γ-TCD 

were successfully incorporated into CEL.  For clarity, FT-IR and NIR spectra of only β-

TCD powder, 50:50 CEL:β-TCD together with 100% CEL film are shown in Figure 

2.25A and 2.25B, respectively.  100% CEL film  (green curves in Figure 2.14A) exhibits 

three pronounced bands at around 3400 cm
-1

, 2850 – 2900 cm
-1

 and 890 – 1150 cm
-1

.  

These bands can be tentatively assigned to stretching vibrations of O-H, C-H and -O- 

group, respectively
65

.  Similar to CS composite materials, FT-IR and NIR spectra of 

[CEL+β-TCD] composite material also exhibit bands due to both TCD and CEL. 

2.7.3. Analysis of [CEL+γ-TCD] and [CS+γ-TCD] composites by 
13

C NMR 

 The successful incorporation of the TCDs into the CEL and CS and the chemical 

composition of the regenerated films was also verified by 
13

C CP MAS NMR 

spectroscopy. The results are shown in Figure 2.26 below. As explained earlier, the TCDs 

used in the composite materials are the –O-acetyl derivatives. This means the resultant 



90 

 

90 

 

composite materials should have distinct 
13

C signals arising from the methyl carbon and 

the carbonyl carbon. As expected, the 
13

C NMR spectrum of the γ-TCD starting material 

(deep blue spectrum) in Figure 2.18 has two intense bands around 20.7ppm and about 

170.7ppm corresponding to the methyl and carbonyl carbons respectively.
106

 As 

illustrated in Figure 2.26, these same band are clearly visible in the 
13

C NMR spectra of 

the [CEL+γ-TCD] and [CS+γ-TCD]  composite materials confirming the successful 

incorporation and regeneration of TCD-doped CEL and CS composite materials.  

 

 

Figure 2.26: 
13

C CP MAS NMR spectra of regenerated [CEL+γ-TCD], [CS+γ-TCD] 

composite films, γ-TCD powder, CS powder and Microcrystalline CEL.  
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2.7.4. Morphological analysis of cyclodextrin-doped composites 

Chemical and morphological structure of the resultant TCD-doped composites was 

measured using SEM. The SEM images of the various compositions prepared are shown 

in Figure 2.15A and Figure 2.15B. The SEM images for 100%CEL and 100%CS are the 

same as the ones already described previously for [CEL+CS] composites. They are 

however included in this figure for easy of comparison. Figure 2.15B shows that the SEM 

images of the CS:β-TCD has a much smoother structure, both surface and cross section, 

that its CS:γ-TCD counterpart. The SEM images of CEL:β-TCD and CEL:γ-TCD are 

also showing some clear differences. β-TCD is relatively small and rigid while γ-TCD 

because of its larger size is more flexible. Such differences in the structures of the starting 

materials could have to the observed morphological differences in the corresponding 

TCD composites. It should however be noted that the SEM images of all the composites 

look homogenous. This may suggest that despite the differences in microstructure for the 

β-TCD and γ-TCD, both these TCDs are homogeneously distributed in the CEL and CS 

polymer network.  
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                   SEM Surface                                                         SEM Cross section 

 

 

 

 

 

 

 

 

 

 

  

         

         

Figure 2.27A: SEM images of surface (left) and cross section (left) of regenerated 

CEL film (top),  regenerated CS film (middle) and 50:50 [CEL:γ-TCD] composite 

film (bottom)  

CEL:γ-TCD 

100%CS 

100%CEL 
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                SEM Surface                                                         SEM Cross section 

   

   

   

Figure 2.27B. SEM images of surface (left) and cross section (left) of  

regenerated 50:50 [CEL:β-TCD] film (top),  regenerated 50:50 [CS:γ-TCD] film  

(middle) and 50:50 [CS:β-TCD] composite film (bottom) 

 

CEL:β-TCD 

CS:β-TCD 

CS:γ-TCD 
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2.7.5. Mechanical properties of cyclodextrin-doped composites 

As alluded to earlier, CDs have poor mechanical properties such that there is often 

a need to graft them to some man-made polymers for them to be used in many practical 

apllications.
2,4,22,107

 It is hoped that the CEL and CS used in our composite materials will 

help to improve the mechanical and rheological properties of the TCDs and therefore 

eliminate the need for complicated grafting reactions. The use of natural polymers (CEL 

and CS) will also enable us to maintain the biocompatibility and biodegradability of our 

composite materials. [CEL+TCDs] and [CS+TCDs] composite films with different CEL 

and CS concentrations were prepared and tensile strengths measurements were made in 

order to determine if the addition of CEL or CS would provide the composite material 

adequate mechanical strength for practical applications.  Results obtained, shown in 

Table 2.7 and Figure 2.28, clearly indicate that adding either CEL or CS into the 

composite materials substantially increase their tensile strength. For example, 

 

Table 2.7: Mechanical strength of [CS+γ-TCD] and [CEL+γ-TCD] composite 

materials 

 

% TCD 

Tensile strength, MPa 

[CS + γ-TCD] [CEL + γ-TCD] 

0 14±3 52±3 

10 11±4 35±13 

25 6±2 26±12 

40 2±0 18±9 

50 1±0 13±5 
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Figure 2.28: Plot of tensile strength as a function of γ-TCD concentration in 

[CEL+γTCD] composites (red curve) and [CS+γTCD] composites (blue curve)  

 

up to 2X (or 6X) increase in tensile strength can be achieved by increasing concentration 

of CEL in [CEL+γ-TCD] composite (or CS in [CS+γTCD]) from 50% to 75%.  Also, the 

tensile strength of the [CEL+γ-TCDs] composite is relatively higher than the 

corresponding [CS+γ-TCDs] composite.  This is hardly surprising considering the fact 

that the mechanical and rheological strength of CEL is relatively higher than that of CS.  

It is thus, evidently clear that the [CEL+TCD] and [CS+TCD] composite materials have 

overcome the major hurdle currently imposed on utilization of the materials, namely they 

have the required mechanical strength for practical applications.     
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The results presented above clearly indicate that novel all polysaccharide 

composite materials containing CEL, CS and α-TCD, β-TCD and γ-TCD were 

successfully synthesized by use of [BMIm
+
Cl

-
], an ionic liquid, as the sole solvent.  Since 

at least 88% of the [BMIm
+
Cl

-
] used was recovered for reuse, the method is green and 

recyclable. The successful dissolution of the polysaccharides in [BMIm
+
Cl

-
] and their 

regeneration from water and subsequent drying into usable films was followed by XRD 

spectroscopy. The chemical nature and composition of these composite materials were 

characterized by FT-IR, NIR and 13C CP MAS NMR spectroscopy. Tensile strength and 

rheological measurements confirmed that adding CEL to CS can indeed lead to 

improvement in these properties for CS. Also, CD-doped composites with improved 

mechanical properties were successfully prepared without the need for complicated 

grafting reactions or the use of man-made polymers, which would have otherwise 

lessened the biocompatibility of our materials. It is expected that these composites may 

also retain properties of CS and TCDs, namely, they would be good adsorbents for 

pollutants, still show some antimicrobial activity, and have controlled drug releasing 

properties (from CS) and selectively form inclusion complexes with substrates of 

different sizes and shapes (from TCDs). The investigation of these properties for the 

various applications and our findings are discussed in the next 2 chapters.   
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Chapter 3. ADSORPTION OF MICROCYSTIN, CHLOROPHENOLS 

AND BISPHENOL A FROM AQUEOUS SOLUTION USING 

POLYSACCHARIDE COMPOSITE MATERIALS 

 

 

3.1. Background 

3.1.1. Microcystin 

Microcystins (MCs) are hepatotoxic cyclic peptides. They are an important group of 

cyanobacterial toxins in water.
1–7

They are produced by strains of Microcystis, 

Oscillatoria, Anabaena and Nostoc species.
8
 They are involved in poisoning of animals, 

and also involved in human health problems.
8
 Microcystins are extremely stable and 

resistant to chemical hydrolysis and oxidation at near neutral pH. In natural waters and in 

the dark, microcystins may persist for months or years.
8
 Cyclic heptapeptide microcystins 

consist of 5 invariant amino acids and 2 variable amino acids. The invariant amino acids 

are in the D-configuration and the variable amino acids are in the L-configuration.
9–12

 

The MCs are very soluble in water and consist of over 80 reported variants; however, 

four MCs, MC-LR, MC-RR, MC-LA, and MC-YR are of special concern to the 

Environmental Protection Agency (EPA) and are on EPA Contaminant Candidate List 

III.
13

 The letters in the name represent the amino acid residues for each particular MC, 

i.e. L – Lysine, R – Arginine, A – Alanine and Y – Tyrosine. The structures of some of 

the common MCs are shown in Scheme 3.1. The World Health Organization (WHO) has 

set a provisional drinking water guideline of 1 µg/L for MC-LR.
14

  The toxicity of MCs is 

due to their strong binding and inhibition of protein phosphatases. MCs are also known to 
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Scheme 3.1: Structures of some common microcystins   
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promote the growth of tumors and have a genotoxic effect as well as strong 

mutagenicity
1–7

. 

Conventional water treatment practices such as pre-chlorination, 

agulation/sedimentation, filtration and post-chlorination have been shown to be 

ineffective in removing microcystins.
15,16

 Even though activated carbon has been shown 

to be effective in removing MCs, powdered activated carbon was shown to remove MCs 

at doses higher than those normally used at water treatment plants.
16,17

 

  There is still therefore a particular need to develop low cost adsorbents that can 

effectively remove MCs from our water sources. It has been reported that CS, when 

modified with fly ash or immobilized on clay, can adsorb and remove algae such as 

Chlorella pyrenoidosa or Microcystis aeruginosa in water
18–22

. Such reports have 

prompted us to initiate this study, which seeks to investigate the possible application of 

our polysaccharide composite materials to the removal of MCs. The polysaccharide 

composite materials, whose preparation and characterization was described in detail in 

Chapter 2, will be used in this study using MC-LR as a model compound.  

3.1.2. Chlorophenols 

Endocrine disrupting chemicals are naturally occurring or man-made chemicals in 

the environment, which interfere with the normal function of the hormonal systems of 

humans and animals. Polychlorinated phenols and bisphenol A are an example of such 

chemicals. Chlorophenols and their salts are broad spectrum biocides that have been used 
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in agriculture, industry and public health since the 1920s.
23

 These include in the wood 

industry, in the production of pesticides and as additives to inhibit microbial growth in a 

wide array of products, such as adhesives, oils, textiles, and pharmaceutical products. 

Chlorophenols have been designated as priority pollutants in the list of hazardous 

wastes.
23

 They are toxic, resistant to microbial attack, and they accumulate in the food 

chain.
24

 Misuse, accidental spillage, and improper disposal have resulted in extensive 

groundwater pollution.
25

 Even though the groundwater chlorophenol levels have gone 

down in recent years due to strict controls, chlorophenols have been shown to be lethal to 

a wide variety of organisms at the level of 1mgL
-1

.
26

  

The sorption of pollutants from aqueous solution using adsorbents plays an 

important role in water pollution control. In recent years, there has been considerable 

interest in the use of low cost sorbents. A number of reports have described microbial 

degradation of chlorophenols into non-toxic products, in both natural water bodies and in 

simulated systems.
27,28

 However, such kind of bioremediation of low level chlorophenol 

polluted water bodies requires a long enrichment period and is susceptible to inhibition 

by relatively low concentrations of pentachlorophenol.
29

 In addition, the ground water 

characteristics such as low temperature, coexistence of different chlorophenols,
30

 and 

varied pH values and salinity,
31

 may further decrease the microbial viability and 

effectiveness in treatment units. Development of methods and materials for the efficient 

removal of chlorophenols from aqueous sources is therefore particularly important. The 

ability of our polysaccharide composite materials to effectively remove chlorophenols 

will be studied. The performance of the materials will be evaluated in terms of both the 

kinetic and thermodynamic isotherm sorption parameters. 
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3.1.3. Bisphenol A 

 Bisphenol A (BPA), structure shown in Scheme 3.2, is a well-known endocrine 

disrupting chemical with estrogenic activity.
32

 BPA has been widely used as the 

monomeric substance for the production of polycarbonate and epoxy-phenolic resins, and 

as the stabilizer or antioxidant for many types of plastics.
33

 As a result, BPA is inevitably 

released in to the aquatic environment through various routes. The potential adverse 

effects of BPA on human health and reproductive biology include breast and prostate 

cancer, sperm count reduction, abnormal urethra development in males, early sexual 

maturity in females, neurobehavioral problems, prevalence of obesity, type 2 diabetes and 

immunodeficiency.
32

 A 2010 report from the United States Food and Drug 

Administration (FDA) raised further concerns regarding exposure of fetuses, infants and 

young children.
34

 As a result, the removal of BPA from aqueous solutions is important in 

controlling some of the health hazards posed by this compound. The structures of the 

chlorophenols and BPA used in this study are illustrated in Scheme 3.2. 

As described earlier in Chapter 2, cellulose (CEL) and chitosan (CS) are two of 

the most abundant biorenewable biopolymers on the earth.  We saw that in these 

polysaccharides, an extensive network of intra- and inter-hydrogen bonds enables them to 

adopt an ordered structure.  While such structure is responsible for CEL to have superior 

mechanical strength and CS to exhibit  
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Scheme 3.2: Structures of the chlorophenols and BPA analytes  

remarkable properties it also makes them insoluble in most solvents
35–42

.  This is rather 

unfortunate because with their superior mechanical strength and unique properties, CEL 

and CS would be excellent supporting polymer for cyclodextrin (CD).  It is expected that 

the  [CEL and/or CS+TCD] composite materials prepared in Chapter 2 would have 

properties that are a combination of those of all of its components.  That is, they may 

have superior mechanical strength  (from CEL), can stop bleeding, heal wound, kill 

bacteria, deliver drugs (from CS) and selectively form inclusion complexes with a wide 

variety of compounds of different types, sizes and shapes (from CDs).  The method 

described in Chapter 2 exploited the advantages of a simple ionic liquid, butyl 

methylimidazolium chloride (BMIm
+
Cl

-
), a green solvent

43–49
, to develop an innovative, 

simple, pollution-free method to dissolve not only CS but also other polysaccharides 

including CEL  without using any acid or base, thereby avoiding any possible chemical 

or physical changes, and used only naturally occurring biopolymers such as CEL as 
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support materials to strengthen structure and expand utilities while keeping the 

biodegradable, biocompatible and anti-infective and drug carrier properties of CS-based 

materials intact.  The incorporation of TCDs into the composite materials is expected to 

impart some selectivity to the resultant composites. Our efforts to investigate the 

application of these polysaccharide composite materials for the removal of microcystin, 

chlorophenols and bisphenol A from aqueous solution are described below.  

3.2. Adsorption kinetics and thermodynamic isotherms 

Experiments were designed to determine if our polysaccharide composite 

materials can adsorb MC, chlorophenols and BPA.  The mechanism of the adsorption 

processes in terms of rate constants and adsorbed amounts at equilibrium were also 

evaluated.  Efforts were also made to evaluate the optimum composite material which 

gives the highest adsorption capacity. These tasks were accomplished by fitting kinetic 

data to both pseudo-first order and pseudo-second order models in order to determine 

appropriate reaction order for the adsorption processes based on R
2
 and MSC (Model 

Selection Criteria, eqn [3.11]) values
50–52

. The effect of adding CDs to the polysaccharide 

composite materials on their adsorption selectivity was also investigated.  

3.2.1. Adsorption kinetics 

The pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic 

models were used to evaluate the adsorption kinetics of different chlorophenols, BPA and 

MC and to quantify the extent of uptake in the adsorption process 
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Pseudo-first-order kinetic model 

The linear form of Lagergren's pseudo-first-order equation is given as
53,54

: 

  tkqqq ee t 1lnln     [3.1] 

where qt and qe (mg g
−1

) are the amount of pollutant adsorbed at time t and at equilibrium 

respectively and k1 (min
−1

) is the pseudo first order rate constant calculated from the 

slope of the linear plot of ln (qe − qt) versus t. 

 Pseudo-second-order kinetic model 

According to the Ho model
50

, the rate of pseudo second order reaction may be 

dependent on the amount of species on the surface of the sorbent and the amount of 

species sorbed at equilibrium. The equilibrium sorption capacity, qe, is dependent on 

factors such as temperature, initial concentration and the nature of solute-sorbent 

interactions. The linear expression for the Ho model can be represented as follows
50

:
 

 

  
 

 

     
 
 

  
                       [   ] 

where k2 (g/mg.min) is the pseudo-second order rate constant of sorption, qe (mg/g) is the 

amount of analyte adsorbed at equilibrium, qt (mg/g) is the amount of analyte adsorbed at 

any time t.   

If the initial adsorption rate h is 

2

2 eqkh    [3.3] 

Then Eq 3.2 can be rearranged as   
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t
qhq

t

et

11
   [3.4] 

A linear plot can be obtained by plotting t/qt against t.  qe and h, can obtained from the 

slope and intercept; k2 can be calculated from h and qe according to Eq 3.3. 

Intra-particle diffusion model 

The intra-particle diffusion equation is given as follows
55,56

:
 

Itkq it  5.0   [3.5] 

where ki (mg g
-1

 min
-0.5

) is the intra-particle diffusion rate constant and I (mg g
−1

) is a 

constant that gives the information regarding the thickness of the boundary layer
55,56

. 

According to this model, if the plot of qt versus t
0.5

 gives a straight line, then the 

adsorption process is controlled by intra-particle diffusion, while, if the data exhibit 

multi-linear plots, then two or more steps influence the adsorption process. 

3.2.2. Thermodynamic sorption isotherms 

Different isotherm models have been developed for describing thermodynamic 

sorption equilibrium. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) 

isotherms were used in the present study. 

Langmuir isotherm. 

The Langmuir sorption isotherm describes that the uptake occurs on a 

homogeneous surface by monolayer sorption without interaction between adsorbed 

molecules and is commonly expressed as
57

:
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m
qKq

C

q

C

Lm

e

e

e 1
   [3.6] 

where qe (mg g
−1

) and Ce (mg L
−1

) are the solid phase concentration and the liquid phase 

concentration of adsorbate at equilibrium respectively, qm (mg g
−1

) is the maximum 

adsorption capacity, and KL (L mg
−1

) is the adsorption equilibrium constant. The 

constants KL and qm can be determined from the slope and intercept of the plot between 

Ce/qe and Ce. 

 Freundlich isotherm.   

The Freundlich isotherm is applicable to non-ideal adsorption on heterogeneous 

surfaces and the linear form of the isotherm can be represented as
58

:
 

eFe C
n

Kq log
1

loglog 







   [3.7] 

where qe (mg g
-1

) is the equilibrium concentration on adsorbent, Ce (mg L
-1

) is the 

equilibrium concentration in solution, KF (mg g
−1

) (L g
−1

)
1/n

 is the Freundlich constant 

related to sorption capacity and n is the heterogeneity factor. KF and 1/n are calculated 

from the intercept and slope of the straight line of the plot log qe versus log Ce. 

Dubinin–Radushkevich (D–R) isotherm.   

The Dubinin–Radushkevich (D–R) isotherm model can be represented by the 

following equation
59,60

:
 

2lnln  me qq   [3.8] 
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









eC
RT

1
1ln   [3.9] 

where qm  (mg g
-1

) is the maximum adsorption capacity, β (mmol
2 
J

−2
) is a coefficient 

related to the mean free energy of adsorption, ε (J mmol
−1

) is the Polanyi potential (the 

energy that is required to remove the molecule from that location to a point outside the 

attractive force field of the solid surface), R is the gas constant (8.314 J mol
−1

 K
−1

), T is 

the temperature (K) and Ce (mg L
−1

) is the equilibrium concentration. The D–R constants 

qm and β can be determined from the intercept and slope of the plot between ln qe and ε
2
. 

3.3. Materials and Methods 

 The polysaccharide composite materials used in this study are those that were 

synthesized and characterized according to the procedures described in Chapter 2. 

3.3.1. Chemicals 

Microcystin-LR (MC-LR) (Enzo Life Sciences), 2-chlorophenol (2 Cl-Ph), 3 

chlorophenol (3 Cl-Ph), 4-chlorophenol (4 Cl-Ph), 3,4 dichlorophenol (3,4 di Cl-Ph), 

2,4,5 trichlorophenol (2,4,5 tri Cl-Ph) and bisphenol A (BPA) (Sigma Aldrich, 

Milwaukee, WI) were all used as received.  

3.3.2. Procedure used to measure kinetics of adsorption 

 

 



115 

 

115 

 

 

Figure 3.1: Photograph of experimental setup 

The adsorption of MC, chlorophenols and BPA was followed by measuring the 

change in the UV absorption of solutions of these pollutants in the presents of our 

composite materials. Three matching cuvettes were used for all adsorption measurements, 

one for adsorption of the pollutant by the composite and the other two as the blanks.  

Photograph of the experimental setup with the three cells is shown in Figure 3.1.   The 

samples (about 0.02g of dry film of the composite material) was washed thoroughly in 

water prior to the adsorption experiments to further insure that [BMIm
+
Cl

-
] was 

completely removed because absorption of any residual IL may interfere with that of MC, 

Spin Bar

Composite Film

Bottom PTFE Mesh

Blank Cell 2 Blank Cell 1 Sample Cell

Top PTFE Mesh

Figure 3.1.    Photograph of experimental setup for kinetic measurements
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chlorophenols or BPA.  To wash the samples, the weighed composite materials were 

placed in a thin cell fabricated from PTFE whose windows were covered by two PTFE 

meshes. The meshes ensured free circulation of water through the material during the 

washing process. The PTFE mold containing the samples was placed in a 2L beaker 

which was filled with de-ionized water and was stirred at room temperature for 24 hours. 

During this time, absorbance of washing water was monitored at 214 and 290 nm to 

determine the presence of any residual [BMIm
+
 Cl

-
].  The water in the beaker was 

replaced with fresh de-ionized water every 4 hours.  Figure 3.2 below shows typical UV 

absorption spectra obtained during the course of the 24 hr washing period The UV 

spectrum of [BMIm
+
Cl

-
] (pink spectrum)is also included for reference. The results show 

that the absorption bands at 214nm and 290nm progressively decreases and after 24 hrs 

of continuous washing, the two bands were no longer present in the spectrum of the 

washing solutions. This means that any residual [BMIm
+
Cl

-
] has now been reduced to 

level which will not interfere with the UV absorption measurements of the pollutants to 

be studied. 
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Figure 3.2: UV absorption spectra of the washing solutions showing the removal of 

residual ionic liquid from the composite materials over a 24 hr washing period.  

 

 

After 24 hours, the composite material was taken out of the water and placed into 

the sample cuvette (cell on the right in the experimental setup photograph shown in 

Figure 3.1). Both sample and the two blank cells were stirred using a small magnetic spin 

bar during the measurement.  In order to prevent damage to the sample by the magnetic 

spin bar and to maximize the circulation of the solution during measurement, the samples 

inside the cuvette were sandwiched between two PTFE meshes. Specifically, a piece of 

PTFE mesh was placed at the bottom of the spectrophotometric cell. The washed film 

sample was laid flat on top of the PTFE mesh. Another piece of PTFE mesh was placed 

on top of the sample and finally the small magnetic spin bar was placed on top of the 

second mesh.  The blank cell 1, shown in the center of the photograph in Figure 3.1, had 

the same contents as the sample cell (i.e., PTFE mesh, composite film, PTFT mesh and 

magnetic spin bar) but without the pollutant. This blank cell 1 had de-ionized water 
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instead of the solution of the pollutant. Exactly 2.70 mL of 1.55 x 10
-4

M aqueous solution 

of the MC-LR, chlorophenols or BPA was added to both sample and blank cell 2.  This 

blank cell 2 (shown on the left of Figure 3.1) had the same contents as the sample cell but 

without the composite material. This blank 2 was used to correct for any possible 

adsorption of the pollutants onto the cell contents (PTFE meshes, and magnetic spin bar) 

other than the composite material.  Any residual ionic liquid that may leak from the 

composites into the cell is corrected for using blank absorbance data from blank cell 1. 

Measurements were carried out on a Perkin Elmer Lambda 35 UV/VIS spectrometer set 

to the appropriate wavelength for each pollutant, i.e., 274 nm for 2- and 3-chlorophenol, 

280nm for 4-chlorophenol, 282 nm and 289 nm for 3,4-dichloro- and 2,4,5-

trichlorophenol, respectively, and 276 nm for bisphenol A. Microcystin was measured at 

238 nm.  

 

 

 

Figure 3.3: Absorbance data for the two blank cells and one sample (50%CS) for 

the adsorption of MC (Blank cell 1 has all sample contents with de-ionized water 

instead of pollutant solution and Blank cell2 contains all sample cell contents but no 

film).  
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Measurements were taken at specific time intervals and the cell was returned to a 

magnetic stirrer for continuous stirring.  An example of the absorbance changes that are 

observed for the two blank cells and one of the sample composites is shown in Figure 3.3. 

Blank cell 1 contains de-ionized water instead of the pollutant solution, and as expected, 

the absorbance of this cell starts off very low and only increases marginally during the 

course of the experiment. Blank cell 2 contains pollutant solution with all the other 

components of the sample cell except for the composite material. As shown in Figure 3.3, 

the absorbance of this cell remains relatively the same over the course of the experiment. 

This indicates other components of the sample cell (meshes and stir bar) have negligible 

contribution to the absorbance changes that are observed in the sample. The absorbance 

of a typical sample cell (50%CS in Figure 3.3) decreases rapidly before leveling off. 

Taking into consideration the results of the blank cell 1 and blank cell 2, the observed 

absorbance change for the sample cell shown in Figure 3.3 suggest that the composite 

material in the sample cell is adsorbing some pollutant from the solution reducing its 

concentration, resulting in the observed decrease in absorbance.  

3.3.3. Procedure used to measure equilibrium sorption isotherms 

Batch sorption experiments were carried out in 50mL stoppered vials containing 

10 mL of the pollutant solution of known initial concentration. A weighed amount (0.1g) 

of the composite material was added to the solution. The samples were agitated at 250 

rpm in a shaking water bath at 25
0
C for 72 hours. The residual amount of pollutant in 

each flask was analyzed by UV/Vis spectrophotometry. The amount of pollutant 
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adsorbed onto the composite material was calculated using the following mass balance 

equation: 

 
m

VCC
q ei

e




   [3.10] 

where qe (mg/g) is the equilibrium sorption capacity, Ci and Ce (mg/L) are the initial and 

final pollutant concentrations respectively. V (L) is the volume of the solution and m (g) 

is the weight of the composite film material. 

3.4. Kinetics of adsorption of Microcystin 

 

Figure 3.4: UV absorption spectrum of 1.55x10-4M MC-LR solution  
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As described in the experimental section, kinetics of adsorption of MC by 

composite materials was determined by measuring the decrease in absorbance as a 

function of time in a solution containing a composite film. Figure 3.5 show the UV 

absorption spectrum of MC-LR. The spectrum has an absorption band with a maximum 

at 238 nm. Consequently, 238 nm was used as the analytical wavelength for MC. Figure 

3.5 show some typical absorbance changes observed for MC with different [CEL+CS] 

composite materials. As expected, the absorbance of the MC solution decreases rapidly in 

the first 100 minutes and begins to slow down before eventually leveling off after about 

400 minutes. This shows that there is an initial rapid sorption of the MC by the composite 

materials before an equilibrium is established between the sorbed MC and the MC still in 

solution. An illustration of the adsorption process and the possible equilibrium that can be 

established is shown in Figure 3.6. The results in Figure 3.5 show that there is a 

correlation between the magnitude of the absorbance change and the amount of CS in the 

composite material during the adsorption of MC by [CEL+CS] composite materials. As 

illustrated, the absorbance of a 0%CS (100% CEL) sample remains virtually the same 

throughout the entire experiment. This is a clear indication that 100%CEL composite 

material is not capable of adsorbing MC. Consequently, the magnitude of the absorbance 

change for the [CEL+CS] composite increase with a decrease in the amount of CEL in 

the respective composite. As described earlier in Chapter 2, it is CS that has good 

pollutant adsorption capability and CEL was added to the composites to improve their 

rheological and mechanical properties. 
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Figure 3.5: Typical absorbance changes obtained for different [CEL+CS] composite 

materials for the adsorption of MC.  
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Figure 3.6: A cartoon representing the adsorption and equilibrium processes.  

From the measured absorbances, the amount of MC that has been adsorbed on to 

the composite material at time t (i.e., qt) can then be calculated.  Shown in Figure 3.7 are 

the plots of qt as a function of time for six different [CEL+CS] materials with different 

compositions ranging from 0% to 67% CS. These are the same samples whose 

absorbance changes are plotted in Figure 3.5. As already explained earlier, increasing CS 

concentration in the composite material led to increase in amount of microcystin 

adsorbed at equilibrium. The plot for the 0%CS (100%CEL) shows that this particular 

film does not adsorb MC.  Detailed information on adsorption kinetics can be obtained by 

fitting the data to both pseudo-first order (eqn 3.1) and pseudo-second order (eqn 3.2) 

model. Typical linearized plots for pseudo-1
st
 order (equation 3.1) and pseudo-2

nd
 order 

(equation 3.2) for the [CEL+CS] composite materials are shown in Figure 3.8. 

 

Pollutant molecule

Composite film with adsorbed pollutant
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Figure 3.7: Plot of qt as a function of time for the adsorption of MC-LR by 

[CEL+CS] composite materials with different composition ranging from 0%CS to 

67% CS 

  

Table 3.1: Kinetic adsorption parameters for the sorption of MC-LR by [CEL+CS] 

composite materials  
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Material 

  Pseudo-First Order Pseudo-Second Order 

% 
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% 
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qe 

(Exptal) 

qe k1   Qe k2. 104   

(mg/g) (mg/g) (min-1) R2 MSC (mg/g) (g/mg. min) R2 MSC 

67 33 75 94±8 0.020±0.001 0.9714 2.84 96±3 1.6±0.1 0.9894 4.18 

50 50 71 72±1 0.02±0.01 0.9794 3.86 79±2 5±3 0.9953 5.46 

40 60 68 52±1 0.010±0.007 0.937 2.72 73±9 3±1 0.9965 5.66 

29 71 64 44±1 0.01±0.02 0.9419 2.73 71±2 5±2 0.9987 6.52 

20 80 32 31±5 0.007±0.001 0.7254 1.98 42±4 1.9±0.3 0.9932 5.00 
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The results of these linear plots indicate a general goodness of fit to both models but the 

pseudo 2
nd

 order model seem to have better linear plots for most composites with the 

exception of the 20%CS sample. Listed in Table 3.1 are the pseudo 1
st
 order and pseudo 

2
nd

 order fitting parameter results obtained for [CEL+CS] composite materials with 

different composition ranging from 20% to 67% of CS.    The correlation coefficient (R
2
) 

for the pseudo 1
st
 order ranges from about 0.7254 to about 0.9794 while that for the 

pseudo 2
nd

 order was found to vary from 0.9894 to about 0.9987. Another figure of merit 

which is used to evaluate how well a given process can be described by a given model is 

the Model Selection Criteria (MSC). MSC is calculated by the following equation: 

      {
∑   (           ̅        )

  
   

∑    
   (                     )

 }  
  

 
              [3.11] 

Where w represents the weighting, n is the number of points and p is the number of 

parameters. Similar to the R
2
 value, the higher the MSC, the better is the fit. The MSC 

results in Table 3.1 follows a similar trend to the R
2
 values where the values for the 

pseudo 2
nd

 order model are higher than their corresponding 1
st
 order counterparts. It is 

evident from the linear plots as well as from the fact that R
2
 and MSC values in all cases 

are higher for pseudo-2
nd

 order than for pseudo-1
st
 order indicating that the adsorption of 

MC by [CEL+CS] composite materials is better described by the pseudo 2
nd

 order model.  

Results obtained clearly show that CS composite materials can adsorb MC very well.  

Material without CS (i.e., 0%CS or 100% CEL) does not adsorb MC at all (yellow curve 

in Figure 3.7), and that up to 96 mg of MC can be adsorbed per g of the composite by the 

67% CS composite.  The adsorptivity was found to be dependent on the concentration of 

CS in the composite, namely, increasing concentration of CS leads to an increase in 
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amount of adsorbed MC. For example, increase of CS concentration from 20% to 67% 

led to 128% increase in the amount of adsorbed MC.  This is expected because only CS is 

responsible for the adsorption of MC. The role of CEL in the composite is, as was 

explained in Chapter 2, to strengthen mechanical and rheological properties of the 

material.  Again there is a concern that CS had two opposite effects on the properties of 

the composites: namely, it is responsible for the adsorption of MC but it also undergoes 

swelling in water which leads to weakening structure of the composites.  The swelling 

properties of the [CEL+CS] composite materials were measured and the results were 

discussed in Section 2.5.2.  As was observed from the swelling results, increase in CS 

concentration from 20% to 67% led to about 29.2% increase in % EWC. However, as 

shown in Table 3.1, a similar increase in CS concentration led to about 128% in the 

amount of MC adsorbed. This suggests that [CEL+CS] composites with relatively good  

adsorption capacities can be prepared while maintaining low swelling ratio.  

As described in the introduction, currently there are several absorbents available 

for removal of MC.  The results in Table 3.2 shows some of the materials which are 

commonly used for the removal of MC. Our [CEL+CS] composite materials reported 

here are shown to be better adsorbents for MC. The best performing material, 

Fe3O4@SiO2 magnetic microspheres,
61

 was reported to adsorb 20mg of MC per gram of 

adsorbent. This amount is 4.8 times less than the 96 mg of MC removed by our 67% CS 

composite material. 
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Figure 3.8: Typical linearized plots for (A) pseudo-first order and (B) pseudo-second 

order models for [CEL+CS] composite films containing 67%CS and 50%CS 
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Table 3.2: Comparison of the adsorption efficiency of MC-LR by commonly used materials  

Adsorber mg of adsorbed MC-LR /g adsorber Reference 

Iron Oxide Nanoparticles 0.15 
62

 

Fe3O4@copper silicate nanotube 

microspheres 
0.5 

63
 

Powdered activated carbon (PAC) 0.75 
6
 

Natural clay particles 4.6 
64

 

Carbon nanotubes 5.9 
65

 

PAC/UF (membrane ultrafiltration) 9.9 
66

 

Activated carbon fibers (ACF) 17 
67

 

Fe3O4@SiO2 magnetic microspheres 20 
61

 

[CEL+CS] composite 96 This work 
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Figure 3.9: Plot of qt of adsorption of MC-LR as a function of time by [CS+CEL] 

composite materials illustrating the reversibility of the adsorption process  

 

It was shown in Chapter 2 that the method used to synthesize these [CEL+CS] 

composite materials is recyclable with ionic liquid recovery efficiency of at least 88%. 

Experiments were also carried out to determine whether these [CEL+CS] composites, 

synthesized by a recyclable method, can also be recycled. That is, will it possible to 

desorb the adsorbed MC and reuse them for a similar (or same) application and whether 

their adsorption efficiency changes on the second adsorption. Three composite materials 

were used in this experiment, i.e. 29%CS, 50%CS and 67%CS. Shown in Figure 3.9 is 

plot of qt as a function of time during the adsorption and desorption process for these 

composite materials. The first portion of this plot is very similar to the adsorption process 

described above for these materials. Adsorption equilibrium was reached after about 400 
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minutes, but the measurement was continued up to 24 hrs just to make sure that 

adsorption equilibrium was properly established for all samples. After 24 hrs, the 

composite materials were removed from the MC solutions, quickly blotted with a dry 

filter paper to remove an excess MC solution from the films. The spectrophotometric 

cells, the meshes and the magnetic spin bar were thoroughly washed and rinsed with de-

ionized water. The [CEL+CS] composite materials, which now have MC adsorbed on 

them were placed back into the clean spectrophotometric cells in an arrangement similar 

to the one used for the adsorption process. Exactly 2.7mL of de-ionized water were 

pipetted into the cells and the absorbance of the solution was monitored just like in the 

adsorption process. This time, the MC previously adsorbed in the composite underwent 

desorption from the composites into the water (in both adsorption and desorption process, 

qt values, which is the amount of MC in the composites at time t, were plotted. These 

values were calculated from measured concentrations of MC in solution).  As illustrated 

in Figure 3.9, the MC that was previously adsorbed on to 29% CS, 50% CS and 67% CS 

was quantitatively removed from the composite materials. It was interesting to note that 

almost 50% of the adsorbed MC was desorbed in about 120 minutes only. Even though 

the complete quantitative removal of the MC eventually took longer, this could be speed 

up by adding fresh de-ionized water in to the cells, which was not done in this 

experiment.  These results clearly indicate that [CEL+CS] composites are not only very 

efficient adsorbents for MC but also that the adsorbed MC can be quantitatively desorbed 

to enable the composites to be reused. 

 Another concern that needed investigation was the efficiency of the materials if 

they are to be reused. Measurements were therefore performed to determine if there are 
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any changes in adsorption efficiency of the composite materials when they are reused for 

the second time, i.e., composite materials in which previously adsorbed MC are desorbed. 

For this experiment, two composite films were used, a 50% CS composite material and a 

67% composite material. MC was adsorbed onto these two composite materials using the 

same procedure described above for the adsorption of MC by the [CEL+CS] composite 

materials and the absorbance change of the MC solution was also monitored as described 

above. After this first adsorption process, the composite materials were taken out of the 

spectrophotometric cells and placed in small vials. About 50 mL of de-ionized water was 

added to each vial and they were agitated on a mechanical shaker at room temperature for 

72 hrs to wash off the adsorbed MC. In this particular experiment, the absorbance of the 

solutions were not monitored during this desorption process. 72 hrs was chosen because 

that was the time required to quantitatively desorb MC from the composites when the 

desorption process was monitored as described in the previous section. In this current 

experiment, a larger volume of de-ionized water was used (50mL compared to 2.7mL) 

and the washing water replaced with fresh de-ionized water every 24 hrs. This was done 

to ensure complete desorption of previously adsorbed MC. After 72 hrs, the composite 

materials were taken out of water and then used for a second adsorption process. The 

second adsorption process was performed in exactly the same way as the first one and as 

all the other adsorption experiments described above. The results obtained for the 1
st
 and 

2
nd

 adsorption process are plotted together in Figure 3.10 for the two composite materials.  

Shown in Figure 3.10 are plots of qt of adsorption of microcystin as a function of time by 

67%CS (A) and 50% CS (B).  The blue curves are for the 1
st
 adsorption process (i.e., by 

freshly prepared composites) and red curves are for 2
nd

 adsorption process (i.e., 
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adsorption by composites that were regenerated by desorbing MC previously adsorbed).  

As illustrated, for both composites, adsorption efficiency of the composite materials 

remains just about the same after they were regenerated by desorbing MC previously 

adsorbed. This indicates that the polysaccharide composite materials developed here can 

indeed be reused and they retain their adsorption efficiency for MC. 
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Figure 3.10: Plot of qt of adsorption of microcystin as a function of time by 

[CS+CEL] composite films containing 67%CS (A)  and 50% CS (B):  Blue curves 

are for 1st adsorption (i.e., by freshly prepared films) and red curves are for 2nd 

adsorption  
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cyanobacteria. This excellent adsorption capability is principally due to the CS in the 

composites.  Additionally, the [CS+CEL] composite material reported here were also 

found to be much better adsorbents for MC than all other adsorbents currently available.  

For example, one gram of the best reported adsorbent, Fe3O4@SiO2 magnetic 

microspheres, can only adsorb 20 mg of MC  whereas 1 g of the [67%CS+23%CEL] 

material can remove up to 96 mg of MC (i.e., 4.8X more than the magnetic 

microspheres).  More importantly, not only that the MC adsorbed on the composite 

materials can be quantitatively desorbed to enable the [CS+CEL] composite material to 

be reused, but that adsorption efficiency of the reused composites remain the same as 

those used for the first time.    
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3.4.1. Adsorption of endocrine disruptors (2-, 3-, and 4-chlorophenol, 3,4-

dichlorophenol, 2,4,5-trichlorophenol and bisphenol A) 

 

3.4.2. Adsorption kinetics 

It was observed above that the [CEL+CS] polysaccharide composite materials can 

effectively adsorb MC-LR, a deadly toxin. The application of these composite materials 

was therefore widened to include other pollutants such as chlorophenols and bisphenol A. 

Experiments were designed to determine if the CEL, CS, [CEL+TCD] and [CS+TCD] 

polysaccharide composite materials can also be used to effectively adsorb chlorophenols 

and bisphenol A. The rate constants, equilibrium sorption capacities and mechanisms of 

the adsorption process were evaluated by fitting kinetic and thermodynamic isotherm 

data to a variety of models. The presence of the TCDs in the composite materials was 

evaluated for their ability to impart size and shape selectivity to the polysaccharide 

composites.  Appropriate reaction order for the adsorption processes was determined 

based on the correlation coefficients (R
2
) and the Model Selection Criteria (MSC) values.  

Rate constants and qe values were then obtained from the kinetic results
53–55

. Subsequent 

fitting of data to intra-particle diffusion model together with results of adsorption 

isotherm measurements yielded additional insight into the adsorption process. 
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Table 3.3: Analytical wavelengths used for the endocrine disruptors  

Analyte Analytical λ 

2 ClPh 274 

3 ClPh 274 

4 ClPh 280 

3,4 di-ClPh 282 

2,4,5 tri-ClPh 289 

BPA 276 

 

 

 

Figure 3.11: UV absorption spectra on the endocrine disruptors  

The UV absorption spectra of the various endocrine disruptors are shown in 

Figure 3.11. The respective concentrations of the solutions are given in square brackets. 

The analytical wavelengths used for each analyte are shown in Table 3.3 Kinetic 
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adsorption experiments for 2-chlorophenol (2-ClPh), 3-chlorophenol (3-ClPh), 4-

chlorophenol (4-ClPh), 3,4-dichlorophenol (3,4-di-ClPh), 2,4,5-trichlorophenol (2,4,5-tri-

ClPh) and bisphenol A (BPA) by the various composites studied were measured using the 

same procedures and experimental setup described above for the adsorption of 

microcystin. Plots of qt vs. t for the various analytes onto 4 different composites are 

shown in Figure 3.12A and 3.12B. The general trend observed is that with the exception 

of 2,4,5-tri-ClPh, there is an initial rapid adsorption of these analytes within the first 40 

minutes followed adsorption equilibrium which is achieved after about 100 minutes for 

most composites. For 2,4,5-tri-ClPh, the CEL containing composites (100%CEL and 

50%CEL:50%β-TCD) seem to follow a similar adsorption profile to all the other 

analytes. However, the adsorption of this analyte on to CS containing composites 

(100%CS and 50%CS:50%β-TCD) seem to exhibit a very different adsorption profile. 

The adsorption of this analyte on to these CS containing composites show a gradual 

increase in the amount adsorbed throughout, reaching equilibrium only after about 300 

minutes. In addition, the equilibrium adsorption capacity of 2,4,5-tri-ClPh for most 

composites is almost an order of a magnitude higher than the equilibrium adsorption 

capacity for all the other analytes onto the corresponding CS containing composites.  The 

pseudo first order and pseudo second order kinetic models were used to obtain the rate 

constants and equilibrium adsorption capacity of 100%CEL, 100%CS, 50:50 CS:β-TCD 

and 50:50 CEL:β-TCD composite materials for the different chlorophenols and bisphenol 

A analytes.  The linear plots for the two models for the adsorption of the different 

analytes by the 4 different composite materials are shown in Figure 3.13A (for pseudo 1
st
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Figure 3.12A: Plots of qt as a function of time for the adsorption of 2-chlorophenol, 

3-chlorophenol and 4-chlorophenol by CEL, CS, [CEL+β-TCD] and [CS+β-TCD] 

regenerated composite materials 
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Figure 3.12B: Plots of qt as a function of time for the adsorption of 3,4- 

dichlorophenol, 2,4,5-trichlorophenol and BPA by CEL, CS, [CEL+β-TCD] and  

[CS+β-TCD] regenerated composite materials 
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Figure 3.13A: Linearized pseudo 1st order model plots for different analytes  
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Figure 3.13B: Linearized pseudo 2
nd

 order model plots for different analytes 
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Table 3.4: Kinetic parameters for adsorption of Chlorophenols and BPA onto CEL film  

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) k ( min
-1

) R
2
 MSC qe(M/g) k (M

-1
 min

-1
) R

2
 MSC 

2-ClPh 4.11E-04 1.45E-04 0.029 0.6469 0.041 3.93E-04 702.3 0.9871 3.95 

3-ClPh 3.19E-04 4.95E-04 0.044 0.9747 2.678 3.20E-04 293.8 0.9822 3.72 

4-ClPh 5.79E-04 1.69E-04 0.055 0.9559 1.788 5.81E-04 2054.2 0.9999 9.13 

3,4 Di-ClPh 7.98E-04 9.44E-04 0.142 0.9665 2.397 8.19E-04 315.6 0.9996 7.47 

2,4,5 Tri-ClPh 1.87E-03 1.01E-03 0.011 0.9714 3.287 1.95E-03 25.4 0.9967 5.32 

BPA 7.27E-04 4.62E-04 0.014 0.9715 3.156 8.05E-04 78.9 0.9911 4.39 

 

 

 

 

 

Table 3.5: Kinetic parameters for adsorption of Chlorophenols and BPA onto CS film  

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) k ( min
-1

) R
2
 MSC qe(M/g) k (M

-1
 min

-1
) R

2
 MSC 

2-ClPh 1.30E-03 1.48E-03 0.089 0.9865 3.305 1.32E-03 385.9 0.9998 8.02 

3-ClPh 1.62E-03 3.25E-03 0.050 0.9745 2.669 1.68E-03 133.5 0.9960 5.21 

4-ClPh 1.64E-03 6.49E-04 0.051 0.9849 2.861 1.66E-03 214.6 0.9996 7.52 

3,4 Di-ClPh 2.23E-03 7.23E-04 0.048 0.8769 0.761 2.27E-03 169.8 0.9999 8.72 

2,4,5 Tri-ClPh 1.05E-02 9.90E-03 0.016 0.9843 3.917 1.20E-02 2.1 0.9991 6.60 

BPA 1.74E-03 5.88E-04 0.040 0.8947 1.680 1.80E-03 168.3 0.9995 7.24 
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Table 3.6: Kinetic parameters for adsorption of Chlorophenols and BPA onto 50:50 CEL:β-TCD film  

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) k ( min
-1

) R
2
 MSC qe(M/g) k (M

-1
 min

-1
) R

2
 MSC 

2-ClPh 1.24E-03 8.70E-04 0.041 0.8960 1.597 1.30E-03 100.2 0.9975 5.57 

3-ClPh 9.26E-04 5.55E-04 0.020 0.9410 2.259 9.87E-04 77.9 0.9964 5.33 

4-ClPh 1.33E-03 1.04E-03 0.028 0.8161 1.122 1.41E-03 58.0 0.9993 6.93 

3,4 Di-ClPh 8.71E-04 5.28E-04 0.047 0.9422 2.185 9.12E-04 160.6 0.9992 6.84 

2,4,5 Tri-ClPh 1.92E-03 1.31E-03 0.021 0.9867 3.957 2.00E-03 33.2 0.9995 7.26 

BPA 1.28E-03 7.93E-04 0.030 0.9291 2.147 1.34E-03 65.5 0.9987 6.28 

 

 

 

 

 

 

Table 3.7: Kinetic parameters for adsorption of Chlorophenols and BPA onto 50:50 CS:β-TCD film  

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) k ( min
-1

) R
2
 MSC qe(M/g) k (M

-1
 min

-1
) R

2
 MSC 

2-ClPh 7.30E-04 7.76E-04 0.058 0.9981 5.249 7.58E-04 268.4 0.9967 5.32 

3-ClPh 1.22E-03 1.96E-03 0.041 0.9936 4.046 1.25E-03 118.6 0.9934 4.71 

4-ClPh 9.64E-04 4.79E-03 0.119 0.9567 1.806 8.99E-04 313.1 0.9957 5.11 

3,4 Di-ClPh 1.87E-03 1.45E-03 0.055 0.9636 2.647 1.99E-03 57.1 0.9978 5.77 

2,4,5 Tri-ClPh 7.45E-03 7.92E-03 0.015 0.9548 2.861 8.84E-03 2.1 0.9996 7.41 

BPA 1.42E-03 1.12E-03 0.028 0.9782 3.381 1.59E-03 37.6 0.9994 7.11 
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order) and Figure 3.13B (for pseudo 2
nd

 order). The adsorption kinetic parameters 

obtained for both the pseudo 1
st
 order and pseudo 2

nd
 order for the adsorption of all 

analytes by 100%CEL, 100%CS, 50:50 CS:β-TCD and 50:50 CEL:β-TCD are listed in 

Tables 3.4 – 3.7. Similar to what was observed for the adsorption of microcystin by the 

[CEL+CS] composite materials, the R
2
 and the MSC values are higher for the pseudo 2

nd
 

order kinetic model than for the pseudo 1
st
 order kinetic model in all cases.  In addition, 

the theoretical and experimental equilibrium adsorption capacities, qe, obtained for the 

pseudo 1
st
 order kinetic model varied widely for the different analytes while the qe for the 

pseudo 2
nd

 order kinetic model is much closer to the experimental qe value. These results 

seem to suggest that the adsorption of various chlorophenols and BPA onto 100%CEL, 

100%CS, 50:50 CS:β-TCD and 50:50 CEL:β-TCD composite materials are best 

described by the pseudo-2
nd

 order kinetic model. The pseudo 2
nd

 order kinetic model 

assumes that the chemical reaction mechanisms, and the adsorption rate is controlled by 

chemical adsorption through sharing or exchange of electrons between the sorbent and 

adsorbate.
68

 Hence the good correlation of the adsorption process provided by the pseudo 

2
nd

 order kinetic model suggest that chemical sorption involving valence forces through 

sharing or exchange of electrons between the polysaccharide composite materials and 

analyte might be significant
53,54

. 

 Additional information on mechanism of adsorption can be gained by analyzing 

data using the intra-particle diffusion model. This model describes the behavior of 

intraparticle diffusion as the rate limiting  step of the adsorption process. According to 

this model, if the plot of equation 3.5 (qt versus t
1/2 

) gives a straight line, then the 
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adsorption process is controlled by intra-particle diffusion, while, if the data exhibit 

multi-linear regions, then two or more steps influence the adsorption process. 

Shown in Figure 3.14 are representative intra-particle pore diffusion plots (qt versus t
1/2

) 

for three of the analytes studied, 3,4-Di-Cl-Ph, 2,4,5-Tri-Cl-Ph and BPA adsorbed on 

100%CEL and 100%CS, 50:50 CEL: β-TCD and 50:50 CS: β-TCD composites.  As 

illustrated, plots of qt versus t
1/2 

are not linear throughout but rather non-linear and can be 

fitted to two linear segments for all analytes and composites with the exception that the 

data for 2,4,5-Tri-Cl-Ph on 50:50 CS: β-TCD may possibly be fitted to a single linear 

region with R
2
=0.9819. According to this model, the 1

st
 sharper linear region can be 

assigned to the instantaneous adsorption or external surface adsorption, while the second 

region may be due to gradual adsorption stage where intra-particle diffusion is the rate 

limiting step.
42,44

 The intraparticle diffusion rate constant (ki) and correlation coefficient 

(R
2
) for each region are listed in Table 3.8. The rate constants ki1 and ki2 are for the 1

st
 

and 2
nd

 linear regions respectively. It is clear from this table that there are two regions 

where the rate of adsorption is faster in the first region (ki1>ki2). These results seem to 

imply that the intra-particle diffusion is not the sole rate controlling step but other 

mechanisms may also contribute to the adsorption process. 
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Figure 3.14: Intraparticle diffusion plots for CEL, CS, [CEL+β-TCD] and [CS+β-

TCD] composite materials for 3 of the analytes 
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Table 3.8: Intraparticle diffusion parameters for the sorption of various analytes by the different composites.  

  100%CEL 100%CS 50:50 CEL:β-TCD 50:50 CS:β-TCD 

Analyte ki1 R2 ki2 R2 ki1 R2 ki2 R2 ki1 R2 ki2 R2 ki1 R2 ki2 R2 

2-ClPh 0.000080 0.9917     0.000238 0.9559 0.000041 0.8613 0.000171 0.6218 0.000055 0.6775 0.000121 0.9980 0.000043 0.6688 

3-ClPh 0.000080 0.9769 0.000011 0.6906 0.000249 0.9832 0.000115 0.7658 0.000143 0.9995 0.000028 0.3959 0.000170 0.9620 0.000100 0.9137 

4-ClPh 0.000115 1.0000 0.000014 0.6906 0.000311 1.0000 0.000053 0.8591 0.000204 1.0000 0.000067 0.9350 0.000158 0.9137 0.000056 0.6906 

3,4 Di-ClPh 0.000170 0.9979 0.000009 0.5152 0.000475 0.9774 0.000033 0.9902 0.000167 0.9856 0.000025 0.8995 0.000350 0.9570 0.000075 0.9350 

2,4,5 Tri-ClPh 0.000254 0.9971 0.000082 0.9636 0.000971 0.9465 0.000783 0.9853 0.000256 0.9870 0.000121 0.9652 0.000526 0.9526 0.000612 0.9748 

BPA 0.000112 0.9964 0.000026 0.9910 0.000380 0.9690 0.000031 0.9591 0.000208 0.9882 0.000054 0.8653 0.000204 0.9774 0.000092 0.9652 
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 Results obtained from the pseudo 2
nd

 order kinetic model in terms of equilibrium 

sorption capacity (qe) and rate constant (k2) were then used to evaluate sorption 

performance of the  composite materials. Table 3.9 lists qe and k2 values for the 5 

different chlorophenols and BPA on 100%CEL, 50:50 CEL:β-TCD, 100%CS and  50:50 

CS:β-TCD.  The data from Table 3.8 was then used to construct column graphs shown in 

Figure 3.15 for the different composite materials. Figure 3.16 is a combined plot for all 

the results obtained for all analytes by all composite materials. It is evident from Fig 

3.15A that, for all analytes, equilibrium sorption capacities for 100% CS material are 

much higher than those corresponding for 100%CEL material; e.g., for 2,4,5-Tri-Cl-Ph, 

the 100%CS material exhibits up to 6X more equilibrium sorption capacity than the 

100%CEL material.  Even for BPA, where the difference between CEL and CS materials 

are smallest, the CS material still has a qe value twice as much as that of the CEL 

material. This is as expected, because CEL is known to be inert whereas CS is reported to 

be an effective adsorbent for various pollutants.
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Table 3.9: Pseudo-second order kinetic adsorption parameters for 4 different composite materials 

  100%CEL 100%CS 50:50 CEL:β-TCD 50:50 CS:β-TCD 

Analyte qe(M/g) K (M-1 min-1) R2 MSC qe(M/g) k (M-1 min-1) R2 MSC qe(M/g) k (M-1 min-1) R2 MSC qe(M/g) K (M-1 min-1) R2 MSC 

2-ClPh 3.93E-04 702.3 0.9871 3.95 1.32E-03 385.9 0.9998 8.02 1.30E-03 100.2 0.9975 5.57 7.58E-04 268.4 0.9967 5.32 

3-ClPh 3.20E-04 293.8 0.9822 3.72 1.68E-03 133.5 0.9960 5.21 9.87E-04 77.9 0.9964 5.33 1.25E-03 118.6 0.9934 4.71 

4-ClPh 5.81E-04 2054.2 0.9999 9.13 1.66E-03 214.6 0.9996 7.52 1.41E-03 58.0 0.9993 6.93 8.99E-04 313.1 0.9957 5.11 

3,4 Di-ClPh 8.19E-04 315.6 0.9996 7.47 2.27E-03 169.8 0.9999 8.72 9.12E-04 160.6 0.9992 6.84 1.99E-03 57.1 0.9978 5.77 

2,4,5 Tri-ClPh 1.95E-03 25.4 0.9967 5.32 1.20E-02 2.1 0.9991 6.60 2.00E-03 33.2 0.9995 7.26 8.84E-03 2.1 0.9996 7.41 

BPA 8.05E-04 78.9 0.9911 4.39 1.80E-03 168.3 0.9995 7.24 1.34E-03 65.5 0.9987 6.28 1.59E-03 37.6 0.9994 7.11 
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Figure 3.15: Plot of equilibrium sorption capacity (qe) of all analytes by (A) 

100%CEL and 100%CS; (B) 100%CEL and 50:50 CEL:β-TCD;  (C) 100%CS and 

50:50 CEL:β-TCD  
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Figure 3.16: Comparison of equilibrium sorption capacity (qe) of all analytes by 

100%CEL, 100%CS; 50:50 CEL:β-TCD;  50:50 CEL:β-TCD; and 50:50 CS:γ-TCD 

composite materials  
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decrease with increasing CS concentration. This follows from the fact that as CS 

concentration is increased, it takes longer and longer to reach equilibrium as more 

pollutant is adsorbed. This clearly confirms that CS is principally responsible for the 

adsorption of the endocrine disruptors. As explained earlier on, CEL is added to improve 

on the poor rheological and mechanical properties of CS.   

 

 

Figure 3.17: Variation of qe and k for different [CEL+CS] composite materials for 

2,4,5 tri-chlorophenol 
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Addition of β-TCD to CEL and CS seem to have a different effect in the two 

polysaccharides. While there was no enhancement of qe values when β-TCD was added 

to CS (Figure 3.15C), results in Figure 3.15B shows some enhancement for 2-ClPH, 3-

ClPh, 4-ClPh and BPA when it was added to CEL. However, no enhancement in qe was 

observed for 3,4 di-ClPh and 2,4,5 tri-ClPh.  One of the most likely reasons for this 

observation is probably due to the bulky nature of the dichloro- and trichlorophenol 

compounds which sterically hinders their ability to form inclusion complexes with β-

TCD.  The results in Figure 3.15 seem to suggest that when added to CEL, β-TCD 

enhances the adsorption capacity of the smaller mono chlorophenols possibly by forming 

inclusion complexes. However, because of steric hindrance, no such enhancement was 

observed with the bulky di- and tri-chlorophenols. As explained earlier, CS is a good 

adsorbent on its own hence no enhancement was observed when β-TCD was added to 

CEL. 

To further investigate this theory, a larger γ-TCD was added to CS. The 

adsorption of the bulky 3,4 di-ClPh with this new 50:50 CS:γ-TCD composite was 

measured and the results are plotted together those of 100CEL, 100CS, 50:50 CEL:β-

TCD and 50:50 CS:β-TCD for the same analyte as the last group in Figure 3.16. The 

results show that because its small size, there was suppression of qe when β-TCD was 

added to CS. However, when the larger γ-TCD was added to CS, even the bulky 3,4 di-

ClPh was still able to be accommodated in the cavity of the γ-TCD resulting in enhanced 

qe.  

 Figure 3.18A shows the sorption profiles for 3,4-dichlorophenol by 50:50 CS:α-

TCD, 50:50 CS:β-TCD and 50:50 CS:γ-TCD.  As expected, because the cavities of α-
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TCD and β-TCD are too small to accommodate 3,4-dichlorophenol, this analyte can only 

be adsorbed onto 50:50 CS:α-TCD and 50:50 CS:β-TCD by surface adsorption which  

led to low and similar adsorption curve for both composite materials.  However, 50:50 

CS:γ-TCD with its larger γ-TCD, was able to form inclusion complexes with 3,4-

dichlorophenol, and hence its qe value is much larger. 

 CS composites with different concentration of α-, β- and γ-TCD were prepared 

and their qe values are plotted in Figure 3.18B as a function of TCD concentration. The 

pseudo 2
nd

 order qe values for these composites are shown in table 3.10. Again, since 

50:50 CS:α-TCD and 50:50 CS:β-TCD cannot form inclusion complexes with 3,4-

dichlorophenol, their qe values are independent of TCD concentration.  However, the qe 

values for 50:50 CS:γ-TCD are much higher than those of α- and β-TCD for the 

corresponding concentration and were found to be proportional to concentration of γ-

TCD.   
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Figure 3.18: Sorption profiles of 50:50 CS:α-TCD, 50:50 CS:β-TCD and 50:50 CS:γ-

TCD composite materials for 3,4-dichlorophenol (A); and  Equilibrium sorption 

capacity for 3,4-dichlorophenol by CS+TCD composite materials as a function of α-

TCD, β-TCD and γ-TCD concentration.  
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Table 3.10: Pseudo 2nd order equilibrium sorption capacities for different CS+TCD 

composites  

 

  Pseudo 2
nd

 order qe value (M/g) 

% TCD  CS+α-TCD CS+β-TCD  CS+γ-TCD 

0 0.0021 0.0021 0.0021 

25 0.0026 0.0019 0.0061 

40 0.0024 0.0014 0.0084 

50 0.0022 0.0014 0.0105 

 

As shown in Table 3.11, a similar trend to the size and shape selectivity that we 

observed in our composite materials brought about by the presence of the cyclodextrins 

has previously been observed in the binding constants in solution of some selected 

cyclodextrin complexes. It can be observed from this table that in most cases, when the 

larger water soluble β-CD was used in solution, the binding constant increased in 

comparison to that of the smaller α-CD, with the exception of 2,6-di-ClPh. There is a 

significant increase in the binding constant in solution for the larger β-CD with some 

bulky tri-substituted analytes such as 3,4-di-ClPh, 2,4-di-ClPh, (3,4-

dimethoxyphenethyl)-ammonium and 5-methylresorcinol compared to α-CD. 

Flurbiprofen is a drug whose structure includes a tri-substituted benzene ring and it can 

be observed from table 3.11 that the solution binding constant for this bulky analyte 

increase with the size of the cyclodextrin ring, with γ-CD having the largest binding 

constant. These binding constants clearly indicate that in solution, the stability of the 

cyclodextrin complex depends on the size of the analyte and also on the size of the cavity 

of the cyclodextrin being used. This brings about the size and shape selectivity in the 
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cyclodextrin-containing composites. It can also be noted from table 3.11 that for 

derivative cyclodextrins in solution, the stability of the complex may be different from 

that of the native cyclodextrin even for the same ring size. The solution binding constants 

of 2-ClPh, 3-ClPh and 4-ClPh were lower for the β-tri-O-methyl CD derivative compared 

to that of the native β-CD. The presence of some bulky groups, such as the –O-methyl 

groups, on the cyclodextrin molecule may bring about increased steric hindrance effects 

on the complex formation or can result in some conformational changes that may result in 

lower binding constants. This may explain why in our composites, selectivity was 

observed with the much larger γ-CD ring cavity and not with the β-CD. The presence of 

the bulky –O-acetyl groups on our cyclodextrin derivatives may have resulted in 

increased steric hindrance and conformational changes which may have made it difficult 

to get stable complex formation with the smaller ring cavity of the β-CD derivative. 

Dramatic conformational and structural changes that may occur on the cyclodextrin 

structure upon derivatization have recently been reported by Caira.
69

 It was reported that 

chemical substitution of each hydroxylic H atom on the β-CD molecule by a methyl 

group results in the elimination of intramolecular O-H…..O hydrogen bonding and 

consequent loss of macrocyclic ‘roundness’.
69

 Such structural changes were found to 

have dramatic consequences on the conformation of the CD which include (a) a 

significantly wider range of tilt angles adopted by the individual glucose rings as a result 

of repulsive interactions between sterically bulky –OCH3 substituents, (b) flipping of one 

of the seven glucose rings resulting in a partial ‘self-inclusion’ of one of its –OCH3 

substituents, (c) closing of the top of the cyclodextrin ring by a ‘lid’ created by the bulky 

methoxyl groups, and (d) elliptical distortion of the cavity.
69

 Such kind of distortions 
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would obviously affect the complex forming ability of the cyclodextrin and this may be 

the reason why the solution binding constant of the β-tri-O-methyl-CD in table 3.11 are 

less than those of the native β-CD for same analyte. It may be possible that similar 

distortions can occur with our –O-acetyl derivatives, resulting in lower adsorption 

capacity for the smaller β-tri-O-acetyl-CD than the larger γ-tri-O-acetyl-CD. In addition, 

I our study, the cyclodextrins were not in solution but in the polysaccharide matrix, in 

solid form. In the solid form, the CD structure may be more rigid than it is in solution and 

this rigidity may result in a smaller ring cavity for the γ-CD enabling it to form stable 

complexes with the guest molecules.  Caira et al. were able to get structural information 

on the solid form of the γ-tri-O-acetyl-CD.
70

 They observed that there was a pronounced 

self-inclusion of the acetyl groups which effectively divided the ring cavity into two 

‘voids’. These sub-cavities were found to be able to accommodate small molecules such 

as isopropanol.
70

 It may be possible that these sub-cavities in the γ-tri-O-acetyl-CD were 

responsible for the improved adsorption capacity that we observed with this CD in our 

composites. 

The free energy changes (∆G) of formation in solution, (table 3.12), are shown to 

be negative, which also indicates the favorability in the formation of cyclodextrin 

complexes with some of the analytes we used in our study. The bulky tri-substituted 

analytes ((2,5-dimethoxyphenethyl)-ammonium and (3,4-dimethoxyphenethyl)-

ammonium) also show a favorable free energy change of formation and as was observed 

with their binding constants, the ∆G values are shown to be more favorable for the larger 

β-CD than the α-CD. These results indicate that the analytes studied here can indeed form 

complexes with cyclodextrins and their stability is dependent on the size and shape of the 
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analyte relative to the size of the cyclodextrin ring, which ultimately brings about the size 

and shape selectivity in our composite materials.  

 

Table 3.11: Binding constants for the formation of several cyclodextrin complexes in 

solution 

 

 

Binding constant, K, M
-1

 

 

  α-CD β-CD 

β-tri-O-

methyl-CD γ-CD Reference 

2-ClPh 

 

200 85 

 

Hamai et al.
71

 

2-ClPh 35 110 

  

Leyva et al.
72

 

2-nitrophenol 5012    Rekharsky et al.
73

 

3-ClPh 

 

200 120 

 

Hamai et al.
71

 

3-ClPh 200 200 

  

Leyva et al.
72

 

3-nitrophenol 123 275   Rekharsky et al.
73

 

4-ClPh 274 427 

  

Leyva et al.
72

 

4-ClPh 251 251 100 

 

Hamai et al.
71

 

4-ClPh 324 371 

  

Politi et al.
74

 

4-ClPh 292 410 

  

Bertrand et al.
75

 

4-nitrophenol 219 1000   Rekharsky et al.
73

 

3,4-di-ClPh 320 1000 

  

Leyva et al.
72

 

2,4-di-ClPh 210 350   Leyva et al.
72

 

2,6-di-ClPh 100 50   Leyva et al.
72

 

(2,5-dimethoxyphenethyl)-

ammonium 35 39   Rekharsky et al.
73

 

(3,4-dimethoxyphenethyl)-

ammonium 8 32   Rekharsky et al.
73

 

Flurbiprofen 69 1950  3020 Rekharsky et al.
73

 

5-methylresorcinol 15 48  5 Rekharsky et al.
73

 

2,4,6-tri-ClPh 

   

1800 Narita et al.
76

 

BPA 

 

80000 

  

Chelli et al.
77

 

BPA 

 

35000 

  

Kitano et al.
78
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Table 3.12: Free energy of formation of some cyclodextrin complexes in solution 

 

∆G (kJ/mol) 

 

 

α-CD β-CD β-tri-O-methyl-CD 

   Experimental Experimental Calculated Experimental Reference 

2-ClPh 

 

-13.1 

 

-11.0 Rekharsky et al.
73

 

3-ClPh 

 

-13.1 

 

-11.9 Rekharsky et al
73

. 

3-ClPh 

 

-13.0 -13.1 

 

Katritsky et al.
79

 

4-ClPh -13.8 -13.7 

 

-11.4 Rekharsky et al
73

. 

4-ClPh 

 

-14.9 -13.1 

 

Katritsky et al.
79

 

BPA 

  

-13.3 

 

Chelli et al.
77

 

BPA 

 

-25.9 

  

Kitano et al.
78

 

(2,5-

dimethoxyphenethyl)-

ammonium -8.81 -9.08   Rekharsky et al.
73

 

(3,4-

dimethoxyphenethyl)-

ammonium -5.1 -8.58   Rekharsky et al.
73

 

 

3.4.3. Adsorption isotherms 

 To gain more insight into adsorption process, investigation was then carried out to 

determine adsorption isotherm for adsorption of 4-ClPh and 3,4-dichlorophenol by 

100%CS and 50:50 CS: γ-TCD composite materials. These two composites were selected 

because kinetic results presented above indicate that they adsorb 3,4-dichlorophenol by 

two distinct different mechanisms:  surface adsorption and inclusion complex formation.  

Experimental results were fitted to three different models,  Langmuir isotherm
57

, 

Freundlich isotherm
58

 and the Dubinin-Radushkevich (D-R)
 
isotherm

59,60
. Fitting of 

experimental values to these three models for the two composites are shown in Figure 

3.17A and 3.17B for 3,4-di-ClPh and 4-ClPh respectively.  The parameters obtained from 

fits to these models are listed in Table 3.10. As shown in Figure 3.17, experimental 
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values fit relatively well to theoretical models.  For example, for 3,4-di-ClPh, R
2
 values 

for fit of 100%CS and 50:50 CS:γ-TCD composites to the Langmuir, the Freundlich and 

the  D-R model were found to be 0.977 and 0.984, 0.970 and 0.949, and  0.972 and 0.912, 

respectively.  Relatively good agreement was also found for the saturation adsorption 

capacity qmax values obtained with the Langmuir model and the D-R model:  137.6 mg/g 

and 102.6 mg/g by 50:50 CS:γ-TCD, and 63.2 mg/g and 26.7 mg/g by 100% CS. The 

saturation adsorption capacity values for 4-ClPh were lower than those for 3,4-di-ClPh 

for the same composite materials. However, for both analytes, the qmax for 50:50 CS:γ-

TCD is larger than that of the 100%CS composite material. The good fit between the 

Langmuir isotherm model and the experimental data suggests that the sorption is 

monolayer, sorption of each molecule has equal activation energy and that the analyte-

analyte interaction is negligible
53

.  

Additional information on the adsorption process can be obtained from the Freundlich 

isotherm model, particularly from the constant n in Eq 3.7 because it is known to be a 

measure of the favorability of the sorption process
53

.  Because n was found to be 1.0 and 

1.4 for 100%CS and 50:50 CS:γ-TCD, respectively, the adsorption of 3,4 dichlorophenol 

by the latter seems to be more favorable than that of the former. Similarly, n was found to 

be 1.6 and 3.1 for the sorption of 4-ClPh by 100%CS and 50:50 CS:γ-TCD, respectively, 

also indicating the favorability of sorption by the γ-TCD doped CS material for this 

analyte. The constant β in the D-R isotherm model  (Eqn 3.8) is known to relate to the 

mean free energy E (KJ mol
-1

) of the sorption process per mole of the analyte which in  
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Figure 3.19A: Comparison between experimental and theoretical isotherm fits for 

the adsorption of 3,4 di Cl-Ph onto 100CS and 50:50 CS:γ-TCD composite materials  
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Figure 3.19B: Comparison between experimental and theoretical isotherm fits for  

the adsorption of 4-ClPh onto 100CS and 50:50 CS:γ-TCD composite materials 
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Table 3.13: Adsorption isotherm parameters for the adsorption of 3, 4 di Cl-Ph onto 50:50 CS:γ-TCD film  

4-ClPh 

  

Langmuir Isotherm 

parameters Freundlich isotherm parameters D-R isotherm parameters 

  

 

qmax(mg/g) 

 

KL(L/mg)  R
2
  n KF(mg/g)(L/mg)1/n  R

2
 

 

qmax(mg/g) 

β(mmol
2
J

-

2
) 

E 

(kJ/mol)  R
2
 

100% CS 45.6 0.0005 0.7635 1.6 0.20032 0.8967 23.1 0.0088 7.6 0.6609 

50:50 CS:γ-

TCD 63.8 0.0038 0.9852 3.1 5.009425 0.9211 48.0 0.0027 13.6 0.9551 

3, 4-di-ClPh 

  

Langmuir Isotherm 

parameters Freundlich isotherm parameters D-R isotherm parameters 

  

 

qmax(mg/g) 

 

KL(L/mg)  R
2
  n KF(mg/g)(L/mg)1/n  R

2
 

 

qmax(mg/g) 

β(mmol
2
J

-

2
) 

E 

(kJ/mol)  R
2
 

100% CS 63.2 0.0004 0.9765 1.0 0.015185 0.9697 26.7 0.0805 2.5 0.9720 

50:50 CS:γ-

TCD 137.6 0.0045 0.9840 1.4 1.34975 0.9487 102.6 0.0026 13.9 0.9120 
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turn can give information about the sorption mechanism. E can be calculated using the 

equation:
80

  

   
 

   
  [3.12] 

According to this model, the adsorption process is supposed to proceed via chemisorb if 

E is between 8 and 16 kJmol
-1

whereas for values less than 8 kJmol
-1

, the sorption process 

is often governed by physical nature.
80

 From the fitting to Dubinin–Radushkevich 

isotherm model, the mean free energy E values of the sorption process per mole of 3,4 di 

Cl-Ph were found to be 2.5 kJ/mol and 13.9 kJ/mol for 100%CS and 50:50 CS:γ-TCD, 

respectively. The mean free energy of adsorption of 4-ClPh were found to be 7.5kJ/mol 

and 13.6kJ/mol for 100%CS and 50:50 CS:γ-TCD, respectively. Therefore, the sorption 

of 4-ClPh and 3,4 di Cl-Ph onto 50:50 CS:γ-TCD composite film is chemisorption and is 

much stronger than onto 100%CS which is more by physisorption.  This finding is as 

expected because as described above, 50:50 CS:γ-TCD composite material can readily 

form inclusion complexes and adsorption by inclusion complex formation is relatively 

stronger and is chemisorb by nature compared to 100%CS which can adsorb the analyte 

only by surface adsorption. 

Taken together, adsorption isotherm results fully support kinetic results.  

Specifically, both results clearly indicate that 50:50 CS:γ-TCD with its ability to form 

inclusion complexes with 3,4-dichlorophenol, can strongly and effectively adsorb much 

more analyte compared to 100% CS which can only adsorb by surface adsorption which 

is relatively weaker and less effective.   
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Any structural and chemical changes that could have occurred upon adsorption of 

the analytes could help understand further the nature and mechanism of adsorption. 

Efforts were made to make various spectroscopic measurements on the films before and 

after exposure to the analytes. For this experiment, the films were cut into small pieces 

measuring about 2cm x 2cm. Different pieces of the different composite materials were 

placed in analyte solutions of about 1000mg/L and agitated on a mechanical shaker at 

room temperature for 24 hrs. The analyte concentrations for this experiment were 

deliberately made higher than the concentrations used for the kinetic experiments to try 

and maximize the amount of analyte that will be adsorbed. Another set of blank films 

were treated the same way but placed in de-ionized water instead of the pollutant 

solution. After 24 hrs, the films were taken out of the analyte solutions, blotted by a filter 

paper to remove excess analyte solution on the surface, and dried in the humidity 

controlled chamber. The UV, Near IR, FT-IR and XRD of the dry films were measured. 

UV and Near IR spectra of these films were measured in the transmission mode while 

FT-IR spectra were recorded by ATR and for XRD, the 2 cm x 2 cm films were held on a 

custom made sample holder and measured without any further treatment. The UV spectra 

of the [CS+β-TCD] and [CEL+β-TCD] composites could not be measured as no light was 

transmitting through the sample. The results obtained are shown in Figure 3.18. For 

reference, the UV and near IR spectra of the pollutants are also included. In this figure, 

the unused films (blue spectra) are the blank films placed in de-ionized water instead of 

the pollutant solution. The UV spectra of the composites after exposure to the analytes 

clearly shows the presence of the analytes on the films (Figure 3.18A and 3.18B).  

However, comparison of the near IR, FT-IR and XRD of the films before (unused films)  
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Figure 3.20A: UV absorption spectra comparing CEL films before and after 

exposure to different analytes. 
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Figure 3.20B: UV absorption spectra comparing CS films before and after exposure  

to different analytes. 
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Figure 3.20C: Near IR spectra comparing CS films before and after exposure to  

different analytes. 
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Figure 3.20D: Near IR spectra comparing [CS+β-TCD] films before and after  

exposure to different analytes. 
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Figure 3.20E: Near IR spectra comparing CEL films before and after exposure to  

different analytes. 

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL film

CEL film exposed to
2 ClPh

2 ClPh solution

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL film

CEL film exposed to 3
ClPh

3 ClPh solution

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL
film

CEL exposed to
4 ClPh

4 ClPh solution

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL film

CEL exposed to 3,4
Di-ClPh

3,4 Di-ClPh solution

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL film

CEL exposed to 2,4,5
Tri-ClPh

2,4,5 Tri-ClPh
solution

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1000 1500 2000 2500

A
b

so
rb

an
ce

 

wavelength, nm 

Unused CEL film

CEL exposed to BPA

BPA



172 

 

172 

 

  

  

  

Figure 3.20F: Near IR spectra comparing [CEL+β-TCD] films before and after  

exposure to different analytes. 
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Figure 3.20G: FT-IR spectra comparing CS films before and after exposure to  

different analytes. 
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Figure 3.20H: FT-IR spectra comparing [CS+β-TCD] films before and after  

exposure to different analytes. 

-0.005

0.015

0.035

0.055

0.075

0.095

0.115

0.135

0.155

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused 
[CS+β-TCD] 
film 

[CS+β-TCD] 
film exposed 
to 2 ClPh 

-0.005

0.015

0.035

0.055

0.075

0.095

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused [CS+β-
TCD] film 

[CS+β-TCD] 
film exposed 
to 3 ClPh 

-0.005

0.015

0.035

0.055

0.075

0.095

0.115

0.135

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused [CS+β-
TCD] film 

[CS+β-TCD] film 
exposed to 4 
ClPh 

-0.005

0.015

0.035

0.055

0.075

0.095

0.115

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused 
[CS+β-TCD] 
film 
[CS+β-TCD] 
film exposed 
to 3,4 Di-ClPh 

-0.005

0.015

0.035

0.055

0.075

0.095

0.115

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused [CS+β-
TCD] film 

[CS+β-TCD] 
film exposed 
to 2,4,5 Tri-
ClPh 

-0.005

0.015

0.035

0.055

0.075

0.095

0.115

65011501650

A
b

so
rb

an
ce

 

wavenumber(cm-1) 

Unused [CS+β-
TCD] film 

[CS+β-TCD] 
film exposed 
to BPA 



175 

 

175 

 

   

  

  

Figure 3.20I: FT-IR spectra comparing CEL films before and after exposure to 

 different analytes. 
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Figure 3.20J:  FT-IR spectra comparing [CEL+β-TCD] films before and after  

exposure to different analytes. 
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Figure 3.20K: XRD spectra comparing CS films before and after exposure to  

different analytes. 
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Figure 3.20L: XRD spectra comparing [CS+β-TCD] films before and after exposure  

to different analytes. 
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Figure 3.20M: XRD spectra comparing CEL films before and after exposure to  

different analytes. 
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Figure 3.20N: XRD spectra comparing [CEL+β-TCD] films before and after  

exposure to different analytes. 
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and after exposure to the pollutants does not show any differences. This could possibly be 

due to the relatively lower sensitivity of these techniques compared to UV absorption as  

well as to the fact that the adsorption of the various analytes does not cause any structural 

or chemical changes in the composites detectable by these spectroscopic techniques.  

Taken together, the results presented above showed that the polysaccharide 

developed here have potential applications in the adsorption of pollutants and endocrine 

disruptors. The adsorption of microcystin L-R by our [CEL+CS] composites showed 

higher adsorption capacities than other materials currently in use. The gain in tensile 

strength by adding CEL was found to be greater than the loss in adsorption capacity for 

these composites. While CS adsorbs analytes by surface adsorption, the ability of CDs to 

form inclusion complexes with analytes of different shapes and sizes allows the synthesis 

of composites with size and shape selectivity. It was observed that γ-TCD with its larger 

cavity was able to form inclusion complexes with bulky analytes such as 3,4 di-ClPh and 

enhance its adsorption by our composites. The results from the adsorption isotherms fully 

support kinetic results.  Specifically, both results clearly indicate that 50:50 CS:γ-TCD 

with its ability to form inclusion complexes with 3,4-dichlorophenol, can strongly and 

effectively adsorb much more analyte compared to 100% CS which can only adsorb by 

surface adsorption which is relatively weaker and less effective. The application of our 

polysaccharide composites in drug delivery systems and in enantioselectivity will be 

discussed in Chapter 4. 
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Chapter 4. BIOMEDICAL APPLICATIONS OF POLYSACCHARIDE 

COMPOSITE MATERIALS: DRUG DELIVERY SYSTEMS CHIRAL 

SEPARATIONS AND ENCAPSULATION OF FULLERINE 

DERIVATIVES 

 

4.1. Background 

4.1.1. Drug Delivery Vehicles 

Significant medical advances have occurred in the area of controlled drug 

delivery systems. Some of the dosage forms being considered as controlled drug release 

vehicles include pellets.
1–4

 The purpose of the controlled drug release vehicle will be to 

maintain the drug concentration in the target for as long as possible. The release vehicle 

should be able to exert control on the drug release rate for a certain period of time.
5
  

 There are varied physical and chemical properties that influence drug release from 

different formulations. The release patterns include those that release the drug at a slow 

zero or first order rate. Some formulations provide an initial rapid dose, followed by slow 

zero or first order release.
6
  There are a number of kinetic models which are used to 

describe the overall release of drug from the dosage form. These are useful in reducing 

the necessity for bio-studies each time a new formulation is created. The methods used to 

investigate kinetics of drug release can be classified into three categories. These are: 1) 

Statistical methods, 2) Model dependent methods and 3) model independent methods.
6
 

 Model dependent methods are based on mathematical functions which describe 

the drug release profile. Some of the models commonly used to describe drug release 

include the zero order, first order, Higuchi and Korsmeyer-Peppas (Power Law) models.
6
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Zero order kinetics 

The zero order model can be described by the equation: 

  

  
    

The pharmaceutical dosage form that follows this release profile release the same amount 

of drug per unit time and is the ideal method of drug release to achieve a pharmacological 

prolonged action.
7
  

First order release 

This model can be described by the equation: 

  (   
  

  
)       

Higuchi model 

This was the first mathematical model that was aimed at describing drug release 

from a matrix system: 

(
  

  
)      

This model has been derived from Fick’s first law of diffusion and is suited for the 

modeling of drug release from a homogeneous planar matrix. 

Korsmeyer-Peppas model 

This is sometimes referred to as the Power Law model: 
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This model can be used to study the drug release mechanism by analyzing the 

release exponent, n. According to this equation if n ≤ 0.45 the Fickian mechanism, for 

0.5≤ n ≤0.8 the Non-Fickian and if 0.8≤ n ≤1 a zero-order mechanism is governing the 

drug release from the film matrix.
8–10

 In all these equations, 
  

  
  is the fraction of drug 

released at time, t, K is the release rate constant for the particular model and in the case of 

the Korsmeyer-Peppas model, n is the release exponent. 

 As described earlier in Chapter 1 and 2 Cellulose (CEL) is the most abundant 

natural material. It is made up of glucose units joined together by β (1-4) glycosidic 

linkages. Cellulose is biodegradable, renewable and has excelled mechanical and 

rheological properties. These properties make it attractive for use in various technological 

applications. Chitosan (CS) is a deacetylation product of the naturally abundant chitin. 

Chitosan has attracted a lot of interest as a biomedical material because of its good 

biocompatibility and its application in drug delivery has been reported.
4,11

 Wool keratin 

(KER) is a kind of unbranched protein which exhibits a stable three-dimensional 

conformation. This conformation is maintained by a range of non-covalent interactions 

which include electrostatic forces, hydrogen bonds, hydrophobic forces and covalent 

interactions (disulfide bonds), in addition to the peptide bonds between individual amino 

acids.
12

 

 In this study, film compositions of [CS+CEL] and [CS+KER] made by processing 

the materials in 1-butyl-3-methylimidazoiulm chloride [BMIm
+
Cl

-
] ionic liquid were 

investigated as possible controlled drug releasing vehicles. Ciprofloxacin (cipro) [1-
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cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazinyl) quinolone-3-carboxylic acid] 

was used as the model drug molecule (Structure shown in Scheme 4.2). Cipro is a 

synthetic fluoroquinolone derivative which has been shown to have broad spectrum 

activity against many pathogenic bacteria. This bactericidal action comes from 

interference with the enzyme DNA gyrase which is required for the synthesis of bacterial 

DNA. 

4.2. Preparation of Cipro-doped Composites for drug release studies 

The synthesis of the various cipro-doped films is shown in Scheme 4.1 below:  

 

Scheme 4.1: Preparation procedure for cipro-doped polysaccharide composite films. 

 

+ Cipro sln

Regenerated Cipro-doped film

GEL film

WET film
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+
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Air-dry
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Scheme 4.2: Structure of the drug used (Ciprofloxacin) 

In the preparation of [CS+CEL] composite films, cellulose (CEL) was dissolved 

first followed by chitosan (CS) and for the [CS+KER] composite films, CS was dissolved 

first followed by keratin (KER). Similar to the procedure described in Chapter 2 for the 

preparation of [CEL+CS] composites, CEL, CS and KER were added in 1% w/w portions 

until the desired concentration was reached. The wool KER utilized in these experiments 

is the raw sheep wool obtained from a local farm. The KER was cleaned by an 

acetone/ethanol mixture solvent system prior to the dissolution experiments.
12

 Briefly, the 

wool KER was loaded into a Soxhlet extraction thimble, and was washed in a Soxhlet 

extractor using a 1:1 acetone/ethanol mixture for 48 hrs. After 48 hrs, the KER was 

rinsed thoroughly with de-ionized water and they were dried at 100
0
C. The clean, dry 

KER fibers were cut into very small pieces using a scissors prior to the dissolution 

experiments. Cipro was only added after the complete dissolution of the polymers. 

Dissolution of the polymers was performed at about 100
o
C. After complete dissolution of 

the polymers, the temperature was reduced to about 70
o
C before adding Cipro. This was 

done to minimize any chances of thermal decomposition of the Cipro compound. The UV 
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spectrum of a Cipro solution stirred at 70ᵒC for 2 hrs was compared to that of a freshly 

prepared Cipro solution. As illustrated in Figure 4.1 below, the two spectra were not 

significantly different and hence 70ᵒC was determined to be a safe temperature for the 

dissolution of the Cipro. After reducing the temperature to 70ᵒC, an appropriated amount 

of Cipro was added such its final concentration in the dried composite film will be 0.5% 

w/w. Stirring was continued at 70ᵒC for a further 2 hrs after which the samples were cast 

onto PTFE molds on Mylar substrates and allowed to gel at room temperature overnight.   

 

 

Figure 4.1: Comparison of the UV absorption spectra of a freshly prepared Cipro 

solution and one that was stirred at 70ᵒC for 2 hrs.  
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Similar to the preparation of [CEL+CS] composites described earlier, the [BMIm
+
Cl

-
] 

was removed by washing the composites in water. However, since Cipro is soluble in 

water too, the GEL films were washed in saturated solution of Cipro. The saturated 

solution was made by stirring 0.1g of Cipro in 1L of water for at least 2 hrs before 

filtering. The filtered solution was then used to wash the films. The samples were washed 

over a period of 72 hrs and the washing solution was replaced with fresh saturated Cipro 

solution every 24 hrs. After 72 hrs, the resultant wet films were dried in the humidity 

controlled chamber. Generally, drying time was about 3 – 5 days depending on the 

thickness of the films.  

 

Table 4.1: Formulation of [CS+CEL] and [CS+KER] cipro-doped composites.  

Composition in Ionic Liquid 

  

Final Film Composition 

 

%CS %CEL or %KER 

  

%CS 

 

%CEL or %KER 

4.0 0.0  100.0 0.0 

3.5 0.5  87.5 12.5 

3.0 1.0  75.0 25.0 

2.5 1.5  62.5 37.5 

2.0 2.0  50.0 50.0 

1.5 2.5  37.5 62.5 

1.0 3.0  25.0 75.0 

0.5 3.5  12.5 87.5 

0.0 4.0  0.0 100.0 
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Different [CS+CEL] and [CS+KER] composites were prepared according the 

formulations shown in Table 4.1. above. This formulation involved blending different 

amounts of CS and CEL or KER in the [BMIm
+
Cl

-
] ionic liquid but maintaining the total 

concentration of the polymers in the ionic liquid at 4%. In all these film compositions, the 

Cipro level was maintained at 0.5% by weight of the polymers thus ensuring that the 

concentration of Cipro in all the dry films was the same. 

 The Cipro release kinetics of the various films was investigated by fluorimetric 

measurement of the amount of Cipro released in 0.001M phosphate buffer, pH 7.2 as a 

function of time. The fluorescence of the sample was measured after 5, 10, 20, 30, 40, 50, 

60 minutes and every hr after that for 8 hours. The final measurement was done at 24 hrs 

after starting the experiment. This 24 hr point measurement was taken as the final Cipro 

released at equilibrium.  Each sample was measured in triplicates. The fitting of the data 

to four different kinetic models was checked using PSI Plot data analysis software. 

4.3. Drug releasing behavior of [CS+CEL] and [CS+KER] composites 

 The excitation and emission fluorescence spectra of different forms of cipro are 

shown in Figure 4.2 below.  
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Figure 4.2: Excitation and emission fluorescence spectra of different forms of 

ciprofloxacin.  

 

The spectra in light blue are for a solution of Cipro in phosphate buffer (pH 7.2) and 

shown in red are the spectra of a 100%CS film that has been doped with 0.5% w/w Cipro. 

The excitation and emission spectra of pure Cipro powder were also measured and are 

shown in green. Fluorescence of a Cipro-doped chitosan film was measured by holding a 

small piece of the film 45
o
 to the incident beam. Cipro powder was measured by pressing 

the powder into a pellet and also measuring at 45
o
 to the incident beam. The predominant 

species of Cipro present is dependent on the media, particularly the pH.
13

 There are 

several protonated species of Cipro, depending on the pH and each of these species has a 

slightly different fluorescence maximum. Yang et al. reported that the emission 

wavelength of Cipro is blue shifted with increasing pH.
13

 The presence of different 

predominant species of cipro in solution and solid (100%CS film and cipro powder) 

could be the reason why the fluorescence spectra in Figure 4.12 are blue shifted. 

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500 550 600

In
te

n
si

ty
 

Wavelength, nm 

Excitation & Emission spectra
of Cipro solution

Excitation & Emission spectra
of 0.5%Cipro on chitosan film

Excitation & Emission of Cipro
powder



197 

 

197 

 

 However, the results in Figure 4.2 clearly indicate that cipro-doped chitosan films 

were successfully made as indicated by the cipro emission spectrum observed on the 

0.5%Cipro 100%CS film. Table 4.2 shows the fluorescence excitation and emission 

maxima for the different Cipro samples that were measured. 

 

Table 4.2: Excitation and emission maximum for the different forms of cipro 

measured. 

 

Sample Excitation λ Emission λ 

Cipro solution 275nm 324nm 418nm 

0.5% Cipro in 100CS film 287nm 360nm 438nm 

Cipro powder   381nm 445nm 

  

Composite materials were made by blending chitosan (CS) with either cellulose 

(CEL) or keratin (KER). The amount of cellulose in the blends was varied from 0% to 

about 100%. Similarly, the amount of keratin was varied from 0% to 87.5%. It was not 

possible to obtain a film out of 100% KER sample using the method as described above. 

The material would disintegrate during the washing step (a different regeneration solvent 

would have to be used instead of water). All the different blend composites were doped 

with Cipro at the same 0.5% w/w level. The reason making the composite films with 

varying CEL and KER compositions is to study if the drug releasing properties of these 

composites can be “tuned” by changing the composition. It is hoped that results of such a 

study can be used in formulating optimum drug delivery systems.  
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Figure 4.3A: NIR absorption spectra of different chitosan/keratin composite 

materials.  

 

 

Figure 4.3B: FT-IR absorption spectra of different chitosan/keratin composite 

materials. 
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The different [CS+KER] composite materials were analyzed by both NIR and FT-

IR spectroscopy. Figure 4.3A shows the changes that occur in the NIR spectra of the 

composite films as the keratin content is changed. The arrows in the figure indicate some 

of the spectral changes observed for the different compositions. Similarly, Figure 4.3B 

shows the spectral changes for the same samples as observed by FT-IR spectroscopy. 

These results confirm that different film compositions were successfully made by 

processing CS and KER in [BMIm
+
Cl

-
] ionic liquid.  

As shown in Figure 4.2, the fluorescence emission spectrum of a 100%CS 

composite film containing 0.5% Cipro has an emission band around 438 nm, which could 

be attributed to the Cipro. Efforts were made to confirm the presence of Cipro in the 

composite films by FT-IR spectroscopy. Figure 4.4 shows the structure of Cipro and its 

FT-IR spectrum is shown in Figure 4.5A together with that of 100%CS film and 100%CS 

film containing 0.5% Cipro. In the FT-IR spectra of Cipro, characteristic peaks are found 

around 3000-2950 cm
-1

 represented alkene and aromatic C-H stretching, mainly υ = C-

H.
14

 The peak between 1650 and 1600 cm 
-1

 can be assigned to quinolones.
14

 The band 

from 1450 to 1400 cm
-1

 represented υ = C-O and at 1300 to 1250 cm
-1

can be assigned to 

bending vibration of O-H group which proved the presence of carboxylic acid. A strong 

absorption peak between 1050 and 1000 cm
-1

was assigned to the C-F group.
14

 Since the 

concentration of Cipro in the composite films is relatively low (0.5%), not all these cipro 

FT-IR absorption bands were observed in the FT-IR spectrum of a Cipro containing 

composite (Figure 4.5A). However, a closer view of the 1220 cm
-1

 to 1800 cm
-1

 region 

(Figure 4.5B) shows that there are some clear differences between the FT-IR spectra of a 

Cipro-doped CS film and a CS film without Cipro. Some subtle peaks appear in the FT-
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IR spectrum of the Cipro-doped CS film around 1634 cm
-1

, 1459 cm
-1

, 1309 cm
-1

 and 

1303 cm
-1

. As described above, these indicator bands can be assigned to the functional 

groups in Cipro and their presence in the Cipro-doped CS film can be taken as 

confirmation for the presence of Cipro in the composite materials.  

 

 

Figure 4.4: Structure of Cipro.  
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Figure 4.5A: FT-IR spectra showing the successful incorporation of Cipro into a 

100%CS film  

 

 

Figure 4.5B: FT-IR spectra showing the successful incorporation of Cipro into a 

100%CS film 
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 Having successfully made different film composites as confirmed by NIR and FT-

IR spectroscopy and successfully doping these different films with 0.5% Cipro as 

confirmed by fluorescence emission and FT-IR spectroscopy, the release kinetics of the 

films were measured by following the amount of Cipro released into aqueous solution 

buffered at the physiological pH of 7.2 (phosphate buffer) as a function of time.  The 

release profiles obtained for some of the [CS+CEL] composite films and some 

[CS+KER] composite films plotted for the first 4 hours are shown in Figure 4.36A and 

Figure 4.6B respectively. As illustrated in these two figures, most of the film composites 

show release saturation after about 2 hours. The results shown in Figure 4.6A suggest that 

there seem to be very little differences in the release profiles for the different [CS+CEL] 

composite films shown here. In contrast, the results in Figure 4.36B indicate a significant 

difference in the release profiles of the different [CS+KER] film compositions, 

particularly between the pure chitosan film (100%CS) and the other three composite 

films. It can be seen from Figure 4.36B that the release of Cipro from a 100%CS film 

seems to be rapid, reaching above 80% in the first 30 minutes. The release from the 

[CS+KER] composite films however, seem to be slower, reaching 80% after about 2 hrs. 

These results indicate that indeed the drug releasing properties of the [CS+KER] 

composite films can be tuned by varying the amount of KER in the composite films. Such 

information can be very useful in optimizing the development of effective drug carrier 

systems.  
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Figure 4.6: Cipro release profiles for different [CS+CEL] (top) [CS+KER] (bottom) 

composite films. 
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In order to get more information and understanding on the release mechanism of 

the composite films, the amount of Cipro released from these different film compositions 

was measured and the data for each film composition was fitted to 4 different kinetic 

models. The kinetic models used in this study are: 

1) Zero order model 

2) First order model 

3) Higuchi model 

4) Korsmeyer-Peppas (Power Law) model. 

The results obtained after fitting the release data for the initial 1 hr period to these 

models are shown in Tables 4.3A – 4.3D. The data was fitted for the initial 1 hr release 

period because according to the derivation of the power law model, Fickian diffusional 

release from a thin film is characterized by an initial t
1/2 

time dependence of the drug 

released. This short-time approximation is valid for the first 60% of the total released 

drug (i.e., Mt/M∞ ≤ 0.6).
8–10

 Comparison of the fitting of the experimental data to the 

theoretical models is shown in Figure 4.7A (1
st
 order) and 4.7B (power law) for the 

[CS+KER] composites. The good fit of the data to the power law model is clearly 

illustrated in Figure 4.7B The release rate constant, k, is shown together with the 

correlation coefficient, r
2
, and the Model Selection Criteria (M.S.C) for the first three 

models, while the release exponent, n, is also shown for the Kosrmeyer-Peppas (Power 

Law) model. Based on the correlation coefficient of fitting, r
2
, and the M.S.C, the results 

in Tables 4.3A – 4.3D indicate that the Cipro release profiles of [CS+CEL] and 

[CS+KER] composite films are best described by the Korsmeyer-Peppas (power law) 

model (model has the highest r
2 

and M.S.C values. The M.S.C takes into account the 
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number of parameters in each model and allows a better comparison of models with 

different parameters. The 1
st
 order model also showed good correlation, even though it 

wasn’t as good as the power law model. The zero order model had the least r
2
 and M.S.C 

fitting values, indicating that the release of cipro from these composites does not follow 

the zero order model. One characteristic of zero order release kinetics is that the amount 

of drug released throughout the test period should be constant. However, the results in 

Figure 4.6A and 4.6B, show that the amount of cipro released from the films is actually 

decreasing with time, which explains why the release observed here does not fit the zero 

order model.  Further analysis of the data was performed only for the first order and 

Korsmeyer-Peppas models, which showed better fitting to the data.
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 Figure 4.7A: Experimental vs. theoretical fit for the first order model 
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Figure 4.7B: Experimental vs. theoretical plots for the power law model
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Table 4.3A: Cipro release parameters for the zero order model  

Zero Order Model 

% CS [CS+CEL] [CS+KER] 

100.0 k R
2
 MSC k R

2
 MSC 

87.5 1.20 0.6864 -0.64 1.21 0.7271 -0.50 

75.0 1.18 0.8088 -0.14 0.87 0.9505 1.27 

62.5 1.22 0.7722 -0.33 1.05 0.8742 0.28 

50.0 1.20 0.7055 -0.57 0.96 0.9260 0.87 

37.5 1.21 0.7911 -0.22 1.09 0.8611 0.15 

25.0 1.20 0.7768 -0.29 0.97 0.9065 0.62 

12.5 1.24 0.7491 -0.42 0.91 0.9275 0.87 

0.0 1.00 0.8114 -0.14       
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Table 4.3B: Cipro release parameters for the first order model 

First Order Model 

  [CS+CEL] [CS+KER] 

% CS k R
2
 MSC k R

2
 MSC 

100.0 5.48 0.9832 2.12 5.52 0.9825 2.12 

87.5 8.46 0.9808 1.68 7.44 0.9841 1.99 

75.0 4.96 0.9833 2.29 1.54 0.9909 3.00 

62.5 6.54 0.9856 2.23 2.69 0.9757 2.00 

50.0 7.69 0.9820 1.81 1.97 0.9871 2.66 

37.5 6.02 0.9856 2.33 3.13 0.9749 1.95 

25.0 6.22 0.9819 2.12 2.10 0.9799 2.24 

12.5 7.40 0.9883 2.38 1.73 0.9834 2.40 

0.0 2.62 0.9361 1.04       
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Table 4.3C: Cipro release parameters for the higuchi model 

Higuchi Model 

  [CS+CEL] [CS+KER] 

% Chitosan k R
2
 MSC k R

2
 MSC 

100.0 1.07 0.9280 1.23 1.06 0.9181 1.22 

87.5 1.10 0.8584 0.54 1.10 0.8873 0.77 

75.0 1.06 0.9396 1.45 0.75 0.9969 4.82 

62.5 1.10 0.9162 1.11 0.93 0.9739 2.34 

50.0 1.09 0.8726 0.67 0.84 0.9921 3.79 

37.5 1.08 0.9273 1.32 0.97 0.9682 2.08 

25.0 1.08 0.9180 1.19 0.85 0.9859 3.18 

12.5 1.12 0.9019 0.93 0.79 0.9928 3.87 

0.0 0.89 0.9410 1.46       
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Table 4.3D: Cipro release parameters for the power law model 

Power Law 

  [CS+CEL] [CS+KER] 

% CS k n R
2
  MSC k n R

2
  MSC 

100.0 0.93 0.22 0.9917 3.62 0.92 0.22 0.9872 3.20 

87.5 0.90 0.12 0.9926 3.66 0.93 0.16 0.9901 3.46 

75.0 0.93 0.25 0.9906 3.53 0.75 0.50 0.9970 4.63 

62.5 0.94 0.20 0.9935 3.86 0.86 0.33 0.9929 3.75 

50.0 0.91 0.15 0.9896 3.41 0.81 0.43 0.9947 4.04 

37.5 0.94 0.23 0.9931 3.85 0.88 0.30 0.9949 4.09 

25.0 0.93 0.21 0.9932 3.89 0.81 0.39 0.9941 3.94 

12.5 0.95 0.18 0.9911 3.54 0.76 0.43 0.9955 4.23 

0.0 0.79 0.24 0.9924 3.71         

 

Figure 4.8 is a comparison of the 1
st
 order release rate constants for the [CS+CEL] 

and [CS+KER] composite films. The rate constant is plotted as a function of CS 

concentration for both composites. As illustrated in Figure 4.8, while the release rate 

constant for [CS+CEL] composite films is not changing significantly as CS concentration 

is reduced, the release rate for the [CS+KER] films is clearly decreasing with CS 

concentration to about 50%CS. Further decrease in CS content beyond 50% does not 

cause result in any further decrease of the rate constant. Also shown in Figure 4.8 is the 

variation of the release rate constant for the power law model. As was observed for the 
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first order model, the release rate constant for this model also show a similar trend, where 

it decreases with an increase in KER content for the [CS+KER] composite films. 

However, the rate constant does not change for the [CS+CEL] composite films.  

The variation of the release exponent (n), for the power law model, which 

characterizes the release mechanism for the different films is shown in Figure 4.9. 

According to this model, if n ≤ 0.45 it is the Fickian mechanism, 0.5 ≤ n ≤ 0.8 Non- 

Fickian mechanism and if 0.8 ≤ n ≤ 1.0  a zero order mechanism governing the drug 

release from the film matrix.
4
 Except for the [75%CS+25%KER] composition which had 

n = 0.50, all the other film compositions have n ≤ 0.45, meaning drug release from these 

films is governed by the Fickian mechanism. The results in Figure 4.9 demonstrate that 

the drug release kinetics and indeed the mechanism of release can be tuned by varying 

the composition of the films. 
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Figure 4.8: Variation of the release rate constant for the first order (top) and power 

law (bottom)  
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Figure 4.9: Comparison of the release exponent for the [CS+CEL] and [CS+KER] 

composite films  

 

Chitosan/cellulose and chitosan/keratin composite films which can be used as 

controlled drug release systems, were successfully prepared by processing the 

biopolymers in [BMIm
+
Cl

-
] ionic liquid. The composition of the different film 

composites was confirmed by both NIR and FT-IR spectroscopy. The presence of the 

cipro drug in the films was confirmed by direct fluorimetric and FT-IR measurement of 
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was found to decrease the release rate constant. This is probably because keratin has a 

high degree of functionality which acts as retention sites for the drug molecule. 

 Based on the Korsmeyer-Peppas equation, with the exception of 

[75%CS+25%KER] composition which had n = 0.50, all the other film compositions had 

n ≤ 0.45, meaning drug release from these films is governed by the Fickian mechanism.  

4.4. Chiral separations using polysaccharide composite materials 

Chirality is a phenomenon of great biological and chemical importance. Under 

many circumstances, only one enantiomer could meet specific needs while the other one 

possess less or even negative effect. This justifies the need for enantiomeric separation. 

Most active pharmaceutical ingredients (API) are chiral in nature and the US food and 

drug administration (FDA) requires detailed analysis of pure active pharmaceutical 

ingredients (APIs).
15

 As a result, chiral separation has become an increasingly important 

downstream process in the pharmaceutical industry. Current technologies used to produce 

pure enantiomers include asymmetric synthesis, high performance liquid chromatography 

(HPLC),
16

 capillary electrophoresis (CE)
17

 and preferential crystallization.
18

 Membrane 

separation can provide a more promising solution for the production of pure enantiomers 

than the current technologies because it is more cost effective, amenable to continuous 

operation and is more easily scaled up.
15,19–21

 

The [CEL+CS], [CEL+TCD] and [CS+TCD] composite materials were 

investigated for their ability to resolve racemic mixtures of amino acids. Preliminary 

results of this investigation are discussed below. 
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4.4.1. Materials and Methods 

 The polysaccharide composite materials used are those described in Chapter 2. D- 

and L-enantiomers (99%) of Tryptophan (Trp), Tyrosine (Tyr), Histidine (His) and 

Phenylalanine (Phe) were obtained from Alfa Aesar. Experiments with racemic mixtures 

were done on a Shimadzu LC-20AT prominence Liquid Chromatograph equipped with a 

SPD-20A prominence UV/Vis detector. Separation was done using an Astec Chirobiotic 

TAG column. The mobile phase for Trp, Tyr and Phe was 60:40 methanol/water with 

1.0mL/min flow rate while His was separated using 30:70 ethanol/water in 160mM 

sodium phosphate buffer adjusted to pH 4.5. Flow rate for His was also 1.0mL/min. Trp 

and Tyr were detected at 275nm while His and Phe were detected at 205nm. Any 

experiments with optically active (pure enantiomers) samples were carried out on a 

Perkin Elmer Lambda 35 UV/VIS spectrometer.  

 For the enantiomeric resolution experiments, about 0.3g of the dry composite 

material was placed in a sample vial. 30mL of 1.0x10
-3

M DL racemic solution of the 

amino acid was added (concentration of both the  D and the L enantiomers in this 

solution was 5.0x10
-4

M). The vials were tightly closed and agitated on a mechanical 

shaker at room temperature. At specific time intervals, 20µL solutions were withdrawn 

and injected into the HPLC for analysis. 
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4.4.2. Enantiomeric resolution of amino acids using polysaccharide 

composite materials 

 

 Typical HPLC chromatograms for the analysis of racemic mixtures of different 

amino acids by 6 different composites are shown in Figure 4.10A (Trp), 4.10B (Tyr) and 

4.10C (His). As expected, the HPLC chromatograms contain two bands, with the band 

for the L enantiomer indicated by an arrow. It can be seen from the results in Figure 4.10 

that the intensity of the two HPLC bands was found to decrease with time. However, as 

indicated by the arrow in Figure 4.10, the intensity of the L enantiomer decreases faster 

than that of the D enantiomer. For some composites, especially the 100%CS composite, 

the HPLC band for the L enantiomer decreases and disappears completely while the 

HPLC band for the D enantiomer had only changed slightly. These results clearly 

indicate that when the composite materials were kept in racemic solutions of the amino 

acids, the enantiomeric composition of the solutions was changing, with the 

concentration of the L enantiomer getting less and less with time. This seems to suggest 

that the composite materials are selectively favoring the adsorption of the L enantiomer 

to the D enantiomer.  

 From these HPLC results, the amount of each enantiomer that has been 

adsorbed onto the composite material can be calculated using the following mass balance 

equation: 

   (
     

 
)      
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where qt (mg/g) is the amount adsorbed at any given time, t, Ci and Ct (mg/L) are the 

initial and prevailing solution concentration at time, t, respectively. V (L) is the volume 

of the solution and m (g) is the weight of the composite film material. Typical results for 

the adsorption of D and L His form a racemic mixture by a 100%CS composite material 

are shown in Figure 4.11. Figure 4.11A is a depiction of the change in solution 

concentration with time calculated from the HPLC results and Figure 4.11B shows the 

amount of each enantiomer that has been adsorbed at different time intervals. As 

illustrated, the solution concentration of L His was found to decrease much faster than 

that of the D enantiomer. This translates to higher adsorbed L amount as shown in Figure 

4.11B. The results suggest that for this 100%CS composite material, the racemic solution 

is resolved into a solution of D His after about 120 hrs.
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Figure 4.10A: HPLC chromatograms for the sorption of D and L Trp on to 6 different composites. 
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Figure 4.10B: HPLC chromatograms for the sorption of D and L Tyr on to 6 different composites. 
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Figure 4.10C: HPLC chromatograms for the sorption of D and L His on to 6 different composites. 
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Figure 4.11A: Change in solution concentration with time for a His racemic solution 

with a 100%CS composite material 
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Figure 4.11B: Typical adsorption profiles for the adsorption of D and L His from a  

racemic mixture by a 100%CS composite material calculated using results in Figure  

4.11A and equation 4.1 
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volume of solution) was the same as that of the racemic mixture. The concentration of the 

optically active solutions used for this experiment was 5x10
-4

M. This concentration is the 

same as that of the individual enantiomers used for the racemic experiment described 

above. Also, since these were solutions of pure enantiomers, the residual concentration in 

solution at specific time intervals was determined by UV absorption measurements. After 

each measurement, the solution was returned to the sample vial to minimize volume 

changes during the course of the experiment. 

The results obtained from one such experiment, for the adsorption of Tyr and His 

enantiomers by a 100%CS composite material are plotted together with the HPLC results 

for the racemic experiment in Figure 4.12A (for Tyr) and 4.12B (for His). The 

concentration of each enantiomer at the beginning of the experiment is indicated in 

square brackets in the figure. It can be observed from these two figures that the 

adsorption profiles for the racemic mixture and the optically active samples are not the 

same. For Tyr, the adsorption from the racemic mixture is higher than the adsorption of 

the corresponding enantiomer in the optically active sample. 
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Table 4.4A: First and second order rate constants for Trp on different samples.  

    1
st
 order 2

nd
 order 

Sample Enantiomer K (Hr
-1

) Error r
2
 K (g/mg Hr) Error r

2
 

100CS 

D Trp 0.0006 0.0027 0.0116 0.4247 5.0150 0.1016 

L Trp 0.0181 0.0036 0.8935 0.0000 0.0001 0.0610 

CS:βTCD 

D Trp 0.0042 0.0033 0.2871 0.3561 1.9850 0.6157 

L Trp 0.0135 0.0017 0.9386 0.0000 0.0000 0.0520 

CS:γTCD 

D Trp 0.0043 0.0278 0.0060 0.0023 0.0929 0.0006 

L Trp 0.0121 0.0018 0.9173 0.0004 0.0004 0.3705 

CEL:CS 

D Trp 0.0052 0.0021 0.2714 0.0150 0.0120 0.7327 

L Trp 0.0094 0.0006 0.9860 0.0000 0.0000 0.0721 

100CEL 

D Trp 0.0042 0.0028 0.3553 0.0056 0.0035 0.6991 

L Trp 0.0059 0.0004 0.9665 0.0001 0.0001 0.5382 

CEL:βTCD 

D Trp 0.0037 0.0074 0.0588 0.0135 0.0109 0.8884 

L Trp 0.0065 0.0009 0.8814 0.0027 0.0008 0.9365 

CEL:γTCD 

D Trp 0.0005 0.0027 0.0067 0.0048 0.0043 0.6256 

L Trp 0.0042 0.0016 0.5742 0.0019 0.0007 0.8662 
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Table 4.4.B: First and second order rate constants for Tyr on different samples. 

    1
st
 order 2

nd
 order 

Sample Enantiomer K (Hr
-1

) Error r
2
 K (g/mg Hr) Error r

2
 

100CS 

D Tyr 0.0088 0.0015 0.8791 0.0002 0.0003 0.1751 

L Tyr 0.0217 0.0035 0.9267 0.0001 0.0001 0.5903 

CS:βTCD 

D Tyr 0.0054 0.0041 0.3667 1.1364 17.3072 0.9130 

L Tyr 0.0093 0.0009 0.9706 0.0026 0.0018 0.7311 

CS:γTCD 

D Tyr 0.0068 0.0036 0.5496 0.0053 0.0043 0.5625 

L Tyr 0.0084 0.0008 0.9732 0.0001 0.0001 0.1544 

CEL:CS 

D Tyr 0.0043 0.0005 0.9095 0.0001 0.0001 0.2520 

L Tyr 0.0103 0.0008 0.9779 0.0006 0.0001 0.9501 

100CEL 

D Tyr 0.0026 0.0008 0.6479 0.0014 0.0009 0.4883 

L Tyr 0.0045 0.0004 0.9432 0.0001 0.0001 0.2819 

CEL:βTCD 

D Tyr 0.0031 0.0012 0.5432 0.0024 0.0014 0.5926 

L Tyr 0.0050 0.0003 0.9681 0.0002 0.0001 0.4701 

CEL:γTCD 

D Tyr 0.0022 0.0009 0.4589 0.0037 0.0045 0.3104 

L Tyr 0.0042 0.0004 0.9294 0.0003 0.0001 0.5693 
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Figure 4.12: Sorption profiles of Tyr (top) and His (bottom) enantiomers by 

100%CS composite material from optically active (Blue) and racemic (red) 

solutions.
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Adsorption of His enantiomers follows a similar trend, except for the adsorption of L His 

from the racemic mixture which only becomes higher than the corresponding enantiomer 

from optically active sample after about 96 hrs. The reasons for this behavior are not yet 

clear at the moment but the higher total concentration (1x10
-3

M) prevailing in the 

racemic mixture could be one of the sources of this difference. Competition between the 

D and L enantiomers for available adsorption sites in the racemic mixture could also 

potentially result in different adsorption kinetics and mechanism. 

 Further experiments were carried out in an effort to understand the mechanism of 

adsorption taking place in these solutions. Specifically, a solution containing twice as 

much L enantiomer as D enantiomer (i.e. 6.67x10
-3

M L and 3.33x10
-3

M D) was 

measured and analyzed by HPLC (green plots). The total concentration of this solution 

was kept the same as that used for the racemic solution, i.e., 1x10
-3

M. Also measured (by 

UV) was a solution of 1x10
-3

M pure L enantiomer (pink plots). Finally, measurements 

were also done with 1x10
-3

M DL racemic solution (purple plots). This last measurement 

was done by UV and is assumed to give the total amount of D and L adsorbed. The 

results are shown in Figure 3.13A (for Tyr) and Figure 3.13B (for His). The results for 

the adsorption of Tyr by 100%CS composite material (Figure 4.13A) showed some 

interesting features where 1x10
-3

M pure L (pink plot) had the highest adsorption profile. 

Interestingly, the adsorption profile of 1x10
-3

M DL racemic solution (purple plot) was 

just about half of what was observed for the 1x10
-3

M pure L solution. Since the total 

concentration of these two solutions are the same, the result seem to suggest that in the 

racemic mixture, the adsorption seem to exclusively favor the L enantiomer, hence half 

the adsorbed amount, than the D enantiomer. These results are in agreement with what 
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was observed with the HPLC chromatograms where the intensity of the HPLC band for 

the L enantiomer was observed to decrease much faster than that of the D enantiomer. 

However, the results for the adsorption of His enantiomers by the same composite 

material does not show a similar trend to that described for Tyr. For this amino acid, even 

though the sorption profile of 1x10
-3

M DL racemic is still about half that of 1x10
-3

M pure 

L enantiomer, both of these sorption profiles were unexpectedly lower. The results for the 

sorption of Tyr and His enantiomers by the rest of the composite materials are shown in 

Figure 4.14 (for Tyr) and Figure 4.15 (for His). While the adsorption of Tyr by the CS 

composites has a somewhat similar trend, adsorption by the CEL composites does not 

seem to have any kind of trend. 
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Figure 4.13: Sorption profiles of Tyr (top) and His (bottom) enantiomers by 

100%CS composite material from different solutions. 
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Figure 4.14: Sorption profiles of different solutions of Tyr enantiomers by different composite materials  

0

5

10

15

20

25

30

0 24 48 72 96 120

q
t 

(m
g/

g)
 

Time, Hrs 

100%CS Tyr 
D Tyr Opt Active(UV) [5x10-4M]

L Tyr Opt Active(UV) [5x10-4M]

D Tyr Racemic(HPLC) [5x10-4M]

L Tyr Racemic(HPLC) [5x10-4M]

D Tyr(HPLC) [3.33x10-4M]

L Tyr(HPLC) [6.67x10-4M]

DL Tyr Racemic(UV) [1x10-3M]

Pure L Tyr(UV) [1x10-3M]

0

2

4

6

8

10

12

14

16

18

20

0 24 48 72 96 120

q
t 

(m
g/

g)
 

Time, Hrs 

CS:γTCD Tyr D Tyr Opt Active(UV) [5x10-4M]

L Tyr Opt Active(UV) [5x10-4M]

D Tyr Racemic(HPLC) [5x10-4M]

L Tyr Racemic(HPLC) [5x10-4M]

D Tyr(HPLC) [3.33x10-4M]

L Tyr(HPLC) [6.67x10-4M]

DL Tyr Racemic(UV) [1x10-3M]

Pure L Tyr(UV) [1x10-3M]

0

2

4

6

8

10

12

14

16

18

20

0 24 48 72 96 120

q
t 

(m
g/

g)
 

Time, Hrs 

CS:βTCD Tyr 

D Tyr Opt Active(UV) [5x10-4M]

L Tyr Opt Active(UV) [5x10-4M]

D Tyr Racemic(HPLC) [5x10-4M]

L Tyr Racemic(HPLC) [5x10-4M]

D Tyr(HPLC) [3.33x10-4M]

L Tyr(HPLC) [6.67x10-4M]

DL Tyr Racemic(UV) [1x10-3M]

Pure L Tyr(UV) [1x10-3M]

0

2

4

6

8

10

12

14

16

18

20

0 24 48 72 96 120

q
t 

(m
g/

g)
 

Time, Hrs 

CEL:CS Tyr 
D Tyr Opt Active(UV) [5x10-4M]

L Tyr Opt Active(UV) [5x10-4M]

D Tyr Racemic(HPLC) [5x10-4M]

L Tyr Racemic(HPLC) [5x10-4M]

D Tyr(HPLC) [3.33x10-4M]

L Tyr(HPLC) [6.67x10-4M]

DL Tyr Racemic(UV) [1x10-3M]

Pure L Tyr(UV) [1x10-3M]



232 

 

232 

 

  

 

Figure 4.14: Sorption profiles of different solutions of Tyr enantiomers by different composite materials 
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Figure 4.15: Sorption profiles of different solutions of His enantiomers by different composite materials  
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Figure 4.15: Sorption profiles of different solutions of His enantiomers by different composite materials  
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The intraparticle diffusion model plots are for the adsorption of Tyr enantiomers by the 

various composite materials are shown in Figure 4.16. The intraparticle parameters obtained 

from the different experiments are shown in the table immediately below each graph. As 

illustrated in this figure, there seem to be two distinct linear regions in these plots. There is an 

initial slow adsorption in the first 16 hrs followed by a more rapid adsorption from about 24 hrs 

to about 120 hrs. As will be expected, the adsorption of the L enantiomer has a larger slope (ki2) 

than that of the D enantiomer, which is an indication of the faster rate at which the L enantiomer 

is being adsorbed. The fact that there are two linear regions in these plots is an indication that 

intraparticle diffusion is not the sole mechanism governing the sorption of the enantiomers. 

There is some other mechanism that is also involved in the sorption of the enantiomers in 

addition to the diffusion of the enantiomers in to the film matrix.
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100CS 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] - - - 0.274 0.025 0.9086 

L Tyr Opt Active(UV) [5x10
-4

M] 0.051 0.007 0.9093 1.338 0.065 0.9722 

D Tyr Racemic(HPLC) [5x10
-4

M] - - - 1.037 0.222 0.8455 

L Tyr Racemic(HPLC) [5x10
-4

M] - - - 1.585 0.130 0.9803 

D Tyr(HPLC) [3.33x10
-4

M] 0.017 0.090 0.0092 0.295 0.056 0.7739 

L Tyr(HPLC) [6.67x10
-4

M] 0.191 0.147 0.2970 1.541 0.120 0.9539 

DL Tyr Racemic(UV) [1x10
-3

M] 0.220 0.020 0.9678 1.337 0.051 0.9841 

Pure L Tyr(UV) [1x10
-3

M] 0.262 0.036 0.9314 2.708 0.066 0.9935 

 

 

Figure 4.16A: Intraparticle diffusion model plot and parameters for Tyr 
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CS:β-TCD 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] - - - 0.310 0.020 0.9505 

L Tyr Opt Active(UV) [5x10
-4

M] 0.092 0.011 0.9374 1.315 0.044 0.9870 

D Tyr Racemic(HPLC) [5x10
-4

M] - - -  0.350 0.124 0.7273 

L Tyr Racemic(HPLC) [5x10
-4

M] - -  - 1.037 0.134 0.9525 

D Tyr(HPLC) [3.33x10
-4

M] 0.070 0.045 0.3796 0.266 0.017 0.9697 

L Tyr(HPLC) [6.67x10
-4

M] 0.199 0.119 0.4103 1.267 0.046 0.9895 

DL Tyr Racemic(UV) [1x10
-3

M] 0.234 0.028 0.9454 1.304 0.036 0.9916 

Pure L Tyr(UV) [1x10
-3

M] 0.408 0.089 0.8387 1.882 0.053 0.9914 

 

Figure 4.16B: Intraparticle diffusion model plot and parameters for Tyr 
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 CS:γ-TCD 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] - - - 0.234 0.019 0.9266 

L Tyr Opt Active(UV) [5x10
-4

M] 0.038 0.007 0.8491 1.114 0.041 0.9842 

D Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.215 0.093 0.6419 

L Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.739 0.151 0.8889 

D Tyr(HPLC) [3.33x10
-4

M] 0.105 0.036 0.6820 0.205 0.024 0.9005 

L Tyr(HPLC) [6.67x10
-4

M] 0.332 0.125 0.6391 1.090 0.074 0.9648 

DL Tyr Racemic(UV) [1x10
-3

M] 0.154 0.007 0.9910 0.775 0.027 0.9867 

Pure L Tyr(UV) [1x10
-3

M] 0.325 0.062 0.8718 1.714 0.055 0.9889 

 

Figure 4.16C: Intraparticle diffusion model plot and parameters for Tyr 
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CEL:CS 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] - - - 0.279 0.012 0.9769 

L Tyr Opt Active(UV) [5x10
-4

M] 0.014 0.008 0.3749 0.669 0.025 0.9833 

D Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.172 0.042 0.8916 

L Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.810 0.047 0.9933 

D Tyr(HPLC) [3.33x10
-4

M] 0.269 0.056 0.8518 0.229 0.031 0.8697 

L Tyr(HPLC) [6.67x10
-4

M] 0.518 0.094 0.8845 1.017 0.068 0.9658 

DL Tyr Racemic(UV) [1x10
-3

M] 0.253 0.055 0.8411 0.434 0.025 0.9641 

Pure L Tyr(UV) [1x10
-3

M] 0.216 0.023 0.9547 1.711 0.043 0.9931 

 

Figure 4.16D: Intraparticle diffusion model plot and parameters for Tyr 
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100CEL 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] - - - 0.109 0.006 0.9616 

L Tyr Opt Active(UV) [5x10
-4

M] - - - 0.276 0.018 0.9495 

D Tyr Racemic(HPLC) [5x10
-4

M] - -  - -0.048 0.083 0.1438 

L Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.074 0.072 0.3482 

D Tyr(HPLC) [3.33x10
-4

M] 0.083 0.084 0.1986 0.033 0.024 0.1974 

L Tyr(HPLC) [6.67x10
-4

M] 0.144 0.083 0.4311 0.298 0.043 0.8584 

DL Tyr Racemic(UV) [1x10
-3

M] 0.117 0.047 0.6042 0.036 0.008 0.6297 

Pure L Tyr(UV) [1x10
-3

M] 0.129 0.016 0.9580 0.191 0.015 0.9382 

 

Figure 4.16E: Intraparticle diffusion model plot and parameters for Tyr 
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CEL:β-TCD 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] 0.015 0.004 0.7594 0.189 0.015 0.9285 

L Tyr Opt Active(UV) [5x10
-4

M] 0.026 0.007 0.7539 0.142 0.014 0.8988 

D Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.038 0.090 0.0809 

L Tyr Racemic(HPLC) [5x10
-4

M] - - -  0.200 0.091 0.7067 

D Tyr(HPLC) [3.33x10
-4

M] 0.049 0.076 0.0930 0.061 0.023 0.4562 

L Tyr(HPLC) [6.67x10
-4

M] 0.179 0.071 0.6142 0.269 0.053 0.7631 

DL Tyr Racemic(UV) [1x10
-3

M] 0.081 0.019 0.8225 0.033 0.008 0.6195 

Pure L Tyr(UV) [1x10
-3

M] 0.151 0.014 0.9665 0.181 0.014 0.9355 

 

Figure 4.16F: Intraparticle diffusion model plot and parameters for Tyr 
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CEL:γ-TCD 

  ki1 Error R
2
 ki2 Error R

2
 

D Tyr Opt Active(UV) [5x10
-4

M] 0.014 0.008 0.3678 0.070 0.007 0.8825 

L Tyr Opt Active(UV) [5x10
-4

M] - - - 0.070 0.007 0.9065 

D Tyr Racemic(HPLC) [5x10
-4

M] - - -  0.137 0.038 0.8678 

L Tyr Racemic(HPLC) [5x10
-4

M] - -  - 0.307 0.039 0.9686 

D Tyr(HPLC) [3.33x10
-4

M] - - - 0.059 0.048 0.1578 

L Tyr(HPLC) [6.67x10
-4

M] 0.376 0.554 0.1030 0.793 0.068 0.9449 

DL Tyr Racemic(UV) [1x10
-3

M] 0.066 0.014 0.8417 0.031 0.007 0.6155 

Pure L Tyr(UV) [1x10
-3

M] 0.209 0.024 0.9486 0.310 0.018 0.9629 

 

Figure 4.16G: Intraparticle diffusion model plot and parameters for Tyr 
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Another experiment was carried out with the aim of checking for and analyzing 

the desorption profiles that might have been obtained for the different enantiomers. For 

this experiment, the composite materials that were used for the adsorption of Tyr 1x10
-

3
M racemic samples were used. To check the desorption, the composite materials were 

taken out of Tyr solution at the end of the adsorption experiment, quickly blotted with a 

filter paper, and placed in vials containing 30 mL of de-ionized water. The sample vials 

were sealed and agitated on a mechanical shaker at room temperature. At specific time 

intervals, 20µL aliquots were withdrawn and injected into the HPLC. Figure 4.17 below 

shows the HPLC chromatograms for this release experiment measured at 2 hr and 24 hr 

time periods for 4 different composites. The HPLC chromatogram of a Tyr standard 

solution is included in each figure for reference. As illustrated, there were no HPLC 

bands for either the L or D enantiomer even after 24 hrs with the composites in water.  

The sorption selectivity for the racemic mixtures of the different amino acids was 

calculated according to the following equation:
20

 

                     ( )  
(       )    ⁄

(       )    ⁄
                         

Where CLi and CLf denote the initial and final L concentration and CDi and CDf is the 

initial and final D concentration respectively. The selectivity was calculated for the 

HPLC experiments with 1x10
-3

M racemic solutions. The 96 hr time period was chosen 

for this calculation as this was generally the amount of time it took for the HPLC band of 

the L enantiomer to disappear for the 100%CS composite material. The results are plotted 

together with the amount of each enantiomer adsorbed at this time point in Figure 4.18. 

For Tyr and Trp, selectivity was higher for the CS composite materials than for the CEL 
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composite materials with 100%CS giving the highest selectivity. The sorption selectivity 

for both CS and CEL composite materials was found to decrease when α-, β- or γ-TCD 

was incorporated into these composites. Wang et al.
20

 observed a similar trend for Trp 

when native β-CD was incorporated into CS membranes. They attributed this to the fact 

that the chiral environment of CS may have been effective in distinguishing between the 

D and L enantiomers while the β-CD was less selective due to host/guest complex 

formation with the amino acid molecules.
20

 While there is some increased selectivity for 

Phe and His with CS:β-TCD and CS:γ-TCD composite materials compared to the 

100%CS composite, the results do not seem to be consistent enough to be conclusively 

attributed to the TCDs in these composites. 
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Figure 4.17: HPLC chromatograms showing no release of Tyr enantiomers from 4 different composites.  
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Figure 4.18: Comparison of the selectivity of the different composite materials with the 4 amino acids studied 

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

8

9

10

A
d

so
rb

e
d

 T
yr

 (
m

g/
g)

 

So
rp

ti
o

n
 s

e
le

ct
iv

it
y 

(α
) 

Tyr selectivity(α) 

qt (mg/g) D Tyr

qt (mg/g) L Tyr

0

2

4

6

8

10

12

0

5

10

15

20

25

30

A
d

so
rb

e
d

 T
rp

 (
m

g/
g)

 

So
rp

ti
o

n
 s

e
le

ct
iv

it
y 

(α
) 

Trp selectivity(α) 

qt (mg/g) D Trp

qt (mg/g) L Trp

0

2

4

6

8

10

12

0

5

10

15

20

25

A
d

so
rb

e
d

 H
is

 (
m

g/
g)

 

So
rp

ti
o

n
 s

e
le

ct
iv

it
y 

(α
) 

His selectivity(α) 

qt (mg/g) D His

qt (mg/g) L His

0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

16

A
d

so
rb

e
d

 P
h

e
 (

m
g/

g)
 

So
rp

ti
o

n
 s

e
le

ct
iv

it
y 

(α
) 

Phe 
selectivity(α)  

qt (mg/g) D Phe



247 

 

247 

 

In summary, the polysaccharide composite materials developed here have shown 

promising potential application in chiral separations. Preliminary results with 4 different 

amino acids show that racemic mixtures can potentially be resolved by selective 

adsorption of the L enantiomer in about 96 to 120 hrs for the 100%CS composite 

material. The mechanism of the selective adsorption is still not clear at this point as 

attempts to use pseudo 1
st
 order and pseudo 2

nd
 order models were not successful. CS 

composites alone seem to have better selectivity for  Trp and Tyr than the TCD-doped 

composites.  

4.5. Encapsulation of fullerene derivatives into polysaccharide composite 

materials 

 

A fullerene is any molecule composed entirely of carbon, in the form of a hollow 

sphere, ellipsoid or tube. Spherical fullerenes are also called buckyballs, and the 

cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar in 

structure to graphite, which is composed of stacked graphene sheets of linked hexagonal 

rings; but they may also contain pentagonal (or sometimes heptagonal) rings. 

In recent years, the chemical and physical properties of fullerenes have been a hot 

topic in the field of research and development, and are likely to continue to be for a long 

time. In April 2003, fullerenes were under study for potential medicinal use: binding 

specific antibiotics to the structure to target resistant bacteria and even target certain 

cancer cells such as melanoma. The October 2005 issue of Chemistry & Biology contains 

an article describing the use of fullerenes as light-activated antimicrobial agents.
22
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Mashino et al. reported on the antibacterial and antiproliferative activity of cationic 

fullerene derivatives.
23

 Aoshima et al. evaluated the antimicrobial activity of fullerenes 

and their hydroxylated derivatives.
24

 Nakamura and Mashino reported on the biological 

activity of water soluble fullerene derivatives while an interesting study on the 

antibacterial activity of cyclodextrins against Bacillus strain has been reported.
25,26

 In the 

field of nanotechnology, heat resistance and superconductivity are some of the more 

heavily studied properties. 

Due to its interesting properties and potential for application in various 

commercial and medical devices, fullerene derivatives were doped into our 

polysaccharide composite materials. Two types of fullerene derivatives were used in this 

study; polyhydroxy fullerene and N-ethyl polyamino fullerene. The structures of these 

two derivatives are shown in Figure 4.19 below: 

 

 

Figure 4.19: Structures of the fullerene derivatives used.  
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The synthesis and characterization of the polysaccharide composites used in this study is 

described in detail in Chapter 2. After preparing the composites as described in Chapter 

2, the fullerene derivatives were encapsulated into 100%CEL, 100%CS, [CEL:γ-TCD] 

and [CS:γ-TCD] composites by adsorption from an aqueous solution of the respective 

derivative. Adsorption procedure used for the fullerene derivatives is similar to that 

described in Chapter 3 for pollutants, with the exception that for the fullerene derivative, 

aqueous solutions of approximately 1.0 x 10
-4

M were used. The results of the adsorption 

process by the different composites are shown in Figure 4.20. The pseudo second order 

fitting parameters for this adsorption process are shown in Table 4.5. It is clear from the 

results in Figure 4.20 and Table 4.5 that for all composites the amount of Polyhydroxy 

fullerene adsorbed is higher than the corresponding N-ethyl polyamino fullerene amount 

at this particular concentration (~1.0x10
-4

M). 
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Figure 4.20: Adsorption of Polyhydroxy fullerene (top) and N-ethyl polyamino 

fullerene by 4 different composites. 
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Table 4.5: Pseudo second order sorption parameters for the adsorption of fullerene derivatives by 4 different 

composites.  

 

  Pseudo-second order sorption parameters 

    Polyhydroxy fullerene   N-ethyl-polyamino fullerene 

  

qe, expt 

(mg/g) 

qe 

(mg/g) Error 

k  

(g/mg Hr-1) Error R2 M.S.C 

qe, expt 

(mg/g) 

qe 

(mg/g) Error 

K 

 (g/mg Hr-1) Error R2 M.S.C 

100%CS 8.17 8.21 1.20 0.036 0.016 0.9969 5.6 6.51 6.51 0.58 0.022 0.004 0.9942 5.1 

50:50 CS:γ-

TCD 10.83 11.58 0.07 0.016 0.003 0.9997 8.1 6.44 6.40 0.31 0.019 0.001 0.9914 4.6 

100%CEL 1.24 1.21 0.26 0.535 0.288 0.9981 6.1 1.54 1.55 0.18 0.348 0.005 0.9987 6.7 

50:50 

CEL:γ-TCD 0.59 0.57 0.32 0.849 0.262 0.9924 5.0 0.96 0.94 0.33 0.301 0.142 0.9882 4.2 
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Another interesting feature that is illustrated in Figure 4.20 is that when the composites 

were soaked in water after the adsorption experiment, both the polyhydroxy fullerene and 

the N-ethyl polyamino fullerene were easily washed off from the CEL and the [CEL:γ-

TCD] composites. However, these fullerene derivatives could not be washed off the CS 

and [CS:γ-TCD] composites.  

Further analysis of the adsorption of the polyhydroxy fullerene and the N-ethyl 

polyamino by the 4 different composites was done using the Intraparticle diffusion 

model.  The results are shown in Figure 4.20A (for 100%CS and [CS:γ-TCD]) and Figure 

4.21B (for 100%CEL and [CEL:γ-TCD]). The intraparticle diffusion model fitting 

parameters are shown in Table 4.6. As illustrated, the adsorption profiles for these 2 

fullerene derivatives by the 4 composites can be divided into approximately 2 regions. 

There is an initial rapid adsorption, followed by a gradual slower adsorption. The fact that 

there are multi-linear regions in the Intraparticle diffusion profiles for these composites is 

indicative of several adsorption mechanisms taking place. 

Thermodynamic isotherm experiments were carried out for the 100%CS and 

[CS:γ-TCD] composite materials using procedures described in Chapter 3 for 

chlorophenols. The thermodynamic sorption isotherm parameters are shown Figure 4.22 

and in Table 4.7. The results indicate that these 2 composites have relatively high 

sorption capacities for both derivatives. As expected, the [CS:γ-TCD] composite showed 

higher capacity than the 100CS for the 2 derivatives. While the qmax for N- ethyl 

polyamino fullerene is higher than that of polyhydroxy fullerene for 100%CS composite, 

the qmax for the 2 derivatives for the [CS:γ-TCD] composite are almost the same.  
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Figure 4.21: Intraparticle diffusion plots for 100%CS(top) and [CS:γ-TCD] 

composites for the sorption of fullerene derivatives.  
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Figure 4.22: Intraparticle diffusion plots for 100%CEL(top) and [CEL:γ-TCD] 

composites for the sorption of fullerene derivatives
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Table 4.6: Intraparticle diffusion parameters for the sorption of the fullerene derivatives by 4 different composites.  

 

  Polyhydroxy C60   N-ethyl polyamino C60  

  ki1 Error R
2
 ki2 Error R

2
 ki1 Error R

2
 ki2 Error R

2
 

100CS 2.628 0.141 0.9857 0.388 0.017 0.9880 1.557 0.063 0.9902 0.319 0.009 0.9950 

CS:γTCD 2.541 0.060 0.9950 0.185 0.037 0.8656 1.416 0.062 0.9888 0.329 0.004 0.9987 

100CEL 0.563 0.043 0.9771 0.055 0.010 0.8806 0.726 0.053 0.9792 0.036 0.001 0.9922 

CEL:γTCD 0.192 0.014 0.9745 0.004 0.002 0.2759 0.215 0.012 0.9766 0.055 0.004 0.9776 
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Figure 4.23: Comparison of qmax values from the langmuir fit  
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Table 4.7: Thermodynamic isotherms parameters 

 

100%CS 

  Langmuir Isotherm parameters Freundlich isotherm parameters D-R isotherm parameters 

 

qmax 

(mg/g) 

kL 

(L/mg) R
2
 n kF (mg/g)(L/mg)

1/n
 R

2
 

qmax 

(mg/g) 

β  

(mmol
2
J

-2
) 

E 

(kJ/mol) R
2
 

Polyhydroxy C60  40.8 0.0062 0.9618 2.9 3.26955 0.9926 34.8 0.0035 12.0 0.8074 

 N-ethyl polyamino C60  75.1 0.0008 0.9911 1.5 0.34349 0.9852 33.9 0.0130 6.2 0.9212 

  CS:γ-TCD: Polyhydroxy C60 Isotherms 

  Langmuir Isotherm parameters Freundlich isotherm parameters D-R isotherm parameters 

 

qmax 

(mg/g) 

kL 

(L/mg) R
2
 n kF (mg/g)(L/mg)

1/n
 R

2
 

qmax 

(mg/g) 

β  

(mmol
2
J

-2
) 

E 

(kJ/mol) R
2
 

Polyhydroxy C60  101.2 0.0005 0.9833 1.4 0.22988 0.9891 44.0 0.0429 3.4 0.9661 

 N-ethyl polyamino C60  103.4 0.0006 0.9918 1.4 0.28141 0.9901 45.9 0.0281 4.2 0.9598 
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From the fitting to Dubinin–Radushkevich isotherm model, the mean free energy E 

values of the sorption process per mole of fullerene derivative are all lower than 8k J/mol 

except for the sorption of polyhydroxy fullerene onto 100%CS which is about 12 kL/mol. 

However, the fitting of this sample was not as good as for the rest of the samples as 

indicated by the lower correlation coefficient. The low mean free energy values suggest 

adsorption by physisorption, which is rather unexpected especially for the γ-TCD 

containing composites.  

The results presented above show that it is possible to incorporated fullerene 

derivatives into our polysaccharide composite materials. While the fullerene derivatives 

were observed to wash off CEL and [CEL+γ-TCD] composites, they were observed to 

remain encapsulated in CS and [CS+γ-TCD] composites upon washing in water. It is 

anticipated that the unique properties of the fullerenes will stay intact in the composites 

hence conferring some chemical and electronic properties that otherwise are not present 

in our polysaccharide composites. 

Taken together, the results of the controlled drug  release using ciprofloxacin as a 

model drug compound and the enantioselectivity observed with Tyr, Trp, His and Phe 

demonstrate the possible wide applicability of our polysaccharide composite materials. 

The ready availability of the starting materials, their recyclable synthesis using a single 

solvent, their improved mechanical and rheological properties achieved by adding 

cellulose and the wide applicability including pollutant adsorption, controlled drug 

release systems and enantioselectivity demonstrated here makes them attractive 

alternatives to synthetic polymers. The ability to encapsulate fullerene derivatives into 

our composite materials is expected to confer some extra and unique chemical and 
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electronic properties that otherwise are not present in our polysaccharide composites. 

These possibilities including antimicrobial studies are already being investigated. 
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Chapter 5. APPLICATIONS OF NEAR INFRARED SPECTROSCOPY 

5.1. Discriminating pulmonary hypertension caused by monocrotaline 

toxicity from chronic hypoxia by Near-Infrared spectroscopy and 

multivariate methods of analysis 

 

5.1.1. Background 

Monocrotaline (MCT) produces pulmonary hypertension and right ventricular  

hypertrophy in rats.
1
 MCT is a pyrrolizidine alkaloid and is present in a variety of plant  

sources including in the seeds of Crotalaria species.
2
 It has been found that a single  

intraperitoneal (ip) injection (60-90mg/kg) of MCT in rats leads to a sustained elevation  

of pulmonary pressure and right ventricular hypertrophy in the subsequent 2 to 3 weeks  

with clinical features that resemble human idiopathic pulmonary hypertension.
3,4

  

Generally, it believed that MCT must undergo hepatic metabolism to some reactive  

metabolites that are subsequently transported to the lungs to induce a pneumotoxic  

response.
1
 MCT appears to require biotransformation in the liver to a reactive species that  

subsequently circulates to the lungs where it initiates a pneumotoxic process.
5,6

 Hepatic  

metabolites of MCT are still yet to be identified, however, the electrophilic  

dehydrogenation product monocrotaline pyrrole has been implied for many years to be  

the ultimate toxin.
7,8

 Also, the exact mechanism by which MCT causes pulmonary  

toxicity is still not completely understood. A technique which can noninvasively detect,  

identify MCT and all of its intermediate(s) and product(s) during its biochemical  

transformation processes is therefore required.  Near-infrared spectroscopy, with its deep 
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 tissue penetration capability (from Near-IR light) and ability to provide chemical  

composition and structure in a sample may be able to provide some useful information in  

the mechanism of MCT toxicity.  

The purpose of this study was to determine if it is possible to synergistically 

combine NIR measurements with multivariate methods of analysis to chemically detect 

and identify, directly on lung tissues, not only MCT but also any alterations on lung 

tissues caused by MCT. 

5.1.2. Materials and Methods 

Samples used were histological slides prepared from lung tissue of rats (Sprague–

Dawley and Fawn-Hooded). These samples were prepared at the Clement J. Zablocki VA 

Medical Center, Milwaukee by Professor Robert C. Molthen. One set of animals was left 

under normal conditions, another was subjected to chronic hypoxia (CH) and the last set 

was given a single subcutaneous injection (60mg/kg) of monocrotaline (MCT) and raised 

in room air. The CH exposure was achieved by housing the animals in chambers 

maintained at 10%  O2. CH is also known to cause PH, but through significantly different 

mechanisms than monocrotaline exposure.  

All rats also had Partial Left Pulmonary Artery Occlusion (PLPAO) surgery in 

which the left pulmonary artery is banded at a fixed diameter approximately 1/3 of its 

normal value. This had the effect of reducing blood flow to the left lung and increasing 

the flow in the right lung. In one set of animals, PLPAO surgery was done on the third 

day after exposure to MCT and in another set, it was done three days before MCT 

exposure.  All the studies were done under approval of the Zablocki VA Medical Center 
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IACUC review board and in compliance with the National Research Council’s Guide for 

the Care and Use of Laboratory Animals.
9
 

After 24-days, the rats were anesthetized with sodium pentobarbital (40 mg/kg, 

imp), heparinized (200 IU/kg) through right ventricular injection and the lungs excised, 

distended and fixed with a 10% buffered formalin solution. The lungs were then paraffin 

embedded, 4 um thick sections were prepared on slides and stained with hematoxylin and 

eosin. The slides were measured without any further treatment. Near-infrared (NIR) 

spectra were taken on the home-built NIR spectrometer based on an acousto-optic tunable 

filter.  This NIR spectrometer has been described in detail in our previous papers.
13-15

  

Unless otherwise stated, each spectrum at a single position in a slide was an average of 

2000 spectra taken at a 2-nm interval from 1300 to 2100 nm. The absorption of each 

sample was measured on 6 different locations. Not only did this increased the sample 

size, but also facilitates determination of variation within a sample. Information on spatial 

distribution of PH in the sample tissues can be obtained by this procedure.  

A total of 180 spectra were obtained for analysis of the right lung. Each of the three 

groups, normal right lung, CH right lung and MCT right lung had 60 spectra.  Out of the 

60 spectra of each group, we used 54 spectra to construct the calibration model, with the 

remaining 6 spectra for unknown.  The left side samples had 20 spectra for each group.  

16 samples from each group were used for calibration leaving 4 samples for unknown. 

Since there was no independent validation set in this analysis cross validation method 

was used. Multivariate analysis was done on the raw spectra without any preprocessing 

using Unscrambler version 9.2 (Camo ASA), similar to the procedures used in previous 

publications. 
13-15
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5.1.3. NIR and FT-IR spectra of tissue samples 

The NIR and FT-IR spectra for normal, CH and MCT treated lung tissue cells are shown 

in Figure 5.1 and Figure 5.2. In NIR the absorption is very small and the spectra for the 

three different samples look very similar. It will be very difficult to distinguish these 

three samples just by inspecting their NIR spectra. 
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Figure 5.1: NIR spectra for normal, CH and MCT treated lung tissue   
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Figure 5.2: FT-IR spectra for normal, CH and MCT treated lung tissue 

 Similarly, the FT-IR spectra of the three samples also look too similar to classify 

the samples just by visual inspection. There are differences in these spectra however 

small, which can be found at many different wavelengths. It is these kinds of differences 

which are well suited for multivariate analysis by chemometric techniques such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS). By applying these 

techniques to the NIR and FT-IR data, it should therefore be possible to distinguish the 

different kinds of tissue cells in Pulmonary Hypertension. 
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5.1.4. Principal Component Analysis 

Principal Component Method of Analysis is very useful when studying the 

relationship between samples and variables. Principal component analysis is a variable 

reduction procedure. It is useful when data has been obtained on a number of variables 

(possibly a large number of variables), and it is believed that there is some redundancy in 

those variables. In this case, redundancy means that some of the variables are correlated 

with one another, possibly because they are measuring the same construct. Because of 

this redundancy, it should be possible to reduce the observed variables into a smaller 

number of artificial variables (called principal components, PCs) that will account for 

most of the variance in the observed variables.  The variables in this case are the NIR or 

FT-IR absorbances of the different samples. A PCA model was therefore used to 

determine if there is any systematic variation in the different types of lung tissue samples 

based on their NIR spectral data. A total of 108 NIR spectra were used for this model, 36 

spectra for each sample type; normal, CH and MCT. The first task was to study the 

variation between the different groups; that is whether the samples can be separated into 

their respective groups.   

All the sample types were from the right side of the lung. Figure 5.3A shows the 3D 

scores plot obtained from this model for the first three components; i.e., (principal 

components) PCs 1, 2 and 3. Scores plot describe the data structure in terms of sample 

patterns, it can therefore be used to study differences and similarities among samples.
16

 

As illustrated, the samples are not randomly scattered.  Rather they systematically fall 

into 3 nearly distinct groups corresponding to the sample types.  The normal samples are 
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relatively well separated from the other two groups.  This distinction is clearly illustrated 

in Figure 5.3B which is a line plot of the sample scores along PC 3.  It can be seen from 

Figure 5.3B that along this PC, most normal samples have positives scores while the CH 

and MCT samples have negative scores. This clearly indicates that PCA can distinguish 

normal samples from PH samples. However some degree of overlap was observed 

between the CH and MCT samples. This is expected since both of these sample groups 

have pulmonary hypertension, only to a different degree. The results clearly demonstrate 

that different lung tissue samples can be classified into their respective groups by use of 

the PCA method to analyze their NIR spectra. 
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Figure 5.3: PCA 3D scores plot (top) and line plot of the sample scores along PC3 

(bottom). In both graphs, normal samples are in blue, CH in green and MCT in red.  
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The PCA loadings form this model were used to gain insight into the variables 

(i.e., spectral range) that are contributing most to the observed differences. This was 

accomplished by performing a PCA analysis on each sample group separately. Such 

treatment allows the comparison of the PC loading spectra of the different sample types 

which, in turn, make it possible to determine how and in which spectral range they are 

different. PCA loadings describe the data structure in terms of variable correlations. Each 

variable has a loading on each PC, and this reflects how much that variable contributes to 

that PC.  

The PCA spectral loadings for the first 3 components for the analysis of each 

sample group are shown in Figure 5.4. The loading spectra show that the greatest 

variation in the loadings for the different samples occurs in the region 1600 nm to 1800 

nm. This could be the most important spectral region in describing the variation of the 

three sample types. There is no single PC where all the loading spectra for the three 

sample types are all different. However, the CH loading spectrum is clearly different 

from the loading spectra of normal and MCT samples for PC 2 while the MCT loading 

spectrum is clearly different from those of normal and CH for PC 3. These results seem 

to suggest that CH samples can be distinguished from the others using PC 2 while MCT 

samples can be distinguished  from the others along PC 3. 

 

 



271 

 

271 

 

 

Figure 5.4: PCA Loading spectra for PC1 (top), PC2 (middle) and PC3 (bottom). 

Normal (blue), CH (green) and MCT (red)   
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These results indicate that CH produced some alterations in the lungs which can be best 

represented by PC 2 while the alterations of MCT are represented by PC 3.  The results 

also seem to imply that the two conditions, CH and monocrotaline treatment, produce 

somewhat different chemical transformations in the tissues samples.  However, the exact 

nature of these different chemical alterations cannot be deduced from the set of 

experiments and data used in this study. 

5.1.5. Analysis by Partial Least Squares Regression 

In addition to the PCA method described above, PLS method was also used to 

make models that could be used for prediction of unknown samples.  While both methods 

are designed to extract useful information from NIR spectra of the lung tissue samples 

they are not the same, and each method has its own advantages.  Specifically, the PCA 

method is performed on the X data matrix without looking at the correlation between the 

X and Y variables. It is therefore best at studying sample patterns and correlations 

between samples and variables as illustrated by the discussion and results in the previous 

section.  

PLS on the other hand models both the X and Y data matrices simultaneously to 

find the latent variables in X that will predict the latent variables in Y the best. PLS is 

therefore a method of constructing predictive models when the goal is not necessarily on 

trying to understand the underlying relationships between samples and variables or just 

among variables, but just to make prediction of the Y variables from the X variables. 

Since PLS is essentially a regression technique, it was used for predicting unknown 

sample sets into their respective groups. The information obtained from PCA and PLS 
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was highly complementary; with PCA being highly useful in understanding the sample – 

variable relationships among normal, hypoxic and MCT sample groups while PLS was 

useful in predicting unknown samples into their respective groups. PLS-LDA (Linear 

Discrimination Analysis) method was used for the analysis of the samples. In this 

method, the samples are essentially classified into their respective groups before 

performing the PLS model. Samples were classified by assigning them a value of 1 for 

the group to which they belong and a value of 0 for the other groups. Since there are three 

groups, this classification will result in a sample having 3 Y values which allows the use 

of the PLS 2 method. PLS 2 is different from PLS 1 because at least two Y-variables are 

used in the former, whereas only one Y-variable is used in the latter.   

 

 

 

Figure 5.5: Residual validation variance plot from the PLS analysis of NIR spectra 
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The residual validation variance plot for the PLS model is shown in Figure 5.5. 

This shows the amount of variation that the model is able to explain. The y-axis in Figure 

5.5 shows the variance that is still yet to be explained by the model. In PLS and other 

multivariate techniques, variation in a given data set is explained by Principal 

Components (PCs). Components are usually taken to represent sample constituents. 

However, in their broadest sense, components must be understood to be synonymous 

with sources of variation. Any independent source of variation will be represented by a 

component. Even variation due to things like instrument drift or due to different sample 

cells will constitute components in multivariate data. The components are constructed on 

a rank by rank basis where the first principal component is designed to span the greatest 

amount of variation in the data set. The next component spans the greatest amount of 

variation which was not span by the previous component. Each successive component 

continue to span the greatest amount of variation left out by the preceding components. 

This process is continued until all the components have been identified. All the 

components are made orthogonal to each other.  It is clear therefore that each successive 

component will explain lesser and lesser variation. It is therefore the first few 

components which contain the greatest amount of information in the data and this is why 

the components in a residual validation variance plot, represented by bars in Figure 5.5, 

always decrease with each successive component. The first bar (PC 0) shows the total 

amount of variation that must be explained. Successive bars (PCs) show the variance that 

is still to be explained after each PC, hence the name “residual variance”. The variation 

explained by each component will continue to decrease until all the components which 

contain useful information have been identified. Any increase in the residual variance in 
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latter PCs is due to over fitting, when the PCs begin to model noise. The actual number of 

PCs which must be used for any model can be taken to be all those PCs up to the point 

when residual variance stops decreasing. In the above model, the residual variance 

decreases up to PC 12, hence this model has 12 components. Any prediction or 

classification will be based on at most 12 PCs.  

It can be seen from figure 5.5 that the greatest decrease in residual validation 

variance is observed with PC 2 and PC 3. This means that these two PCs can be used to 

account for a great deal of the variation in the samples that were used to make this model.  

The clustering of the samples into their respective groups can be studied by looking at the 

scores plot from this model. On a scores plot, similar samples will appear or cluster 

together.  Since PCs 2 and 3 explains a great deal amount of the variation, a 3D score plot 

was made with for PC 1, PC 2 and PC 3.In the score plot, shown in Figure 5.6, the 

samples were separated into three clusters, and, as expected, these clusters correspond to 

the three different types of lung tissue, namely: normal, MCT and CH. This is similar to 

the clusters observed with PCA. While there are some overlap of a few samples, the fact 

that the samples were separated into three corresponding clusters clearly indicate that 

multivariate analysis of NIR spectra is effective in distinguishing closely related samples 

such as normal, MCT and CH. Both MCT and CH conditions cause hypertension but it is 

more in MCT treated samples where lesions are observed. It is quite possible therefore 

that MCT and CH cells are chemically similar to some extent hence the observed overlap. 

Overlap with the normal samples is due to any other natural similarities found in tissue 

cells, especially when they are from the same organ, like these lung cells. 
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Figure 5.6: Scores plot obtained using PLS 2 –LDA method 

As already explained, the axes in the above scores plot are PC1, PC 2 and PC3.  It 

will be informative if we can determine the physical meaning of these PCs. 

Unfortunately, with the spectral information available now, we can only state that each of 

these PCs represents a single source of independent variation among the samples. It is not 

possible to determine the physical nature of these variations except noting that the MCT 

and CH conditions seem to produce alteration in the tissue such that their NIR signatures 

are different from normal cells. However. looking at the 3D scores plot, it is clear that by 

using NIR measurements and chemometric techniques, we are able to distinguish normal, 

MCT and CH tissue cells on this sample map.  
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5.1.6. Prediction of unknown samples using PLS Models 

Partial Least squares in latent variables (PLS), just like PCA is a factor based 

multivariate technique but goes further than PCA in that PLS finds factors for both the 

spectral and the concentration data sets. So PLS is really a regression technique in which 

we can use the spectral data to predict the concentration data of samples. So by making 

PLS models using NIR and FT-IR data, it should be possible to predict whether a sample 

is normal, MCT or CH.  

To be able to make PLS models, a second set of variables (the Y-variables) is 

needed in addition to the spectral data (the X-variables). Since we are studying 

pulmonary hypertension, the different samples were assigned an arbitrary value of 

hypertension ranging from 0 up to 1, with 0 being the least value of hypertension and 1 

being the highest. Since the greatest amount of hypertension is induced by MCT, all 

MCT samples were assigned a hypertension value of 1 and the normal samples were 

assigned 0 since no hypertension is expected in any normal tissue cells. CH samples, 

which are known to be hypertensive and which are likely to be chemically similar to 

MCT samples were assigned a hypertension value of 0.6.   

It should be noted however that while this assignment of the Y-variables is true in 

principle, it makes the model very rigid. While it is true that the MCT samples have the 

highest amount of hypertension, it might not be very correct to assume that they are all 1 

or to say all normal samples have a hypertension value of 0. There surely should be some 

amount of variation, however small, within each group. Our models have not been able to 

capture this variation. However, this is almost certainly the only information which we 
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truly know about the samples and by using a large calibration set, it is hoped that good 

predictions will be obtained. 

The first PLS model was made with NIR spectra measured from 1300nm to 

2100nm. The calibration set contained about 54 samples for each of the 3 groups i.e. 

normal, MCT and CH. The calibration results from this model are shown below. 

 

 

Figure 5.7: Predicted versus measured plot for the NIR PLS model.  Black line is 

target line, blue and red line are calibration and validation curves, respectively. 

 

The black trend line is the target line, the blue is the calibration curve and the red is the 

validation curve. The validation used in this and all the other models is the full cross 

validation method. Cross validation was used since there was not enough samples to 

make an independent validation set. Cross validation is performed by calculating a 

calibration matrix using all of the calibration samples except one (leave 1 out). The 
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calibration matrix is then used to predict the concentration of the components in the 

sample that was left out. The sum-squared errors between the expected and predicted 

concentrations for this sample are calculated. The procedure is repeated leaving out a 

different sample until all the samples have been computed.  

The NIR model shown in Figure 5.7 has a calibration correlation coefficient of 

about 0.95. This is fairly high considering the rigidity of our model in terms of the Y-

variables and also considering that each slide had to be measured on 6 locations. Just as 

was observed with the scores plot, there is a considerable amount of overlap in terms of 

the predicted values (Y-axis) between the CH and MCT samples. The normal samples are 

better separated from the rest. Also the variation within each group which has not been 

captured by our model is evident here. The validation correlation coefficient is 0.84. The 

models were refined by removing outliers and any X-variables (wavelengths) which had 

relatively small regression coefficients. 
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Figure 5.8: PLS1 Residual Validation Variance of the NIR model 

  The residual validation variance plot for the NIR model is shown in Figure 5.8. 

As illustrated, the residual validation variance decreases up to PC 13. As explained 

earlier, this suggest that 13 PCs are required to account for all the variation in the 

samples. As a result, prediction of unknown samples was done with 13 PCs. There is a 

larger decrease in residual variance on PC 3, which was also observed with PLS-LDA 

model (Figure 5.5). This suggests that this PC contains a significant amount of 

information which can be used to explain the variation in normal, CH and MCT treated 

samples. 

The above model was used to predict a set of normal, CH and MCT samples 

measured in the same NIR region. The set contained 18 samples, 6 from each group. The 

prediction results with their deviation is shown in Figure 5.9 below. 
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Figure 5.9: Prediction of a set of ‘unknowns’ with the NIR model 

 

In making the model, all MCT samples were assigned a hypertension value of 1, normal 

samples were assigned 0 and CH samples were given 0.6. So any sample predicted to be 

around these values is taken to be belonging to these respective groups. The actual 

sample groups are indicated below each prediction result along the x axis. The first 6 

samples were all normal samples, second 6 were CH and last 6 were MCT samples. As 

can be seen from Figure 5.7, all normal samples are predicted to be close to 0, the 

hypoxic samples also appear around 0.6 and the MCT samples are around 1. 
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Figure 5.10: Root Mean Square Error of Prediction for the NIR Model 

 

 Figure 5.10 shows the Root Mean Square Error of Prediction (RMSEP) for the 

NIR model. The RMSEP is shown for each component (PC) and it decreases with the 

components because each successive PC explains less and less variation and hence the 

error also decreases. Just like the residual variance, the error also decreases up to PC 13, 

which is the number of components the model requires to explain the variation in the 

samples. The average RMSEP for this model with 13 PCs is 0.296. The results in Figure 

5.9 show that it is possible to distinguish normal cells, CH and MCT treated cells using 

NIR measurements. Using this model, it was possible to correctly predict most of the 

unknown samples. Of course the results show that the samples do not all lay in a perfect 

line at the expected value. This will be expected since there should be some degree of 

chemical variation in any given tissue sample. 
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5.1.7. Prediction with the FT-IR Model 

Another model was made using the same samples but the measurements were 

done on a FT-IR spectrophotometer from 4000 cm
-1

 to 2000 cm
-1

. Since the samples were 

histological slides stained on glass measurements could not be done below 2000 cm
-1

 

because of intense absorption which is most likely due to the glass. The predicted vs. 

measured plot of the FT-IR model is shown below. 

 

 

Figure 5.11: Predicted vs. Measured plot for the FT-IR model. Black- target line, 

blue- calibration curve and red- validation curve.  
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It can be seen from Figure 5.11 above that the calibration correlation coefficient is high 

and is the same as for the NIR model (0.95). However, the validation correlation 

coefficient in this model is much higher (0.91) than in the NIR model (0.84). This seems 

to suggest that the FT-IR model is more effective in modeling the variation found in the 

normal, CH and MCT treated tissue cells. The residual variance of this model, shown in 

Figure 5.12 below, shows a decrease in the residual variance up to PC 11. Each PC seems 

to be explaining just about an equal amount of variation, unlike in the NIR model where 

some PCs explained a greater amount of variation than others.  

 

 

Figure 5.12: Residual Validation variance of the FT-IR model. 
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Figure 5.13: Predicted with deviation for the FT-IR model. 

The FT-IR model was used to predict the same set of unknown samples used for the NIR 

model. The results of prediction are shown in Figure 5.13. Just like with the NIR model, 

it is possible to predict almost all of the samples into their respective groups. However, 

due to the overlap between these groups of samples, some samples which are expected to 

belong to a particular group appear slightly different. This could be an indication that 

tissue cells, especially cells from unhealthy organs, are not chemically homogeneous. For 

example if a sample is hypertensive due to MCT treatment, it does not necessarily result 

in all the tissue cells being bad or sick. There are some locations within the tissue that 

remain good or some that are affected to a lesser extent than others. The normal samples 

that appear slightly above the normal level could really be just outliers resulting from the 

many measurements that were done on a single slide. It is possible that on measuring 
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multiple times on a single slide, there are chances that one can measure an area which is 

not a true representative of the whole sample, and the result is that this measurement will 

appear different from the others. 

The FT-IR model was shown to have better correlation than the NIR model. 

However, as illustrated by Figures 5.9 and 5.13,the prediction with the FT-IR model is 

not as good as that of the NIR model. RMSEP for FT-IR model was found to be 0.302 

compared to 0.296 for the NIR model. This could be explained by understanding both the 

calibration and prediction steps in PLS. As explained earlier, calibration is done on a rank 

by rank basis. This means regression coefficients for the spectral data are calculated for 

each component. The prediction step is also done on a rank by rank basis using pairs of 

spectral and concentration factors or components. The projection of the unknown spectra 

onto the individual components is calculated and the overall projection is obtained by 

summing the contributions of the individual components.  It therefore should follow that 

when the individual components do not explain much of the variation as in FT-IR model 

(Figure 5.12), the prediction will not be as good. The individual components in the FT-IR 

model do not contain as much information as those of the NIR model even though the 

total explained variance is larger for the FT-IR model. The better prediction of NIR 

comes therefore from the fact that there are components which contain much information 

that explains much of the variation in the samples. FT-IR does not have such individual 

PCs with a lot of information about the differences in the samples. 
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5.1.8. Analysis of the Left side samples 

The samples used to make all the models discussed above and the models that will 

follow were made from rat (Sprague-Dawley) lungs which had been subjected to normal, 

CH and MCT conditions. In addition to this, the animals also had Partial Left Pulmonary 

Occlusion (PLPAO) surgery done on them. This surgery had the effect of reducing blood 

flow to the left lung while increasing blood flow in the right lung. The right lungs, which 

received increased blood flow, have been observed to have increased structural changes 

reflecting Pulmonary Vascular Remodeling (PVREM) which is associated with 

hypertension. On the other hand, structural changes were reduced in the left lungs that 

had reduced blood flow. 

NIR and FT-IR analysis was applied to see if the right lung can be distinguished 

from the left lung by analyzing the spectral data of these samples. The NIR and FT-IR 

models as described in the previous sections could not be used to predict the left side 

samples because these samples were not part of the calibration of these models. So new 

models were made from the NIR and FT-IR measurements but including the left side 

samples. To simplify the models, the hypoxic samples were left out of the new models. 

Just as in the first models, the normal right side samples and the MCT right side samples 

were assigned hypertension values of 0 and 1 respectively. The normal left side samples 

were also assigned 0 because these animals were not subjected to any hypertensive 

condition.  The MCT left side samples are known to have reduced blood flow and hence 

reduced PVREM. These were therefore assigned an intermediate hypertension value of 

0.5. The calibration results of the two models are shown in Figure 5.14 and 5.15 below. 
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Figure 5.14: Predicted vs. Measured for the NIR MCT model    

       

 

 

Figure 5.15: Predicted vs. Measured for the FT-IR MCT model 
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Figures 5.14 and 5.15 show the NIR and FT-IR calibration models that include the left 

side samples respectively. Calibration correlation coefficients are high for both the NIR 

and FT-IR models. Just as the case in the previous models, the FT-IR model has a 

superior validation correlation coefficient (0.97) compared to the NIR model (0.84). The 

Root Mean Square Error of Prediction for the FT-IR model was 0.276 while that of the 

NIR model was 0.483. The variation within each group is significantly smaller in the FT-

IR model than in the NIR model, and as a result the prediction of the FT-IR model is 

better for these samples than with the NIR model. It could be because the absorption of 

the samples in NIR was very small as compared to IR hence it was difficult for the model 

to clearly distinguish closely related samples. 

  

 

Figure 5.16: Prediction of the MCT left side samples with the NIR model.  
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Figure 5.17: Prediction of the MCT left side samples with the FT-IR model. 

The results of prediction with the two models are shown in Figure 5.16 and 5.17. 

Both the NIR and FT-IR models show the same trend, that the left side samples are not as 

bad as the right side samples. The left side samples still shows some signs of 

hypertension because even though the blood flow was reduced, metabolites of MCT can 

still get to this side of the lung because the blood flow was not completely blocked. The 

FT-IR model is particularly good in predicting the left side samples. Figure 5.16 and 

figure 5.17 show the normal left side samples appearing just like the normal right side 

samples. This will be expected since these samples were not exposed to any hypertensive 

conditions. This shows again that it is possible to distinguish normal (healthy) tissue cells 

from sick (unhealthy) cells using NIR and FT-IR in conjunction with chemometric 

methods of analysis. 
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5.1.9. Pre-PLPAO samples 

For all the results described above, the animals had Partial Left Pulmonary Artery 

Occlusion (PLPAO) surgery done on them first, and then on the third day they were 

exposed to the different conditions, which are normal, CH and MCT. From the MCT 

model with the left side samples, we have seen that decreased blood flow to the left side 

reduces the extent of hypertension which occurred in the cells. It will be interesting to see 

if there is going to be any significant change in the effect of surgery, if it is done a few 

days after exposure to the different conditions. So instead of doing the surgery first, the 

rats were subjected to normal, CH and MCT conditions and on the third day the rats had 

PLPAO surgery done on them. The experiment was continued as before and both NIR 

and FT-IR models were created for these samples. Sample types, pre-PLPAO and post-

PLPAO were included in the model. 

 

 

Figure 5.18: Scores plot for the NIR model 
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Figure 5.18 shows the scores plot of the NIR model that includes the pre-PLPAO MCT 

samples. As we move up PC 3 on the left part of the map, we can clearly see the 

separation of the three groups of samples. We encounter normal samples first, followed 

by MCT samples and finally hypoxic samples. This PC can be said to contain most of the 

information that has to do with the difference among the three groups of samples. On the 

right side of the map, there is greater overlap among the samples especially the MCT and 

CH samples. This is not much surprising especially the overlap between MCT and CH 

because these samples could be chemically similar. And again like in the previous NIR 

models, the greatest separation is in the direction of PC 3, which might imply that it is 

this PC that carries most of the information that explains the chemical differences found 

in normal, CH and MCT samples. It should also be noted that there is no clear systematic 

separation of the pre-PLPAO MCT samples from the rest of the MCT samples on this 

scores plot. This is an indication that there is no much difference between pre-PLPAO 

and post-PLPAO surgery in the MCT samples. 

The NIR model had a calibration correlation coefficient of 0.89 and the validation 

coefficient was 0.77. The RMSEP for this model is 0.232. This model was used to predict 

the pre-PLPAO and post-PLPAO MCT samples. The results of which are shown in 

Figure 5.19 below. 
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Figure 5.19: Prediction of pre-PLPAO and post-PLPAO MCT right side samples 

with NIR model. 

 

Most of the samples appear close to 1 which is expected of MCT samples. The first 5 

samples in Figure 5.19 had surgery before exposure to the different conditions (post-

PLPAO), and the remainder of the samples had surgery on the 3
rd

 day of exposure (pre-

PLPAO). As can be seen, there isn’t any significant difference between these samples. 

This shows that pre-PLPAO and post-PLPAO will basically lead to the same amount of 

hypertension and they are chemically indistinguishable too.  Four of the post-PLPAO 

samples were from rats of a different species (Fawn Hooded) and it shows here that there 

is no difference in the way these animals respond to the different conditions. 
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Figure 5.20: Prediction of pre-PLPAO and post-PLPAO MCT right side samples 

with the FT-IR model 

  

An FT-IR model was created and used to predict the same sample used above for the NIR 

model. The results of prediction are shown in Figure 5.20. Similar to the NIR model, 

most samples appear around 1 in the FT-IR model and there is not much difference 

between the post-PLPAO samples and the pre-PLPAO samples. The pre and post-

PLPAO MCT left side samples were also predicted using the FT-IR model, and the 

results are shown in Figure 5.21. 

 

 



295 

 

295 

 

 

Figure 5.21: Prediction of PLPAO MCT left side samples using the FT-IR model. 

 

As illustrated, most of the samples lay around 0.5. This is what is expected of the left side 

samples since there is decreased blood flow to this side of the lung as a result of the 

PLPAO surgery. This is another indication that indeed the PLPAO surgery mitigates the 

PVREM that is caused by hypertensive conditions. Another important observation that is 

made from Figure 5.21 is that there seem not to be any significant difference between the 

pre-PLPAO and post-PLPAO samples. This is in agreement with observation made with 

the MCT right side samples described above.  

 In summary, multivariate  analysis of NIR and IR spectral data was able to 

distinguish between normal and hypertensive tissue cells. The normal, hypoxic and MCT 

samples were clearly separated on PLS scores plots. Using NIR and FT-IR PLS models, 

it was possible to successfully predict normal, hypoxic and MCT samples into their 

respective groups. In addition, NIR and FT-IR PLS models were able to distinguish MCT 

left side samples which received low blood flow, from MCT right side samples which 
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had high blood flow, thereby confirming that PLPAO surgery mitigates PVREM in lungs. 

Both NIR and FT-IR PLS models showed that PLPAO surgery before and after exposure 

to different hypertensive conditions will generally lead to the same amount of 

hypertension in the animals. 
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5.2. Determination of Chemical Homogeneity of Polymeric Nanocomposite 

Materials by Near-Infrared Multispectral Imaging Microscopy 

 

5.2.1. Background 

Multispectral Imaging Microscopy 

 A multispectral imaging spectrometer is an instrument that is able to 

simultaneously record spectral and spatial information about a sample.
10–14

 Unlike 

conventional imaging techniques, which rely on recording a single image using either 

single or multiwavelength light for illumination, the multispectral imaging technique 

records a series of several thousand images, each image at a specific wavelength (spectra 

of images).  That is, it measures absorption spectra of a sample not at a single position, as 

is the case for a conventional spectrophotometer, but simultaneously at many different 

positions within a sample (by using a focal plane array detector rather than a single 

channel detector).
10–14

 Chemical composition and structure at different positions within a 

sample can be elucidated from such images. A novel near-infrared multispectral imaging 

(NIR-MSI) microscope that employs an acousto-optic tunable filter (AOTF) for rapid 

spectral tuning and a microscope for higher spatial resolution was previously developed 

in our lab.
11–13,15,16

 This NIR-MSI system was used in the current studies to determine 

chemical homogeneity of polymeric composite materials. 
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5.2.2. Materials and Methods 

The NIR images were measured using a NIR microscope imaging system that is 

based on an acousto-optic tunable filter with a  liquid N2 cooled, 320x256 pixel indium 

antimonide (InSb) focal plane array camera (Santa Barbara Focal Plane, Goleta, CA) as 

the detector. This system has a resolution of about 0.93m. Polyethylene (PE) polymer 

films to which undecenoic acid (a C-11 carboxylic acid) intercalated Mg-AL Layered 

Double Hydroxide (LDH) has been added were used as the samples. These samples had a 

loading of about 20% w/w of the LDH. Images of the samples at different locations were 

recorded using the NIR microscope imaging system in the region 1400 nm up to 2600 nm 

at 2 nm intervals with 1ms exposure time. Since the polymer films were relatively thin, 

the measurements were easily done in the transmission mode.  

NIR spectra for the samples were calculated from these images for this entire 

range using an in-house programme. ImageJ was used to calculate the absorption images 

at the wavelengths of interest. 3D surface plots at these wavelengths were also calculated 

using ImageJ. Some of the results were further analyzed using MATLAB software 

package. 

5.2.3. Chemical inhomogeneity of polymeric composite materials 

Figure 5.22 shows the NIR absorption spectra of polyethylene (PE) films to which 

different amounts (% w/w) of the Magnesium-Aluminum Layered Double Hydroxide 

(Mg-Al LDH) intercalated by undecenoic acid (a C-11 carboxylic acid) has been added. 

This LDH was added to improve the flame retardant properties of the polyethylene. The 
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NIR spectrum of a pure polyethylene film is also shown in the same figure. It is evident 

from this figure that the broad absorption band observed around 1950 nm is due to the 

added LDH, and the absorption increases linearly with the amount of LDH added. This 

linear relationship is clearly illustrated in Figure 5.23. The absorption band at around 

1758nm is due to the polyethylene substrate and as expected, it does not change 

significantly for the different composites as PE is the major constituent of these 

composites.  
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Figure 5.22: NIR absorption spectra of PE films loaded with different amounts of 

Mg-Al LDH 
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Figure 5.23: Absorbance of PE films with different amounts of Mg-Al LDH at 

1950nm. 

 

Based on the results in Figures 5.22 and 5.23, it should be possible to use NIR absorption 

measurements for both qualitative and quantitative analysis of chemical compounds in 

the polymer films. Ultimately therefore, if the NIR image of the ‘doped’ polymer film at 

1950nm is obtained, the absorbancies at different pixels in the image should correspond 

to the amount of the chemical species being measured at that wavelength, at different 

locations of the sampled area. This means NIR micro spectroscopy can be used as a tool 

to quickly identify and even quantify small isolated contaminants or localized areas on a 

large sample. By studying the absorption pattern in the image, information can be 

obtained about the dispersion or the distribution of the additive in the polymer film. This 

ultimately leads to information about the heterogeneity of the polymer film. 
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To gain an insight into the dispersion of the undecenoic acid intercalated Mg-Al 

LDH flame retardant in polymer films, the NIR imaging system was used to record 

images in the region 1400 nm to 2600 nm. Figure 5.24 shows the NIR spectrum of a 

polymer film with 20% by weight of the LDH, calculated from the images obtained by 

this system. This spectrum is similar to the one obtained with the conventional NIR 

spectrophotometer which is shown in Figure 5.22. The other bands observed at around 

1758 nm and 2316 nm are due to the PE substrate. 
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Figure 5.24: Absorption spectrum of a 20% sample calculated from the images 

measured on the NIR microscope imaging system.  
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Having established from figure 5.22 that the C-11 carboxylic acid intercalated 

LDH is responsible for the absorption band observed at 1950nm, absorption images were 

calculated at this wavelength. Different absorbancies at different pixels would mean 

different concentration of the LDH additive at different sample locations, which 

ultimately means inhomogeneity in the sample. However, considering the Beer’s Law: 

 

A = bC    (5.1) 

 

where A is the absorbance,  is the molar absorptivity, b is sample thickness and C is the 

concentration, it means that in addition to the amount of the LDH additive at any given 

location, the absorbance is also affected by the molar absorptivity of the species being 

measured and also the sample thickness. Since only the LDH additive absorbs at the 

wavelength being used (1950nm),  is the same for each pixel and hence is a constant in 

equation 5.1. However producing films with uniform thickness is not easily achievable. 

As a result it is necessary in the analysis of these NIR images to take into account the 

possibility of having different film thickness at different locations of the polymer in the 

image area. A simple method was devised for the elimination of the effect of film 

thickness in the calculation of the final absorption images.  

This method is based on taking the absorbance ratio at two different wavelengths. 

The first wavelength is the wavelength of maximum absorption of the LDH additive 

(additive) and the second wavelength is for the absorption of the polymer substrate 
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(substrate). Based on the spectrum in Figure 5.24, 1950nm was chosen as additive  while 

substrate was chosen to be 2316nm. Taking the absorbance ratio at the two wavelengths: 

          
           

                            
                              

     (5.2) 

If it is assumed that for these relatively thin films, at any given location, the additive 

spans the whole z-axis (thickness) of the film, it means badditive and bsubstrate are equal. 

Hence equation 5.2 reduces to: 

          
           

                   
                    

       (5.3) 

Realizing that additive and substrate are constants for the additive and substrate respectively, 

equation 5.3 is further reduced to equation 5.4 below: 

          
           

  
         
          

      (5.4) 

Where K is just the ratio of the molar absorptivities for the additive and substrate. The 

implication of equation 5.4 is that taking the ratio of two images at additive and substrate 

gives the relative ratio of the additive to the polymer substrate at any given location of the 

polymer film in the image. 

Figures 5.25A shows images taken at different sample positions for a 

polyethylene film to loaded with 20% by Mg-Al LDH. The images show the relative ratio 

of the LDH additive to the polymer substrate at each location (given by x-y coordinates) 

as calculated according to equation 4 above. Different values are plotted as different 

colors according to the scale on the color bar shown on the right of each image. The 

results show that the ratio ranges between 0.25 (green color) up to 0.55 (blue color). This 
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implies that the additive is not uniformly distributed or dispersed in the polymer. Clearly, 

there are some areas where there is high concentration of the LDH additive which appear 

blue as compared to most of the area which appears green. This kind of heterogeneous 

distribution of the LDH additive within the polymeric phase is important because it 

directly influences the physical and chemical properties of the material. The extent of this 

heterogeneity is also somewhat different for different locations on the film.
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Figure 5.25: Distribution of the relative ratio of LDH additive to polymer substrate 

(scaled by a factor K = λadditive/λsubstrate)  in 20% LDH films 
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As illustrated in Figure 5.25, there are some areas which show less heterogeneity as 

compared to the distribution pattern shown in Figure 5.25. Due to this inhomogeneity, 

chemical and physical properties of such a material would not be expected to be uniform 

and would therefore affect its usefulness in such fields as engineering. 

 Figure 5.26A and 5.26B show the 3D absorption surface plots for the polymer 

substrate at 1758 nm (top plot) compared to the distribution of the additive as calculated 

according to equation 4 (bottom plot). In both figures, the 3D plots for the polymer 

substrate at 1758 nm shows much less inhomogeneity when compared to the 

corresponding 3D plots for the additive. In these 3D plots, sample locations with higher 

absorbance (and hence higher concentration) will appear as peaks or ‘mountains’. The 

number and size of peaks and ‘mountains’ in the 3D plots show the extent of 

heterogeneity of the material. For both figures shown in Figure 5.26, the number of peaks 

and ‘mountains’ are markedly less and lower for the polymer substrate than for the LDH 

additive. Some sharp peaks which appear in the 3D plots for the polymer substrate are a 

result of bad pixels of the camera. Nevertheless, the 3D plots at the absorption 

wavelength for the polymer substrate are mostly smooth whereas those of the additive 

have numerous spiky peaks indicating that indeed the LDH additive is not 

homogeneously distributed in the polymer film. 

The distribution of any chemical species in a polymeric material will depend on 

such factors as diffusion, permeability, nature of the polymer and compatibility with the  
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Figure 5.26A: 3D surface plots for the polymer film at 1758 nm (top) and for the 

image showing the distribution of the additive at 1950 nm (bottom).   
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Figure 5.26B: 3D surface plots for the polymer film at 1758 nm (top) and for the  

image showing the distribution of the additive at 1950 nm (bottom). 
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polymer. Generally, a hydrophilic inorganic additive such as a LDH is 

thermodynamically incompatible with a more apolar organic polymer phase. As a result, 

it means it is difficult in practice to manufacture a polymer in which an additive is evenly 

dispersed throughout the material. This could be one of the major contributors to the 

heterogeneity that was observed here. If a polymer substrate consist of both crystalline 

and amorphous regions, the additive is likely to be more concentrated in the amorphous 

regions leading to inhomogeneous distribution of the additive. More homogeneous 

distributions can be achieved if both the permeability of the polymer and the diffusion of 

the additive in the polymer are high. Inhomogeneity can also be a result of incomplete 

mixing of the additive and the polymer during blending at sample preparation stage. 

Simple absorption images were also calculated for the 20% LDH PE film. From 

these absorption images, 3-D surface plots of absorbance at 1950 nm of the sample as a 

function of its dimension can be obtained.  The result is shown in Figure 5.27A where 

units for x, y and z axes of the plot are pixel, pixel and absorbance at 1950 nm, 

respectively with one pixel corresponding to 0.93 m, and the color of the plot denotes 

different absorbance at 1950 nm with scale shown in upper right-hand. For comparison, 

3-D plot of a sample of pure PE polymer sample taken at the absorption of the C-H group 

at 1750 nm is also shown in Figure 5.27B.  As described above, absorbance at 1950 nm 

of doped PE sample is related to concentration of added LDH whereas absorbance at 

1750 nm of pure PE sample corresponds to its concentration or rather its thickness.  As 

illustrated, the 3-D image shown in Figure 5.27B is not smooth but has some contours 

which indicate that the PE film does not have the same microscopic thickness over its 

entire surface.  This is hardly surprising considering the fact that the film was prepared  
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Figure 5.27: 3-D absorption images taken at (A) 1950 nm of a polyethylene sample 

doped with 20% MgAl-C11LDH, and (B) at 1750 nm of pure PE film.  Units for x,y 

and z axes are pixel, pixel and absorbance at 1950 nm and 1750 nm, respectively 

(one pixel corresponds to 0.97µm)  
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using a mechanical hot plate.   Substantial differences in the absorbance at 1950 nm were 

observed for the PE sample doped with 20% LDH.  Because the absorbance differences 

observed here is much larger than those observed for PE sample at 1750 nm, they cannot 

be account solely due to the difference in the thickness of the sample.  Rather they are 

due mainly to the differences in distribution of added LDH compound.  That is added 

LDH is not homogeneously distributed over the entire the PE polymer film.   

5.2.4. Chemical inhomogeneity of polysaccharide composite materials 

 The NIR-MIS was used to study the chemical distribution in a [CEL+CS] 

composite film. This polysaccharide composite film was prepared according to 

procedures described in Chapter 2. As described above, studying absorption images at 

specific wavelength is susceptible to errors arising from differences in film thickness at 

different sample locations. This is even more complex in the case of two polymers mixed 

together. As a result, a different approach was used to visualize the chemical distribution 

of the compounds in the cellulose and chitosan composite materials. 

 In this new approach, chemical composition was visualized by studying the 

absorption spectra as a function of sample location. This means the absorption at each 

wavelength is plotted for each pixel along an axis on the image. It is anticipated that by 

looking at the whole spectrum, more information will be obtained from the sample than 

just looking at the absorption at a specific wavelength. Figure 5.28 is one such plot of a 

cellulose/chitosan composite sample. 
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Figure 5.28: NIR absorption spectra at different locations for a [CEL+CS] 

composite film  

 

The absorption band that appears around 1500 nm is mainly due to OH of both chitosan 

and cellulose. The NH band of chitosan appears as a shoulder on this same OH band such 

that the two bands appear merged together in the above plot. However, there are areas 

where this band appears to be broader than in most areas. This is an indication that the 

NH band of chitosan is more intense in that area of the sample. Therefore, it seems that 

chitosan is not uniformly distributed in the sample. However, this chemical 

inhomogeneity is not so much since for those areas that are different, the absorption band 

is only slightly broader than in most areas. 
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 In summary, we have demonstrated for the first time that the NIR-MSI 

microscope can be successfully used to determine microscopic concentration distribution 

of LDH compound added to a polymer film.   Use of LDHs with nonpolar polymers such 

as poly(ethylene) is known to be a challenging system for obtaining good 

nanodispersion.
17

 Having the ability to monitor dispersion (chemical homogeneity) on the 

micron length scale will provide an excellent complement to other methods of 

characterization.  NIR-MSI offers the possibility of examining more chemically complex 

systems, such as those containing mixtures of additives.   
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