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ABSTRACT 
THE DOMINANT ROLE OF THE HIP IN MULTIJOINT REFLEX RESPONSES  

IN HUMAN SPINAL CORD INJURY 
 

Tanya Onushko, B.S., M.S. 

Marquette University, 2011 

Following a spinal cord injury (SCI), people often experience exaggerated 
reflexes, such that mild provocations can cause prolonged and uncontrolled muscle 
activity throughout the entire leg. These reflexes can be problematic and are known to 
interfere with functional tasks, such as transferring to and from a wheelchair, and they 
may interfere with locomotor function by prolonging muscle activity and/or 
inappropriately activating muscles during attempts to walk. While these multijoint 
reflexes have been shown to originate from several afferent cues, hip afferent input is a 
particularly potent sensory signal that readily triggers multijoint reflexes. The overall 
objective of this dissertation was to understand the role of hip sensory cues and the 
potential mechanisms associated with multijoint reflex behavior in human SCI. To 
evaluate this, a custom-built robot was used to impose movement of the legs about the 
hip joint. Joint torque and muscle activity were used as quantitative measures of reflex 
activity in SCI subjects. The findings from this suggest that the mutability of reflexes 
triggered by hip-mediated sensory signals is reduced. Voluntary effort and stretch-
sensitive sensory feedback impart weak signals that do not significantly alter multijoint 
reflex patterns. Additionally, reflex behaviors presented with a distinct temporal response 
that has been associated with the disregulation of voltage-dependent depolarizing 
persistent inward currents (PICs). These results further elucidate the underlying 
mechanisms associated with hyperexcitable multijoint reflexes to help guide 
rehabilitation techniques for controlling unwanted muscle activity and for increasing 
functional gains in human SCI.   
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1.1 INTRODUCTION 

According to the National Spinal Cord Injury Statistical Center (NSCISC 2010), 

approximately 262,000 Americans are living with potentially debilitating neurological 

deficits that develop after spinal cord injury (SCI). Despite advances in treatment and 

rehabilitation after SCI, most of the SCI population is regarded as having less than 

functional motor skills. Among the multitude of complications that arise following SCI, a 

common problem that develops is spastic motor reflex behaviors. A range of stimuli, 

such as changes in body posture, temperature or light touch, can initiate involuntary 

muscle activity throughout the legs. If severe enough, these aberrant reflexes impact 

routine activities of daily living, such as transferring or independent dressing, with the 

potential danger of falling out of a wheelchair (Little et al. 1989). Moreover, these 

reflexes are likely to interfere with walking by prolonging or inappropriately activating 

muscles. Since most injuries occur before the age of 40, and the percentage of individuals 

diagnosed with incomplete SCI is rising, it is important to increase functional outcomes 

in SCI to increase quality of life. 

 The scope of this dissertation was to further understand how unwanted reflex 

behaviors interact with supraspinal and sensory feedback. This chapter discusses spastic 

motor behaviors in human SCI, with a focus on extensor spasms, modulation of reflexes 

by the central nervous system (CNS), and potential mechanisms that have been 

associated with involuntary reflex activity often observed in chronic SCI. 
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1.2 SPASTIC REFLEXES IN SPINAL CORD INJURY 

1.2.1 Spasticity in Chronic SCI 

 Spasticity is a disabling condition that develops within a variety of neurological 

disorders, including SCI, and affects approximately 65-78% of SCI patients (Maynard et 

al. 1990). The defining characteristics of spasticity are frequently related to the definition 

set by Lance (1980) that states: “Spasticity is a motor disorder characterized by a 

velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated 

tendon jerks, resulting from hyperexcitability of the stretch reflex, as one component of 

the upper motor neurone syndrome”. In a clinical setting, the spastic syndrome is often 

characterized by exaggerated short-latency reflexes and muscle hypertonia. The enhanced 

reflex activity was thought to be responsible for the increased tone, which leads to the 

spastic movement disorder (Dietz 2002). However, since there are many features of the 

upper motoneuron (UMN) syndrome, there are likely to be other changes to the CNS that 

affect movement in SCI, which presents challenges to spasticity management during 

rehabilitation. 

Over recent years, the use of the term spasticity has posed concern since the 

accepted definition does not always support clinical observations. First, several studies 

have reported that clinical examination in patients who were thought to have spasticity 

have no signs of hyperreflexia (Sinkjaer et al. 1993; Shindler-Ivens and Shields 2004). 

These reports of increased muscle tone were attributed to structural changes in the muscle 

that was related to contracture (Sinkjaer et al. 1993). Thus, a change in muscle properties, 

and not only hyperreflexia, has been argued to result in the spasticity seen in patients 
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(Gracies 2005a, b). Second, the term ‘spasticity’ is often used interchangeably with 

‘Upper Motor Neuron Syndrome’ in the clinical setting (Ivanhoe and Reistetter 2004). 

The spastic syndrome is often clinically characterized by exaggerated reflexes and 

hypertonia, but various clinical signs of the UMN syndrome, such as clonus, spasms, and 

hyperreflexia, which do not necessarily share a common pathophysiology with one other, 

have often also been attributed to spasticity. Lastly, differences in spasticity in patients 

with different lesion sites, such as stroke or cerebral palsy, suggests that reflex 

mechanisms other than hyperexcitable stretch reflexes are responsible for spastic muscle 

behavior in SCI (Burne et al. 2005; Engsberg et al. 2000; Schmit et al. 2000). As a result, 

it is important to understand the nature of the spastic condition following a neurological 

injury in order to accurately prescribe interventions. 

 
 
1.2.2 Spastic Motor Behaviors 

 Three distinct types of spastic reflexes can evolve after SCI: clonus, flexor spasms 

and extensor spasms (Benz et al. 2005) with differing mechanisms underlying each type. 

Clonus is a rhythmic, involuntary contraction between agonist and antagonist muscles in 

distal joints (Gottlieb and Agarwal 1977). After SCI or stroke, for example, increased 

motoneuron excitability causes instability of the stretch reflex at distal joints, such that 

when a stretch reflex is elicited, there is an ensuing self re-excitation of spinal 

motoneurons in the pathway causing rhythmic oscillations about a single joint (Hidler 

and Rymer 1999; Rossi et al. 2003). Flexor and extensor spasms are unique in that they 

generate coordinated responses across multiple joints. Flexor spasms consist of 

coordinated flexion of the legs across the joints and are typically triggered by tactile, 
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nociceptive or stretch-related afferents (Schmit et al. 2000; Shahani and Young 1971). 

While flexor spasms in SCI likely result from a reorganization of the common flexion 

reflex pathway (Deutsch et al. 2005; Shahani and Young 1971), the neural organization 

of extensor spasms has been less clear, although they can be readily initiated through hip-

mediated sensory feedback (Schmit and Benz 2002; Steldt and Schmit 2004).  

Clinical observations on individuals with SCI noted that hip sensory cues could 

readily trigger bilateral leg extension when patients shifted from a sitting to supine 

position (Macht and Kuhn 1948; Little et al. 1989). These observations were later 

supported by experimental findings. Controlled unilateral leg extension movements in 

SCI subjects result in a characteristic pattern of hip flexion, knee extension and ankle 

plantarflexion (Schmit and Benz 2002). Moreover, Schmit and Benz (2002) were also the 

first to document a specificity of extensor spasms to imposed hip movements. Quickly 

bringing the leg in the opposite direction, into full hip flexion, resulted in slightly 

different responses, constituting hip extension, knee flexion and ankle plantarflexion. 

Dynamic stretching of hip muscles can also coordinate muscle activity throughout the leg 

in SCI subjects. The reflex responses triggered by continuous sinusoidal oscillations 

about the hip joint yielded alternating flexion and extension muscle activity patterns that 

were timed with the speed of imposed movement (Steldt and Schmit 2004). Furthermore, 

information from hip sensory cues of the contralateral leg are integrated with multijoint 

reflex amplitude, such that moving the legs in an anti-phase pattern (180º out of phase), 

similar to locomotion, amplifies reflex output (Onushko and Schmit 2007).  

In addition to hip sensory cues, multijoint reflex activity can originate from knee 

proprioceptors and ankle load afferents. Rapid extension of the knee joint will cause a 
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stereotypic pattern of hip flexion, knee extension and ankle plantarflexion (Wu et al. 

2005). However, reflex amplitudes are greater if the hip is in an extended posture versus 

a flexed posture, suggesting that hip proprioceptors still influence the multijoint reflexes. 

Ankle load afferents are also a trigger of multijoint reflex activity. Rapid ankle 

dorsiflexion when the hip is in an extended posture produces reflex patterns that resemble 

those triggered from hip extension movement alone (Wu and Schmit 2006). From the 

aforementioned studies, extensor reflexes are likely attributed to the activation of 

complex, organized interneuronal networks rather than hyperexcitable stretch reflexes 

that appear with spasticity. 

 

 
1.3 MODULATION OF REFLEX ACTIONS 

1.3.1 Muscle Afferent Feedback  

In normal control of movement, reflexes are modulated through sensory feedback 

during motor tasks to provide appropriate reactions in response to task demands. For 

instance, the strength of the stretch reflex in the ankle modulates over different phases of 

the step cycle, presumably to provide resistance to unexpected perturbations, 

compensation for ground irregularities, and stabilization of the limb (Capaday and Stein 

1987; Kearney et al. 1999; Sinkjaer et al. 2000; see review by Zehr and Stein 1999). In 

humans, the soleus H-reflex excitability is larger during the stance phase than during the 

swing phase of walking (Capaday and Stein 1986; Crenna and Frigo 1987; Kearney et al. 

1999; Yang et al. 1991). In particular, Sinkjaer et al. (2000) investigated the mechanisms 

that were responsible for altered soleus EMG excitability. Muscle lengthening of the 
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plantarflexors was abruptly prevented during the stance phase, causing an unloading of 

the limb that resulted in a short latency drop in soleus EMG activity. The short latency 

implied spinal pathways are affected and that sensory feedback from muscle afferents is 

responsible for modulating reflexes at the ankle during walking. Similarly, proprioceptive 

feedback in response to unpredictable acceleration perturbations applied while walking 

on a treadmill modulate ankle muscle activity through stretch reflex pathways (Dietz et 

al. 1987), further demonstrating the mutability of reflex actions compensating for 

changes in walking conditions.  

Observations of reflex modulation in muscles of the hip have also been examined 

in human walking. For instance, tendon jerk reflexes of the hamstrings muscle were 

shown to have motion-dependent feedback on the phases of the gait cycle (Van de 

Crommert et al. 1996). Rapid stretch of the hamstrings during early stance elicits the 

highest stretch reflex amplitude, which is thought to aid control of deceleration of hip 

flexion and knee extension at the end of swing (Van de Crommert et al. 1996). 

Furthermore, analogous reflex modulation of the quadriceps tendon jerk reflex is 

observed during human treadmill walking as well (Dietz et al. 1990; Larsen et al. 2006). 

The quadriceps tendon reflex, elicited by a motorized tendon reflex hammer, shows 

decreased reflex excitability during the early stance phase of gait. Functionally, the 

quadriceps help to support body weight during the early portion of stance for which in the 

case of ground irregularities, the increased reflex gain would likely prevent yielding of 

the knee.  
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1.3.2 Hip Afferent Feedback 

Stretch-sensitive feedback from hip muscles has been established as a critical 

proprioceptive input for locomotor circuits within the spinal cord. Hip motion has been 

shown to be the controlling signal in the rhythmic generation of central pattern generators 

(CPGs) (Andersson and Grillner 1983, see review by Kiehn 2006). CPGs are 

fundamental neural circuits located within the spinal cord that coordinate and generate 

rhythmic and complex muscle activation patterns during locomotor behaviors, such as 

walking (Andersson and Grillner 1983; Forrsberg et al. 1980; Grillner and Zangger 1979, 

for review see Kiehn 2006). CPGs in the mammalian spinal cord are distributed within 

the lumbar segments to control muscles of the hindlimb during locomotion (Grillner and 

Zangger 1979). Specifically, rostral lumbar segments are believed to behave as the ‘lead 

oscillator’ for generating rhythmic hindlimb movement and entraining CPGs of knee and 

ankle muscles during locomotion (Kiehn 2006). Furthermore, stretch-sensitive feedback 

from muscles of the hip is necessary for controlling phase transitions during walking. The 

transition from stance to swing occurs when the hip is extended beyond a critical angle in 

the step cycle (Andersson and Grillner 1983; Grillner and Rossignol 1978; Pang and 

Yang 2000); although limb unloading has also been shown to be essential for swing 

initiation (Conway et al. 1987; Duysens and Pearson 1980; Gossard et al. 1994; Pang and 

Yang 2000; Pearson et al. 1992). In spinalized cats stepping on a treadmill, preventing 

the limb from reaching hip extension terminates stepping in that limb, while extending 

the limb beyond a critical angle induces a flexion burst to initiate swing (Grillner and 

Rossignol 1978). In the decerebrate cat preparation (a preparation in which descending 

cortical information is removed so as not to influence motor patterns) the importance of 
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hip afferent feedback is further supported. Several studies have demonstrated that stretch-

sensitive hip proprioceptive feedback resets or entrains alternating flexor and extensor 

patterns during fictive locomotion, with bursting activity from the flexor motoneuron 

synchronized with hip extension (Andersson and Grillner 1983; Kriellaars et al. 1994; 

Hiebert el al. 1996). Similar responses to those observed in decerebrate or spinal cats 

have also been described in human walking. For example, during supported walking in 

human infants, pulling the leg back into extension aids in initiating hip flexion for swing, 

while preventing the leg from extending delays the swing phase (Pang and Yang 2000). 

Together, the aforementioned studies provide strong evidence that sensory feedback from 

the hip shapes the pattern of muscle activity by reflex pathways to motoneurons and 

contributes to the activation of muscles in an on-going manner. 

 

1.3.3 Supraspinal Influences on Spinal Excitability 

 In healthy individuals, spinal reflexes are modulated via brainstem pathways as 

well as through direct corticospinal input to inhibitory or excitatory interneurons to 

simplify motor control during voluntary movements (Iles and Pisini 1992). For example, 

Sherrington and Hering (1897) provided an early demonstration of supraspinal control 

over simple reflex pathways. In primates, they were able to electrically stimulate the 

motor cortex to cause muscle contraction of one muscle while showing simultaneous 

active inhibition of the antagonist muscle. Using transcranial electrical stimulation of the 

motor cortex in humans, Iles and Roberts (1987) demonstrated that the soleus 

motoneuron receives a short-latency inhibition in addition to a second, long-lasting 

inhibition during voluntary contraction, where the second inhibitory effect is attributed to 
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presynaptic mechanisms. Furthermore, Hultborn et al. (1987) were able to show 

supraspinal pathways have selective control over presynaptic inhibition of Ia terminals. 

At the onset of a voluntary contraction, the contracting muscle has decreased presynaptic 

inhibition, whereas increased presynaptic inhibition was seen in motoneurons of relaxed 

muscles, suggesting that cortical input aids with selective activation of movements by 

changing stretch reflex gain in accordance with the task requirements. Other studies have 

also demonstrated that transmission of cortical signals through the corticospinal tract is 

modulated during walking in humans (Capaday et al. 1999; Pertersen et al. 1998, 2001). 

For instance, Petersen et al. (2001) demonstrated that a weak transcranial magnetic 

stimulus could impede corticospinal contributions to EMG activity in leg muscles during 

walking in humans, which they largely attributed to inhibition of corticomotoneuronal 

cells. The role of descending input on spinal networks is important for proper control of 

voluntary movements. Lesions to the corticospinal tract can result in abnormal control of 

movement and/or a reorganization of reflex pathways (Bareyre et al. 2004; Brunnstrom 

1970; Dietz et al. 2009; Hultborn 2003; Valero-Cabre et al. 2004). 

 

 
1.4 POTENTIAL MECHANISMS OF INVOLUNTARY REFLEX    

ACTIVITY AND SPASMS AFTER SCI 
 

1.4.1 Fusimotor Drive 

 In the early 1960s it was popular belief that increased fusimotor drive, leading to 

increased muscle spindle sensitivity, contributed to exaggerated spastic stretch reflexes 

and increased muscle tone in patients with spasticity (Rushworth 1960). It was thought 
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that the increased muscle tone observed in human spasticity shared the same mechanism 

as that seen with decerebrate rigidity from experiments done on cats (Burke 1983); 

however, factors such as the lack of suppression over inhibitory reflex pathways in 

addition to fusimotor overactivity have been shown to play a role in decerebrate rigidity 

(Rymer et al. 1979).  Early investigation of the influence of fusimotor overactivity in 

spasticity has shown that there is an increase in the stretch reflex amplitude compared to 

its electrical analogue, the H-reflex, which suggested that muscle spindle sensitivity was 

not a contributing factor to the responses (Ashby and Verrier 1976). Studies using 

microneurography, a technique that provides direct recording from muscle Ia afferents 

(Hagbarth and Vallbo 1968), have shown that there is no change in muscle spindle 

afferents in people with spasticity, further suggesting that fusimotor drive does not 

heavily contribute to spastic reflexes (Hagbarth et al. 1973; Wilson et al. 1999). 

 

1.4.2 Reciprocal Inhibition from Ia Afferents 

In patients with SCI, an increase in the excitability of reflex pathways is often 

seen and is thought to be due to the disruption of descending control over spinal 

inhibitory interneurons. As mentioned previously, excitatory input from descending 

pathways, such as corticospinal, rubrospinal and vestibulospinal tracts can actively excite 

spinal inhibitory interneurons (Crone and Nielsen 1994; Hultborn et al. 1987; 

Yanagisawa and Tanaka 1978). The reciprocal Ia inhibitory pathway, for example, 

receives input from descending and segmental afferents. In healthy individuals, this 

pathway ensures that the antagonist muscle remains relaxed during activation of the 

agonist muscle at the onset of voluntary movement (Crone et al. 1987; Crone and Nielsen 
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1994). However, in patients with spasticity, reduced reciprocal inhibition may contribute 

to the development of hyperexcitable reflexes as a result of diminished descending input. 

Several studies have reported a reversal of this normal relationship, in which the 

antagonist muscle is excited giving rise to the term “reciprocal facilitation” (Crone et al 

2003; Myklebust et al. 1982; Xia and Rymer 2005). Crone et al. (2003) were able to 

show that in SCI patients a short latency facilitation of the soleus H-reflex was present, 

rather than the inhibition reported in healthy controls, and further demonstrated that the 

increased reflex activity of the ankle positively correlated with antagonist facilitation. 

This suggested that reduced reciprocal Ia inhibition was a likely cause of hyperreflexia 

often observed in spastic patients. However, Xia and Rymer (2005) posed a different 

rationale for reciprocal facilitation observed in ankle muscles. They suggested that reflex 

facilitation was a consequence of reflex pathway reorganization due to neuronal 

sprouting, in which pre-existing excitatory pathways can overpower inhibitory ones, as 

shown in animal models (Jankowska and McCrea 1983; Lundberg et al. 1977) and 

implicated in reflex facilitation observed in cerebral palsy (Myklebust et al. 1982).  

 

1.4.3 Recurrent Inhibition 

Impaired modulation of recurrent inhibition in the absence of full descending 

control has also been investigated in spastic patients. Recurrent inhibition, mediated by 

Renshaw cells, provides negative feedback signals to motoneurons of the contracting 

muscle and facilitates, through disinhibition, motoneurons of the antagonist, thereby 

helping to stabilize motoneuron firing rates during muscle contraction. This spinal 

mechanism is also modulated through descending motor pathways including 
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recticulospinal and corticospinal tracts (Mazzocchio and Rossi 1997; Rossi et al. 1992). 

While recurrent inhibition is impaired during voluntary movements in patients with upper 

motoneuron disease (Katz and Pierrot-Deseilligny 1982), in traumatic SCI there have 

been reports of increased recurrent inhibition (Katz and Pierrot-Deseilligny 1982). 

However, it is generally thought that impaired modulation of recurrent inhibition does not 

have a role in spasticity, and its functional consequences on control of movement are 

unclear (Nielsen et al. 2007).  

 

1.4.4 Multisegmental Reflexes 

Involuntary, multisegmental reflexes affecting the hip, knee and ankle are also 

thought to result from the loss of supraspinal control. The flexion withdrawal reflex has 

been shown to be under strong supraspinal influence in mammals (Baldissera et al. 1981), 

supported by observations in which the flexor reflex is facilitated in spinalized 

preparations and is suppressed in the decerebrate preparation (Rothwell 1994). In human 

SCI, group II, III and IV muscle afferents, joint mechanoreceptors and cutaneous 

receptors can elicit flexion reflexes, resulting in characteristic reflex patterns of hip and 

ankle flexion (Schmit et al. 2000, 2002). Since supraspinal centers receive input from 

those afferents via ascending tracts, it is thought that the disruption of this input can lead 

to a disregulation of the response to peripheral stimuli (Baldissera et al. 1981). Similar to 

flexion reflexes, extensor reflexes can be elicited through cutaneous stimulation 

(Hagbarth 1960) as well as stretch-sensitive input (Schmit and Benz 2002; Wu et al. 

2005). The exact mechanisms of extensor spasms are still unclear, but it is thought that 
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extensor reflexes, similar to flexion reflexes, are inappropriate manifestations of existing 

spinal pathways (Burke 1988).   

 

1.4.5 Plateau Potentials 

 Motoneuron excitability is largely regulated through brainstem derived 

neuromodulatory input. Specifically, serotonin (5-HT) and norepinephrine (NE) strongly 

regulate intrinsic motoneuron excitability (Hounsgaard et al. 1988; Lee and Heckman 

1999). They allow the motoneuron to create sustained depolarizations (i.e. plateau 

potentials) (Perrier and Hounsgaard 2003), that arise from slow activating voltage-

dependent persistent inward Na+ and Ca2+ currents. Persistent inward currents (PICs) give 

motoneurons active membrane properties by allowing sustained motoneuron firing in the 

absence of direct synaptic inputs from supraspinal origins or sensory afferents, and aid in 

amplification of excitatory synaptic currents (see review by Heckman et al. 2008). 

Plateau potentials and the associated PICs are thought to be functionally important for 

motor control by allowing the motoneuron to steadily fire without constant descending 

input (Hounsgaard et al. 1988). 

Injury to the spinal cord results in the immediate paralysis of the muscles 

innervated by the motoneurons that are located below the injury site. In the rat SCI 

model, disruption of 5-HT and NE neuromodulators derived from supraspinal centers 

contributes to the loss in motoneuron excitability, along with the loss of PICs, thereby 

decreasing motoneuron excitability so greatly such that minimal reflex activity is seen in 

response to strong inputs (Bennett et al. 1999, 2004; Miller et al. 1996). However, despite 

the continued absence of 5-HT and NE months post-injury, PICs redevelop and reacquire 
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amplitudes as large as or larger than those observed previous to spinal injury (Bennett et 

al. 2001, 2004). Moreover, the depolarizing actions of PICs have been shown to be 

difficult to terminate after injury due to alterations in inhibitory input (Boulenguez et al. 

2010), leading to excessive motoneuron firing. For example, in the chronic spinalized rat, 

brief, innocuous afferent stimulation will produce vigorous responses throughout the tail 

muscles that last several seconds after removal of the stimulus (Bennett et al. 1999, 2001, 

2004). This timely reemergence of PICs with involuntary spasms in chronic SCI suggests 

that PICs may contribute to the long-lasting reflex responses observed in chronic SCI.  

Similar long-lasting reflex behaviors occur in human SCI, further implicating the 

idea that PICs play a central part in spasms. In human SCI, the onset of involuntary 

muscles spasms often takes weeks to develop, paralleling the time course of hyperreflexia 

and simultaneous reemergence of PICs shown in animal SCI models (Bennett et al. 

2001). PIC-like properties have also been observed in muscle spasms in human SCI. For 

example, spontaneous and self-sustained firing of motoneurons during muscle spasms 

continues for seconds to minutes after the stimulus in humans with chronic SCI (> 8 

months) (Gorassini et al. 2004). Studies done by Hornby et al. (2003, 2006) have also 

provided evidence that abnormal PIC behaviors are likely to be involved with muscle 

spasms in SCI subjects. In addition to self-sustained motoneuron firing, PIC behavior can 

manifest in a phenomenon called windup, in which brief trains (< 4-6 s) of stimuli to the 

motoneuron progressively facilitate motoneuronal excitability (Bennett et al. 1998). This 

time-dependent facilitation in motoneuron output from repeated electrical stimulation 

(Hornby et al. 2003) or stretch-mediated (Hornby et al. 2006) input is observed in 
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hyperactive flexion and stretch reflexes, exhibiting a similar time constant of windup 

observed in spinal neurons of animals with PICs (Bennett et al. 1998).  

 

 
1.5 SPECIFIC AIMS 

1.5.1 AIM 1: Effects of Volitional Effort on Multijoint Spastic Reflexes of the Legs during 
Assisted Bilateral Hip Oscillations in Human Spinal Cord Injury 

 

The purpose of this study was to investigate whether volitional commands affect 

spastic reflex behaviors during single-joint ‘assist’ movements in clinically incomplete 

SCI subjects. Bilateral hip oscillations were imposed to the legs of 10 SCI subjects, while 

the subjects were asked to either assist the movements or remain relaxed during the 

imposed movements. Joint torque and electromyogram (EMG) measurements were used 

to compare activity patterns during the voluntary-assisted movements and reflex 

responses to the imposed hip oscillations. Additionally, 10 neurologically healthy 

subjects completed the same protocol, and their torque and EMG recordings were 

compared to those of the SCI subjects. We hypothesized that the timing of torque and 

EMG patterns during voluntary-assisted movements in SCI subjects would resemble 

spastic reflex activity during the passive hip motion, suggesting that spastic reflex 

activity determines motor coordination in SCI. 

 
 
 
 
 
 
 



 17

1.5.2 AIM 2:  Bilateral Hip Oscillations Modulate Reflex Responses in Human Spinal 
Cord Injury 

 

In this study, we investigated whether stretch-related sensory feedback from 

muscles at the knee or ankle joints would modulate spastic reflex activity during imposed 

hip oscillations. To test interactions of hip-mediated reflexes and reflexes from other 

joints, patellar tendon perturbations (knee sensory feedback) and vibration of the Achilles 

tendon (ankle sensory feedback) were applied during different phases of imposed hip 

oscillations (i.e. during hip flexion or hip extension). Joint torque and EMG recordings 

were compared to a control condition in which no sensory perturbation was applied. We 

hypothesized that hip sensory cues would dominate spastic reflex activity patterns, and 

sensory feedback from the knee and ankle would have little effect on multijoint reflex 

patterns.  

 

1.5.3 AIM 3:  Bilateral Oscillatory Hip Movements Induce Windup of Multijoint Lower 
Extremity Spastic Reflexes in Chronic Spinal Cord Injury 

  

 In the last experiment, we sought to identify a potential underlying mechanism 

associated with prolonged, involuntary muscle spasms. We investigated whether windup 

behavior would be observed in multijoint reflexes during imposed hip oscillations. We 

hypothesized that a non-linear increase in joint torque and EMG amplitude would 

increase during successive hip oscillations, implicating a role for persistent inward 

currents in spasms. 



 
 
 
 

CHAPTER 2 
 

Effects of Volitional Effort on Multijoint Spastic Reflexes of 
the Legs during Assisted Bilateral Hip Oscillations 

 in Human Spinal Cord Injury  
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2.1 INTRODUCTION 

Following spinal cord injury (SCI), people often experience exaggerated reflexes 

such that mild sensory provocations can cause prolonged and uncontrolled responses in 

muscles deficient of voluntary control. These reflexes are associated with spastic motor 

behaviors, which include clonus, flexor spasms, and extensor spasms, and these 

behaviors are common complications that evolve in chronic SCI (Benz et al. 2005). 

Particular to SCI, extensor spasms occur more frequently than other spastic motor 

behaviors, with prevalence in 82% of individuals with SCI (Little et al. 1989). 

Additionally, extensor spasms are readily initiated through hip afferent input, such as 

shifting from a sitting to supine position (Little et al. 1989; Macht and Kuhn 1948) or by 

extension of the leg (Schmit and Benz 2002). These spastic reflexes can be particularly 

disabling by interfering with intended movement plans, such as transfers (Sköld et al. 

1999).  

The extent to which spasms or other hyperexcitable reflex behaviors interfere 

with volitional movement after SCI is largely unknown. After SCI, it has been reported 

that there is a reduction of spinal inhibitory mechanisms due to a weakened cortical drive 

that may contribute to hyperexcitable reflexes (Crone et al. 2003; Heckman 1994). In the 

case of incomplete spinal injuries, residual supraspinal signals likely exhibit limited 

influence over motor unit recruitment leading to poor motor selection and reduced 

neuronal activation levels during intended movements (Dimitrijevic et al. 1984; Maegele 

et al. 2002). Further, active ankle dorsiflexion movements can produce undesired 

activation of the antagonist plantarflexors, although the effects vary by the nature of the 
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injury and recovery (Corcos et al. 1986). In a similar manner, isokinetic movements using 

a motor to impose motion to a joint during ‘active assist’ results in increased activation of 

antagonist muscles in people with stretch reflex hyperexcitability (Knutsson et al. 1997; 

Lum et al. 2004). Similar changes in SCI could contribute to the loss of specificity of 

volitional movements, increased co-contraction and multijoint reflex responses. Because 

many elements may be involved with impaired motor output in SCI, investigating how 

spastic reflex behaviors affect voluntary movements will aid rehabilitative approaches for 

enhancing functional motor coordination in human SCI.  

In order to test spinal reflexes in people with SCI, single joint movements are 

often applied using a motorized robotic apparatus and measuring the subsequent joint 

torque or muscle activity.  For example, imposed joint movements can produce undesired 

stretch reflex activation of the antagonist muscles, although the effects vary by the nature 

of the injury and recovery (Burke et al. 1970; Corcos et al. 1986). Single joint movements 

can also trigger multijoint reflex responses resembling flexor or extensor spasms in 

people with SCI (Schmit et al. 2000; Schmit and Benz 2002; Wu et al. 2005). 

Interestingly, measurements of spastic reflexes have focused primarily on circumstances 

in which subjects are instructed to relax, making it difficult to determine whether these 

hyperexcitable reflexes might be suppressed by voluntary effort.  In stroke survivors, 

isokinetic movements using a motor to impose motion to a joint during ‘active-assist’ 

have been tested, with results indicating increased activation of antagonist muscles in 

people with stretch reflex hyperexcitability (Knutsson et al. 1997; Lum et al. 2004). We 

postulated that similar effects might occur during active-assist tasks in people with SCI. 

Effects could involve stretch reflexes, as observed in subjects with stroke, as well as 
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multijoint reflexes, such as those that underlie flexor and extensor spasms. Such 

impairments in reflex regulation could contribute to loss of specificity of muscle 

activation during volitional movements. 

In the current study, we measured muscle activity and joint torque patterns during 

single-joint ‘assist’ movements in clinically incomplete SCI study participants. Ten 

individuals with motor incomplete SCI were asked to either assist robot-controlled, 

bilateral sinusoidal hip oscillations or to remain relaxed during the imposed movements. 

Responses from SCI subjects were compared to neurologically intact subjects completing 

the same tasks. We expected the timing patterns would differ between SCI and 

noninjured controls.  Further, we hypothesized that muscle activity and joint torque 

patterns during ‘assist’ movements would resemble patterns produced under passive 

conditions in chronic SCI subjects. Similarities between the patterns of EMG and torque 

measurements during ‘assist’ movements and reflex responses to imposed hip movements 

would signify that spastic reflexes affect volitional motor coordination following SCI.  

 A preliminary account of this work has been previously published in abstract 

form (Onushko and Schmit 2008).  
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2.2 METHODS 

2.2.1 Study Participants 

Ten subjects with chronic SCI (mean age: 40.2 yrs) participated in this study. All 

SCI participants had motor incomplete injuries (American Spinal Cord Injury Association 

(ASIA) Classification C or D) with a cervical (6 subjects), thoracic (3 subjects) or lumbar 

(1 subject) level of lesion.  At the time of this study, four of the ten subjects were taking 

antispastic medication (baclofen) to reduce the frequency and intensity of their spasms. 

The clinical features of each subject are described in Table 2-1. Additionally, ten study 

participants (age range: 23-54 yrs; mean age: 34 yrs) with no reported neurological 

damage were recruited for this study as control subjects. Exclusion criteria for this study 

included: motor complete injury, significant medical complications due to skin 

breakdown, urinary tract infection, other secondary infections, respiratory failure, 

heterotopic calcification, or other concurrent illnesses limiting the capacity to conform to 

study requirements, significant osteoporosis, or the inability to give informed consent. 

Informed consent was obtained prior to study participation and all procedures were 

conducted in accordance with the Helsinki Declaration of 1975 and approved by the 

Institutional Review Board of Marquette University. 
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Table 2-1 Subject Clinical Characteristics 

S1 T2 C 8.4 / 7.5 70 3 Baclofen, Gabapentin, Ditropan, Imipramine, Sanctura, Botox
S2 T12 C 9.0 / 3.7 27 4 Oxybutinin, Metoprolol
S3 C5-6 C 61.1 / 74.6 41 25 None
S4 C5-6 C 31.4 / 55.9 40 23 None
S5 C5-6 C 33.1 / 55.2 43 17 Baclofen, Detrol, Darvocet
S6 C6 D 2.6 / 4.9 26 4 Ditropan XL

S7 C6-7 D 76.8 / 97.7 48 23 None

S8 T6-7 D 8.3 / 8.1 57 7 Baclofen,  Morphine Sulfate, Gabapentin, Nefazodone, 
Escitalopram Oxalate

S9 L2 D 14.4 / 5.4 35 4 Triptolite, Baclofen
S10 C3 D 9.7 / 10.0 55 3 Baclofen, Gabapentin, Oxybutinin, Duloxetine HCL

* Neurological injury level: C = cervical; T = thoracic; L = lumbar
†Peak flexion torque / peak extension torque

Time Post 
Injury (yr) MedicationsSubject Age 

(years)Injury Level* ASIA 
Score

Passive Hip 
Torque (Nm)† 

 

 

Manual muscle testing (MMT) was used to evaluate the relative muscle strength 

of SCI subjects to establish general motor function under volitional effort. Scores were 

given between 0 (no perceivable muscle contractile activity) and 5 (limb position was 

maintained with full resistance through complete joint range of motion). Half scores (i.e. 

+ or -) were given to graded muscles (Kendall 1983). All tests were completed by a 

licensed physical therapist prior to beginning the experiment. Subject specific 

information is provided in Table 2-2. During manual muscle testing, four subjects (S3, 

S4, S5 and S7) in particular demonstrated strong reflex responses (i.e. spasms). As a 

result, MMT scores ≥ 3 may reflect the subject’s volitional control of muscle contraction 

in combination with spastic reflex activity. Additionally, subjects S8 and S10 could 

ambulate independently with the use of a standard walker while all other participants 

were independent with manual wheelchair propulsion. All subjects were independent 

with transfers.  
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Table 2-2 Manual Muscle Test Scores Left (L) and right (R) leg manual muscle test scores for 
each SCI subject. 
 

Subject L R L R L R L R L R L R L R
S1 0 0 0 1 0 0 0 1 0 4 0 3+ 0 4
S2 2- 0 2- 0 0 0 0 0 0 0 0 0 0 0

S3* 3 3 4 4- 4 4- 4 4+ 4 4+ 4 3+ 3 4
S4 1 1 1 2- 0 0 1 1 2 2 0 0 1 1
S5 NA NA 1 1 NA NA NA NA 1 2 1 3 1 1
S6 0 4+ 0 4 NA NA 0 4 0 5 0 4 0 5

S7* 3 4- 3- 3- 3+ 3- 3- 3 4 3 3+ 2- 2 2
S8† 3+ 4+ 3+ 4- 4 4 4 4- 4+ 4+ 4+ 4+ 4 4
S9 0 4- 3+ 4- 5 3+ 2- 3- 3- 5 0 4 2- 4+

S10† 3- 3- 3- 3- 3 3 3+ 3+ 5 5 5 5 4- 4+

†Subjects ambulated with the aid of a walker.

*From observation, subjects presented with spasticity. Manual muscle test scores (>3) may 
reflect spastic responses in addition to volitional effort.

Knee 
Extensors

Dorsi-
flexors

Plantar-
flexors

Hip 
Adductors

Hip    
Flexors

Hip 
Extensors

Knee 
Flexors

 

2.2.2 Test Apparatus 

Bilateral hip isokinetic hip flexion and extension were imposed on the study 

participants using the apparatus pictured in Figure 2-1A. Study participants lay supine 

with both legs secured within custom-designed, adjustable leg braces. Since multijoint 

extensor reflexes are triggered by imposed hip movements (Schmit and Benz 2002), the 

knee and ankle joints were held isometrically within the leg braces in slightly flexed 

positions (approximately 22° knee flexion and 13° ankle plantarflexion) to isolate the 

reflex responses to hip joint rotations. The leg braces were attached to a novel robotic 

apparatus that used servomotor drive systems (Kollmorgen, Northampton, MA) to 

generate oscillatory movements of the legs about the hip joints. Torque transducers (S. 

Himmelstein and Company, Hoffman Estates, IL) measured sagittal plane hip, knee and 
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ankle torque from both legs while hip position was monitored using optical encoders (US 

Digital, Vancouver, WA). Custom-written LabVIEW software (National Instruments 

Corp., Austin, TX) was used to control hip trajectory and acquire torque and position 

signals. All signals were low-pass filtered (500 Hz) prior to data acquisition and sampled 

at 1,000 Hz using a data acquisition card (National Instruments Corp., Austin, TX) and a 

PC. 

 

 

 

Figure 2-1 Experimental Setup. (A) Experimental apparatus used to impose bilateral hip 
oscillations and record sagittal plane torques during hip movements. Two servomotor systems 
were used to impose movements about the hips. Joint torques were recorded using torque 
transducers aligned with the hip, knee and ankle joints of both legs. (B) Each leg was moved 
through 50° of rotation about the hip (40° hip flexion to 10° hip extension).  
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Surface electromyograms (EMGs) were recorded bilaterally from the adductors 

(Add) vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), medial 

hamstrings (MH), medial head of the gastrocnemius (MG), soleus (Sol), and the tibialis 

anterior (TA) from all subjects. Disposable, pre-gelled Ag/AgCl recording electrodes 

(Vermed Medical Inc., Bellows Falls, VT) were applied to cleansed, lightly abraded skin 

over each muscle belly.  EMG signals were amplified (× 1,000) and bandpass filtered 

(10-1000 Hz) (Bortec Medical AMT-16; Calgary, Alberta, Canada) prior to sampling. 

All signals were low-pass filtered (500 Hz) and sampled at 1,000 Hz using a data 

acquisition card (National Instruments Corp., Austin, TX) and a personal computer. 

Custom LabVIEW software (National Instruments Corp.) was used for acquiring EMG, 

joint torque and hip angle data. 

 

2.2.3 Experimental Protocol 

With the subjects lying supine, oscillations of the legs about the hips were applied 

using the servomotor apparatus. The legs were moved in an alternating manner (180° out 

of phase) through a 50° range of motion (40° of hip flexion to 10° of hip extension) for 

10 cycles. The knee and ankle joints of both legs were held isometrically within the leg 

braces in slightly flexed positions (knee: 22° flexion; ankle: 15°dorsiflexion). Three 

movement frequencies (0.25, 0.50 and 0.75 Hz) were performed to test for the effects of 

movement velocity. To assess the influence of supraspinal input on spastic reflex 

excitability, SCI study participants were asked to either assist the imposed hip motions 

(“assisted”) or to remain inactive during the imposed hip oscillations (“unassisted”). 

Subjects received no verbal cueing or feedback during the trials regarding their 
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performance. Control subjects were asked to perform the same tests during the imposed 

hip oscillations. The tests were presented in random order and repeated three times for 

each movement frequency and level of participation using a block design (total of 18 

tests). Two to five minutes were allowed between tests to prevent fatigue following 

assisted movements. Torque and EMG recordings were measured throughout the 

movements.  

Concluding the experiment, two additional hip movements were performed to 

approximate the biomechanical properties of the leg and leg brace. Specifically, the 

torque due to gravity, passive joint resistance, and the mass moment of inertia were 

estimated (details are provided in 2.2.4 Data Analysis section). Slow (2º/sec), incremental 

(5º steps) movements were imposed about the hip to estimate the torque contribution due 

to gravity and passive joint resistance. The combined inertial constant of the leg and leg 

brace was determined for each leg by rapid (1.5 Hz) hip oscillations (10 cycles) imposed 

to each leg, moving the leg through a 15º hip range of motion (25º to 10º hip flexion). 

Moving the leg within midrange minimized the chance of eliciting spastic reflexes during 

the movement. Subjects were asked to remain as relaxed as possible during these hip 

movements. EMG measurements were used to ensure subjects remained relaxed during 

the additional hip movements. 

 

2.2.4 Data Analysis 

The biomechanical properties of the leg and leg brace were determined to 

calculate the torque due to active muscle contraction (active torque). To account for the 

biomechanical properties of the leg and leg brace, the measured torque data were 
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corrected for the gravitational torque, torque due to passive joint resistance, inertial 

torque and a torque estimate of a mechanical artifact within the system. The general 

equation used to calculate the active torque for each joint, ,  is given by: jointτ

joint measured passive/gravity inertia artifactτ τ τ τ τ= − − −  

where   is the recorded torque for a specific joint,  is a 

combined torque measurement that approximates the torque produced by the passive joint 

resistance as well as the gravitational forces acting on the leg,   is the calculated 

torque attributed to the inertial properties of the leg and leg brace, and   is a 

torque estimate of the mechanical artifact within the system that was not attributed to the 

biomechanical properties of the leg and leg brace.  

measuredτ passive/gravityτ

inertiaτ

artifacτ t

The technique used to calculate the torque due to active muscle contraction is 

described in detail in previous studies (Onushko and Schmit 2007; Steldt and Schmit 

2004). Briefly, the  was estimated by fitting a polynomial curve (torque 

vs. hip angle) to the trials in which the leg was moved in slow incremental steps through 

the range of motion.  Torque data from the hold periods, when no EMG was observed, 

were used to estimate the combined gravitational and passive joint resistance. The 

polynomial function was then used to estimate the  during the movement 

trials and was subtracted from the measured torque.  In a similar manner, the inertial 

coefficient was estimated from the trials with rapid oscillations in midrange. First the 

 was subtracted. Then the hip angular acceleration was calculated and 

the inertial coefficient was estimated using a regression.  This inertial coefficient was 

passive/gravityτ

passive/gravityτ

passive/gravityτ
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then applied to the test trial acceleration data to calculate , which was then 

subtracted from the measured torque.  

inertiaτ

τ

passivτ

The relatively small (<5 Nm), repeatable torque artifact, , was 

consistently observed with a similar pattern across all tests in non-injured subjects when 

subjects were instructed to relax during each hip oscillation condition. While the exact 

source of this artifact was unknown, it was likely associated with flexion of the brace 

itself, which likely created a “whipping” effect at the end of the range of motion. The 

mechanical artifact was estimated using an ensemble average of the passive torque 

recordings from the control subjects. Since neurologically intact individuals did not 

produce muscle activity during the oscillations (verified by EMG), the remaining torque 

well-represented the artifact within the system. This torque was subtracted from the 

measured torque to remove the artifact. After subtraction of , 

and , the remaining torque signal reflected the active joint torque 

produced by the subject. All torque data were low-passed filtered (5 Hz) using a 2nd 

order Butterworth filter (filtered forward and backward to ensure no phase delay). 

artifact

e/gravity

inertiaτ artifactτ

 EMG signals were processed to obtain the timing and level of muscle activity 

during the experimental procedures. All surface EMG recordings were bandstop filtered 

(59-61 Hz) to remove line noise and bandpass filtered (10-350 Hz) using fourth-order 

Butterworth filters (Matlab; The Mathworks Inc., Natick, MA). For analysis, the root-

mean square (RMS) of the EMG data was calculated using a 100-ms moving window. 

Only the middle eight cycles were used for the analyses of EMG data, since the responses 

during this time consistently exhibited suprathreshold activity (threshold = mean of 
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baseline + 3 SD). The first and last cycles were excluded from further analysis due to an 

inconsistency and incompleteness in the responses. 

 

PHASE ANALYSIS: A phase analysis was performed on the active torques to determine the 

overall timing of activity with respect to the hip position during the imposed hip 

movements. The phase analysis was also performed on the RMS EMG data. For each 

subject, EMG threshold values were calculated (mean of the baseline + 3 standard 

deviations) from EMG measurements of the respective muscle recorded during a 

quiescent period when the legs were held stationary with the hip in a neutral position.  

The timing of the responses was quantified using the circular statistics method 

outlined by Batschelet (1981). This technique has been applied previously and is 

described in detail elsewhere (Onushko and Schmit 2007). Briefly, torque signals were 

separated into flexion and extension components and the cycle period of the data was 

normalized to 360°, where 0° represents full hip flexion and 180° represents full hip 

extension. An example of the vector representation for hip flexion torque data for a single 

cycle is shown in Figure 2-2. A normalized vector (unit vector) was identified for each of 

the middle eight cycles of movement of each trial and the vectors were then averaged 

across the three trials (total of 24 cycles) for the hip, knee and ankle of both legs. The 

resulting mean vector was defined by its magnitude (range: 0-1) and phase angle. Note 

that if the phasing of the vectors was identical for all cycles, the mean vector magnitude 

would be 1. If phasing was random, the mean vector magnitude would be near 0. To 

examine the phasing across subjects, the mean vector for each subject was again 

normalized to a magnitude of 1 and then the mean vector was calculated across subjects 
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within a group. To identify whether there was a significant difference of the mean angle 

across subject groups, the Watson-Williams Test was used for statistical analysis on the 

timing of torque generation at each joint (α = 0.05). A Bonferroni correction was 

performed for multiple comparisons. The phase analysis was also performed on the EMG 

measurements using a similar approach.   

 

 

 

Figure 2-2 Polar Coordinate Conversion. Example of the conversion of the torque data into the 
vector and phase angle representation. (A) One cycle of hip position (dotted trace) and 
corresponding hip torque response (solid trace) plotted against the polar angle. The gray shaded 
background on the torque response represents hip flexion torque. (B) Hip flexion torque plotted in 
polar coordinates, where 180° represents the position of the hip in full extension (i.e. -10°) and 0° 
represents the position of the hip in full flexion (i.e. 40°). (C) A unit vector (r=1) was used to 
represent the normalized magnitude of the peak torque, and the polar angle, θ, represents the 
timing of the peak torque generation with respect to the position of the hip for one movement 
cycle (i.e. 0-360°). Hip extension torque was calculated in a similar manner (not shown). 
 
 

AMPLITUDE ANALYSIS:  The peak flexion and extension torques for the hip, knee and 

ankle were determined to identify whether volitional effort and movement frequency 

affected the amplitude of the responses. Hip, knee and ankle torque signals were 

separated into flexion and extension components and the peak torque was identified for 

each cycle of movement. The mean peak torque for hip, knee and ankle flexion and 
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extension was calculated for each test across all three trials, discarding data from the first 

and last movement cycles.  

Since torque responses cannot account for coactivation of muscles at the joints, 

surface EMG recordings of individual muscles were used for further interpretation of the 

responses. Muscle activation was quantified by calculating the mean integrated area for 

each EMG signal for every cycle for which the muscle was active, across all three trials 

(total of 24 cycles). To account for differences between the three movement frequencies, 

the mean area was normalized to the cycle time of its respective movement frequency. 

The data for each muscle was then normalized to the mean of each subject’s entire EMG 

data based on both assisted and unassisted tests.  

 

2.2.5 Statistical Analysis 

 

Separate univariate ANOVA was used to compare the effects of movement 

frequency (0.25, 0.50, and 0.75 Hz), supraspinal input (i.e. assisted vs. unassisted tests), 

and subject (random factor within each group) on the torque and EMG amplitude. 

Because not all subjects produced reflex responses to unassisted movements, a higher 

variance was present within the SCI subject group resulting in a non-normal distribution 

of the unassisted torque and EMG data. Prior to conducting the statistical analysis, the 

torque and EMG data for all subjects were first transformed (square-root) to obtain a 

normal distribution. The Bonferroni correction method was used for the post hoc pairwise 

comparisons among the movement frequencies. Significance was accepted at p<0.05.  
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2.3 RESULTS 

 The aim of this study was to examine how spastic reflexes affect volitional 

control during bilateral hip movements in individuals with motor incomplete SCI. Torque 

and EMG measurements were used to compare coordination patterns during the assisted 

movements to responses during unassisted hip oscillations in order to examine the 

interactions of reflex behavior and voluntary effort. Representative responses during the 

assisted and unassisted tests from SCI subject S7 are illustrated in Figure 2-3 (left 

column). Under the unassisted condition, imposed bilateral hip oscillations elicited 

multijoint spastic reflex responses that were consistent with previous findings (Onushko 

and Schmit 2007; Steldt and Schmit 2004). Typical responses to unassisted hip 

movements consisted of hip extension and knee flexion torque when the leg moved into 

hip flexion, and hip flexion and knee extension torque when the leg moved into hip 

extension (Figure 2-3A). EMG recordings were consistent with the torque measurements. 

Hip flexor (represented by RF) and knee extensor (VL and VM) muscles were active 

during hip extension, and hip extensor/knee flexor (MH) muscle activity occurred during 

leg movement into hip flexion (Figure 2-3B). Torque and EMG measurements during 

assisted hip movements revealed that volitional effort did not appear to greatly affect the 

pattern of movement in comparison to the reflex responses during unassisted hip 

oscillations. In some subjects (S3, S4, S5, and S7), the amplitude of the response also 

appeared to be unaffected by voluntary efforts (e.g. see Figure 2-3, left column).  

Overall, a majority of the SCI subjects (8/10) produced characteristic torque 

patterns during assist movements that resembled spastic reflex patterns during unassisted 
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hip oscillations. Maximum hip and knee torques coincided with the hip angle at the 

extreme ranges of motion (i.e. 40° flexion or 10° extension). Not all subjects exhibited 

activity at the ankle, creating greater variability in ankle activity patterns among the 

subjects; however, for those SCI subjects who demonstrated activity in the ankles during 

unassisted trials (n = 3), ankle plantarflexion occurred during hip flexion and ankle 

dorsiflexion generally coincided with full hip extension. The control subjects recruited 

for this study generated consistent torque and EMG patterns during assisted trials (subject 

example, Figure 2-3 right column). Unassisted oscillation of the legs about the hips 

elicited no responses from any control subject. 
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Figure 2-3 Representative Single SCI Subject Data. (A) Representative active torque traces 
during assisted and unassisted tests from SCI subject S7. Left column, SCI-unassisted; right 
column, SCI-assisted. Shaded areas represent flexion torques; unshaded areas represent extension 
torques. (B) EMG traces from SCI and control subject. Left column, representative EMG traces 
during assisted (positive rectified) and unassisted (negative rectified) tests from SCI subject S7. 
Right column, representative EMG traces from a neurologically intact control subject. Activity 
during unassisted and assisted movements for SCI subjects did not differ in timing with respect to 
the position of the hip. 
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2.3.1 Phasing Patterns during Assisted and Unassisted Hip Movements 

The timing of the responses during bilateral hip oscillations in SCI subjects was 

similar between assisted and unassisted conditions, as evidenced by similar torque and 

EMG patterns during both test conditions. Figure 2-4 illustrates the average hip and knee 

torque generated from each SCI subject during both conditions. SCI subjects generated 

the most torque near the end ranges of movement (i.e. near full hip flexion/extension), 

whereas control subjects (95% confidence interval of all controls illustrated by a thick 

gray line in Figure 3-3) showed peak activity during the mid-range of hip movements 

(peak hip flexion and extension torque occurring approximately at 13° and at 22° of hip 

flexion, respectively). Two SCI subjects (S8 and S9), however, produced torque patterns 

that more closely followed the pattern of control subjects during assisted trials (indicated 

by the blue dotted lines in Figure 2-4), and no responses were noted during unassisted 

trials.  
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Figure 2-4 Average Torque Patterns during Assisted and Unassisted Hip Oscillations.  Hip 
and knee torque responses of SCI subjects during unassisted and assisted bilateral hip oscillations 
(0.75 Hz shown only). Each solid black line represents the average response from a single SCI 
subject. Under the assisted condition, the thick gray line represents the 95% confidence interval 
of hip and knee torque responses from control subjects. Vertical dashed lines indicate the peak 
hip flexion and extension portions of the hip movement. Typically, the responses in SCI subjects 
occurred at the time when the hip reached full extension or full flexion. The dashed blue lines 
illustrate the responses from subjects S8 and S9, who generated patterns that more closely 
followed the pattern produced by the control subjects. In addition, these subjects did not produce 
responses under unassisted conditions. 

 

Coordination of the lower extremities was not greatly affected when SCI subjects 

assisted the movements, and furthermore, it was not consistent with the patterns of 

muscle activity observed in neurologically intact subjects when performing the same task. 

The mean resultant vector for the torque measurements was used to ascertain the overall 

timing of muscle activity with respect to the position of the right hip during bilateral 

movements (refer to Figure 2-5A). With respect to the hip’s position, the timing of peak 
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torque generation was not significantly different between assisted and unassisted tests for 

SCI subjects for any movement frequency (Watson-Williams Test, P>0.05). However, 

the timing of peak hip torque generation was significantly phase advanced for SCI 

subjects compared to the control group during the assisted task for all three frequencies 

(Watson-Williams Test, 0.75 Hz: flexion P<0.001 and extension P<0.005; 0.50 Hz: 

flexion P<0.001 and extension P<0.001; 0.25 Hz: flexion P<0.001 and extension 

P<0.005). Peak knee flexion/extension torque followed similar trends for the 0.75 and 

0.50 Hz movement frequencies, but only approached significance during 0.25 Hz tests 

(Watson-Williams Test, flexion/extension for 0.75, 0.50 and 0.25: P<0.001, P<0.005, and 

P>0.05, respectively). Response patterns from ankle torque produced mixed results, 

yielding no significant phasing patterns in any test group (plantarflexion and dorsiflexion, 

P>0.05). 

In general, the EMG results across SCI subjects showed little difference in 

phasing between the assisted and unassisted movements, corroborating the torque 

phasing results (Figure 2-5B). On average, EMG responses for the RF, VM, and VL 

muscles were phased with hip extension (RF, VM and VL mean hip angles: 9.2, 9.9 and 

9.1°, respectively, of hip extension for assisted tests; mean hip angles: 10, 8.9, and 9.6° of 

hip extension for unassisted tests), and MH muscle activity typically coincided with hip 

flexion (mean hip angle for assisted and unassisted tests: 38.4° and 35.9°, respectively). 

Because not all subjects had volitional control over all muscles and not all subjects had 

reflexes during unassisted movements, a higher variability was present within the EMG 

data. On account of this variability, the statistical analysis comparing the EMG phasing 

patterns yielded no statistical significance for most of the muscles tested. However, MH 
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muscle activity was found to be directionally dependent for SCI subjects during assisted 

hip movements and was phased differently in comparison to MH activity of the control 

group (Watson-Williams Test, P<0.005 for all movement frequencies), which was at 

approximately 24° of hip flexion during the movements for the control group. 

Additionally, vasti muscle activity tended to coincide with the time near full hip 

extension (~ 9° hip extension) in both assisted and unassisted tests for the SCI group. 

Differences in the timing of muscle activity were noted for VL (Watson-Williams Test, 

P<0.005 for 0.75 Hz movement frequency only) and VM (Watson-Williams Test, P<0.05 

for 0.50 Hz movement frequency only) EMG between SCI and control groups during 

assisted movements.  
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Figure 2-5 Average Torque and EMG Vectors. To obtain the timing of muscle activity during 
bilateral hip movements, the mean resultant vectors were plotted on a polar plane during assisted 
(SCI and control subjects) and unassisted (SCI only) tests. Full hip flexion corresponds to 0° and 
full hip extension corresponds to 180° on the polar plots. Hip extension torques are indicated 
within the shaded portion, and hip flexion torques are displayed over unshaded areas. The 
direction of hip motion is counterclockwise on the polar plane and is indicated by the curved 
arrow. Vector magnitudes (radius, r) represent the repeatability (r = 1 is identical phase) of the 
measurements during the hip movements. Arrows represent the mean direction of the torque or 
EMG measurement with respect to the position of the hip throughout one cycle of movement. (A) 
Group mean right hip extension and flexion torques for all three movement frequencies.  
Significant differences were found from the resultant peak torque vectors between controls and 
SCI during the assisted test condition (denoted by asterisks; P < 0.005).  (B) Resultant vectors for 
the group average EMG of the right leg muscles for the 0.75 Hz movement frequency only. The 
timing of MH and VL muscle activity significantly varied between the SCI and control groups for 
the assisted task (denoted by asterisks; P < 0.005). No significant differences were found between 
SCI subjects during assisted and unassisted tests for any EMG phase data. 
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The timing of peak activity during the assisted hip movement task appeared to be 

influenced by the level of spastic reflex excitability present in subjects who participated 

in this study. Subjects who demonstrated greater spastic reflex activity (S3, S4, S5, and 

S7) were unable to alter the timing of muscle activity, and moreover, the pattern of 

muscle activity was similar between assisted and unassisted hip movements. Subjects 

who did not exhibit spastic reflex activity (S8, S9)  (i.e. no reflex responses elicited 

during unassisted hip movements or MMT) were able to better coordinate movements in 

the lower extremities such that the EMG and torque patterns more closely resembled the 

coordination patterns generated by control subjects. Figure 2-6 illustrates the disparity in 

the timing of peak hip torque production among three subjects (control, SCI subjects S10 

and S4). Representative of subjects who demonstrated greater spastic reflex activity, 

subject S4 produced reflex patterns during assisted hip movements that resembled hip-

triggered reflex patterns during the imposed unassisted hip movements. The generation of 

peak torque typically occurred at the extreme ranges of the hip movements (i.e. 40° hip 

flexion or 10° hip extension) under both test conditions. Subject S10, one of two subjects 

who ambulated with the aid of a walker, did not generate multijoint reflexes during 

unassisted movements. Interestingly, even though subject S10 did not have spastic 

reflexes, the timing of peak hip torque was still delayed in comparison to the control 

subjects during the assisted movements.  
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Figure 2-6 Torque Vector Comparison during Assisted Hip Movements. Normalized peak 
hip flexion (unshaded background) and extension torque (shaded background) for three different 
subjects (control, S10 and S4) during assisted hip movements. Full hip flexion corresponds to 0° 
and full hip extension corresponds to 180° on the polar plots. Spastic reflex excitability appeared 
to influence the timing of muscle activity during assisted tasks, such that the timing of peak 
torque production was unaltered between assisted and unassisted hip movements in subjects 
demonstrating greater spastic reflex activity. 
 

2.3.2 Response Magnitude to Hip Movements  

Although the pattern of activity was similar between the assisted and unassisted 

conditions, voluntary effort during assisted hip movements augmented responses overall. 

The magnitude of hip and knee torques across the test group were greater during 

volitional attempts in comparison to reflex responses during unassisted trials (ANOVA, 

hip flexion P<0.001; hip extension P<0.001; knee flexion P<0.005; knee extension 

P<0.001). The response at the ankle produced mixed results. Peak ankle plantarflexion 

torque was greater during assisted tests across SCI subjects (ANOVA, P<0.001), and was 

not sensitive to the movement frequency (ANOVA, P>0.05). There was no difference in 

peak dorsiflexion torque between assisted and unassisted tests (ANOVA, P>0.05), but 

peak dorsiflexion torque was sensitive to the movement frequency (ANOVA, P<0.05) 
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producing greater torque during the 0.75 Hz movement frequency compared to the 0.50 

Hz trials. Peak hip and knee torque responses were not greatly affected by the frequency 

of the movement. EMG amplitude was also larger during the assisted trials as compared 

to the unassisted trials across SCI subjects (ANOVA, P<0.001). Figure 2-7 illustrates the 

normalized mean EMG results for the two test conditions at all three trial frequencies. In 

general, the movement frequency did not greatly affect the EMG amplitude. However, 

the EMG amplitude was greater in the 0.75 Hz movement frequency compared to the 

0.25 Hz movement frequency for the Add, VL and MG muscles (ANOVA, P<0.001, 

P<0.001, and P<0.05, respectively).  

 

 
 

Figure 2-7 Average EMG Amplitudes. Normalized EMG group means for assisted and 
unassisted test conditions for all muscles of the right leg for each trial frequency (0.25, 0.50 and 
0.75, from left to right for each muscle). Error bars indicate 1 SD of the group data. Asterisks 
above the group data indicate a significant difference between the two trial frequencies (P<0.01). 
†There was a significant difference in EMG amplitude between assisted and unassisted tests for 
all muscles. 
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2.3.3 Reflex Activity during Assisted Hip Movements 

Statistically, peak hip and knee torques were not dependent on the movement 

frequency for either assisted or unassisted trials within SCI and control groups, but an 

observable trend was apparent between SCI and control subjects (refer to Figure 2-8, hip 

torque is shown only). The average peak hip and knee torque increased with higher 

movement frequencies for SCI subjects during both assisted and unassisted hip 

movements. This relationship could likely be due to stretch reflex activity of hip flexors 

and extensors during the hip movements. For instance, with increased movement 

velocity, peak hip extension torque may be augmented if the MH muscle was 

eccentrically contracting as the leg reached full flexion. Similarly, eccentric contraction 

of the RF muscle could also explain the increased peak hip flexion torque. In contrast to 

SCI subjects, control subjects demonstrated a decrease in peak hip torque with increasing 

movement frequency, generating concentric muscle contractions at the hip and knee 

during assisted trials. 
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Figure 2-8 Torque vs. Frequency. Average peak hip flexion and extension torque from SCI and 
control subjects plotted against each movement frequency. On average, hip torque amplitude was 
greater during assisted trials compared to unassisted trials for SCI subjects. However, under both 
conditions torque magnitude increased linearly as the movement frequency was increased. The 
opposite was seen for the control group during assisted movements, with peak torque decreasing 
with increasing movement frequency. 
 

 
2.4 DISCUSSION 

 Results from this study showed that multijoint spastic reflexes appeared to 

influence the timing and magnitude of muscle activity during assisted movements of the 

legs in people with motor incomplete SCI. The patterns of torque and EMG data from 

SCI subjects during assisted hip motion were ill-timed with respect to the position of the 

hip in comparison to neurologically healthy subjects performing the same task. 

Moreover, EMG and torque patterns from SCI subjects during assisted movements 

resembled multijoint reflex activity generated in response to imposed, unassisted hip 

oscillations.   
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2.4.1 Changes in Reflex Regulation of Movements in Chronic SCI 

 During imposed hip movements, stretch reflex responses were observed in 

muscles at the hip during the active-assist task in SCI subjects. In the normal control of 

movement, stretch reflex excitability is modulated by supraspinal influences over 

inhibitory pathways (Gottlieb and Agarwal 1980), so that voluntary motor commands can 

utilize reflex pathways to meet functional demands. The amplitude of the soleus H-reflex, 

for example, is greatly modulated during human locomotion. Reflex amplitude is greatest 

during the stance phase providing increased ankle stiffness and assisting with torque 

generation at push off, and during the swing phase it is greatly inhibited to avoid 

dragging the toes over the ground (Capaday and Stein 1986). However, in spastic 

muscles there is deficient modulation of stretch reflex excitability, and it has been 

reported that there is a decrease in inhibition at the onset of movement (Crone et al. 2003; 

Jones and Yang 1994), which has been suggested to contribute to movement impairment 

in people with spasticity (Crone et al. 2003; Jones and Yang 1994; Morita et al. 2001). 

Hemiparetic stroke patients, for example, show increased stretch reflex activity in the 

antagonist muscle during voluntary, concentric knee movements (Knutsson et al. 1997), 

and when compared to passive movements, stretch reflex activity of the antagonist 

muscle was greater with active paretic knee movements (Fleuren et al. 2009). In the 

current study, SCI subjects demonstrated similar actions during the active-assist hip 

oscillations. For example, imposed leg movements into hip extension generated stretch of 

hip flexors resulting in facilitation of hip flexion rather than inhibition. Although no 

direct measure of voluntary drive was quantified in the present study, it does suggest that 

remaining descending drive increases reflex excitability in incomplete SCI subjects and 
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these individuals have limited capacity to inhibit antagonist activity during voluntary 

single-joint movements.  

Without effective descending input to modulate reflex excitability, sensory 

feedback to spinal centers plays an essential role in regulating the amplitude and 

coordination of muscle activity. For instance, moving the legs in a motion kinematically 

similar to human locomotion with body weight fully supported is not enough to generate 

sufficient muscle activity in healthy or in SCI subjects, but in combination with ankle-

foot loading, appropriate leg muscle activity can be generated in SCI subjects during 

stepping (Dietz et al. 2002; Ferris et al. 2004; Gordon et al. 2009; Harkema et al. 1997; 

Maegele et al. 2002). In the current study, it is likely that reflex responses were generated 

during the active-assist task, since reflex patterns were similar to the reflex responses 

observed during the imposed, passive hip movements. And while it has been postulated 

that these reflex responses overlap with spinal networks associated with locomotion 

(Onushko and Schmit 2007; Schmit and Benz 2002; Steldt and Schmit 2004) because of 

the lack of feedback from other sensory cues, perhaps such as loading, it is possible that 

spinal motor pools did not receive sufficient feedback for appropriate muscle recruitment 

during the assisted hip oscillations resulting in stereotypical reflex activity throughout the 

leg muscles. Maegele et al. (2002) showed a similar phenomenon in SCI subjects. When 

SCI subjects attempted single-joint movements, multijoint flexion or extension 

movements were observed throughout the legs. However, when these subjects attempted 

stepping while bearing partial body weight, they observed appropriate muscle activation 

patterns and level (Maegele et al. 2002).  
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Changes in spinal neuronal excitability due to alterations of intrinsic properties of 

motoneurons (Eken et al. 1989; Gorassini et al. 2001; Heckman et al. 2008) or 

interneurons (Edgley and Jankowska 1987; Theiss et al. 2007) could also have 

contributed to the observed coordination of muscle activity during the ‘active-assist’ task. 

Spinal neuronal excitability is modulated by descending monoaminergic input 

(Hounsgaard et al 1988; Lee and Heckman 1999); however, after complete spinal injuries 

resulting in the removal of descending inhibitory control, motoneurons respond or react 

to a wider variety of sensory inputs (Hyngstrom et al. 2008). With respect to 

motoneuronal excitability, it has been suggested that a disregulation of voltage dependent 

depolarizing persistent inward currents (PICs) may be involved in long-lasting spastic 

reflex activity in spinalized rats (Bennett et al. 2001, 2004) and in human SCI (Gorassini 

et al. 2004; Hornby et al. 2003, 2006). Changes in interneuronal excitatory and inhibitory 

networks may indirectly affect alpha-motoneuronal excitability involved with the 

emergence of long-lasting motor outputs in chronic SCI (Jankowska and Hammer 2002). 

Thus, from the current study, while study participants may have partial descending drive 

onto the spinal cord, it still could be insufficient to regulate reflex excitability as a result 

of the changes of intrinsic neuronal properties. Consequently, voluntary efforts could not 

adjust the timing of the responses, and instead external sensory cues elicited a set pattern 

of uncontrolled multijoint reflex behaviors. 

 

2.4.2 Possible Involvement of Spinal Networks for the Generation of Locomotion 

In chronic SCI, multijoint reflexes are associated with organized interneuronal 

spinal networks that produce coordinated muscle activity in the lower extremities, and 
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these networks may incorporate interneuronal circuitry that is involved with the spinal 

control of locomotion (Onushko and Schmit 2007; Schmit and Benz 2002; Steldt and 

Schmit 2004).  As seen in cats, spinal locomotor networks receive sensory cues from hip 

proprioceptors that originate from stretching hip flexor musculature (Grillner and 

Rossignol 1978; Hiebert el al. 1996; Lam and Pearson 2001). These same sensory signals 

are suggested to be important for eliciting muscle activity during locomotion in humans 

(SCI: Dietz et al. 2002; Dobkin et al. 1995; Ferris et al. 2004; infants: Pang and Yang 

2000, 2001). From the current study, multijoint reflexes were elicited during the imposed 

hip oscillations from most subjects during the unassisted task, and the pattern of activity 

resembled previous findings (Onushko and Schmit 2007; Steldt and Schmit 2004), further 

supporting the idea that spastic reflex pathways involve organized interneuronal 

networks. Additionally, the results from this study demonstrated that spastic reflex 

activity responds to sensory feedback (e.g. hip proprioception) for the appropriate timing 

of muscle activity, while supraspinal signals were responsible for controlling the amount 

of activation during locomotor-like activities. Since sensory feedback and supraspinal 

drive are both important for shaping locomotor rhythms from spinal locomotor networks, 

the findings from this study may implicate the possible involvement of locomotor reflex 

pathways with spastic reflex pathways in humans.  

 

2.4.3 Interaction between Spasticity and Assisted Hip Movements  

The findings from the current study suggest that multijoint reflexes in patients 

with spasticity interfere with concentric activation of muscles at the hip during a dynamic 

motor task. While spasticity has been largely evaluated in the resting limb, it is often 
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associated with disordered control of movement. The traditional definition of spasticity 

attributes it to an exaggeration of tendon reflexes that are associated with hyperexcitable 

stretch reflexes and muscle hypertonia (Lance, 1980). With regards to the established 

definition of spasticity, some investigators have suggested that hyperexcitable stretch 

reflex activity minimally contributes to motor impairments during voluntary tasks, and 

have concluded that spasticity is not a prime contributor to movement disorders 

associated with injury to the CNS. For instance, reflex gain modulation is reduced or 

similar to that of non-injured individuals during voluntary contraction of muscles in the 

arm (Burne et al. 2005) or ankle (Ada et al. 1998) of hemiparetic stroke subjects, 

implying that spasticity is a disorder of the resting limb and is not responsible for motor 

disorders. In contrast, others have reported that stretch reflex activity in the antagonist 

muscle increases during voluntary concentric contraction of the agonist muscle (Knutsson 

et al. 1980, 1997; Lum et al. 2004). Observations from the current study are in 

accordance with the latter studies, supporting the idea that spastic reflex activity hinders 

the control of voluntary movements. Even though the origin of spasticity may be different 

between SCI and stroke, owing to differences in lesion sites and the reorganization of 

sensorimotor pathways, in this study volitional drive enhanced muscle activity without 

correcting phasing errors and thus adversely affected the coordination of bilateral leg 

movements.  

 

2.4.4 Clinical Implications for Rehabilitation  

The assessment of muscle strength is an important part of physical examination in 

SCI individuals, since it can be used to detect improving or worsening neurological 
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function and can help in the planning for rehabilitation (Aitkens et al. 1989). In 

particular, muscle strength of hip flexors, hip extensors and hip abductors has been 

shown to be an important determinant for assessing walking ability in SCI patients (Kim 

et al. 2004). Muscle strength assessments using conventional techniques, such as the 

manual muscle test, are not sensitive to small changes in muscle strength (Bolliger et al. 

2008; Herbison et al. 1996; Kim et al. 2004). Furthermore, tests are often performed 

isometrically with little relation to functional movements, and they do not take into 

consideration how volition may affect the intensity of reflex excitability in people with 

spasticity. From the current study, the data showed that manual muscle testing yielded no 

conclusive results linking strength and the ability to coordinate hip movement during the 

imposed hip movements. However, these findings are limited since four of the subjects 

were taking baclofen, which may have affected reflex excitability and influenced the 

responses observed during the hip movements. Nonetheless, data from this study suggest 

that other techniques may be required to discriminate reflex from voluntary activity at the 

hip when assessing individuals with motor incomplete SCI.  

Regulating reflex behaviors in a temporally appropriate manner using external 

sensory cues may be beneficial for recovering locomotor function. Spastic reflexes can be 

elicited through hip afferent cues to produce strong responses throughout muscles in the 

lower extremities, but the abnormal timing of the responses may require additional 

sensory cues to correct inappropriate muscle activity. Alternatively, pharmacological 

interventions may also be necessary for some individuals to partially suppress the 

increased intrinsic excitability, particularly in interneuronal circuits involved with 

multijoint reflexes. In doing so, it may deter abnormal timing while maintaining 
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sufficient torque production through reflex output to improve locomotor function during 

rehabilitation. One of the primary concerns with this approach is that patients with 

profound weakness may rely on the reflexive muscle activity to achieve functional 

movement.  Observations from the current and previous studies show that spastic reflex 

activity generates strong torque responses in the lower extremities (Onushko and Schmit 

2007; Wu et al. 2005, 2006), and if all reflex function was reduced, it may prevent 

individuals with SCI from having enough strength to undergo locomotor training.   

In conclusion, sensory information from the periphery can shape motor output 

when volitional drive is diminished, such as in human chronic SCI. Because the timing of 

muscle activity was similar between assisted movements and passively imposed hip 

movements, we concluded that spastic reflex activity likely influences coordination 

during voluntary leg movements in individuals with motor incomplete SCI. Additionally, 

volitional drive may serve primarily as a gain modulator of the level of motoneuronal 

activation in SCI, and thus may serve to enhance spastic, multijoint reflexes during 

attempts at movement.  



 
 
 
 

CHAPTER 3 
 

Bilateral Hip Oscillations Modulate Reflex Responses in 
Human Spinal Cord Injury  
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3.1 INTRODUCTION 

In individuals with spinal cord injury (SCI), spastic reflex responses from stretch-

sensitive afferents of the hip flexors results in uncontrolled activity throughout the lower 

extremities (Schmit and Benz 2002). Distinctive involuntary bilateral leg extension 

responses are often seen when SCI patients shift from a sitting to a supine position 

(Macht and Kuhn 1948; Little et al. 1989), with responses lasting for tens of seconds 

(Benz et al. 2005). In incomplete SCI, remaining supraspinal input seems to have limited 

influence over multijoint reflexes (Maegele et al. 2002; Onushko et al. 2010). In addition 

to hip afferent cues, knee proprioceptors and ankle load afferents have also been shown 

to trigger multijoint reflexes; however, hip extension appears to be a necessary condition 

for the spasms to be triggered with knee and ankle afferents slightly increasing excitation 

of the characteristic multijoint responses (Wu et al. 2005; Wu and Schmit 2006). The 

objective of this study was to identify the extent to which stretch-sensitive sensory 

feedback from the knee or ankle modulates reflex activity at the hip. 

Spastic reflex activity in individuals with SCI has been traditionally classified 

under the general term of spasticity, which is characterized as velocity-dependent, 

hyperexcitable stretch reflexes (Lance 1980). However, spastic reflexes also manifest as 

flexor or extensor spasms (Benz et al. 2005), which involve more than hyperexcitable 

reflexes from stretch at a single joint.  Especially in subjects with SCI, single-joint 

motion can trigger multijoint responses throughout the leg, including muscles that are not 

being stretched (Onushko and Schmit 2007; Schmit et al. 2000; Schmit and Benz 2002; 

Steldt and Schmit 2004). Particular to SCI, extensor spasms develop more frequently than 
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flexor spasms, with a prevalence of approximately 87% of individuals with chronic SCI 

(Barolat and Maiman 1987; Little et al 1989). Extensor spasms can be debilitating to 

individuals by interfering with transfers and sleep or cause pain (Little et al. 1989; 

Sjölund 2002). Even though these multijoint reflexes have been shown to originate from 

several afferent cues, the neural mechanisms associated with controlling these reflexes 

are not yet fully understood. Gaining insight into the behavior of these multi-segmental 

reflexes will help guide rehabilitation techniques for managing unwanted muscle activity. 

It is thought that the disruption of descending spinal pathways causes fundamental 

changes in reflex regulation in human chronic SCI. For example, it has been reported that 

in chronic SCI, there is diminished modulation of Ia input by presynaptic mechanisms 

(Faist et al. 1994 and 1999; Yang and Wheelan 1993) as well as increased recurrent 

inhibition (Shefner et al. 1992). This loss of modulation over spinal inhibitory pathways 

likely contributes to inappropriate reflex modulation that has been reported in SCI (Crone 

et al. 2003; Hultborn 2003). Thus, the loss of inhibitory drive to targeted reflex pathways 

might result in the expression of reflexes that would normally be manifested only during 

functional tasks.  In particular, stretch of the hip flexors may have an important functional 

role in walking and disinhibition of this reflex could contribute to extensor spasms in 

people with SCI.  

During walking, afferent feedback from changes in hip position operates through 

spinal reflex pathways to regulate muscle activity throughout the leg in a functionally 

appropriate manner (Dietz et al. 2002; Grillner and Rossignol 1978; Knikou and Rymer 

2002). Stretch-sensitive hip afferents are important for initiating limb flexion during the 

swing phase of gait as demonstrated in spinalized (Grillner and Rossignol 1978) and 
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decerebrate (Hiebert et al. 1996) cats, and in human infants during treadmill walking 

(Pang and Yang 2000). However, in human SCI, stretching of hip flexor muscles 

produces inappropriate facilitation of knee extension and ankle plantarflexion (Schmit 

and Benz 2002), both of which can be debilitating during functional movements. Because 

of their importance in walking and the associated disinhibition of reflexes after SCI, hip 

proprioceptors might play a unique role in the expression of spasms in human SCI. 

 In the present study we investigated whether stretch-related sensory feedback 

from the knee or ankle would modulate hip-triggered reflex activity during bilateral hip 

oscillations. Joint torque and EMG were measured from 9 SCI subjects while patellar 

tendon tap perturbations or vibration of the Achilles tendon were applied at different 

phases of the hip cycle (i.e. during hip flexion or hip extension) throughout the imposed 

hip movements. Measurements during the sensory perturbations were compared to a 

control condition, in which no sensory perturbation was applied, to test whether sensory 

input applied to distal muscles could alter lower extremity muscle activity. We 

hypothesized that joint torque and EMG reflex modulation would be predominantly 

dependent on hip afferent input even with added sensory feedback.  

 

 
3.2 METHODS 

3.2.1 Study Participants 

Nine subjects with chronic SCI (mean age: 43.1 yrs) participated in this study. 

Seven SCI participants were classified as having incomplete injuries (American Spinal 
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Cord Injury Association (ASIA) Classification B, C or D) with eight subjects having 

cervical and one subject with thoracic level of lesion. One subject was classified as a 

complete injury (ASIA Classification A). This subject’s data were excluded from the 

group analysis since this subject did not present with spasms in the lower extremities. At 

the time of this study, two of the nine subjects were taking antispastic medication 

(baclofen) to reduce the frequency and intensity of their spasms, and two of the nine 

subjects were community ambulators (S2 and S9). The clinical features of each subject 

are described in Table 3-1. Additionally, the Ashworth Scale (an ordinal scale from 0, no 

increased tone, to 5, increased tone where passive range of motion is difficult) was used 

to quantify the severity of spasticity (refer to Table 3-2). Exclusion criteria for this study 

included: significant medical complications due to skin breakdown, urinary tract 

infection, other secondary infections, respiratory failure, heterotopic calcification, or 

other concurrent illnesses limiting the capacity to conform to study requirements, 

significant osteoporosis, or the inability to give informed consent. Informed consent was 

obtained prior to study participation and all procedures were conducted in accordance 

with the Helsinki Declaration of 1975 and approved by the Institutional Review Board of 

Marquette University. 
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Table 3-1 Subject clinical characteristics 

S1 C6 D 32 10 Ditropan XL

S2 C4-5 D 52 8 Baclofen

S3 C3 D 55 3 Baclofen, Gabapentin, Oxybutinin, Duloxetine HCL

S4 C5-6 C 45 28 None

S5 C6 C 33 9 None

S6 C6-7 D 48 23 None

S7 T5-T6 A 43 25 None

S8 C5 B 50 30 None

S9 C6 D 30 9 None

Time Post 
Injury (yr) MedicationsSubject Age 

(years)Injury Level* ASIA 
Score

 

             

 

       Table 3-2 Ashworth Scale Spasticity Scores (Right leg scores given only) 
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3.2.2 Experimental Setup 

Subjects lay supine on a therapy plinth with their legs supported in custom-built 

leg braces. The custom-built leg braces were adjustable to accommodate a wide range of 

leg lengths. The legs were supported in leg braces by a strap securing the thigh, a strap 

securing the heel and a clamp over the dorsum of the foot to secure the foot to the plate at 

the end of the leg brace. The knee and ankle joints were held isometrically for these tests 

since extensor spasms can be triggered through stretching of hip musculature (Benz and 

Schmit, 2002). The leg braces were attached to two servomotor drive systems 

(Kollmorgen, Northhampton, MA) that were used to impose hip oscillations to the 

subject’s legs (Figure 3-1A). Custom-developed LabVIEW programs (National 

Instruments Corp., Austin, TX) and a data acquisition card (National Instruments Corp., 

Austin, TX) were used to control the hip oscillations. The system was equipped with 

reaction torque transducers (S. Himmelstein and Company, Hoffman Estates, IL) that 

aligned with the hip, knee and ankle anatomical joint axes of rotation for each leg. During 

the hip oscillations, the hip angle was measured using optical encoders (US Digital, 

Vancouver, WA) that were affixed to the respective motor shafts.  
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Figure 3-1 Experimental Setup. (A) Experimental apparatus used to impose bilateral hip 
oscillations and record sagittal plane torques during hip movements. Two servomotor systems 
were used to impose movements about the hips. A linear motor was aligned with the patellar 
tendon and a small motor was strapped around the subject’s ankle to vibrate the Achilles tendon. 
(B) The tip of the linear motor was placed approximately 2 inches from a rubber pad that was 
taped to the tendon, and hit the patellar tendon at approximately 90°. The knee was braced with 
padding to minimize leg movement relative to the linear motor. (C) Patellar tendon tapping and 
Achilles tendon vibration perturbations were applied every half-cycle (i.e. either when the hip 
was flexing (left panels) or extending (right panels)).    
 

 

Patellar tendon reflexes were elicited using a motorized reflex hammer (see 

Figure 3-1A). The motorized hammer consisted of a LinMot P series linear motor (P01-

23x16/70x70) that was powered by a LinMot E1010 amplifier (LinMot Inc., Delavan, 

WI). The linear motor was mounted on the leg brace for the right leg (refer to Figure 3-

1B). A small rubber tip (12 mm diameter) was screwed into the end of the motor shaft. 
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After palpating the knee to locate the tendon, the motor was set up so that the rubber tip 

was placed approximately 5 cm from the patellar tendon with an impact angle at 

approximately 90°. Additionally, a rubber pad (28 x 31 mm) was taped to the subject’s 

tendon to evenly distribute the force from the motorized tapper to the tendon (refer to 

Figure 3-1B). A custom-written LabVIEW program was used to control the velocity (5 

Volt biphasic square wave) of the linear motor. A linear variable differential transformer 

(LVDT; Accusens Series 2000 DC-EC, Measurement Specialists Inc., Hampton, VA) 

coupled to the linear motor shaft was used to measure the displacement of the motor 

during tendon tap perturbations.  

A custom-made vibration system was used to apply an 80 Hz vibration to the 

subject’s Achilles tendon. A small DC motor (Faulhaber Minimotor SA; GMBH & Co. 

KG, Schönaich, Germany) was used to rotate two eccentric weights that were attached to 

the motor’s shaft (one weight on each end of the motor) to produce the vibration. The 

motor and weights were encased within a plastic tube, which was securely strapped onto 

the subject’s ankle (Figure 3-1A). A custom-written LabVIEW program was used to send 

a 5-volt step input (4800 RPM) to control the motor velocity.  

Surface electromyograms (EMGs) were collected from 7 muscles on each leg: 

rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), medial hamstrings 

(MH), medial gastrocnemius (MG), and tibialis anterior (TA). Disposable, pregelled 

Ag/AgCl recording electrodes (Vermed Inc., Bellows Falls, VT) were attached to the 

muscle belly of each muscle in a bipolar arrangement. Prior to electrode placement, the 

skin was cleaned and lightly abraded with a gauze pad doused with alcohol. EMG signals 
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were amplified (×1000) and band-pass filtered (10-1000 Hz; Bortec Biomedical Ltd., 

Calgary, AB, Canada) prior to data collection.  

3.2.3 Experimental Protocol 

 Isokinetic hip flexion and extension movements were imposed to the legs of the 

subjects using the servomotor apparatus pictured in Figure 3-1A. The legs were moved in 

an alternating manner (i.e. 180° out of phase) through a 50° range of motion (from 40° of 

hip flexion to 10° hip extension) for ten continuous cycles at 50 °/s. The knee and ankle 

joints were held isometrically within the leg braces (knee: 45° flexion; ankle: 15° 

dorsiflexion). To test whether hip-triggered reflex patterns could be altered through 

sensory feedback from other joints, one of two perturbations was applied during different 

phases of the hip oscillations (refer to Figure 3-1C): (1) patellar tendon tapping during 

movement of the right leg into hip extension (“tap-ext”) or hip flexion (“tap-flx”) or (2) 

80 Hz vibration of the Achilles tendon during movement of the right leg into hip 

extension (“vibe-ext”) or hip flexion (“vibe-flx”). For each half of a cycle of the hip 

oscillations (i.e. flexion or extension), two tendon tap perturbations were applied (2 Hz, 

25 ms pulse duration) using the motorized reflex hammer for tendon tap tests, and for 

vibration tests, Achilles tendon vibration was applied throughout the duration of the half-

cycle (5 seconds) (refer to Figure 3-1C). A control condition was also performed in 

which no perturbation was applied during the hip oscillations (“control”). Additionally, to 

test whether remaining descending drive had an effect on spastic reflex responses with 

the added sensory input, subjects were asked to either assist the imposed hip oscillations 

(“active”) or to remain relaxed during the oscillations (“passive”). Each condition was 
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presented in a random order and repeated three times using a block design (total of 30 

tests). Torque and EMG were recorded throughout the duration of the hip movements.  

 At the end of the experiment, two additional hip oscillation tests were performed 

to estimate the torque due to gravity, passive joint resistance and inertial properties of the 

participant’s legs. The legs were moved slowly through the 50º range at 2 º/s in 5º 

increments, pausing for five seconds between each increment, to measure the combined 

torque contribution from gravity and passive joint resistance. Then, inertia was estimated 

from measurements during which each leg was quickly oscillated (1.5 Hz) within a 

midrange of the hip (25º to 10º hip flexion) to minimize the potential for eliciting reflexes 

during the test. 

 

3.2.4 Active Muscle Torque  

 The biomechanical properties of the leg and leg brace were estimated and used to 

correct the measured hip, knee and ankle joint torque using the method described in 

Chapter 2, section 2.2.4. Briefly, all recorded torque data were low-pass filtered (8 Hz) 

using a 2nd order Butterworth filter in Matlab (filfilt function; The Mathworks, Inc., 

Natick, MA). The torque due to gravity and passive resistance were estimated by fitting a 

3rd order polynomial curve to the torque measurements taken during the slow, 

incremental hip movements. Those polynomial coefficients were then used to calculate 

the gravitational and passive resistance torques from the measured data. The inertial 

properties of the leg and leg brace were calculated by subtracting the gravitational and 

passive resistance torque, and then estimating the inertial constant of the leg and leg 

brace using a linear regression analysis. The mechanical artifact within the system 
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(approximately < 5Nm) was estimated using an ensemble average of torque 

measurements recorded from neurologically healthy subjects from the experiment in 

Chapter 2 (refer to section 2.2.4).  The torque produced by active muscle contraction was 

calculated by subtracting the gravitational/passive torque, inertial torque, and artifact 

from the measured trial torque data, and was used for all subsequent analyses.  

 

3.2.5 Peak Torque  

 The peak torque was used to determine the overall amplitude of the response to 

the hip oscillations. The peak flexion and extension torques for the hip, knee and ankle of 

the right leg were found for each cycle of hip movement. For knee extension torque 

during trials with patellar tendon taps, the reflex torque response from patellar tendon 

taps was not used for the peak torque analysis; rather, the peak torque from the movement 

was used for the peak torque analysis. The mean peak flexion and extension torques for 

each joint were calculated for each cycle (i.e. 1-9) across subjects. The peak torque at 

each joint (hip, knee or ankle) for each subject was normalized to the grand mean of that 

subject’s torque data across test conditions (e.g. the peak hip torque was normalized to 

the average peak hip torque for the 10 test conditions × 3 trials) for comparison across 

subjects. During the progression of the study, the hip and knee joint from subject S3 

became misaligned with the torque transducers in the apparatus, and his torque data were 

excluded from group analysis. 
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3.2.6 Surface EMG  

 
 Surface EMG signals from the right leg of SCI subjects were analyzed to obtain 

the level of muscle activity during the experimental procedures. All surface EMG 

recordings were band-stop filtered to remove line noise (59-61 Hz) and artifact from the 

80 Hz vibration (79-81 Hz plus harmonics), and band-pass filtered (20-300 Hz) using 4th 

order Butterworth filters (filtfilt command, Matlab). For analysis, the root-mean square 

(RMS) of the EMG data was calculated using a 100-ms moving window. At the end of 

the hip movements, the leg remained in full flexion providing continuous afferent 

feedback to spinal neurons from hip extensor muscles. Since we were interested in 

responses during dynamic hip movements, the last cycle was excluded from analysis. 

Muscle activation was quantified by calculating the mean integrated area of the RMS 

EMG signal for every cycle for which the muscle was active, across all three trials (total 

average of 27 cycles). Additionally, the magnitude of the reflex responses during patellar 

tendon tapping trials was also calculated. The peak-to-peak (p-p) amplitude, measured as 

the difference between the largest positive and negative peak, was calculated for the RF 

and VM muscles and then averaged across subjects. The RF and VM data from each 

subject were inspected by eye to ensure reflex responses were included and artifact was 

excluded from the analysis. For all EMG measurements, the data for each muscle for 

each subject was normalized to the mean of that subject’s entire EMG data based on all 

experimental conditions. 
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3.2.7 Statistical Analysis 

 Individual univariate ANOVAs were used to identify the effects of Achilles 

tendon vibration and patellar tendon tapping on peak torque and EMG areas (significance 

level, α = 0.05). Peak flexion and extension torque for the hip, knee and ankle were 

analyzed separately using univariate ANOVAs to compare test condition (vibe-ext, tap-

ext, vibe-flx, tap-flx and control), effort (active or passive) and subject (random factor). 

A similar analysis was done on the average MH EMG areas. A univariate ANOVA was 

used to test for differences among test conditions (vibration, tendon tapping, or control), 

timing of stimulus (movement of hip into flexion or extension), effort (active or passive), 

and subject (random factor). Similarly, a univartiate ANOVA was also used to compare 

MG areas between the phase of Achilles tendon vibration (i.e. vibe-ext, vibe-flx or 

control) and effort (active or passive). Statistical comparisons were also made between 

the p-p reflex amplitude of the RF and VM during patellar tendon tapping trials. The 

response to the first and second tendon tap of each two-tap series per cycle were 

compared within each muscle (i.e. RF and VM) across subjects (main factors: tap number 

grouped with tendon tap phase (e.g. 1st tap during movement of the leg into extension), 

effort (active or passive); random factor: subject). Prior to conducting the statistical 

analysis on the p-p RF and VM data, the data were first transformed (natural log) to 

obtain a normal distribution. The Bonferroni correction method was used for post-hoc 

pairwise comparisons between the test conditions (significance level, α = 0.05).  
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3.3 RESULTS 

In general, Achilles tendon vibration and patellar tendon tapping did not greatly 

affect the responses produced at the hip joint, but they did modulate responses at the 

ankle and knee joints, respectively (see Figure 3-2). For example, Figure 3-2B shows an 

increase in knee extension torque when the tendon tapping was applied during movement 

of the hip into extension, whereas when the tendon tapping was applied during hip 

flexion, the knee torque pattern resembled the pattern during the control and vibration 

conditions. Similarly, RF and VM EMG activity also increased during trials in which 

tendon tapping was applied during hip extension compared to the other conditions 

(Figure 3-2C). Additionally, the example data shown in Figure 3-2 are representative of 

typical responses observed between active and passive trials. Responses during the 

passive trials were typically lower in amplitude and tended to lessen with the repeated hip 

oscillations even with added sensory input (n = 6/8); however, two subjects (S4 and S5) 

demonstrated responses that were similar in amplitude between passive and active trials.  

 

3.3.1 Torque Responses 

  From the group results, the hip flexion and extension torque amplitudes were 

fairly consistent throughout the hip oscillations during the active trials (Figure 3-2). 

During the passive trials, the pattern of peak torque was similar to the active condition, 

but the amplitude was significantly lower for both hip flexion and extension torque 

(ANOVA, p = 0.000).  Neither vibration nor tendon tapping, nor the phase of the 

stimulus (i.e. flexion or extension) significantly altered the peak hip extension torque 
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(ANOVA, p = 0.934). Similarly, peak hip flexion torque during vibration and tendon 

tapping trials was not significantly different from the control condition (ANOVA, p = 

0.842).  
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Figure 3-2 Single SCI Subject Example Responses. Example hip torque (A), knee torque (B), 
and EMG (C) data from subject S6 representing responses from all test conditions. For the hip 
(A) and knee (B) torque traces, the panels on the left are trials where vibration or tendon tapping 
were applied during hip extension and the panels on the right are trials where the stimulus was 
applied during movement of the leg into hip flexion. (C) Peak RF and VM reflex amplitudes are 
not displayed in the figure in order to emphasize EMG bursting. 
 
 

 The direction of hip movement affected the responses measured at the knee and 

ankle joints when vibration or tendon tapping was applied. Figure 3-3 illustrates the 

difference in peak knee extension torque amplitude among the conditions for the active 

trials. The peak knee extension torque amplitude during the tap-ext condition was 

significantly greater compared to the other conditions (ANOVA, p = 0.006). While peak 

knee flexion torque amplitude showed variability among the test conditions, no 

significant difference was found among test conditions (ANOVA, p = 0.432). Achilles 

tendon vibration also had an effect on peak ankle plantarflexion torque. Peak ankle 

plantarflexion torque amplitudes were significantly greater for the vibration trials 

compared to the control condition (post-hoc: vibe-ext vs. control, p = 0.013; vibe-flx vs. 

control, p = 0.031), but not when compared with the tendon tapping conditions (post-hoc: 

vibe-ext vs. tap-ext, vibe-ext vs. tap-flx, vibe-flx vs. tap-flx and vibe-flx vs. tap-ext, p = 

1.000). However, peak ankle dorsiflexion torque amplitudes did not differ among the test 

conditions (ANOVA, p = 0.803). Additionally, the peak amplitude for both knee and 

ankle were greater during the active trials compared to the passive trials (ANOVA, p = 

0.000).  
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Figure 3-3 Average Peak Torque. Group average of normalized peak hip flexion/extension, 
knee flexion/extension and ankle plantarflexion/dorsiflexion torque per oscillation cycle (active 
condition only). Error bars are not provided in order to show the trends more clearly. Averages 
for active trials are > 1 since peak torque data were normalized to the average of active and 
passive trials. 
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3.3.2 EMG Responses 

 MH EMG activity showed differential effects with respect to the timing (flexion 

vs. extension) of the stimulus, but not to the type of stimulus (tap vs. vibration). Figure 3-

4 illustrates the average MH EMG area during active and passive trials across the test 

conditions. Average MH EMG activity was greater when tendon tapping or vibration was 

applied when the hip was flexing compared to when the stimulus was applied when the 

hip was extending (post-hoc: flx vs. ext, p = 0.010).  Although, the trend in the MH EMG 

activity appeared to show that vibration or tendon tapping during hip flexion was greater 

than the control condition, no significant difference was found (post-hoc: flx vs. control, 

p = 0.067). When subjects assisted the movements, MH EMG activity was greater 

compared to the passive trials (ANOVA, p = 0.020).  

 

 

 

 
 
 
Figure 3-4 Average MH EMG Areas.  Group average MH EMG area during hip oscillations 
during active and passive trials. MH EMG was modulated by hip position – tendon tapping and 
vibration increased MH activity when they were applied during hip flexion (significantly 
different, p < 0.05, from other conditions) and active trials had larger responses than passive trials 
(p < 0.05). 
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The peak-to-peak (p-p) RF and VM reflex responses during the tendon tapping 

trials were also modulated by the position of the hip, movement direction and number of 

the tap (first vs. second). Figure 3-5 illustrates the average p-p response from the 1st and 

2nd tendon tap from the two-tap series per movement cycle. The average p-p RF response 

for the 2nd tap was significantly greater compared to the 1st tap for the tap-ext condition, 

but not for the tap-flx condition (post-hoc: tap-ext, p = 0.000; tap-flx, p = 0.926). The 

average p-p VM response between the two tendon taps showed the opposite effect as seen 

in the p-p RF response. The average 2nd tap p-p VM response was significantly larger 

compared to the 1st tap only for the tap-flx condition (post-hoc: tap-flx, p = 0.001; tap-

ext, p = 0.184). Additionally, the p-p VM reflex amplitude from the 1st tendon tap 

perturbation was significantly lower in the tap-flx condition compared to the tap-ext 

condition (p = 0.035). Although not statistically significant, the p-p RF reflex amplitude 

from the 1st tendon tap perturbation for the tap-ext condition was on average smaller than 

the 1st tendon tap response in the tap-flx condition. Voluntary effort did not have an effect 

on the p-p RF or VM responses (ANOVA, p = 0.682 and p = 0.810, respectively).  
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Figure 3-5 Peak-to-Peak Quadriceps EMG.  Group average normalized peak-to-peak (p-p) RF 
and VM EMG during tendon tapping trials. Asterisks represent statistical significance between 
comparisons (p < 0.05). 
 
 

 Muscle activity at the ankle during Achilles tendon vibration trials also showed 

differences in activation patterns relative to the movement of the hip. Figure 3-6A shows 

typical MG and TA EMG responses from subject S3 during a passive (i.e. subject was 

not assisting the movements) trial with vibration applied during movement of the leg into 

hip flexion (vibe-flx) and into hip extension (vibe-ext). The response in the MG muscle 

to vibration resulted in a tendon vibration reflex (TVR), which was observed in 6 out of 8 
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subjects. Application of the vibration during hip extension movements resulted in a 

different MG EMG TVR response, where an initial burst was seen at the beginning of the 

cycle, but then rapidly decayed as the hip movement continued to full extension. TA 

EMG followed a similar trend as the MG EMG, but wasn’t as strongly activated. The 

statistical analysis showed that MG EMG area was significantly greater when the 

vibration was applied during the flexion portion of the hip oscillations compared to the 

extension portion and control conditions (post-hoc: vibe-flx vs. vibe-ext, p = 0.000; vibe-

flx vs. control, p = 0.000) (Figure 3-6B). Additionally, when subjects assisted the 

movements, the average MG response was greater than the passive condition (ANOVA, p 

= 0.002).  
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Figure 3-6 Ankle EMG Modulation.  (A) Example ankle EMG data from subject S3 during 
passive hip oscillations with Achilles tendon vibration. (B) Average MG EMG area comparing 
control, vibe-ext, and vibe-flx between active and passive tests. Asterisks represent significant 
differences between active and passive, and between test conditions (p < 0.05). 
 
 
 
 
3.4 DISCUSSION 

In summary, the results from this study demonstrate that hip-mediated sensory 

signals strongly modulate activity in distal muscles of the leg and appear to play a 

primary role in the generation of multijoint reflexes of the leg. Even though reflex 

responses to sensory stimuli applied at the knee or ankle were observed local to the knee 

or ankle, the movement direction of the hip had an effect on those responses. The reflex 

response amplitude to tendon tap perturbations measured from the VM muscle was 

dependent on the timing of the perturbation with respect to the hip’s motion, showing 

greater reflex amplitude when the tendon tap perturbation was applied during hip 

extension than hip flexion. Moreover, TVR responses in the ankle also showed a hip 

movement dependency. Applying the vibratory stimulus when the hip was flexing 
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increased the MG EMG activity to a greater extent than when vibration was applied 

during hip extension. The predominance of hip afferents in the generation of multijoint 

reflex responses was also supported by the absence of a modulatory effect of tendon tap 

and plantarflexor vibration on the ongoing multijoint response to hip oscillation. 

Specifically, the results from this study showed reflex activity at the hip joint was weakly 

modulated by Ia afferent feedback from the knee (tendon tap) or ankle (vibration). MH 

EMG did show increased activity that was hip movement dependent, but no significant 

differences were seen in the hip torque responses between the timing of the sensory 

perturbations with hip position.  

 

3.4.1 Hip Afferent Feedback and Reflex Modulation 

 
 The results from this study are consistent with the idea that stretch-related hip 

afferent feedback plays a unique role in the modulation of spastic muscle activity 

throughout the leg. Clinical reports on SCI patients from as early as the 1940s had first 

implicated the importance of the hip as a trigger for initiating multijoint reflexes (Macht 

and Kuhn 1948). Controlled experimental studies have since supported the clinical 

observations by demonstrating that characteristic multijoint reflex patterns heavily 

depend on the hip’s position (Onushko and Schmit 2007; Schmit et al. 2000; Schmit and 

Benz 2002; Steldt and Schmit 2004). In previous studies investigating sensory triggers of 

multijoint reflexes, rapid knee extension elicited similar reflex patterns as those produced 

from stretching the hip, but responses were substantially enhanced if the hip was in an 

extended posture rather than flexed (Wu et al. 2005). Ankle load afferents have also been 
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shown to elicit multijoint reflexes resembling the extensor reflex pattern (Wu and Schmit 

2006). Ankle (plantarflexor) load release produces a multijoint reflex response similar to 

hip extension, but is rarely triggered with the hip in a flexed posture.  Conversely, 

holding the leg in an extended posture while dorsiflexing the ankle caused increased 

excitability of hip flexor muscles (Wu and Schmit 2006). The results observed in the 

current study showed that hip position provided strong control signals that modulated 

responses at the ankle and knee during Achilles tendon vibration and patellar tendon taps, 

respectively. However, neither sensory perturbation had a robust response at the hip, 

suggesting that stretch-related Ia feedback from distal leg muscles do not strongly 

modulate hip activity in SCI. 

Applying vibration at the Achilles tendon elicited a tonic vibratory response in 

ankle plantarflexor muscles. Vibration applied to muscle or tendon strongly activates Ia 

afferent firing of the homonymous muscle (Agarwal and Gottlieb 1980; Burke et al. 

1976; Roll et al. 1989). In the current study, muscle activation from the vibration 

appeared to a have a tonic component with it that varied with the movement direction of 

the hip. At the onset of vibration, there was a phasic burst of EMG activity that was 

present in both the tap-flx and tap-ext conditions (refer to Figure 3-6). A difference in the 

tonic component of the MG EMG was seen between the conditions, in which activity 

remained elevated compared to the tap-ext condition (refer to Figure 3-6). In SCI, the 

tonic component of the vibration reflex was previously shown to depend on input from 

segmental interneurons or supraspinal pathways, while the initial burst is dependent on 

motoneuronal excitability (Dimitrijevic et al. 1977). Results from the present study 
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support these findings, since it appeared that the tonic component of the vibration reflex 

was dependent on the hip’s position. 

Following cerebral or spinal lesions, there is impaired modulation over spinal 

inhibitory mechanisms. For example, it has been reported that hip-mediated sensory input 

modulates the soleus H-reflex in individuals with SCI, in which hip extension facilitates 

the H-reflex and hip flexion provides inhibition (Knikou and Rymer 2002; Knikou et al. 

2006). Additionally, several studies have reported that people with spasticity have altered 

reciprocal inhibition (Crone et al. 1994, 2003; Xia and Rymer 2005). In normal control of 

movement, reciprocal Ia inhibition from the agonist muscle inhibits activity in the 

antagonist muscle at the onset of and during movements (Tanaka 1974; Yanagisawa 

1976; Crone et al. 1987), but in spastic patients the pathway transmission is decreased, 

resulting in facilitation of the antagonist muscle (Crone et al. 1994, 2003; Xia and Rymer 

2005). Consistent with previous findings, the hamstrings muscle activity observed in the 

current study showed a similar behavior. Patellar tendon taps delivered when the 

hamstrings muscles were being stretched (i.e. tap-flx condition) compared to the other 

conditions (i.e. control or tap-ext) resulted in increased MH EMG activity in both the 

active and passive cases. In contrast, an interesting observation from the current study 

was that reflexive hamstrings muscle activity could be suppressed (inhibited) by rotation 

of the hip into extension (refer to Figure 3-2). One explanation for this is that activation 

of the quadriceps muscles through patellar tendon taps produces too weak of inhibitory 

feedback to modulate the antagonist muscle (i.e. hamstrings) and other hip flexor 

muscles, such as the iliopsoas, may provide stronger inhibitory cues that modulate 

hamstrings muscles.   
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3.4.2 Organization of Multijoint Reflexes and Locomotor Pathways 

  Sensory feedback associated with changes in hip position and limb loading 

greatly contribute to reflex modulation during locomotion. Hip proprioceptors are 

important for initiating the transition from stance to swing during treadmill walking in 

spinalized cats (Grillner and Rossignol 1978). In addition to hip proprioception, afferent 

input from ankle load receptors also regulates the stance-to-swing transition. During 

locomotion, keeping the limb loaded prolongs the stance phase and prevents the limb 

from advancing (Conway et al. 1987; Duysens and Pearson 1980; Whelan et al. 1995). 

Furthermore, a similar behavior of hip proprioception and ankle load afferent integration 

has been established in human infants (Pang and Yang 2000) corroborating results from 

animal work that spinal cord circuitry can modify locomotor patterns under altered states 

of supraspinal influences.  

Similar patterns of coordinated muscle activity have been observed in SCI 

patients during assisted treadmill walking. Bringing the hip into extension augments limb 

flexion through stretch-sensitive afferent input during body weight-supported treadmill 

walking (Dietz et al. 2002). Additionally, limb loading is a critical sensory cue to produce 

appropriate muscle activity patterns in SCI patients during treadmill walking (Harkema et 

al. 1997). It has been postulated that the pathways involved with multijoint reflexes 

observed during imposed hip oscillations share common pathways with spinal circuits for 

locomotion, since coordinated reflex patterns are strongly tied to hip sensory signals 

(Onushko and Schmit 2007; Schmit and Benz 2002; Steldt and Schmit 2004; Wu et al. 

2005; Wu and Schmit 2006, 2010). However, integration of hip and ankle proprioceptive 

sensory feedback with multijoint reflexes in human SCI is less clear. Commonly in 
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spastic patients, extension of the leg causes increased ankle plantarflexion activity 

(Schmit and Benz 2002; Steldt and Schmit 2004), which was also noted in the current 

study. Furthermore, from the current study we saw that even though the plantarflexors 

turned on with vibration, plantarflexion was increased to a greater extent during hip 

flexion than movement of the leg into hip extension. If the interneuronal pathways of 

these reflexes overlap with reflex pathways involved with locomotion, then we’d expect 

the ankle to have a greater response to vibration during hip extension to be appropriately 

timed with push-off at the end of stance. However, hip flexion can be enhanced in SCI by 

eliminating dorsiflexion torque at the ankle following unilateral hip extension movement, 

which is analogous to limb unloading during the stance phase of gait (Wu and Schmit 

2006). Similarly, the hip extension moment can be augmented if ankle loading is applied 

during the stance phase during body weight-supported treadmill stepping (Gordon et al. 

2009). The differences observed in this study compared to other studies could be due to 

differences in the type of afferent feedback information. During treadmill walking, 

loading of the limb generates Golgi Ib input from the tendons, which is a strong 

modulator of hip flexor activity (Conway et al. 1987; Pang and Yang 2000), while in the 

current study, tendon vibration primarily increased muscle Ia afferent firing (Burke et al. 

1976; Roll et al. 1989). 

Hip proprioceptive input has been shown to be a critical sensory signal for tuning 

rhythmic locomotor behaviors, such as walking, in the mammalian spinal cord. Central 

pattern generators (CPGs) distributed within the lumbar cord are organized in an 

functionally appropriate manner. In the segments where hip motoneurons lie, hip 

movement entrains rhythm-generating networks of the knee and ankle (Kiehn 2006). 
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Furthermore, destroying or disconnecting these networks from lower spinal regions 

severely impairs locomotor capacity in rats and cats (Langlet et al. 2005; Magnuson et al. 

2005). While the organization of rhythm-generating neuronal networks in the human 

spinal cord are largely unknown, the results from the current study do allude to the 

importance of hip sensory feedback for generating rhythmic, coordinated activity in the 

lower extremities. 

 

3.4.3 Functional Considerations  

A common phenomenon observed in patients with spasticity is reflex coupling of 

hip flexor and knee extensor muscle activity, which is termed ‘spastic stiff-legged gait’. 

During late stance, when the hip is extended, exaggerated knee extension activity often 

occurs with hip flexor activity. Abnormal coupling of the knee extensor muscles impairs 

gait in these individuals by decreasing the knee flexion velocity at toe-off (Goldberg et al. 

2003; Lewek et al. 2007). In SCI and stroke, extension of the hip produces prolonged 

reflex activity in the hip flexors and knee extensors under passive movements (Schmit 

and Benz 2002; Steldt and Schmit 2004) and during volitional movements (Lewek et al. 

2006, 2007). In the current study, tendon reflex amplitudes of the VM and RF were larger 

when patellar tendon perturbations were delivered while the leg was moving into hip 

extension. Furthermore, the VM reflex responses were dominated by hip movements 

(increased reflex amplitude on 2nd tap compared to 1st tap, refer to Figure 3-5). Even 

though the VM muscle does not  receive stretch-related input from hip movement, the 

initial stretch of the VM from the 1st tap may have increased excitability in that MN pool, 

resulting in a larger response to the 2nd tap. Alternatively, stretch-related input from the 
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hip may increase excitability in quadriceps motor pool increasing reflex activity at the 

knee. The data suggest that the integration of group I afferent input from the hip and knee 

are poorly modulated in spastic SCI, possibly due to decreased control over presynaptic 

inhibition of Ia afferents (Faist et al. 1999). However, group II hip afferents are also 

thought to partly account for the increased knee extensor excitability in spastic gait as 

seen in stroke patients (Lewek et al. 2007).  

 Rehabilitation efforts commonly employed in the clinic to improve locomotor 

function in SCI patients have a large focus on managing inappropriate reflex activity 

through pharmacological agents. Anti-spastic medication, such as Baclofen, is commonly 

prescribed to reduce reflex activity in spastic patients. Considering the results from the 

present study, reflex excitability is strongly modulated by hip-mediated signals. Thus, 

treatment of SCI patients using antispatic agents might impair the reflex regulation of gait 

and could have detrimental effects on function.  

 
   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

 
 

CHAPTER 4 
 

Bilateral Oscillatory Hip Movements Induce Windup of 
Multijoint Lower Extremity Spastic Reflexes  

in Chronic Spinal Cord Injury 
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4.1 INTRODUCTION 

Involuntary muscle spasms are a prominent component of the spastic syndrome 

that develops in chronic human spinal cord injury (SCI). Individuals with SCI will 

typically present with uncontrolled hyperexcitable reflexes, such as flexor and extensor 

spasms, in which brief stimuli can evoke forceful, prolonged responses throughout 

muscles in the lower extremities lasting from a few seconds to tens of seconds (Benz et 

al. 2005). Particular to extensor spasms, hip proprioceptive stimuli elicit long-lasting, 

coordinated responses of hip flexion, knee extension and ankle plantarflexion (Schmit 

and Benz 2002), and typically occur when patients shift from a seated to supine position 

(Macht and Kuhn 1948) or by extension of the leg (Schmit and Benz 2002). Although not 

recognized as part of the extensor spasm, from previous studies, flexing the leg will also 

cause a coordinated response generally composing hip extension, knee flexion and ankle 

extension with responses equally as long as seen in extensor spasms (Schmit and Benz 

2002). Extensor spasms, which are common in SCI patients, are functionally relevant 

since they not only interfere with patient mobility but also cause pain and discomfort 

(Little et al. 1989). Accordingly, it is important to understand the underlying mechanisms 

associated with these prolonged responses in order to prescribe appropriate treatment 

options to improve function.  

The neuropathophysiology behind the long-lasting nature of involuntary muscle 

spasms in human SCI still remains unclear, but one hypothesis is that changes in the 

intrinsic electrical properties of spinal circuitry contributes to the spastic syndrome 

(Bennett et al. 2004; Nielsen et al. 2007). In an intact nervous system, descending 
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monoaminergic input from the brainstem to the spinal cord modulates spinal neuronal 

excitability through the facilitation of persistent inward currents (PICs) found in both 

motoneurons (MNs) (Hounsgaard et al. 1988; Lee and Heckman 1999) and motor-related 

interneurons (INs) (Chen et al. 2001; Theiss et al. 2007). In mammals, it is believed that 

PICs are primarily generated by dendritic voltage-dependent Na+ and Ca2+ channels, that 

when activated by a brief excitatory stimulus, can amplify synaptic currents (Hultborn et 

al. 2003; Lee and Heckman 2000) and produce plateau potentials resulting in sustained 

firing even after the stimulus is removed (Bennett et al. 1998a; Crone et al. 1988; 

Schwindt and Crill 1980). PICs are associated with a phenomenon called “windup” in 

which repeated excitatory inputs can facilitate MN activity without increases in synaptic 

input (Bennett et al. 1998a; Russo and Hounsgaard 1994; Svirskis and Hounsgaard 1997). 

Immediately following spinal injury in animals, MN excitability is greatly 

decreased with concomitant loss of PICs (Bennett et al. 1999; Hounsgaard et al. 1988; 

Hyngstrom et al. 2008b) and this has been associated with an acute interruption of 

monoaminergic inputs to the cord. Despite the loss of descending drive, a re-emergence 

of PICs occurs weeks to months following injury along with a concurrent increase in MN 

excitability and emergence of spasms (Bennett et al. 2001b; Li and Bennett 2003). 

Constitutive activity in serotonergic (Murray et al. 2010) and adrenergic (Rank et al. 

2010) receptors are, in part, responsible for PIC recovery and the abnormal regulation of 

recovered PICs is likely to be involved in the long-lasting muscle spasms observed in 

chronic spinalized animals (Bennett et al. 2001b; Bennett et al. 2004; Li et al. 2004; 

Murray et al. 2010). These changes in MN properties in spinal-injured animals are 

consistent with clinical descriptions of involuntary spasms in human SCI (Collins et al. 
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2001; Gorassini et al. 2004; Hornby et al. 2006; Hornby et al. 2003; Nickolls et al. 2004). 

Alterations in intrinsic properties of INs, which have not been investigated as extensively 

as MNs, also demonstrate electrophysiological characteristics similar to PICs in MNs 

(Russo and Hounsgaard 1996; Smith and Perrier 2006; Theiss et al. 2007; Ziskind-

Conhaim et al. 2008), including windup (Russo and Hounsgaard 1994). Since MNs 

receive much of their synaptic input from INs and IN axons show the ability to regenerate 

post SCI (Fenrich and Rose 2009), it is plausible that changes in IN PICs would have 

downstream effects on motor behaviors as well, especially since the spastic syndrome is 

in large part comprised of long-lasting, multijoint flexor and extensor spasms. Thus, after 

spinal injury, changes in the excitability of interneuronal networks may affect reflex 

muscle activity and the associated emergence of long-lasting motor output (Jankowska 

and Hammer 2002).  

In human SCI, windup has been documented with repeated stretch of the ankle 

(Hornby et al. 2006) and in flexor reflex responses to repeated, brief stimulation of the 

skin of the foot (Hornby et al. 2003), implicating a role for PICs in the clinical symptoms 

of clonus and flexor spasms. However, windup behavior has not been explored in 

extensor spasms and it is plausible that underlying plateau potentials may play a large 

role in the prolonged, non-linear responses associated with this spastic reflex. In the 

current study we investigated whether the multijoint reflexes associated with imposed hip 

movement in human SCI (i.e. extensor spasms (Schmit and Benz 2002)) would exhibit 

windup. We hypothesized that windup responses in joint torque and muscle activity 

would occur throughout the lower extremities. Specifically, peak torque and muscle 
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activity acquired through surface electromyograms (EMGs) would be greater with 

subsequent hip movements in a non-linear manner, implicating PICs in extensor spasms. 

Results from this study have been published in abstract form (Onushko et al. 

2008). 

 

 
4.2 METHODS 

4.2.1 Study Participants 

Participants included ten individuals with chronic (> 6 months), clinically 

complete (American Spinal Injury Association [ASIA] classification A) and incomplete 

SCI (ASIA B, C or D). During the time of this study, three subjects were prescribed anti-

spastic medication (e.g. baclofen, a GABA agonist) to control the frequency and intensity 

of their spasms. Subject information is summarized in Table 4-1. Exclusion criteria for 

this study included: lower extremity nerve injury or injury below spinal cord segments 

innervating the hip region, significant medical complications due to skin breakdown, 

urinary tract infection, heterotopic calcification, significant osteoporosis, other concurrent 

illnesses limiting the capacity to conform to study requirements, or the inability to give 

informed consent. Additionally, five subjects with no reported neurological injury 

volunteered for this study as control subjects. Informed consent was obtained prior to 

study participation and all procedures were conducted in accordance with the Helsinki 

Declaration of 1975 and approved by the Institutional Review Board of Marquette 

University. 
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Table 4-1. Subject Clinical Characteristics
 

A 64 C8-T1 A 6 Baclofen
B 48 C6-7 A 24 None
C 42 C5 B 27 None
D 23 T8 B 6 Ditropan
E 41 C5-6 C 25 None
F 40 C5-6 C 23 None

G 70 T2 C 3 Baclofen, Neurontin, Ditropan, Imipramine, Sanctura, Botox

H 43 C5-6 C 17 Baclofen, Detrol, Darvocet
I 26 C6 D 4 Ditropan XL
J 48 C6-7 D 23 None

Injury Level (column three): C = Cervical spinal level; T = thoracic spinal level

Post Injury 
Duration, yr

Medication(s)Subject Age, yr
Injury 
Level

ASIA 
Score

 
 

4.2.2 Experimental Setup 

Bilateral hip oscillations were imposed on the study participants using the 

apparatus described in Chapter 2 (refer to Figure 2-1A). Briefly, the system utilized two 

servomotor drive systems (Kollmorgen, Northhampton, MA) that were controlled 

through custom-developed LabVIEW software (National Instruments Corp., Austin, TX), 

and custom-built knee-ankle braces that were fastened to the servomotor apparatus. The 

custom-built knee-ankle braces were adjustable to accommodate a wide range of leg 

lengths. The legs were supported in leg braces by a strap securing the thigh, a strap 

securing the heel and a clamp over the dorsum of the foot to secure the foot to the plate at 

the end of the leg brace. The system was equipped with reaction torque transducers (S. 

Himmelstein and Company, Hoffman Estates, IL) that aligned with the hip, knee and 

ankle anatomical joint axes of rotation for each leg. The hip angle was measured using 

optical encoders (US Digital, Vancouver, WA) that were affixed to its respective motor 

shaft. 
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Disposable, pre-gelled Ag/AgCl surface electrodes (Vermed Medical Inc., 

Bellows Falls, VT) were used to measure electromyograms (EMG) of the participant’s 

legs. Electrodes were placed in a bipolar arrangement over the cleaned muscle belly of 

the following muscles: vastus medialis (VM) and lateralis (VL), rectus femoris (RF), 

medial hamstrings (MH), medial gastrocnemius (MG), soleus (Sol) and tibialis anterior 

(TA) muscles of both legs. EMG signals were amplified (× 1,000), band-pass filtered (10-

1,000 Hz) (Bortec Medical AMT-16; Calgary, Alberta, Canada) and sampled (1,000 Hz) 

using the same data acquisition card (National Instruments Corp., Austin, TX) and PC 

used to acquire the torque/position signals.  

 

4.2.3 Experimental Protocol 

  Multijoint reflexes were elicited through controlled sinusoidal hip oscillations 

imposed by the robotic apparatus while subjects were instructed to remain relaxed. Hip 

oscillations were repeated for ten consecutive cycles to elicit windup of reflex responses. 

The range of hip motion was approximately 50° for all tests (40° of hip flexion to 0-10° 

of hip extension; hip extension was dependent on the subject’s range of motion) (refer to 

Figure 2-1B in Chapter 2). Furthermore, we investigated whether the facilitation of 

multijoint spastic reflexes would be altered by varying stretch-related synaptic input by 

oscillating the legs about the hip joint bilaterally (bilateral 180° out of phase (OUT), 

bilateral in phase (INP)) and unilaterally (unilateral leg movements with the contralateral 

leg (i.e. left leg) held fixed either at end range hip flexion (FLEXED) or at end range hip 

extension (EXTENDED)). Hip oscillations were performed at two movement frequencies 

(0.50 and 0.75 Hz) to test for velocity dependence. Tests were presented in random order 
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and were repeated three times for each condition (total of 24 tests), with two to five 

minutes allowed between tests to minimize adaptation of the reflexes. At the completion 

of the experiment, two additional hip movements were performed to estimate the torque 

due to gravity, passive joint resistance and inertial properties of the participant’s legs. 

The torque contribution from gravity and passive joint resistance was approximated by 

slowly moving each leg through the entire range of motion at 2 °/s in 5° increments, 

pausing for five seconds between each increment. The inertial properties of the leg and 

leg brace were estimated by rapidly oscillating (1.5 Hz) each leg from 25° to 10° of hip 

flexion for ten cycles. Oscillating the hip within midrange minimized the potential for 

eliciting reflexes. For all tests, EMG and torque data were acquired for the duration of the 

movements. 

 

4.2.4 Data Analysis 

 Active muscle torques for the hip, knee and ankle joints were corrected for the 

biomechanical properties of the leg and leg brace using a method previously described 

(Onushko and Schmit 2007). All torque data were low-passed filtered (5 Hz) using a 2nd 

order Butterworth filter (filtfilt function in Matlab; The Mathworks, Inc., Natick, MA). 

The torque due to gravity and passive resistance were estimated by fitting a 3rd order 

polynomial curve to the torque measurements taken during the slow, incremental hip 

movements, and then those polynomial coefficients were used to calculate the 

gravitational and passive resistance torques from the measured trial data (i.e. INP, OUT, 

etc. hip oscillations). The inertial properties of the leg and leg brace were calculated by 

subtracting the gravitational/passive resistance torque, and then estimating the inertial 
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constant of the leg and leg brace using a linear regression analysis. Additionally, a 

mechanical artifact was present within the system that was not associated with 

biomechanical properties of the legs. The artifact was estimated using an ensemble 

average of torque measurements recorded from neurologically healthy subjects who 

completed the study in its entirety (using the said method to subtract the inertial and 

gravity/passive torque components prior to ensemble averaging). Since the healthy 

control subjects do not experience responses to the imposed hip oscillations, the 

ensemble torque provided a good estimate of the artifact (on average < 5Nm). The active 

muscle torque (i.e. torque produced by active muscle contraction) was calculated by 

subtracting the gravitational/passive torque, inertial torque, and artifact from the 

measured trial torque data, and was used for all subsequent analyses.  

 To identify windup of the multijoint reflex responses to the movements, peak 

flexion and extension torques from the hip, knee and ankle joints were found for the first 

seven consecutive hip oscillations. Torque data were separated into flexion and extension 

components before identifying the peak torque per cycle. The peak torque data per cycle 

were normalized to the mean of the seven cycles for each subject and then averaged 

across all subjects. The data were normalized to account for differences in the amplitude 

of the spastic reflex activity among the subjects. Differences in the peak torques from 

repeated hip oscillations were statistically compared using a multifactor ANOVA (main 

factors: stretch number (cycles 1-7), frequency (0.50 and 0.75 Hz) and movement type 

(INP, OUT, FLEXED, and EXTENDED); random factor: subject) and Bonferroni 

correction to determine differences among successive stretches (α = 0.05).  
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 Windup was identified within the EMG data using a similar technique. EMG data 

were first notch filtered (59-61 Hz) to remove line noise and then band-pass filtered (10-

300 Hz) using 4th-order Butterworth filters (Matlab; The Mathworks, Inc.). For analysis, 

the root-mean square (RMS) of the filtered EMG data was calculated using a 100-ms 

sliding window. The peak EMG response was found per cycle for the first seven 

successive hip oscillations during the time when the muscle was active for the movement 

cycle. EMG data for a single trial of any particular muscle were excluded if the peak 

EMG did not exhibit suprathreshold activity for at least two consecutive movement 

cycles (threshold = mean of baseline + 3 SD). Differences in the peak torques from 

repeated hip oscillations were statistically compared using a multifactor ANOVA (main 

factors: stretch number, frequency and movement type; random factor: subject). 

Bonferroni correction was used for post hoc comparisons between individual stretches. 

The level of significance was set at α = 0.05 for all tests.  

 

 
4.3 RESULTS 

 In general, a non-linear increase was observed in the torque and EMG recordings, 

followed by either saturation or depression in the response. Figure 4-1 illustrates an 

example of multijoint windup from a single subject. Hip flexor and knee extensor torques 

increased from the first movement of the leg into hip extension and the amplitude of the 

response to each subsequent stretch exceeded the previous response through the third 

stretch, which then modulated to the same or lower level for the remainder of the hip 

oscillations (Fig. 4-1A). Muscle activity from the RF and VM followed a similar trend as 
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the torque data, increasing in amplitude during the initial two stretches. Although RF and 

VM activity slightly decreased following the fifth stretch, EMG activity modulated at a 

heightened level compared to the first stretch for the duration of the movements (Fig. 4-

1A). Hip extensor and knee flexor torques successively increased in amplitude for the 

first two stretches of the leg into hip flexion and remained elevated for the duration of the 

trial (Fig. 4-1B). Activity at the ankle joint increased with repeated hip perturbations as 

well (Fig. 4-1C), although reflex responses in the ankle were more variable than 

responses observed at the other joints. MG and Sol activity generally remained above 

baseline, increasing in activity by the second rotation of the leg into hip extension, but 

little modulation was observed during the hip oscillations. Additionally, TA EMG 

increased above baseline level in response to successive stretches of the hip, but it was 

modulated by the hip movements, with peak TA EMG coinciding with hip extension. 

Knee (VM) and ankle (Sol,) muscles (i.e. muscles not crossing the hip joint) exhibited a 

delay in activation in response to stretches of the hip, in which reflex activity was not 

elicited until after the 2nd or 3rd hip oscillation in this subject (refer to Fig. 4-1A and C).  
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Figure 4-1 Single Subject Example of Multijoint Windup. Example of multijoint reflex 
responses (right leg only) from a SCI study participant (subject E) during the out of phase hip 
oscillations at 0.75 Hz for the first 7 cycles. (A) Windup of hip flexors/knee extensor torque (half-
wave rectified) and RMS EMG data. (B) Hip extensor/knee flexor torque (half-wave rectified) 
and RMS EMG data during reflex responses. (C) Reflex activity of ankle 
dorsiflexor/plantarflexor torque and EMG data. Increasing positive torque values represents 
plantarflexion and decreasing positive torque values represents dorsiflexion. 

 

The effects at the hip joint from repeatedly moving the hips are illustrated in 

Figure 4-2 for all movement conditions across all subjects. There were significant 

differences among the peak hip torque data with subsequent hip extensor stretches (hip 

flexion torque: ANOVA, P < 0.001), and hip flexor stretches (hip extension torque: 
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ANOVA, P < 0.001). Additionally, hip extension torque typically remained elevated after 

the 3rd or 4th stretch, whereas hip flexion torque typically decreased after the 4th stretch. 

Although more variability was observed within the EMG data, peak RF and MH activity 

also showed significant differences with subsequent stretches (RF: ANOVA, P < 0.01; 

ANOVA, MH: P < 0.001). Except for the OUT condition, peak RF EMG increased 

through the first two stretches, and peak MH EMG increased until the second stretch, but 

generally remained elevated through subsequent stretches (refer to Figure 4-2). 

 

 

Figure 4-2 Windup of Hip Torque and EMG. Average peak hip torque (top panels) and peak 
RF and MH RMS EMG (bottom panels) for each of the movement types for the 0.75 Hz 
movement frequency (right leg data only). Peak data were normalized to the mean of each 
subject’s data. Significant differences (P < 0.05) between individual responses to stretches are 
indicated by asterisks (* P<0.05; ** P<0.01; *** P<0.001). There were no statistically significant 
differences among the movement types (P > 0.05). 
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Reflex responses were also observed at the knee joint in response to repeated hip 

movements. Normalized peak knee torque responses showed significant differences with 

subsequent hip movements (knee extension and flexion torques: ANOVA, P < 0.001) 

(Figure 4-3). Knee extension torque increased through the first three consecutive joint 

rotations during the OUT, INP and FLEXED hip movements, and in general, the reflex 

amplitude was slightly elevated during the subsequent stretches. Knee extension torque 

during the EXTENDED movement condition elicited a slightly different pattern, where 

the activity rapidly increased during the second hip perturbation and then gradually 

declined throughout the remaining hip movements. Because RF is a biarticular muscle 

that acts at the hip and knee joint, it is possible that knee extensor torques are a result of 

RF stretch-related activity; however, since VM also demonstrated significant increased 

activity through the repeated hip oscillations (Bonferroni, 1st response vs. 4th response, P 

= 0.002), RF may have only partially contributed to knee extension torques in some 

cases. Significant increases in the group mean peak VL EMG activity were not observed 

(ANOVA, P = 0.456). A continuing increase in knee flexion torque (refer to Fig. 3, top 

right) occurred in response to repeated hip extensor stretches and followed a similar 

pattern as the responses observed in hip extension torques (refer to Figure 4-2, top right), 

which might be accounted for by MH activity. 
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Figure 4-3 Windup of Knee Torque and EMG. Average peak knee torque (top panels) and 
peak VM and VL RMS EMG (bottom panels) for each of the movement types for the 0.75 Hz 
movement frequency. Peak data were normalized to the mean of each subject’s data set. 
Significant differences indicated by asterisks (* P<0.05; ** P<0.01; *** P<0.001) between 
individual responses to stretches (P < 0.05). There were no statistically significant differences 
among the movement types (P > 0.05). 
 

Increased activity at the ankle was also noted during repeated stretches at the hip. 

Figure 4 illustrates normalized group mean ankle torque and EMG responses. Significant 

increases in plantarflexion torque (ANOVA, P < 0.001) were observed during the 

repeated stretches. Due to higher variability, the increased dorsiflexion torque during the 

initial two stretches was not significant (Bonferroni, P = 1.000). More notably though, 

responses in dorsiflexion torque began to decrease following the second hip oscillation 

(Bonferroni, 1st response vs. 5th through 7th response, P < 0.045), while plantarflexor 
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torque continually increased (Bonferroni, 1st response vs. 2nd through 7th response, P < 

0.001). MG and Sol EMG activity did not fully resemble the pattern of plantarflexion 

torque, likely as a result of greater variability within the EMG data (Fig. 4-4A). TA 

activity followed a similar pattern to the dorsiflexion torque, with an increase in activity 

over the course of the first few consecutive hip oscillations followed by a depression in 

reflex activity (Fig. 4-4B). 

 

. 

 
Figure 4-4 Windup of Ankle Torque and EMG. Average peak torque and RMS EMG from the 
(A) ankle plantarflexor and (B) ankle dorsiflexor data for each of the movement types for the 0.75 
Hz movement frequency. Peak data were normalized to the mean of each subject’s data set. 
Significant differences indicated by asterisks (* P<0.05; ** P<0.01; *** P<0.001) between 
individual responses to stretches (P < 0.05). There was no statistically significant difference 
among the movement types (P > 0.05). 
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The type of hip movement did not significantly affect windup amplitude during 

repeated hip oscillations (torque: P = 0.558; EMG: P = 0.999). However, out of phase hip 

movements tended to elicit greater responses (for VM, VL, RF, MG, and TA EMG) 

during the first stretch in comparison to the other movement types, and the peak EMG 

responses were smaller over the first few stretches during the in phase hip movements 

compared to the other movement conditions, which was more noticeable in hip 

flexor/knee extensor responses than hip extensor/knee flexor responses. Further, 

compared to the bilateral hip movements, responses during unilateral hip perturbations 

tended to increase more rapidly during the initial hip oscillations. Multijoint reflex 

windup was not sensitive to the movement frequency, with no significant effects on the 

amplitude of the joint torques (ANOVA, P > 0.565) or EMG activity (ANOVA, P > 

0.999). 

 Increased muscle activity was also observed in the non-moving leg of 3 SCI 

subjects (E, F, and J) during the unilateral tests. Figure 4.5 shows sample RMS EMG and 

torque data of the non-moving leg from subject J during the EXTENDED (panel A) and 

FLEXED (panel B) movement conditions. The muscle activity pattern in the non-moving 

leg resembled the windup seen in the oscillating leg, and was also observed in the 

recorded ankle muscles. Additionally, the hip, knee and ankle torque also exhibited an 

increase in amplitude with subsequent stretches of the contralateral (i.e. oscillating) leg 

(Fig. 4.5). Subjects E and F showed similar windup responses in the non-moving leg 

(data are not shown).  
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Figure 4-5 Single Subject Example of Windup in Non-Moving Leg. Example RMS EMG and 
torque data from the stationary leg (i.e. leg not being oscillated) from subject J during the 
unilateral tests for the 0.75 Hz movement frequency. (A) EXTEDNED test - the left leg was held 
at 10° hip extension (dotted line in bottom panel) while the right leg oscillated from 40° hip 
flexion to 10° hip extension. (B) FLEXED test - the left leg was held at 40° hip flexion (dotted 
line in bottom panel) during contralateral leg oscillations. For all torque traces, flexion torques are 
decreasing values and extension torques are increasing values. 
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4.4 DISCUSSION 

In the present study, repeated stretches of hip musculature in subjects with 

chronic SCI induced motor responses consistent with windup not only in the primary 

muscles stretched, but also in muscles throughout the lower extremities. Subsequent 

stretching produced the windup response that was manifested as whole limb spasms of 

increasing EMG magnitude and joint torque. Although the spastic syndrome post SCI is 

likely multi-factorial, involving changes in both cellular intrinsic electrical properties and 

reflex pathway excitability (e.g. changes in reflex recruitment or alterations in pre-

synaptic inhibition) (Nielsen et al. 2007), the temporal characteristics of multijoint reflex 

activation seen in this study were consistent with previous examples of stretch-reflex 

windup (Hornby et al. 2006) and windup of flexor reflexes (Hornby et al. 2003). In 

addition to being the first study to quantify windup in muscles not being stretched (VM, 

VL, MG, Sol, and TA), this study is the first to demonstrate in humans differences in 

temporal patterns of windup between functionally different muscle groups, suggesting a 

fundamental difference in intrinsic properties of neural pathways for muscles that have 

different general functions. The findings from this study further support a strong role of 

changes in the intrinsic electrical properties of motor-related circuitry in spastic reflex 

activity such as extensor spasms. 

 

4.4.1 Possible Cellular Mechanisms of SCI Windup Response 

Much of the current evidence regarding alterations in PIC regulation following 

injury to the nervous system has focused on MNs (Gorassini et al. 2004; McPherson et al. 
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2008; Mottram et al. 2009). The time course of windup responses measured during 

repeated hip oscillations in the current study was similar to windup observed in MNs 

exhibiting PICs (Bennett et al. 1998a, 1998b; Svirkis and Hounsgaard 1997). The 

stimulus interval is critical in generating windup responses to repeated stretches of the 

hind limb, as shown in the decerebrate cat MN, in which 3- to 6-second intervals generate 

a progressively larger amplitude response (Bennett et al. 1998a). Similar inter-stimulus 

intervals were used in the current study to elicit windup (0.66 and 1 second). MNs, the 

“final common pathway,” make an attractive candidate for accounting for the windup 

response, but since the channels involved in windup are voltage sensitive, windup may 

also depend on interneuronal inputs to the MN.  

Changes in the regulation of the intrinsic electrical properties of locomotor or 

stretch-related IN populations due to SCI could result in IN participation in the windup 

response.  For example, locomotor-related INs have firing patterns that rely heavily on 

the regenerative intrinsic electrical properties of the cell (Kettunen et al. 2005; Kiehn 

2006; Kyriakatos and El Manira 2007). Moreover, they receive and integrate stretch-

related input from hip afferents (Edgley and Jankowska 1987; Harrison and Jankowska 

1985; Kriellaars et al. 1994). In this study, stretching of the hip musculature by repeated 

hip movements, similar to a locomotor pattern (i.e. out of phase movements), could have 

provided an excitatory drive to locomotor-related INs leading to a windup response or 

entrainment of CPGs in the human spinal cord. Windup of INs is supported in the data 

from three subjects where windup was produced in the stationary leg (refer to Fig. 4-5). 

In addition, the delay in the muscle activity of the ankle could also suggest that 

subthreshold windup occurs in INs, since it has been shown that MNs need activation of 
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PICs to fire repetitively and exhibit windup (Bennett et al. 1998b; Lee and Heckman 

2001). Repeated stretching of hip musculature may have induced subthreshold 

depolarizations that windup in the INs first, and then proceed to windup MNs of ankle 

muscles. Additionally, of the subjects who exhibited windup in muscles of the ankle, four 

subjects showed no EMG response during the first stretch of the hip (for the out of phase 

hip movement). While multijoint windup still may be occurring through windup of MNs 

and/or INs, n=4 isn’t strong enough to rule out that other sensory pathways (e.g. 

cutaneous afferents) may be eliciting these responses in the other subjects. However, a 

recent study done in the spinalized cat revealed a broadening of the movement-related 

receptive fields of the MNs, in which stretch input from hip muscles generates large 

currents in knee and ankle extensor MN pools (Hyngstrom et al. 2008), which 

complements the findings from the current study. 

The loss of group Ia IN activity could also indirectly contribute to windup of MNs 

(Nielsen et al. 2007). Although thought to be primarily ionotropic in nature, Ia inhibition 

appears to be important for modulating PIC amplitude and the loss of Ia IN activity has 

been shown to enable windup in MNs in a decerebrate preparation (Hyngstrom et al. 

2007). In SCI and other neurological disorders, it has been recognized that Ia inhibitory 

pathways can be disrupted and or even lost (Nielsen et al. 2007). Loss of reciprocal 

inhibition in neurological conditions such as SCI would prevent stretch-related inhibition 

of PIC activity in MNs, thereby facilitating more PIC-related behaviors such as windup. 

However, the distribution of the monosynaptic Ia afferent and corresponding INs onto 

MNs is relatively focused (Eccles et al. 1957; Nichols 1999) and would not likely have 

resulted in the multi-segmental responses seen in the present study. For example, Ia input 
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would not be carried from stretch of the hip flexors onto muscles of the ankle, which SCI 

subjects demonstrated in this study (Figure 4-4).  

Alternatively, recent evidence has shown that the hyperactivity observed in 

chronic spinal injury may be due to a lowered expression of the potassium-chloride 

cotransporter (KCC2) in MNs and spinal networks (Boulenguez et al. 2010). In the intact 

cord, KCC2 keeps the intracellular chloride ion concentration low; however, Boulenguez 

et al. (Boulenguez et al. 2010) have shown that KCC2 is decreased in chronic spinal-

injured rats limiting chloride transport out of the cell which, compared to the intact spinal 

cord, results in a depolarizing shift in the equilibrium potential of chloride below the 

level of the lesion. The authors suggest that the shift to a more positive membrane 

potential could enable sensory inputs to produce long-lasting depolarizations which, in 

turn, activates PICs. If a similar mechanism occurs in human SCI, it is possible that while 

repeatedly moving the hips, stretch-related input may have been sufficient to initiate PICs 

in MNs or INs, and over the course of several hip movements, weaker sensory synaptic 

information could have initiated PICs in muscles not being stretched. However, the 

amount of non stretch-related input was not measured and it is unknown what 

contribution it had on the observed responses.  

Finally, but not necessarily exclusively, Group II interneuronal pathways carry 

stretch-related information from the whole limb (Jankowska 1992, 2001) and have been 

implicated previously in the widening of a given MN’s “movement receptive field” in 

acute spinal cord injury (Hyngstrom et al. 2008a). Group II INs receive convergent 

information from other afferent pathways (Jankowska and Hammer 2002) that could also 

contribute to windup. The multi-segmental stretch-related distribution of the windup 
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response in the current study, the delay in the windup response in muscles not being 

stretched, and the lack of velocity sensitivity in the magnitude of the response supports 

the role for the involvement of Group II IN in windup of human spastic reflexes. PIC 

behavior is necessarily regulated in the neurologically intact state, and thus it is likely 

that SCI disrupts control of PICs in both MNs and INs. Due to the indirect nature of the 

measurements of windup in this human study, we are limited in determining the relative 

contribution of each cell population (i.e. interneuron vs. motoneuron) to windup.  

 While PICs make a strong candidate for the windup observed during imposed hip 

movements in the current study, other mechanisms may also play a role in maintained 

muscle activity that was observed in SCI subjects. For example, after SCI there is 

increased concentration of extracellular glutamate that results in the upregulation of 

glutamate receptor expression (Liu et al. 1991), which could increase neuronal 

excitability through synaptic inputs. In addition, NMDA receptors have been shown to 

induce windup in dorsal horn neurons in response to nociceptive inputs (Mendell 1966, 

for review see Daw et al. 1993), and windup can be reduced by blocking NMDA 

receptors through the application of specific NMDA antagonists (Daw et al. 1993). While 

it is possible that in the current study, NMDA receptors could have contributed to the 

windup phenomena, NMDA currents have been reported to only last for up to 500 ms in 

spinal neurons (Dale and Grillner 1986) and previous studies in human SCI have shown 

that prolonged spastic reflex responses last several seconds after the end of the movement 

(Hornby et al. 2006), suggesting NMDA receptors play only a minor role in neuronal 

hyperexcitability in spastic reflex activity. Furthermore, exogenous application of NMDA 

after spinal cord transection in rats was shown to decrease rather than increase spinal 
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reflex sensitivity (Krenz and Weaver 1998), suggesting other mechanisms are likely to 

contribute to exaggerated reflex behaviors post-SCI.  

 

4.4.2 The Functional Consequences of Uncontrolled PIC Behavior 

The role of PICs in neurosystem behavior is still unclear, but evidence suggests 

that PICs are important for increasing the gain of the MN pool through amplification of 

synaptic input and bistable firing behavior of certain cell types. The modulation of PICs 

is multi-factorial, involving supraspinal centers and local inhibitory circuitry (Heckman 

et al. 2008). Loss of regulation of PICs, as may occur post SCI, could interfere with 

volitional control of movement by causing uncontrollable spasms or by causing large 

errors during repetitive movements that induce windup (e.g. during walking). From a 

rehabilitation standpoint, this would suggest that it might be beneficial to restore the 

regulation of PICs. Although, if stretch of the hip is entraining CPG pathways in human 

SCI, the additional excitability due to windup of these pathways may be useful for 

providing patients with limb propulsion. Future studies could investigate ways to 

facilitate inhibitory pathways either through electrical stimulation or pharmacology, with 

the caveat that PICs provide additional excitability needed to complete motor tasks such 

as transferring or walking (Dietz 2008). Importantly, methods that more clearly delineate 

excitability of INs from MNs are needed to determine their relative contributions to the 

windup response. This information could more precisely direct treatment strategies. 
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4.4.3 Differential Electrical States Related to Patterns of Muscle Function 

An unexpected result from this study was that the temporal pattern of the windup 

response differed between muscle groups. While the windup between strict “flexor” and 

“extensor” groups were not literally identified in our study, there were two distinct 

groupings based on coincident activity and temporal changes in the response consisting 

of 1) hip flexors, ankle dorsiflexors and knee extensors and 2) hip extensors, knee flexors 

and ankle plantarflexors. Recent work by Endo and Kiehn (Endo and Kiehn 2008) has 

demonstrated that an asymmetry in conductances exist between extensor and flexor MN 

pools, in which they have shown that extensor MN pools are dominated more by 

inhibition than flexor MN pools in the neonatal mouse spinal cord. While we found an 

asymmetric response in different muscle groups within our study, the asymmetry in Endo 

and Kiehn’s work is different from the windup responses seen during the hip movements. 

During repeated stretches of the hip flexors, hip flexion, knee extension (particularly in 

the EXTENDED condition) and ankle dorsiflexion torque typically decreased following 

the third hip perturbation (see Figs. 2-4). In contrast, hip extension, knee flexion and 

ankle plantarflexion torques generally remained elevated throughout the course of the hip 

oscillations when hip extensor muscles were stretched (see Figs. 2-4). This difference in 

flexor and extensor muscle groups seen in the current study could be due to the fact that 

tests were done in chronic SCI subjects, since the loss of supraspinal inhibition may 

result in more disinhibition of the extensor MN pool than the flexor MN pools. However, 

the asymmetry in the windup responses were consistent with previous studies 

investigating windup in human SCI. Depression in active muscle torque responses during 

repeated stretches of hip flexor muscles is consistent with the time course of windup of 
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the flexion reflex in human SCI, where the responses decrease following the second or 

third stimulus (Hornby et al. 2003). Stretch of the hip extensor muscles resulted in hip 

extension, knee flexion and ankle plantarflexion torques that generally remained elevated 

throughout the course of the hip oscillations (see Figs. 2-4) reflecting the time course of 

stretch reflex windup (Hornby et al. 2006). EMG activity from RF, MH, and VM 

followed a similar trend as the torque data, but muscle activity at the ankle, however, was 

more variable and the pattern of facilitation of the ankle EMG recordings was not as 

consistent as the torque data. Sol and MG EMG activity rapidly increased through the 

initial three stretches, but then decreased to levels slightly above the initial response (Fig. 

4A), similar to TA activity (Fig. 4B). Since the ankle was held at a constant joint angle, 

variance among subjects could be due to excitatory polysynaptic pathways and lack of Ia 

IN inhibition. 

 

4.4.4 Intersubject Variability 

While the small number of subjects participating in the study might limit the 

interpretation, we believe that the consistency of the response across the heterogeneous 

clinical presentation actually increases the generalizability of the results. In particular, it 

is interesting that, regardless of completeness of injury (i.e. complete or incomplete) and 

level of injury, the windup response occurred throughout the lower extremities in 

response to stretch of a single joint. Additionally, in all of the subjects, we show a delay 

in activation (ankle muscles) that could suggest a subthreshold windup or involvement of 

windup in interneurons. However, no conclusive evidence is available regarding level of 



 110

injury, completeness of injury or anti-spasticity medication due to the limited sample 

size. 



 
 

 
 

CHAPTER 5 
 

Reflex Responses during Bilateral Hip Movements  
in Healthy Individuals 



 112

  
5.1 INTRODUCTION 

 In the normal control of movement, supraspinal and sensory input are integrated 

to modulate spinal excitability during movements. Supraspinal input modulates spinal 

stretch reflex excitability through inhibitory pathways (Gottlieb and Agarwal 1980) so 

that reflex pathways can be appropriately utilized during voluntary movements. For 

instance, the soleus H-reflex is modulated over the gait cycle, in which the reflex 

amplitude is greatest during the stance phase compared to the swing phase (Capaday and 

Stein 1986). Stretch reflexes have been shown to play a role in the control of walking in 

man. Specifically, stretch feedback from the hamstrings muscles contributes to EMG 

activation at the end of the swing phase likely aiding in decelerating the limb (Duysens et 

al. 1998; Van der Crommert et al. 1996). However, in spinal cord injury (SCI), even 

partial loss of descending tracts results in deficient modulation over reflex pathways. It 

has been suggested that after SCI, as a result of weakened cortical influences on spinal 

neurons, there is a reduction in spinal inhibitory mechanisms (Crone et al. 2003; 

Heckman 1994). This loss of descending input is thought to largely contribute to the 

hyperexcitable reflexes observed in people with SCI.   

From the SCI data presented in this dissertation, imposed hip movements elicited 

coordinated multijoint responses throughout the legs, suggesting that stretch-sensitive 

sensory feedback from the hip largely controls muscle activity in people with SCI. The 

purpose of this study was to examine whether afferent feedback from hip muscles affects 

stretch reflex responses in neurologically healthy individuals. The experimental protocol 

was similar to the protocol described in Chapter 3. Bilateral hip oscillations were 
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imposed to the legs of neurologically intact (NI) subjects while they remained relaxed 

during the movements. Since passive stretch of the leg about the hip has not been shown 

to elicit reflexes in NI subjects (Onushko and Schmit 2007), patellar tendon taps were 

delivered during the hip movements in order to examine whether stretch reflexes would 

be facilitated or depressed by the hip movements in NI subjects. Data from spinal cord 

injured subjects were taken from Chapter 3 of the dissertation and were used for 

comparison with the NI data.  

 

  
5.2 METHODS 

Eight individuals (age range: 21-31 years) with no reported neurological damage 

participated in this study. Informed consent was obtained prior to study participation and 

all procedures were conducted in accordance with the Helsinki Declaration of 1975 and 

approved by the Institutional Review Board of Marquette University.  

 The subjects were positioned in the robotic apparatus as detailed in Chapter 3 of 

this dissertation. Briefly, the subjects lay supine in the robotic apparatus with their legs 

supported in custom-built leg braces (refer to Chapter 3, Figure 3-1A). The knee and 

ankle joints were set at fixed angles. The leg braces were attached to servomotor systems 

(Kollmorgen, Northhampton, MA) that were used to impose sinusoidal hip oscillations of 

the subjects’ legs. A linear motor (LinMot Inc., Delavan, WI) was attached to the right 

leg brace to deliver controlled patellar tendon tap perturbations during hip movements 

(refer to Chapter 3 for setup, Figure 3-1B). Reaction joint torque of the hips, knees and 

ankles were measured with torque transducers (S. Himmelstein and Company, Hoffman 
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Estates, IL) incorporated into the system. Additionally, surface electromyograms (EMGs) 

were collected from the following muscles of the right leg: rectus femoris (RF), vastus 

medialis (VM), vastus lateralis (VL), medial hamstrings (MH), medial gastrocnemius 

(MG), soleus (Sol) and tibialis anterior (TA). EMG signals were amplified (x 1000), anti-

aliased filtered (500 Hz low-pass analog filter) and band-pass filtered (10-1000 Hz; 

Bortec Biomedical Ltd., Calgary, AB, Canada) prior to data collection. Custom-written 

LabVIEW programs (National Instruments Corp., Austin, TX) and a data acquisition card 

(National Instruments Corp., Austin, TX) were used to control the hip oscillations, the 

motorized reflex hammer, and acquire all signals. All signals were sampled at 1000 Hz 

and were stored on a PC for processing.  

 

5.2.1 Experimental Protocol 

The subjects’ legs were oscillated about the hip joint through a sinusoidal 

trajectory (0.50 Hz) while subjects remained relaxed during the movements. The legs 

were moved from 40° hip flexion to 10° hip extension in an alternating manner (i.e. 180° 

out of phase, similar to walking) for 10 continuous cycles. To test whether hip 

movements modulate stretch reflex responses in NI subjects, patellar tendon taps were 

delivered during imposed sinusoidal hip movements. Two tendon tap perturbations were 

delivered to the right patellar tendon either during movement of the right leg into hip 

flexion (“tap-flx”) or hip extension ("tap-ext”) (i.e. 2 taps per half cycle). A control 

condition (“control”) was also done in which hip movements were performed without the 

tendon tap perturbations. The test conditions (control, tap-flx and tap-ext) were repeated 

three times for a total of 9 tests.  
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At the completion of the experiment, two additional hip movement tests were 

performed to estimate the inertial and gravitational components of the leg and leg brace. 

First, the each leg was quickly (1.5 Hz) oscillated from 25° to 10° hip flexion to estimate 

the inertial component. Second, each leg was moved slowly (2°/s) through the entire 

range of motion (40° hip flexion to 10° hip extension) pausing every 5° for 5 seconds to 

estimate the gravitational and passive joint resistance of the leg for each subject.  

 

5.2.2 Data Analysis 

 Active muscle torque data were calibrated using the same procedure outlined in 

Chapter 2, section 2.2.4, of this dissertation. Briefly, the gravitational, passive joint 

resistances, and inertial components, estimated from the additional hip movements, were 

subtracted from the torque measurements from the experimental trials using the following 

equation: 

joint measured passive/gravity inertia artifactτ τ τ τ τ= − − −  

 

 The gravitational and passive joint resistance torques ( /gravity passiveτ

inertiaτ

) were estimated by 

fitting a 3rd order polynomial to the slow, incremental hip movements. The polynomial 

coefficients were then used to calculate the gravitational and passive joint resistance 

during the measured trial torques. The inertial torque ( ) was calculated by first 

subtracting the gravity/passive torque component, and then estimating the inertial 

contribution of the leg and leg brace using a linear regression analysis. The mechanical 

artifact ( ) within the system (approximately < 5 Nm) was estimated using an 
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ensemble average of torque measurements recorded from neurologically healthy subjects 

from the experiment in Chapter 2 (refer to section 2.2.4). 

The peak-to-peak (p-p) reflex amplitude of the RF and VM EMG was identified 

from the tendon tap perturbations for each consecutive hip oscillation (cycles 1-9). The 

average p-p reflex response from the 1st and 2nd tendon tap perturbation in the two-tap 

series was first calculated separately. To reduce variability of the reflex amplitude across 

subjects, the average p-p amplitude per subject was then normalized to the grand mean of 

each subject’s data set for the individual muscle (i.e. grand average of the reflex 

amplitude for all three conditions, trials, cycles and tap perturbations). The normalized p-

p reflex amplitude from the 1st and 2nd tendon tap perturbation was then averaged across 

subjects per hip cycle for each muscle. 

The peak knee extension and flexion torques in response to the tendon tap 

perturbations were also identified for the first 9 continuous hip movements. Torque data 

were first divided into flexion and extension components prior to finding the peak torque. 

For each subject, the average peak flexion or extension torque data per cycle were then 

normalized to the grand average of all three trials and conditions per subject. The 

normalized data were then averaged across subjects per hip movement cycle.  

 
 
 
5.3 RESULTS 

Passive rotation of the legs in NI subjects did not elicit reflex activity in the lower 

extremities. Figure 5-1 illustrates example torque responses recorded from the hip, knee 

and ankle during passive hip movements for a single SCI and NI subject. This 
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observation in NI subjects is in contrast to what was observed in subjects with SCI, in 

which reflex responses typically increased with successive hip oscillations (Figure 5-1, 

and also refer to Chapter 4).  

 

 

 
 
Figure 5-1 Torque Responses during Passive Hip Movements.  Example hip, knee and ankle 
torque responses during passive hip oscillations from a single neurologically intact (NI) subject 
and single subject with spinal cord injury (SCI; subject S6 from Chapter 3). Shaded area 
represents flexion torques and non-shaded area represents extension torques. 

 

The addition of patellar tendon taps during the hip movements elicited different 

reflex response patterns to the 2nd tendon tap (within the two taps per half-cycle of hip 

movement) in the RF and VM muscles between NI and SCI subjects. Figure 5-2A 

illustrates typical reflex responses from the RF muscle from an SCI and NI subject for the 

tap-ext test condition. In general, the reflex response to the 2nd tendon tap perturbation 

during movement of the leg into hip extension decreased after the first few hip cycles in 
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NI subjects, whereas in SCI subjects the amplitude increased over the first 3 successive 

hip movements (indicated by the arrows in Figure 5-2A). In contrast, the reflex amplitude 

in response to the 1st tendon tap perturbation was similar between SCI and NI subjects. 

The reflex response in both the RF and VM muscle tended to decrease with consecutive 

hip movements (Figure 5-2B). Additionally, the pattern of reflex responses did not appear 

to be altered by the timing of the patellar tendon taps with the hip movements in NI 

subjects, while it did influence the pattern in SCI subjects. For the tap-ext and tap-flx 

conditions, the p-p reflex amplitude decreased with successive cycles in NI subjects; 

however, in SCI subjects, the tap-ext condition appeared to elicit larger reflex responses 

than the tap-flx condition. Interestingly, in NI and SCI subjects the p-p reflex response 

amplitude from the 2nd tendon tap (within each half-cycle of hip movement) was larger 

than the p-p amplitude from the 1st tendon tap for the tap-ext and tap-flx conditions 

(Figure 5-3). 
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Figure 5-2 Reflex Response to Tendon Tap Perturbation. (A) Single subject example of the 
RF EMG during patellar tendon tap perturbations delivered during the hip movements (tap-ext 
condition) from a neurologically intact (NI) subject and subject with spinal cord injury (SCI; 
subject S6 from Chapter 3). Arrows indicate the reflex response to the 2nd tendon tap in the two-
tap sequence. (B) Normalized average peak-to-peak reflex amplitude from the RF and VM EMG 
to patellar tendon taps during hip movements across conditions. The peak-to-peak reflex 
amplitude per cycle was normalized to the first response for each condition. 
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Figure 5-3 Average Peak-to-Peak EMG Reflex Response. Normalized peak-to-peak RF (top 
panels) and VM (bottom panels) of SCI and NI subjects. The peak-to-peak amplitude of the reflex 
response is shown for the 1st and 2nd tendon tap during the imposed hip movements.  

 

Peak knee torques followed a similar trend as the EMG in NI subjects. The peak 

knee flexion and extension torques for all test conditions are illustrated in Figure 5-4. 

Under the control condition (i.e. hip movement alone), NI subjects did not generate any 

reflexes. Reflex responses to tendon tap perturbations during the hip oscillations resulted 

in increased knee extension torque for both the tap-ext and tap-flx conditions compared 

to the control condition in NI subjects. In addition, similar to the EMG data, a decrease in 

peak knee extension torque was observed in NI subjects in response to the tendon taps 

(Figure 5-4). No significant change was observed in the knee flexion torque since the 

peak torques across all conditions were similar (Figure 5-4).  
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For comparison, the peak torque from SCI subjects are provided in Figure 5-4 

with the reflex responses from NI subjects. In SCI subjects, movement of the hips alone 

triggered reflex responses throughout the legs. The peak torque from the hip-triggered 

reflexes are only shown in Figure 5-4, and not the peak reflex torque solely due to the 

tendon tap (i.e. hip-triggered reflexes vs. reflexes from patellar tendon taps). The addition 

of patellar tendon tap perturbations influenced the hip-triggered knee extension reflex 

torque in SCI subjects. Particularly for the tap-ext condition, knee extension torque 

increased over the initial few hip movement cycles and then remained at an elevated level 

for the remaining cycles. In NI subjects, reflex responses typically decreased with 

repeated tendon tap perturbations for both the tap-ext and tap-flx conditions. In addition, 

peak reflex responses increased over the first 3-4 cycles in SCI subjects, which is similar 

to the windup of multijoint reflexes that were observed in Chapter 4 of this dissertation.  
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Figure 5-4 Peak Knee Torque per Hip Cycle.  Average peak knee extension (top) and flexion 
(bottom) torque for SCI and NI subjects for each test condition. The peak torque per cycle was 
normalized to the value of the first peak. 
 

 
5.4 DISCUSSION 

 In summary, hip-mediated sensory signals do not strongly modulate stretch 

reflexes at the knee joint in NI subjects. In contrast to what was observed in SCI subjects, 

the reflex amplitude to repeated patellar tendon tap perturbations decreased over 

successive hip movements in NI subjects, whereas an increase in amplitude was observed 

in SCI subjects over the first few cycles of the imposed hip movements. Furthermore, in 

NI subjects the reflex response amplitude to tendon tap perturbations was not dependent 

on the timing of the perturbation with respect to the hip’s motion (see Figure 5-3 right 

panel and Figure 5-4). However, one common result between NI and SCI subjects that 
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was observed was an increase in the reflex response amplitude in both the RF and VM in 

response to the 2nd tendon tap within each half-cycle of hip movement (refer to Figure 5-

3). These results taken together further support the idea that intact descending input 

strongly regulates spinal inhibitory mechanisms, since NI subjects did not display the 

same responses as SCI subjects. 

Repeated patellar tendon taps resulted in a decrease in reflex response amplitude 

in NI subjects, and not as the increase in amplitude as was observed in the SCI subjects. 

The rate depression seen in reflex amplitude for NI subjects is consistent with post-

activation depression of stretch reflexes of the ankle (Crone and Nielsen 1989; Grey et al. 

2008; Hultborn et al. 1996). Post-activation depression results from a reduction in 

transmitter release from primary muscle spindles (Ia) to MNs due to repetitive excitation 

of Ia fibers (Crone and Nielsen 1989; Curtis and Eccles 1960; Hultborn et al. 1996). 

Curtis and Eccles (1960) demonstrated that in cat lumbar spinal MN recordings, the 

magnitude of Ia excitatory postsynaptic potentials (EPSPs) was facilitated with short (< 

50 ms) inter-stimulus intervals and depressed at longer intervals (> 100 ms), which is 

consistent with the present data. The patellar tendon taps were delivered every 2 seconds 

during the hip movements (2 taps every half-cycle of hip movement), resulting in a 

depression in reflex amplitude over the 10 hip cycles in NI subjects. However, the inter-

stimulus interval between taps within each cycle of hip movement (500 ms) was brief 

enough which could have caused a slight excitation in MN output resulting in a larger 

response from the 2nd tendon tap perturbation (refer to Figure 5-3). Post-activation 

depression was not observed in the SCI subjects, but rather, facilitation was generally 

observed with repeated stimuli (refer to Figure 5-2 right panels). It has been reported that 
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spastic patients have decreased post-activation depression (Grey et al. 2008; Nielsen et al. 

1995); however, this mechanism has only been studied at a single joint and doesn’t fully 

describe the long-lasting nature of spastic reflexes. While it may play a role in the 

increased stretch reflex activity seen with spasticity, the data presented in Chapter 4 of 

this dissertation provides evidence that the increase in reflex output from repetitive hip 

stretches could also be a result of abnormal intrinsic electrical properties of MNs and INs.  

 Even though hip proprioceptive feedback was not shown to strongly modulate the 

stretch reflex at the knee in NI subjects in the current study, the role of hip afferent 

feedback is still important for functional movements. During walking, the hip provides 

critical sensory cues for initiating the transition of the limb from the stance phase to the 

swing phase (Pang and Yang 2000), and input from hip afferents can reset or entrain 

flexor and extensor bursting patterns in hip muscles during locomotor-type movements 

(Andersson and Grillner 1983; Kriellaars et al. 1994; Hiebert el al. 1996). In addition to 

stretch sensory input from the hip, sensory cues from other sources, such as load afferents 

and cutaneous inputs, have been shown to play an essential role in regulating activation 

and coordination of muscle activity in animals (Andersson and Grillner 1983; Conway et 

al. 1987; Gossard et al. 1994; Grillner and Rossignol 1978; Hiebert et al. 1996; Kriellaars 

et al. 1994). However, in humans these reflex pathways are tightly controlled through 

descending inhibitory commands allowing proper regulation over spinal neuronal 

excitability. In conclusion, after a spinal injury, the balance between sensory feedback 

and descending commands is altered, which can result in abnormal sensory processing 

and increased spinal neuronal excitability, and ultimately improper coordination of 

functional movement.  



 
 

 
 

CHAPTER 6 
 

Integration of Results 
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6.1 SUMMARY OF RESULTS 

6.1.1 Brief Summary  

The scope of the work presented in this dissertation encompassed the extent that 

sensory signals from the hip joint interact with voluntary commands and sensory 

feedback from other joints in the lower extremities in people with spinal cord injury 

(SCI). In Chapters 2 and 3, the data showed that multijoint reflexes triggered by hip 

sensory cues remained largely unaltered by descending drive and by stretch-sensitive 

knee and ankle afferent input. In addition, sensory signals arising from the hip modulated 

the reflex activity produced by Achilles tendon vibration and patellar tendon tap 

perturbations. Furthermore, sensory signals from the hip initiated windup in muscles that 

were not directly involved with the movements (e.g. MG and VM). Taken together, these 

findings implicate hip-mediated sensory signals as strong modulators of muscle activity 

throughout the legs, and they appear to play a significant role in setting motoneuronal 

and/or interneuronal excitability of other neuron pools. 

 

6.1.2 Do Multijoint Reflex Pathways Overlap with Spinal Locomotor Pathways? 

These studies further support the concept that the extensor reflex response to hip 

movements is related to hip proprioception as a locomotor control signal. From the 

results presented within the current studies, the patterns of the reflex response resembled 

a fundamental element of locomotion - alternating flexion and extension. In the majority 

of the muscles recorded, alternating rhythmic patterns were observed during the imposed 
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movements, with hip flexor responses occurring near hip extension and hip extensor 

responses occurring during hip flexion movements. Similarly, during treadmill walking, 

extending the hip produces hip flexion in SCI patients (Dietz et al. 2002; Dobkin et al. 

1995). The role of hip proprioceptors for controlling locomotion has also been 

extensively studied in the cat, showing stretch-sensitive hip afferents control phase 

transitions of the hip as well as set the rhythm for locomotor behaviors (Kiehn 2006).  

From the results of the current studies, muscles distal to the hip, however, did not 

consistently exhibit activity patterns resembling locomotion. For example, the vasti (VM 

and VL) were generally active during movement into hip extension, which would 

correspond to the late stance/early swing in the normal gait cycle. In particular, hip 

proprioceptive signals were shown to govern knee extensor responses during patellar 

tendon tap perturbations (Chapter 3). Greater reflex responses in the VM muscle were 

seen during hip extension. This abnormal coupling between the hip flexors and knee 

extensors is similar to what has been observed in stroke gait (Lewek et al. 2007). In a 

previous study combined hip and knee movements in a pattern similar to locomotion 

resulted in muscle activity that modulated in a more locomotor-appropriate manner (Wu 

and Schmit 2010). Maintaining the knee in an isometric position, limiting any 

contribution of knee afferents to multijoint reflexes, might account for the differences 

observed in the current study.  

Sensory feedback alone, however, cannot produce functional locomotion in 

human SCI, and descending input is still essential for excitatory drive and high level 

coordination. Descending pathways providing monoaminergic drive is necessary for 

properly regulating spinal neuron excitability, as implicated from the multijoint windup 
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observed in the data presented in Chapter 4. In humans with incomplete SCI, 

corticospinal tract function is highly correlated with walking ability and the amount of 

descending tracts may be a factor in locomotor function (Thomas and Gorassini 2005). 

From the data presented in Chapter 2, torque and EMG activity both exhibited windup 

patterns when SCI subjects were asked to assist the hip movements as well as during the 

passively imposed hip movements (refer to Figure 6-1). These results suggest that 

peripheral sensory inputs, and not remaining descending drive, strongly regulates the 

spinal excitability.  

  

 

 

 

Figure 6-1 Sample torque data from an SCI subject (from Chapter 2). No change in the windup 
pattern was evident when SCI subjects assisted the hip movements compared to the unassisted hip 
movements.  
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6.1.3 Considerations for Rehabilitation 

The results from this study suggest that novel strategies for managing unwanted 

reflex behaviors might be developed in order to improve function post-SCI. Typically 

SCI patients exhibiting spastic motor behaviors are treated with pharmacological agents, 

such as baclofen or tizanidine, to curtail unwanted reflex activity. Baclofen is one of the 

most common anti-spastic medications to treat spasticity in people with various types of 

neurological injuries, but it has not consistently been shown to be effective for improving 

function in people with spasticity (Taricco et al. 2000). Furthermore, suppression of 

hyperactive reflexes through anti-spastic drugs in people with stroke has resulted in no 

significant increase in the control of movement (McLellan 1977). In line with this, data 

from Chapter 3 show that knee extensor muscles are influenced by sensory feedback 

from the hip. VM EMG activity was greater during hip extension, which would be 

inappropriate reflex activity for normal gait, such that abolishing it could lead to better 

control of walking. However, spastic activity, especially of the knee extensors, is 

sometimes used to maintain upright stance during gait in people with SCI. 

It has been suggested that suppressing hyperactive reflexes makes people too 

weak to perform useful movements. In stroke patients, for example, increased tone in 

extensor muscles may help them to support their body during walking (Berger et al. 

1984). Voluntary muscle activation is normally augmented by reflexes, resulting in a net 

facilitation to the motoneuron pool, helping to increase motor output from voluntary 

commands (Gandevia et al. 1990). Moreover, baclofen, for instance, targets receptors in 

the spinal cord where sensory fibers terminate (Yong 1977) having a global effect on 

spinal excitability. If patients with spasticity are treated with anti-spastic drugs to 
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suppress reflexes, it may limit the motor output needed for functional movements. 

Perhaps, more localized spasticity treatments are needed to focus decreased sensory 

feedback. For instance, in patients with extensor spasms, reducing excitability of neurons 

innervated by hip muscles may aid with creating appropriate levels of activation of hip 

muscles while not impeding activity in distal muscles.  

 
 
 
6.2 FUTURE STUDIES 

One of the limitations to the studies presented in this dissertation is the lack of a 

quantitative measure of remaining descending signals from the SCI subjects. Transcranial 

magnetic stimulation (TMS), a common technique for eliciting corticospinal output from 

the motor cortex, could potentially be used to assess the excitability of corticospinal 

neurons (Burke et al. 1993) or cortical inhibitory circuits (Davey et al. 1994) in SCI 

patients to relate these measures to torque and EMG output during hip-triggered reflex 

activity. For example, the single-pulse TMS technique, a technique used to disrupt 

sustained EMG activity to measure cortical inhibition (Chen et al. 1999), in conjunction 

with spinal reflex conditioning stimulation could be used to assess the role of descending 

inhibitory drive during spastic reflex activity. This information would provide a better 

understanding of the role of cortical drive in modulating spinal reflex excitability during 

volitional movements. 

A common pattern that is observed in spastic gait is an abnormal coupling of hip 

flexor and knee extensor activity when the hip moves into full extension. As mentioned 

earlier, this activity pattern was seen in the current studies, with intensified knee extensor 
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activity when patellar tendon tap perturbations were delivered during hip extension 

movements (Chapter 2). This abnormal activity impedes gait by prolonging knee extensor 

muscle activity prior to the swing phase. Previous studies have shown that sensory input 

from group Ib afferents (Golgi tendon organs) have strong ties with hip sensory cues. For 

example, in human infants during treadmill walking, loading the limb prolongs the stance 

phase and delays swing initiation (Pang and Yang 2000), similar to what has been 

described for the decerebrate cat (Conway et al. 1987; Duysens and Pearson 1980). 

Although findings in neurologically healthy subjects have suggested corticospinal input is 

important for modulating reflex activity between ankle and hip muscles during walking 

(Iglesias et al. 2008), the role of loading appears to be important for reinforcing the 

locomotor pattern of muscle activity in human SCI (Dietz et al. 2002; Gordon et al. 2009; 

Harkema et al. 1997). To elucidate the integration of ankle load and hip-mediated 

afferent input during locomotor movements in SCI subjects, patellar tendon perturbations 

could be delivered with ankle loading at different phases of the gait cycle during body 

weight-supported treadmill walking. Information from this would imply that ankle load 

afferent feedback is a critical sensory cue for modulating appropriate activity of the 

quadriceps muscles.  
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APPENDIX A: MODIFICATION OF MULTIJOINT WINDUP  

An additional experiment was conducted to test whether inhibitory input from Ia 

firing of an antagonist muscle group (i.e. quadriceps) through patellar tendon tapping 

would decrease spastic reflexes observed in the hamstrings muscles, or if sensory input 

from non-related pathways (i.e. vibration of the Achilles tendon) would affect reflex 

activity in human spinal cord injury (SCI). As described in Chapter 4, the loss of 

inhibitory input from Ia interneurons could be an important factor for the modulation of 

persistent inward currents (PICs) post-SCI. In the decerebrate cat model, PIC amplitude 

has been shown to be tightly controlled through input from reciprocal Ia inhibitory 

interneurons (Hyngstrom et al. 2007). Additionally, recent evidence in SCI rat models 

have demonstrated that motoneuron excitability in chronic injuries may result from 

changes in gene expression of the receptors important for regulating motoneuron 

excitability (Boulenguez et al. 2010; Murray et al. 2010). These latter studies support 

observations of increased reflex excitability in response light cutaneous inputs in human 

SCI.  

The same nine subjects who participated in the experiment described in Chapter 

3, also participated in this study, and the experimental instrumentation used for this study 

was the same as described in Chapter 3 of this dissertation. A brief description of the 

experiment and results are provided. 

Nine subjects with incomplete (8) or complete (1) chronic SCI were transferred 

onto a therapy plinth and lay supine with their legs supported in custom-built leg braces, 

which were attached to servomotor drive systems (Kollmorgen, Northhampton, MA). 

The knee and ankle joints were held isometrically for this experiment and spastic 
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hamstring muscle reflex activity was triggered by hip sensory cues associated with leg 

flexion. To elicit spastic reflex activity, the servomotor drive systems imposed three 

sinusoidal oscillations of the right leg about the hip joint. The leg was moved between 

40º hip flexion and 10º hip extension at 0.50 Hz, with the last movement ending in 40º 

hip flexion to keep the hamstrings stretched. At the end of the third oscillation, one of 

two perturbations was applied: (1) patellar tendon tapping (2 Hz, 10 taps) (“tap”) or (2) 

80 Hz vibration of the Achilles tendon (5 s duration) (“vibe”). A control condition was 

also performed in which no perturbation was applied at the end of the hip oscillations 

(“control”). Additionally, to test whether remaining supraspinal input had an effect on 

spastic reflex responses with vibration or tendon tapping, subjects were asked to either 

assist the imposed hip oscillations (“active”) or to remain relaxed during the oscillations 

(“passive”). Subjects were instructed to relax at the end of the third oscillation. A total of 

18 trials were performed using a randomized block design. 

Surface electromyograms (EMGs) were collected from seven muscles on each 

leg: rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), medial hamstrings 

(MH), medial gastrocnemius (MG), soleus (Sol) and tibialis anterior (TA). EMG signals 

were amplified (x 1000) and band-pass filtered (10-1000 Hz; Bortec Biomedical Ltd., 

Calgary, AB, Canada) prior to data collection. Torque measurements were also recorded 

through torque transducers (S. Himmelstein and Company, Hoffman Estates, IL) that 

were integrated within the system.  

 The torque data were calibrated using the same method described in Chapter 2, 

section 2.2.4. Additionally, the data from the one complete SCI subject was excluded 

from analysis since no tendon reflexes could be elicited and spastic reflexes were not 



 150

elicited during the hip movements. At the end of the movement, the decline in the torque 

response was quantified by determining the time constants at 63% and 37% ( and , 

respectively) of the torque amplitude at the start of the pause period (i.e. when the hip 

reached full flexion in the third oscillation). The Friedman’s Analysis of Variance non-

parametric statistical test was used to compare the time constant values among the 

applied sensory perturbations with the control condition and between active and passive 

tests. The time constants at 63% and 37% were analyzed as separate statistical tests. 

Significance level was set to α = 0.05.  

63τ 37τ

 Spastic reflex activity in knee torque and EMG data are provided in Figure 7-1A 

and B from a single SCI subject. The reflex activity patterns generated from the hip 

oscillations elicited windup in torque and EMG responses, but the ensuing activity at the 

end of the movement varied among the subjects. Four (S4, S5, S6, and S8) of the eight 

subjects demonstrated prolonged activity at the end of the hip oscillations that resembled 

the response illustrated in Figure 7-1. Three of the subjects (S1, S2, and S3) demonstrated 

inconsistent responses, in which little or no reflex activity was seen during passive tests. 

In active tests, a rapid decline in activity was observed a short delay (< 500 ms) after the 

end of the movement. One subject (S9) demonstrated a unique response to the tendon tap 

perturbations applied at the end of the movements. Following the 3rd or 4th tendon tap, a 

strong myoclonus activity developed throughout both legs (refer to Figure 7-1C). 

Overall, no systematic change in the responses to tendon tap perturbations or 

vibration was seen across the tested subjects. Torque results indicated no significant 

alteration in response to patellar tendon taps or Achilles tendon vibration (time constants, 

Friedman’s test: , p = 0.267; , p = 0.437), as did the MH EMG ( , p = 0.089; , 63τ 37τ 63τ 37τ
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p = 0.265). While PICs have been shown to be highly sensitive to inhibitory input, 

specifically Ia (Hyngstrom et al. 2007), sensory input to the antagonist muscle (tendon 

tapping or vibration) following the hip oscillations did not alter the prolonged reflex 

responses in SCI subjects. Recent animal work has shown that a specific serotonin 

receptor type (5-HT2C) spontaneously remains open after spinal injury. The abnormal 

expression of this receptor allows for large persistent inward currents to occur, which is 

consistent with the findings from this study. 
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Figure 7-1 Example SCI Data of Windup Response to Sensory Input. Example data from 
subject SCI subject (S4, refer to Table 3-1)) showing windup of torque (A), MG and MH EMG 
(B) during the hip oscillations, and prolonged muscle activity at the end of the movements. The 
shaded area represents the time when vibration or tendon tap perturbations were applied. (C) 
Example of myoclonus, measured in the MH EMG, which developed in one SCI subject (S9) in 
response to the tendon tap perturbations.  
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