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ABSTRACT 
VASCULAR CHANGES IN TYPE 2 DIABETES MELLITUS: APPLICATION TO 

RESTENOSIS AFTER STENTING 
 
 
 

Hongfeng Wang, M.S., D.V.M. 
 
 

Marquette University, 2013 
 
 
 

Stents used to decrease cardiovascular risk in patients with type 2 diabetes 
mellitus (T2DM) are prone to increased rates of restenosis. The mechanisms are 
incompletely elucidated, but low wall shear stress (WSS) and altered intracellular 
signaling likely contribute. We tested the hypothesis that neointimal hyperplasia (NH) 
after bare-metal stenting is due to vascular remodeling (enhanced formation of advanced 
glycation end-products (AGEs), increased downstream vascular resistance (DVR), and 
decreased WSS), and that decreasing AGEs with ALT-711 (Alagebrium) mitigates this 
response.  

 
Stents were implanted into the abdominal aorta of Zucker lean (ZL), obese (ZO), 

and diabetic (ZD) rats. After 21 days, the stented region was sectioned for NH 
quantification or casted and imaged for regional estimation of WSS and local intrastrut 
WSS by computational fluid dynamics. The thoracic and abdominal aorta, carotid, iliac, 
femoral and arterioles in cremaster muscle were harvested to detect AGEs related 
collagen cross-linking, and protein expression including transforming growth factor beta 
(TGFβ) and receptor for AGE (RAGE).  

 
A trend toward elevated DVR was observed, whereas blood flow (BF) and 

intrastrut TAWSS were significantly decreased in ZD compared to ZL and ZO rats (eg. 
TAWSS: 14.5 ± 1.9 vs 30.6 ± 1.6 and 25.4 ± 2.2 dyn/cm2, respectively; mean±SEM 
P<0.05). Intrastrut NH was increased in ZO but not ZD rats. ALT-711 reduced DVR in 
ZD rats (15.6±2.5x105 to 8.39±0.6x105 dyn·s/cm5), while decreasing NH (ZL: 7.7±1.0 to 
4.3±0.9%; ZO: 12.0±1.5 to 4.9±0.8%; ZD: 9.4±0.7 to 3.7±0.4%) and causing similar 
regional TAWSS results in all groups. AGEs related collagen cross-linking was elevated 
in the arterioles of ZD rats, but alleviated by ALT-711. No consistent differences in 
RAGE or TGFβ expression were observed in treated versus untreated rats.  

 
Remodeling of the distal vasculature appears to play an important role in 

modulating WSS in T2DM, but WSS alone does not predict NH response as observed 
under normoglycemia. ALT-711 led to similar values for AGEs related arteriolar 
collagen cross-linking, BF through the stent, and regional WSS, while decreasing NH in 
all rats. Although TGFβ and RAGE expression did not appear to be modified by ALT-
711, other intracellular signaling pathways remain to be explored. 
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CHAPTER 1: SPECIFIC AIMS 
 
 

It is estimated that 25.8 million Americans are diabetic (8.3% of the population) 

and an additional estimated 79 million have the metabolic syndrome, a constellation of 

clinical findings that substantially increases the risk for developing type 2 diabetes 

mellitus (T2DM) [13]. Cardiovascular disease (CVD) accounts for 68% of diabetes-

related deaths among people aged 65 years or older as these patients have a 2 to 4-fold 

increased risk of developing coronary and peripheral artery disease [13, 14].  

Bare-metal stents (BMS) are permanent metal scaffolds that can be implanted 

during a minimally-invasive procedure to restore blood flow (BF) beyond a vascular 

occlusion presenting in CVD. Unfortunately, restenosis occurring primarily as a result of 

excessive neointimal hyperplasia (NH) limits the success of BMS [6]. These cases 

require repeat revascularization of the lesion and have cost the U.S. healthcare system 

over 2.5 billion dollars since 1999 [15].  

Drug-eluting stents (DES; Table 1) have also been used to combat CVD, but are 

less effective at reducing restenosis rates in patients with T2DM [16, 17]. Studies have 

demonstrated that sirolimus and paclitaxel (antiproliferative agents) used with early 

generation DES did not facilitate healing of the intima after implantation thereby 

inhibiting coverage of the stent linkages by endothelial cells and making the vessel more 

prone to late thrombosis [18, 19]. Newer generation DES such as zotarolimus and 

everolimus inhibit the proliferation of smooth muscle and inflammatory cells [1]. 

Unfortunately studies comparing the efficiency of everolimus to paclitaxel [20, 21] 

indicate that improvements in mortality, myocardial infarction, stent thrombosis and 

target lesion revascularization afforded to normoglycemic patients with these newer DES  



2 
 

have not translated to diabetic patients [20, 21].           
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 First generation Second generation Third generation Bioabsorbable stents 

Stent name Cypher®  
TAXUS® 

Express®  

TAXUS® 

Liberté®  
Endeavor®  

Xience V® 

and Prime®  

ION™ / 

TAXUS® 

Element™ 

PROMUS 

Element™ 
ABSORB DREAMS  

Manufacturer 
Johnson&

Johnson 

Boston 

Scientific 

Boston 

Scientific 
Medtronic 

Abbott 

Vascular 
Boston Scientific 

Abbott 

Vascular 
Biotronik 

Stent platform Stainless steel Cobalt chromium Platinum chromium 
poly-L-

lactide 

Magnesium 

alloy 

Strut 

Thickness  

(microns) 

140 132 96 91 81 81 81 156 120 

Coating durable polymer Durable polymer persistent biodegrable polymer Polymer free 

Therapeutic 

agent 
Sirolimus Paclitaxel Paclitaxel Zotarolimus Everolimus Paclitaxel Everolimus Everolimus Paclitaxel 

Problems Late stent thrombosis 
Lower late stent thrombosis than first 

generation 
To be determined To be determined 

 
Table 1. Drug-eluting stent developments and current status. Stent platform, geometry (including thickness), coating, and 

therapeutic agent are major factors impacting DES performance in terms of restenosis and thrombus. (Adapted from Khan et 
al, [1]) 
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Mechanisms for elevated restenosis rates after stenting in T2DM compared to 

normoglycemic patients have not yet been fully elucidated. It has been suggested that the 

current paradigm for the use of stents in patients with T2DM applies methods from 

retrospective revascularization studies conducted in normoglycemic patients to T2DM in 

hopes that poor outcomes do not occur [22]. In contrast, some investigators have 

examined pharmacological agents such as antisense oligonucleotides and L-arginine 

supplementation to improve endothelial function, but these pharmacologic agents failed 

to alleviate restenosis in T2DM [23, 24]. While local changes in cytokine release and cell 

signaling undoubtedly play a role in this process, investigation of the inciting changes in 

local fluid dynamics and vascular biomechanics associated with T2DM, which may also 

contribute to restenosis, have been relatively ignored. For example, adverse structural 

modifications are known to occur throughout the arterial system in response to T2DM 

including increased vascular stiffness due to advanced glycation end-products (AGEs) 

which are formed through nonenzymatic reaction between glucose and proteins as 

discussed in more detail below.  

It has been reported that AGEs can cause tissue damage in the cardiovascular 

system by cross-linking with collagen, thus disrupting the vessel wall and altering its 

compliance (i.e. increasing its stiffness) [25]. These changes may be manifested by an 

increase in distal vascular resistance (DVR) in arterioles with subsequent alterations in 

local flow patterns, blood pressure (BP), and wall shear stress (WSS) within the upstream 

stent, which has  previously been correlated with NH (Figure 1) [5].  
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Figure 1. Correlation of WSS distributions immediately after stent implantation and the 

location of neointimal hyperplasia quantified 14 days after stenting. The middle 
computational model predicts low WSS areas are created adjacent to stent struts. Plots 
on the right show these areas of low WSS have more NH formation while NH is more 
modest in higher WSS regions.* indicates the location of stent struts.  (Adapted from 

LaDisa et al, [5]) 
 
 

It has been shown that AGEs formation is more rapid during diabetes [26, 27], 

and may also react with a receptor (RAGE) to increase expression of transforming 
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growth factor beta (TGFβ), oxidative stress, protein kinase C (PKC) activity, and 

extracellular matrix accumulation [28]. Alagebrium (ALT-711; 3-phenacyl-4, 5-

dimethylthiazolium chloride) has been shown to cleave AGEs related collagen cross-

linking thereby decreasing vessel resistance and atherosclerosis [29, 30]. ALT-711 has 

also been shown to decrease TGFβ protein expression [31], and it may therefore decrease 

NH in the stented region, as well as downstream regions in the setting of T2DM. 

Therefore, this project tested the hypothesis that elevated NH observed after BMS 

implantation in T2DM is mediated by changes in stent BF dynamics that arise 

secondary to vascular remodeling, increased formation of AGEs, and increased 

DVR; and that a pharmacological strategy to decrease AGEs reduces NH in T2DM. 

This hypothesis was tested in two specific aims during which the mechanical and 

molecular aspects introduced by T2DM were queried. Specifically, computational fluid 

dynamics (CFD) modeling was used to quantify the influence of WSS distributions in 

stented arteries of T2DM rats. Analysis of NH in the stented region was performed using 

Hematoxylin and Eosin (H&E) for correlation to CFD results. AGEs related collagen 

cross-linking, and quantification of protein expression was conducted using Western 

blotting in the carotid arteries, thoracic aorta (TA), abdominal aorta (AAo), iliac and 

femoral arteries (IF) as well as arterioles in cremaster muscle of stented T2DM rats. This 

multidisciplinary approach leverages an animal model of T2DM to further elucidate the 

mechanisms of restenosis that may be applicable to this patient population. The results 

may ultimately be translated to the clinic for the reduction of restenosis in patients with 

T2DM.  
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Specific Aim #1: Quantify the ability of AGE-mediated vascular changes to increase 
DVR thereby altering mechanical indices known to promote NH in type 2 diabetes, 
and determine whether these adverse changes can be alleviated by ALT-711.   
 
 
Approach: Animals from three lines of Zucker diabetic fatty (ZDF) rats (lean (ZL), obese 

(ZO) and diabetic (ZD) groups) were randomly selected to undergo abdominal aortic 

stenting. Additional rats from each group underwent the same procedure but also had an 

osmotic minipump loaded with ALT-711 (1mg/kg/day) or vehicle inserted into the 

abdomen. Twenty one days after stenting, BP was measured in the carotid artery and BF 

was measured in the stented region for use in CFD simulations. A computational 

representative of the geometry within the stented region was then constructed, and 

measured BF was prescribed at the inlet of the CFD model using a time-varying 

Womersley profile. A three-element Windkessel model served as outlet boundary 

conditions [32]. Hence, CFD simulations were performed to match measured BF and BP 

data, and demonstrate the influence of distal vascular changes occurring in T2DM on 

time-averaged WSS (TAWSS), and compared to the same indices determined for ALT-711 

treated rats.  

Specific Aim #2: Quantify AGEs related collagen cross-linking and protein 
expression in multiple arterial locations to elucidate molecular changes contributing 
to NH after stenting for T2DM, and determine whether these adverse changes can 
be alleviated by ALT-711. 
 
 
Approach: Randomly selected rats from ZL, ZO and ZD groups underwent abdominal 

aortic stenting. Additional rats from each group were treated with ALT-711 (1mg/kg/day) 

or vehicle using the osmatic minipump mentioned above implanted into the abdomen. 

Twenty one days later the stented region was carefully harvested, fixed in 4% 

paraformaldehyde, and dehydrated using a series concentration of increasing ethanol. 
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The stented region was embedded in glycol methyl methacrylate and sectioned at 5µm 

thickness for staining by H&E to quantify NH. Vessels from the central elastic arteries 

such as the TA, AAo and carotid arteries, peripheral muscular arteries including the IF, 

and smallest distal arteries (i.e. arterioles) were also harvested. These vessels were used 

to quantify collagen concentration using a spectrophotometer, and measured for AGEs 

using a fluorescence photometer. Protein was also isolated and purified from these 

vessels in preparation for the use of Western blotting techniques to quantify expression. 
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CHAPTER 2: BACKGROUND 
 
 
2.1 Metabolic Syndrome  
 
 

Metabolic syndrome is defined as impaired insulin sensitivity, glucose intolerance 

or diabetes mellitus associated with abdominal obesity, dyslipidemia and urinary 

microalbuminuria [33].  Elevated low-density lipoprotein (LDL) cholesterol, low high-

density lipoprotein cholesterol, abdominal fat, high triglycerides, and high blood pressure 

are common with metabolic syndrome [34], but a key factor is insulin resistance. Insulin 

resistance occurs when enough insulin is produced, but organisms are desensitized to its 

binding to receptors for function. In addition, T2DM has a negative effect on insulin 

resistance that is further increased by LDL, triglyceride, and blood glucose levels [34]. 

Recent research found the metabolic syndrome can predict CVD and coronary heart 

disease [35]. In addition, Lorenzo et al. reported that the metabolic syndrome can be a 

predictor for T2DM [36]. By fully understanding regulation of metabolic syndrome, the 

risk of developing into T2DM and the potential for poor outcomes after stenting for CVD 

may be minimized. 

2.2 Carbohydrate Metabolism and Type 1 and 2 Diabetes Mellitus 
 
 

Carbohydrate metabolism is important to provide an energy source and materials 

for maintaining physiological functions, and biosynthetic reactions such as constructive 

processes that form amino acids from proteins. The most common carbohydrate in 

humans and animals that provides energy is glucose. When glucose is not immediately 

required for energy, extra glucose may be stored as glycogen. Once cells approach 

saturation with glycogen, the additional glucose is then converted to fat in the liver and 
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stored in fat cells. The liver is therefore the major glucose metabolism regulation organ, 

and contains large amounts of glycogen for rapid release into circulation [37]. In normal 

glucose metabolism, blood glucose concentration is determined and regulated by 

hormones such as insulin and glucagon, which are released from the islets of Langerhans 

within the pancreas. There are two types of cells in the islets of Langerhans: α-cells (40%) 

and β-cells (60%). Alpha-cells are responsible for synthesizing and secreting the 

glucagon, which elevates blood glucose concentration. Beta-cells are responsible for 

storing and releasing insulin, which works to reduce blood glucose concentration. There 

is another 16kDa hormone called leptin which is primarily secreted by adipocytes [38]. 

Leptin was identified in 1994 and it has since been discovered that it directly influences 

the energy homeostasis process. A lack of leptin was found to be directly related to 

diabetes [39, 40]. When the hormones above work properly, extra glucose in the blood 

stream will be stored in the liver, or fat and protein will be broken down to maintain 

glucose levels. However, glucose metabolism is not regulated well under diabetic 

conditions, resulting in hyperglycemia. Diabetes mellitus is therefore a metabolic 

disorder of carbohydrate, fat and protein metabolism due to improper insulin secretion or 

action [37]. The two types of diabetes mellitus are discussed below. 

Type 1 diabetes mellitus (T1DM) is characterized by the presence of anti-

glutamic acid decarboxylase, islet cell or insulin antibodies. In general, T1DM includes 

immune-mediated diabetes and idiopathic diabetes. Immune-mediated T1DM is the result 

of T-cell mediated autoimmunity and causes destruction of β-cells located in the islets of 

Langerhans within the pancreas [33]. The rate of β-cell destruction varies from rapid in 

children to slow in adults. It is therefore necessary to provide insulin in order to prevent 
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the development of ketoacidosis, coma and death.  Idiopathic T1DM is a specific type 

that lacks β-cell autoimmunity, and has a strong genetic component, especially in people 

of African and Asian ancestry.  

T2DM is characterized by disorders of insulin action and secretion [33]. This 

includes insulin resistance and relative insulin deficiency, but β-cell autoimmune 

destruction does not usually present. Most patients with T2DM display obesity, 

especially in the abdominal region. T2DM is usually undiagnosed for many years 

because hyperglycemia increases gradually so that the associated symptoms are not 

immediately noticeable [41]. T2DM does not require treatment of insulin for earlier stage 

patients; however, it has been associated with CVD, and pronounced NH that contributes 

to  restenosis after stent implantation [6]. 

Insulin level in T1DM is significant decreased because the body cannot produce 

insulin as result of β-cells destruction. The insulin level is usually lower as compared to 

that in an average normal person before a meal, and the insulin secretion is not increased 

within 1 hour after a meal as well. In the severe T1DM patients, insulin level even cannot 

be detected as the result of large amount of β-cells destruction. This T1DM  is 

characterized by an absolute insulin deficiency [42]. Insulin level in T2DM is depended 

on the length of the disease and obesity status.  The insulin level is usually higher than 

that in an average normal person, and the highest secretion is happened in 2 hour or even 

delayed rather than normally happened within 1 hour after a meal. The clinical 

measurement usually found that insulin is increased in T2DM. However, this high insulin 

level is still not able to decrease glucose. The T2DM is often linked to impaired insulin 
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sensitivity (insulin resistance), and is characterized by a relative insulin deficiency [42, 

43].  

Insulin usually regulates and deliveries glucose into cells to provide energy. 

Insulin resistance is that cells surface receptors are changed so that the normal level of 

insulin cannot regulate those on adipocyte, muscle cell, and hepatocyte. In adipocytes, 

insulin resistance results in reduced uptake of circulating lipids and increased the 

hydrolysis of triglycerides, and elevates the amount of free fatty acids in plasma [44]. In 

muscle cells, insulin resistance reduces glucose absorption; while in hepatocyte, insulin 

resistance decreases glycogen synthesis and storage [45, 46]. Insulin resistance causes 

increasing insulin and glucose which will further contribute to the development of 

metabolic syndrome and T2DM. The degree of insulin resistance is high in T2DM 

because cells cannot be fully regulated by insulin which usually is even higher than 

normal amount. However, the degree of insulin resistance is low in T1DM because the 

function of adipocyte, muscle cell, and hepatocyte cells is still normal. 

2.3 NH Formation Process and T2DM 
 
 

The process of stenting causes damage to the endothelial cell layer, and stimulates 

smooth muscle cell (SMC) proliferation and migration to form NH. Welt et al.  

previously described the process of NH occurring after BMS [6] to cause a mature 

atherosclerotic plaque as shown in Figure 2. After stenting, vascular endothelial cell 

denudation will cause platelet and fibrinogen deposition (Figure 2 B). Shortly after 

platelet activation, adhesion molecules will begin to cause the attachment of circulating 

leukocytes via platelet receptors. Under the influence of cytokines released from SMC 

and resident leukocytes, circulating leukocytes will migrate across the platelet-fibrin 
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layer and into the vessel wall (Figure 2 C). Platelets, leukocytes and SMC will then 

release growth factors causing migration of SMC from the media into the neointima 

(Figure 2 C and D) ultimately consisting of SMC, extracellular matrix, and macrophages.  

Although stents can be implanted during a minimally-invasive procedure to 

restore BF, restenosis continues to limit their success, particularly in T2DM. DES were 

designed to decrease rates of restenosis. However, late thrombosis was a major problem 

for first generation DES. Recently Stone et al. compared normoglycemic patients to those 

with T2DM receiving newer-generation DES [21]. Although the newer generation DES 

have been found to improve mortality, myocardial infarction and stent thrombosis, these 

rates are still not improved for T2DM patients [20, 21]. Previous researchers have found 

that the wound healing process is delayed in diabetes mellitus [47], which also plays a 

role in the vascular response to stenting in these patients . The collective mechanisms of 

this pathological process during restenosis after stenting for diabetic patients is still not 

clear, but it is reasonable to surmise that mechanical factors such as increased DVR and 

low WSS as well as molecular factors such as AGEs, RAGE and the TGFβ interactions 

may play a role.  
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Figure 2. Illustration of the inflammation and restenosis process after bare metal stent 
implantation. A, Atherosclerotic plaque has formed inside the vessel. B, Platelets will be 
deposited immediately after stenting and release cytokines that promote attachment of 
circulating leukocytes. C, Leukocytes will then infiltrate across the platelet-fibrin layer 

into the vessel wall, while SMC proliferate and migrate from the media into the 
neointima. D, This process will lead to thickening of the neointimal layer and change to 

more extra cellular matrix plaque over time. (Adapted from Welt et al, [6]) 
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2.4 Blood material interface (BMI)  
 
 

 

Virchow’s triad adapted from Ratner et al. [48] 
 
 

There are three key factors generally influencing BMI: properties of blood, local 

flow conditions, and the contacting surface. These are collectively known as Virchow’s 

triad, which was introduced in 1856 by Rudolph Virchow [48]. Virchow’s triad is still 

considered as the standard guideline for BMI evaluation.  

Blood properties are different in humans as compared to animals. In addition, 

blood coagulation properties are different in vivo as compared to in vitro. It is often 

unrealistic to test real human blood for BMI in large amounts. In general, most 

researchers only use blood from a single animal to detect hemocompatibility, which may 

lead to differences when the material is used in larger populations. In vitro tests generally 

require anticoagulants, which are also used in in vivo tests involving extracorporeal 

circuits. These anticoagulants may change the behavior of BMI. Despite these limitations 

present in animal blood testing for BMI, this approach still has value as it provides scale 

and reference results for later testing in humans.   
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The function of blood flow is to transport nutrients along with associated cells to 

the BMI, which could initiate an inflammatory reaction within the arterial wall. Low 

WSS will influence the platelet adhesion, platelet aggregation and thrombus formation on 

the artificial interface. In general, thrombus formation requires the transport of platelets 

and coagulation proteins as well as activation of platelets that may be influenced by blood 

flow patterns.  

The surface of materials also needs to be considered for BMI, including material 

surface properties and blood cell surfaces. Artificial interfaces form a layer of adsorbed 

proteins after contact with blood, and this layer mediates the attachment of platelets, 

proteins and other blood cells. However, the relationship between material properties and 

propensity of a material to cause thrombosis is still not fully understood because of the 

complexity of cell or protein-surface reaction that may present [48]. Researchers have 

used heparin binding materials to decrease the thrombogenicity, and weak negatively-

charged materials have also been used to prevent negativelycharged blood cells from 

coagulating [49, 50].  

The response of an artery to DES can also be appreciated relative to Virchow’s 

triad. As antiproliferative drugs are slowly released from the DES, they interrupt the 

migration and proliferation of SMC to reduce NH [51] as compared to BMS [52]. Human 

coronary artery postmortem analysis has shown a delayed endothelialization on the 

surface of some DES which may be the reason for late thrombosis [53, 54]. Previously, 

both polymer-based sirolimus (SES) and paclitaxel (PES) eluting stents demonstrated a 

significant amount of late thrombosis [55]. The SES has been shown to decrease the rate 

of thrombosis as compared to PES because sirolimus promotes the contractile SMC 
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phenotype while paclitaxel promotes the synthetic SMC phenotype that is involved in 

SMC migration and proliferation [55, 56]. Factors such as incomplete lesion coverage 

and plaque protrusion may be important for late thrombosis as well [57]. Previous 

researchers have found that the wound healing process is delayed in diabetes mellitus 

[47], which also plays a role in the vascular response to stenting in these patients.  

2.5 Application of Abdominal Aortic Stenting in Rats for Evaluation of Restenosis in 
T2DM  
 
 

As mentioned above, restenosis has been a persistent complication since the onset 

of stenting [58]. Rabbit iliac and porcine coronary arteries are widely used preclinical 

models to evaluate restenosis [5, 59-61]. However, a rabbit model for T2DM is not 

readily available and therefore would require substantial time and effort to create. The 

size and costs of the porcine model also present serious limitations. A rat carotid artery 

stented model has been reported previously [62-65]. However, due to the size of the rat 

carotid artery, a special miniature stent with delivery system would be required. To 

address this limitation, a rat abdominal aorta stent model with a native diameter similar to 

the most common coronary artery undergoing stenting in humans has been studied [66] 

and perfected for use with the current work.  

2.6 AGEs and Collagen Cross-linking  
 
 

Diabetic patients have increased arterial stiffness at a younger age compared to 

normal individuals [67-69]. Although hyperglycemia has been considered to have an 

important role in the pathogenesis of diabetes, the mechanisms related to NH still remain 

unclear. AGEs formation is one of the theories as to how chronic hyperglycemia 

contributes to morbidity in diabetes. AGEs are formed by the nonenzymatic reaction 
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between glucose and carbohydrates with amino acids [27, 70]. Glucose reacts with NH2 

chains on amino groups of proteins to produce Schiff bases. For example, glucose often 

works with the N-terminal valine amino group to form hemoglobin A1C. The unstable 

Schiff bases will then rearrange to form stable Amadori products over a few days. 

Although this is a slow reaction, it is much faster than the reverse reaction, and Amadori 

products subsequently accumulate on proteins. The process of forming Amadori products 

is called glycosylation [71], and eventually Amadori products can convert into stable, and 

virtually irreversible, AGEs.  

AGEs can react with free amino groups on collagen proteins to form firm cross-

links which are known to decrease large vessel compliance (Figure 3) [7]. Although this 

is a normal process within the body with aging, it is accelerated in diabetes [72]. It has 

been reported that AGEs can cause tissue damage in the cardiovascular system by 

working with collagen to form cross-links that disrupt the vessel wall structure and 

increase stiffness [25].  

AGEs have an active site which can trap amino groups to form permanent 

glucose-derived cross-links. This process is referred to as AGEs induced collagen cross-

linking in this investigation. Together these findings suggest that AGEs may accelerate 

collagen cross-linking, increase vessel stiffness, and change DVR in the setting of T2DM.  
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Figure 3. Diagram of AGEs formation and collagen cross-linking. Glucose reacts with 
free amino groups on proteins, is changed to a Schiff base and Amadori product, and 
ultimately forms AGEs. After AGEs are formed, they have an active site to trap a free 

amino group on another collagen. Once these two sites bind together, they form glucose-
derived cross-links, and we call this process AGEs related collagen cross-linking. 

(Adapted from Aronson et al,  [7]) 
 
 

2.7 Applicable Principles of Vascular Biomechanics 
 
 

Vessels in the cardiovascular system have varying diameters and material 

properties to serve a number of functions. The aorta has the largest diameter of arterial 

vessels which is necessary for bulk transport over long distances, while the muscular 

vessels maintain blood pressure and contribute to blood flow and pressure waveform 

transmission. Arterioles are associated with high resistance to flow, and capillaries have 

the smallest diameter but with only a single cell layer that allows rapid exchange of water, 
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oxygen, carbon dioxide and nutrients. The histological structure of the arterial wall was 

described previously [73]. The predominant materials of the arterial wall are elastin and 

collagen. The material properties change as the percentage of elastin decreases from 

central arteries to arterioles. Another major factor contribute the properties of arterial 

wall is SMC, which contributes to arterial wall tension [73].  

The material properties described above are reflected in several indices including 

compliance (C) [8], which is defined as the change in arterial blood volume (∆V) due to a 

given change in arterial blood pressure (∆P) (C = ∆V/ ∆P)  [74]; although this is often 

reflected in clinical studies as change in area for a given change in pressure. When using 

this later notation, the capacitance may be a more appropriate expression and can be 

thought of as the collection of compliances along the length of the vessels of interest.  

In contrast to the use of elastic arteries which describe those vessels with high 

elastin content, elasticity (E) [8] is an engineering term describing the ability of tissue 

that has been strained or deformed to return to its original shape. In the cardiovascular 

system, it is the inverse of the compliance. E = ∆P/∆V. Stiffness [8] is reflected in the 

slope of the stress strain curve which is the same as the modulus of elasticity as shown in 

Figure 4.  
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Figure 4. The stress strain curve. Stiffness is the slope of stress strain curve which is the 
same as the modulus of elasticity. An increase in the vascular circumferential stress 

results in an increase in the stiffness. (Adapted from Westerhof et al. [8]) 
 
 

Distensibility (D) [8] is a related term that takes vessel stiffness into consideration 

and is therefore defined as the compliance relative to the initial volume.  

� �  ΔV
ΔP � 	 

 
The relationship between vessels in the arterial tree can be described using 

asymmetry index, power law index, and area ratio [2]. Asymmetry index is used to 

describe the relative calibers of daughter segments. Area ratio is used to describe 

differences in cross-sectional area in daughter segments as compared to the parent 
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segment. Power law index is a measure of  efficiency with respect to vessel branching [2].  

General expressions for each of these indices are shown below 

Asymmetry index, α, is expressed as: 

  

Area ratio, β, is expressed as:  

 

Power law index, k, can be determined from: 

 

Where d0 is the parent artery, d1 and d2 are daughter arteries. 

From the above asymmetry index, power law index, and area ratio equations, we 

can appreciate that for a simple bifurcation from one parent vessel to two daughter 

vessels, k<2 (β <1) represents area contraction, k = 2 (β = 1) represents area preservation, 

and k > 2 (β >1) represents an area increasing network. A k value of 3 (i.e. cube law) is 

associated with a special condition called the principle of minimum work. This concept 

describes the balance between small vessels and, hence more collective area, requiring 

more work to drive blood through them, and large vessels requiring large blood volume 

and higher metabolic energy to maintain. When the k value is 2 (i.e. square law) the 

branching vessels follow the principle of area preservation as manifested in minimal 

pressure wave reflection at a bifurcation and maximal wave transmission. 
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Resistance is a measure of the opposition to blood flow presented by the 

cardiovascular system or a portion of it. It cannot be directly measured, but can be 

estimated as mean BP divided by mean blood flow. According to Poiseuille’s law, 

vascular resistance in a cylindrical tube can be calculated as [75]:  


 � 8�

��� 

where µ is the blood viscosity, l is the arterial length, and r is the arterial internal radius. 

 This expression indicates that vascular resistance is largely dependent on the 

radius of a vessel, and to a lesser extent, the viscosity of blood. Blood is a non-Newtonian 

shear thinning fluid, indicating that viscosity decreases as the shear rates increases. It has 

been found that at shear rates above approximately 100 s-1, the viscosity of blood 

approaches a constant value [75] for a given hematocrit [76]. In contrast, erythrocyte 

aggregation influences blood viscosity at low shear rates. 

2.8 Arterioles 
 
 
 Arteries and arterioles contain three layers: intima, media and adventitia [77]. The 

intimal layer contains endothelial cells which are involved in intracellular signaling 

pathways to release vasoactive factors. In addition, studies have found that these 

endothelial specific cytoskeletal structures play an important role to transduce mechanical 

forces to neighboring SMC [78]. The medial layer predominantly contains vascular SMC. 

The major function of these SMC is to control vascular caliber via relaxation and 

contraction. SMC are surrounded by collagen, fibronectin and collagenous fibrils [79], 

and these structures may also be involved in transduction of mechanical forces into 

cellular responses. The adventitia layer contains a mix of fibroblasts and collagen fibers 
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in extracellular matrix. It has been found that the adventitia layer not only provides 

structural support to the vessel, but also releases reactive oxygen species (ROS) and 

TGFβ, and is involved in the vascular repair process [80, 81].  

2.9 AGEs Change Impedance and Arterial Function 
 
 

AGEs have been found to accumulate excessively in vivo which may be 

associated with diabetic complications [82, 83]. The formation of AGEs on matrix 

components and collagen may cause complications including vascular narrowing and 

arterial stiffness [82, 84-86]. These changes can influence mechanical indices such as 

capacitance, as well as systemic and local vascular resistances reflected in an impedance 

spectra (Figure 5 A) [87]. The impedance spectra describes the relationship between the 

pressure and flow of a linear system, for sinusoidal or oscillatory signals [75]. When 

impedance is known, a given flow can be used to calculate pressure and vice versa. 

Impedance is the relationship between pulsatile pressure and pulsatile flow (in the 

frequency domain) with in an artery system. The basic assumptions are a steady state, 

time-invariant, and linear system. Impedance can be calculated based on measured 

pressure and flow at the same vascular location; however, it is almost impossible to 

measure flow and pressure everywhere in the whole cardiovascular system, so 

impedances calculated in the human and mammals reflective of downstream vessels  

provides a method of understanding of arterial function [75]. There are several types of 

impedance such as longitudinal impedance which describes Womersley’s oscillatory flow 

theory, transverse impedance which describes the oscillatory pressure between a lumen 

and external environment, and input impedance. Systemic arterial input impedance is a 

comprehensive description of the entire arterial tree.  
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Figure 5 A below [9] shows portions of the impedance spectra known to account 

for total vascular resistance, capacitance, and characteristic impedance. Lin et al. [10] 

compared impedance spectra of male Wistar rats using Fructose, an agent to induce 

forming of AGEs, or Aminoguanidine, an inhibitor of AGEs. After two weeks, rats with 

Fructose and Aminoguanidine (inhibited AGEs expression rats) showed decreased 

ascending aortic pressure and blood flow, and their impedance spectra showed changes 

reflective of decreased total resistance and characteristic impedance (Figure 5 B). These 

findings suggest that when AGEs induced collagen cross-linking increases in response to 

T2DM in the current investigation, it will likely increase total vascular resistance, 

decrease capacitance, and increase characteristic impedance. These changes would 

manifest as a shift to the right and upward for the waveform representing the modulus of 

the input impedance.   
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Figure 5. Arterial impedance spectra with relevant physiological portions of the curve 
labeled (A). The solid line in B was for rats with increased AGEs expression, and the 

dashed line was for rats treated with a compound to inhibit AGEs expression. By 
reducing AGEs expression, total arterial resistance was reduced, and characteristic 

impedance was decreased.(Adapted from Westerhof et al, [9] and Lin et al, [10]) 
 
 

2.10 Windkessel Approximation of Impedance Spectra  
 
 

The three-element Windkessel approximation can serve as an estimate of the 

arterial impedance spectra thereby providing an estimate of  an entire systemic arterial 

tree beyond where pressure and flow are measured [9]. The three parameters (i.e. 

elements) have physiological meaning (Figure 6). Rc represents the combined influence 

of the resistance, compliance and inertance for the proximal artery of interest. For the 

purposes of the current project, Rc is the local resistance of the vessel undergoing 
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stenting. C is the arterial capacitance defined as the relationship between blood volume in 

a segment of vasculature and the pressure distending the vascular walls, and accounts for 

the sum of the compliance of all arteries beyond the region of interest. For intermediate 

frequencies the modulus decreases, and the phase angle is negative because of the 

compliance contribution. At higher frequencies, the modulus approaches a constant value 

and the phase angle is close to zero. Rp describes the total peripheral resistance, 

predominantly at the level of the arterioles having their greatest impact at zero frequency. 

Systemic resistance or total vascular resistance represents the opposition to blood flow 

within the entire systemic vasculature and is primarily determined by arterioles in the 

absence of pronounced vascular stenoses, and is therefore the sum of Rc and Rp. When 

determined downstream of the ascending aorta, total vascular resistance is often called 

the terminal resistance, and is expressed as the ratio of mean pressure divided by mean 

flow for the given location.  

The three-element Windkessel approximation extends the two-element 

Windkessel by adding the characteristic impedance [88]. The reason this element has 

been introduced is because at high frequencies, a constant impedance modulus and a 

phase angle of about zero degrees have been observed during measurement that is not 

represented well by the two-element Windkessel approximation showing a continuously 

decreasing modulus and phase angle to -90°.  

 The Windkessel parameters will be used to represent the behavior of a vascular 

network in the current investigation including the function of central elastic arteries 

(referred to as arteries with a large amount of elastin filaments such as the thoracic aorta 

and carotid arteries), muscular and conduit arteries (abdominal aorta, iliac and femoral 
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arteries) and resistance arteries (Table 2). For example, Rp in the Windkessel 

approximation can represent arterioles since they are the source of most of the resistance 

in the cardiovascular system.  

As mentioned in publications from our laboratory and others, Rc, C, and Rp can 

be determined from clinical or experimental techniques and then applied at the outlet of 

CFD models of the stented region to quantify how changes in DVR occurring in response 

to T2DM may adversely alter hemodynamics and correlate with NH [89, 90]. 

 

 

Figure 6. The three-element Windkessel model. Rp describes the peripheral resistance, C 
is the arterial capacitance, and Rc represents the resistance of the local artery of interest. 
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Arteries Radius (mm) Range of k Classification Represent 

Thoracic aorta 

Carotid arteries 

0.5~20 2.4~2.65 Central elastic arteries 
C 

Abdominal aorta 

Iliac and femoral 

arteries 

0.25~0.5 2.65~2.9 Muscular and conduit 

arteries Rc 

Arterioles 0.005~0.25 2.75~3 Resistance arteries Rp 

 
Table 2. Arteries of interest for the current investigation along with their general 

classification and representation by elements of the Windkessel 
approximation.(Adapted from Zamir et al. [2]) 

 
 

2.11 Computational Fluid Dynamics  
 
 

CFD is a simulation tool that can be used with vascular models created from 

medical imaging data to compute and visualize hemodynamic indices including WSS. 

There are several steps involved, such as creating a representation of a vessel's geometry 

(subject-specific or idealized), meshing this vessel geometry, specifying rheological 

properties such as blood density and viscosity, prescribing the hemodynamics state at the 

entrance and exit of vessels (known as boundary conditions), and using a powerful 

computer to solve equations for the conservation of mass (continuity equation) and 

balance of fluid momentum (equation of motion).  

An expression for conservation of mass [91] can be developed by performing a 

mass balance over a stationary volume element through which a fluid is flowing.  

It can be expressed mathematically as: 
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Where ρ is the fluid density, and ux, uy, uz are the directional x, y, and z 

components of the velocity vector. 

The equations of motion for an incompressible Newtonian fluid are referred to as 

Navier-Stokes [92].  

The Navier-Stokes equations in cylindrical coordinates can be expressed as: 

 

Where g represents the gravitational acceleration, p is the fluid pressure, and ρ is 

the fluid density.   

2.12 Indices of WSS Contributing to NH  
 
 

WSS represents the tangential component of shear force exerted on a vessel wall 

by the flow of a viscous fluid. WSS is an important factor that impacts endothelial cell 

function and flow-induced remodeling. This process allows WSS to be maintained within 

a preferential range for a given portion of the vasculature under normal conditions[93]. 

Low WSS is thought to promote atherogenesis and NH. Together with members of the 

current dissertation committee, our lab has demonstrated that areas of low WSS 
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established after stenting modulate the development of NH in rabbit iliac arteries [5]. As 

NH occurs within a stent, the geometry and associated WSS distributions change over 

time in a way that progressively alleviates the deleterious WSS distributions that were 

created initially by stenting (Figure 7). Additional studies by the same team 

complemented these findings by further demonstrating that geometric properties of an 

implanted stent may contribute to adverse WSS that is associated with NH [5]. These 

findings suggest that WSS can impact NH locations, but this relationship may also be 

influenced by associated vascular changes driven by AGEs.   
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Figure 7. Distributions of normalized WSS in control and stented rabbit iliac arteries. 
The theoretical distribution of normalized WSS after stenting (i.e. acute) is progressively 

alleviated after 14 and 21 days to restore values back toward a preferential value. 
(Adapted from LaDisa et al, [5]) 

 
 

2.13 Molecular Pathways Impacting NH Formation 
 
 

TGFβ is a growth factor having widespread cytokines related effects on cell 

growth and development. TGFβ is involved in the wound healing process, and the TGFβ 

gene has been shown to be activated in human restenotic lesions as well as after porcine 

coronary artery stenting [94, 95]. Similarly, when the TGFβ gene was transferred into 
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normal porcine arteries, NH was enhanced [96]. Together these findings suggest that 

monitoring the protein expression of AGEs, RAGE, and TGFβ may identify the 

contributions of these molecular mediators to the mechanisms of restenosis in T2DM.  

RAGE is a signal transduction receptor in the immunoglobulin superfamily that is 

expressed in endothelial cells, monocytes, and renal mesangial cells [97]. The interaction 

of AGEs and RAGE activates phosphorylation of nicotinamide adenine dinucleotide 

phosphate oxidase subunits and intracellular signaling molecules: PKC, nuclear factor-

kappa B (NF-kB), and TGFβ influence ROS and nitric oxide (NO) formation (Figure 8) 

[6, 98]. Because reactions between AGEs and RAGE may increase inflammation, RAGE 

is a major pharmacological target for inhibition of AGEs.  

 

 

Figure 8. AGEs related pathways. The interaction of AGEs and RAGE activates nuclear 
transcription factors and further influences oxidative stress and nitric oxide (NO) 

formation  (Adapted from Welt et al, [6]) 
 
 

ROS are chemicals containing oxygen ions and peroxides which are highly 

reactive due to the presence of unpaired electrons such as oxygen radical, superoxide ion 

radical, hydroxyl radical, and nitric oxide radical [11], as these are formed as an 

unavoidable byproduct of cellular respiration. However, under conditions of 
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environmental stress, ROS levels can significantly increase resulting in damage to 

cellular structure. Compared to ROS, antioxidants are a group of chemicals such as 

ascorbic acid (vitamin C), α-tocopherol (vitamin E) and superoxide dismutase that 

prevent pro-oxidation processes or biological oxidative damage [99]. More specifically, 

there are several intrinsic radical scavenger systems in organisms which occur through 

enzymatic and non-enzymatic reactions. Enzymatic antioxidants include superoxide 

dismutase, glutathione peroxidase, and catalase which will convert superoxide radicals to 

water [100-102]. Non-enzymatic antioxidants include vitamin C, vitamin E, glutathione 

and β-carotene [103, 104]. Glutathione is a major endogenous antioxidant produced by 

the cells as it directly participated in neutralizing ROS and maintaining vitamin C and E 

in their reduced forms [105]. Organisms need to maintain a balance between ROS and 

antioxidants as shown in Figure 9. If more ROS are generated, this is defined as 

oxidative stress and leads to oxidative damage. Conversely, if more antioxidants are 

produced, this is defined as reductive stress and could cause damage as well.  
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Figure 9. Illustration of the balance between oxidative and reductive stress  (Adapted 
from Kohen et al. [11]) 

 
 

Studies revealed that AGEs and RAGE interaction can influence ROS and nitric 

oxide (NO) pathways, which are related to preferential endothelial coverage after a 

stenting procedure [6]. It has also been found that high extracellular glucose conditions 

significantly increase ROS and AGEs formation in human cardiac myocytes [106], and 

ROS might significantly influence cellular functions [107]. Yan et al. [108] found that 

reducing ROS production and improving endothelial NO synthase protein and activation 

will chronically increase local BF. Glucose oxidation is a major pathway for producing 

free radicals [109]. In addition, another important source of free radicals is from the 

reaction process of glucose with proteins to form Amadori products, AGEs and the 

interaction of AGEs with RAGE [110, 111]. Increased oxidative stress is associated with 
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the progression of diabetes and its complications [110, 112]. Although ROS and NO are 

undoubtedly related to the stenting process, they were not included in this research 

because of its main focus on detecting upstream NH by changes in downstream AGEs 

and RAGE reactions specific to T2DM.  

2.14 Mechanisms of NH after Stenting  
 
 

There are several mechanisms that have been shown to be involved with NH to 

date. These pathways are briefly discussed for completeness and to convey awareness of 

mechanisms that are beyond the scope of those queried in the current investigation. The 

first is the TGFβ pathway mentioned above [113]. TGFβ family is highly conserved with 

TGFβ 1-5 having similar functions. Only the first three isoforms are expressed in 

mammals. During the stenting process, it is very important that the balance between 

TGFβ activation and inhibition be maintained. Anti-TGFβ has been used to treat 

restenosis such as the cell-membrane molecule mannose-6-phosphate being injected at 

the time of stenting. Reduced scarring, decreased inflammatory cell infiltrate, and 

angiogenesis were observed [114].  

The mitogen-activated protein kinase (MAPK) pathway has also been shown to 

contribute to NH. It has been shown that hyperinsulinemia activates the MAPK pathway 

inducing NH after balloon injury in diabetics [115]. Additional research found that vessel 

smooth muscle proliferation by AGEs was due to the phosphorylation of extracellular 

signal-regulated kinases (ERK) and p-38 which are important factors in MAPK pathways 

[116].  

In the NH process, there is a balance between medial SMC growth and apoptosis 

in media. After injury due to stenting, medial SMC migrate into the intima by matrix 
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metalloproteinases (MMP2 and MMP9) [117]. G-proteins subunits have also been found 

to significantly increase in this early reaction to stenting, which coincides with the period 

of medial SMC mitogenesis and NH formation [118]. G-protein pathways are important 

during the membrane transduction process with many receptors involved, and they can 

also active MAPK which are associated with SMC proliferation during stenting injury 

process as mentioned above [118].   

2.15 AGEs Related Collagen Cross-linking Breaker: ALT-711  
 
 

ALT-711 is the first drug in a new class of thiazolium therapeutic agents to break 

established AGEs related collagen cross-linking [119]. Animal investigations have shown 

that AGEs cross-linking is one of the factors in vascular stiffening, and ALT-711 can 

reduce artery stiffness and left ventricular mass, while enhancing cardiac output, [120, 

121] suggesting this compound may have the ability to reduce NH in response to stenting 

in T2DM. 

Freidja et al. [122] used the AGE-breaker ALT-711 with T2DM rats, and the 

authors found that breaking AGEs through ALT-711 not only improved endothelial 

function, but also improved local BF supply and hence prevented end organ damage. 

ALT-711 can target the biochemical pathway by breaking the –C=O – O=C- bond in 

AGEs and prevent this connection from forming again. It is therefore expected that ALT-

711 can also reduce at least a part of early AGEs formation in arteries of ZDF rats, which 

will likely decrease arterial stiffness.  
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2.16 Impact of Downstream Vascular Changing on Upstream Stenting  
 
 

Since AGEs formation occurs more rapidly in diabetic conditions, it will likely 

increase collagen cross-linking and modify vessel structures leading to increased distal 

resistance, as well as decreased arterial capacitance. As alluded to in the Specific Aims, 

these changes are referred to as the mechanical pathway for the current work (Figure 10). 

As AGEs increases, it may interact with RAGE to further induce nuclear factor activation 

and TGFβ expression, and these changes will likely impact vessel structure and cause NH. 

These changes are referred to as the molecular pathway of the current work. Although 

previous studies have shown that TGFβ expression is correlated with NH formation [95], 

it is still not clear whether AGEs induced collagen cross-linking and structural 

modification that primarily influences vessels downstream is responsible for exacerbating 

NH in the stented region. Figure 10 depicts this interaction and the potential for 

molecular as well as mechanical contributions applicable to the current investigation. 

ALT-711 was used as a potential agent to mitigate NH, and determine whether its actions 

work by decreasing collagen cross-linking or through decreasing AGEs and RAGE 

interaction.  
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Figure 10. Mechanical and molecular pathways tested as part of the current 
investigation. The mechanical pathway refers to changes predominantly mediated by 

AGE formation increasing collagen cross-links and modifying vessel structures that lead 
to increased peripheral resistance as well as decreased arterial capacitance and WSS. 

The molecular pathway refers to changes predominantly mediated by increased 
expression of AGE, RAGE and TGFβ leading to structural vascular alterations. “?” 

indicates a potential interaction while “X” indicates a location of potential inhibition by 
ALT-711 that was tested as part of the current investigation.    
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CHAPTER 3: METHODS COMMON TO ALL AIMS 
 
 
3.1 Experimental Protocol  
 
 

Zucker diabetic rats were obtained from Charles River Laboratories International 

Inc., (Wilmington, MA). These rats were created from inbreeding of hyperglycaemic 

Zucker obese rats having a fa gene mutation in the extracellular domain of the leptin 

receptor [123], which leads to impaired leptin signaling resulting in obesity as well as 

elevated plasma cholesterol and triglyceride levels [124]. These symptoms closely 

replicate the regular T2DM disease process which results from insulin-resistant to 

insulin-deficient states [125]. To isolate the influence of T2DM on NH, obese rats were 

studied as well, resulting in groups of ZL, ZO, and ZD rats.  

All experimental procedures and protocols used in this work were approved by 

the Animal Care and Use Committee of Marquette University (AR-200; PI: J. LaDisa) 

and the Medical College of Wisconsin (AUA-672; PI: J. Kersten). The experimental 

protocol is shown in Figure 11.  Stents were deployed into the AAo of male ZL, ZO and 

ZD rats in the absence (N=9/group) or presence of ALT-711 (i.e. treatment; N=9/group). 

After 21 days, three rats from each group were randomly selected to have their AAo 

undergo casting, microfocal x-ray CT imaging and reconstruction for potential use with 

CFD simulations. Remaining rats in each group underwent quantification of NH, AGEs 

related collagen cross-linking, and protein expression by Western blotting. Additional 

details are provided below.   
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Figure 11. Schematic illustration of the experimental protocol. Stent implantation was 
performed at 12 weeks for lean, obese and diabetic rats in the absence and presence of 

ALT-711 administered using osmotic minipumps. After 21 days, rats were randomly 
selected for estimation of wall shear stress (WSS) by computational fluid dynamics (CFD) 

modeling (N=3/group) where applicable as described below, or quantification of 
neointimal hyperplasia (NH) and protein expression (N=6/group). An additional group 

of rats (n=4) underwent stenting and administration of saline alone to reveal any 
potential influence of the minipump and vehicle for ALT-711. 

 
 

3.2 Experimental Preparation  
 
 

ZL, ZO and ZD rats were allowed a minimum of 48 hours to acclimate after 

arrival, and rats were selected randomly for stenting at 12 weeks of age. Stent 

implantation was performed under anesthesia and sterile conditions as discussed below. 
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Rats were anesthetized in a transparent induction chamber using isoflurane through a 

vaporizer. Once the rat was anesthetized, it was removed from the chamber, placed on a 

warm surface and fitted with a nose cone attached to an anesthetic vaporizer and oxygen 

source. The concentration of anesthesia was then reduced to a level which maintains the 

proper plane of anesthesia; typically between 0.5 and 3% of isoflurane.  

3.3 Stent Implantation  
 
 

AAo stenting was performed under anesthesia and sterile conditions similar to 

that described previously [66, 126]. Local blood flow patterns, and the subsequent 

severity of NH, are influenced by geometric attributes of an implanted stent [5]. 

Therefore, 316L stainless steel balloon expandable stents specially suited for the rat AAo 

(2.5x8mm) and with a known geometric pattern (Figure 12) were purchased from Burpee 

Materials Technology (Eatontown, NJ) and crimped on 2.5x12mm rapid-exchange 

delivery catheters (Polymerex; San Diego, CA).  
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Figure 12. 316L stainless steel balloon expandable stent specially suited for small 
dimensions (2.5x8 mm) and with a known geometric pattern (A) for use with 2.5x12 mm 
rapid-exchange delivery catheters (B and C) obtained from Polymerex (San Diego, CA) 
were created in conjunction with Burpee Materials Technology (D; Eatontown, NJ) and 

crimped (E) prior to sterilization and use.  
 
 

In preparation for stenting, the site over the AAo and iliac arteries was shaved and 

cleaned. The skin was then entered by a mid-sagittal incision. Under microscopic view, 

the AAo and iliac arteries were carefully separated free from surrounding vessels and 

tissue using sterile applicators. Small aortic side branches were temporarily clamped to 

limit the backflow of blood. Two vascular clips were placed to isolate the region 

undergoing stenting close to the aorta-iliac bifurcation. A small incision was made in the 

end of the isolated segment and blood in this section was removed by rinsing with 



44 
 

heparinized saline (100U/kg) to prevent acute thrombosis. The tip of a delivery catheter 

and associated guide wire were inserted. Aortic clamps were then briefly removed as 

necessary to thread the stent to an infrarenal segment of the AAo. The stent delivery 

catheter was then inflated to securely anchor the stent against the AAo wall using a stent-

to-artery size ratio range of 1.1 to 1.2:1 [127]. Successful deployment was confirmed 

visually as the stent could be viewed through the aortic wall. After removal of the stent 

delivery catheter, the incision was closed using an 8-0 suture. The vascular clips were 

then removed; the abdomen was closed with 4-0 silk suture while the skin was closed 

with 4-0 dissolvable Vicryl suture using stitches just below the skin. 

3.4 Surgical and Post-operative Care  
 
 

Quantitative criteria including oxygen saturation, respiration rate, temperature, 

heart rate, mucous membrane color and capillary refill time were continuously monitored 

during the surgical procedure and for 3-4 hours after its completion. Buprenorphine (0.05 

mg/kg, intraperitoneal (IP)) was used as analgesia for 2 days. Animals also received 

antibiotic prophylaxis (20 mg/kg cefazolin, IP) for 4 days, and aspirin in their food or 

drinking water (20 mg/day) for the duration of the experimental protocol to inhibit 

thrombus formation.  

3.5 ALT-711 Treatment  
 
 

ALT-711 is the first drug in a relatively new class of thiazolium therapeutic 

agents to separate established AGEs related collagen cross-linking [119]. This chemical 

was developed by Alteon Corporation, who later exhausted their operating cash forcing 

the chemical to halt testing in Phase II clinical trials [128]. There is no official 
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documentation on the half-life of ALT-711; however, discussions with the manufacturer 

(Iron-dragon, Newport Beach, CA; www.iron-dragon.com), from whom the compound 

was purchased, suggests the half-life of this chemical is approximately 6 hours. Hence, 

the concentration of ALT-711 in the blood would decrease to 6% within 24 hours. There 

are two ways ALT-711 has been administered to rats by previous researchers: IP 

injections or direct feeding. Since the IP method (1mg/kg/day) is difficult to administer in 

rats, other researchers administered ALT-711 to rats by feeding (10mg/kg/day) [31, 129, 

130].  

In this investigation, treated rats from each group were given ALT-711 

(1mg/kg/day) by ALZET osmotic minipump (model 1004; Cupertino, CA) based on 

previous research [131]. The ALZET osmotic minipump has been used previously in 

drug delivery studies [132, 133], and it works to deliver drugs at a constant rate to the 

intended site based on establishing an osmotic pressure gradient from within the 

minipump. Cooper et al. [132] found that the osmotic minipump system for microdialysis 

samples can generate flow rates that are similar to a microdialysis syringe pump. In 

addition, Cooper et al. [132] tested the chemical released from the osmotic minipump and 

confirmed that osmotic minipump is a viable method for microdialysis sampling.   

Because the osmotic minipump releases the drug continuously, it will maintain 

the ALT-711 blood concentration at a uniform level throughout the day relative to the IP 

injection method for which the drug concentration is decreased by half every 6 hours.  

Osmotic minipumps were therefore used according to the manufacture’s literature and 

data specification (Figure 13 and Table 3). Briefly, saline was used to solve ALT-711 at 

a high concentration using the 100 µL limit of the minipump. The ALT-711 amount was 
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calculated based on the pumping rate (0.11µL/hour), the weight of rats, desired 

1mg/kg/day dose and an experimental duration of 21 days. The total amount of chemical 

for 28 days was loaded into osmotic minipump as calculated below to ensure enough 

ALT-711 was present for the full experimental duration.  

 

��
��� ������ � 0.11 ��
����  � 24 ���� � 28 !�" 

#�$ % 711 ������ � !�'�
!�"  � 
�� (��)�� �� *) � 28 !�" 

 

All minipumps were equilibrated for 24 hours before implantation according to 

the manufacture’s literature to ensure the drug was released and effective immediately 

after surgery. Prior to closing the skin at the conclusion of the stenting procedure, a 

minipump was filled, placed just beneath the first muscle layer in the abdomen, and 

positioned with its delivery portal facing toward the cranial end of the animal. All other 

procedures were the equivalent to those described above.  

3.6 Osmotic Pump Vehicle  
 
 

In addition to using osmotic minipumps loaded with ALT-711, four additional ZL 

rats were subjected to minipumps loaded with vehicle (i.e. saline), which was used as the 

solvent for ALT-711, to account for the possible effect of the osmatic minipump in the 

treatment group and confirm the feasibility of delivering ALT-711 by this approach. 

Figure 11 shows the experimental procedures with osmotic minipump control.  
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Figure 13. ALZET Osmotic Miniumps. (Adapted from ALZET, Cupertino, CA) 
 
 

ALZET Osmotic Minipump 

Model Number 1004 

Reservoir Volume (µl) 100 

Length (cm) 1.5 

Diameter (cm) 0.6 

Approximate  Minipump Weight (g) 0.4 

Total Minipump Displaced Volume (ml) 0.5 

 
Table 3. Approximate values used with osmotic minipump model 1004. Loading values in 

reservoir varied slightly depending on the weight of a given rat.  
(Adapted from ALZET, Cupertino, CA) 

 
 

3.7 Statistical Analysis 
 
 

Statistical analysis was conducted using one-way multiple analysis of variance 

(ANOVA) followed by Tukey-Kramer multiple comparison test. Changes within and 

between groups were considered statistically significant when P<0.05. Data are expressed 

as means ± standard error of the mean (SEM). 
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CHAPTER 4. SPECIFIC AIM 1: QUANTIFY THE ABILITY OF AGE-MEDIATED 
VASCULAR CHANGES TO INCREASE DVR AND ALTER MECHANICAL 

INDICES KNOWN TO PROMOTE NH IN TYPE 2 DIABETES, AND DETERMINE 
WHETHER THESE ADVERSE CHANGES CAN BE ALLEVIATED BY ALT-711.   

 
 
4.1 Review of Rationale Applicable to Aim 1  
 
 

Adverse vascular adaptations are known to occur in response to T2DM. These 

changes can manifest as increased central and peripheral vascular stiffness, and elevated 

DVR if the distal vasculature is similarly affected. This aim tests the hypothesis that 

increases in AGEs related collagen cross-linking and DVR cause alterations in BF 

dynamics within the upstream stented region in ZD rats compared to normoglycemic 

controls. ALT-711 is an AGEs related collagen cross-linking breaker shown to decrease 

vessel resistance and atherosclerosis [29, 30]. This aim therefore further tests the 

hypothesis that giving ALT-711 to stented ZD rats decreased DVR and elevated WSS 

compared to untreated ZD rats. CFD simulations were conducted to compare TAWSS of 

ALT-711 treated ZDF stented rats with corresponding untreated groups.  

4.2 Methods Unique to the Current Aim 
 
 
4.2.1 Hemodynamic Data Acquisition  
 
 

Twenty-one days after stenting, rats were anesthetized as described in the general 

methods section and the right carotid artery was isolated. A fluid-filled catheter 

connected to a BP transducer (APT300; Harvard Apparatus, Holliston, MA) was 

calibrated and inserted from the carotid artery into the aorta for measurement of BP and 

subsequent potential use in the CFD modeling process. The AAo was also dissected free 

from connective tissue and the vena cava. BF proximal to the stent was recorded with a 
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transit-time flow probe connected to a flow meter (Model T106, Transonic Systems, 

Ithaca, NY). BP and BF data was sampled at 120Hz simultaneously using an analog-to-

digital  (A/D) converter (model DI-158, DATAQ instruments, Akron, OH) interfacing 

with a laptop running WINDAQ software (DATAQ instruments) (Figure 14). Rats were 

then euthanized by overdose of pentobarbital sodium (100 mg/kg, Intravenous (IV)).  

 

Figure 14. Blood flow (ml/min, solid line) and blood pressure (mmHg, dashed line) were 
recorded using WINDAQ software. The software was calibrated first, and settings were 

adjusted to optimize the dynamic range of the signals.  
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4.2.2 Plastic Casting of the Stented Flow Domain 
 
 

Computational modeling of regional BF through arterial segments requires high 

resolution morphological data to represent the vascular flow domain of interest. 

Microfocal x-ray computed tomography can capture detailed geometric information 

through plastic casting of the stented flow domain, and this technique has previously been 

used to examine the correlation between altered indices of TAWSS and NH after stent 

implantation in rabbit iliac arteries [5].  

The AAo above the stented region was therefore carefully dissected from 

connective tissue of rats in the current investigation after euthanasia. A small incision 

was made in the suprarenal AAo under microscopic guidance and a catheter containing 

Batson’s No. 17 Corrosion Compound (Polysciences, Warrington, PA) was secured 

within the vessel [5]. A four way stopcock was connected to the catheter and the BP 

transducer mentioned above. A syringe was then connected to the open end of the 

stopcock to flush the vessel with saline before the plastic compound was injected and 

maintained at the measured mean BP for each rat. Care was taken to ensure no bubbles 

were injected and a constant mean BP was maintained thereby capturing the geometric 

intricacies of the flow domain. After curing (2-3 hours), the artery and connective tissue 

were caustically removed with Batson's #17 Maceration solution. At this point the stent 

can be freely removed since the external vessel against which it had been implanted, and 

the tissue that had grown within it since implantation, have been removed leaving a cast 

of the flow domain.  

TAWSS was calculated by two methods using the casted flow domain 

representations: regional TAWSS and intrastrut TAWSS. Regional TAWSS was 
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calculated as indicated below assuming blood behaves as a Newtonian fluid and the 

vessel wall is rigid after stenting.  

Regional TAWSS �  4µQ
πr;  

where Q is the mean measured flow rate, viscosity was assumed to be 6.2 cP [76], 

and r is the radius determined from an average of three digital micrometer measurements 

of the casted stented region. To preserve funding resources, intrastrut TAWSS was also 

calculated using microfocal x-ray CT imaging, but this approach was only performed for 

the collection of treated or untreated rats for which the estimate of regional TAWSS 

yielded results that were significantly different from those of untreated ZL rats (Table 4).  

 
TAWSS (dyn/cm2) ZL  ZO  ZD  

No treatment 22.0 ± 1.48 12.8 ± 1.52 9.72 ± 3.68* 

ALT-711 18.0 ± 2.19 17.8 ± 2.82 17.5 ± 1.43 

 
Table 4. Regional TAWSS (dyn/cm2) from ZL, ZO and ZD stented rats (N=3/group). 

Mean ± SEM; * = significant difference between ZD and ZL stented rats. No significant 
difference was found after ALT-711 treatment.  

 
 
4.2.3 Microfocal X-ray CT and Vascular Reconstruction  
 
 

Casts of the stented region were imaged using a microfocal x-ray CT imaging 

system as previously described [5] where applicable. Briefly, casts were placed on a 

rotating and translating stage within an X-ray beam (Figure 15). Thirty images were 

captured and averaged to generate a single image (512 X 512 pixels) at each of 360 

rotation angles obtained in one-degree increments (Figure 16). The images were then 
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aligned along the center of rotation and processed to remove any spatial and temporal 

heterogeneity within the x-ray beam.  

The averaged and processed images from each rotation were rendered to produce 

isotropic volumes (4973) [117]. Optimal settings for collecting data were 40 mV and 140 

µA based on previous experiments. The source to artery distance and the X-ray source to 

the image intensifier distance were kept constant when acquiring image data for all rats 

(18.9 cm and 87.0 cm, respectively). A polyethylene tubing of a known diameter was 

inserted at the base of each cast for use in calibration during reconstruction. 

Reconstruction volumes were rendered using SAO Image DS9 (Version 2.1b6) on a 1.8 

MHz Compaq Presario 900 laptop with 1Gbyte of RAM running Mandrake Linux. 
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Figure 15. Image of the microfocal x-ray CT imaging system and cast of a rabbit 
abdominal aorta and iliac arteries. (Adapted from LaDisa et al, [12])  
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Figure 16. Projection image obtained for the abdominal aorta of a representative rat 
from the current work. Three hundred and sixty of these images were captured for each 
casted abdominal aorta in one degree increments to generate isotropic reconstruction 

volumes. The diameter of the catheter (1.1mm) was used as a scale for calibration. 
 
 

After ensuring the reconstructed images were without artifacts such as shading 

around the vessel of interest caused by carelessness in the reconstruction process (Figure 

17), the reconstructed volumes were loaded into ImageJ (NIH; http://rsb.info.nih.gov/ij/) 

as raw by selecting width as 497 pixels, height as 497 pixels and 497 images. The raw 

1.1mm 
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reconstructed volumes were digitally sectioned perpendicular to the axis of rotation to 

generate 497 unsigned 8-bit integer arrays using Unix script files, and additional post-

processing of vessel segments was performed as previously described [12]. Briefly, the 

polyethylene tubing was first used to calibrate the voxel size. Images within the stented 

region were selected and adjusted to use the full dynamic range (0-255 grayscale levels), 

and an image threshold was implemented using an automated Matlab program to generate 

vessel segments from each image slice. Image contours were extracted from each image 

slice to resolve the vessel wall. To determine the number of circumferential points used 

in this process, a slice having pronounced concave or convex attributes around its 

circumference was selected for comparison to versions of the slice with 48, 96, or 120 

interpolated circumferential points. Processing was implemented to smooth the 

circumferential points, but also maintain local geometric features as discussed in detail 

elsewhere [12]. A z-spacing of 1 (i.e. every reconstructed slice was used) helped to 

capture detailed geometric information in the longitudinal direction. A moving average 

filter was also used for longitudinal smoothing to eliminate reconstruction artifact as 

discussed in more detail below. The smoothed vascular points were saved as a 3-column 

text file, and the center line was also extracted.  

The smoothed vascular points were loaded into SolidWorks (Waltham, MA). 

Briefly, the “Lofted Boss/Base” function in SolidWorks was used to generate models and 

their extracted centerline was loaded to trim the inlet as needed. The trimmed model was 

saved as ParaSolid document for use in CFD simulations.  
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Figure 17. Images showing a cross-sectional slice from the reconstruction volume for the 
abdominal aorta of a representative rat from the current work. The left image shows an 
artificial second grey ring shadowing effect around the real reconstructed vessel caused 

by improper steps in the reconstruction process. The right image shows a correct 
reconstruction without this artifact. This was in the middle of the reconstruction process, 
and no scale was available. These images were only used for verifying the accuracy of 

reconstruction process. 
 
 

4.2.4 Determination of Windkessel Parameters  
 
 

Windkessel parameters (Rc, C, and Rp) were determined from measured data 

using the pulse pressure method [87], then applied for CFD modeling. Briefly, the Rt 

(which is mostly comprised of Rp) was estimated at Pmean/Qmean. The stiffness caused 

by AGEs induced collagen cross-linking was used as a surrogate for C, and Rc reflects 

the stented region that was not quantified since previous research in our lab showed that 

stenting has no impact on local resistance under resting conditions [134]. An Rc/Rt ratio 

of 5.6% was assumed initially in order to obtain an estimate of capacitance using the 

pulse pressure method. The Rc/Rt ratio was based on previous research [135] where the 
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characteristic resistance is less than 6% of total resistance in human rest conditions. The 

initial values of Rc, C and Rp were then optimized using an automated Matlab program 

to match the systolic and diastolic BP of the measured waveform.  

4.2.5 CFD Simulations  
 
 

Computational meshes were created using MeshSim (Simmetrix; Clifton Park, 

NY), which is integrated within the Simvascular open source software package 

(simtk.org) used for CFD modeling and simulation. BF data from each rat was ensemble 

averaged using >10 beats to generate a waveform that was imposed at the inlet mesh face 

as a Womersley velocity profile. It was assumed that the stented AAo was rigid [134], 

and blood was assumed to be Newtonian with a density of 1060 kg/m3 and viscosity of 

6.2 cP, consistent with previous research [76]. 

An in-house stabilized finite element solver with embedded commercial linear 

solver LESLIB (Altair Engineering, Troy, MI) was used to solve equations for 

conservation of mass and balance of fluid momentum. Briefly, the model was first 

discretized into a mesh containing ~500,000 isotropic elements. Mean BF and resistance 

were used to perform a steady simulation, and adjustment was made by changing 

vascular resistance to make sure the simulated BF and BP matched previous 

measurements obtained for the rat at harvest. After this first simulation, localized mesh 

refinement was applied using an adaptation method in Simvascular for the second 

simulation. In the second simulation, a mean simulation was performed to initialize the 

flow domain for a subsequent pulsatile simulation. Four to five successive pulsatile 

simulations were then conducted until meshes contained 2.5 to 3 million tetrahedral 

elements, again generated using an adaptive technique for localized refinement. More 
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specifically, the minimum element edge size was measured to ensure it was three times 

less than the minimal stent strut edge size [136], so that the calculated TAWSS from CFD 

simulation could be calculated from elements as close to the arterial wall as possible. 

TAWSS from three small areas in the proximal, middle, and distal stented region were 

quantified for each simulation to ensure TAWSS was independent of the element size. 

The simulated BF in the last cardiac cycle was also queried to ensure it was within 5% of 

measured mean flow value, and  within 5 mmHg of the measured systolic, diastolic and 

pulsatile BP, consistent with similar previous research [137, 138].    

4.2.6 Quantification of TAWSS 
 
 

The accuracy of TAWSS largely depends on the confidence with which the near 

wall velocity gradient can be determined. In theory, CFD has the potential to offer much 

higher resolution than other image methods, but this depends on local features of the 

mesh as alluded to above. 

TAWSS was calculated from the last cycle as described previously [139]. 

TAWSS was computed at each node on the CFD mesh surface as:  

$#<�� � =1
$ > ?@@ABCD

E
!�=  

Where ?@@ABC is the WSS vector at each node, and T represent time period of one cardiac 

cycle.  

The TAWSS in the proximal stented region is influenced by the transition from 

the upstream unstented region to the expanded stented region. Conversely, at the outlet of 

the stent, local flow patterns will also be influenced due to the exit of blood flow from the 

expanded stented region. Previous research has found that elevated TAWSS was most 
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pronounced in the inlet and outlet of the stented region corresponding to the greatest NH 

formation [5]. To avoid those flow influences, we calculated the regional TAWSS and 

intrastrut TAWSS in the middle of the stented region.  

TAWSS (range from 0 – 30 dyn/cm2) was visualized using Paraview software 

(Kitware Inc., Clifton Park, NY) after the CFD simulation for each rat was completed. A 

Matlab program was then used to extract TAWSS within six intrastrut positions as shown 

in Figure 18 queried from the middle of the stented region for comparison to NH results 

obtained as part of Aim 2. Beyond contributions resulting from entrance or exit flow 

disturbances, the middle portion of the stent is also less susceptible to pronounced vessel 

injury than the proximal and distal ends experiencing compliance mismatch. TAWSS 

values were determined from nine neighboring points within each of these intrastrut 

regions, and collectively averaged to generate a representative TAWSS value from the 

center of the stented region for each group of rats to be compared with NH quantified as 

discussed below.  
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Figure 18. Diagram showing the locations for instrastrut TAWSS quantification after 
CFD simulations. A through F represent six locations in the middle of the stented region 
where 9 nearest neighbor values were averaged to quantify TAWSS for ZL, ZO and ZD 

stented rats.  
 
 

4.2.7 Statistical Procedures for Data Analysis  
 
 

At least 6 rats from each group were averaged to compare body weight, HR, 

blood glucose concentration, mean BF, mean BP and vascular resistance. Regional 

TAWSS was determined from 3 rats from each ZL, ZO and ZD group before ALT-711 

treatment, as well as 3 rats from each group after ALT-711 treatment. Intrastrut TAWSS 

were compared from 9 nearest neighbor points in the 6 intrastent regions within the 

middle of the stent for 3 rats from each ZL, ZO and ZD group without ALT-711 
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treatment. Statistical analysis was conducted based on previously outlined in the common 

methods to all specific aims.  

4.3 Results 
 
 
4.3.1 Osmotic Pump Control 
 
 

Implantation of osmotic minipumps loaded with saline alone did not affect body 

weight (449 ± 5 vs 406 ± 12 g, mean ± SEM), blood glucose (161 ± 38 vs 225 ± 19 

mg/dL), or heart rate (HR; 244 ± 14 vs 278 ± 13 beats/min) as compared to stented ZL 

rats without osmotic minipump as shown in Figure 19. The use of osmotic minipumps 

for delivery of ALT-711 dissolved in saline was therefore deemed appropriate and used 

to obtain the following results.   
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Figure 19. Body weight, blood glucose concentration and HR from stented ZL rats. White 
bars indicate stented ZL rats, and black bars indicate stented ZL rats implanted with 

osmotic minipumps containing saline (N = 4/group). No significance was found for these 
indices.  

 
 

4.3.2 Body Weight, HR, Mean BP and Blood Glucose  
 
 

Body weight and HR at the end of the procedure in all ZL, ZO and ZD rats were 

similar in the absence or presence of ALT-711 treatment as shown in Figure 20.  
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Figure 20. Body weight and heart rate of ZL, ZO and ZD stented rats. White bars 
represent rats without treatment, and black bar represent rats that received ALT-711 
(N=6/group). Body weight and HR were not different for ZL, ZO and ZD rats in the 

absence or presence of ALT-711. 
 
 

No significant differences were found for weight difference before the stenting 

procedure and at harvest for untreated and ALT-711 treated ZL, ZO and ZD rats (Figure 

21). This result agreed with previous findings showing that body weight was similar for 

untreated and ALT-711 treated diabetic rats [140].  
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Figure 21. Weight difference before the stenting procedure and at harvest for untreated 
and ALT-711 treated ZL, ZO and ZD rats. No significant differences were observed. 

 
 

Mean BP was similar in ZL (100 ± 3 vs 92 ± 5 mmHg), ZO (96 ± 4 vs 100 ± 6 

mmHg) and ZD (97 ± 1 vs 94 ± 6 mmHg) rats in the absence or presence of ALT-711 

(Table 5). Blood glucose concentration was significantly elevated for ZO and ZD as 

compared to ZL rats (359 ± 19 and 428 ± 24 vs 232 ± 18 mg/dL, P<0.05). Although there 

was a trend toward decreased blood glucose concentration for all rats with ALT-711 

treatment, this decrease did not reach significance and values remained elevated 

compared to ZL rats (ZO: 276 ± 25 and ZD: 342 ± 18 vs ZL: 171 ± 19 mg/dL, P > 0.05) 

(Table 5).  
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 Mean BP (mmHg) Glucose (mg/dL) 

 - ALT-711 + ALT-711 - ALT-711 + ALT-711 

ZL 100 ± 3 92 ± 5 232 ± 18 171 ± 19 

ZO 96 ± 4 100 ± 6 359 ± 19* 276 ± 25* 

ZD 97 ± 1 94 ± 6 428 ± 24* 342 ± 18* 

 
Table 5. Mean BP (mmHg) and blood glucose (mg/dL) in the absence (-) or presence (+) 

of ALT-711 (mean ± SEM) (N=6/group). Significance when P<0.05; * means 
significantly different from ZL stented rats. 

 
 

Mean BF measured from the inlet of the stented region was decreased in ZD as 

compared to ZL stented rats (6 ± 1 vs 10 ± 2 ml/min, Figure 22), but increased to ZL 

levels after ALT-711 treatment (6 ± 1 to 9 ± 1 ml/min). ALT-711 also increased BF in 

ZO rats (9 ± 2 from 7 ± 1 ml/min without treatment). ALT-711 treatment reduced distal 

vascular resistance calculated as mean BP divided by mean BF in ZD rats (16 ± 2 x 105 to 

8 ± 1 x 105 dyn·s/cm5, Figure 22).  
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Figure 22. Mean blood flow and resistance in ZL, ZO, and ZD stented rats in the absence 
or presence of ALT-711 treatment (N=6/group); * = significantly different from ZL, ∇ = 

significant difference within group. 
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4.3.3 Reconstructed Vessels from SolidWorks 
 
 

Representative solid models for untreated rats are shown in Figure 23. All models 

were created such that the stented region was located in the center of the model. The inlet 

and outlet lengths were therefore similar for all models to account for any potential flow 

disturbances occurring despite the use of a fully developed Womersley velocity profile.  

 

Figure 23. Renderings of the stented region from representative ZL, ZO and ZD rats as 
produced with SolidWorks after post-processing of reconstructed microfocal x-ray CT 

data. 
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4.3.4 Intrastrut TAWSS 
 
 

Unwrapped TAWSS results are shown in Figure 24 using a range of 0-30 

dyn/cm2. Quantification of corresponding distributions of TAWSS values from intrastrut 

regions in the middle of the stent were low for ZD (14.5 ± 1.9 dyn/cm2) as compared to 

ZL and ZO rats (30.6 ± 1.6 and 25.4 ± 2.2 dyn/cm2, respectively) (Figure 25). There 

were no regional differences in TAWSS for casts created in rats receiving ALT-711 

treatment, and intrastrut TAWSS was therefore not calculated for these rats.  

 

 

Figure 24. Representative TAWSS results in the ZL, ZO and ZD stented rats. Results from 
CFD are shown on the left and corresponding unwrapped versions appear to their right.   
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Figure 25. Corresponding distributions of TAWSS from intrastrut regions within the 
middle of stents implanted into the abdominal aorta of ZL, ZO and ZD rats (N=6/group); 

* = significantly different from ZL, # = significantly different from ZO rats. 
 
 
4.3.5 Circumferential Smoothing Verification 
 
 

The spatial distributions of TAWSS from CFD simulation results above have 

some persistent artifacts from the microfocal x-ray CT scanning and reconstruction 

process, particularly in the longitudinal direction. It is well known that some perceived 

pitting accompanies the high spatial resolution of this process [12]. While the 

postprocessing methods employed attempted to mitigate this potential issue, any 

persistent artifacts have the potential to influence TAWSS results. To further understand 

this potential influence, several different operations were evaluated for the longitudinal 
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smoothing implemented as part of the postprocessing operations discussed in section 

4.2.3 (Table 6) [12, 118].  

 
Filter name Function 

'moving' Averaging 

'lowess' Local regression using weighted linear least squares and a 1st degree 
polynomial model 

'loess' Local regression using weighted linear least squares and a 2nd degree 
polynomial model 

'sgolay' local polynomial regression (of degree k),  preserve maxima and 
minima  

'rlowess' A robust version of 'lowess' that assigns lower weight to outliers in the 
regression. 

'rloess' A robust version of 'loess' that assigns lower weight to outliers in the 
regression. 

 
Table 6. Smoothing operations evaluated for longitudinal smoothing of reconstructed 

microfocal x-ray CT data.  
 
 

Average filters were deemed most appropriate for their ability to smooth, as 

compared to create, perturbations and both 5 and 8 point moving average filters were 

investigated. Corresponding CFD simulation results along with distributions of TAWSS 

are shown in Figure 26 below. Of note, both approaches reveal higher values of TAWSS 

with a pattern that corresponds to the specialized stent used for rats in the current 

investigation. This is to be expected since the stent protrudes into the flow domain, and 

suggests the microfocal x-ray CT image processing can capture geometric intricacies 

within the stented region. The 8 point moving average filter muted detailed information 

near stent struts, but TAWSS values from intrastrut regions were not different as shown 
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in Figure 27. Postprocessing operations using a 5 point moving average filter for 

longitudinal smoothing after the reconstruction process were therefore deemed 

reasonable.  

 

 

Figure 26. TAWSS CFD results obtained using a filter averaging 5 and 8 points 
longitudinally as part of the postprocessing operation applied following reconstruction of 

microfocal x-ray CT data.  
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Figure 27. TAWSS values from intrastrut regions in the middle of the stent (N=6/group). 
No TAWSS difference were observed when results from 9 nearest neighbor elements 

within the center of six intrastrut regions were averaged for CFD models created from 
postprocessing operations using longitudinal smoothing operations consisting of a 5 or 8 

point moving average filter. 
 
 

4.4 Summary 
 
 

The objective of this aim was to quantify the ability of AGE-mediated vascular 

changes to increase DVR thereby altering mechanical indices known to promote NH in 

T2DM, and determine whether these adverse changes can be alleviated by ALT-711. 

There were several important findings. 

1) Mean BF decreased in ZD stented rats, concomitantly with a trend toward 

increases in DVR before treatment as compared to ZL rats. DVR was found to 

decrease in ZD stented rats after ALT-711 treatment as compared to untreated 

ZD rats. Mean BF in ZO and ZD stented rats were increased after ALT-711 



73 
 

treatment. Blood pressure was found to be similar before and after ALT-711 

treatment which is consistent with previous findings [141] that ALT-711 

could alleviate vascular dysfunction and wall stiffness without changing mean 

blood pressure.  

2) Regional TAWSS in the middle of the stented region was quantified before 

and after ALT-711 treatment. Regional TAWSS within the stented region of 

untreated ZD rats was low relative to ZL rats in the absence or treatment, but 

was not different after ALT-711. This finding is likely due to observed 

reductions in BF, and hence lower velocity and TAWSS, within the stented 

region afforded by higher downstream resistance. 

3) CFD simulations were conducted for untreated ZL, ZO and ZD stented rats. 

Results demonstrated TAWSS from intrastrut regions within the middle of the 

stent were reduced for ZD as compared to both ZL and ZO stented rats.  

4.5 Potential Limitations 
 
 

Rats were only stented for 21 days in this investigation. This time point was 

chosen based on previous literature. The process of restenosis as well as NH formation 

after stent implantation may be different between diabetic patients’ arteries and diabetic 

rats’ arteries. In animal models, previous studies have shown that NH caused by vascular 

intervention is mixed with extracellular matrix and migrating and proliferating SMC. In 

humans, NH is primarily mixed by collagen with extracellular matrix [142]. The 

development of NH after the BMS stenting process occurs faster in animal models, and 

reendothelialization of the stented region after implantation is usually complete between 

21 to 56 days, but this procedure may not have even started after several months in 
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human [5, 143, 144]. We therefore chose to detect NH in rats after 21 days of stenting in 

this investigation.  

This investigation used an osmotic minipump as a drug delivery system to give 

ALT-711. The ALT-711 chemical concentration was not monitored in the blood, and this 

might influence results in this investigation. However, the osmotic minipump has been 

used widely by other researchers, and it has been previously monitored for drug release to 

determine if it could be used as a substitute for IP injections [132]. This osmotic 

minipump was used according to manufacturer instructions and was allowed to 

equilibrate for one day before use. Success with the minipump in the current investigation 

may provide support and knowledge for its use in the future research.    

The current approach assumes the arterial wall is rigid, but it deforms in vivo. 

This assumption was applied since the experimental approach of casting the stented flow 

domain and measuring its morphology using high resolution microfocal x-ray CT does 

not account for in vivo deformation. This assumption was deemed  reasonable as a prior 

study showed stent implantation decreases the arterial compliance to zero within the 

stented region [145].  

BP was measured using a fluid-filled catheter placed in the carotid artery, but the 

BF transducer was positioned just above the stented region for measurement of flow into 

the stented region. There is a distance between these two measurement locations so the 

relationship between BP, BF and resistance may not truly reflect reality as a portion of 

the blood flow distribution is lost to the liver and organs in the abdomen. The alternative 

approach of obtaining all measurements in the same position would require a fluid-filled 

needle positioned above the stented region for BP measurement, which is technically 
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challenging and would add to potential complications for the current experimental 

protocol. In addition, the stent was deployed below the renal vascular so as to not disturb 

blood flow to the kidneys. This may also influence BF and BP. Previous researchers have 

estimated the blood flow distribution for humans at rest as shown in Table 7 [3] which 

may provide some reference for use in estimating rat flow distributions applicable to the 

measurement conditions mentioned above. Under this resting condition, about 43% of 

blood flow is delivered to liver, intestines, spleen and kidneys.  

 
 Flow into various regions 

Upper body mL/min % total 

Brain and heart 1000  

Muscle and skin (est.) 500  

 1500 26 

Trunk: (4300 mL/min enters 

descending aorta, 74%)   

  

Liver, intestines and spleen 1400  

Kidneys 1100  

Muscle and skin (est.) 300  

 2800 48 

Terminal aorta   

Pelvic organs and legs 1500 26 

 
Table 7. Distribution of blood flow in humans at rest. (Adapted from Nichols et al, [3]) 
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To preserve funding resources, CFD simulations were performed to quantify 

intrastrut TAWSS for a given treatment when significant differences in regional TAWSS 

were detected.  However, the results showed differences between Table 4 (regional TAWSS 

quantification) and Figure 26 (intrastrut TAWSS quantification). Specifically, intrastrut 

TAWSS values were greater than values for regional TAWSS for corresponding 

untreated groups of rats. There are several potential reasons for these observations. First, 

the intrastrut TAWSS quantification used pulsatile flow data, whereas regional TAWSS 

was calculated from mean blood flow. Second, intrastrut TAWSS quantification was 

based on reconstructed flow domain data that includes local detailed differences in the 

radius of the vessel, as compared to caliper measurements for regional TAWSS. The 

advantage of the CFD approach is that it considers this detailed data reflecting the 

influence of stent struts on local geometry. However, post processing is performed on the 

data using a moving-average filter in the longitudinal direction after the image 

reconstruction step, and this step may modify local radius, which is raised to the third 

power in the calculation of TAWSS[5].  

To detect whether the blood flow or radius contributed to the difference of 

TAWSS quantification mentioned above, the mean intrastrut TAWSS from mean, as 

compared to pulsatile, CFD simulation results were extracted from the same locations 

used to quantify time-averaged intrastrut TAWSS. All calculation conditions were the 

same as compared to the intrastrut TAWSS quantification from pulsatile simulations. 

There were no significant differences between intrastrut TAWSS from mean and pulsatile 

simulations (ZL: 30.6 ± 1.58 vs 34.3 ± 1.51, ZO: 25.4 ± 2.21 vs 24.3 ± 1.68, and ZD: 

14.5 ± 1.88 vs 15.1 ± 1.96 dyn/cm2). Collectively, the information above suggests that 
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differences in radius account for differences between the regional and intrastrut 

calculations. Generally speaking, intrastrut TAWSS results are preferred as they consider 

local stent-induced differences in radius. Importantly, TAWSS trends (ZL > ZO > ZD) 

were not different regardless of quantification method.  
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CHAPTER 5. SPECIFIC AIM 2: QUANTIFY AGES RELATED COLLAGEN CROSS-
LINKING AND PROTEIN EXPRESSION IN MULTIPLE ARTERIAL LOCATIONS 

TO ELUCIDATE MOLECULAR CHANGES CONTRIBUTING TO NH AFTER 
STENTING FOR T2DM, AND DETERMINE WHETHER THESE ADVERSE 

CHANGES CAN BE ALLEVIATED BY ALT-711. 
 
 
5.1 Review of Rationale Applicable to Aim 2  
 
 

AGEs induced stiffening of central, peripheral and distal vasculature is 

accentuated by hyperglycemia and could cause an increase in stent-induced vascular 

damage and changes in the distal vasculature that increase the resistance to BF. Inhibition 

of AGEs related collagen cross-linking by ALT-711 restores arterial compliance and 

decreases DVR. The upregulation of RAGE with AGEs has been noted previously, and 

this interaction also augments the inflammatory response to vascular injury in 

macrophages, endothelial cells and SMC [6]. TGFβ may be involved in cell proliferation, 

differentiation, and apoptosis during the stenting process [95]. However, no studies to 

date have directly examined the interaction between AGEs, hemodynamic indices, 

protein expression and NH after stenting in T2DM.  

The objective of this specific aim was to quantify AGEs related collagen cross-

linking and protein expression in multiple arterial locations to elucidate molecular 

changes contributing to NH after stenting for T2DM, and determine whether these 

adverse changes can be alleviated by ALT-711. Specifically, NH was quantified in the 

center of the stented region. AGEs related collagen cross-linking and protein expression 

were quantified in the carotid arteries, TA, AAo, IF as well as arterioles in cremaster 

muscle in stented T2DM rats.  

 



79 
 

5.2 Methods Unique to the Current Aim 
 
 
5.2.1 Harvest of Arteries  
 
 

After BP and BF measurement 21 days post stenting, rats were euthanized by an 

overdose injection of pentobarbital sodium (100 mg/kg). The stented region was carefully 

removed from the connective tissue and surrounding vessels. Any blood within the 

stented region was removed before being rinsed with saline, and fixed in 4% 

paraformaldehyde for >24 hours.  

Vessels from carotid arteries, TA, AAo and, IF, and arterioles from cremaster 

muscle were obtained. The connective tissue and blood were rinsed with 4ºC saline. To 

avoid protein degradation, these sections were immediately snap frozen in liquid nitrogen 

and stored in a -80ºC freezer. 

5.2.2 Isolation of Cremaster Arterioles  
 
 

Arterioles are the primary site of resistance in the cardiovascular system. 

Mesenteric artery and cremaster arterioles have been studied previously [146, 147]. 

Cremaster muscle arterioles are commonly used to visualize the microcirculation in mice 

[148]. Advantages to using the cremaster muscle is that the tissue is thin enough to 

visualize and easy to harvest. Additionally, mesentery arterioles may have a significant 

amount of fat, especially in larger ZO and ZD rats.  Perhaps the most important reasons 

supporting the use of arterioles from cremaster rather than mesentaric tissue is that the 

current investigation focuses on detecting the impact of downstream vascular changes on 

the upstream stented region. The stent was deployed in the abdominal aorta, and the top 

of the stent was below the mesentery bifurcation. Hence, cremaster arterioles were 
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deemed more suitable for this investigation.  

Cremaster arterioles were isolated according to previous methods (Figure 28) 

[149, 150]. Briefly, the fur around the lower portion of the abdomen was cleaned after 

euthanasia as described above. An incision was made through the skin, and the cremaster 

muscle was dissected from the surrounding connective tissue. After isolation, all the 

muscular tissue was carefully removed from the arterioles to yield about 1.5 cm in length. 

To avoid protein degradation, arterioles were immediately snap frozen in liquid nitrogen 

and stored in a -80ºC freezer. 
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Figure 28. Arterioles from a rat cremaster muscle. A1 is the main cremaster feeding 
vessel, A2 is the arterioles branch, and A3 is the branch off the A2-arterioles. (Adapted 

from http://openi.nlm.nih.gov). A scale is not available for this open source image.  
 
 

5.2.3 Stented Vessel Embedding  
 
 

The stented AAo of rats not undergoing casting was carefully removed from 

connective tissue and surrounding vessels. The AAo was then rinsed with saline to 

remove any blood and fixed in 4% paraformaldehyde for >24 hours. Vessels were then 

dehydrated in 70% ethanol for 2 hours, 95% ethanol for 2 hours, and 100% ethanol twice 

for 2 hours. Following dehydration, samples underwent pre-infiltration for 2 hours, and 
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infiltration for 24 hours before being embedded in glycol methyl methacrylate (GMM; 

Technovit 7100; EB Sciences, Agawam, MA) (Figure 29 left) and sectioned at room 

temperature in 5 micron intervals using a Sorvall MT2 retracting microtome equipped 

with a tungsten carbide blade that permitted sectioning through the stent (Ted Pella; 

Redding, CA) (Figure 29 right).  

 

 

 

Figure 29. Stented arteries were embedded in glycol methyl methacrylate (left), and a 
Sorvall MT2 retracting microtome with tungsten carbide blade shown on the right was 

used for sectioning. 
 
 

5.2.4 Hematoxylin and Eosin Staining and Image Acquisition 
 
 

H&E staining was used to identify nuclei, cytoplasmic structures and extracellular 

components. Briefly, GMM stent sections were stained by Gill’s Hematoxylin for 15 

minutes followed by three distilled water washes. Scott’s tap water was used for 2 

minutes followed by an additional three washes with distilled water. Sections were then 
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counterstained with Eosin for 5 minutes, dehydrated carefully using 96% and 100% 

ethanol, and cleared in xylene. A xylene based mounting medium was used with glass 

cover slips to cover sections without bubbles. Histological sections with 12 stent struts at 

regular circumferential intervals were selected for image quantification as discussed 

below in order to reduce quantification differences that can manifest from longitudinal 

changes in scaffolding due to the stent geometry.  

Images were obtained using an Olympus IX70 microscope at 4X Zeiss Universal 

objective lens with a 16-bit Leica DFC 280 camera controlled through PCI board via 

IPLab for Windows. All images were white balanced and focused to clearly identify the 

NH boundary.  A 2.5X Zeiss Universal objective lens could obtain an image of the entire 

vessel section, but with low power resolution and less detail. A 4x lens was therefore 

used to obtain four quadrants of each vessel section thereby yielding higher resolution 

images. Images contained a slight overlap of sections beyond each quadrant, and specific 

structures unique to each section were used as markers to recreate a high resolution 

montage image of each section in Photoshop. In addition, a scale bar obtained at 4x was 

included on the image montage for later use in calibration.   

5.2.5 NH Quantification 
 
 

NH was quantified from the middle of the stented region to avoid contributions 

resulting from entrance or exit flow disturbances, or pronounced vessel injury, and for 

comparison to indices of TAWSS from spatially equivalent regions discussed in Aim 1. 

To account for potential differences in aortic caliber between rats and offer an accurate 

representation of NH formation, the percentage of the vascular lumen in which NH 

occurred was quantified by subtracting the luminal area from that bounded by the stent 
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with ImageJ software [5]. Random numbers were assigned to section images before 

quantification to avoid personal influences. Briefly, the vessel image was calibrated using 

the scale bar (Figure 30 A), and converted into 8-bit grayscale image for thresholding as 

shown in Figure 30 B. The freehand tool in ImageJ was used to carefully delineate the 

lumen area bounded by stent struts and the measure function in ImageJ was used to 

determine area. Stent struts were then digitally removed as shown in Figure 30 C, and 

the threshold function was applied to encompass the full NH section by adjusting the 

lower and upper threshold levels (Figure 30 D). Any blood particles within the vessel 

were digitally removed to prevent their influence on the NH quantification process. 

Finally, the analyze particles (i.e. measure) function in ImageJ was again used to 

calculate the area of the selected NH region and express it as a function of vascular lumen 

delineated by stent struts. Intrastrut NH thickness was also quantified as a function of 

luminal radius to provide confirmation of trends obtained with NH area quantification.   
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Figure 30. Example of NH quantification methods applied using a representative 
untreated ZL rat. A shows a montage of a stented vascular section (4X) with a calibration 
scale on the bottom. B shows the image loaded into ImageJ and converted into an 8-bit 

grayscale image. C shows an image of NH after digital removal of the vessel outside that 
bounded by stents struts, blood particles within the vessel region, and stent struts were 

removed using ImageJ, and D shows thresholding of NH to obtain the area for 
quantification.    
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Mean injury scores after stenting were also calculated as previously described [4]. 

This method allows for the quantification of the severity of the injury imposed on arteries 

as a result of the stenting process. Briefly, scores were assigned for each strut within the 

section for each rat as shown in Table 8. A mean score was then determined for each 

stent. These stent injury values where then averaged for each group in the absence and 

presence of treatment [4]. 

 

 

Table 8. Scoring rubric for assessing stent-induced vessel injury score. (Adapted from 
Schwartz et al. [4]) 

 
 

5.2.6 AGEs Related Collagen Cross-linking Analysis  
 
 

Vessel segments analyzed for AGEs related collagen cross-linking underwent 

pepsin digestion as described previously [151]. Briefly, vessel segments were lyophilized 

for >8 hours to obtain their dry weight. 10 mg dry samples were then treated with 4M 

guanidine-HCL in 0.05 M sodium acetate (pH 5.8) at 4⁰C for 24 hours to remove 

proteoglycans. After centrifugation for 30 minutes at 30,000g, the residue was collected 
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and washed three times using 0.5 M acetic acid. The collagen residue was added to a 

solution of 1mg/ml pepsin in 0.5M acetic acid at 4⁰C for 3 days, and undigested material 

was discarded by centrifugation for 20 minutes. AGEs related fluorescence of the 

supernatant was measured by 365nm excitation and 418nm emission before being reacted 

with Sirius red in 0.5 M acetic acid and incubated at room temperature for 20 minutes. 

After incubation, samples were centrifuged at 2,500g for 10 minutes and the absorbance 

of the supernatant was read at 540 nm against a 0.5 M acetic acid blank. A series dilution 

of collagen I (Life Technologies Corp.; Grand Island, NY) was then used to generate a 

standard concentration and absorbance curve. Previous studies found a linear relationship 

between Sirius red and optical density, and that a 0.5 µM concentration of Sirius red was 

suitable for collagen quantification without saturation [152]. The result was presented as 

AGEs related fluorescence divided by collagen concentration. 

5.2.7 Protein Isolation from Arteries 
 
 

Protein for Western blotting analysis was isolated as previous described [153]. 

Briefly, a 2 ml microcentrifuge tube containing a stainless steel bead (5 mm diameter) 

was placed on dry ice for >15 minutes. The adapter of a simultaneous tissue 

disrupter/homogenizer (TissueLyser LT; QIAGEN, Valencia, CA) was kept at room 

temperature, and up to 30 mg of frozen tissue was transferred to the pre-cooled tube and 

incubated for another 15 min. The tubes were then incubated at room temperature within 

the adapter for 2 minutes to avoid freezing of lysis buffer. Appropriate volume of lysis 

buffer was immediately added to each tube and placed the insert with sample tubes into 

the base of the TissueLyser LT disrupter/homogenizer. The lid of the TissueLyser LT 

disrupter/homogenizer was placed over the insert, securely fastened, and operated for 
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10min at 50 Hz.  

5.2.8 Western Blot Analysis  
 
 

The protein sample was then centrifuged three times for 20 minutes to remove 

DNA, RNA and cellular debris. The amount of protein was quantified using a 

spectrophotometer (Beckman Coulter; Brea, CA) with the Bradford method using bovine 

serum albumin (BSA) as a standard [154]. Protein concentration was measured with an 

UV-VIS spectrophotometer at 595nm. The purified protein was snap frozen immediately 

and stored at -80°C.  

Western blotting procedures were similar to those described elsewhere [153]. 

Briefly, the quantified vessel protein samples were taken out from the -80°C freezer, and 

stabilized on ice for 30min. The maximal loading volume was 30 µL for the precast gel 

used in this investigation, and the loading protein amount was the same for all samples 

without exceeding 30 µL. The same amount of protein (30 µg in this investigation) from 

all groups was added to the of Laemmli buffer, and incubated in a Thermomixer for 5 

min at 97˚C. The treated protein mix was then loaded to run a 4–20% polyacrylamide gel 

(Criterion; Bio-Rad, Hercules, CA). The gel was placed in the loading box, and run for 

10 min at 100v and then 50 min at 150v for gel electrophoresis. After that, the gel was 

carefully handled and soaked in transfer buffer for 5 min. The membranes, sponges and 

papers were soaked in transfer buffer for 5 min as well, and placed in layers inside a 

cassette. The gel transfer occurred at 100v for one hour in a cold room on a rotator. 

Following transfer, the membrane was soaked in Tris-Buffered Saline and Tween 20 

(TBS-T) (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 7.6) on a shaker for 5 min. 

The membrane was then incubated on shaker (2 rpm) for 1h at room temperature with 10% 



89 
 

blocking milk using TBS-T to block the membrane, and the membrane was then washed 

5x at 5 minutes rinse intervals with TBS-T (~10-20 mL per membrane per rinse). After 

washing, the primary antibodies (Table 9) used for Western blot were added to the 

appropriate membrane, and incubated on a shaker (2rpm) overnight at 4°C.    

 
Antibody Company Catalog Host Primary Ab Secondary  Ab 

AGEs Abcam ab23722 rabbit 1:500 1:2000 

RAGE Santa Cruz sc-8230 goat 1:300 1:2000 

TGFβ Santa Cruz sc-146 rabbit 1:400 1:2000 

Beta tubulin Abcam ab6046 rabbit 1:5000 1:10000 

 
Table 9. Primary and secondary antibodies used for Western blot. Beta tubulin was used 

as control.  
 
 

Following treatment with the primary antibodies, the membrane was washed 5x 

using 5 minute rinse intervals with TBS-T and incubated with secondary antibodies 

(based on primary antibodies anti-rabbit or anti-goat) in solution on a shaker (2 rpm) for 

1 hour at room temperature. The membrane was washed 5x using 5 minutes rinse 

intervals with TBS-T, and incubated in enhanced chemiluminescence solution (Thermo 

Fisher Scientific, Rockford, IL) for 5 min to yield signal. Forceps were used to remove 

the membrane from solution and one side was gently blotted with a KimWipe within a 

tray. The membrane was then transferred into a plastic developing sheet for processing in 

a molecular imaging system (Bio-Rad, Hercules, CA, USA).  
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5.2.9 Housekeeping Gene  
 
 

The housekeeping gene is a constitutive gene that is necessary for maintenance of 

basic cellular function. The protein expression level from a housekeeping gene can be 

used as a control protein level to detect the expression patterns between control and 

experimental groups. The Western blot results typically present target protein expressions 

normalized against the housekeeping gene. There are many housekeeping genes, such as 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, or beta tubulin [155]. 

Previous researchers have found that the GAPDH activates pathways in diabetic 

condition and may influenced AGEs regulation [156] so that in this research we used beta 

tubulin as control protein.  

5.2.10 Statistical Procedures for Data Analysis  
 
 

Stented regions from 6 rats of each group were averaged to compare the NH area 

as well as intrastrut NH thickness. Arterial locations such as carotid artery, thoracic aorta, 

AAo, IF and arterioles from cremaster muscle of 6 rats in each group were averaged to 

compare the AGEs related collagen cross-linking as well as protein expression such as 

AGEs, RAGE, and TGFβ. All protein was quantified with the Bradford Method using 

BSA as a standard, and the same amount of protein was loaded to have a comparable 

results. Protein beta tubulin was analyzed at the same time, and the result was used as a 

basic expression level of all proteins. Results from other proteins were divided by the 

result from beta tubulin to express as fold changes without units. Statistical analysis was 

then conducted using multiple ANOVA followed by Tukey-Kramer multiple comparison 

test as listed in Aim 1.  
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5.3 Results  
 
 
5.3.1 Osmotic Pump Control 
 
 

Stented regions were quantified for percentage of NH area and intrastrut NH 

thickness in stented ZL rats with saline alone as compared to stented ZL rats without 

osmotic minipump (Figure 31). No significant differences were found for either NH 

index.    

 

 

Figure 31. NH quantification for ZL stented rats without osmotic minipump (white bars) 
and ZL stented rats with osmotic minipump containing saline alone (black bar) 

(N=4/group); No significance was found for either index of NH. 
 
 

Implantation of osmotic minipumps loaded with saline alone did not affect AGEs 

related collagen cross-linking within each vascular segment as compared respective 

values for in ZL rats without osmotic minipumps (Figure 32 A).   

Protein expression of AGEs, RAGE, and TGFβ were also quantified in ZL rats 

with or without osmotic minipumps containing saline alone in the vascular segments 

mentioned above (carotid arteries, TA, AAo, IF, and arterioles; Figure 32 B, C and D). 
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AGEs, RAGE, and TGFβ protein expression did not affect by the implantation of osmotic 

minipumps loaded with saline alone as compared to respective values for in ZL rats 

without osmotic minipumps.  

 

 

Figure 32. AGEs related collagen cross-linking (A) and protein expression (fold-change 
over beta tubulin) for (B) AGEs, (C) RAGE and (D) TGFβ in ZL stented rats without 

osmotic minipump (white bar) and ZL stented rats with osmotic minipump loaded saline 
along (black bar). There were no significant differences between groups of ZL stented 

rats receiving minipumps loaded with saline alone as compared to untreated ZL stented 
rats. 

 
 

5.3.2 AGEs Related Collagen Cross-linking 
 
 

AGEs related collagen cross-linking results from the vessels studied are shown in 

Figure 33-34 and summarized in Table 10. No changes were found in AGEs related 

collagen cross-linking in the carotid arteries, TA and AAo without and with ALT-711 

treatment (Figure 33). In addition, no significant differences were found within groups 
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without or with ALT-711 treatment. However, AGEs related collagen cross-linking was 

significantly increased in the IF of ZO and ZD rats without ALT-711 treatment (Figure 

34). No significant differences were found in the IF after ALT-711 treatment.  

Increases in AGEs related collagen cross-linking were also present in the 

arterioles of ZD stented rats as compared to ZL and ZO stented rats (P<0.05). However, 

decreases in AGEs related collagen cross-linking were found in arterioles of ZD stented 

rats as compared to ZL and ZO stented rats (P<0.05) (Figure 34). There was also a 

reduction in AGEs related collagen cross-linking in the arterioles of ZL and ZO rats that 

received ALT-711 treatment (P<0.05).  

 

 

Figure 33. AGEs related collagen cross-linking in carotid artery, TA and AAo 
(N=6/group). No significant differences were found.  
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Figure 34. AGEs related collagen cross-linking in iliac and femoral arteries and 
arterioles (N=6/group); * = significantly different from ZL stented rats, # = significantly 

different from ZO stented rats, ∇ = significant difference within group.  
 
 

5.3.3 NH Quantification 
 
 

Representative histological sections from the middle of the stented region in ZL, 

ZO and ZD stented rats are shown in Figure 35-41. Quantification (Figure 42) showed 

elevated NH area (percentage of lumen) and intrastrut NH thickness (percentage of radius) 

for ZO rats (22 ± 1.3% vs 15 ± 1.4% of the lumen area) compared to ZL rats. ALT-711 

treatment reduced NH area (percentage of lumen) in ZL and ZO rats. A decrease in 

intrastrut NH thickness (percentage of radius) was found in all groups with ALT-711 

treatment (ZL: 7.7 ± 1.0 to 4.3 ± 0.9%; ZO: 12 ± 1.5 to 4.9 ± 0.8%; ZD: 9.4 ± 0.7 to 3.7 ± 

0.4%, P<0.05).  
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Figure 35. Representative photomicrographs of 5 micron aortic sections from the center 
of the stented region stained with H&E from ZL, ZO and ZD stented rats (N=6/group). 

The total length of the scale is 1mm.   
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Figure 36. Representative H&E staining of ZL rats without treatment (4X). Whole vessel 
image (top), and zoomed in image (bottom). The total length of the scale is 1mm.  
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Figure 37. Representative H&E staining of ZO rats without treatment (4X). Whole vessel 
image (top), and zoomed in image (bottom). The total length of the scale is 1mm.  
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Figure 38. Representative H&E staining of ZD rats without treatment (4X). Whole vessel 
image (top), and zoomed in image (bottom). The total length of the scale is 1mm.  
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Figure 39. Representative H&E staining of treated ZL rats with ALT-711treatment (4X). 
Whole vessel image (top), and zoomed in image (bottom). The total length of the scale is 

1mm.  
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Figure 40. Representative H&E staining of treated ZO rats with ALT-711 treatment (4X). 
Whole vessel image (top), and zoomed in image (bottom). The total length of the scale is 

1mm.  
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Figure 41. Representative H&E staining of treated ZD rats with ALT-711 treatment (4X). 
Whole vessel image (top), and zoomed in image (bottom). The total length of the scale is 

1mm.  
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Figure 36 (top) shows blood clots inside of the stented region in a ZL rat without 

ALT-711 treatment. Care was therefore taken to determine that this was a newly formed 

blood clot with clear boundaries, as compared to thrombosis generated from blood and 

stent interaction. Upon microscopic examination of the arterial wall within the section, no 

significant amount of cell debris or specific inflammatory cells were found before and 

after ALT-711 treatment.  

 

 

Figure 42. Histograms depict the percentage of the luminal area bounded by the stent 
(left) and intrastrut thickness (right) containing neointimal hyperplasia for ZL, ZO and 

ZD rats (N=6/group); * = significantly different from ZL, ∇ = significant difference 
within group. 

 
 

5.3.4 Vascular Mean Injury Score Analysis 
 
 

The results of mean injury score analysis are shown in Figure 43. No significant 

differences were found between or within groups of rats before or after treatment. The 

predominant injury score was less than 1, indicating the internal elastic lamina was 

generally lacerated, and the media was compressed but not lacerated. This is consistent 
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with our methods which deployed stents using 3-4 atm in order to achieve a stent-to-

vessel deployment ratio in the range of 1.1 to 1.2:1. In contrast, previous research has 

used deployment pressures of 8 to 10 atm to intentionally introduce injury and the 

associated arterial response porcine coronary arteries resulting in an average injury score 

1.9. Although the endothelial intactness evaluation will be much more clear under a 

scanning electron microscope, these results suggest that NH findings from the current 

investigation are more likely associated with mechanical or molecular contributions than 

the response of arteries to stent-induced vascular injury.  

 

 

Figure 43. Mean injury score quantified in the middle of the stented region from ZL, ZO 
and ZD before and after ALT-711 treatment (mean and SEM). No significant differences 

were found between groups of rats or within groups after treatment. 
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5.3.5 Protein Expression  
 
 

An example of AGEs protein expression from three lean rats without ALT-711 

treatment is shown in Figure 44 below. AGEs protein expression results from the 

vascular segments are shown in Figure 45-46 and summarized in Table 10. AGEs 

protein expression was increased in the carotid arteries, AAo, and IF of ZD stented rats, 

but this change was alleviated after ALT-711 treatment with the exception of the AAo as 

shown in Figure 45-46. ALT-711 treatment was also associated with a significant 

decrease in AGEs expression within the TA and IF of ZO and ZD stented rats. No 

significant changes for AGEs in arterioles were found for all ZL, ZO and ZD stented rats.  

 

 

Figure 44. Representative Western Blot image of AGEs protein expression from three ZL 
rats without ALT-711 treatment. Numbers 1 to 5 correspond to arteries from carotid, 

thoracic aorta, AAo, IF, and arterioles from cremaster muscle for each rat. 
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Figure 45. AGEs protein expression (fold-change over beta tubulin) in carotid artery, TA 
and AAo (N=6); * = significantly different from ZL stented rats, # = significantly 

different from ZO stented rats, ∇ = significant difference within group. 
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Figure 46. AGEs protein expression (fold-change over beta tubulin) in IF and arterioles 
(N=6); * = significantly different from ZL stented rats, and ∇ = significant difference 

within group. 
 
 

Increased RAGE expression was found in the carotid arteries (Figure 47), IF, and 

arterioles (Figure 48) of ZD stented rats and was unchanged by ALT-711 treatment. In 

contrast, RAGE expression was increased in the TA and AAo of ZD stented rats after 

receiving ALT-711 (Figure 47), and decreased in the arterioles for ZL and ZO stented 

rats after receiving ALT-711.  
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Figure 47. RAGE protein expression (fold-change over beta tubulin) in carotid artery, TA 
and AAo (N=6); * = significantly different from ZL stented rats, # = significantly 

different from ZO stented rats, ∇ = significant difference within group. 
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Figure 48. RAGEs protein expression (fold-change over beta tubulin) in IF and arterioles 
(N=6); * = significantly different from ZL stented rats, # = significantly different from 

ZO stented rats, ∇ = significant difference within group. 
 
 

TGFβ expression was increased in the TA and IF for ZD stented rats, and was not 

statistically altered by treatment with ALT-711 (Figure 49-50). A significant increase in 

TGFβ expression was also found in the TA of ZL stented rats after treated with ALT-711.  
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Figure 49. TGFβ protein expression (fold-change over beta tubulin) in carotid artery, TA 
and AAo (N=6); * = significantly different from ZL stented rats, # = significantly 

different from ZO stented rats, ∇ = significant difference within group. 
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Figure 50. TGFβ protein expression (fold-change over beta tubulin) in IF and arterioles 
(N=6); * = significantly different from ZL stented rats, and # = significantly different 

from ZO stented rats.  
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Changes 

vs. ZL 

Carotid 

Arteries 

Thoracic 

Aorta 

Abdominal 

Aorta 

Iliac and 

Femoral 

Arteries 

Arterioles 

ZO ZD ZO ZD ZO ZD ZO ZD ZO ZD 

Collagen 

x-linking 
NC NC NC NC NC NC ↑ ↑ NC ↑ 

AGEs NC ↑ NC NC NC ↑ NC ↑ NC NC 

RAGE NC ↑ NC NC NC NC NC ↑ NC ↑ 

TGFβ NC NC NC ↑ NC NC NC ↑ NC NC 

 
Table 10. Summary of AGEs related collagen cross-linking and protein expression 

changes for vessels in ZO and ZD rats, relative to respective values in ZL rats.  
(N=6/group), NC means no change, ↑ means significant increase, diagonal means 

increase was alleviated by ALT-711 
 
 

5.4 Summary 
 
 

The objective of this Aim was to quantify AGEs related collagen cross-linking 

and protein expression in multiple arterial locations to elucidate molecular changes 

contributing to NH after stenting for T2DM, and determine whether these adverse 

changes can be alleviated by ALT-711. There were several important findings.  

1) Quantification of protein expression was conducted using Western blotting in 

the carotid arteries, TA, AAo, iliac and femoral arteries as well as arterioles in 

stented T2DM rats. AGEs protein expression was located in nearly all 

vascular locations of ZD stented rats, confirming their elevated presence in 
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T2DM, which is in agreement with previous research that formation of AGEs 

occurs more rapidly in diabetic conditions [26, 27].  

2) Increases in AGEs related collagen cross-linking within the arterioles of ZD 

stented rats were absent after treatment, suggesting ALT-711 preferentially 

reduces vessel AGE-induced stiffness in distal vessels. These findings are 

consistent with previous studies showing that AGEs related cross-linking is 

one of the factors in vascular stiffening, and ALT-711 can reduce established 

AGEs and collagen cross-linking [119], arterial stiffening, while enhancing 

cardiac output [120, 121, 141].  

3) Intra-strut NH within the stented region was found to be greater for ZO 

stented rats, but not ZD stented rats. Additionally, ALT-711 treatment reduced 

intra-strut NH in all groups suggesting different pathways may mediate the 

local NH response.  

4) Quantification of TGFβ and RAGE protein expression were also conducted 

using Western blotting in the carotid arteries, TA, AAo, IF as well as 

arterioles in stented ZL, ZO and ZD stented rats. TGFβ expression was not 

influenced by treatment with ALT-711, and RAGE expression was increased 

in ZD stented rats with or without ALT-711. 

5.5 Potential Limitations  
 
 

The present specific aim used a histological method to analyze NH in the stented 

region 21 days after stent surgery. NH formation was not captured in real time, but could 

be obtained by using intravascular ultrasound or optical coherency tomography. However, 

these approaches are costly and require specialized equipment that was not available for 
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the current investigation. The rat abdominal aorta is also relatively small, potentially 

limiting the use of these techniques.  

It would be more accurate to quantify collagen using high-performance liquid 

chromatography. However, this technique requires extra training to perform that is 

beyond the scope of expectations for the current work. To address this limitation, the 

procedure described above was generated to quantify collagen cross-links based on a 

Sirius red method [152], which can detect collagen with reasonable accuracy.  

Due to the limited amount of sample that can be obtained from the rat vasculature 

studied here, it was only possible to detect the expression of some proteins in response to 

T2DM. However, there are many pathways involved in the NH formation process, and 

future work should evaluate the protein expression of these pathways. Nonetheless, 

analysis from AGEs, RAGE and TGFβ as presented should provide fundamental 

knowledge for future studies and may prompt future investigations in humans.  
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CHAPTER 6: DISCUSSION 
 
 
6.1 Discussion of Aim 1 and 2 
 
 

The objective of this investigation was to test the hypothesis that elevated NH 

observed after BMS implantation in T2DM is mediated by local changes in 

hemodynamics within the stented region that arise secondary to vascular remodeling, 

increased formation of AGEs, and increased DVR. Furthermore, it was hypothesized that 

a pharmacological strategy to decrease AGEs using ALT-711 could reduce NH in T2DM. 

There were several important findings of the study that indicate interrelationships 

between mechanical and mechanistic processes that govern the development of NH in 

obesity and diabetes. 1) AGEs were located in nearly all vascular locations of ZD rats, 

confirming their elevated presence in T2DM; 2) increasing stiffness, as indicated by 

collagen cross-linking, was localized to the arterioles of ZD rats, but alleviated by 

treatment with ALT-711; 3) mean BF decreased in ZD rats, concomitantly with trends 

toward increases in arteriolar resistance; 4) TAWSS within the stent was low in untreated 

ZD rats; 5) NH within the stent was increased in ZO but not ZD rats, but treatment 

reduced NH in all groups; 6) TGFβ and RAGE expression was not alleviated by ALT-

711 suggesting different pathways may mediate the local NH response. These findings 

are discussed in more detail below.  

Formation of AGEs and collagen cross-linking occurs more rapidly during 

diabetic conditions [26, 27]. Therefore, it is reasonable to propose that associated changes 

in vascular stiffness alter mechanical properties of vasculature including increase local 

and distal resistances, and adversely influence NH after stenting. For example, AGEs-



115 
 

induced remodeling and elevated DVR may lead to pronounced vascular damage during 

stenting and localized reductions in WSS, which are associated with NH [157, 158]. 

Increased AGEs expression in the arterioles of ZD rats in the current investigation 

appears to decrease BF by increasing downstream vascular stiffness and resistance. 

Increased AGEs related collagen cross-linking within the arterioles of ZD rats were 

absent after ALT-711 treatment, suggesting that this cross-link antagonist preferentially 

reduces AGE-induced resistance in distal vessels. These findings are consistent with 

previous studies showing that AGEs related cross-linking is an important factor that 

promotes vascular stiffness in arterioles. The current findings are also supported by prior 

studies showing ALT-711 reduces established AGEs and collagen cross-linking [119], 

decreases arterial stiffness, and enhances cardiac output [120, 121, 141]. Kass et al. [141] 

also found that ALT-711 could alleviate vascular dysfunction and wall stiffness without 

changing mean arterial pressure, which is consistent with the current results.   

While local changes in stiffness mentioned above may influence diameter and the 

neointimal response of an artery to stent-induced injury, low TAWSS within the stented 

region can also influence NH through mechanotransduction via several signaling 

pathways [159, 160]. To our knowledge, this is the first investigation comparing TAWSS 

between lean, obese and T2DM rats. The current results demonstrate TAWSS from 

intrastrut regions within the middle of the stent were reduced for ZD as compared to both 

ZL and ZO rats. This finding is likely due to observed reductions in BF, and hence lower 

velocity and TAWSS, within the stented region concomitant with higher downstream 

vascular resistance.  
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Interestingly, NH was highest in ZO, as compared with ZD and ZL rats. These 

results are consistent with those reported by Jonas et al. [161], who similarly observed 

elevated NH in ZO as compared to ZL and ZD rats. Several other studies also found 

severely hyperglycemic animals to have NH equal to or even decreased relative to 

controls [162, 163]. Thus, the interplay between biomechanical and molecular 

mechanism during NH, obesity, and diabetes is complex. The ras-raf-MAPK-ERK and 

phosphoinositide 3-kinase (PI3K) pathways may be involved in NH within the stented 

region as these kinases play key roles in transducing mitogenic signals from the plasma 

membrane to the nucleus of cells. Jonas et al. [161] suggested that hyperglycemia in ZD 

animals may not be sufficient to activate the ERK pathway and increase NH formation. 

In contrast, very high insulin levels present in obese rats may shift signaling from the Akt 

pathway toward the ERK pathway resulting in cellular proliferation and migration. 

Balloon induced arterial injury has been shown to stimulate medial SMC proliferation 

along with MAPK phosphorylation [164]. In addition, the PI3K - protein kinase B (PKB 

or Akt) pathway is also important in apoptosis, proliferation and cell migration. Previous 

findings have suggested that activation of the PI3K pathway in T2DM and the metabolic 

syndrome is associated with a high risk of atherosclerosis and restenosis [34]. Jonas et al. 

[161] demonstrated that activation of and the balance (p-ERK/p-Akt ratio) between ERK 

and Akt activation after rat aortic stenting correlated with NH in diabetes. A decrease in 

intrastrut NH thickness (percentage of radius) was found in all groups with ALT-711 

treatment. This is consistent with previous research by Kim et al. [129] who used ALT-

711 to treat balloon injured carotid arteries of diabetic rats and observed a significant 

decrease in NH [129].  
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TGFβ is involved in the wound healing process, and has been shown to be 

activated in human restenotic lesions after porcine coronary artery stenting [94, 95]. 

TGFβ promotes extracellular matrix production and cellular proliferation as evidenced by 

enhanced NH when the TGFβ gene was transferred into normal porcine arteries [96]. 

However, we found that TGFβ expression was not influenced by treatment with ALT-711, 

which was inconsistent with previous studies showing increased TGFβ protein expression 

in regions adjacent to stent struts as early as 5 days after stenting [94, 95]. Our results 

may have differed from prior investigation because we sampled tissue adjacent but not 

within the stented region. The stented region of rats in the current investigation was used 

for CFD or quantification of NH.  

RAGE was first isolated from bovine lung endothelium and belongs to the 

immunoglobulin superfamily of cell-surface molecules [165, 166]. RAGE has been 

proposed to be a key factor leading to AGEs accumulation and subsequent endothelial 

dysfunction. Specifically, the interaction of AGEs and RAGE activate endothelial 

adhesion molecules like VCAM-1, NF-kB, PKC, ERK, and TGFβ[6, 98, 167], which 

accelerate atherosclerosis by enhancing monocyte adhesion and vascular permeability 

[168, 169]. AGEs expression was increased in the carotid arteries, AAo, and iliac and 

femoral arteries of ZD rats. These changes were alleviated by ALT-711 and were 

consistent with previous evidence showing that ALT-711 can reduce AGEs accumulation 

and attenuate atherosclerosis in diabetic mice [121]. In contrast, RAGE expression was 

increased in ZD rats with or without ALT-711. Previous studies showed that ALT-711 

decreased RAGE protein expression [121, 130]. However, these studies were not tested 
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in the stented diabetic condition, and the dose may be a factor of RAGE expression since 

a lesser dose of ALT-711 was used in the current investigation.  

Several mechanisms may be responsible for the observed inconsistent RAGE 

protein expression in the current investigation. From the prospective of ALT-711, this 

drug reverses collagen cross-linking mediated by AGEs [170], but may not directly alter 

RAGE expression. RAGE belongs to the immunoglobulin superfamily, composed of one 

variable-type immunoglobulin domain and two different constant domains [166]. All 

these domains can bind to different ligands, so that RAGE can be activated not only by 

AGEs, but also by the S100/calgranulins family of proinflammatory molecules, high-

mobility group box-1 (HMGB-1), beta-sheet fibrils, amyloid-beta peptide, and the beta2-

ingegrin Mac-1  [171]. These findings suggest that isolated modification of AGEs 

expression after treatment by ALT-711 many not modulate all pathways that can activate 

RAGE. In addition, Watson et al. [172] reported that ALT-711 decreased AGEs in a 

diabetic mouse model with genetic deletion of RAGE (knockout).  Thus, AGEs may also 

signal through RAGE-independent pathways.    

However, to our surprise, we observed some vessels had increased RAGE 

expression after ALT-711 treatment. Interestingly, previous research has suggested more 

complex regulation for RAGE proteins. RAGE is a common receptor present in the 

endothelium, vascular cells, and inflammatory cells, and it was found to increase 

expression in stress or injury conditions [173]. Although only one gene is coding RAGE, 

there are several variants and results of multiple splicing of this gene were detected 

including endogenous secretory soluble RAGE (esRAGE) and soluble RAGE (sRAGE) 

[166]. esRAGE  forms as result of alternatively spliced pre-mRNA and  has 
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characteristics of lacking the membrane and intracellular domains, and sRAGE may form 

by cleaving RAGE from the cell membrane by the action of MMP and A Disintegrin And 

Metallopeptidase 10 [174, 175].  Recent in vitro studies found that soluble RAGE has the 

ability to block the RAGE pathway which decreases inflammatory reaction, cellular 

migration and proliferation [100, 102]. In in vivo studies, soluble RAGE has been found 

to decrease atherosclerosis in diabetic and non-diabetic mice without changing glucose, 

cholesterol or triglyceride levels [103, 176], so that soluble RAGE may provide 

protection in the cardiovascular system. We found that RAGE expression was increased 

in some vessels after ALT-711 treatment in ZD rats, which may be because ALT-711 can 

protect cardiovascular system by increasing the expression of sRAGE. This hypothesis 

remains to be tested in future follow-up studies. 

6.2 Unique Methodological Contributions of the Current Investigation 
 
 

The abdominal aortic stenting protocol used for the current investigation is a 

specialized method, and only few labs in the world have demonstrated proficiency with 

this approach [66, 126, 177]. The methods applied in the current work were adapted from 

the TSI-Lab, Heart Center and Cardiovascular Research Center, at the University of 

Hamburg, in Germany. The scarcity of this approach can be appreciated relative to 

supplies used for the investigation. The size of the AAo (~1.7 mm) is smaller than the tip 

of a typical ballpoint pen (~2.4 mm), the diameter of the 8-0 suture employed to close the 

incision used for stenting in this investigation (0.04 mm) is less than half the diameter of 

a human hair, and the actual working space accessed under microscopic guidance is 

approximately the area of a penny (Figure 51). The need to complete the surgical and 

stenting procedure quickly to limit the time the rat’s BF was blocked further contributed 
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to the challenge of this approach. Dietary conditions for ZL, ZO and ZD rats were not 

changed before and after surgery, resulting in an increased risk of intestinal impaction 

that was also occasionally observed.  

 

 

Figure 51. Working scale for the current investigation. The size of the AAo (~1.7 mm) is 
smaller than the tip of a typical ballpoint pen (~2.4 mm), the diameter of the 8-0 suture 
employed to close the incision used for stenting in this investigation (0.04 mm) is less 

than half the size of a human hair, and the actual working area accessed under 
microscopic guidance is the size of a penny. 

 
 

Glycol methyl methacrylate H&E staining was optimized several times with 

guidance by Jeffrey Toth, PhD and Sara Landschoot, BS (histological specialist). Poor 

initial staining results were remedied using several key steps. First, H&E staining steps 

needed to be longer to ensure infiltration into the plastic section. Next, the steps for series 

dehydration needed to be as gentile as possible to keep the plastic sections adhered to the 

slides. These dehydration steps also needed to be performed rapidly to maintain the eosin 

color. Care also needed to be taken to avoid air bubbles in the coverslip step that could 

prevent quantification of NH later.  
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The process described above for AGEs related collagen cross-linking was also 

optimized for the current investigation. The procedure was combined from several papers 

over the past 50 years [151, 178]. The basic idea behind this approach was to expose the 

collagen first, digest the banded AGEs to measure fluorescence, and use Sirius red to 

quantify collagen using a spectrophotometer. It would have been more accurate to use 

high-performance liquid chromatography (HPLC) for quantification. However, HPLC is 

complex to operate, and requires substantial more time to optimize the procedure. In 

contrast, the Sirius red method has proved useful to quantify collagen in the solution 

through prior research [152]. In addition, we used a 0.5 µM concentration of Sirius red to 

quantify collagen because a linear relationship has been found between Sirius red and 

optical density, and that a 0.5 µM concentration of Sirius red was suitable for collagen 

quantification without saturation [152].  

The protein isolation steps presented in the methods section have also been 

optimized for the current work. A mortar and pestle were initially considered to 

homogenize vascular tissue. However, this was extremely laborious as it was necessary to 

keep the mortar on ice while the tissue was ground for 2 hours. This method also wastes 

precious vascular sample when transferring from the mortar to different tubes for 

subsequent steps. Instead, this work used the TissueLyser LT to homogenize the tissue. 

This approach reduced the homogenization time to 10 minutes to finish and reduced the 

loss of sample from transferring. The density of protein bans was similar to prior results 

thereby confirming this homogenization method was appropriate.  

 

 



122 
 

6.3 Glucose, Insulin, NH formation and ALT-711 Treatment 
 
 
6.3.1 Glucose and NH Formation  
 
 

Our data show that blood glucose concentrations were similar within groups 

before and after ALT-711 treatment. However, we observed a significant decrease in 

intrastrut NH thickness after ALT-711 treatment in all rats. This result is consistent with 

previous studies [163] that glucose concentration is not predictive of the severity of NH 

formation, and other mechanisms may be involved after ALT-711 treatment.  In addition, 

Park et al. [163] found that there was no significant correlation between NH formation 

and glucose, exogenous insulin administration, cholesterol, and triglyceride levels. These 

results also suggest purely decreasing glucose after ALT-711 treatment may not reduce 

NH formation.  

6.3.2 Glucose and ALT-711  
 
 

In this investigation, we found that blood glucose concentration was significantly 

elevated for ZO and ZD as compared to ZL rats. Although there was a trend toward 

decreased blood glucose concentration for all rats with ALT-711 treatment, this decrease 

did not reach significance and values remained elevated compared to ZL rats. A similar 

result was observed for previous research. Asif et al. [120] found that glucose levels were 

similar in dogs before and after ALT-711 treatment. Research by Candido et al. [130] 

also showed that glucose levels were higher in diabetic Sprague-Dawley rats than non-

diabetic rats; and remained higher in diabetic Sprague-Dawley rats than non-diabetic rats 

after ALT-711 treatment.  
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6.3.3 Insulin and NH Formation 
 
 

There have been a few studies correlating insulin in diabetes with NH formation 

after vessel injury. Park et al. [163] used balloon angioplasty to injure rat carotid arteries, 

and compared NH formation in lean as well as T1DM and T2DM rats. They found that 

NH formation was significantly increased in T2DM rats. In contrast, the NH response for 

T1DM rats was similar to lean rats. In addition, Park et al. included insulin-treated and 

insulin-untreated rat groups to study the influence of insulin on NH. There was no 

significant correlation between NH and exogenous insulin administration, glucose, 

cholesterol, and triglyceride levels. In contrast, other researchers have also correlated 

insulin with restenosis formation. Nordt et al. [179] found that insulin can adjust the 

balance between thrombosis and fibrinolysis. In addition, insulin can promote migration 

and proliferation of SMC [180]. Marso et al. [181] also reported a > 2 fold increase in 

revascularization rate with 6-month for insulin resistant as compared to non-insulin 

resistant diabetic patients. Collectively, these studies suggest insulin-resistance might be 

a major factor for NH formation in diabetic patients.   

6.3.4 Insulin and ALT-711 
 
 

The influence of ALT-711 on insulin levels has been discussed in several 

previous studies, but only one is directly related to the current investigation. Hiramatsu et 

al. [140] found that ALT-711 did not influence insulin secretion, and hence, β-cell 

function under in vivo as well as in vitro conditions. In this study[140], ALT-711 was 

administered at a low concentration (0.1mg/kg/day) by gavage which might be broken 

down in the digestive tract. It remains to be determined if ALT-711 my influence β-cell 
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function and insulin at higher concentrations such as that given in the current 

investigation (1mg/kg/day, IP).  
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CHAPTER 7: FUTURE DIRECTIONS AND CONCLUSIONS  
 
 
7.1 Future Directions  
 
 

This investigation used two specific aims involving mechanical and molecular 

aspects influenced by T2DM. From a mechanical perspective, CFD modeling was used to 

quantify the influence of WSS in stented arteries of T2DM rats. From a molecular 

perspective, analysis of NH in the stented region was performed using H&E for 

correlation to CFD results. AGEs related collagen cross-linking, and protein expression 

quantification was also conducted in the carotid arteries, TA, AAo, iliac and femoral 

arteries as well as arterioles in stented T2DM rats. This multidisciplinary approach 

leveraged an animal model of T2DM to further elucidate the mechanisms of restenosis 

that may be applicable to this patient population. The findings in this investigation may 

lend themselves to future research and treatment of NH in obese and diabetic patients 

after stent treatment. These may especially include the identification of key inhibitors 

such as PAR-1 inhibitor, Parstatin, or Metformin, and further uncover the molecular 

pathways. These are explained in more detail below.  

7.1.1 PAR-1 Inhibitor and Parstatin 
 
 

Platelet activation is an important step in the process of restenosis. It has been 

found that three major pathways involved in this platelet activation process are 1) 

thromboxane A2 (TBXA2) reacting with the TBXA2 receptor; 2) adenosine diphosphate 

(ADP) reacting with the purinergic receptor (P2Y12); 3) thrombin reacting with the 

protease-activated receptor (PAR1) [182]. Previous researchers have found that thrombin 

reacting with the PARs may be more important than the other two processes [145]. PAR1 
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is a G protein-coupled receptor involved in vascular development and can mediate 

thrombin activities [183, 184]. PAR1 has been found on different cell types such as 

vascular SMC, endothelial cells, and platelets. PAR1 activation is through cleavage of the 

Arg41/Ser42 in the N terminal, most likely by thrombin. The new truncated N terminus 

will serve as the tethered ligand to activate PAR1. RAR1 inhibitors such as vorapaxar 

and atopaxar, may provide additional treatment method to reduce in stent restenosis. 

During PAR1 activation, a small size N terminal peptide is separated by thrombin as 

discussed above. This small 41 peptide was named parstatin, and it has been found that 

parstatin could be a potent antiangiogenic factor for clinical usage [185]. Parstatin may be 

useful for alleviating in stent restenosis in T2DM as well.  

7.1.2 Metformin 
 
 
 Metformin is mainly used as an anti-hyperglycemic agent especially in obese or 

overweight T2DM. It works as an insulin sensitizer to decrease endogenous and 

exogenous insulin and may protect the cardiovascular system [186, 187]. Kao et al. used 

Metformin for diabetic patients undergoing percutaneous intervention, where decreased 

death and myocardial infarction were found [188]. It has been also reported that long 

term use of metformin may cause metabolic disorder or lactic acidosis. However, no 

lactic acidosis cases were found in data recently collected from 70,490 patients using 

metformin [189]. Therefore, it is reasonable to hypothesize that using metformin may 

decrease insulin and influence glucose, which may decrease AGEs formation and NH in 

T2DM condition. This hypothesis remains to be tested.  
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7.1.3 Molecular Pathways 
 
 

The ras-raf-MAPK-ERK and PI3K pathways are likely involved in the NH 

process within the stent region as they play a key role in transducing mitogenic signals 

from the plasma membrane to the nucleus of cells. It has been found that ERK pathway 

activation will result in cellular proliferation and migration, and studies have shown that 

balloon induced arterial injury will stimulate medial SMC proliferation along with 

MAPK phosphorylation [164]. In addition, the PI3K - PKB is important in apoptosis, 

proliferation and cell migration. Studies have found that the PI3K pathway involved in 

both T2DM and the metabolic syndrome are associated with a high risk of atherosclerosis 

and restenosis [34]. Jonas et al. [161] studied both of these pathways, and found 

activation of ERK and Akt after rat aortic stenting, as well as the balance between ERK 

and Akt activation (p-ERK/p-Akt ratio) correlate with NH in diabetes.  

Besides these pathways, Watson et al. [172] reported an experiment using ALT-

711 to treat diabetic RAGE knockout mice. Surprisingly, ALT-711 still reduced AGEs 

levels, suggesting AGEs may also work through RAGE-independent signaling pathways. 

Investigations about protein expression in stenting RAGE knockout T2DM rats may 

provide ideas about how these proteins are related and regulated.      

7.2 Conclusions  
 
 

This work used a specialized approach to investigate the problem of restenosis 

after T2DM stenting from the perspective of engineering and biology whereby CFD 

modeling was used to demonstrate the influence of local and distal vascular changes 

caused by AGEs on BF, BP, and distribution of WSS. Histology was used to quantify the 
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NH in stented region; spectrophotometry was used to quantify AGEs related collagen 

cross-linking, and Western blotting was applied to quantify protein expression.  

In summary (Figure 52), the current results demonstrated that the cross-linking 

antagonist, ALT-711, decreased AGEs related collagen cross-linking and arteriolar 

stiffness in obese and diabetic rats after stent implantation. ALT-711 deceased AGEs 

related collagen cross-linking, increased local blood flow, decreased DVR, and was not 

associated with differences in regional distributions of WSS between groups, suggesting 

that vascular biomechanics may play a prominent role during NH in stented arteries. The 

finding that ALT-711 treatment reduced NH in lean, obese and diabetic rats suggests this 

agent may be effective to decrease stent restenosis regardless of patient glycemic status. 

However, this hypothesis remains to be further tested.   
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Figure 52. The mechanical and molecular pathways tested for T2DM in this investigation. 
ALT-711 decreased AGEs related collagen cross-linking and arteriolar stiffness in obese 
and diabetic rats after stent implantation. “X” indicates a location of inhibition by ALT-

711 or difference from previously observed relationships. ALT-711 deceased AGEs 
related collagen cross-lining, increased local blood flow, decreased DVR, and was not 
associated with differences in regional distributions of WSS between groups. ALT-711 
treatment reduced NH in lean, obese and diabetic rats. No significant differences were 
noted for RAGE and TGFβ expression. However, other related pathways remain to be 

tested.   
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