
Marquette University
e-Publications@Marquette

Dissertations (2009 -) Dissertations, Theses, and Professional Projects

Towards Usable End-user Authentication
Mohammad Tanviruzzaman
Marquette University

Recommended Citation
Tanviruzzaman, Mohammad, "Towards Usable End-user Authentication" (2014). Dissertations (2009 -). Paper 374.
http://epublications.marquette.edu/dissertations_mu/374

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/67759340?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epublications.marquette.edu
http://epublications.marquette.edu/dissertations_mu
http://epublications.marquette.edu/diss_theses


TOWARDS USABLE END-USER AUTHENTICATION

by

Mohammad Tanviruzzaman

A Dissertation submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

August 2014



ABSTRACT

TOWARDS USABLE END-USER AUTHENTICATION

Mohammad Tanviruzzaman

Marquette University, 2014

Authentication is the process of validating the identity of an entity, e.g., a per-
son, a machine, etc.; the entity usually provides a proof of identity in order
to be authenticated. When the entity—to be authenticated—is a human, the
authentication process is called end-user authentication. Making an end-user
authentication usable entails making it easy for a human to obtain, manage,
and input the proof of identity in a secure manner. In machine-to-machine au-
thentication, both ends have comparable memory and computational power to
securely carry out the authentication process using cryptographic primitives and
protocols. On the contrary, as a human has limited memory and computational
power, in end-user authentication, cryptography is of little use. Although pass-
word based end-user authentication has many well-known security and usability
problems, it is the de facto standard. Almost half a century of research effort
has produced a multitude of end-user authentication methods more sophisticated
than passwords; yet, none has come close to replacing passwords.

In this dissertation, taking advantage of the built-in sensing capability of
smartphones, we propose an end-user authentication framework for smartphones,
called ePet, which does not require any active participation from the user most
of the times; thus the proposed framework is highly usable. Using data collected
from subjects, we validate a part of the authentication framework for the An-
droid platform. For web authentication, in this dissertation, we propose a novel
password creation interface, which helps a user remember a newly created pass-
word with more confidence—by allowing her to perform various memory tasks
built upon her new password. Declarative and motor memory help the user re-
member and efficiently input a password. From a within-subjects study we show
that declarative memory is sufficient for passwords; motor memory mostly facil-
itate the input process and thus the memory tasks have been designed to help
cement the declarative memory for a newly created password. This dissertation
concludes with an evaluation of the increased usability of the proposed interface
through a between-subjects study.
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Chapter 1

Introduction

Computers, connected to the Internet, are essential for the proper functioning of our

everyday life; as a result, security of computer systems is vital. The global market

for security technology and services is forecast to grow to more than $86 billion by

2016 [160]. Generally, computer security has at least three aspects to it: physical

security, technological security, and security policies; all three aspects must be taken

care of, to provide overall security of a computer system [1].

The focus of this dissertation is on end-user authentication, which belongs to

the technological aspect of security. End-user authentication takes place between a

human and a computer; thus, the asymmetry of memory and computational power

between the two sides come into play. We attempt at making the authentication

process more usable, i.e., easier for the human, without sacrificing security too much

in two specific scenarios: when a user is trying to unlock her smartphone and when

she is authenticating herself to a website. For the two scenarios, in the next two

sections, we give the motivation behind our work through two realistic, but otherwise

fictional setups.

1.1 Motivation for Usable End-User Authentication for Smartphones

Mary never found a need for setting a locking mechanism on her Android smart-

phone. She left her phone unattended several times before, but nothing harmful

happened. For example, once she went home, forgetfully leaving her phone in a

coffee shop; but, when she returned to the shop later, the shop owner—a long time

acquaintance of her—gave the phone back to her and everything on the phone was

in proper order. However, just a while ago, some very personal photos on her

smartphone—which she never intended to share—have been published to a social

network that she regularly accesses from her phone. In retrospect, she now realizes,

when in a hurry, she forgetfully left the phone for a short while in a pub, which she

visited with her friends, someone must have picked it up and uploaded those photos
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to the always-connected social network from her phone.

Mary has become more cautious now, and she has set a password on her smart-

phone. Initially, the password she chose was 12 characters long, with captial letters,

digits, and special symbols in it; but, not only it took time and effort to memo-

rize the password, it was also very difficult to correctly input the password on the

phone’s keypad; now, she has shortened the password to 6 characters, yet it has

proven very tiresome to input it again and again throughout the day. Mary does not

want to leave her phone unprotected, but the difficulty with the password is driving

her crazy.

On finding how difficult it is to use a password on a smartphone, Mary has set

a lock-pattern on her smartphone, which looks like a “⊔”; she believes, it is easy

to use and it makes the phone secure. But the other day, she found out that her

friend, Tom, somehow knew about Mary’s date on the next Friday. Mary never told

anyone about the date. When she asked Tom how he knew about her future date,

Tom told that it was on her phone’s calendar and it was quite easy to unlock the

phone; for, even a casual glance from a distance at her lock-pattern was enough to

reproduce it.

On learning how easy it is for anyone to get around the lock- pattern, Mary has

now switched to the face and voice based locking mechanism on her smartphone,

which she thinks is more secure and easy-to-use than a password or a pattern. Even

though the voice based locking mechanism does not seem to work at a noisy place,

the face-based locki seems to work fine for her. Right now, she is attending a

presentation; the light is dim; she is also waiting for an urgent email; unfortunately

she cannot unlock her phone to check emails; because, the phone cannot recognize

her face in such low light. She cannot go out of the room now and she is stuck.

In this dissertation, we propose and evaluate an authentication framework for

smartphones, called ePet, that is built around the metaphor of how a pet—on its

own—recognizes its owner; most of the times ePet does not require the user to par-

ticipate actively in the authentication process and yet provides sufficient security.

Thus, with the ePet on her smartphone, Mary may continue using her phone to

check emails while attending the presentation without even realizing that her smart-
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phone has recognized Mary on its own; if someone else other than Mary tried to

use the phone, it would have locked itself. Because the authentication process is

not visible anymore, Mary may not feel as secure as she would with a traditional

locking mechanism; but, we believe, the pet metaphor helps in communicating the

idea quickly to a user.

1.2 Motivation for Usable End-User Authentication for the Web

Jill is an employee of a company called Mahut, and she is trying to place a large order

of some goods on behalf of her company from the website of an e-commerce company

named Haati. In order to prevent a malicious competitor from stealing its business

by creating a similar-looking website, Haati stipulates using Secure Sockets Layer or

SSL protocol so that Haati’s website authenticates itself to Jill’s web browser [161].

Jill in turn authenticates herself to Haati’s website by entering her username and

password. Matt is another employee of Mahut, who does auditing and accounting.

Matt cannot place an order on behalf of his company, but he can see how many

orders have been placed. So, Mahut’s website authorizes Jill to place an order after

she logs in, whereas it does not allow Matt to do so even if he can login.

Haati does not want its competitors to be able to see the details of the orders that

its customers make; in other words, it wants to keep its business confidential; using

SSL ensures that all communications between, say Jill and Haati, are encrypted [161].

Haati’s competitor can alter the amount of Jill’s order, so Jill might gets frustrated

and switch to one of its competitors. SSL protocol uses Message Authentication

Code or MAC [162] to ensure that a communication cannot get altered without

being noticed (message integrity).

One of the competitors can try to make Haati’s website unavailable by launch-

ing a Denial-of-Service or DoS attack [163]; so, Haati takes measures against such

possibility using firewalls [164], over-provisioning [165], upstream defense [166], etc.

Everytime Jill or another customer places an order to Haati’s website; the website

makes a log entry for that order to facilitate accountability.

Jill’s web browser and Haati’s website runs a non-repudiation protocol [167], so

that for each order placed, Neither Jill nor Haati can deny the order or make false
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claims about it; e.g., in the absence of such a protocol, Haati can claim that Jill

placed twice as much as she actually did.

We see that even if Haati authenticates itself to Jill’s web-browser and au-

thorization, confidentiality, message integrity, availability, accountability, and non-

repudiation, all, are correctly implemented, still if someone gets hold of Jill’s pass-

word, the chain of security breaks down. A strong password is a long and random

sequence of symbols drawn from the symbols available on a keyboard; but, it is

harder for a user to memorize and remember correctly [2]. In this thesis, we propose

and evaluate a novel password creation interface that helps a user to memorize a

newly created password; as, a user will, with our interface in place, now be more

confident about her memory of a newly created password, we hope that she will be

motivated to create a strong password.

1.3 Major Contributions

Here we briefly state the contributions of the dissertation:

1.3.1 Design, Development, and Evaluation of ePet

People do critical tasks on their smartphones and over time sensitive data can gather

on the phone. A security-conscious user may setup a locking mechanism on her

phone, e.g., password or pass-pattern; but, unlocking the smartphone again and

again throughout the day can frustrate her. To mitigate this problem, we propose

and evaluate ePet, which senses a subset of the traits of the user in a cost-saving

manner and makes the authentication decision on its own relieving the user from

the burden of active participation most of the time.

1.3.2 Effect of the Declarative and the Motor Memory on Password-Input

After many logins using a particular password, the declarative memory [168] for a

password is augmented with a motor memory [134] in a way that a user may not

be fully conscious of each individual character of her password while inputting it;

the improved muscle-activations of her fingers facilitate the input process for that

particular password. Through a within-subjects study involving eight conditions, we
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investigate on the impotance of motor memory in inputting a password correctly.

Our empirical results show that the declarative memory for a password is sufficient

for a user to be able to input a password successfully, albeit with increased time and

error; the role of motor memory is auxiliary, for it increases efficiency of the input

process but does not prevent against failure of declarative memory.

1.3.3 Design, Development, and Evaluation of Password Creation Web-Interface

In a traditional password creation interface, a user creates a password and confirms

it by retyping once; otherwise, remembering the new password is solely the user’s

burden; she might not remember it a couple of minutes later. The lack of confi-

dence about the memory of a new password might inspire the user to choose a weak

password or to reuse a well remembered password that she uses for another website,

both of which weaken security. In order to alleviate the problem, we propose and

evaluate a novel password creation interface, which guides the user through a mem-

orizing drill built upon her new password. As a result, after successful completion

of the drill, a user is more confident about the memory of her password. Instead

of requiring the user to type in her password many times—which might help build

motor memory—we focus on remembering the ordered contents of the password; in

other words, we help cement the declarative memory for the password.

1.4 Dissertation Organization

The rest of the thesis is organized as follows:

❼ In chapter 2, we discuss the state of art of end-user authentication both for

smartphones and for the Web and attempt at placing our approaches in the

overall classification.

❼ In chapter 3, we elaborate on the ePet authentication framework, then we

provide pseudocode for one possible realization of a subset of the framework.

Next, we describe the algorithms that we used in our implementation of the

subset of ePet on Android platform. Based on the data collected from users, an

evaluation of the effectiveness of the implemented subset of the authentication
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framework, its battery drainage, and users’ opinions follow.

❼ In chapter 4, we take a closer look into the password input process and provide

a conceptual model for the password input process. Then we provide details

of the within-subjects study that was carried out to learn about the effect of

motor memory on successful password input. We conclude the chapter stating

the results and a brief discussion of the findings in the light of the proposed

conceptual model.

❼ In chapter 5, we propose a novel password creation web-interface and discuss

its design. Then we go on discussing the findings from the data we have

collected from a semester-long between-subjects study, with a goal to evaluate

the usability gains from using our proposed password creation web-interface.

❼ In chapter 6, we conclude the dissertation summarizing the research achieve-

ments and outlining directions for future research.

1.5 Publications

1.5.1 Publications on ePet

❼ Mohammad Tanviruzzaman, Sheikh Iqbal Ahamed, Chowdhury Sharif

Hasan, and Casey O’brien. 2009. ePet: when cellular phone learns to recognize

its owner. In Proceedings of the 2nd ACM workshop on Assurable and usable

security configuration (SafeConfig ’09). ACM, New York, NY, USA, 13–18.

DOI=10.1145/1655062.1655066 http://doi.acm.org/10.1145/1655062.1655066

❼ Mohammad Tanviruzzaman and Sheikh Iqbal Ahamed. 2014. Your Phone

Knows You: Almost Transparent Authentication for Smartphones. (Accepted

in the The 38th Annual International Computers, Software & Applications

Conference.)

1.5.2 Works That will be Benefited by ePet

❼ Mohammad Tanviruzzaman, Rizwana Rizia, Sheikh Iqbal Ahamed, and

Roger Smith. 2012. Americans with Disabilities Act—Compliance Assess-
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ment Toolkit on Smartphone. In Proceedings of the 2012 IEEE 36th An-

nual Computer Software and Applications Conference (COMPSAC ’12). IEEE

Computer Society, Washington, DC, USA, 442–451. DOI=10.1109/COMPSAC.

2012.65http://dx.doi.org/10.1109/COMPSAC.2012.65

❼ Rizwana Rizia, Mohammad Tanviruzzaman, and Sheikh Iqbal Ahamed.

2012. KnockAround: Location Based Service via Social Knowledge. In Pro-

ceedings of the 2012 IEEE 36th Annual Computer Software and Applications

Conference (COMPSAC ’12). IEEE Computer Society, Washington, DC,

USA, 623–631. DOI=10.1109/COMPSAC.2012.88http://dx.doi.org/10.1109/

COMPSAC.2012.88

❼ Mohammad Tanviruzzaman, Casey Obrien, Rizwana Rizia, Sheikh Iqbal

Ahamed, and Roger O. Smith. 2011. iFactotum: Sensor-Rich iPhone as a

Versatile Tool. In proceedings of the 3rd International Symposium on Quality

of Life Technology (isQOLT 2011), Toronto, Canada, 2011.

❼ Chowdhury S. Hasan, Sheikh I. Ahamed, and Mohammad Tanviruzza-

man. 2009. A Privacy Enhancing Approach for Identity Inference Protection

in Location-Based Services. In Proceedings of the 2009 33rd Annual IEEE

International Computer Software and Applications Conference - Volume 01

(COMPSAC ’09), Vol. 1. IEEE Computer Society, Washington, DC, USA, 1–

10. DOI=10.1109/COMPSAC.2009.11http://dx.doi.org/10.1109/COMPSAC.

2009.11

1.5.3 Publications on Password Creation Interface

❼ Mohammad Tanviruzzaman, Praveen Madiraju, Sheikh Ahamed, and Rizwana

Rizia. 2014. Coping with Passwords: Approaches for Smartphones and the

Web. (Submitted to the ACM Transactions on Computer-Human Interaction.)

1.5.4 Works That will be Benefited by Password Creation Interface

❼ Rezwan Islam, Sheikh I. Ahamed, Chowdhury S. Hasan, and Mohammad

Tanviruzzaman. 2009. Towards Universal Access to Home Monitoring for
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Assisted Living Environment. In Proceedings of the 5th International Con-

ference on Universal Access in Human-Computer Interaction (HCI 2009), San

Diego, CA, USA, July 19–July 24, 2009.
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Chapter 2

Related Work

“Open Sesame,” uttered by Ali Baba in the story “Ali Baba and Forty Thieves” is

one of the oldest passwords; it was simple, user-friendly, and efficient. The story

also reveals some problems with passwords, like: Ali Baba stole the password by

over-hearing the thieves and Ali Baba’s brother, Cassim, forgot the exact words and

could not get out of the cave and eventually got killed by the thieves [4]. Nearly

half a century of research on overcoming the faults of a password while retaining its

benefits has not seen great success and passwords remain to be the principal method

of end-user authentication [5]. In this chapter we discuss research works related to

end-user authentication with a view to placing our work in context.

End-user authentication usually consists of five components [3]:

1. A set A of authentication information, which the user provides to the system

to prove her identity.

2. A set C of complementary information—usually derived from the authentica-

tion information—that the system stores and based on it, the validation is

performed.

3. A set F of complementary functions that compute the complementary infor-

mation from the authentication information: for f ∈ F , f : A 7→ C.

4. A set L of authentication functions that verify identity: for l ∈ L, l : A×C 7→

{ true, false}.

5. A set S of selection functions that enable the user to create or alter the au-

thentication and complementary information.

Depending on what information constitutes the set A, first we shall organize the

related works in five categories: something the user knows, something the user has,

something the user is, something the user does, and someone who knows the user.
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2.1 Something the user knows

2.1.1 Conscious Knowledge

Password

Alphanumeric password is the de facto standard of end-user authentication on the

Web. The strength of a password is determined by the amount of time an attacker

needs to guess it; for that matter, a strong password is a long string of characters,

where each character is randomly drawn from a sizable alphabet. For example, if

a password has N characters in it and each character is uniformly drawn from an

alphabet of size A, then an attacker has to try AN

2 guesses, on average, to break it.

A popular metric for comparing strength of passwords is the Shannon’s entropy [12].

However, in reality users prefer more memorable passwords over less memorable ones,

which perturbs the password-selection probability and works in favor of the attacker.

One way around this problem is to randomly generate a password for the user. But

forcing a difficult-to-remember password upon the user may result in the user writing

it down in an insecure place, e.g., on a post-it [13]. Another more user friendly

alternative is to let the user chose her password, but from a restricted domain. In

this vein, reactive password checking periodically runs a password cracker and if it

finds a password to be easily guessable, it notifies the corresponding user. Proactive

password checking works when the user is trying to select a new password; if it

finds that the chosen password does not meet the minimum requirements, it rejects

the password and the user then tries with another choice [2]. The problem remains

that if the rules of a password checker is too restrictive, it is actually shrinking

the password space significantly and making it possible for an attacker to perform

brute-force search. On the other hand, a user may still find it difficult to remember

the password accepted by the system and she may write it down.

Password Composition Policies

Policies mandate how a password should be composed. The idea is to force the user

into creating a strong password. There are three types of policies: explicit, implicit,

and external. Explicit policies give the user a set of rules upfront and the user then
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creates a password that meets the criteria. Implicit policies react to user-chosen

passwords by accepting or rejecting them. External policies improve the security by

controlling the password fully (proposes a generated password) or partially (modifies

a base password).

Forget et al. [6] propose an explicit policy where ideas from Persuasive Tech-

nology are utilized to influence users in creating more secure passwords. The user

chooses an initial password (minimum of 8 characters) and then the system either

replaces some of the characters in the password at random positions with randomly

chosen characters or the system inserts a few randomly chosen characters into the

user-chosen password at random positions. The user then can shuffle the resulting

password to find one that she thinks is memorable enough. Weir et al. [7] pro-

pose an implicit policy where a cracking algorithm learns: the frequency of people’s

usage of certain words in their passwords, how people mangle cases, the basic struc-

ture of passwords, the probability of digits and special symbols, etc.; and based

on the acquired information, the algorithm then constructs a probabilistic context-

free grammar, which models how people create passwords. When a user submits

a password of her choosing, the algorithm computes how likely it is that the pass-

word came from the grammar and using a preselected threshold can either accept

or reject it. Shay et al. [8] conducted a paper-based survey among 470 students of

Carnegie Mellon University on their feeling and attitude towards the, then newly

adopted, password composition policy at CMU, which was stricter than the previous

one. They found that the users find new requirements annoying but believe that the

requirements provide better security; some users struggle to comply with the new

requirements; the users are more likely to share and reuse than to write down; the

users tend to modify old passwords to create new ones; over time the likelihood of

sharing passwords increases, and use of dictionary words and names are the most

common strategies to create passwords. Using Amazon’s Mechanical Turk, from a

user-study among 5000 users, Komanduri et al. [9] found that long and simple pass-

words obtain better trade-off between usability and security than short and more

complex passwords. Kim and Huh [10] found that the stricter the policy, generally,

the more secure the PINs, the more the remembrance is difficult. All the policies
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they explored mandate expiration: a user has to change her password periodically,

so that the attacker has less time to inflict damage. Zhang et al. [11] devise an algo-

rithm that—through a set of primitive transforms—guesses new passwords from old

expired ones, with 41% accuracy and within seconds; and for 17% of the passwords,

five online guesses are sufficient for cracking. Accordingly, they propose to eliminate

password expiration altogether. Another aspect common to many password policies

is lock-out or rate-limiting to limit the number of guesses an attacker can try online.

That the policies usually vary a lot across different websites exacerbates the

already daunting problem of remembering passwords; and no memory aids are pro-

vided in the policies to make remembering passwords easier for the user. Conse-

quently, the user chooses the password that is the easiest to remember and barely

meets the criteria, but presumably a weak one; or from exasperation of being re-

jected, do not care to remember the password and frequently retrieves to fallback

authentication, or just writes the password down and keeps the note in easily acces-

sible but unprotected places.

Passphrase

To help a user remember a strong password, passphrases were introduced; where

a user chooses a long phrase of words and from each word of the phrase, she then

chooses one or more characters—possibly with some transformation, like leet, applied

to the chosen characters. The motivation for using passphrases is, the meaningfulness

of the words in a phrase will help the user remember it, yet the random choice of a

phrase along with the random choice of the characters from the words accompanied

by a transformation would make the resulting password strong.

Kuo et al. [14] examined if it were possible to build a dictionary to crack

mnemonic phrase-based passwords. They built a 400000- entry dictionary of phrases

gathered by screen-scraping various sites, like: advertising slogans, childrens nursery

rhymes and songs, movie quotes, famous quotations, song lyrics, etc. With the dic-

tionary at hand, the authors were able to crack 4% of mnemonic passwords whereas

with a standard dictionary with 1.2 million entries they were able to crack 11% of

control passwords. The user- generated mnemonic passwords were more resistant to
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brute-force attacks than control passwords. The authors concluded that mnemonic

passwords could become more vulnerable in the future and should not be treated as

a final solution. Shay et al. [15] found that system-assigned passphrases and pass-

words were forgotten at similar rates, led to similar level of difficulty and annoyed

the users equally, and the users frequently wrote down both. However, the users

needed longer time to type in passphrases and error- correction appeared to be a

necessity for counteracting input mistakes.

Graphical Password

From research on human memory, it is known that if someone learns concepts by

viewing pictures, she is likely to recall those more easily than if she learned them

by viewing their written word-forms; the name for this phenomenon is the “picture

superiority effect” [16]. Taking inspiration from the picture superiority effect, re-

searchers have proposed various graphical password schemes of three types: pure

recall, cued-recall, and recognition [17].

Wiedenbeck et al. [18] propose PassPoints, a cued recall based graphical pass-

word system, where during registration the user chooses a set of points on an image;

and later, at the time of authentication, she needs to click on those chosen points

in the correct order to prove her identity. They found that the user has trouble re-

membering the points when the tolerance region around a point is small, e.g. 10×10

pixels. In a PassPoints system—based on the idea that the number of focal points in

an image is usually limited—how likely it is that a point will be chosen by the user,

has been modeled in [19]. For two images, the accuracy of the models prediction

were 80% and 71%, which shows that some images are better at thwarting auto-

mated attacks. From user-studies on PassPoints, Chiasson et al. [20] found that a

user can remember her password points even if the tolerance region is small. They

also found that for password-points in an image, the users select easy-to-remember

points, geometric patterns, color patterns, and personally meaningful items in an im-

age. In another study, Chiasson et al. [21] found that in the short-term, PassPoints

passwords are more robust than text passwords against multiple password interfer-

ence. However, after two weeks, recall of the textual passwords and the graphical
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passwords were not statistically different. Jermyn et al. [22] propose Draw-a- Secret

(DAS), where the user draws a free-form picture on an N ×N grid and this drawing

serves as her authentication-secret. The secret is encoded as an ordered sequence

of cells that the user crosses while drawing it. Two secrets are identical, even if

they do not look exactly the same, if their encodings are the same; thus there is

some leeway in reconstructing the secret. In [23] Dunphy and Yan show that the

users’ choices for DAS have some predictable characteristics, e.g. symmetry; and

using background images with DAS they were able to decrease those predictable

characteristics of DAS while increasing its memorability. Three variations of DAS

to foil shoulder-surfing attacks—have been proposed in [24]. “Decoy Strokes” pro-

duces spurious strokes while the user is drawing her secret picture. “Disappearing

Strokes” produces the effect of writing on a fluid surface where a stroke starts disap-

pearing after a while of having been drawn. “Line Shaking” gives the attacker even

less time to look at a stroke than in Disappearing Strokes; because a stroke starts

disappearing even while it is being drawn. Through user-studies they found that

among the three variations, Disappearing Strokes is the best trade-off between secu-

rity and usability. Through a user-study Komanduri and Hutchins [25] found that

both character and picture passwords of very high entropy were easily forgotten and

they found that serial ordering was the main cause of failure; thus picture-password

systems that do not require ordered input may produce memorable, high-entropy

passwords. They found in the study that the users often replicate the same er-

rors in their login attempts which cut down the effective number of guesses a user

is allowed while authenticating. Hayashi et al. [26] propose a graphical password

scheme based on the human ability to recognize a degraded version of a previously

seen image. During registration the user chooses p images from a set of n images

(n > p) as her portfolio and she gets a chance to see the distorted version of the

p images that belong to her portfolio. During authentication she has to correctly

choose the p images from the set of n images where all n images are distorted.

They found that too much distortion makes it hard for even the legitimate user to

recognize her portfolio images, whereas too little distortion allows the attacker to

perceive a lot about an image; and the attacker then can apply social engineering
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attacks to learn what the likely portfolio images of a user are. A similar idea has

been explored in [27] where the user needs to recognize degraded versions of their

chosen images. The authors notice that only one bit of entropy can be extracted

from each image, making the authentication time too long to be practical and they

conclude that the approach may be suitable for password recovery, rather than for

regular authentication. Hayashi et al. [28] shows that their idea of degrading images

for increased security [26] can indeed defend against educated guesses even when the

attacker knows the target well. Passfaces [29] is a commercial graphical password

system where the user chooses p images as her portfolio and during authentication

she is presented with p consecutive screens, each having a 3 × 3 grid of 9 images

and one of the 9 images belongs to the users portfolio; the user needs to identify

all p of her portfolio images in the p screens. Dunphy et al. [30] examined if Pass-

faces password can be described verbally to others and they found that Passfaces

passwords can be made more secure against verbal description if portfolio images

are presented with visual and verbally grouped decoys. A comprehensive study of

multiple password interference with Passfaces passwords revealed that participants

who used four distinct passwords a week were ten times more likely to completely

fail to authenticate than participants who used a single password a week [31]. Khot

et al. [32] proposed a variation where each of the users portfolio images has a set of

tags associated with it and during authentication, the system instead of presenting

the exact image from the portfolio presents some image that has the same tag from

Google search. Mostly to thwart shoulder-surfing, for public terminals, De Luca et

al. [33] propose a gaze-based graphical password system where the user needs to

draw a shape by connecting points from a 3 × 4 grid of points using her eye-gaze.

Locimetric eye-gaze based method proposed by Forget et al. [34] utilizes gaze-clicks

on specific points of one or more images. Bulling et al. [35] removes visually appeal-

ing parts of an image through automated image processing so that the user chooses a

gaze-based password which is not obvious. Dunphy et al. [36] look into intersection

attacks, shoulder-surfing attacks, and importance of image processing for Passfaces

password on mobile devices. To prevent intersection attacks, they propose to use a

decoy image portfolio in addition to a key image portfolio; to prevent image quality
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based attacks, they propose using key and decoy images from the same source; and

they propose to automatically filter out visually similar images or less memorable

images. Wright et al. [37] tried to bring in the better memorability of recognition

based graphical passwords into textual passwords; but, they did not find any sta-

tistically significant difference in memorability between the recall and recognition

based systems. Furthermore, recognition based system took longer to authenticate.

In summary, in pure-recall type graphical passwords, a user chooses a shape

on a grid by joining various grid-cells in some order; and during authentication

she has to reproduce the shape. This type of graphical passwords are hardest to

remember for a user, so users typically chooses predictable and easily memorable

shapes. In cued recall type graphical passwords, the user selects some points on an

image with rich background in a particular order; and during authentication, she

has to select those points in that order. A problem with cued recall type password

is the presence of hotspots; users like to choose points from certain parts of the

background image which reduces the password space. Among the three types of

graphical passwords, recognition based password is the most memorable kind. Here

a user is presented with a set of grids, each grid containing multiple pictures; the user

selects one picture from each grid and the set of chosen pictures form her password;

during authentication the grid of pictures are again presented to the user, probably

each grid is shuffled, and the user has to choose the correct picture from each grid.

Human memory for faces is near limitless; so a recognition based graphical password

using human faces as the grid-pictures is very usable; but, the problem is, humans

tend to choose faces from the similar ethnic groups and other predictable choices

kick in. In order to mitigate the predictability of user’s choice, degraded versions

of the actual images are put on the grid, taking advantage of the fact that once a

person has seen the actual picture, she can easily recognize the degraded version.

Graphical passwords are specially suitable for devices with touch screens, like:

smartphones and tablets. On Android smartphones, pass-pattern, a pure- recall type

graphical password, is a popular locking mechanism. However, smudge attack, which

attempts to find out the pattern from the oily resides left on the touch-screen is a

significant threat for the pattern based scheme [38]. If the grid is randomly shuffled,
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the probability of success of a smudge attack can be decreased, but hurting the

usability benefits [39]. All the graphical passwords increase the success of shoulder-

surfing attack, where the attacker discerns the password by looking while the user

is inputting it.

Cognitive Games

In order to thwart the shoulder-surfing attack [40], various cognitive games have

been proposed. Roth et al. [41] propose two variants of a cognitive trapdoor game

to defend against shoulder surfing attack on PIN entry. First variant defends against

human observer and is based on the premise that human short term memory is

limited. For each digit of the PIN, the user has to play several rounds. During each

round, the 10 digits (0-9) on the PIN pad are divided into two groups and shown

in two colors: black and white. Depending on white or black, to which group the

current PIN digit belongs, the user clicks one of two buttons. The verifier, e.g. the

ATM machine, knows which digit the user has input by taking intersection of the

rounds. There were two sub-variants: immediate oracle choice and delayed oracle

choice. The second variant, to some extent, defends against video recording of the

entire PIN entry process; recording of multiple sessions can still reveal the PIN.

In this variant, the intersection of the rounds does not reveal a unique digit. In

comparison to traditional 4 -digit PIN entry, it takes about 10 times longer to log

in using these methods. Lab-based user studies show that perceived security was

higher, but usability of the methods were rated lower in comparison to the traditional

PIN entry method. The proposed methods also caused more fatigue. The users seem

to accept the oracle methods despite them being slow and strenuous, may be, they

would not accept it so well in real life where the PIN entry is a secondary task.

Weinshall [42] proposed a cognitive authentication scheme where the user answers

a query about a set of images where a subset belongs to the user’s secret image

portfolio. The user has to answer multiple such queries. If there are Q queries and

each query has P possible answers, then an attacker making guesses at random has

a probability 1
P
· Q of success. The number of queries to be used depends on the

required security; but in general the more we want of the security, the longer it takes
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to authenticate: even up to three minutes. However, Golle and Wagner [43] showed

that Weinshall’s scheme can be broken within seconds using SAT solver.

In summary, in the authentication schemes based on cognitive games, the user

and the system shares a secret and the user reveals her secret knowledge a little

at a time over multiple interactions; as a result, by observing a single interaction

between a user and the system, it becomes difficult for the attacker to know the

secret. In addition to being significantly lengthy, stressful, and error-prone, the

scheme is vulnerable if the attacker can observe multiple login sessions.

2.1.2 Subconscious Knowledge

No matter how secure an end-user authentication scheme is, an attacker can always

get hold of the user and coerce her to divulge the secret. Although the cost over

benefit would prevent a rational attacker from doing so in general; there are some

cases, like with a key government personnel who knows crucial state secrets, the

benefit could prevail over the cost. For such situations, it is desirable—though

counter-intuitive—that the user does not explicitly know the secret.

The proposed solution depends on the idea of implicit memory, like the memory

of riding a bicycle; even though a person cannot tell somebody exactly how she rides

a bicycle, when needed, she can ride one. Bojinov et al. [44] design a cognitive game

where the user reacts to a series of stimuli during training. The series contains a

covert repeating sequence which the user learns implicitly. During authentication

the knowledge of the embedded repeating sequence is assessed by comparing the

performance rate ( percent correct) between the times when the cues follow the

trained sequence and the times when the cues follow an untrained sequence; the

training period, however, can be quite long: 30–60 minutes.

2.2 Something the User Has

Security tokens are used for “something you have” based approach to authentication.

The user has to carry the security token with her to be able to authenticate. However,

a security token frees the user from remembering complicated passwords; a token

can store arbitrarily complex secrets, and the authentication process can be made
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transparent to the user. For example, a user can tap her personal YubiKey Neo

against a mobile device when she needs to unlock her phone [45]. But in case the

user forgets to bring the token with her or she loses the token, there is usually no

other immediate way to authenticate [12].

2.3 Something the User Is

This method of authentication refers to physiological biometrics of a user. From

face-geometry to palm-vein geometry, various physiological traits of the user have

been employed for authentication. In [48] acoustic properties of the outer flap of the

user’s ear and ear canal, were the basis for authentication. Force field transformation

method proved more resilient to ear occlusion from wearing a hat or a scarf [49]. Face

[50] and fingerprint [51] are popular physiological biometrics. Corneal reflections

and iris-geometry give more accuracy as biometrics [54, 55]. Voice recognition gives

moderate accuracy and is available on many smartphones [60]. Teeth geometry

enjoys more invariance than most physiological biometrics [58] and vein geometry

[59] is a relatively less-known option.

2.4 Something the User Does

Behavioral biometrics represent this form of authentication and it includes pattern

of arm-sweep, where the owner unlocks the phone by grasping and shaking it or

she may walk while holding the phone in her hand; acceleration sensor embedded

in the phone is used to decide whether the shaking or arm- sweep pattern matches

that of the owner [46, 47]. Haptics pattern is decided from velocity, force, torque,

and angular orientation of the stylus; or finger pressure, movement characteristics

of center of palm and fingertips [52]. Pattern of hip movement involves attaching

acceleration sensor on the hip and detecting how the hip moves while the user is

walking [53]. For keystroke dynamics, usually the user is required to type in a fixed

string and then her typing pattern may be decided from interstroke latencies, hold

time, error rate, etc. [56, 57]. Predefined gestures or the hand-movement a user

makes while making a call have been utilized for authentication [72, 73]. A 3D
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accelerometer or a smartphone with a built-in accelerometer—placed at ankle, hip,

waist, trouser pocket, or arm—has been used to recognize a user’s gait pattern [76].

Biometrics frees the user from remembering secrets and from the burden of re-

membering to always carry a token. But biometrics can also be unreliable: manual

workers may lack sharp fingerprint; some fingerprint scanners do not work if the fin-

ger is unclean; face changes due to make-up, facial hair, glasses, weight-changes, or

skin color changes from sun exposure; cold can change voice; hand geometry changes

from injury, swelling, weight-changes, arthrosis, etc. [62] In order to mitigate the

reliability problem with biometrics, a combination of biometrics called multimodal

biometrics have been employed for authentication: voice and ear [61]; signature and

speaker verification [63]; gait and voice [64]; teeth and voice [65]; face and voice

[68]; face, teeth, and voice [66, 67]. Error rates may go up when combination of

biometrics methods, that require active participation from the users, are used [75].

In a biometrics based authentication system, there are eight places where an

attack can be mounted: spoofing attack, replay attack, substitution attack, tam-

pering, masquerade attack, Trojan horse attack, overriding yes or no response, and

insufficient accuracy [70] It is hard to revoke a biometrics because it is intrinsic to

the user. The stability inherent to biometrics, provides a masquerader long time

to design an attack after she has gotten hold of the master template; e.g., using

neural networks, fingerprint images were reverse engineered from the master tem-

plate stored as minutiae points [69]. A protected biometrics template should be

non-invertible and non-linkable; there should also be a liveness detection technique

[71]. People can feel uncomfortable when biometrics data are saved on a remote

server [74].

2.5 Someone Who Knows the User

Somebody the user knows has been proposed as a fallback authentication mechanism

in [77]. The user has a list of helpers and she can ask a helper to vouch for him

during fallback authentication. The regular authentication involves token and PIN.

If the user loses the token, she can receive a vouch-code from one of her helpers over

telephone or in face-to- face meeting. Schechter et al. [78] found that the users forget
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who they selected as their trustees and phone-based attacks by close acquaintances

often succeed. Email based attacks did not fare well, because the trustees suspected

something fishy in them. The participants took several hours at the least to acquire

enough trustee-codes to pass the fallback authentication, which should not pose too

great a problem; because the need for fallback occurs rarely.

2.6 Unorthodox Input Methods

A number of password input mechanisms–gaze-based, haptic, gesture-based, vibration-

based, multi-touch, touch pattern, force-based, etc.—have been proposed, mostly to

defend against shoulder-surfing attack.

In [79] users enter their password using their eye-gaze on a 1280 × 1024 screen

at 96 dpi equipped with Tobii 1750 eye tracker. Two methods of gaze-entry were

explored: trigger based and dwell based. In trigger based entry, the user presses

a specific key e.g. the space bar each time she has focused on a character. Time

between consecutive presses may leak information. In dwell based entry, the user

fixes her gaze on a particular password-character for a while before moving onto

finding the next. Error was higher for the trigger based method, may be because;

it was hard for the user to time and to coordinate between pressing a button and

precisely fixating her gaze, which might be accounted for algorithmically utilizing the

history of the user’s gaze-path. Lab-based study on 18 users (50% male) of average

21 years of age reveals that the gaze-based password entry takes 5 times longer

(average 10 seconds) than usual keyboard- based input. However, more than 80%

users expressed their preference for gaze -based input in a public setting. Error was

not significantly higher. Eyeglasses did not hamper the eye tracker. QWERTY layout

proved faster than alphabetic layout, presumably due to user’s prior experience

with the former. Over time, the users may develop muscle memory in their eyes and

become more accurate and faster in eye-gazing. The method does not produce any

mouse or keyboard event and thus it is more resistant to keyloggers. The entropy

of the gaze-based password (authors call EyePassword) can be increased further by

taking into account the user-specific gaze-path and dwell time patterns.

Sasamato et al. [80] proposed an authentication scheme based on the assumption
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that multi-sensory processing (dissociation and recombination of different sensory

inputs) capability of humans is good. A prototype bank- terminal was built requiring

4-digit PIN-level security. The user’s PIN consists of 5 images (called user’s portfolio)

of her choosing. In order to input her PIN, the user is presented with a series of

7 screens. Each screen consists of 5 images, 0 or 1 of which is from the user’s

portfolio. A trackball capable of 5 distinct movements (roll up, right, down, left

and vibration) remains under the user’s palm. For each screen the trackball makes

one of the 5 possible movements and the user then responds by pushing one of the

5 buttons. Say, the third image from the left belongs to the user’s portfolio, then

the user should have pushed the third button from the left, but here, the trackball’s

movement acts like a random key with which the user xor’s the “right” answer

and inputs the result, like a one-time pad. The attacker fails to see the trackball’s

movement and thus has no idea which one among the presented 5 images belongs

to user’s portfolio. Because,
(

7
5

)

· 45 is larger than 104, the method needs 7 screens.

More images per screen would have reduced the number of screens (equivalently

number of user interactions) but that would have complicated the instrument and

also the user’s cognitive load would be higher. The authors performed usability

and security analysis based on a lab study with 38 participants (4 students and the

rest government employee). The median login time is 32 seconds, 15 participants

suggested that login time should be below 15 seconds. Overall failure rate was 26%

and the younger users were quicker and more accurate. The authors noted that

comparison of a novel system with the traditional PIN entry is difficult due to the

extended experience the users have with the PIN system. There were two video

cameras in the room. Many users failed to cover the trackball. Some points to the

map, some moves their hands to better feel the trackball’s movement, and some

spoke out loud. All these leak information. 9 out of the 38 users leaked information

in some way. Some of the users saw the experiment as an exam and probably

behaved unrealistically. The bank-terminal could be a fake and the whole process

would then fail. Very high quality sound capture, e.g., with a parabolic microphone

may leak information due to variation in the instrument’s (motor’s) noise. All legacy

deployments have to be modified significantly. Interestingly, the paper is devoid of
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any statistical test. Social engineering attacks might be possible due to the user’s

self-selection of portfolio images. Moreover, two attacks on Undercover have been

reported [81], analyzed, and evaluated. First attack utilizes non-uniformity of human

behavior. The button layout corresponding to “Upward rotation” of the trackball

was 〈1, 2, 3, 4, 5〉 which allowed the user to respond quickly, as they did not have to

mentally account for a rotation in the layout. This time difference in response was

exploited successfully. The authors proposed to modify the layouts so that each of

them requires the same amount of mental effort for the user to respond. They also

found that if the 5 pass-images have already been shown and there remain one or

two screens to show, the user knows by that time that the remaining screens will

not have a pass-image and thus responds more quickly. They modified the system

so that the last screen always had a pass-image in it. The modified system has lower

entropy but still it is higher than 4-digit PIN. The second was an intersection attack.

Each public challenge (each screen) in Undercover contains at most one pass-image.

From the attacker’s point of view, if more than two images in a candidate 5-image

password appear on a screen she can immediately discard the password as invalid,

reducing the effective password space.

Liu et al. [82] propose a gesture based user identification and authentication

method. uWave is the underlying gesture recognition system and it requires a single

tri-axis accelerometer. Users select their own gestures and training with a personal-

ized gesture can be done with a single sample. A user study with 25 participants was

conducted over one month. For identification 98 % accuracy was achieved. Without

visual disclosure the equal error rate was 3 % for authentication. With visual disclo-

sure (likely for gestures), false positive increases to 10%, implying that gesture based

authentication can be used only when mild security is needed or some other methods

must be employed alongside. For user-identification (e.g., multiple accounts on TV),

not surprisingly, it was found out that selection constraints improve accuracy as the

complexity constraints eliminate simple gestures that can be easily confused with

each other and the rejection procedure guarantees enough difference between ges-

ture templates; also template-replacement at regular intervals, improves accuracy.

Compared to text ID, users did not find it more difficult to remember or to perform



24

gestures. For user-authentication (password gestures), users chose highly symbolic

gestures such as regular shapes, letters in their native languages. Users also chose

gestures having personal meaning; because, it helped them remember complicated

gestures. These patterns, in user-choices, make gesture passwords vulnerable to

dictionary or social engineering attacks. Moreover, sharing gesture passwords with

others is easy.

In “VibraPass,” the mobile phone’s vibration capability has been utilized in

securing PIN entry [83]. The authors propose to add noise to the entered PIN or

password to combat observation attacks. The noise here is “lies” communicated over

Bluetooth to the user as vibrations of her mobile phone (in pocket). For example,

if a user’s PIN is 9362 and the lie sequence is 〈0, 1, 0, 0〉, the user may enter 9 5 6 2,

where 5 is the “lied” digit. A user study with 24 participants (average age 23

years, 8 females) reveals that error rates increase with higher lie overhead and longer

password. Interaction time increases with higher lie-overheads and longer passwords.

To simulate attack, two video cameras and two microphones were setup and the

study was performed in a quiet environment. Out of 749 successful authentication

sessions, with a lie-overhead of 0% breaking-success was perfect and with a lie-

overhead of 30%, 50%, or 100%, only 32.5% could be broken. Two main causes of

successful attacks were: audible vibrations due to keys in the users’ pockets and “bad

lies.” Bad lies include repeated pressing of the same key, confused waiting before

pressing, and using characters as PINs. Lie-overhead of 30% seems to be a good

trade-off between security and usability, having error rates and interaction time close

to those of PIN/password. High quality sound recording, intersection attack from

observation of multiple sessions (authors argue that compromised ATMs are replaced

very quickly and thus multiple sessions are unlikely to be observed), compromised

Bluetooth module, and timing attacks based on non-uniform user behavior (like [81])

could degrade security of VibraPass. From usability standpoint, the user may not

have a pocket to hide the phone and she may fail to perceive a vibration.

Bianchi [84] devised a haptic keypad to defend against shoulder-surfing attacks.

The keypad has three buttons, each can vibrate with 1 Hz, 2 Hz, and continuously.

These three kinds of vibration are called tactons. A user’s PIN is a sequence of
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tactons, e.g., 〈2, . . . , 1〉. The system assigns randomized tactons to the three buttons

and the user needs to push the button with the correct tacton. Two modes, called

normal and hybrid, were tested. The normal mode having 6 digits was found to

perform better with a median authentication time of 22.2 seconds. However, it has

a small PIN space of 36 = 729. User study was conducted with 12 participants

having mean age of 29. Security hinges on the assumption that the observer will not

be able to infer which button has which tacton, but high quality sound recording

may render the assumption incorrect.

A number of authentication schemes suitable for tabletops have been explored

in [85]. Tabletops pose a unique problem for authentication because many people

(e.g., friends) can be around the table and thus PIN or password entry is inherently

vulnerable to observation attack. “ShieldPIN” allows user to use her one hand to

create a crescent shaped shield and the other hand then inputs the PIN on a soft

PIN-pad. The shield may not cover all directions and thus some people around the

table may see the entered PIN. “SlotPIN” has 10 rows and 4 columns of digits.

Except for the first column, the user can rotate the column like a wheel so that one

of the 10 rows contains her PIN. As there are 9 other rows, the observer does not

know which row is the PIN. Nevertheless, “SlotPIN” is vulnerable to intersection

attacks, where the attacker gathers information from multiple sessions and the row

that remains constant over all sessions must be the PIN. “CuePIN” is a mixure of the

previous two—the user makes a shield with her one hand and a letter between A and

J appears inside of her shield. Then the user rotates the column to put the current

PIN digit in the letter’s row. He has to do that for each digit of her PIN. Because

one letter is much easier to shield than an entire PIN- pad, CuePIN is harder to

break; even so, it leaks information and an intersection attack over multiple sessions

can break it. “Color-Rings” is similar to the Convex Hull Click [86]. The user has

some circles and she has to place the circle so that her portfolio image is inside

that circle. Since there are multiple circles and there are multiple images per circle,

an attacker cannot know the PIN from a single session, but intersection attack is

still viable. “PressureGrid” is an enhancement to the PassFaces system where the

user does not directly clicks on her portfolio image, but she chooses the x and the
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y coordinate of the image in a grid of images (3× 3) with her two hands. Now she

uses three fingers per hand and which finger is actually selecting a coordinate of the

image depends on the pressure applied by a finger. Hopefully the observer does not

see the pressure difference across the fingers and she does not know which image

was selected. Average duration of a login using PressureGrid was 10.8 seconds.

In [87], the idea is to defend against observation attacks on PIN input at ATM

terminals while keeping time to login comparable to standard PIN method. The

user needs to interact with 4 screens to input 4 digits of her ColorPIN. Each screen

contains 9 digits arranged in a 3 × 3 grid and each digit has 3 letters in 3 different

colors just below it. On a screen there are 9 letters in total, which means a letter

occurs at 3 random positions on the screen having distinct colors. In addition to

the PIN, the user needs to remember a color sequence, which means her ColorPIN

consists of a PIN and a sequence of colors. To enter a digit, the user chooses a

letter below the digit having the right color (which she remembers). The space of

ColorPIN is 274

34
= 94. If an attacker records the keypad entries only, she does not

know your PIN. On the other hand, if she records both screen as well as the keypad,

she may perform an intersection attack. If the attacker knew your PIN is your birth

year and if she could see one entry process, she still has 81 choices, which makes

ColorPIN more robust. But the cognitive load can be high, because the user has to

look at the screen to find out the appropriate letter and then she has to input that

on the keypad. The legacy ATM deployments have to change. A lab-based user-

study was performed with 24 volunteers (18 males) having average age of 28 years.

Average login time was found to be 13.33 seconds, which decreased to 3.5 seconds

after 4 authentication sessions, implying that with experience a user could enter her

ColorPIN quickly. Error rate was not significantly high. Only 2 out of 38 ColorPIN

sessions were compromised by single session observing which is significantly better

than regular PIN. In those two cases, the user actually pointed to the digit on the

screen with her other hand so that she can input the correct letter on the keypad.

Vulnerability of an authentication scheme for magnetometer-equipped smart

phone has been explored in [88]. The user produces a signature around the de-

vice with a magnetic token, stylus, or finger ring and that can be sensed in 3D by
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the phone’s magnetometer. Dynamic Time Warping ( DTW) is used to match the

current signature against the stored template. The magnetic signature was recoded

using 4 cameras from four angles: front, rear, left, and right. 22 participants tried

to forge the signature by observing the video-recording. With a matching threshold

of 1.67 the number of successful attacks is zero while authentication of legitimate

users was always successful.

For blind people, a smartphone PIN entry method utilizing multi-touch enabled

screen–called PassChords—has been proposed to defend against aural and visual

attacks [89]. The user places her four fingers on the screen to mark reference points.

Then she touches with one or more fingers to enter one digit. The PassChords al-

gorithm uses Maximum Likelihood to determine which fingers touched the screen.

No audio or video feedback is provided, only vibration feedback is given after refer-

encing. Proprioception removes need for further feedbacks. Theoretical entropy of

PassChords is 4 · log2 (15) = 15.6 bits, because any combination of four fingers can

be touching the screen. Effective entropy is lower because some finger combinations

are more likely than others due to the physiology of the hand, e.g., simultaneously

tapping the middle and pinky fingers is more difficult than tapping the index fin-

ger. A user study with 16 legally blind, smartphone using user with average age

of 51 years was conducted. The mean authentication time for PassChords was 2.67

seconds whereas VoiceOverPIN tool 7.52 seconds on an average. Index finger was

most frequent (66.5%) and the most common length was 3 taps. Empirical first-

order entropy was 12.6 bits for PassChords and was 12.7 bits for VoiceOverPIN.

PassChords may be vulnerable to shoulder-surfing attack on finger movements. In

[90], the user of a smartphone puts her finger on the screen and without moving

the finger pushes in one of four directions: up, down, left, and right, to enter one

digit of her passcode. If there are 4 digits in her passcode, the passcode space is

44 = 256 which is lot less than that for a regular PIN. However, the motivation was

to defend against observation attack. Tekscan Flexiforce Model A201 was used

as a sensing unit. A user study with six participants revealed that the users would

like to use less force and more directions, e.g., diagonal.

In [91] the user uses a permanent magnet shaped like a ring or pen to “write”
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her signature in air around the free space of her smart phone. Authentication is

based on the temporal variation in the magnetic field sensed by the magnetometer

of the phone. Training phase receives and stores the user’s signature and in the

authentication phase Dynamic Time Warping is used to match the current signature

against the template. The user has to click a button to signal that she is about to

input her signature. Authors claim that 3D signature is hard to copy and it allows

for more options for possible signatures than its 2D counterpart. Observing the

signature or even recording it is very easy and it should be tested how hard it is to

recreate the 3D signature for an attacker.

A password entry method for touch screen enabled mobile phones have been

proposed in [92], where authentication is based on user’s pass shape and also on a

set of behavioral biometrics (exhibited while entering the pass shape): how hard the

finger presses, area of the finger touching the screen, x and y coordinates, and time

pressed between two different points. Dynamic Time Warping algorithm was used to

compare current set of biometrics with the template. Even if the attacker knows the

pass shape, she is unlikely to reproduce the set of biometrics with enough accuracy.

A user study with 31 participants with average age of 27 years reveals that overall

accuracy was 77% with maximum warp distance as the threshold of comparison.

The authors note that a dynamic template which evolves over time could increase

accuracy. An attack was defined as a comparison between a target user and all other

users which is not what happens in a real attack where the attacker observes the

users input process and then tries to impersonate.

2.7 Fall-back Authentication

When a user forgets her password for an account, she falls back to password- recovery

mechanisms, e.g., a temporary password is sent to her primary email account or to

her smartphone, or she must answer some preset security questions, or she can

request a number of preselected social acquaintances in a secure way (e.g., in person

or over voice-call) to vouch for her identity.

Rabkin [93] analyzes over 200 personal security questions used by 20 banking

or brokerage websites for fallback authentication and concludes that the questions



29

provide, at best, weak security. Availability of personal information on the Internet

weakens security of personal knowledge based questions. The author, as a remedy,

advises to allow the user to come up with her own security questions; advises the

user to answer approximately correctly, to use questions with ephemeral answers

(e.g., about recent browsing history) or preference-based answers. He also suggests

that the system should guide the users in choosing secure questions. The attack on

personal security questions is recognized as an information retrieval exercise and the

author suggests making the exercise harder through embedding multimedia contents

into questions, e.g., asking questions about a user- selected image. Schechter et al.

[94] looked into the personal security questions used for password recovery by AOL,

Google, Microsoft, and Yahoo! They explored the security and memorability of

the questions and found that untrusted acquaintances could correctly guess 17%

answers, users forgot 20% answers within six months, and 13% answers were one of

the five most popular answers.

2.8 Password Manager

It relieves the user from the burden of remembering numerous passwords by storing

them; all she needs to do is to remember one strong password to unlock the password

manager itself [95]. Password managers can be built into browsers and their auto fill-

up option makes it unnecessary for the user to type in her password every time she

logs into a site a very convenient feature. But the browser based password manager

is confined to a particular machine. Web-based password managers can be accessed

from any machine. Password managers generally create a single point of failure so

that an attacker can concentrate her effort on cracking the master password of the

password manager; once she cracks the master password, she gets all passwords of

the user. Figure 2-1 shows the overall classification of various methods for end-user

authentication.

For smartphones and tablets, depending on the granularity level of access that

a successful login ensues and how much user involvement an authentication scheme

requires, there are two broad categories of authentication schemes: graded security

and implicit authentication.
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Figure 2-1: Authentication methods
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2.9 Graded Security

In contrast to the traditional “one shoe fits all” approach to security, graded security

is the concept of providing different levels of security to different applications and

data, e.g., SMS application is secured with a simple visual code.

A focus group discussion was conducted in [96] with 19 participants on different

authentication methods, like: fingerprint with swipe sensor on laptop, 2D gestures on

the touchpad of a laptop, 3D gestures like Wii but using mockup, iris or face using

phone’s camera, keystokes on laptop keyboard, points on a picture, and speaker

recognition. Fingerpint was found to have significant lead both in terms of security

and usability. Through an interview of 20 users who had a smartphone and a tablet,

Hayashi et al. [97] found that all-or-nothing access control was a poor fit for users’

preferences, both on smartphones and on tablets. The participants wanted roughly

half of the applications to be available even when the device was locked. The users

showed positive attitude towards face and voice biometrics. Several parents who

had young children expressed the concern that children could accidentally delete

important information from the device; so, a simple way to let the children access

games was a preference for those parents—may be with a simple shared PIN.

2.10 Implicit Authentication

User’s identity is transparently inferred in implicit authentication schemes. In [98],

the probability of the user being at a certain place determines how much confidence

to put on the identity of the user. In [99] a learning algorithm, given the user’s past

behavior in terms of her usage of emails, calls, SMSs, GPS coordinates, contacts,

etc., assuming all tasks to be independent, outputs a model of the user and the

model is then used for implicit authentication.

2.11 Placing the Work in Context

Our proposed framework for end-user authentication for smartphones, ePet, utilizes

ideas from graded security, implicit authentication, and multimodal biometrics based

approaches; and with the pet metaphor—all three work in harmony. With ePet, a
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user can choose different security settings for different applications (graded security)

and the phone authenticates the user without requiring her active participation

(implicit authentication) most of the times. The actual authentication process in

ePet is based on the concept of traits, which are, in essence, various combinations

of biometrics of a user.

The password-creation interface that we propose for the Web, on the other hand,

is an attempt at coping with the memory-related issues of a password.
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Chapter 3

Usable End-user Authentication for Smartphones

Worldwide there are around one billion smartphone users and this number is ex-

pected to reach 1.75 billion by the end of 2014 [106]. Nowadays, beside making

calls, people are using smartphones for a wide range of tasks; e.g., social network-

ing, mobile banking, mobile health-care [107, 108]. As a result, personal and sensitive

data are increasingly being accessed via or stored on smartphones.

Often times, it is the data on the smartphone, rather than the device itself, is

more valued by the users. If a smartphone is lost, the user may acquire a new

smartphone with similar or even better features; but, the data that had gathered

over time may be irrecoverable, or at the hand of wrong persons can bring great

harm. The incident of a lost phone is not rare: everyday around $7 million worth

of phones are lost worldwide [109]. Given, an average consumer claims that she will

lose about $37000 worth of digital-assets, if a mobile device is lost or stolen and the

average value of a lost item is about $176, the loss in device cost and in digital-assets

cost total to more than $1.5 billion a day [111, 110]. If the cost due to the data falling

in the wrong hands is even a small fraction of the total cost, that is presumably more

than $7 million a day. Naturally, securing the data on smartphones is crucial more

than ever.

“Some show that nice sagacity of smell,

And read with such discernment in the port

And figure of the man, his secret aim

That oft we owe our safety to a skill

We could not teach and must despair to learn.”

(Cowper[112])

As Cowper so eloquently puts it, a pet, specially a dog, discerns a lot about its

owner: her smell, the way she walks, her face, the way she caresses, her voice, and

many other subtleties go into making the mental model that the pet has of its owner.
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A pet recognizes its owner from a stranger using this mental model; for a stranger,

the data a pet receives through its senses do not quite fit the model; and this act of

recognizing happens without the owner being conscious about it. We propose to uti-

lize this observation—about how a pet recognizes its owner from a stranger without

the owner being conscious about it—to come up with an application-level end-user

authentication framework for smartphones that, beside being effective, will cause

minimal stress and distraction to the user, encouraging her to use authentication

applications built around our framework for her phone’s security. The pet metaphor

works well for smartphones, because of three reasons: one, smartphones stay near its

owner everyday for a substantial period of time; second, smartphones have various

sensors to sense the surroundings along with its owner’s traits, and third, the owner

gets attached to her phone over time. The authentication framework proposed in

this paper, shares many similarities with the multimodal biometrics approach; but,

with a crucial difference: our proposed framework is adaptive; it tries to find an

optimal trade-off between security, usability, and frugality by finding a mix of bio-

metric features that will provide enough confidence using minimal resource (e.g.,

battery power) and user involvement. We also believe, the pet metaphor is sugges-

tive enough for the user to quickly grasp the basic idea of how the authentication

system works, relieving him of the likely uneasiness associated with the invisibility

of the authentication process.

3.1 Proposed Authentication Framework

A smartphone has a set of sensors, S; associated with each sensor s is a set of

sampling rates, Σ. A trait, τ , is a distinguishing characteristic of the owner, which

can be computed from the data received from a subset of S. A template, θ, is a set

of complex values, which represents a trait. An authentication criterion, α can be

computed from a subset of the set of traits, Υ; an authentication decision depends

on authentication criteria. Formally, we can define the authentication framework

(AF ) as a tuple.
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Definition 3.1. AF = (S,Σ,Υ, ω, F,Γ, κ,D,Π,Ξ,Ψ, P,∆), where,

S : Set of sensors;

Σ : Set of sampling rates;

Υ : Set of traits;

Ω : {ω | ω : (S × Σ× R) 7→ R
n} ;

F : {f | f : Rn 7→ R
m} ;

Γ : {γ | γ : Rm 7→ C
p} ;

P : {p | p : Ω×Υ 7→ {0, 1}} ;

κ : (Ω× F × Σ× P ) 7→ R
2;

D : Database of templates;

Π : {π | π : (Cp ×D) 7→ R} ;

Ξ : Set of security settings;

Ψ : {ψ | ψ : (Ξ× C
p) 7→ R} ;

∆ : {δ | δ : (Cu × C
v × η) 7→ {0, 1}}

Here, Ω is a set of data collecting functions and |Ω| = |S|; e.g., if the trait

is gait and we use accelerometer as the sensor, then on the Android platform,

onSensorChanged(SesnorEvent) would be a data collecting function [113]. For

a particular sensor and for a particular sampling rate σ, over a time interval of τ , an

ω collects data of size στ . The size of the set of traits, |Υ| ≤ 2|S| − 1. Each f ∈ F

is associated with one sensor and it preprocesses the output of the corresponding

ω; e.g., an accelerometer on the Android platform does not provide readings at a

precisely regular interval and the preprocessing function can interpolate the received

sensor-data to have a precise frequency. Template generating functions constitute

Γ; e.g., accelerometer data corresponding to one step of a person’s gait might be

used as the template. A person may be sitting, so the accelerometer sensor data

cannot at that instant be used to determine her gait pattern; thus not all sensors,

always have useful data. A low-cost probing function, p ∈ P decides whether a
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sensor can be useful in computing a particular template. How costly—in terms of

battery drainage and usability—a quadruple consisting of a probing function, a data

collection function, a preprocessing function, and a template generating function, is

determined by κ. A database containing the templates of each trait across a varied

population is represented by D. Given a template of the owner, π ∈ Π determines

how much a owner is unique among the population with respect to the correspond-

ing trait; e.g., Equal Error Rate for gait. Security settings chosen by the owner is

represented by Ξ, a totally ordered set, she may assign different levels of security to

different applications on her phone [96]. For each template (representing one trait) a

ψ ∈ Ψ translates a threshold value to be used by δ based on the stored template and

the user’s preferred security setting. The matcher function δ, given two instances of

a template and a threshold value, decides whether the two instances belong to the

same person.

Claim 3.1. The possible number of templates is upper-bounded by
⌈ |Γ|
|Υ|

⌉

|Σ| |S| 2|S|−1.

Proof. From the definition of traits, Υ = P (S) \ ∅. If X ∈ P (S) and x ∈ X, then

each x leads to at least one possible template. So, there are at least
∑|S|

k=1 k
(|S|
k

)

or |S| 2|S|−1 possible templates. Each x corresponds to a subset of Σ and for a

particular sampling rate there is at least one template generating function; thus, to

get the possible number of templates, we need to multiply |S| 2|S|−1 by the factor
⌈

|Γ|/|Υ|
⌉

|Σ|.

The authentication framework, AF , works in three phases: a database creation

phase, a training phase and an authentication phase. In the database creation phase,

a subset of the possible templates for an anonymous sample population of size n is

generated and that information constitutes D. For a specific smartphone model, the

database creation phase is needed once. In the training phase, a subset of the possible

templates of the owner are generated; assuming, as long as the training phase is not

over, the phone bearer is always its owner. Once the smartphone has been trained, it

is ready to periodically authenticate the owner without requiring her to be actively

involved. The false positive rates and the false negative rates in AF is never zero,

but it can be made low enough for a particular security setting. The templates
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generated in the training phase is sorted twice with a stable sorting algorithm: first

in increasing order of discriminatory capability and then in increasing order of cost;

this sorted template list 〈ti〉, is then passed on to the authentication phase. From

the owner-provided security setting the authentication phase finds an index k in

the sorted template list, whenceforth every template can identify the owner with at

least as much confidence as the present security setting requires. Periodically, in

the authentication phase, using template tk and a δ ∈ ∆, it is decided if the phone-

bearer is the owner. The low-cost p ∈ P can be invoked beforehand, to decide if a

higher-indexed template from 〈ti〉 needs to be selected due to the fact that one or

more sensors corresponding to tk may not be currently useful.

Claim 3.2. If a user has a new smartphone having one or more new sensors, then

AF can adapt.

Proof. We shall argue through induction. If the smartphone has a single sensor, it

can define at most one trait of the owner. In that case, AF will always use this single

trait for authentication, if it can provide the requested level of security; otherwise

the user has to rely on a fall-back locking mechanism for her smartphone. Assuming

the previous smartphone had k sensors and AF was working on it, for the new

smartphone with an additional sensor, one of four cases can occur:

1. The sensor can form a new trait by itself.

2. A new trait can be defined with the new sensor along with some previously

available sensors in it.

3. The new sensor can be absorbed into one or more previously available trait(s).

4. The new sensor can lie outside of the authentication framework.

For the first three cases, D needs to be augmented and a training phase follows

gathering the owner’s templates corresponding to the new trait(s); thenceforth AF

is seamless once again. From the user’s point of view, she is developing a rapport

with her new phone.
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In Algorithm 1 and 2 we outline one possible implementation of the training

and authentication phases for AF in some details, where discriminatory capability

of a template is computed from the equal error rate (EER). The EER indicates

the point on a Receiver Operating Characteristic (ROC) curve, where the False

Acceptance Rate (FAR) equals the False Rejection Rate (FRR); EER can be thought

of a reasonable trade-off between security (FAR) and usability (FRR) [103]. Thus,

between two traits, the one with a lower EER is more reliable and usable with respect

to authentication.

Algorithm 1 Training Phase

1: factor ← 0
2: for each trait in Traits do

3: factor ← factor + trait.EER−1

4: end for

5: for each trait in Traits do

6: trait.normalizedScore = trait.score−m
M−m

7: trait.weight = factor−1

trait.EER

8: end for

9: for each subset of Traits do

10: subset.score← 0
11: for each trait in subset do

12: subset.score← subset.score+ trait.weight× trait.normalizedScore
13: end for

14: subset.threshold← ComputeThresholdAtEER()
15: subset.confidence← 1− FAR(threshold)
16: end for

In Algorithm 1, lines 1–8 compute the weight for each trait so that for each

trait the weight is inversely proportional to its error [116]. Inside the for loop on

line 9, we compute the score for each subset of traits in lines 10–13, each trait in

a particular subset contributes according to its weight so that a more reliable trait

contributes more score to its container subset. On line 14 we compute the threshold

score at Equal Error Rate (EER) for a subset and on line 15 we compute how

much confidence to put on a particular subset of traits: the more False Acceptance

Rate, a subset has at the chosen threshold, the less confidence we put on it while

authenticating.

In Algorithm 2, on lines 1–7 we compute bs, which is a bit-string having a bit

corresponding to each sensor and bs has its i-th bit set to 1 if the i-th sensor is
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Algorithm 2 Authentication Phase

1: mask ← 1
2: for each sensor in Sensors do

3: if sensor.Probe() = true then

4: bs ← bs | mask
5: end if

6: mask ← mask ≪ 1
7: end for

8: for each trait in Traits do

9: if (trait.bs | bs)⊕ bs = 0 then

10: Ta ← Ta ∪ {trait}
11: end if

12: end for

13: minCost←∞
14: MinCostSufficientSubset← ∅
15: for each subset of Ta do

16: if subset.confidence ≥ threshold then

17: if subset.cost < minCost then
18: minCost← subset.cost
19: MinCostSufficientSubset← subset
20: end if

21: end if

22: end for

23: for each trait in MinCostSufficientSubset do

24: data← trait.GatherData()
25: template← trait.CreateTemplate(data)
26: isOwner ←Match(template, t)
27: if isOwner = false then

28: Lock()
29: return

30: end if

31: end for
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Figure 3-1: Periodicity in gait data

currently active. On lines 8–12, we determine which traits have all their sensors

active right now; and these active traits make up the set Ta. Next, on lines 14–22,

we compute a minimal cost subset of Ta that is able to provide enough confidence

about the authenticity of the user. The remaining lines of Algorithm 2, authenticates

the user using the traits in the chosen minimal cost subset.

3.2 A Subset of the Framework

We explore a subset of our proposed framework, which utilizes gait and location

traces of the owner: consecutively from accelerometer and GPS data. The basic idea

is that whenever the phone finds itself in a new location it increases the threshold for

acceptance mimicking the heightened alertness of a pet in an unknown environment;

the phone acts defensively by increasing False Rejection Rate (FRR) to decrease

False Acceptance Rate (FAR). Below we describe the details of how to detect gait

pattern, gather location trace, and authenticate using gait pattern in the presence

of location cues.

3.2.1 Recognizing Walking Pattern

Walking is a periodic activity and the periodicity is reflected in accelerometer data

of a smartphone [105]. The repeating patterns in the accelerometer data of a smart-

phone are similar for a particular person, while they differ across different individu-



41

time

va
lu

e

0 10 20 30 40 50

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

−
1

−
0

.5
0

0
.5

1

(a) Nonlinear warping

10 20 30 40 50

1
0

2
0

3
0

4
0

5
0

noisy sine

s
in

e

 5 

 10 

 10 

 15 

 15 

 20 

 20 

 25 

 25 

 25 

 30 

 30 

 35 

 35 

 4
0
 

(b) Terrain of matching cost

Figure 3-2: DTW Matching of two sine waves

als; hence, gait pattern can serve in identifying the owner. A step is the natural unit

for gait pattern; but, detecting the portion of accelerometer data corresponding to

a single step is a challenging task. Instead, we consider a portion of accelerometer

data, which contains at least one step and by periodicity this portion also repeats

across the entire gait data. In figure 3-1, the highlighted portion in green has been

arbitrarily chosen, yet we see it repeated in the maroon region. We use this semi-

arbitrary segment of data as the template and Dynamic Time Warping (DTW)

algorithm works as the matching algorithm. A person may walk at different speeds

and thus her gait pattern can be stretched or contracted along the time axis. The

motivation for using DTW is that while matching, DTW warps two time series in a

nonlinear fashion in order to cope with time deformations and different speeds.

Figure 3-2(a) shows exemplary nonlinear mapping between two sine waves of

slightly different frequencies and one of them is noisy. For two time-series X and Y

of length M and N , there is an M × N cost matrix, where cost between a pair of

points is defined by a cost metric; while matching gait segments, we use Euclidean

distance as the cost metric in DTW. In figure 3-2(b), a contour plot of such a cost

matrix is shown; using dynamic programming, DTW efficiently finds an optimal

alignment (shown as a blue line) between X and Y that runs along a low-cost valley

of the cost matrix. Using the training data obtained from the users, we compute
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FAR, FRR, and Equal Error Rate (EER) for gait pattern. Following Algorithm

1, we compute the threshold value at EER, which is used to make decision during

authentication.

Table 3.1: Smartphone-based gait recognition

Dev. Pos.
Detect
Step? Features

Match.
algo. # users

Best
EER

Rec.
rate

Bat.
drai.

[125]
Android
Phone N/A No

Avg. accl.,
σ,

Avg. abs.
diff.,

Resultant
Time bet.
peaks

Binned dist.

WEKA:
J48,
NN 36 N/A 82.2% N/A

[126]
Google
G1 Hip Yes

Min DTW
cycle DTW 51 20% N/A N/A

[127]
Moto
Droid Pocket No

Wavelet
Coeff. kNN 2 N/A 90% N/A

[128]
Moto

Milestone Hip No

Diff.,
Bin,
RMS,

Cross-corr.,
MFCC,
BFCC

HMM,
SVM,
kNN 36

8.24%
(kNN) N/A N/A

[124]
Android
Phone Pocket No

Wavelet
Trans.
Spect. SVM 36 N/A 99.4% N/A

Ours
Google
Nexus S Pocket No Segment DTW 13 10% N/A 10%

In Fig. 4, for all users, correlation between DTW similarity score and weight,

height, and weight-to-height ratio has been shown. None of the variables: weight,

height, and weight-to-height ratio consistently had a significant correlation with

DTW similarity scores. As a result, for an attacker, only having similar weight,

height, or weight-to-height ratio does not guarantee success mimicking a user’s gait;

unless the attacker puts effort in studying a user’s walking pattern [121].

3.2.2 Building Location Trace

At a new place, a pet might initially remain more alert, which helps it to explore

the place, while keeping the risk low. Likewise, when the authentication system

(AS) finds itself in a place that is absent in the list of its familiar places, it increases

the gait matching threshold score to emulate hightened alertness. Location is not

exactly an authentication criterion; AS does not use location cue to decide whether

the phone-bearer is the owner; instead it helps regulate the level of confidence to
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put in other authentication criteria, like: gait pattern.

During the training phase, each day AS periodically collects GPS coordinates

and at the end of each day the owner inputs how many places she visited on that

day. In order to cluster the GPS coordinates, AS uses k-means algorithm where

the owner provides k [122]. After a week of refining the clusters corresponding to

the visited places, AS saves the list of cluster-centers along with a radius for each

cluster. During the authentication phase, AS periodically collects GPS coordinates

and checks whether the place belongs to one of the saved clusters; if it does not find

the place in its list, it increases the matching threshold, otherwise the location does

not affect the threshold.

3.2.3 Authentication Using Gait Pattern and Location Cues

The authentication system (AS) periodically tries to authenticate the user using her

gait pattern at a predefined threshold. It periodically also determines if the current

place is a familiar one, i.e., already visited by the user. In case AS finds itself at a

familiar place, nothing changes; it continues authenticating the user using her gait

pattern. But, if AS finds itself at a new place, it increases the gait matching thresh-

old; so that, it only let the phone bearer in, only when it is confident enough that

she actually is the owner. In this situation, if the phone rejects the user incorrectly,

the user may choose the fall-back authentication method to login and then train

AS about the new place. We expect this to happen rarely for the owner after the

initial training period; because, by that time the places she usually visits should be

familiar to AS.

3.3 Experimental Procedure

In this section, we describe how we have collected gait and location data using

a Google Nexus S smartphone that has a built-in 3-axis accelerometer and GPS

receiver module. As our experiments involve human subjects, we obtained approval

from the Institutional Review Board (IRB) of Marquette university. We also provide

evaluation of our proposed algorithms using the collected data.
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Figure 3-3: Correlation between DTW score and weight, height, or weight-to-height
ratio

3.3.1 Pattern of Walking

We have collected walking data from 13 users whose age-range is between 18 and

34 years having a mean of 26 years and a standard deviation of 4.14 years; all of

them are members of Ubicomp lab at Marquette university; every participant owned

a smartphone and was familiar with using smartphone applications. For each user,

we have collected walking data in two sessions separated by one week. Each user

walked on a level surface, indoors, and at a normal speed with the phone in their

right pant-pocket; they walked about 29 meters in each session.

We divided the walking data for each user and for each session into 5 chunks;

thus for each user we have 4 chunks of data to compute genuine scores and 60 chunks

of data to compute impostor scores—per session. Before computing DTW scores,
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we standardized the data by subtracting the mean from it. While calculating FAR

and FRR, in order to match weights of genuine and impostor scores, we linearly

interpolate the genuine distribution. Table 3.2 shows EER’s of the 13 users along

with the threshold matching scores; and it is evident that gait pattern of a user

has limited discriminative capacity. For a user whose EER is high, Algorithm 1

frugally incorporates other biometrics in the set of authentication criteria to increase

confidence; whereas, for a user whose EER is low, considering only gait pattern may

be sufficient; in this case Algorithm 1 chooses the singleton containing the gait

pattern for authentication—in case that is the most frugal choice. In Table 3.1 we

provide a comparison between other gait-based authentication for smartphones with

our implementation.

Table 3.2: EER (%) at chosen thresholds

First day After a week

16 14

14 14

20 20

14 16

16 14

18 14

14 18

14 14

16 18

16 10

14 14

16 16

16 14

3.3.2 Trace of Visited Places

One of the authors used the authentication system (AS) on a smartphone, to collect

GPS coordinates for two weeks. From the coordinates of the first week, using k-

means algorithm, we build a list of places. The number of clusters we used for the

k-means is 5, which was determined by the number of distinct places the phone-

bearer visited during that time. So the list of familiar places after the first week

includes 5 pairs, each pair containing the coordinates of the cluster center and an

associated radius. Using the GPS coordinates collected during the second week,
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we evaluate how accurately AS can recognize a new place. The accuracy was 98%,

which means that only after a week of location training, AS was able to recongnize

a familiar place with good accuracy. It may be due to the sedentary life style of the

author who carried AS, that after only a week the number of new places AS finds is

so small; but we expect that most of the places a user regularly visits will be covered

within a few weeks.

3.3.3 Battery Charge

In Fig. 3-4, we see that gait data was collected over 5 seconds every 5 minutes

and thus a gait matching occurs every 5 minutes. If the gait template size is n and

the collected accelerometer data has size m, then DTW matching occurs m− n+ 1

times every 5 minutes. In DTW matching, as we used a window size of 12 and as we

need only the matching score, we needed to maintain only about 2m floating point

values. There are atmost 12n(m− n+ 1) computations for the gait matching every

5 minutes. In our experiment n was about 120 and m was twice the size of n; thus

overall complexity of gait matching, in our case, was Θ
(

n2
)

.

Figure 3-4: Timing of location and gait computations

In Fig. 3-5, the battery charge consumption over time is shown. We see that

doing gait computations periodically does not drain battery much, it is similar to the

base rate of battery charge consumption. However periodically obtaining GPS data

and checking whether the current place is familiar, drain battery charge significantly.

3.3.4 Ideal Authentication System for Smartphones

When the study ended, each subject was asked what would be the ideal authenti-

cation system for smartphones. From Table 3.3 we see that an ideal authentication
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Figure 3-5: Battery charge over time

system, according to users’ opinions, should not require one to remember secrets,

should not take long to perform, should be secure, and best if it is fully transparent.

Interestingly, ePet has all the properties the users wanted from an ideal authentica-

tion system for smartphones. And while we explained the idea behind ePet to the

users, it was quite easy to make them understand using the pet metaphor.

3.4 Potential Issues

Here we briefly discuss, some of the issues that need to be addressed to make con-

tinuous and transparent authentication like ours, practical.
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Table 3.3: Ideal authentication for smartphones

User Reply

1 “Fingerprint biometrics”

2 “Multistage: biometrics and password”

3
“It should: enhance security, enable faster input,
and require least user-involvement”

4
“Something that could recognize me. Therefore, not needed that
I provide some authentication.”

5 “Should be: strong, relatively easy to remember, and quick”

6 “Different layers of authentication”

7 “Voice-based password”

8 “Biometrics”

9
“I don’t need to remember anything, it can be long like within
10 seconds, but should be strong, unbreakable”

10 N/A

11 “Voice, face, and touch authentication”

12 “A combination of voice, image, and other features if available.”

13
“Didn’t think much of it.
But I think voice and fingerprint combination will work better.”

3.4.1 Battery Charge

Our framework requires collection of sensor data periodically, which can drain bat-

tery charge quickly. Fortunately, “responsive sleeping” is a promising idea that has

the potential to significantly reduce battery drainage due to continuous sensing on

smartphones using heterogeneous multi-processors [129]. Apple M7 coprocessor has

already been used to offload the collecting and processing of sensor data from the

main central processing unit (CPU) on iPhone 5S [117]. For the GPS sensing, op-

timal scheduling strategies exist, that can significantly extend battery life without

hurting the location accuracy much [130, 118].

3.4.2 On-body Placement

As all traits are computed from sensor data, it is important for the algorithms for

computing traits be aware of where on the user’s body the phone is presently kept;

for example, the gait pattern may change if a the phone is held in hand instead of

keeping it in the pocket. Fujinami et al. [123] looked into five different phone-storing

positions: front pocket of trouser, back pocket of trouser, side pocket of jacket, chest

pocket, and hanging around the neck; with 10 users, 5-minutes of walking data

collected using a Google NexusOne phone for each storing position per user, and 29
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features—they were able to detect the storing position with 72.3% accuracy using

artificial neural network. Whether the accuracy they obtained is adequate for the

purpose of authentication needs to be explored.

3.4.3 Psychology

Users may feel uncomfortable with the idea of invisible and continuous authentica-

tion using their personal data, like: gait pattern, location trace, etc. [119] In our

framework, we propose to store the trait data locally on the phone in a secure stor-

age like: Secure Enclave [120]; and all the computations are done on the phone. The

pet metaphor, we believe, will help users to perceive that their personal data is not

being shared with third-parties.

3.4.4 Pace

Gait pattern may vary depending on the pace of a user’s movement. In [124] nor-

mal and fast walking were investigated with Android phones. With accelerometer

and gyroscope data they explored three methods: a linear support vector machine

(SVM), continuous wavelet transform time frequency spectrogram analysis, and cy-

clostationarity analysis; but between normal and fast speed the best verification rate

was 61% at 0.1% FAR. Making gait matching contingent upon pace may increase

accuracy while comparing between different speeds; e.g., storing owner’s templates

corresponding to different speeds of walking and then for intermediate speeds a tem-

plate might be generated through interpolation, in keeping with the spirit of [114].

3.5 Discussion

We have proposed an authentication framework for smartphones that require min-

imal user involvement and that is thrifty about battery power. The framework

mimics how a pet might recognize its owner from a stranger on its own. Continu-

ous sensing and computing, is a major issue in our framework, which can drain a

phone’s battery quickly. We have shown that not all types of sensing take a large

toll on battery charge, e.g., gait matching has moderate cost whereas GPS can drain

battery quickly. We have indicated how these limitations can be mitigated. The pet
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metaphor can help the user perceive that her personal data remains secured on the

phone. Adding more traits to our current implementation is an obvious future goal.

The estimate of the number of possible templates suggested in Claim 1, indicates

that the detailed implementation of the framework may require a large one-time

effort in building the database D. The sample size with which we have conducted

the experiments is small and probably biased; we hope to perform the experiments

with larger and more diverse samples in the future. Determining how a user might

easily and effectively set the security level she wants, is an important future work.

In Algorithms 1 and 2, we have not incorporated the usability cost while choosing

the minimal cost subset for authentication; ranking the traits according to usability

and then defining a generalized cost metric would also need to be considered in the

future. Location is not a true trait, but a context; how to incorporate contexts in

our proposed framework is another interesting future task. Exploring the effects of

adding an avatar of a pet on the phone, that shows positive expressions when it

recognizes its owner and shows signs of distress when the cost for authentication is

high may be another interesting future pursuit; e.g., the user might be motivated

towards training the authentication system more.
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Chapter 4

A Closer Look into the Password Input Process

In this chapter we shall look into the password input process more closely with a

goal to justifying that for a successful login (with an old password,) the declarative

memory for the password plays the principal role; the role of the motor memory is

to increase the efficiency of the input process—by increasing the typing speed and

by decreasing the number of typing errors. In other words, for an old password,

one can successfully login even if her motor memory is of little help, whereas signif-

icant disruption to the declarative memory has an incapacitating effect on the login

success. First, we shall take a brief tour to the organization of human memory.

4.1 Human Memory

Human memory is an alliance of mainly three systems: sensory registers, short-term

store, and long-term store [131]. Information can flow into the sensory registers even

if a person is not paying attention to it; whereas, for the information to flow into

the short-term store, attention is required; and for the long-term store one needs

to rehearse. It is not possible to maintain information in the sensory registers for

long—they are ever effervescent; whereas, it is possible to maintain information in

the short-term store, but one needs to rehearse and pay attention continuously; and

only after repetitions and organization, the information will pass onto the long-

term store [132]. In Figure 4-1, we show the interrelations between various aspects

of human memory [131, 135]. Long-term memory (resides in long-term store) is of

two types: declarative memory and procedural memory. Declarative memory can be

consciously recalled, e.g., facts and knowledge and it is of two types: episodic memory

and semantic memory. Episodic memory refers to the memory of the events related

to a person’s own life, e.g., remembering going to a dentist a week ago. In contrast,

semantic memory refers to memories about general factual knowledge—independent

of personal experience, e.g. verbal memory [131]. By the declarative memory for a

password, we refer to the semantic memory for the password. The other type of long-
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term memory, namely procedural memory, refers to the memory for the performance

of particular types of actions, which one is usually unable to recall consciously;

rather, when needed this kind of memory is automatically retrieved for utilization.

Motor memory is a form of procedural memory, where through repetitions of a

particular task, a long-term memory develops; this long-term memory is implicitly

expressed through smoother movements and a reliance of the motor output on an

internal model that anticipates the force requirements of the task, which is then

reflected in the muscle activations [133, 134].

visual

auditory

haptic

Temporary working 

memory

Control processes

Decisions

Retrieval strategies

Permanent 

memory store

Input from 

environment

response 

output

sensory registers

short-term store

long-term store

Figure 4-2: Information flow in human memory

In Figure 4-2 the Atkinson-Shiffrin model of information flow in human memory

(as described in [131]) has been shown; we see that the short-term store (STS) works

as a bridge between the long-term store (LTS) and the environment—before one can

output an item from her long-term memory, she has to load that item into her

short-term store first.



53

4.2 Conceptual Model for Password Input

Figure 4-3 shows the steps involved in inputting a password. In the first step, a

password-symbol is fetched from the Long Term Store (LTS) to the Short Term

Store (STS) (Figure 4-2). Then, in the second step, the decision is made about

which finger to move and to which (approximate) key-coordinates; then, in the final

step the finger is moved to the key and the key gets pressed. We believe that the

declarative memory of a password is involved in the first step and the motor memory

for a password, if any, comes into play at the second step. Our idea is to selectively

inhibit the first and the second steps and to observe how the time for typing in a

password gets affected. Before discussing the study, we elaborate on the “look up

coordinates” part of the second step ( 2 in Figure 4-3) of the password input process.

Fetch from 

LTS to STS

Select finger and 

look up 

coordinates

Move 

finger

1 2 3

Figure 4-3: Password input process

4.2.1 Look-up Coordinates

If the layout of a keyboard is familiar to the user, over time a look-up table gets

created; whenever a symbol is fetched to the STS, a table look-up gives the approxi-

mate coordinates of the position to which a finger should be moved to press the key

corresponding to the fetched symbol. However, if a password is old and the layout

of the keyboard is familiar, therefore the user has typed in the password many times

on the keyboard, the look-up table for coordinates get modified. After practice, a

password contains chunks of symbols instead of individual symbols and a look-up

occurs only for the first symbol of a chunk; because, the coordinates of the rest of

the symbols—belonging to the chunk—have already been saved in the look-up table

along with the coordinates of the first symbol of a chunk. In our opinion, the time

saved due to the reduction in the number of look-ups is what we see as the motor
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memory for a password. On the other hand, if the keyboard layout is unfamiliar,

the look-up table of coordinates does not help and the user must fall back to visual

search for the key.

new 

password:<a,b,c,d,e,f>

a

b

c

d

e

f

(xa,ya)

(xb,yb)

(xc,yc)

(xd,yd)

(xe,ye)

(xf,yf)

visual search for 
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unfamiliar

layout
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layout
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password:<a,a1,c,c1,c2,f>

visual search for 
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layout

a
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c

d

e

f

(xa,ya),(xa1,ya1)

(xb,yb)
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(xd,yd)
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table look-up for 

coordinates

familiar

layout

passage of 

time

Figure 4-4: Example table look-up

For example, with reference to Figure 4-4, let 〈a, b, c, d, e, f〉 be a new password

created by a user. In order to login using the password 〈a, b, c, d, e, f〉, on a keyboard

with an unfamiliar layout, the user has to visually search for each of the six symbols

(unless there happens to be a chunk from some old information.) But if the keyboard

layout is familiar, there is already a look-up table of key-coordinates, which maps

each symbol to the approximate coordinates for the corresponding key on the key-

board; so, now she does not have to visually search the correct key, but to look it’s

coordinates up in the table. Consequently, there will be six look-ups and near-zero

visual search for a new password on a keyboard with a familiar layout. However,

with the passage of time, when the user has had practice with the password, it might
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look like: 〈a, a1, c, c1, c2, f〉, where a, a1 belong to the same chunk; c, c1, c2 belong to

another chunk; and f is a chunk by itself. Note that, content-wise, a1 = b, c1 = d,

and c2 = e; the “chunks” are meaningful only in the context of how the password-

symbols are accessed. Then, if the user has to type the practiced password on a

keyboard with a familiar layout, only three look-ups are required: for a, c, and f

respectively. The look-up for a will give coordinates for the keys corresponding to

both a and a1; the look-up for c will give coordinates for the keys corresponding to

c, c1, and c2; and f will have its personal look-up. The time saved from not having

to look up for a2, c1, and c2, in our opinion, makes up the increased efficiency due

to the motor memory.

4.2.2 Erroneous Finger Movements

The time it takes to input a password on a keyboard with an unfamiliar layout may

further increase due to the occasional erroneous movements of the fingers—when

the user momentarily forgets that the keyboard has an unfamiliar layout. At those

times, the fingers move to the coordinates returned from the automatic look-ups

in the table of coordinates, only to find out that the key-coordinates are incorrect

[141]. The more a user is used to a particular keyboard-layout, the more often this

type of errors should occur with a keyboard with an unfamiliar layout. If a password

has motor memory associated with it, the probability of erroneous finger movements

increases; because, a habitual routine look-up in the table of coordinates now returns

not just one pair of coordinates, but all the pairs of coordinates belonging to a chunk.

4.3 Study Procedure

As the study involves human subjects, we acquired approval from the Institutional

Review Board (IRB) of Marquette University. Seven subjects (2 females, 5 males),

in the age-range of 23–35 years, participated in the study. All subjects were graduate

students in the Computational Sciences program and had familiarity with password

input process using a keyboard. In order to find out the relative importance of the

roles played by the declarative memory and the motor memory for a password in

performing a successful login, we recorded the time it takes for a user to login with
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an old password and a new password in four different conditions, which accounts for

eight conditions in total. Below we give the details of the conditions.

4.3.1 Old password, Familiar Keyboard-Layout

The subject was asked to login to the university email account using a QWERTY key-

board. The subject typed in her user-name first; after that, using an ACCUSPLIT

Pro Survivor-A601X stopwatch, the experimenter recorded the time it took for the

user to correctly type in the password; the stopwatch had a precision of 0.01 sec-

onds [143]. The user started typing in the password when the experimenter uttered

“start”, and the stopwatch was stopped as soon as the experimenter perceived that

the login screen had changed to the “starting” screen—the recorded time includes

the time spent in failed logins.

4.3.2 Old Password, Familiar Keyboard-Layout, with Count-Down

The subject was asked to login to the university email account using a QWERTY key-

board. The subject typed in her user-name first; after that, using an ACCUSPLIT

Pro Survivor-A601X stopwatch, the experimenter recorded the time it took for the

user to correctly type in the password; the stopwatch had a precision of 0.01 sec-

onds [143]. The user started typing in the password when the experimenter uttered

“start”, and the stopwatch was stopped as soon as the experimenter perceived that

the login screen had changed to the “starting” screen—the recorded time includes

the time spent in failed logins. While logging in, the user counted down by 2 starting

at 97; if the user reached 1 and still was not able to log in, the count-down resumed

from 97.

4.3.3 Old Password, Unfamiliar Keyboard-Layout

The subject was asked to login into the university email account using an alphabetic

keyboard, specifically the A2Z Alphabetic & Standard Layout Combination Keyboard;

the keyboard was switched to the alphabetic mode before the experiment. The sub-

ject typed in their user-name first; after that, using an ACCUSPLIT Pro Survivor-A601X

stopwatch, the experimenter recorded the time it took for the user to correctly type
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in the password; the stopwatch had a precision of 0.01 seconds [143]. The user started

typing in the password when the experimenter uttered “start”, and the stopwatch

was stopped as soon as the experimenter perceived that the login screen had changed

to the “starting” screen—the recorded time includes the time spent in failed logins.

4.3.4 Old Password, Unfamiliar Keyboard-Layout, with Count-Down

The subject was asked to login to the university email account using an alphabetic

keyboard, specifically using the A2Z Alphabetic & Standard Layout Combination

Keyboard; the keyboard was switched to the alphabetic mode before the experi-

ment. The subject typed in her user-name first; after that, using an ACCUSPLIT

Pro Survivor-A601X stopwatch, the experimenter recorded the time it took for the

user to correctly type in the password; the stopwatch had a precision of 0.01 sec-

onds [143]. The user started typing in the password when the experimenter uttered

“start”, and the stopwatch was stopped as soon as the experimenter perceived that

the login screen had changed to the “starting” screen—the recorded time includes

the time spent in failed logins. While logging in, the user counted down by 2 starting

at 97; if the user reached 1 and still was not able to log in, the count-down resumed

from 97.

4.3.5 Four Conditions with a New Password

The user was given a user-name and a password for a test website. The user-name

was the user’s first name in lower-case letters. The password was 10-characters long,

was pronounceable with three syllables in it; and it contained one capital letter,

one special symbol, and one digit in it; the other seven characters were lower-case

letters. The digit and the special symbol in the password were “l33t” substitutions

[142]. The user was given time to memorize the user-name and the password; when

she felt confident that she had memorized the user-name and the password, she was

given the following distractor task.

In the distractor task, the user was given a stack of five cards; on each card—

from the second to the forth—there was a random sequence of 4 digits (each digit

from 0–8); the purpose of the topmost card was to hide the random sequence on
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the first card. When the experimenter uttered “start”, the user removed the top

card, looked at the first 4-digit random sequence, read it out loud, and looked away

from the card. After waiting for two ticks from a metronome, which was set to tick

every second, the user spelled out the random sequence with each digit increased by

1 while still looking away from the card. For example, if the 4-digit sequence on a

card was “0571”, then the user read it out loud and looked away from the card. After

waiting for two ticks from the metronome, she spelled out “1682” while looking away

from the card. The same process was repeated for the remaining three cards [145].

We used a software metronome called “Mobile Metronome” on a Samsung Galaxy

S4 smartphone [144]. When the distractor task was over, the user was asked to

recall the password she was given before the distractor task; if she failed to recall

the password, she was given the password again for memorizing and the process

commenced again. The distractor task acted as a “rehearsal-prevention” task—to

ensure that the user was not rehearsing the password under her breath [146]. At the

end of the distractor task (lasting about 1 minute), if the user successfully recalled

the password, it was assumed that she was able to register the password to her

long-term memory; for, memory tested after one or two minutes behaves similarly

to memory tested after one or two days, or even years [131].

Once the user had memorized the user-name and the password provided by the

experimenter, she was asked to login to the test website in four conditions similar to

those with her old password: with QWERTY keyboard, with QWERTY keyboard while

counting down, with alphabetic keyboard, and finally with alphabetic keyboard while

counting down. The eight study conditions are described in Table 4.1. In order

Table 4.1: The eight conditions, in which a user had to login

Index Description

1 Old password, QWERTY keyboard

2 Old password, QWERTY keyboard while counting down

3 Old password, alphabetic keyboard

4 Old password, alphabetic keyboard while counting down

5 New password, QWERTY keyboard

6 New password, QWERTY keyboard while counting down

7 New password, alphabetic keyboard

8 New password, alphabetic keyboard while counting down
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to keep the “learning effect” across the eight conditions minimized, we randomly

shuffled the order of the conditions for each subject [147]. The order in which the

subjects performed the conditions are shown in table 4.2.

Table 4.2: The order in which the eight conditions were performed

User Order of Conditions

1 〈1, 2, 3, 4, 5, 6, 7, 8〉

2 〈6, 1, 8, 2, 7, 4, 3, 5〉

3 〈7, 1, 5, 6, 3, 2, 4, 8〉

4 〈8, 1, 6, 5, 3, 4, 7, 2〉

5 〈2, 7, 1, 5, 3, 6, 8, 4〉

6 〈5, 4, 2, 1, 8, 3, 6, 7〉

7 〈1, 3, 6, 7, 8, 2, 5, 4〉

4.3.6 Time Spent in Password Input

During the password-input process, with reference to Figure 4-3, steps 2 and 3

take the larger portion of time, while step 1 is relatively fast. So, a disruption in

step 2 should increase the total time of the input process more than a disruption

in step 1 ; nevertheless, as step 1 must be completed in order to initiate step 2 ,

according to the subjective experience of a user, a disruption in step 1 should pose

more difficulty. Table 4.3 shows the various time-consuming tasks—according to our

Table 4.3: Tasks in Eight Conditions

Index Relevant Tasks that Consume Time

1
Fetch from LTS, look-up (chunked coordinates),
and move finger

2
Fetch from LTS (↑↑), look-up (chunked coordinates),
and move finger

3

Fetch from LTS, look-up (search visually)(↑↑),
and move finger (correct erroneous finger movements)(↑↑)

4

Fetch from LTS (↑↑), look-up (search visually) (↑↑),
and move finger (correct erroneous finger movements)(↑↑)

5
Fetch from LTS(↑), look-up (individual coordinates)(↑),
and move finger

6
Fetch from LTS (↑↑↑), look-up (individual coordinates)(↑),
and move finger

7

Fetch from LTS(↑), look-up (search visually)(↑↑),
and move finger (correct erroneous finger movements)(↑)

8

Fetch from LTS (↑↑↑), look-up (search visually)(↑↑),
and move finger(correct erroneous finger movements)(↑)
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proposed model—that are involved in inputting a password in the eight conditions

described in Table 4.1. There are three types of tasks: fetch from LTS, look-up

coordinates, and move finger. Each of these three tasks has zero, one, or more

upward arrows associated with it—indicating an increase in time from the baseline.

For example, the baseline-time for the task “fetch from LTS,” is in condition 1,

while in condition 5 this task has one upward arrow associated with it—indicating

that fetching is slower for a new password than it is for an old password. Table 4.4

Table 4.4: Comparing time spent in a pair of conditions

Condition Index →
↓ 1 2 3 4 5 6 7 8

1 = < < < < < < <

2 = < < =? < < <

3 = < > <? =? <

4 = > >? > <

5 = < < <

6 = >? <

7 = <

8 =

shows what we should expect, according to Table 4.4, if we compare the time spent

between a pair of conditions. A cell (x, y) has a “=” if the time spent in condition

x is approximately equal to the time spent in condition y; it has a “<”, if the time

spent in condition x is less than the time spent in condition y; it has a “>” if the

time spent in condition x is greater than the time spent in condition y; relation for

< holds; and it has a “<?”, “>?”, or “=?” if the relation is not apparent from our

model. The reasons, why we should expect the relations shown in table 4.4 are given

in table 4.5; we do not provide reasons for the pair of conditions where the relation

is evident, e.g., any pair containing condition 1, because the time for condition 1 is

the baseline for all other conditions. We note that if a cell (x, y) has a “>” in it,

then the cell (y, x) has a “<” in it and vice versa; sp, in Table 4.4, only the diagonal

and the upper triangular part is shown.
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Table 4.5: Reasons for the relations between median times in a pair of conditions

Cell Prediction Reason

(2,3) <
As fetch from LTS is robust for an old password,

visual search dominates

(2,5) =?
Fetch has higher time in 2,

but saves time from chunked coordinates

(3,6) <?
Highly disrupted fetch for a new password
is more time-consuming than a visual search

(3,7) =?
Fetch takes more time for a new password, but

erroneous finger movements are higher for an old password

(4,6) >?
Disruption in fetch for an old password along with a visual
search dominate a highly disrupted fetch for a new password

(6,7) >?
Highly disrupted fetch for a new password
is more time-consuming than a visual search

Table 4.6: Information about old password and typing speed

User Length Approx. Number of Times Typed Typing Speed (wpm)

1 14 900 32

2 19 480 70

3 10 72 48

4 14 40 53

5 13 1800 20

6 10 120 49

7 10 900 43

4.4 Results

Table 4.6 shows the length of the password (old password) that a user used for

Marquette University Email account and her typing speed. Users took the typing

test [148] three times and the mean adjusted speed in word per minute (wpm) is

shown in the table. The recorded time for a condition includes the reaction time

(≈ 0.15 seconds) of a subject to start typing after she hears the experimenter uttering

“start” and the reaction time (≈ 0.19 seconds) of the experimenter when he stops

the stop-watch as soon as he sees the “starting” screen, we subtracted a total of 0.34

seconds from the total time for each condition [149]. The lengths of the old password

and the password a user was given for the test website were not equal in length; so,

in order to compare between different conditions we normalized the total time spent

typing a password by its length. From figure 4-5, it is clear that for the old password

the largest time spent was in condition 4 and the least time spent was in condition

1; similarly for the new password (for the test site) condition 5 was the quickest and
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condition 8 was the slowest. That the time spent in condition 8 was higher than

the time spent in condition 4 and the time spent in condition 7 was higher than the

time spent in condition 3, indicates that for the new password counting down had

a greater disruptive effect; because, we think, the declarative memory is less robust

(therefore step 1 is less robust) for the new password. We also note that the time

spent in condition 5 was a little higher than it was for condition 1; which shows

that motor memory did help increase the efficiency of the password input, but not

significantly so. A cell (x, y) in Table 4.7 shows the difference between the median

Table 4.7: Difference in median time (sec.) per character between pairs of conditions

Condition Index →
↓ 1 2 3 4 5 6 7 8

1 = −0.20 −0.97 −2.12 −0.29 −1.35 −1.06 −5.45

2 = −0.78 −1.93 −0.09 −1.15 −0.86 −5.25

3 = −1.15 0.69 −0.37 −0.08 −4.47

4 = 1.84 0.78 1.07 −3.32

5 = −1.06 −0.77 −5.16

6 = 0.29 −4.10

7 = −4.39

8 =

time per character in condition x and the median time per character in condition y.

We see that Table 4.7 matches well with the qualitative predictions from our model

as shown in Table 4.4.

4.4.1 Users’ Opinions

At the end of the study, each user was given a questionnaire; the goal of the questions

was to learn about the users’ subjective experience of the conditions; below we give

the questions along with the users’ replies:

Have you ever used a different layout than QWERTY for a keyboard?

The users only used keyboards with QWERTY layout. So, A2Z Alphabetic & Standard

Layout Combination Keyboard forced the users to visually search for the desired

key.
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What was challenging about login-ing while counting backwards?

Multitasking was the reason that the users thought made the login-ing while counting

backwards condition challenging; one user expressed that he had more difficulty

remembering the new password while counting backwards than he had for the old

password. So, in general counting backwards was able to keep the STS busy and it

was more difficult to fetch from LTS for a new password.

What was challenging about login-ing using a keyboard with an unfamiliar lay-

out?

Table 4.8: Challenges with an unfamiliar layout

User Reply

1 “Finding the keys”

2 “Muscle memory for initial password didn’t match”

3 “Have to find the buttons”

4 “Difficult to find letters (with respect to finger)”

5
“For QWERTY automatically my finger goes at the right place

but for A2Z it is hard to find the right key”

6 “In subconscious I was looking for the keys in the QWERTY places”

7 “Difficult to find keys”

Users did have to search for the desired keys visually on the A2Z keyboard. From

the replies of users 2, 5, and 6, it appears that they had the experience of erroneous

finger movements.

Which one was more challenging: counting backwards or unfamiliar layout?

Even though falling back to visual search for keys on the A2Z keyboard increased

login time more than the time increased due to counting backwards, the predominant

subjective evaluation of the users was that counting backwards was more challenging

among the two.

Do you think it is a good idea to allow a user to test herself if she has really

remembered a password she has just created for a new account?

Users did think that such a test would help one to memorize and remember a new

password better.
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What type of test, if yo can successfully complete, will make you confident that

you have remembered the new password?

Choosing one’s password from among similar-looking decoy passwords and letting

one perform mock logins after short delays were the replies we got from the users.

4.5 Related Works

Here we discuss some of the research works on motor skill learning related to the

model that we have proposed for the password input process.

Willingham et al. [136] propose that when motor sequences are learned implic-

itly, they are learned in terms of response-locations coded in egocentric space; i.e.,

with respect to one’s body-parts. In [137] it was proposed that the Central Nervous

System plans reaching movements in extrinsic space, with target and hand location

initially coded as vectors with respect to fixation that are then subtracted to produce

an intended movement vector in a hand-centered coordinate system. The transfor-

mation of this vector into motor commands depends on the maps or the internal

models. Wolpert et al. [138] mentioned, among other possibilities, lookup table as

a possible representation for the internal model in the Central Nervous System. For

Serial Reaction Time tasks, Koch and Hoffmann [139] found that relational patterns

in keystroke sequences (in spatial dimension) helps in motor learning through facili-

tating the formation of chunks. Consistent insertion of pauses also improved learning

for weakly patterned keystroke sequences; however, pauses hampers learning if the

keystroke sequence has strong relational patterns, and insertion of random pauses

did not help either. They also found that within a chunk, response was quicker and

errors were few; but for the first element of a chunk the response was slower and

the errors were more. Even in the absence of any relational or statistical structure,

visuomotor sequences were learned as chunks which acted as single memory units;

chunks were different across different people for the same sequence, and even when

the sequence was shuffled preserving the learned chunks, savings in time were ob-

served [140]. In a Serial Reaction Time task, if the sequence is unexpectedly removed

and replaced with random trials, the participant initially continues to inappropri-
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ately play out the sequence [141], which is somewhat similar to the erroneous finger

movements in our model.

4.6 Discussion

Effect of motor memory on the time it takes to correctly type in a password is,

according to our model, most vivid when we contrast condition 1 with condition 2;

and we see that motor memory might have reduced the required (median) time, and

the reduction—according to our data—has an upper bound of 29 centi-seconds per

password-character and for say, a password of length 13, it would save at most ≈ 3.77

seconds per login. However, according to our model, motor memory is auxiliary to

the input process; the user must perform step 1 accurately in order to initiate the

efficiency gained from motor memory. For example, for two of the users, counting

backwards (condition 2 and condition 6) had a near-incapacitating effect; they had

to pause the counting significantly in order to make any progress in typing in the

password; this never happened for conditions 3 and 7. Besides, motor memory for a

password takes more time to develop than the declarative memory for a password.

Predominantly, the failed attempts in our study occured in the conditions involving

counting backwards task; though, the total login time increased more when a user

had to visually search for a key with an unfamiliar layout than the increase in time

due to counting backwards, users experienced more difficulty in the later condition.

As a result, if memory tests are to be given in order to increase a user’s confidence

that she will remember a newly created password better, we think the tests should

aim for bolstering a user’s declarative memory of her password.
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Chapter 5

Usable End-User Authentication for the Web

5.1 Password Creation Interface

Traditionally when a user wants to create an account on the web, she has to choose

a username, a password, and has to provide some information about herself, e.g.,

her date of birth. Usually there are some restrictions on the types of passwords she

can choose; and when a user chooses a password that conforms with the rules, she

is asked to confirm the password by typing it in a second time. Fig. 5-1 shows the

portion of a Gmail account creation interface where a user creates and confirms her

password. After a user has successfully created an account, it is implicitly assumed

that she has remembered her newly created password; albeit, the a user is advised to

choose a long, hard-to-guess, random string containing lower and upper case letters,

digits, and special characters and she is further advised not to reuse a password from

another of her web accounts. As a result, a user might have already forgotten her

password after a few minutes of creating the account; or she might reuse one of her

favorite passwords, or she can use a slight variation of one of her well-memorized old

passwords, all of which weaken security.

5.2 Motivation Behind the Proposed Password Creation Interface

The interface we propose, provides a user with the opportunity for testing if she

has actually remembered a newly created password. Since a user usually adopts the

security-leaking strategies related to a password, only to cope with the burden it

creates on her memory, we hope that if a user leaves an account creation interface

with the confidence that she will remember the password, she will be motivated to

choose a strong password and will be less motivated to reuse passwords from other

accounts or to write the password down [13].
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Figure 5-1: Creating a Gmail account
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5.3 Description of the Proposed Password Creation Interface

Other than a button called, “Test,” our proposed interface is similar to a traditional

account creation interface on the web. Before submitting the account information

along with the chosen password, a user may test her memory of the new password

by clicking on the “Test” button. On clicking the “Test” button, a user is presented

with a series of memory tasks built around her new password; the more tasks the

user successfully completes, the more likely it is that she has remembered the new

password. From memory research, it is known that if a person continues rehearsing

a new information, she can maintain it in her short-term memory yet not be able

to register the information to her long-term memory; in that case, she can answer

questions about the new information but forget the information shortly afterwards.

So, in our proposed interface, between any two memory tasks there is a distractor

task, which acts as a “rehearsal prevention task” [146]. When a user clicks the “Test”

button, the sequence of tasks she is presented with is: distractor task, memory task-

1, distractor task, memory task-2, distractor task, memory task-3, distractor task,

memory task-4. Next we describe the distractor task and the four memory tasks.

5.3.1 Distractor Task

Figure 5-2: Correctly perform the addition or subtraction

Figure 5-2 shows the interface for the distractor task. A user is presented with
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five consecutive additions or subtractions between two one-digit numbers in quick

succession (one operation about every three seconds); she has to perform the cal-

culations timely and correctly and how many correct calculations she has done so

far is shown at the bottom. The motivation for the distractor task is to keep the

user’s short-term memory occupied, so that it becomes difficult for her to continue

rehearsing the new password under her breath. Figure 5-3 shows a distractor task

in action.

Figure 5-3: In the middle of a distractor task

Algorithm 3 Distractor Task

1: for i← 1 to N do

2: m← RandomInt(1, 9)
3: operator← ‘ + ’
4: if UR ≤ 0.5 then

5: operator← ‘− ’
6: end if

7: n← RandomInt(1, 9)
8: Prompt(m, operator, n, t)
9: end for

Algorithm 3 shows the pseudocode for a distractor task. On line 1, N denotes

how many additions or subtractions a user needs to do in each distractor task; for

our experiment N = 5. The “RandomInt” function returns an integer between 1 and

9, inclusive. On line 4, UR is the uniform random variable. On line 8, the “Prompt”

function presents to the user the addition or subtraction involving m, operator, and
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n for t seconds and in our experiments t = 3.

Although 3 seconds proved to be adequate for an addition or a subtraction be-

tween two digits and inputting the result, when the first digit is less than the second

digit and the operation is a subtraction, it took users longer than the other oper-

ations. If we denote E as the event that the user is prompted with a subtraction

of a digit from a smaller digit then E has a binomial distribution. Let us assume

Pr (E) = p. Then the distribution is

PDFE(k) =

(

M

k

)

pk(1− p)M−k (5.1)

Here M is the total number of operations presented to the user. There are 8·9
2 = 36

choices out of 9 · 9 = 81 pairs of (m,n) for which m < n. Let E< be the event

that m < n and E‘−’ be the event that the chosen operation is a subtraction.

Now Pr (E) = Pr (E<) ∩ Pr (E‘−’). As E< and E‘−’ are independent events, we

have Pr (E) = Pr (E<) · Pr (E‘−’) = 36
81 ·

1
2 ≈ 0.22. In our experiment, we have

four distractor tasks and each distractor task has 5 additions or subtractions; thus

M = 4 · 5 = 20. So, for our experiment Equation 5.1 takes the form:

PDFE(k) ≈

(

20

k

)

(0.22)k(0.78)20−k (5.2)

Figure 5-4 shows that E usually occurs 3, 4, or 5 times among the 20 operations

that the user has to perform in the four distractor tasks; thus, the user should not

face too much of cognitive fatigue.

5.3.2 Memory Task-1

Figure 5-5 shows the interface for the first memory task; here, the correct username

(“mtanviru”) and the correct password (“B10dG@Jeiw”) is buried among similar-

looking decoys. A user has to choose the correct username from the left column and

the correct password from the right column. The goal of this task is to test if the

user has correctly associated her username with her new password in her memory.

Traditional account creation interface does not allow a user to test for her username;

we believe, it is important that the user correctly remembers not only her password
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Figure 5-4: Distribution of the number of difficult arithmetic operations

Figure 5-5: Select correct username and password
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but also which username is associated with the correct password.

5.3.3 Memory Task-2

After successfully completing the first memory task and the following distractor task,

a user is presented with the second memory task, which is shown in Figure 5-6. If a

Figure 5-6: Select correct characters from the drop-down lists

user has 10 characters in her password, there will be 10 drop-down lists, each list will

contain the correct character for the corresponding position of the password buried

among random decoy characters. The goal of this memory task is to test if the user

correctly recognizes the characters of her password.

Figure 5-7: 10-sided die [159]
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Algorithm 4 Second Memory Task: Drop-down Lists

1: for every character c in Password do

2: count← 0
3: List← ()
4: while count < nDecoys do

5: char← RandomCharacter(Σ)
6: if char 6= c and char 6∈ List then

7: Listcount ← char

8: count← count+ 1
9: end if

10: end while

11: index← RandInt(0, 9)
12: Insert(index, char, List)
13: LoadAsDropdown(List)
14: end for

Algorithm 4 shows the pseudocode for creating the drop-down lists, in each of

which is buried one character of the password among 9 distinct decoy characters

drawn from an alphabet, Σ.

In order to quantify how much effort a user may need to put to complete this

memory task, let us assume that the user scans a drop-down list from top to bottom

in search of the desired character and she needs equal effort to decide for any decoy

character; then her effort for one drop-down list may be quantified by the position

where the correct character is in. Thus for a password with n characters in it, a

user’s total effort for this memory task assumes the probability distribution of the

sum of n, 10-sided die like the one shown in Figure 5-7. From Figure 5-8, we see that

the average effort a user needs to perform memory task-2 increases linearly with the

length of her password.

5.3.4 Memory Task-3

After successfully completing the second memory task and the following distractor

task, a user has to perform the third memory task, which tests if the user correctly

remembers the order of the characters in her password. Figure 5-9 shows the interface

for this task. The characters in the password have been shuffled randomly and the

user has to input the indices corresponding to the characters in an order that builds

up her password. In the example of Figure 5-9, the password being “B10dG@Jeiw”,
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Figure 5-9: Select correct characters from the drop-down lists

the correct input would be “7,6,2,4,1,8,3,9,5,0”.

If we assume that a password does not have any character repeated in it, then

how much effort a user has to put in performing the Memory Task-3 may be quan-

tified by counting how many inversions occur in the shuffled password with respect

to her original (newly created) password. Let S[1 . . . n] be the shuffled version of the

password A[1 . . . n]. For i < j and x > y, if A[x] = B[i] and A[y] = B[j], then we call

the pair 〈i, j〉 an inversion [150]. The minimum and the maximum number of inver-

sions are: 0 and
(

n
2

)

. If the shuffling is done via multiple independent swaps between

randomly chosen pairs of characters, we should not expect the number of inversions

to be too high or too low; for, that would correspond to many occurrences of a low

probability (
(

n
2

)−1
) event; rather, the number of inversions that lie in the middle of

the spectrum should have high probability. Figure 5-10 shows the distribution of

the number of inversions giving support to our expectation.

5.3.5 Memory Task-4

The final memory task prompts the user to input her new password in reverse order.

Figure 5-11 shows the interface and the correct password being “B10dG@Jeiw,” the

correct input for this task would be “wieJ@Gd01B”.
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By the time the user has successfully completed all four memory tasks, we believe

that her declarative memory for her password, i.e., the memory of contents and their

order, have been more permanent; additionally she will be more confident about

her memory of the password, which may in turn motivate her to choose a strong

password.

5.4 Security Issues

All the memory tasks and the distractor tasks, reside on a single PHP page; using

JavaScript we hide or show pertinent parts of the page. When the user has finished

testing her memory for the password, she submits the account information to the

server similarly to a traditional interface. So, for our interface, even if it appears

that the password is on the clear, it actually never leaves the user’s machine as plain

text.

A graver security concern with our interface is that it makes the success of a

shoulder-surfing attack more probable; because, while the user is performing various

memory tasks, the password is shown on the screen several times. We stipulate that

the user tests her memory of a password only if she is confident enough that the

surroundings is safe, for example at home, as was advised in [6].

5.5 Experimental Procedure

As the study involves human subjects, we acquired approval from the Institutional

Review Board of Marquette University. We recruited 21 participants from a class

on “Object-Oriented Software Design.” In order to motivate the subjects to remem-

ber their account credentials, we posted the weekly assignments on our website; so

that the students had to login to the website to access the materials related to the

assignments in a regular fashion over the whole semester. About half of the par-

ticipants were randomly assigned to the memory task version of the web interface,

while the other half created the account and logged in to our website similarly to

any traditional website. Henceforth we refer to the group of users who completed

the memory tasks as the “Memory Task Group” (convetionally the experimental
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group) and the latter group as the ”Traditional Group” (conventionally the control

group). The subjects completed a questionnaire at the end of the study.

5.6 Tools Used

We used MySQL, PHP, and JavaScript to build the website and to record the data.

For data preprocessing we used PHP and for data analysis we used R and Java.

5.7 Information Collected

Figure 5-12: Database schema

In the study version of the web interface, we have collected some data about

the login behavior of the subjects with a goal to compare between the Memory

Task Group and the Traditional Group with respect to their memory for passwords.

In Figure 5-12, the database schema has been shown. The table admins has the

credentials of the administrators of the website, who could upload assignments. For

each of the four distractor tasks, there is a corresponding table which records, among

other information, how many of the 5 additions/subtractions a user got correct. The

table login_attempts is crucial, because it records detailed information about each

login attempt; specifically in the field key_history we record all the keys that the

user pressed for a particular login attempt along with how long (in milliseconds) it

took to press each of those keys. In the table pass_history we record information

about all the created passwords and the members table keeps track of the users.

5.8 Results

Table 5.1 shows the total number of users, passwords, and login attempts in our

study.
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Table 5.1: Overall information

Group No. of users No. of passwords No. of attempts

Memory Task 11 15 72

Traditional 10 18 141

Total 21 33 213

5.8.1 Number of Passwords

The first comparison criterion we explore is the number of passwords per user in

the two groups. The motivation is that if user A created more passwords than user

B, it probably indicates that user A was having more difficulty remembering the

passwords than user B. Table 5.2 shows the result.

Table 5.2: No. of passwords per user

Group Mean Median Standard Deviation

Memory Task 1.36 1 0.25

Traditional 1.80 1 1.07

From Table 5.2, we see that the mean number of passwords was higher for the

Traditional Group than it was for the Memory Task Group; but, the difference was

not significant (t(12.787) = 1.2112, p = 0.1239). However, the variance was signifi-

cantly lower for the Memory Task Group. Both groups passed the Shapiro-Wilk test

for normality [151]: for the Memory Task Group we gotW = 0.6245, p = 5.146×10−5

and for the Traditional Group we got: W = 0.6405, p = 0.0001687. Consequently, to

compare variance we used F-test [152] with the alternative hypothesis that Memory

Task Group had lower variance; and at 95% confidence interval we got: F (10, 9) =

0.2386, p = 0.01775.

Table 5.3: Overall valid information

Group No. of users No. of passwords No. of attempts

Memory Task 10 13 60

Traditional 10 15 101

Total 20(1 ↓) 28(5 ↓) 161(52 ↓)

In the key_history field of the login_attempt table, we noticed that some

successful login attempts (typed password matched correct password) did not have

enough key strokes, which we think happened because of the browser’s auto-completion
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and/or auto-fill features. In order to purge such suspect login attempts we use the

following definitions:

Definition 5.1. Valid key. A valid key is one among the 63 keys, that produces

visible output, on a QWERTY keyboard.

The 63 keys include: ‘0123456789-=abcdefghijklmnopqrstuvwxyz[]\;’,./

and the keys on the number pad (if any). We note that using other keys in com-

bination with these 63 keys, one could generate more symbols, e.g., Shift+1 may

produce !; however, as we are here interested only in the number of password-

symbols, counting the 63 keys serves our purpose. We counted the 63 keys from the

corresponding key-codes of the onkeydown events in JavaScript for the four web-

browsers: Chrome, Firefox, Safari, and IE; the key-codes for the 63 keys and the

key-codes for other usual keys, like: Shift, Tab, Backspace, Delete, etc., do not

overlap accross the four browsers that we considered.

Definition 5.2. Valid login attempt. A valid login attempt has at least 3 valid keys

in its corresponding key_history field.

Definition 5.3. Valid password. A valid password has at least 1 valid login attempt

associated with it.

Definition 5.4. Valid user. A valid user has at least 1 valid password.

In the light of the above definitions, after getting rid of the invalid login attempts,

passwords, and users, the remainder of the data is shown in Table 5.3. It is somewhat

more problematic to define a valid failed attempt than it is to define a valid successful

attempt; we decided upon Definition 1 through trial and error. After cleansing, the

remaining login attempts had associated with them at least as many keys as 46%

of the correct password length. Henceforth, our results are derived from the data in

Table 5.3 where in the row “Total” each entry has associated with it the number of

reduction in parentheses.

5.8.2 Password Strength

Now, we compare the strengths of the passwords chosen by the users of the two

groups, which is important for our study, because it provides a context in which to
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interpret the other results. If among the two groups, one has stronger passwords,

we think the users of that group are performing a more difficult task remembering

the passwords than the other group. We define the symbols that a password can

contain as follows:

Definition 5.5. Simple Symbol. A simple symbol is one of the 7-bit ASCII charac-

ters, except for “Delete,” whose ASCII character-code is 127.

We note that using combinations of multiple keys on the keyboard, a user could

produce single characters that lie outside of the 7-bit ASCII character-set, like: ➞;

but, neither the passwords chosen by the users in our study, nor the corpus of real-

life leaked passwords that we consulted, did contain a character that lies outside of

the 7-bit ASCII character-set; so, Definition 5.5 suffices for our purpose [157].

Definition 5.6. Composite symbol. A composite symbol is a meaningful English

word having at least two characters in it.

We consider the alphabet Σ from which the symbols for a password can be chosen

to consist of two disjoint subsets: Σs and Σc, where Σs contains simple symbols and

Σc contains composite symbols. We compute the strength of a password in two steps:

first, we compute the strength while considering only composite symbols; by the end

of the first step the password is stripped of the composite symbols in it; in the second

step, we compute the strength of the remainder of the password while considering

only simple symbols. For both steps we use Shannon’s entropy to compute strength

[12]. Then the sum of the Shannon’s entropies of the two steps is the final strength

of the password. For example, for a password π = 〈s1, s2, c3, s4, s5, c6〉, the strength

σ1 computed in the first step, the strength σ2 computed in the second step, and the

final strength σ are as follows:

σ1 = −pc3 log (pc3)− pc6 log (pc6)

σ2 = −ps1 log (ps1)− ps2 log (ps2)− ps4 log (ps4)− ps5 log (ps5)

σ = σ1 + σ2

Here, ps1 , ps2 , . . . pc6 are the symbol-probabilities. Given a dictionary of English
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words D and a set of revealed unique real-life passwords P, the probability distribu-

tion function for the composite symbols are obtained empirically following Algorithm

5, which outputsHc, that contains a mapping of each composite symbol c to its prob-

ability and a stripped down version of P, in which no password contains a composite

symbol in it.

Algorithm 5 Computing p.d.f. of composite symbols

1: Hc ← ∅

2: for each password ℘ ∈ P do

3: ℘′ ← ℘
4: n← |℘′|
5: for i← 0 to n− 1 do

6: for j ← n down to i+ 1 do

7: chunk← ℘′[i . . . (j − 1)]
8: if chunk ∈ D then

9: if chunk 6∈ Hc then

10: Hc ← Hc ∪ {〈chunk, 1〉}
11: else

12: Hc[chunk]← Hc[chunk] + 1
13: end if

14: first half ← ℘′[0 . . . (i− 1)]
15: second half ← ✶(j 6=n)℘

′[j . . . (n− 1)]
16: ℘′ ← concat(first half, second half)
17: n← |℘′|
18: break

19: end if

20: end for

21: end for

22: P[℘]← ℘′

23: end for

24: m←
∑

c∈Hc

Hc[c]

25: for each composite symbol c ∈ Hc do

26: Hc[c]←
Hc[c]
m

27: end for

28: return(Hc,P)

In Algorithm 5, on lines 5–25, for each password we find out the composite

symbols contained in it and when one is found we take note of it in Hs along with

how many times we have seen the composite symbol in question and then remove

it from the password. After the password has been stripped of all the composite

symbols contained in it, we save back the remaining skeleton in P on line 24. On lines

26–29, we transform the counts for the composite symbols in Hs into probability. In
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the worst case, as Algorithm 5 considers all possible pairs of start and end indices in

a password, for each password ℘ the algorithm runs O

((

|℘|

2

))

times; so in total

the worst case complexity for Algorithm 5 is O

(

|P|

(

|℘|

2

))

.

Given the output (Hc,P) from Algorithm 5 and the alphabet of simple symbols

Σs as inputs, Algorithm 6 computes the probability distribution function for symbol

symbols and outputs Hs, which contains a mapping from each simple symbol to its

probability.

Algorithm 6 Computing p.d.f. of simple symbols

1: Hs ← ∅

2: for each simple symbol s ∈ Σs do

3: Hs ← Hs ∪ {〈s, 1〉}
4: for each skeleton password ℘ ∈ P do

5: for each simple symbol s′ ∈ ℘ do

6: Hs[s
′]← Hs[s

′] + 1
7: end for

8: end for

9: n←
∑

s′∈Hs

Hs[s
′]

10: for each simple symbol s′ ∈ Hs do

11: Hs[s
′]← Hs[s′]

n

12: end for

13: end for

14: return Hs

With Hc and Hs, as outputs from Algorithm 5 and Algorithm 6, at hand, we

can compute the strength of password (in two steps) following Algorithm 7. The

for loop on line 3 in Algorithm 7 is similar to the for loop on line 5 in Algorithm 5;

on line 8 we compute the Shannon’s entropy.

For the English dictionary D in Algorithm 5 we added the most common 20 PIN’s

[156] to the dictionary in [155] containing about a quarter of a million English words.

For P we used the freely available “passwords.txt” [157], which contains about 2.2

million real-life passwords. As a pre-processing step we converted each word in D

and each password in P to lower-case. As a result, Hc and Hs contained only lower-

case letters. While giving a password as input to Algorithm 7 we converted it to

lowercase first. In Figure 5-13 we see that the cumulative distribution functions for

both the composite and simple symbols in real-life passwords are far from a uniform
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Algorithm 7 Computing strength σ of a password π

1: σ ← 0
2: n← |π|
3: for i← 0 to n− 1 do

4: for j ← n down to i+ 1 do

5: chunk← ℘′[i . . . (j − 1)]
6: if chunk ∈ Hc then

7: ps ← Hc[chunk]
8: σ ← σ + (−ps · log2 (ps))
9: first half ← π[0 . . . (i− 1)]

10: second half ← ✶(j 6=n)π[j . . . (n− 1)]
11: π ← concat(first half, second half)
12: n← |π|
13: break

14: end if

15: end for

16: end for

17: for each simple symbol s ∈ π do

18: pc ← Hs[s]
19: σ ← σ + (−pc · log2 (pc))
20: end for

21: return σ

distribution. From Figure 5-14, we see that the number of characters contained in

composite symbols for both groups are equal. The number of passwords (n), total

number of characters in passwords (N), number of composites (m), number of char-

acters contained in composite symbols (M), and the fraction of password characters

covered by the composite symbols (f) found by Algorithm 7 in the passwords chosen

by the Memory Task Group and the Traditional Group are shown in Table 5.4; once

again, we see that the passwords in the Traditional Group contained more composite

symbols. Even after eliminating the composite symbols on lines 3–16 in Algorithm 7,

meaningful parts remained in the skeleton passwords and most of those were words

written with “l33t” substitutions. Incorporating l33t substitutions in Algorithm 5

and 7 increased the computational complexity substantially; we thus leave it as a

future work.

Table 5.4: Information about composite symbols

Group n N m M f = M
N

Memory Task 13 141 13 50 ≈ 35.4%

Traditional 15 159 18 63 ≈ 39.6%
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Figure 5-13: Empirically determined c.d.f. for composite and simple symbols
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Before discussing the strengths of the chosen passwords of the Memory Task

Group and the Traditional Group, we investigate: between two passwords say, π1 =

〈s1, s2, c1, s6〉 and π2 = 〈s1, s2, s3, s4, s6, 〉 of equal length, how often Algorithm 7

assigns more strength to π2. In other words, between two equal length passwords,

one (π1) contains one or more composite symbols and the other (π2) containing only

simple symbols; and, all the simple symbols contained in π1 are also present in π2,

we ask whether Algorithm 7 assigns more strength to π2. We start with the following

definition:

Definition 5.7. Opportunity Entropies. Opportunity entropies of a composite symbol—

of length n—is the set of entropies of all n-grams composed of only simple symbols

and none of those n-grams is a composite symbol.

We argue that most of the times, Algorithm 7 attributes higher strength to π2,

which is desirable; because, intuitively a composite symbol is easier to remember

than a equally long n-gram which is not a composite symbol. Our argument is

based on the following claim:

Claim 5.1. Most of the opportunity entropies of almost all composite symbols, are

higher than the entropies of the composite symbols themselves.

Proof. The violin plot in Figure 5-15 shows that most of the 2-grams, which are not

composite symbols themselves, have higher entropies than the entropies of almost all

composite symbols (of length 2 or more). In fact, 6-th quantile of the 2-grams have

higher entropy than about 99% of the composite symbols. As entropy is additive,

for all n-grams where n > 2, the situation can only be be better.

The Q-Q plot in Figure 5-16 shows that the strength of the passwords chosen by

the Memory Task Group were higher; but, the median strength of the passwords cho-

sen by the Memory Task Group was not significantly higher than the median strength

of the passwords chosen by the Traditional Group (Wilcoxon: W = 110, p = 0.1018).

There was a reason why, for a user in the Memory Task Group, the passwords after

the first one could be stronger: since such a user—after creating her account—

discovers that she belongs to the Memory Task Group and thus she gets to practice
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Figure 5-15: Entropy of composite symbols and entropy of 2-grams

with her password through the Memory Tasks, she might have chosen stronger pass-

words from the second time onwards. However, from Table 5.6 we see that the three

users in the Memory Task Group, who used more than one passwords, did not con-

sistently chose a stronger password as their second one. Consequently, we attribute

the higher strength of passwords in the Memory Task Group to chance.

Table 5.5: Password strength

Group Mean Median Standard Deviation

Memory Task 1.19 1.22 0.59

Traditional 0.97 0.76 0.44

Table 5.6: Strength of first and second passwords

User First Password Second Password

User 1 2.26 1.22

User 2 1.41 1.65

User 3 1.73 1.72

5.8.3 Success Rate

For a user, we define success rate to be the ratio between the number of successful

login attempts and the number of total attempts. However, two or more successful

attempts in quick succession or for that matter, two or more failed attempts in quick

succession should be considered as a single attempt from the memory point of view.
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Figure 5-16: Password strengths

We require that two consecutive successful or two consecutive failed attempts must

have at least one minute of separation between them. But, if a successful attempt

follows a failed attempt within one minute, we consider it to be a recovery and thus

we count the latter (successful) but discount the earlier failed attempt.

Table 5.7: Success rate per user

Group Mean Median Standard Deviation

Memory Task 0.91 1 0.13

Traditional 0.87 1 0.23

From Table 5.7, we see that the mean success rate was higher for the Memory

Task Group, though it was not significant (t(14.483) = 0.4402, p = 0.3331); variance

in success rates was lower for the Memory Task Group; but, the significance was

marginal (F (8, 9) = 0.3203, p = 0.0618).

Correlation Between Password Strength and Success Rate

Using Spearman’s rank correlation coefficient [153], we found a small negative cor-

relation (−0.13) between password strength and success rate; though the correlation

was not significant: S = 6183.305, p = 0.2335.
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Figure 5-17: Success rates of two groups over time

Success Rate over Time

Figure 5-17 shows the success rates of the two groups at those points in time when

both groups made at least one more login attempt than the previous time-point. In

the figure we see that for both the Memory Task Group and the Traditional Group,

success rates fell over time. Initially the Memory Task Group had much higher

success rate than the Traditional Group, but the difference got smaller over time.

We think, since the users of the Memory Task Group get an initial boost in memory,

their success rates are higher than those of the users in the Traditional Group, but

over time the effect of that one-time boost in memory wears off.

5.8.4 Time of the Earliest Significant Failure

Let a user u has a set of passwords Π. Then, for a password π ∈ Π, if the i-th login

attempt fails, we denote it by α−
i . For a password π ∈ Π, the date-time of creation

is denoted by τ(π) and the date-time of the i-th failed attempt is denoted by τ
(

α−
i

)

.

Then the time of the earliest significant failure for a password π is defined as,

φ(π) = min
〈α−

i
,α

−

i+1
,α

−

i+2〉
τ(α−

i+2)−τ(α−

i )<ǫ

{

τ
(

α−
i

)

− τ(π)
}
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Table 5.8: Time (min.) of the earliest significant failure

(a) Memory Task Group

User |Π| {φ(π)} Φ(u)

u1 1 {∞} ∞

u2 1 {∞} ∞

u3 1 {∞} ∞

u4 2 {13169.87,∞}
13169.87
≈ 9 days

u5 2 {∞,∞} ∞

u6 2 {41598.82,∞}
41598.82
≈ 29 days

u7 1 {∞} ∞

u8 1 {∞} ∞

u9 1 {∞} ∞

u10 1 {∞} ∞

(b) Traditional Group

User |Π| {φ(π)} Φ(u)

u1 1 {∞} ∞

u2 1 {∞} ∞

u3 1 {∞} ∞

u4 3 {42874.92, 0.5,∞} 0.5

u5 3 {∞,∞, 8.27} 8.27

u6 1 {∞} ∞

u7 1 {∞} ∞

u8 2 {∞,∞} ∞

u9 1 {∞} ∞

u10 1 {∞} ∞

For a user u, then, the time of the earliest significant failure is defined as,

Φ(u) = min
π∈Π
{φ(π)}

We set ǫ = 1 minute and the result is shown in Table 5.8. For two users of

the Traditional Group, significant failure happened almost immediately after the

creation of an account; but, for the Memory Task Group the failures happened

at least a week after the creation of an account. In our opinion, as a user of the

Memory Task Group practice with her password just after creating her account, she

gets a memory boost and she is motivated to ponder upon her new password; as a

result, if a significant failure occurs, it should occur much later. For our dataset,

one interesting consequence of setting ǫ = 1 minute, was that when a user faced a

significant failure with a password, she changed the password, which indicates that

she forgot it. So, for our dataset, it appears that if a user (of either group) faces a

significant failure with a password, then she has forgotten the password.

5.8.5 Confusion in Successful Attempts

We consider two successful attempts as distinct, only if there is a gap of at least

one minute between them. Table 5.9 shows information about the time-separation

of distinct successful login attempts.
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Table 5.9: Time-sepration between distinct successful login attempts (in hrs)

Group Mean Median Standard Deviation Max. Min.

Memory Task 150.28 39.76 217.72 788.37 0.12

Traditional 125.59 30.8 184.27 786.41 0.2
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Figure 5-18: Time-separation between successful attempts

The violin plot of the time-separation of the distinct successful attempts in Figure

5-18 indicates that time-spacings between successful login attempts of both groups

are similar; a Kolmogorov-Smirnov test [154] gives: D = 0.1319, p = 0.7754.

Let the set of all distinct successful login attempts of a user u be denoted by

A+
u . Let the key strokes made by a user u while performing a distinct successful

login attempt α+
u ∈ A

+
u be denoted by κα+

u
with

∣

∣

∣
κα+

u

∣

∣

∣
strokes in it and the correct

password at that attempt be denoted by πα+
u
with

∣

∣

∣
πα+

u

∣

∣

∣
symbols in it. Then for a

user u, the confusion in successful login attempts Cu is defined as:

Cu =
1

∣

∣A+
u

∣

∣

∑

α+
u∈A+

u

1
∣

∣

∣
πα+

u

∣

∣

∣









∣

∣

∣
κα+

u

∣

∣

∣
−
∣

∣

∣
πα+

u

∣

∣

∣

2









We note that
∣

∣

∣
κα+

u

∣

∣

∣
−
∣

∣

∣
πα+

u

∣

∣

∣
≥ 0 and as every extra key that the user inputs has

to be undone with say a backspace, the term under the summation is the number

of extra keys the user has typed relative to the actual length of the password; and

it also ignores a trailing “Enter” key. Figure 5-19 shows the distribution of Cu of
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the Memory Task Group (MEM) and the Traditional Group (TRAD). The median

Cu for the Memory Task Group was significantly lower than that of the Traditional

Group: t(7.742) = −1.9298, p = 0.04548.

Correlation Between Password Strength and Confusion

Using Spearman’s Rank Correlation Coefficient, we found a small negative correla-

tion (−0.18) between confusion and password strength; the correlation, though, was

not significant: S = 1822, p = 0.21.

5.8.6 Error in Failed Login Attempts

We consider two failed login attempts to be the same if the time-gap between them

is less than 1 minute. In order to measure the amount of error for a failed attempt

we use Damerau–Levenshtein distance between the typed password and the correct

password [158]. The Levenshtein distance between two strings x and y is given by

λx,y(|x|, |y|) where,

λx,y(i, j) =



































max (i, j) if min (i, j) = 0,

min























λx,y(i− 1, j) + 1

λx,y(i, j − 1) + 1

λx,y(i− 1, j − 1) + ✶xi 6=yj

otherwise

Damerau–Levenshtein distance is then given by ∆x,y(|x|, |y|) where,

∆x,y(i, j) =























min











λx,y(i, j)

λx,y(i− 2, j − 2) + ✶xi 6=yj

if i > 1, j > 1, xi = yj−1, xi−1 = yj ,

λx,y(i, j) otherwise

The Damerau-Levenshtein distance between two strings is a count of the minimum

number of operations needed to transform one string into the other, where an opera-

tion can be: a deletion, an insertion, a substitution of a single character, or a trans-

position of two adjacent characters. For example, if x =“people” and y =“pepole”,

then λx,y(6, 6) = 2, whereas ∆x,y(6, 6) = 1.

Let A−
u be the set of failed login attempts of a user u, and for a failed login
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Figure 5-20: Eα−

u
according to equation 5.3

attempt α−
u ∈ A

−
u , let the correct password be π∗

α−

u
and let the password entered by

the user be denoted by πα−

u
. Then the error, Eα−

u
for a user u is defined as,

Eα−

u
=

1
∣

∣A−
u

∣

∣

∑

α−

u ∈A−

u

1

|π∗
α−

u

|
∆π

α
−

u
,π∗

α
−

u

(

|πα−

u
|, |π∗

α−

u
|
)

(5.3)

Table 5.10: Eα−

u
according to equation 5.3

Group Mean Median Standard Deviation

Memory Task 0.17 0.13 0.20

Traditional 0.12 0.05 0.19

From Table 5.10 and the Figure 5-20, we see that the users of the Memory Task

Group had a higher Eα−

u
. In order to investigate why the Memory Task Group,

having a higher success rate and a lower confusion, made larger Eα−

u
, we looked

into the distribution of the time-separation between a failed login attempt and the

preceding successful login attempt.

From Figure 5-21, we see that the distributions of the time-separations between

failed login attempts and the preceding successful login attempts for the two groups

are not similar; for the Memory Task Group, the failed login attempts were more

distant from the last successful login attempts. As a result, the time-agnostic defi-

nition of error in Equation 5.3 was an incorrect way to compare errors between the
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Figure 5-21: Time-separation between a failure and the previous success

two groups. We modify Equation 5.3 as follows,

Eα−

u
=

1
∣

∣A−
u

∣

∣

∑

α−

u ∈A−

u

1

|π∗
α−

u

|
∆π

α
−

u
,π∗

α
−

u

(

|πα−

u
|, |π∗

α−

u
|
)

·
1

f
(

τα−

u
, τα+

u

) (5.4)

In Equation 5.4 f
(

τα−

u
, τα+

u

)

is a non-decreasing function of the difference between

the date-time of a failed login attempt τα−

u
and the date-time of its preceding suc-

cessful login attempt, τα+
u
. Though the simplest choice for f(·) would be to take the

difference between its parameters, we adopt the following definition instead:

f
(

τα−

u
, τα+

u

)

= logβ

(

τα−

u
− τα+

u

)

(5.5)

The motivation behind using 5.5 is that for two errors of equal magnitude—one

recent and one distant—we should give more weight to the recent error and two very

distant errors should not have too much difference in weights, the user is expected to

make an error if the login attempt is too far from her last successful login attempt.

We used β = e = 2.718 . . .; but, ideally β should be determined for each user.

In Figure 5-22 we see the repercussion of using Equation 5.4 for comparing errors

between two groups.

From Table 5.11 we see that the mean value of (Eα−

u
) for the Memory Task Group
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Table 5.11: Eα−

u
according to equation 5.4

Group Mean Median Standard Deviation

Memory Task 0.03 0.02 0.03

Traditional 0.06 0.01 0.10

was lower, though not significantly so (t(10.978) = −0.9946, p = 0.17).

Correlation Between E
α

−

u

and Password Strength

Using Spearman’s Rank Correlation Coefficient, we got a small positive correlation

(0.07) between Eα−

u
and password strength; though the correlation was not signifi-

cant: S = 5084.97, p = 0.36.

5.9 Discussion

The goal of our interface was to give the user an opportunity to test her memory

of a newly created password. We expected that after successfully completing the

four memory tasks interleaved between the distractor tasks, a user will feel more

confident that she will remember the password better; additionally, the memory

tasks will help cement a user’s memory of her password and therefore the number

of forgotten passwords will be reduced and we thought if a user gets to test her

memory for a password in a systematic way, she will eventually be motivated to

create stronger passwords than those she usually creates.

In order to compare the password-memorability between the two groups: one

using our interface and the other following the traditional password creation ritual,

we have defined several metrics, such as: number of passwords per user, success

rate, time of the earliest significant failure, confusion, and error in failed attempts.

For every metric, even with stronger passwords, the Memory Task Group appears

to have performed better than the Traditional Group; although in most cases the

significance was low. We believe the reason for the significance being low is: for

both groups, the passwords chosen had significant number of composite symbols in

them; as a result for some user in both groups; the passwords for them, thus, did not

pose much challenge to the memory. As a result, for those users it was equivalent

whether they were in the Memory Task Group or in the Traditional Group which
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made the effective sample size lower.

That the difference between the success rates of the Memory Task Group and the

Traditional Group decreased over time, suggests that completing the memory tasks

gave users a memory boost. The time of earleist significant failure was much lower

for the Memory Task Group suggesting our interface was able to reduce immediate

forgetting and possibly thus it was able to lessen some of the embarrassment a user

feels when she forgets a password in a short while after creating it. Lower confusion

in successful login attempts indicates that the Memory Task Group recalled their

password more accurately. In general, across all the metrics, the variance in the

Memory Task Group was much lower than that of the Traditional Group; we think

it happened because the memory tasks made every user in the Memory Task Group

ponder about their password in a systematic way; thus, the difference between a

more cautious and a less cautious user was smaller. As passwords are part of life

to many people, usually a person has a strategy of her own for remembering a new

password. An adverse effect of our interface could have been to make a user give up

her long practiced personal strategy and to start depending on the memory tasks.

But in our study, that the Memory Task Group, did at least as well as the Traditional

Group in every metric suggests that the users of the Memory Task Group may have

considered the tasks as complimentary to their own strategy.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the major contributions of this dissertation and outline

some avenues for future research.

6.1 Research Achievements

Making end-user authentication both usable and secure at the same time, has been

a research topic for almost half a century; yet, at present there is no comparable

alternative to passwords. Instead of aiming to find a silver bullet that would solve the

problems of end-user authentication in every respect, our approach was to address

the problem differently for different scenarios. Specifically, in this dissertation, two

approaches have been proposed and evaluated: one for smartphones and the other

for the Web.

6.1.1 Usable End-User Authentication for Smartphones

❼ Taking advantage of the built-in sesnors of a smartphone, we have proposed a

transparent end-user authentication framework, which— most of the times—

would authenticate the user without her active involvement and thus it would

free the user from the burden of remembering secrets and the burden of par-

ticipating actively in the authentication process many times everyday.

❼ We have implemented an authentication system using gait pattern and location

trace for the Android platform based on the proposed framework. Based on

the data gathered from users, we have shown that the authentication system

is technically feasible.

❼ We have identified several issues, like: on-body placement, pace, battery

drainage etc., that must be addressed for any transparent end-user authen-

tication system for smartphones.
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❼ The metaphor of a pet has proved useful in communicating—how the authen-

tication system works—to a user; moreover, it might help allay a user’s anxiety

due to the convert nature of the authentication process. For example, a user

may intuitively know that the information about her traits is gathered and

used by the authentication system, but never leaves the phone.

6.1.2 A Closer Look into the Password Input Process

❼ We have designed a within-subjects study to delineate the relative importance

of the declarative and the motor memory for a password in performing a suc-

cessful login. Based on the results from the study, we have outlined the reasons

for choosing the memory tasks that help cement the declarative memory for

a newly created password over the tasks that aim at bolstering the motor

memory for a password.

❼ We have proposed a conceptual model for the password input process from

the perspective of human memory and have shown that the predictions of the

model agree with the data obtained from the study.

❼ The empirical results justify the conclusion that the motor memory for a pass-

word does not work independently; rather, it facilitates the password input

process by reducing the time required for login.

6.1.3 Usable End-User Authentication for the Web

❼ We have designed a password-creation web interface that lets a user test if she

has memorized a newly created password.

❼ Through a semester-long between-subjects study we have shown that our pass-

word creation interface provides a memory boost to its users and is thus able

to reduce the number of immediate forgetting of passwords.

❼ We have defined several metrics to compare between the experimental group

and the control group, like: success rate, time of the earliest significant failure,

confusion in successful login attempts and error in failed login attempt.
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❼ We also have found that it is important to interpret the results of the com-

parison in the context of password-strength chosen by the users of the two

groups; because, if one group has passwords with higher strength, they are

performing a more difficult task remembering them. Accordingly, we modified

the definition of password-strength to incorporate the memorability aspect of a

password; as a result, with our definition, if a password has a higher strength,

it is usually more difficult to remember.

6.2 Summary of Contributions

Because it usually does not provide any direct value to the user, end-user authen-

tication is considered to be a necessary but secondary task. As a result, users are

not motivated to use the authentication methods that provide high security but are

difficult to use. On the other hand, security requires a holistic approach—weakness

at any point can render the whole chain of security useless. Our proposed authen-

tication framework for smartphones will be able to relieve a user of the burden of

authentication most of the times and thus a user will be better able to focus on her

primary tasks. For web authentication, our proposed password-creation interface is

able to give a user more confidence in her memory of a newly created password, which

in turn may motivate her to choose stronger passwords. Together, the transparent

authentication framework for smartphones and the password-creation web-interface,

proposed in this dissertation, make the overall security ecosystem healthier.

In the long run, a smartphone, which is able to recognize the user on its own might

work as a universal intermediary between the user and other computer systems;

secrets will then be shared between other systems and the phone and as the phone

knows the user and other systems know the phone, the user will at last be free from

the burden of authentication once and for all.

6.3 Future Research Directions

Below we discuss some of the possible avenues for future reseach.
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6.3.1 Usable End-User Authentication for Smartphones

❼ In our implementation we focused on gait pattern; augmenting the set of traits

would make the authentication framework more interesting—it would then be

able to choose between options for achieving the desired level of security at a

low cost.

❼ Conducting the experiments with a larger and more diverse sample is an ob-

vious next step.

❼ How to incorporate context, e.g., location cues into the formal framework, is

an issue that needs to be addressed.

❼ Another important future direction would be to explore how a user might

easily and effectively set the security level she wants.

❼ How accurately the different traits perform in identifying a user for different

on-body placements of the phone, is another future vista that needs exploring.

❼ Transparent authentication systems, by definiton, are continuous in nature;

thus, battery drainage is a crucial issue. We have found out that the contin-

uous authentication using the gait-pattern of a user consumes only 10% more

battery charge than the base-level consumption; whereas, the continuous GPS-

sensing (for location cue) has a much larger negative effect on the battery life.

If we want to add more traits and thus more types of continuous sensing to

the authentication system, low-cost probe-sensing will need to be explored.

❼ How to incorporate user-preferences towards various traits, to be used for au-

thentication, into the cost metric is another useful direction for future research.

❼ With our authentication framework, the more the user trains the authenti-

cation system, the more accurately the system will be able to authenticate

the user. Whether representing the authentication system using an avatar of

a pet—that shows positive expressions and gestures when it has recognized

the user and that shows signs of distress when the authentication process is
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costly—motivates the user towards training it more frequently, is an interesting

question that we wish to investigate in the future.

6.3.2 A Closer Look into the Password Input Process

❼ The sample size in our experiment was small; performing the experiments with

a larger and more diverse sample is a logical next step.

❼ In our experiments, we only collected the time it takes to type in a password.

More information, like: how many failed login occurs in the conditions, what

types of errors are made in different conditions, etc. can shed more light on

the issue of motor memory for a password.

❼ The A2Z alphabetic keyboard used in our experiments, though unfamiliar to

the user, did have a predictable layout—it was alphabetic and the digits-row

was similar to a QWERTY layout; using a fully random layout might have been

better at delineating the difference between the conditions.

❼ The distractor task of counting backwards by two, was able to make the fetch-

ing from long-term store more difficult, but the pace at which users counted

varied; it would have been more revealing if the task were more consistent

across users; e.g., counting-down to the regular ticks from a metronome.

❼ Although the motor memory for a newly created password needs significantly

more time to develop than the declarative memory for the same password, there

may be a schedule at which—if the user practices typing in her password—the

motor memory develops more efficiently; in [135] we find some such hints and

we wish to explore it in the future.

6.3.3 Usable End-User Authentication for the Web

❼ Because in order to login, a user needs to ultimately type in a password,

alongside the four memory tasks in our experiment, mock logins—which en-

ables more transfer-appropriate processing—interleaved with distractor tasks

could have made the memory boost more effective [146]. Additionally, finding
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more interesting and effective memory tasks is a general direction for future

exploring.

❼ A larger and more diverse sample size and stronger passwords would have made

the difference between the experimental and the control group significant.

❼ There are some hints in [132] on how to sort the memory tasks according to

their effectiveness at helping a user remember a newly created password and

in the future, we want to explore if such sorting can be effectively done for the

memory tasks. Such a sorting would enable us to recruit the more effective

tasks earlier in the procession of memory tasks that a user would perform and

thus we shall be able to tax on a user’s patience more judiciously.

❼ From the study, it is apparent that with our interface the one-time practice

with a new password gives a memory-boost to its users; but, the salutary

effects of that boost wears off over time; it is an interesting future work to

explore if giving the users such memory-boosts at regular intervals would be

able to maintain the login success rate high. Whether the memory tasks remain

effective in providing memory boosts in case of multiple passwords interference

is another interesting research question.

❼ A goal of our password-creation interface is to motivate a user towards creating

stronger passwords by making her confident about her memory of a newly cre-

ated password through the memory tasks. In the future, from a longitudinal

study, we wish to find out if, in the long-term, a user is actually being moti-

vated towards creating stronger passwords from using our password-creation

interface.

❼ In our study, the users were young; memory problems are more pervasive

among the elderly population; thus, whether our password-creation interface

has a more beneficial effect for elderly people is a work we want to pursue in

the future.

❼ From memory research [169, 170] it is known that not all times of a day is

equally good for memorizing information—usually afternoons are better than
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mornings; whether creating a password using our interface and performing the

memory tasks at a suitable time of day, help the user remember the password

significantly better is another of our future works.

❼ Users of our password-creation interface—if prompted to change passwords

frequently—may find our interface less attractive due to the reduced return of

investment with respect to the perceived effort they are putting in remembering

a new password; finding out whether that is the case needs further exploring.

In any case, it has been shown that forcing users to change their passwords

frequently—contrary to the common belief—does not help increase security

significantly [11].
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