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ABSTRACT 
NUMBER SENSE MEDIATED BY MATHEMATICS SELF-CONCEPT IN 

IMPACTING MIDDLE SCHOOL MATHEMATICS ACHIEVEMENT 
 

Lara K. Geronime, B.A., M.A. 
 

Marquette University, 2012 
 
 

The purpose of the current study was to extend the research on number sense to 
the middle school level and to simultaneously consider socioemotional elements related 
to the construct at this developmental stage.  Its genesis was initially rooted in an ongoing 
and dramatic emphasis by U.S. policymakers, researchers, and educators on improving 
mathematics achievement in order to compete globally in technology and innovation.  
Despite debates about optimal curriculum and instruction, tremendous support exists for 
the construct of number sense.  However, middle school research examining the 
phenomena has been limited to intervention protocols targeting specific skillsets and 
better measurement of its domains.  Concomitantly, educational research has produced 
ample evidence of the decline in student mathematics motivation over time, and the 
corresponding literature establishes a link between mathematics self-concept and 
mathematics achievement, particularly during adolescence.   

The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 provides 
a sample of 4,425 U.S. eighth graders for the present study, assessed directly and 
indirectly in cognitive, demographic, and affective domains.  Multiple regression 
analyses confirmed the hypotheses that number sense predicts both mathematics self-
concept and mathematics achievement at the middle school level, when controlling for 
gender, race, socioeconomic status, and special education services.  Additionally, a path 
analysis with Statistical Analysis Software (SAS) and the Sobel test revealed that 
mathematics self-concept mediates the relationship between number sense and 
mathematics achievement.   This indirect effect, when combined with the direct effect of 
number sense, results in a significant, medium total effect value of .35 for the model.  By 
incorporating this knowledge regarding the interconnection of these three constructs into 
mathematics curriculum and instruction, as well as teacher education, the United States 
can move closer to bringing about equity of opportunity and motivating students to 
pursue more complex mathematics coursework and subsequently professions.
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Chapter 1: Introduction 
 

From researchers, policymakers, and educators to the President of the United 

States there is a persistent and strong effort to increase American mathematics 

achievement in hopes of globally competing in technology and innovation (Bush, 2006; 

Clinton, 1998; National Research Council [NRC], 2001; National Mathematics Advisory 

Panel, 2008; Obama, 2011, 2012; Schoenfeld, 2004).  Mechanisms of reaching this goal 

have included intervention to improve high-stakes test performance and earlier access to 

more advanced curriculum.  Implementation, however, has been characterized by 

heightened bureaucratic strain on school administrators and teachers and subsequent 

deficiencies in remediation needed for students to realize such goals.  

As debates continue over traditional versus reform curriculum (Ben-Chaim, Fey, 

Fitzgerald, Benedetto, & Miller, 1998; Schoenfeld, 2004) and computational proficiency 

versus conceptual understanding (Baroody, Bajwa, & Eiland, 2009; Cowan et al., 2011; 

Wu, 1999), frustrated middle school students are losing motivation (Eccles et al., 1993; 

Schielack & Seeley, 2010).  Despite national debates and reforms that started with 

Sputnik in the 1950s, facilitated movements like “new math” and “back to basics,” and 

yielded A Nation at Risk, Goals 2000, No Child Left Behind, and Race to the Top, the 

United States does not seem to be gaining an advantage over its competitors (Drew, 

2011; Hanushek, Peterson, & Woessmann, 2011; Hennessy, 2002; Peterson, Woessmann, 

Hanushek, & Lastra-Andón, 2011; Stevenson, et al., 1990).  On the contrary, though the 

National Center for Education Statistics (NCES) reports that National Assessment of 

Educational Progress (NAEP) average mathematics scores for U.S. eighth graders have 

increased 21 points since 1990, and that over one third of these students are enrolled in 
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Algebra I (NCES, 2011), certain data cannot be ignored.  For one, there are still a 

significant number of students not even scoring at the basic level, meaning they do not 

exhibit an understanding of arithmetic operations, and this figure varies according to race, 

ranging from 14% for Asian students to 49% for Black students (NCES, 2011).   Second, 

a look at 2009 NAEP questions from the number properties/operations and algebra 

domains in relation to the 2010 Common Core State Standards for Mathematics 

(CCSSM) reveals material that is around the fifth and sixth grade levels, respectively 

(Loveless, 2011).  Though we may be moving in the right direction, it appears that a great 

deal more work must be done. 

Concurrent with the call for enhanced mathematics instruction and curriculum is a 

struggling economy whose reality argues for fiscal cuts wherever possible, and that is 

subject to the rapidly changing circumstances of globalization.  The resulting outcome is 

often less money for education, fewer jobs for the highly educated, and difficulty in 

recruiting and maintaining the most effective teachers (Boyd, Grossman, Lankford, Loeb, 

& Wyckoff, 2009).  Some tout the inevitable benefits of a market solution to education, 

which would allow parent choice to create competition and yield school improvements 

(Chubb & Moe, 1990), but studies have not provided consistent evidence to support these 

claims (Barrow & Rouse, 2008; Usher, Kober, Jennings, & Renter, 2011), and some 

point out that the neoliberal opportunity bargain upon which this system is based has 

altered the face of human capital and the goals of the American people (Brown, Lauder, 

& Ashton, 2011).   

As societal focus has shifted more towards money and the individual, idealistic 

calls to view education in the context of social progress seem more pertinent than ever. 
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Though few individuals will openly challenge Dewey’s (1900) emphasis on education for 

social growth rather than profit, the reality of such a belief system would require that 

education move in the opposite direction of its current path.  The continued emphasis on 

standards and accountability is not without merit, but the rigid nature of some of its 

corresponding bureaucratic and capitalistic solutions cannot effectively enable 

interventions, both academic and social, that many students need.  Regardless of which 

methods or social perspectives best facilitate enhanced education, the United States 

continues to embrace it as the primary means of realizing the American Dream.  From 

Hirsch’s (1996) demand for intellectual capital through nationalized, content-specific 

standards to Friedman’s free market model allowing for choice and privatization (1980), 

education remains at the forefront of economic and social progress.  George W. Bush 

(2000) spoke of an open nation, where “every citizen has access to the American dream; 

an America that is educated, so every child has the keys to realize that dream,” and 

President Obama (2011) continues to emphasize education as a means of economic 

growth in saying, “ . . . if we want to win the future – if we want innovation to produce 

jobs in America and not overseas – then we also have to win the race to educate our 

kids.”   

America is not, however, currently outperforming other nations, and mathematics 

achievement is no exception.  The 2009 Program for International Student Assessment 

(PISA) revealed that, of 34 Organization for Economic Cooperation and Development 

(OECD) countries, 17 outperformed U.S. fifteen-year-olds in mathematics and that the 

U.S. mathematics score was “statistically significantly below the OECD average” 

(OECD, 2010, p. 8).  Hanushek, Peterson, and Woessmann (2010), even after narrowing 
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this 2009 PISA analysis to White students and students with at least one college educated 

parent, found that 12 OECD countries had over double the U.S. percentage of highly 

accomplished students, and only eight fell below the United States.  Using NAEP 

proficiency guidelines to determine a similar PISA measure, Peterson et al. (2011) 

determined that U.S. students taking the PISA as 15-year-olds in 2009 ranked 32 among 

participating countries.  And in their comparison of the United States to 33 other OECD 

countries on the 2009 PISA, Petrilli and Scull (2011) reveal that the United States ranks 

below the average in mathematics.  It is clear that the nation wants and needs to improve 

mathematics education, but it does not seem that emphasizing standards and 

accountability is producing the desired result.  Before drastically altering curriculum and 

instruction, a more focused look at possible obstacles in mathematics development is in 

order.   

 
Statement of Problem and Significance of Study 

 

The last century has seen intense debate around mathematics instruction and 

curriculum in the aptly named “math wars,” and though the root of this controversy may 

be social and economic in character, the strain between traditional and reform 

mathematics is primarily reflected by a preference for basic skills or process.  According 

to Schoenfeld (2004),  

An exclusive focus on basics leaves students without the understandings 
that enable them to use mathematics effectively.  A focus on “process” 
without attention to skills deprives students of the tools they need for 
fluid, competent performance.  The extremes are untenable. (p. 280-281) 

The most promising framework to weave together mathematics perspectives in this 

debate that pits facts against concept is number sense (Berch, 2005; Greeno, 1991; 
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Jordan, 2007; Jordan, Kaplan, Olah, & Locuniak, 2006; Lago & DiPerna, 2010), and not 

surprisingly, the 2008 National Mathematics Advisory Panel’s Final Report addressed the 

need to enhance academic focus on this number sense construct.  Numerous studies 

support the positive effects of number sense in elementary school (Jordan, Glutting, & 

Ramineni, 2009; Jordan, Glutting, Ramineni, & Watkins, 2010; Moeller, Pixner, Zuber, 

Kaufmann, & Nuerk, 2011), but at the middle school level, number sense research is 

primarily limited to intervention protocols targeting specific skillsets and distinct 

elements of the construct (Cutler, 2001; Gay & Aichele, 1997; Greenes, Schulman, & 

Spungin, 1993; Markovits & Sowder, 1994; Scott, 1987).  Though such efforts are 

beneficial in their ability to delineate and hone certain elements of number sense, 

research must first determine how number sense at this juncture contributes to overall 

mathematics achievement so that curriculum and instruction are developed and employed 

appropriately.     

The longitudinal advantage of early number sense in terms of overall mathematics 

achievement at the elementary level must extend to older students.  Assuming the 

trajectory continues in adolescence, research should explore how to overcome obstacles 

associated with insufficient number sense at the middle school level.  The present study 

attempts to highlight a distinct path for number sense, shedding light on how number 

sense must continue to play an important role in mathematics curriculum and instruction 

as students progress to middle school and into coursework like algebra.  Rather than 

solely working to incorporate more critical thinking at elementary levels, it may be 

necessary to attend to more basic mathematical thinking as students move on to higher 

grade levels.  Although seemingly intuitive given the hierarchical nature of mathematics 
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learning and the call for curriculum to focus more on number sense, research has not 

adequately addressed adolescent number sense. 

Looking beyond merely curriculum, in 2007 the National Math Panel surveyed 

over 1,000 Algebra I teachers across the nation and found that 58% of middle school 

teachers and 65% of high school teachers in the sample noted “working with unmotivated 

students” as the number one challenge to mathematics instruction (Hoffer, 

Venkataraman, Hedberg, & Shagle, 2007, p. 32).  Accordingly, the 2008 National 

Mathematics Advisory Panel called for a closer look at mathematics anxiety and the 

importance of student beliefs regarding effort, both of which contribute to student 

motivation and competence beliefs.  The multidimensional, hierarchical construct of self-

concept, and specifically, the contextually richer and more self-reflective construct of 

mathematics self-concept, is an excellent theoretical framework for analyzing 

mathematics competence in relation to motivation (Marsh & Craven, 1997, 2006; Marsh, 

Craven, & Martin, 2006; Marsh & O’Mara, 2008).  Mathematics self-concept is a critical 

component of middle school development, not only because of the increasing complexity 

of the subject at this level, and the demonstrated declines in motivation during this period 

(Steinmayr & Spinath, 2007), but also as a result of identity and competency beliefs 

potentially leading a student to determine that he or she is or is not “a math person” at the 

young, impressionable age of twelve or thirteen.  Given that no studies could be found on 

specific mathematics content domains contributing to mathematics self-concept in middle 

school, the mathematics self-concept framework will be used to broaden previous 

research by highlighting number sense. 
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Focus on Middle school  
 
 

In 1928, Wilbur Alden Coit published a research article in The School Review 

proclaiming the following: 

It has been the writer’s experience during twenty-five years of teaching 
that many pupils studying algebra have difficulty with simultaneous 
equations, both simple and quadratic, because of the inability to add and 
subtract fractions, to substitute, and to deal with negative numbers.          
(p. 504) 

It seems little has changed over the last 85 years.  The global economy’s “digital 

Taylorism” (Brown et al., 2011) reflects the world’s increasing reliance on technology 

and thus the need for a continuing focus on mathematics and science education in 

America.  Middle school mathematics is a logical place to target given that it has 

traditionally been characterized by a transition from arithmetic to algebra.  These 

elementary to middle school curriculum progressions are often articulated as intertwined 

paths beginning in elementary school and moving through middle school, yielding ample 

evidence that stronger foundational skill levels and early mathematics coursework 

regulate mathematics achievement (Baroody, Lai, & Mix, 2006; Bodovski & Farkas, 

2007; Byrnes & Wasik, 2009; Hickey, 2009; Kikas, Peets, Palu, & Afanasjev, 2009; 

Tolar, Lederberg & Fletcher, 2009).  Furthermore, in light of policy directing earlier 

access to algebra coursework, there has been a more recent emphasis on algebraic 

thinking and the benefits it yields at very elementary stages of instruction (Carpenter, 

Levi, Franke, & Zeringue, 2005; Carraher, Schliemann, Brizuela, & Earnest, 2006; 

Ketterlin-Geller, Jungjohann, Chard, & Baker, 2007).  A faulty fix like mandating higher 

levels of mathematics curriculum in middle school, however, may translate into an 
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inability to progress and succeed in a technology-laden environment that demands 

increasingly complex mathematical and scientific knowledge. 

 The Common Core State Standards for Mathematics, or CCSSM (National 

Governors Association Center for Best Practices, Council of Chief State School Officers, 

2010), create a framework that expertly reflects the need to attend to number sense, 

particularly in the operations and algebraic thinking domain represented in kindergarten 

through fifth grade.  This set of expectations focuses on making sense of operations from 

the onset of mathematics learning, allowing cognitively guided instruction to tap more 

individualized student thinking prior to the introduction of algorithms (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999).  More broadly, the Student Mathematical 

Practices (SMPs) comprised in the CCSSM are intended to be the result of student 

mathematical behaviors, and thus extend beyond what can be answered with basic 

multiple choice problems.  The first SMP, requiring students to make sense of problems 

and explore ways to reach optimal solutions, provides an excellent example of number 

sense skills in expecting that students “make conjectures about the form and meaning of 

the solution and plan a solution pathway rather than simply jumping into a solution 

attempt” (National Governors Association Center for Best Practices, Council of Chief 

State School Officers, 2010, p. 6).  The SMPs are present at all stages of mathematical 

development, and their call for National Council of Teachers of Mathematics (NCTM) 

process standards (2000) and NRC mathematics proficiency areas (2001) clearly 

establishes a strong and consistent number sense foundation.   

 By middle school, the CCSSM detail more traditional algebra curriculum, 

incorporating objectives around rational numbers, expressions and equations, and 
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functions in addition to topics in geometry, statistics, and probability.  The assumption is 

that previous standards are a continuous part of curriculum and instruction, and in this 

way, as well as through the SMPs, they reflect the ongoing need for number sense.  The 

current study of eighth graders sets out to show just how critical this construct remains to 

overall mathematics achievement at the middle school level and how this is influenced by 

motivation.  Results will shed light on how the CCSSM may be augmented at the student, 

classroom, and district level to reach students who have not previously acquired 

sufficient number sense and to better achieve number sense for new and continuing 

students.  

 
Theoretical Frameworks 
 

In keeping with a stereotypical American mindset, balance is often undermined in 

educational reforms.  There are ongoing battles over the best way to teach mathematics 

that mirror the phonics versus whole language debate in the field of literary education 

(Schoenfeld, 2004).  In addition to the arguments about memorization versus conceptual 

understanding and traditional versus reform curriculum, there is great struggle and 

variability in views about how to incorporate meaning into learning.  This tension 

includes “informal baggage” like finger counting (Dehaene, 1997), manipulations like 

“joining to” and “separating from” (Carpenter et al., 1999), and relational thinking as a 

way to make the learning of arithmetic more meaningful by employing “fundamental 

properties of numbers and operations to transform mathematical expressions rather than 

simply calculating an answer following a prescribed sequence of procedures” (Carpenter 

et al., 2005).  Despite the proven advantages of drawing from dual camps of instruction in 
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reading (Pearson, 2004), such measures are not being articulated well in the mathematics 

classroom.  

A comprehensive understanding of number properties and operations will make 

the connection between arithmetic and algebra more clear to students (Carpenter et al., 

2005; Ketterlin-Geller et al., 2007; NRC, 2001), but the idea that associated techniques 

like cognitively guided instruction (Carpenter et al., 1999) will eventually result in the 

fluency required for higher-order mathematics has not been adequately researched.  For 

some, the “bogus dichotomies” of these controversies (Wu, 1999) are irrelevant given the 

reality that skills and concepts go hand in hand (Bass, 2003).  Mathematics education 

would benefit from an overarching framework that can incorporate multiple perspectives 

and techniques while still realizing a “connected body of mathematical understanding and 

competencies” (NCTM, 2000 p. 29). 

In light of such entrenched and conflicting ideologies, how can research find a 

way to carefully scrutinize obstacles to mathematics achievement, and even more 

importantly, determine strategies to improve it?  According to NCTM (n.d.), number 

sense is the ability to “naturally decompose numbers, use particular numbers as referents, 

solve problems using the relationships among operations and knowledge about the base-

ten system, estimate a reasonable result for a problem, and have a disposition to make 

sense of numbers, problems, and results.”  The expansion of this definition by McIntosh, 

Reys, & Reys (1992) will serve as the number sense framework for the present study. 

Specifically, number sense is determined by a set of key skills (such as relative and 

absolute magnitude, place value, and addition and subtraction), and beyond having 

sufficient knowledge of these skills, a person with strong number sense must exhibit 
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facility with and application of numbers and operations.  Such tenets allow for the 

inclusion of skills, no matter how attained, and more pertinently, in ways that reflect 

conceptual understanding and flexible application, thereby making number sense an ideal 

conceptual backdrop for the study of mathematics achievement.    

Finally, mathematics self-concept, based upon student questionnaire items 

regarding interest and perceived competence, will draw from the Marsh and Shavelson 

(1985) multidimensional model of self-concept, specifically looking at the second order 

mathematics academic factor and tapping both evaluative and affective elements (Marsh, 

1990d; Skaalvik & Valås, 1999; Senturk, 2000).  Clear support for the link between 

academic achievement and academic self-concept (Marsh, 1986; Marsh & O’Mara, 2008; 

Marsh, Parker, & Barnes, 1985; Marsh & Yeung, 1998; Möller, Pohlmann, Köller, & 

Marsh, 2009), the existence and validity of a mathematics self-concept subscale (Marsh, 

1990a, 1993b; Marsh & Shavelson, 1985), and evidence of self-concept’s meditational 

capabilities regarding achievement (Marsh, Walker, & Debus, 1991; Skaalvik & 

Skaalvik, 2009) provide a solid foundation for reviewing such relationships within the 

context of number sense.   

 
Design of Study 
 
 

Data for the study will come from the Early Childhood Longitudinal Study, 

Kindergarten Class of 1998-99 (ECLS-K), a kindergarten through eighth grade public-

use database maintained by NCES.  Child-level within-year data for nearly 4,500 eighth 

grade students across the United States will be analyzed.  The cross-sectional study of 

middle school mathematics performance will draw independent and dependent variables 
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from administrator surveys, cognitive assessments, student questionnaire data, and 

teacher mathematics academic ratings for students. Studies have revealed the future 

mathematical benefits of components of early number sense (Jordan, Kaplan, Ramineni, 

& Locuniak, 2009; Mazzocco, Feigenson, & Halberda, 2011), but little research has 

determined whether number sense skills have been acquired and are maintained at the 

middle school level.  At the same time, given studies regarding the decline of motivation 

for middle school students (Marsh, 1989a; Nottelmann, 1987; Steinmayr & Spinath, 

2008), it is imperative to assess the role that mathematics self-concept plays in this 

number sense and mathematics achievement connection.  The ECLS-K’s broad spectrum 

of data provides the demographic, cognitive, and affective scope best suited for such 

analyses.  

Structural equation modeling through path analysis will be employed to determine 

whether and to what extent number sense predicts mathematics achievement and 

mathematics self-concept in eighth grade.  Furthermore, it will test the capability of 

student mathematics self-concept to mediate the relationship between number sense and 

mathematics achievement.  The covariates of race, gender, socioeconomic status (SES), 

and special education services will serve as additional exogenous variables, all with 

direct paths to the predictor (number sense), mediator (mathematics self-concept) and 

outcome (mathematics achievement) measures.  

 
Research Questions  
 
 

In order to address the relationships between number sense, mathematics self-

concept, and middle school mathematics achievement, the following three research 



	   13	  

questions and hypotheses were developed: 

Research Question 1: Does number sense proficiency in grade eight 

predict overall mathematics achievement?  

Hypothesis 1: Higher number sense proficiency predicts higher 

mathematics achievement when controlling for gender, SES, race, and 

special education services. 

Research Question 2: How does number sense proficiency in grade eight 

relate to mathematics self-concept?  

Hypothesis 2: Higher number sense proficiency predicts higher 

mathematics self-concept when controlling for gender, SES, race, and 

special education services. 

Research Question 3: Does mathematics self-concept mediate the 

relationship between number sense proficiency and middle school 

mathematics achievement?  

Hypothesis 3: Mathematics self-concept mediates the influence of number 

sense on higher mathematics achievement when controlling for gender, 

SES, race, and special education services. 

 
Summary 

 

Perhaps there is no longer a need to dwell on doing away with meaningless 

computation and memorization and realize that, with enough practice using more 

intuitive, meaningful models, such processes can happen on their own.  Could it be that 

such methods of critical thinking are very effective, but only if we ensure that they result 
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in some automaticity with number operations?  Theoretical debates aside, middle school 

mathematics performance is at the forefront of federal and state education policy, and 

curriculum must ensure all students have adequate background knowledge to succeed 

upon gaining access to more advanced subject matter. Number sense incorporates the 

multitude of skills and conceptual frameworks critical to the transition from elementary 

to middle school mathematics, specifically a generalization of arithmetic as algebra 

becomes more prominent.  Early number sense has the potential to impact mathematics 

growth positively in elementary years, and as society moves to push more and more 

middle school students into algebra, the current study will show how imperative it is that 

the evaluation of number sense persists throughout adolescence.   

As affective domains are highly susceptible to developmental changes during 

adolescence, their resulting effect on continued mathematics interest and engagement 

also must be considered when assessing learning trajectories.  In light of number sense’s 

developmental impact, research regarding the beneficial impact of mathematics self-

concept on performance needs to look closely at such skills at the middle school level.  

As these students must reach a new level of cognition and consider several basic ideas at 

once in order to transfer prior knowledge effectively, self-concept can help determine 

where motivation may be hindered. The present study moves across disciplines to weave 

together content and motivation as an improved means of analyzing student mathematics 

performance.  It is not intended simply to confirm the importance of number sense and 

mathematics self-concept, but rather to explore their connection to one another and in the 

context of mathematics achievement in ways that inform curriculum and instruction, 

including pedagogical strategies that can enhance motivation while simultaneously 



	   15	  

bridging skills gaps.  Understanding this relationship will aid states and localities in 

bringing about equity of opportunity and motivating students to pursue more complex 

mathematics coursework and subsequently professions. 
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Chapter 2: Literature Review 
 
 

The current study was first inspired by teacher input and anecdotes 

regarding struggles with middle school mathematics instruction.  The recent 

emphasis in policy and curriculum on access to algebra at the middle school 

level and the resulting changes it has yielded in terms of textbook design and 

high school curriculum paths heightens the implications of such experiences. 

The standards movement, No Child Left Behind (NCLB), and the inclusion of 

an algebra content domain by the National Council of Teachers of Mathematics 

(NCTM) in 2000 have guided recent literature regarding mathematics 

achievement toward the topics of algebraic content, thinking, and tracking 

during adolescence.  Number sense, and how early skills in this domain predict 

mathematics achievement trends, has been a recent focus of elementary 

mathematics education.  At the same time, but typically in psychology 

communities, research on middle school motivation in mathematics has 

emphasized longitudinal paths and contextual influences for general 

mathematics achievement without a focused look at the number sense construct.  

This first goal of the present study is to carry the research on number 

sense’s contribution to mathematics achievement over to the middle school 

level.  Additionally, it will explore how mathematics motivation influences this 

relationship.  An overview of current trends and areas of emphasis in middle 

school mathematics provides the backdrop for the study’s rationale.  A review 

of the number sense and mathematics self-concept constructs, as well as key 

findings for both over time, will provide the theoretical frameworks that support 
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the research questions and proposed model.  Weaving the affective domain of 

mathematics self-concept into research on number sense, a key component of 

mathematics achievement, will provide a more in-depth examination of 

adolescent mathematics success.     

 
Middle School Mathematics 
 
 

The importance of algebra.  A great deal of research has been 

conducted to determine when to start algebra, how to integrate it, what content it 

demands, standards to improve it, and ways to assess it.  This discourse gained 

significant momentum with the release of A Nation at Risk in 1983 and 

continued to expand with the requirements of NCLB legislation.  In fact, 

algebra coursework was reported for only 16% of 13-year-old U.S. students in 

1986 (Perie, Moran, & Lutkus, 2005), but for 2007 eighth graders in the Early 

Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), 39% 

were enrolled in Algebra I or a more advanced mathematics course (Walston & 

McCarroll, 2010). 

Increased algebra instruction in middle school is not a simple manner.  

In 2005, only 6% of U.S. eighth graders who took the National Assessment of 

Educational Progress (NAEP) were considered “advanced,” (Perie, Grigg, & 

Dion, 2005).  This same percentage was found for advanced U.S. eighth graders 

who participated in the Trends in International Mathematics and Science Study 

(TIMSS) in 2007 (Mullis, Martin, & Foy, 2008).  Linking 2005 NAEP data to 

results of the 2007 Program for International Student Assessment (PISA), even 
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narrowing the focus to white students and students with at least one parent 

holding a college degree, revealed “advanced” student percentages of only 8% 

and 10%, respectively (Hanushek, Peterson, & Woessmann, 2010).  

Furthermore, these more advantaged populations were still outperformed 

internationally.  Mathematics scores for White students in the United States 

were below 24 countries (for which all race/ethnicity groups were included), 

and U.S. students with at least one degree-holding parent had scores lower than 

19 countries (for which all parent education levels were considered).  A 

subsequent analysis of 2007 NAEP data in relation to the 2009 PISA by 

Hanushek, Peterson, and Woessmann (2011) placed the U.S. 32nd among 

participating nations and revealed that less than one third of U.S. students were 

deemed proficient according to PISA and NAEP scores.  Though 2011 U.S. 

NAEP results indicate a rise in “proficient” and above scores for fourth and 

eighth graders, it is still noteworthy that over 8% of fourth graders and 27% of 

eighth graders were not at or above the “basic” level, characterized as “partial 

mastery of prerequisite knowledge and skills that are fundamental for proficient 

work at each grade” (National Center for Education Statistics [NCES], 2011, p. 

2).  These percentages indicate that far too many students are not succeeding in 

mathematics, and that this circumstance is even more pronounced in middle 

school. 

Though significant implementation variations exist at the district, state, and 

federal level, and in the midst of conflicting research regarding the best way and time to 

introduce algebra to students, there appears to be strong agreement on one fact:  
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American students are not performing to their potential in mathematics, and algebra is a 

significant piece of the puzzle.  In a 2010 Brown Center Report on American student 

learning (Loveless, 2011), public NAEP items from the number properties/operations and 

algebra content strands were coded according to their corresponding grade level on the 

2010 Common Core State Standards for Mathematics (CCSSM).  For items from the 

eighth grade number properties and operations domain, researchers calculated an average 

grade level of 5.2, indicating that these eighth grade NAEP items fell at about the fifth 

grade level.  In fact, over 90% of these test questions were actually deemed below the 

eighth grade level according to the CCSSM.  Additionally, the average CCSSM grade 

level for items from the NAEP algebra content domain was only 6.2.  Though all students 

should have the opportunity to access and achieve in higher-level mathematics courses, 

the issue of readiness for such enrollment merits further attention.   

 When the National Opinion Research Center surveyed Algebra I teachers in 2007 

on what they would like to change, the most frequent response was more emphasis on 

mastering basic mathematics skills and concepts.  Loveless (2008) uses such findings to 

asserts that requiring ablebra for all middle school students is not an issue of ability, but 

rather readiness.  Misplacement is detrimental to student progress, and to teachers who 

should not be expected to teach multiple years of mathematics curriculum in eighth 

grade.  Also noteworthy, his cross-sectional study of NAEP data from 2007 revealed no 

correlation between the percentage of eighth graders taking advanced mathematics 

classes (Algebra I, Geometry, and Algebra II) and mathematics achievement (indicated 

by NAEP mathematics scores).  Allensworth, Nomi, Montgomery, and Lee (2009) 

looked at the Chicago policy mandating Algebra I (or higher level coursework) for all 
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ninth graders and found that low-ability students did show the most dramatic increases in 

higher mathematics course enrollment.  However, the failure rates for low-ability and 

average-ability students almost tripled, and mathematics grades and overall grade point 

averages declined across all ability groups.   

In a longitudinal study of the California Standards Test (CST), Liang, Heckman, 

and Abedi (2012) illuminated the controversy surrounding the 2008 mandate by the 

California State Board of Education that all eighth graders take algebra.  Not only did 

they discover a significant decline in students taking Geometry in ninth grade compared 

to their eighth grade Algebra I enrollment (Geometry being the next logical course for 

mathematics), they found that the chance of passing the ninth grade Algebra I CST was 

greater for students who had taken General Mathematics in eighth grade than for those 

who had taken and failed the Algebra I CST in eighth grade.  One method of addressing 

likely skill gaps has focused on the conceptual understanding accompanying arithmetic 

operations.  Emphasizing number properties and reasoning about strategies, and 

eventually algorithms, has provided a stronger delineation of how to best address the 

arithmetic to algebra transition. 

 
Arithmetic to algebra.  Students who succeed in arithmetic have a solid grasp of 

basic numeric concepts and arithmetic operations as well as a strong numerical working 

memory (Geary, 1994; Geary, Bow-Thomas, & Yao, 1992).  Brown and Quinn (2007) 

assert that “elementary algebra is built on a foundation of fundamental arithmetic 

concepts” (p. 8), and according to Wu (2001), grasping these foundations is critical to the 

study of algebra given that “algebra is the generalisation of arithmetic and the first 

experience in symbolic representation of numbers” (p. 1).  Arithmetic is frequently 
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referenced as a prerequisite to algebra success, so it is of particular interest that students 

often struggle to bridge the gap between arithmetical and algebraic concepts (Linchevski 

& Herscovics, 1996; Olive & Cağlayan, 2007).  At the middle school level, whether 

students are enrolled in General Mathematics, Pre-algebra, Algebra I, or Geometry, there 

is a clear shift in curriculum and instruction from arithmetic to algebra. 

 As far back as the 1920s, studies were conducted to determine mathematical 

difficulties associated with algebra.  With 25 years of experience in algebra instruction, 

Coit (1928) conducted a study of ten sections across four high schools and reported that 

students often had trouble with simple and quadratic equations due to problems with 

fraction operations, substitution, and negative number procedures.  Even factoring out 

careless errors, test results revealed that many students were failing basic mathematics 

problems.  Drills were created and carried out by teachers over a ten-day period, with 

significant improvements noted, not only at the end of this period, but two-months later 

with no additional drilling.  In this case, addressing computation skills, a component of 

number sense, was clearly beneficial in bridging the arithmetic to algebra gap. 

 In another study by Cooke and Fields (1932), the New Stanford Arithmetic Test, 

the Detroit Advanced Intelligence Test, and the Columbia Research Bureau Algebra Test 

were administered to algebra students, and results indicated a stronger relationship 

between arithmetic ability and algebra achievement than between intelligence and algebra 

achievement.  Such findings have continued throughout the years, focusing on a 

multitude of skills from carrying out spontaneous operations on unknown quantities 

(Herscovics & Linchevski, 1994) to fraction proficiency (Brown & Quinn, 2007) to 

computational fluency (Tolar, Lederberg, & Fletcher, 2009).  Given the long history of 



	   22	  

the studied connection between elementary-level mathematics skills and higher-level 

mathematics coursework like Algebra I, it is obvious that a focus on middle school 

algebra curriculum relies heavily on specific skillsets.  If teachers are not aware of the 

full range of arithmetic obstacles for students, they may not be able to address significant 

cognitive stumbling blocks in algebra coursework appropriately. 

Ideally, middle school students possess strong conceptual and working-memory 

skills and are able to make good strategy decisions as they solve problems.  According to 

Geary (1994), 

In all, individuals who are skilled at mathematics reasoning appear to execute 
basic computations quickly and automatically, are able to keep important 
information in mind while performing other operations, and have developed 
schemas to aid in the representation, translation, and solution of mathematical 
problems. (p. 146)   

 Research on the advantages of effectively incorporating algebraic thinking into 

elementary curriculum and instruction (Day & Jones, 1997; Carraher, Schliemann, 

Brizuela, & Earnest, 2006; Ketterlin-Gellar, Jungjohann, Chard, & Baker, 2007) has 

provided a means to bridge the arithmetic to algebra transition in one direction, namely, 

by pushing algebra to lower grade levels.  But what happens if students still do not have 

adequate facility with numbers by the time they reach middle school?  Why are there not 

measures to ensure mastery goals for such elementary level curriculum continue as 

students move up in grade levels?  In essence, why not also push number sense to upper 

grade levels?  The mathematics construct needed to accommodate overlap and 

progression from elementary to middle school successfully must ensure critical thinking 

is included early, computational fluency is maintained, and problem solving incorporates 

both. 
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Number Sense 
 
 

Narrow approaches to mathematics instruction, such as those with a dominant 

focus on either memorization or conceptual understanding, make for memorable and 

dramatic slogans and reforms, but they also overshadow the art of teaching for authentic 

learning and understanding.  Additionally, they undermine the variations in student skill 

proclivities, learning styles, and levels of development, and the flexibility that often must 

accompany effective classroom instruction and management.   When studies focus on 

specific mathematics content, subsequent curriculum change can neglect other critical 

skillsets.  In order to most effectively improve mathematics education, constructs must 

include appropriate elements of content and pedagogy.  As the National Research 

Council (NRC) suggests, “The integrated and balanced development of all five strands of 

mathematical proficiency (conceptual understanding, procedural fluency, strategic 

competence, adaptive reasoning, and productive disposition) should guide the teaching 

and learning of school mathematics” (2001, p. 11).  An ongoing obstacle to school 

achievement in mathematics is the tendency to focus on one strand at the expense of 

others.  The literature described in this chapter will provide an overview of how a well-

defined number sense framework can best inform the study of foundational skills critical 

to middle school mathematics success. 

 
Why computational fluency isn’t enough.  The importance of working memory 

and automaticity, and the ability of their resulting efficiency to influence higher-order 

thinking and generalizability are critical to mathematics progress, and they are frequently 

incited in the description of computational fluency.  The automization that comes with 
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greater computational fluency can allow for developmental gains as operational memory 

capacity demands decrease (Bloom, 1986; Case & Bereiter, 1984; Gagne, 1983).  When a 

student expends a large of amount of effort and cognitive assets attending to basic 

computation, he or she may have little available for more complex problem solving.  

According to the National Mathematics Advisory Panel (2008), the automaticity that is 

the product of practice “frees up working memory for more complex aspects of problem 

solving” (p. 30).  Automaticity with simpler concepts allows student to make effective 

use of derived facts and direct-retrieval procedures, and in turn, solve more complex 

problems (Geary, 1994).  Furthermore, automatic processing makes solving complex 

problems more efficient and less susceptible to errors (Geary & Burlingham-Dubree, 

1989; Geary & Widaman, 1992; Kaye, 1986; Resnick & Ford, 1981).  For example, even 

when poor addition fact processing does not hinder conceptual understanding or 

procedural knowledge, it may in fact lead to continued inaccuracy in subsequent 

mathematics tasks (Cumming & Elkins, 1999).  Thus, algebra actually relies on 

computational fluency in the sense that higher-level mathematics courses are facilitated 

by the goals of computational fluency, as in the case of number combination mastery 

(Jordan & Levine, 2009; Baroody, Bajwa, & Eiland, 2009).   

The automaticity that accompanies computational fluency (Skinner, 

Fletcher, & Henington, 1996; Skiba, Magnusson, Marston, & Erickson, 1986; 

Singer-Dudek & Greer, 2005) facilitates the higher-order thinking characteristic 

of middle school mathematics, which differs from arithmetic by requiring more 

decision making as problems have multiple operations and methods for deriving 

solutions (Geary, 1994).  Such fluency also may be linked to algorithms as a 
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result of their aim to provide procedural efficiency.  Although many educators 

scoff at the term “algorithm” in light of the potentially oppressive ways it can be 

employed, Ball et al. (2005) assert that algorithms have practical merit and can 

contribute to the theoretical development of mathematics, specifically the 

development of computational fluency.  Algorithms serve as guidelines by 

providing clear steps that may aid in understanding process and meaning when 

working through a solution.  With effective instruction, they allow for 

generalization that can transition students effectively from arithmetic to algebra.  

For instance, procedures in carrying out whole number tasks like multiplication 

are applicable to calculating partial products and adding when working with 

polynomials (NRC, 2001).  Mathematics problems often have multiple 

approaches, and proficient problem solvers will understand how and when to 

utilize different algorithms along the way.   

In addressing the mathematics education debate that pits basic skills against 

conceptual understanding and facts against higher-order thinking, Wu (1999) claims such 

controversies are the product of a general misunderstanding of mathematics, not only in 

education but in society in general, and that it is critical to understand that, “precision and 

fluency in the execution of the skills are the requisite vehicles to convey the conceptual 

understanding” (p. 1).  Meticulously comparing student-driven methods to various 

algorithms, he asserts that skills utilized within these algorithms and in the selection of 

algorithms are accompanied by deep mathematical comprehension.  Bass (2003) also 

claims that skills and concept go hand in hand, and emphasizes that algorithms need not 

be taught as rote and meaningless learning procedures.  By contrast, an algorithm should 
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be taught via multiple examples and in ways that reveal the mathematical significance of 

all of its components in reaching a solution.  In this way, it provides an “image of 

developing computational fluency in which basic skill is both strongly present and 

inseparable from conceptual understanding” (Bass, 2003, p. 322).  The flexibility 

associated with computational fluency indicates that one no longer relies on formal 

algorithms and can make connections between multiple mathematics concepts (Russell, 

2000).   

 Baroody et al. (2009) address the instructional implications of the controversy 

surrounding fluency, and in concentrating on students with mathematical difficulties, 

claim that, “In effect, fluency with the basic number combinations begins with and grows 

out of number sense” (p. 69).  Number sense is also clear in the National Mathematics 

Advisory Panel’s (2008) “General Principles for Learning” across all mathematics 

content areas, which states that, “conceptual understanding, computational fluency, and 

problem-solving skills are each essential and mutually reinforcing, influencing 

performance on such varied tasks as estimation, word problems, and computation” (p. 

30).   

 Even assuming that computational fluency sufficiently incorporates the conceptual 

understanding reflected in number sense, it is limited in its ability to portray such 

comprehension in students, and there is no way to pinpoint when a student maximizes 

both in their developmental processes.  For example, Reys and Yang (1998) studied sixth 

and eighth grade students in Taiwan and discovered that higher scores by students on 

complex computation problems were not necessarily accompanied by corresponding high 

scores in the domain of number sense.  In practical terms, some students might 



	   27	  

understand that ¼ is the same as 0.25 and can conceptualize this with a diagram, the size 

of their hamburger at McDonald’s, or the quarters that make up a dollar.  But others 

might simply know the equality from memorizing basic fraction/decimal conversions or 

because they can quickly divide one by four mentally.  Number sense accounts for 

computational fluency, but also asserts that students engage with numbers and operations 

in a way that entails flexibility, relevance, and application.    

 
Development of a dynamic and comprehensive framework.  Few would 

challenge Greeno’s (1991) characterization of number sense “theoretically as a form of 

cognitive expertise” (p. 170), nor disagree with Berch’s (2005) assertion regarding the 

complications of operationalizing such a framework.  Though these theorists eloquently 

delineate the justifiably elusive characteristics of number sense, practitioners and 

policymakers still need a way to gauge the impacts of various interventions, curriculum 

designs, and assessment strategies.  In 2008, the National Mathematics Advisory Panel 

defined number sense, in simplest and broadest terms, as incorporating “an ability to 

immediately identify the numerical value associated with small quantities (e.g., 3 

pennies), a facility with basic counting skills, and a proficiency in approximating the 

magnitudes of small numbers of objects and simple numerical operations” (p. 27).  

Regarding formal instruction, the panel stated that number sense “requires a principled 

understanding of place value, of how whole numbers can be composed and decomposed, 

and of the meaning of the basic arithmetic operations of addition, subtraction, 

multiplication, and division” (p. 27).  The NCTM’s president’s message in 2008 

(Fennell) emphasized the importance of number sense in education, touching on “place 

value, composing and decomposing numbers, understanding how addition, subtraction, 
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multiplication, and division work, acquiring basic facts, and developing fluency with 

whole-number operations” as well as “how the commutative, associative, and distributive 

properties work and how they are used in learning basic-fact combinations, adding 

columns of numbers, and seeing how the multiplication algorithm works” (p. 3).  The 

broad nature of these topics and the evolving character of number sense as students 

experience more mature curriculum reflect the difficult nature of creating a definitive 

measure of number sense.   

 The model best able to address the expansive theoretical underpinnings of number 

sense while providing a concrete tool for practitioner use and researcher analysis is that 

developed by McIntosh, Reys, and Reys (1992).  It holds the following: 

 Number sense refers to a person’s general understanding of number and 
operations along with the ability and inclination to use this understanding 
in flexible ways to make mathematical judgments and to develop useful 
strategies for handling numbers and operations.  It reflects an inclination 
and an ability to use numbers and quantitative methods as a means of 
communicating, processing, and interpreting information.  It results in an 
expectation that numbers are useful and that mathematics has a certain 
regularity. (p. 3) 

Acknowledging that the term “number sense” explains the broadening scope of 

skills that begin with arithmetic and grow to encompass properties, logic, and 

authentic applications, these authors summarize the complex interplay of 

numbers, operations, and settings in the following three tenets: “knowledge and 

facility with numbers, knowledge and facility with operations, and applying 

knowledge and facility with numbers and operations to computational settings” 

(p. 4).  More effectively than any other number sense framework, theirs 

transforms Greeno’s (1991) metaphor of environments for conceptual domains 

to measureable form.  The adaptability permitted by the interaction of these 
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three components in terms of content and developmental stages is both a 

detriment and an advantage.  While its flexibility limits articulation of the 

number sense construct, it also allows for a fluid framework over time that 

incorporates metacognition, growth, and context. 

  From an empirical standpoint, many studies have employed factor analysis to 

determine the underlying structure of number sense.  Jordan, Kaplan, Olah, and Locuniak 

(2006), for example, established a two-dimensional structure for their number sense 

battery, which included number skills in counting, recognition, estimation, patterns, and 

combinations and that incorporated nonverbal calculations and story problems.  The first 

factor encompassed basic number skills, and the second factor described conventional 

arithmetic.  Lago and DiPerna (2010) also found a two-factor model, one factor focused 

on number-related skills like counting and identifying numbers, and another pertaining to 

rapid naming.  Though a great deal of the aforementioned McIntosh et al. (1992) 

framework can be categorized according to these tasks, one area the factors do not 

adequately reflect is application.  This last component of the McIntosh et al. (1992) 

framework incorporates growth and context, elaborating on the ways in which number 

sense reveals itself differently as students uniquely engage in mathematical thinking. 

 
Number sense findings.  Consistent results have revealed that early number 

sense is predictive of future mathematics performance in addition to growth rates in 

mathematics achievement.  To date, the majority of longitudinal studies have focused on 

early elementary years. Jordan, Kaplan, Locuniak, and Ramineni (2007) found that 

number sense measured in kindergarten, in addition to growth in number sense from 

kindergarten to first grade, was a “reliable and powerful predictor” of first grade 
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mathematics performance, accounting for 66% of its variance (p. 40, 42).  Jordan, 

Glutting, Ramineni, and Watkins (2010) administered a number sense brief screener to 

assess student number sense longitudinally and determined that kindergarten results were 

predictive of third grade mathematics proficiency.  Earlier, Jordan, Glutting, and 

Ramineni’s (2009)  conducted a longitudinal study of students that measured number 

sense (including addition and subtraction calculations as well as number magnitude and 

combinations) from first grade to the end of third grade.  Results indicated that number 

sense over this period strongly predicted mathematics achievement, including applied 

problem solving.   

 There are also longitudinal studies that do not directly reference the number sense 

construct, but that have analyzed components of the framework with similar results. For 

example, Mazzocco, Feigenson, and Halberda (2011) found that preschool ability to 

represent numbers and their capacities mentally served as a predictor of mathematics 

performance at the age of six.  Jordan, Kaplan, Ramineni, and Locuniak (2009) analyzed 

number competencies for children over a three-year period via growth curve modeling 

and found that higher kindergarten number competence modestly and significantly 

predicted mathematics performance through third grade as well as mathematics 

achievement growth as students moved from grade one to three.  Looking specifically at 

place-value skills, Moeller, Pixner, Zuber, Kaufmann, and Nuerk (2011) found first grade 

skills in this area were predictive of third grade addition tasks.  Bodovski and Farkas 

(2007) used data from the ECLS-K to look at students’ mathematics skills as they 

progressed from kindergarten to third grade and found that students with higher initial 
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skills (measuring topics from basic number and shape to multiplication and division) 

showed higher mathematics growth than those with lower initial scores.  

 Longitudinal studies on pre-existing mathematics skills or prior mathematics 

knowledge at very early elementary school ages are also pertinent given that such skills 

are typically subsumed by number sense.  For example, skills that a kindergarten student 

might come to school already possessing include number identification, counting, and 

relative size, all of which contribute to overall number sense.  These components of prior 

knowledge reveal the same empirical advantages as studies referencing the number sense 

construct or components of it.  In their study of Estonian children, for example, Kikas, 

Peets, Palu, and Afanasjev (2009) found that students with greater pre-mathematics skill 

levels at the beginning of first grade showed faster growth in mathematics and possessed 

higher mathematics scores at the conclusion of the study at the end of third grade. 

Duncan et al. (2007) looked at six longitudinal studies (primarily spanning elementary 

years), focusing on entry-level cognitive, socioemotional, and attention skills data in 

relation to subsequent mathematics achievement.  They confirmed that entry-level skills 

in all of these areas determined later achievement, the strongest of which was initial 

mathematics skills.  Finally, Morgan, Farkas, and Wu (2011) discovered that students 

with mathematics difficulties in kindergarten had the lowest growth trajectories in 

mathematics from grades one to five, and that those with no initial difficulties 

experienced the highest growth.  

  A very effective way to target intervention and remediation is to study specific 

mathematics skills in order to improve overall mathematics achievement.  For this reason, 

extensive research exists on various components of number sense.  Looking at the whole 
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number and decimal skills of sixth graders in Taiwan, Yang (2005) found that an 

emphasis on written algorithms hindered number sense development, as students were 

unable to explain their mathematical reasoning or estimate sufficiently.  Star and Rittle-

Johnson (2009) looked at the broad implications of a number sense component in relation 

to problem solving, finding that students with stronger estimation skills were more adept 

at adopting different strategies.  Number sense also has been studied in the context of 

specific objectives, such as helping to better assess middle school understanding of 

percentages (Gay & Aichele, 1997), how its relationship with arithmetic skills is 

mediated by symbolic number ordering in university students (Lyons & Beilock, 2011), 

and how it is can be interpreted in relation to numerical reasoning (McIver, 2005).  

Furthermore, it has been proposed as a way to bridge gaps that may be the result of other 

skill deficiencies, as in the case of studies linking number sense and computational 

fluency (Griffin, 2004; Griffin, Sarama, & Clements, 2003).  In fact, Cowan et al. (2011) 

used their established link between conceptual knowledge and basic calculation skill to 

support the number sense implication that “conceptual knowledge explains the 

relationship between basic calculation proficiency and mathematics achievement” (p. 

787).   

 In light of elementary school findings revealing the potential of number sense to 

impact future performance and achievement growth, middle school implications for 

number sense warrant further exploration.  Number sense studies that do exist at the 

middle school level focus on strategies to develop the construct (Cutler, 2001; Greenes, 

Schulman, & Spungin, 1993; Markovits & Sowder, 1994) or on number sense in relation 

to other skills, such as computation (Gay & Aichele, 1997; Reys & Yang, 1998).  
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Number sense at the middle school level has also been studied as a way to improve other 

mathematics skills.  For example, Jordan (2007) emphasized how middle school skills 

like factoring, rational number computation, and working with algebraic equations rely 

on calculation fluency, and how the development of number sense can work to overcome 

weakness in this area.    

  A broader look at middle school mathematics studies reveals research on specific 

subsets of number sense as a means of heightening student mathematics achievement, 

including the positive effects of computation skills (Geary, 1994; McIntosh & Reys, 

1997; Reys, Reys, & Hope, 2010; Royer, Tronsky, Chan, Jackson, & Marchant, 1999; 

Scott, 1987).  In their study linking deficient whole number, decimal, and fraction skills 

to difficulty determining reasonableness of answers in eighth grade Kuwaiti students, 

Alajmi and Reys (2010) recommended a stronger emphasis on number sense.  This 

emphasis has also been the focus of curriculum studies that proclaim the advantages of 

material that allows for enhancing student sense-making (Ben-Chaim, Fey, Fitzgerald, 

Benedetto, & Miller, 1998). 

  This glimpse into number sense research highlights the importance of the 

construct, and particularly, its critical influence as students enter school.  However, it also 

reveals the inadequacy of such research beyond the elementary years.  If mathematics 

skills at the kindergarten level are capable of influencing overall mathematics 

achievement and growth throughout elementary school years, a reasonable deduction is 

that number sense continues to be a critical component of success in mathematics through 

the middle school years and beyond, particularly in the context of course selection and 

tracking which becomes more pronounced in adolescence.  For instance, utilizing data 
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from the Colorado Student Assessment Program, Billings (2009) discovered a positive 

relationship between fifth grade number sense and ninth grade algebra scores, providing 

evidence of the ability of elementary number sense to predict early high school 

performance.  This use of the number sense framework in the context of mathematics 

achievement represents a start at moving the longitudinal analysis through the middle 

school level and reflects the continued influence of number sense at higher levels of 

curriculum.  Even though the present investigation does not assess number sense in ninth 

grade, others studies on number sense and elementary mathematics achievement growth 

(Jordan et al., 2010; Moeller et al., 2011) provide a powerful basis for predicting those 

students with initially higher number sense skills will maintain a mathematical advantage 

through middle school and high school.  

 
Societal gaps and the importance of number sense.  Research reveals 

that low-income elementary students experience flatter number sense 

trajectories than their peers and that number sense deficiencies are more 

prevalent in low-income students (Jordan et al., 2007; Jordan et al., 2006; 

Jordan, Kaplan, et al., 2009; Jordan & Levine, 2009).  A similar pattern is 

present for students with weak prior mathematics knowledge and pre-existing 

mathematics difficulties (Kikas et al., 2009; Morgan et al., 2011).  This trend is 

compounded at the middle school level by achievement declines often 

associated with major alterations in material, pedagogy, expectations, and 

general structure (Schielack & Seeley, 2010).  NAEP research on eighth grade 

mathematics revealed that mathematics students below the tenth percentile rank 

who are placed in higher-level classes like Algebra I are more likely to be poor, 
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Black and Hispanic, have parents without the optimal knowledge or resources 

for academic assistance, be enrolled in urban high-poverty schools, and have 

less experienced and less qualified teachers (Loveless 2008, 2010). 

Furthermore, the lower performing Algebra I students in the NAEP study scored 

roughly seven times lower than their peers in the same courses, with prominent 

gaps in the content areas of number systems, fractions, and percentages, all of 

which are key components of number sense.  Such societal gaps are also evident 

in an ECLS-K study that revealed socioeconomic discrepancies in eighth grade 

algebra enrollment (Walston & McCarroll, 2010).  This disparity is even more 

dramatic when one considers the positive influence that higher-level high school 

mathematics courses have on students attending four-year institutions following 

graduation (Schneider, Swanson, & Riegle-Crumb, 1997) and pursuing science, 

technology, engineering, and mathematics in college (Chen, 2009). 

An analysis of NAEP mathematics scores by Johnson and Kritsonis’ (2010) 

reveals an achievement gap that appears to be widening rather than narrowing as it did in 

the 1970s and 1980s.  They assert that minority students, typically placed in lower 

mathematics tracks relative to their white peers, have less access to resources, and do not 

have adequately trained and experienced teachers.  Additionally, they point out that the 

33-point disparity between White and African American students in 1990 increased to 39 

points in 2000.  Similarly, the Latino/White gap went from 28 to 33 points during this 

period.  And in 2003, on average, African American and Latino students in grades four 

and eight performed three years behind their White peers in mathematics.  Looking more 

deeply at the NAEP scores, it appears that the gap exists across all mathematics content 
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areas, and tragically, only worsens with rising complexity in the subject. According to 

Loveless and Coughlan (2004), although the main NAEP has revealed heightened 

mathematics performance by U.S. students, long-term trend results show an increase ten 

times smaller.  Conducting an item-analysis of computation skills embedded within the 

content domain “number sense, properties, and operations,” their results indicate 

improvements in scores in the 1980s that actually began to reverse in the 1990s.  Though 

not sufficient to measure number sense, this research does shed light on the achievement 

gaps in some its major components. 

 Aside from achievement differences related to race and socioeconomic status, 

gaps appear to widen based on the foundational knowledge students bring to school 

and/or acquire at very elementary levels.  Students with strong foundational number 

knowledge in first grade are more inclined to gain advantages from their elementary 

mathematics learning (Baroody, Lai, & Mix, 2006).  Children with mathematics 

difficulties as well as those at risk for low achievement in the subject of mathematics 

often experience difficulty with memorization (Baroody et al., 2009).  In fact, by the end 

of their first grade year, students without a mastery of addition facts are at a major 

disadvantage for further mathematics operations, thereby making them more prone to 

mathematics difficulties, and subsequently resulting in “a spiral of failure and frustration” 

(Baroody et al., 2009, p. 69).  Jordan, Kaplan et al. (2009) used growth curve modeling to 

determine the positive influence of early number competence on elementary mathematics 

achievement.  Results from their study of six public schools showed that kindergarten 

number competence modestly and significantly predicted achievement growth rate from 
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grades one to three.  Additionally, they found that number competence development was 

a modest and significant predictor of third grade mathematics achievement.   

 Research has clearly shown the need to focus on specific skillsets in 

preparation for middle school mathematics, to ensure that students begin to 

think algebraically before reaching this level of schooling, and to consider the 

advantages of early mathematics knowledge and how this varies according to 

societal contextual factors.  Asserting that number sense is the strongest 

mathematics construct to study as a predictor of middle school mathematics 

achievement, as it best incorporates all of these components, the current study 

seeks to look within the student as well.  How students are influenced by 

perceptions of their own ability may significantly interact with adolescent 

mathematics achievement, including number sense.  An appropriate affective 

construct must be selected prior to analysis of this relationship. 

 
Mathematics Self-Concept  
 

 Middle school is a time of development when changes and disruptions in social 

affiliations at school with students and teachers as well as parental interactions at home 

impact adolescent identity, competence, and motivation (Wigfield & Wagner, 2005).  

During this same period, academic material requires higher-level cognition and 

introduces new topics that influence these evolving relationships.  Evaluating motivation 

in the context of competence can reveal how student behavior is best energized and 

directed (Elliot & Dweck, 2005). 
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 Student identities have the potential to impact educational experience and 

performance deeply, and schools have the capacity to influence student identity 

development in the ways they provide engaging instruction and facilitate motivation and 

cooperation (Eccles & Midgley, 1989; Wigfield & Wagner, 2005).  Reciprocally, identity 

formation has the potential to deeply impact student educational experience and 

performance  (Roeser & Lau, 2002).  For example, how students perceive their ability to 

manipulate algebraic equations in middle school can be a strong determinant of their 

entry-level mathematics course in high school, in turn prescribing the highest level of 

mathematics they attain before graduating, the subsequent major(s) they pursue in 

college, and finally the career paths they are eligible to enter.  As students absorb 

perspectives on the value of mathematics and their potential to comprehend it, their 

propensity to seek additional challenge and pursue more complex coursework can have 

life-altering consequences.  The current study seeks to determine if and how the evolution 

of competency beliefs and interest in mathematics exerts influence on the contribution of 

number sense to middle school mathematics success and development.   

 As it turns out, maturation may even exacerbate identity formation once 

established.  Jacobs, Lanza, Osgood, Eccles, and Wigfield (2002) found a steady decrease 

in mathematics competency beliefs as children progressed from grade one to twelve, and 

Gottfried, Marcoulides, Gottfried, Oliver, and Guerin (2007) found a decline in intrinsic 

mathematics motivation and mathematics achievement from age nine to 17, spanning 

elementary, middle, and high school.  Similarly, research has revealed a drop in self-

concept of ability, interest, values, and expectations regarding mathematics during the 

elementary to middle school transition (Eccles et al., 1989; Eccles & Midgley, 1989; Mac 
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Iver & Reuman, 1988).  In fact, middle school itself can be a general detriment to 

motivation (Eccles et al., 1993), and mathematics is no exception (Schielack & Seeley, 

2010; Watt, 2008).  Such early adolescent identity determinations in conjunction with 

declining views of ability may not only hinder continued effort and success in 

mathematics, but also have the potential to impact how students develop their sense of 

purpose and orientation in the world. 

 There are a variety of factors, biological as well as social, influencing middle 

school affective domain development.  The result these factors exert on motivation can 

influence performance, goals, academic interest, and conceptions of self, and is therefore 

critical to understanding how to best instruct and guide students mathematically at this 

juncture in their schooling.  Although there are multiple motivation constructs 

appropriate for evaluating mathematics, they rely on context and vary according to their 

emphasis.  Based upon the items utilized in the ECLS-K for determining perceived 

interest and competence in mathematics, self-concept figures to be the best measure of 

mathematics motivation for the present study.  Therefore, an overview of research in this 

area and the clear advantages of this construct in the context of middle school student 

development both academically and socioemotionally is provided. 

 Most individuals define self-concept generally as the way in which a person 

perceives him/herself, and this idea serves as a large umbrella term for academic research 

on self-concept as well.  As a motivational construct, self-concept has a long history 

accompanied by extensive studies that have yielded multiple models, subsections, and 

statistical evaluation methods.  Its origin can be traced to William James in 1890 when he 

first recognized different elements of self-concept by claiming that an individual 



	   40	  

developed a general self evaluation based on an average of more specific evaluations 

(Marsh, Xu, & Martin, 2012).  The framework utilized in the current study, however, 

began in 1976 when Shavelson, Hubner, and Stanton characterized it as multifaceted and 

hierarchical.  Their model states that environment (including interactions with others and 

attributions) contributes to perceptions of oneself and that there are multiple levels of 

self-concept.  Furthermore, such levels become more situation-specific, less stable, and 

increasingly versatile as they develop from a global concept of self over time.  

 The Student Description Questionnaire (SDQ) was developed to provide strong 

empirical support for the multidimensional nature of self-concept (Marsh, Smith, & 

Barnes, 1983).  Subsequent research utilizing this instrument yielded substantial support 

for the strength of the Shavelson, Hubner, and Stanton multifaceted model (Marsh, 

1990a; Marsh, 1993b; Marsh, Craven, & Debus, 1998; Marsh & Hocevar, 1985; Marsh, 

Parker, & Barnes, 1985; Marsh, Relich, & Smith, 1981,1983; Marsh & Shavelson, 1985; 

Marsh, Smith, & Barnes, 1983; Marsh, Smith, Barnes, & Butler, 1985).  Over time, 

statistical analyses have resulted in academic and nonacademic subsections of the SDQ 

and three separate instruments (SDQ I, II, and III) according to age level.  Perhaps most 

significant among these measures is the “Marsh/Shavelson Revision” which presented a 

separation of academic mathematics and verbal domains as advantageous over a general 

measure of academic self-concept (Marsh & Shavelson, 1985).  The statistical support for 

these differentiated self-concepts (Marsh, 1986, 1989b) expanded to eight academic areas 

(Marsh, 1992) and even found support for noncore academic subjects (Marsh, 1990d; 

Marsh, Byrne, & Shavelson, 1988).  
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  The differentiation of self-concept into academic and nonacademic realms, and 

the subsequent separation of academic self-concept into different subject areas, was the 

result of ongoing research, typically based on the use of one or more of the SDQ 

instruments.  The content specificity of academic self-concept continued to be supported 

by data revealing invariance across gender and age with regard to verbal, mathematics, 

academic, and even general self-concept measures (Marsh, 1993b).  Along with this 

consistency came an emphasis on the Shavelson, et al. (1976) model’s claim of self-

concept’s differentiability from other constructs, such as academic achievement, and a 

search for causal relationships among them.  The internal/external frame of reference 

model (Marsh, 1986), for example, allows for self-concept in specific academic areas to 

be shaped not only by students’ comparison of their performance to those around them, 

but also their own performance in a specific subject relative to other subject areas.  This 

theory was confirmed by a review of multiple studies on mathematics and verbal self-

concept revealing a link between mathematics and verbal achievement, but not between 

mathematics and verbal self-concept (Marsh, 1986, 1990a; Marsh et al., 1988).  

Academic self-concept’s content-specificity has also been strengthened by continued 

findings confirming the link between subject specific self-concept and corresponding 

subject achievement (Marsh, 1992, 1993a; Marsh et al., 1988; Marsh, Parker, & Barnes, 

1985; Marsh, Smith, Barnes, & Butler, 1983; Marsh, Trautwein, Lüdtke, Köller, & 

Baumert, 2006; Marsh, Walker, & Debus, 1991; Marsh & Yeung, 1998).  Mathematics 

self-concept as measured by the SDQ II (Marsh, Parker, & Barnes, 1985), intended for 

younger adolescents in grades seven through 12 and adapted for the ECLS-K by its 
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developers, provides the ideal framework for middle school mathematics motivation 

given its construct validity and clear link to mathematics achievement.  

 The present study will assume the reciprocal effects model (REM) for academic 

self-concept and academic achievement.  The REM model was inspired by Marsh’s 

longitudinal findings supporting the theory that academic self-concept predicts academic 

performance beyond prior achievement (1990b).  This view regarding the causal ordering 

of achievement and self-concept in academics has been strongly supported through 

studies revealing the cause and effect relationship between academic self-concept and 

corresponding academic achievement (Guay, Marsh, & Boivin, 2003; Marsh, Byrne, & 

Yeung, 1999; Marsh & Craven, 2006; Marsh & Martin, 2011; Marsh & O’Mara, 2008, 

Marsh & Yeung, 1997; Yeung & Lee, 1999).  Looking at the relationship of number 

sense and mathematics achievement being mediated by mathematics self-concept, the 

REM model appropriately allows for the bi-directionality of paths between all constructs. 

 
Existing research on mathematics self-concept.  Mathematics self-concept 

research has sought to decipher the relationship between a student’s perception of self 

and his/her overall performance in mathematics at various age levels, with a particular 

emphasis on elementary school years.  However, research must concurrently consider the 

documented decline in mathematics self-concept as students move through adolescence, 

including findings that such a decline represents a trend across multiple countries (Nagy 

et al., 2010) and that it may reach its lowest point in ninth grade (Marsh, Parker, & 

Barnes, 1985) occurring at the conclusion of or immediately following middle school.  

Although self-concepts may increase again at various times, it is important to note the 

likely state of mathematics self-concept at the middle school level where changing 
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mathematics coursework has such dramatic implications, as well as to consider the 

heightened specificity of correlations between subject areas and corresponding subject 

self-concepts at this developmental stage (Marsh & O’Mara, 2008).    

The link between academic self-concept and academic achievement has 

reinforced the multidimensionality of the self-concept construct and revealed how subject 

areas become more important as students age.  In her review of the extensive research on 

general and academic self-concept studies in 1984, Byrne noted “unquestionably, a 

persistent relationship between one’s self-concept and his or her academic achievement 

(p. 440),” and this is nowhere more evident than in studies focused on mathematics.  In 

his testing of the internal/external frame of reference path model, Marsh (1986) found 

positive and significant path coefficients for all 13 of his analyses on mathematics 

achievement and mathematics self-concept. This relationship also has been evidenced at 

multiple age levels via SDQ III studies (Marsh & O’Neill, 1984; Marsh & Shavelson, 

1985; Marsh, Trautwein et al., 2006), SDQ II studies (Marsh, Parker, & Barnes, 1985; 

Marsh & Yeung, 1998; Skaalvik & Skaalvik, 2009; Yeung & Lee, 1999), and SDQ I 

studies (Marsh, Relich, & Smith, 1981; Marsh & Shavelson, 1985; Marsh, Smith, & 

Barnes, 1985; Marsh, Smith, Barnes, & Butler, 1983; Skaalvik & Valås, 1999; Senturk, 

2000).  Likewise, there are established links between mathematics self-concept and 

coursework enrollment and interest (Marsh, 1989b; Marsh & Yeung, 1997, 1998), and 

even later educational attainment (Marsh & O’Mara, 2008). Longitudinal studies have 

further revealed how mathematics self-concept predicts mathematics achievement 

(Marsh, 1990b; Marsh & O’Mara, 2008; Marsh, Köller, Trautwein, Ludtke, & Baumert, 

2005; Marsh & Yeung, 1998).  Perhaps most telling is the meta-analysis of longitudinal 
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research on the influence of self-beliefs and academic achievement by Valentine, 

DuBois, and Cooper (2004).  Some 54 of the total 60 studies reviewed reveal self-beliefs, 

including self-concept, self-efficacy, and self-esteem, to be a significant and positive 

predictor of later achievement (even after accounting for the impact of previous 

achievement).  Moreover, this finding was consistent for all eleven mathematics self-

concept analyses within the study.   

 Across multiple age levels and over time, it is clear that mathematics self-concept and 

mathematics achievement are connected.  Research findings on mathematics self-concept 

show the need for more of a focus on middle school and a closer look at specific areas of 

mathematics achievement.  As research has revealed the advantage of looking at 

mathematics self-concept over general academic self-concept and global self-concept, it 

seems logical that a deeper analysis of components of mathematics achievement, like 

number sense, might provide better descriptive results and subsequently more targeted 

and effective curricular and instructional adaptations and strategies. 

 
Summary 

 

It may be argued that number sense has always provided a strong underpinning 

for the ongoing research and debate surrounding instructional content and methodology 

in mathematics.  Challenges have involved finding ways to accurately define and assess 

number sense, and such obstacles are unavoidable given the individuality of student 

mathematical behaviors in development and practice.  Though unable to tangibly assess 

certain skillsets, the CCSSM detail how poignant number sense is to mathematics 

development in the way that they strive to define “what students should understand and 
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be able to do in their study of mathematics” (National Governors Association Center for 

Best Practices, Council of Chief State School Officers, 2010, p. 4) rather than providing 

solely a checklist of discrete skills.  Through consistent expectations like the Student 

Mathematical Practices (SMPs), calling for ongoing sense making and contextualization, 

these standards have woven number sense into all stages of mathematics development.  

To date, studies on number sense have sought to verify its importance over less 

contextualized frameworks, to reveal the multiple ways in which it may be evident to 

students, and to show patterns in its development through the elementary years.  By 

evaluating number sense beyond the elementary years, research can strengthen the 

CCSSM’s call for SMPs across all grade levels and content areas.   

  Mathematics self-concept, though showing decline as students mature, predicts 

mathematics achievement across elementary, middle, and high school.  Extending 

number sense to middle school mathematics achievement must consider the role of 

mathematics self-concept.  In their analysis of propensity, opportunity, and antecedent 

factors using ECLS-K data for students as they progressed from kindergarten to third 

grade, Byrnes and Wasik (2009) discovered that the strongest predictors of mathematics 

achievement were propensity items, or those factors pertaining to student ability or 

engagement following exposure to various content (Byrnes & Miller, 2007).  Although 

antecedent factors like SES and parent expectations and opportunity factors involving 

instructional material and strategy contributed to their model of mathematics 

achievement, the strongest contributors were ratings for motivation and self-regulation 

and pre-existing mathematics skills at each grade level.   This critical contribution of 
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cognitive and affective elements to mathematics achievement at the elementary level 

provide strong theoretical support for the goals of the present study. 

Mathematics skills do not develop in a vacuum, reliant only on sources external to 

the student, such as curriculum, teacher knowledge, and pedagogical techniques.  And 

mathematics self-concept is clearly susceptible to multiple internal and external sources, 

including mathematics achievement.  In 1984, Reyes looked at the importance of 

affective variables in mathematics education, specifically in their ability to impact 

classroom learning environments, and Liang, Heckman, and Abedi (2012) recently 

reflected on the need to incorporate learning science research like motivation into studies 

of mathematics achievement in order to enhance classroom engagement.  Given the 

predicted impact both have, the current study will examine their individual as well as 

interactive impact on middle school mathematics in order to better design and carry out 

curriculum and instruction. 
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Chapter 3: Methodology 
 
 

Given the continuing political and social emphasis on standards and assessment in 

mathematics education and the national trend to increase and accelerate algebra access, it 

is imperative to look more specifically at possible skill gaps and psychological 

determinants of success that are present in middle school. Studies have revealed the 

future benefits of elements of early number sense (Jordan, Kaplan, Ramineni, & 

Locuniak, 2009; Mazzocco, Feigenson, & Halberda, 2011), but little research has 

determined whether number sense skills are mastered and maintained at the middle 

school level.  At the same time, in light of studies regarding the decline of motivation at 

this developmental stage (Marsh, 1989a; Nottelmann, 1987; Steinmayr & Spinath, 2009), 

it is desirable to assess the role that mathematics self-concept plays in this number sense 

and mathematics achievement connection.   

Accordingly, the goal of the current study is to look at adolescent mathematics 

achievement in the context of both skill and motivation with a secondary analysis of the 

Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K).  This 

chapter will begin with a description of the dataset and student demographics in the 

study.  A detailed specification of how the data were used to measure number sense, 

mathematics achievement, and mathematics self-concept will follow, including a 

preliminary factor analysis of the items used in the ECLS-K to measure mathematics self-

concept.  Next, a breakdown of the utilization of structural equation modeling via path 

analysis explains how the present study addresses the research hypotheses that a) higher 

number sense proficiency predicts higher mathematics achievement, b) higher number 

sense proficiency predicts higher mathematics self-concept, and c) mathematics self-
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concept mediates the influence of number sense on higher mathematics achievement for 

middle school students.  Finally, procedures for determining the moderating effects of 

gender ad race are discussed. 

 
Data Set and Participants 

 

The National Center for Educational Statistics (NCES) sponsors the ECLS-K.  

Because of its focus on middle school, the present study will draw information from the 

Kindergarten Class of 1998-1999, which has completed data collection through the eighth 

grade.  The full sample ECLS-K was selected over the National Assessment of 

Educational Progress (NAEP) because of its socioemotional measures and public 

accessibility.  Drawing from public and private schools and diverse racial/ethnic and 

socioeconomic (SES) communities, the data include cognitive measures from student 

direct assessment.  In addition, they provide social, emotional, and physical measures as 

well as home and school characteristics according to parent, teacher, student, and 

administrator input (Tourangeau, Nord, Lê, Sorongon, & Najarian, 2009).    

The ECLS-K database, which uses a multistage probability sample design, 

initially included a nationally representative group of 21,260 students enrolled in 944 

kindergarten programs from the 1998 to 1999 academic year.  Although the sample was 

freshened to maintain the best possible representativeness over time, the current study is 

not representative of the entire population as it includes only eighth grade students who 

completed a student questionnaire and whose mathematics teachers provided academic 

rating scores.  The cross-sectional data analyzed were gathered during the seventh and 

final round of collection during the spring of 2007.  Individual records are present for 
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9,725 students at this time, for which 4,450 students possessed mathematics skill ratings 

provided by their mathematics teachers (the other half of the sample having science 

teacher ratings instead).  Of the 4,450 students with this mathematics achievement score, 

4,383 students possessed a perceived interest and competence in mathematics score based 

on a completed student description questionnaire.  The 67 students without this, 

representing 1.5% of the sample, were removed listwise.  Finally, of the 4,383 students, 

138 did not have a number sense rating provided through a highest proficiency mastered 

score.  These 138, or 3.1% of the sample, were also removed listwise.  The final sample 

size included 4,245 students.  According to Tabachnick & Fidell (2007), the removal of 

less than 5% of randomly missing data in a large data set is likely not serious, and 

different techniques of attending to the issue will yield comparable outcomes.  Using this 

rule of thumb, the 4.6% removed in the present study posed no serious concern.  No 

gender values were missing for the updated sample.  For students without SES data (422, 

or 9.5%), the sample mean was used.  Finally, in the case of undocumented racial 

category (4, or less than 1%), students were categorized as White for analyses. 

Demographics for the sample are presented in Table 1.  Males and females were 

equally represented.  Over half of the participants were White (66.4%).  Only a small 

percentage of students in the sample (8.8%) received special education services.   
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Table 1 
 
Frequencies and Percentages for the Demographic Variables (N = 4,245) 

Variables Frequency Percentage 

Gender 

   Males 

Females 

Race 

   White   

   Black 

   Hispanic 

   Asian   

Special education status 

Did not receive special education services 

Received special education services 

 

2125 

2120 

 

2818 

422 

708 

297 

 

3872 

373 

  

  

 

50.1 

49.9 

 

66.4 

9.9 

16.7 

7.0 

 

91.2 

8.8 

 

Note: The White race category includes Native American, Alaska Native, and more than 
one race, not Hispanic.  The Asian race category includes Pacific Islander. 

 
Student Demographic Variables 
 

 The gender variable was coded for male and female students.  Race/ethnicity was 

dummy coded according to the following categories: White (including Native American, 

Alaska Native, and more than one race, not Hispanic), Black, Hispanic (specified and 

unspecified), and Asian (including Pacific Islander).  The Native American, Alaska 

Native, and more than one race, not Hispanic categories were added to the White group 

in the coding process due to their disproportionately small size, thereby improving 
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statistical power and preventing spurious results.  The variable for special education 

status was coded according to whether students did or did not receive special education 

services, as indicated by school coordinators.  SES was not changed from its ECLS-K 

format as a multi-measure composite standardized and centered at the mean, and it 

ranged from -4.75 to 2.67 with a mean score of .12 and standard deviation of .80.  These 

values were determined according to student household information provided through 

parent interviews, including parental education levels, occupations, and income 

(Tourangeau, Nord et al., 2009). 

 
Study Variables 

 

Number sense.  The process and content frameworks for the eighth grade ECLS-

K mathematics content domain assessments were based upon those employed for NAEP 

data from 1997 to 2007.  These frameworks reflect current and proposed curriculum by 

the education community, including the National Council of Teachers of Mathematics 

(NCTM).  As such, the mathematics portion incorporates: “number sense, properties, and 

operations; measurement; geometry and spatial sense; data analysis, statistics, and 

probability; and pattern, algebra, and functions” and addresses concept, procedure, and 

problem solving (Tourangeau, Nord et al., 2009, p. 2-4).   

Item Response Theory, or IRT, (Lord, 1980) was utilized in calculating scores, 

which allows for an estimation of true scores based upon those items answered by 

reviewing patterns of responses, item difficulty, likelihood of guessing, and 

discriminatory capability.  This method helps overcome the difficulty of administering 

the full test at each round.  IRT assumes that the probability of correctly answering an 
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item is dependent on at least one test-item characteristic as well as the test taker’s ability 

with regard to the construct being assessed.  For the ECLS-K direct child cognitive 

assessments, initial routing tests were followed by the administration of different second-

stage test booklets.  Routing test items in conjunction with core items represented in all 

second-stage tests provided a common scale, which in turn, allowed for the student’s 

estimated score under the assumption that all test items were answered (Najarian, 

Pollack, & Sorongon, 2009; Tourangeau, Lê, Nord, & Sorongon, 2009; Tourangeau, 

Nord et al., 2009). 

 Nine proficiency probability scores (shown in Table 2) were calculated in 

mathematics based on clusters of questions from the mathematics assessment, each 

representing a hierarchical set of skills.  The nine content clusters, each composed of four 

questions with similar difficulty and content, were incorporated at several instances over 

the mathematics assessment.  The corresponding proficiency levels assume a Guttman 

model (Guttman, 1950), therefore implying that a student who passes a specific level has 

mastered all levels below it, and that not passing a given level reflects non-mastery of all 

levels above it.   The mathematics test items were not answered for all proficiency levels 

in eighth grade, rather only for levels seven through nine.  Subsequently, IRT procedures 

provided probability estimates for levels one through six.  In order to master a 

proficiency level, students were required to correctly answer three or all four of the 

problems for that level.  Given that missing data were not random (due to changing 

assessment difficulty with grade and the fact that all students were not tested in each 

proficiency level at each round), imputation methods were sometimes utilized, taking into 

account response patterns, and when necessary, responses to the entire battery of 
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mathematics items (Najarian et al., 2009; Tourangeau, Lê et al., 2009; Tourangeau, Nord 

et al., 2009). 

 
Table 2 
 
ECLS-K Mathematics Proficiency Levels 
 

Level 1: Number and shape 
identifying some one-digit numerals, recognizing 
geometric shapes, and one-to-one counting of up to 
10 objects 

Level 2: Relative size 
 reading all single-digit numerals, counting beyond 
10, recognizing a sequence of patterns, and using 
nonstandard units of length to compare objects 

Level 3: Ordinality, sequence 
reading two-digit numerals, recognizing the next 
number in a sequence, identifying the ordinal position 
of an object, and solving a simple word problem 

Level 4: Addition/subtraction solving simple addition and subtraction problems 

Level 5: Multiplication/division solving simple multiplication and division problems 
and recognizing more complex number patterns  

Level 6: Place value demonstrating understanding of place value in 
integers to the hundreds place 

Level 7: Rate and measurement using knowledge of measurement and rate to solve 
word problems 

Level 8: Fractions demonstrating understanding of the concept of 
fractional parts 

Level 9: Area and volume solving word problems involving area and volume, 
including change of units of measurement 

(Tourangeau, Nord, Lê, Sorongon, & Najarian, 2009, p. 3-10, 3-11) 
 
 
 An in-depth look at problems within each cluster (requiring restricted access) 

would likely be applicable to all three sections of the McIntosh, Reys, and Reys (1992) 

model depicted in Figure 1 that follows.  Looking solely at the subject matter 
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documented for each level, and in some cases the tasks to be performed, levels one, two, 

and three can be found in “knowledge and facility with numbers,” levels four, five, and 

six in “knowledge and facility with operations,” and levels seven, eight, and nine in 

“applying knowledge and facility with numbers and operations to computational settings” 

(McIntosh et al., 1992).  However, to maximize the potential inclusion of number sense 

items, levels 6 and 7 were collapsed into one level and recoded as 6.  Additionally, levels 

8 and 9 were collapsed and recoded as 7.  Accordingly, highest proficiency level 

mastered was recoded so that all scores of 6 and 7 were recoded as 6, and all scores of 8 

and 9 were recoded as 7.  The subsequent scale with a maximum score of 7 instead of 9 

was intended to heighten the construct validity of the number sense variable by 

increasing the likely occurrence of number properties and operations problems.  The 

hierarchical nature of the number sense framework and the IRT methods used in the 

ECLS-K to calculate probability proficiency levels make the variable for highest 

proficiency level mastered an excellent indicator of the independent, endogenous variable 

number sense in the study.   
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Figure 1. McIntosh, Reys, & Reys number sense model (1992, p. 4) 
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 Reliability for the ECLS-K highest proficiency level mastered score could not be 

gauged via traditional task replication and subsequent alpha coefficient or split-half 

reliability calculations as the score was not calculated based upon replicated items nor 

variance of repeated ability estimates.  However, as Najarian et al. (2009) point out, there 

is a way to attend to the overall purpose of reliability measurement, which is to ascertain 

the consistency of a measurement under distinct circumstances.  For the ECSL-K eighth 

grade sample, multiple strategies were implemented to account for the large sample size 

and inability to directly obtain data for all test items.  The overlap of scores found by 

reviewing actual item response data and data obtained through IRT ability estimates and 

item parameters, which was 61% for exact agreement and 98% for agreement that was 

off by 1 or less, provides evidence of sufficient reliability for the highest proficiency 

level mastered rating (Najaraian et al., 2009, p. 4-22). 

 
Mathematics achievement.  As noted previously, this study only includes 

students with a mathematics teacher academic rating scale present.  By the time 

participants had reached eighth grade, a large number of schools departmentalized their 

subject matter.  The ECLS-K database includes English, mathematics, and science 

academic ratings.  The sample size of the participants was reduced for the current study 

because mathematics teachers scored only half of the students (with science teachers 

providing scores for the remaining students).   In the spring, teachers rated items in 

reference to the student as 5 for “outstanding,” 4 for “very good,” 3 for “good,” 2 for 

“fair,” and 1 for “poor.”  Eighth grade mathematics academic teacher rating scores were 

based on an average of these ratings for the following seven items, listed in order of 

ascending difficulty: 
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Uses Calculator to Solve Problems 
Uses Computer to Complete Mathematics Assignments 
Applies Mathematical Concepts to Real World 
Talks about Reasoning in Solving a Problem 
Uses Representations to Model Mathematical Ideas 
Explains Reasoning in Solving a Problem in Writing  
Conducts Proofs or Demonstrates Mathematical Reasoning 
(Tourangeau, Nord, Lê, Sorongon, & Najarian, 2009, p. 3-32) 

 There are both pluses and minuses to using the teacher mathematics academic 

rating scale as a measure of mathematics achievement for the study.  The primary 

disadvantage of this type of scoring is that it may be limited by subjective interpretations 

and bias in student-teacher relationships.  The ECLS-K manual points out that teacher 

ratings “overlap and augment the information gathered through the direct cognitive 

assessment battery,” but also sheds light on their capability to measure process rather 

than simply product, such as how students “express their ideas, solve mathematical 

problems, or investigate scientific phenomena” (Tourangeau, Nord et al., 2009, p. 3-29).  

Furthermore, teachers have the advantage of more accurately assessing students who may 

have undocumented learning disabilities and/or test anxiety, and of considering academic 

performance over a longer period of time.  Lastly, unlike the mathematics IRT scale score 

(from which the proficiency levels were developed), teacher academic rating values do 

not have any direct overlap with the probability proficiency scores, and thereby the 

highest proficiency level mastered.  This variable independence prevents collinearity and 

allows for a stronger analysis of number sense in relation to mathematics achievement.  

 ECLS-K reliability of the student skill measure provided by teacher academic 

ratings was calculated through IRT analysis utilizing a partial credit model, in accordance 

with Muraki (1992).  This model considers item rating patterns in determining item 

difficulty and the corresponding placement of students on an interval scale.  For 
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mathematics, the generalized partial credit technique revealed the reliability of teacher 

academic rating scores estimating student mathematics ability to be quite high at .95 

(Tourangeau, Nord et al., 2009, p. 3-30). 

 
 Mathematics self-concept.  The mathematical self-concept measure for the study 

came from the ECLS-K Student Description Questionnaire (SDQ), developed from the 

SDQ II developed by Marsh, Parker, and Barnes (1985).  The SDQ II was designed in an 

effort to evaluate the multi-dimensional, hierarchical structure of self-concept for young 

adolescents in grades seven through 12.    The mathematics scale from Marsh’s SDQ II 

included 10 items intended to measure “ability, enjoyment, and interest in mathematics 

and reasoning” (Marsh, 1990c, p. 2).   A shorter version of the SDQ II (the SDQ II-S) 

was developed in 2002 by Ellis, Marsh, and Richards, containing 51 of the original 102 

items.  The reliability of the four items measuring mathematics self-concept on the SDQ 

II-S was .89 (Marsh, Ellis, Parada, Richards, & Heubeck, 2005).  The reliability of the 

four items taken from the SDQ II for the ECLS-K dataset was also moderately high at 

.89.  Students answered, “not at all true,” “a little bit true,” “mostly true,” or “very true” 

for each item (1 corresponding to “not at all true” and 4 corresponding to “very true”) 

(Tourangeau, Nord et al., 2009).  The items rated were as follows: (1) “Math is one of my 

best subjects,” (2) “I get good grades in math,” (3) “I like math,” and (4) “I enjoy doing 

work in math” (NCES, 2010).  The average score for these items was used to represent 

“Perceived Interest/Competence – Math” which in turn represented the mathematics self-

concept variable for the present study.  
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Procedure 
 
 

Structural equation modeling (SEM) represents a “family of related procedures” 

as opposed to a specific statistical method (Kline, 2011).  This technique brings together 

exploratory factor analysis and multiple regression analyses (Tabachnick & Fidell, 2007).  

When model evaluation involves effects for observed variables (also referred to as 

indicators, or manifest variables), path analysis (the earliest SEM technique established) 

is appropriate.  The path model provides a structural representation of observed variables, 

and this structural model reflects causal hypotheses.  Disturbances in the model indicate 

the inference of probabilistic causality.  In this sense, the disturbances are representative 

of outcome variable causes not present in the model.  Path coeffiicients provide direct 

effect estimates.  Indirect, or mediator, effects communicate additional causal effects onto 

the outcome variable from the input variable (Kline, 2011).  For the present path analysis, 

direct effects are provided from number sense to mathematics self-concept and 

mathematics achievement.  The indirect effect of mathematics self-concept augments the 

indicated impact of number sense on mathematics achievement. 

 Statistical Analysis Software, SAS, version 9.2, was employed for the current 

study model, specifically, the Covariance Analysis of Linear Structure Equations 

procedure using maximum-likelihood estimation.  The extent to which number sense 

predicts mathematics self-concept and mathematics achievement in eighth grade was 

determined.  Accordingly, the proposed structural model (Figure 2) predicts that the 

exogenous variable number sense influences the endogenous variables of mathematics 

self-concept and mathematics achievement.  In addition to these direct effects, the model 

tests whether or not a student’s mathematics self-concept mediates the relationship 
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between number sense and mathematics achievement, representing its indirect influence 

on mathematics achievement.  The covariates (gender, race, SES, and special education 

services) serve as additional exogenous predictors, all with direct paths to the predictor 

(number sense), mediator (mathematics self-concept) and outcome (mathematics 

achievement) variables.  D1, D2, and D3 are measurement error terms (disturbances) 

associated with number sense, mathematics self-concept, and mathematics achievement.  

The model is recursive in that it assumes uncorrelated disturbances with unidirectional 

causal effects (Kline, 2011).  
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Figure 2. Proposed structural model for path analysis  
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Direct effect path coefficients represent change in the outcome variable based on 

a one-unit change in a specified predictor variable when all other variables are held 

constant.  Indirect paths exist when such direct effect paths are compounded by other 

present variables.  In the current study, there are two direct effects on the endogenous 

variable mathematics achievement, one coming from the exogenous variable number 

sense and one from the other endogenous variable mathematics self-concept.  The 

indirect, or mediator, effect occurs because mathematics self-concept functions both as a 

predictor and criterion (Kline, 2011).  The direct effect path coefficients were calculated 

and deemed significant from number sense to mathematics achievement and from 

number sense to mathematics self-concept to address the first two research hypotheses.   

In order to attend to the third hypothesis predicting that mathematics self-concept 

mediates the relationship between number sense and mathematics achievement, the 

indirect path determined allows for the calculation of the total of direct and indirect 

effects of number sense on mathematics achievement.  This total effects calculation 

provides a more comprehensive analysis of the impact of number sense on adolescent 

mathematics achievement.     

Testing for mediation was initially performed in accordance with procedures 

suggested by Baron and Kenny (1986).  Given the large sample size of the regression 

models, the complex sample design of the ECLS-K, and to ensure the external validity of 

the findings, the Sobel test (Sobel, 1982) was used to assess statistical significance of 

mediation rather than bootstrapping standard errors by weighting repeated resamples.  

The cross-sectional weight C7CPTM0 provided in the ECSL-K user manual was selected 

to address various limitations of data collection and reporting, such as nonresponse bias 
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and differential probabilities of selection at various stages of sampling (Tourangue, Lê et 

al., 2009, Tourangeau, Nord et al., 2009).  This specific weight was intended for analyses 

involving direct and indirect student and teacher data.  The appropriate nesting variables 

(in accordance with the Taylor series method employed by SAS) for computing standard 

errors for the C7CPTM0 full sample weight are C7CPTMST and C7CPTMPS, also found 

and discussed in the ECLS-K user manual and methodology report (Tourangeau, Nord et 

al., 2009; Tourangue, Lê et al., 2009).  Design effects for stratification and clusters were 

incorporated for student level data to correct for the assumption by SAS of simple 

random sampling.   

 The determination of model fit in SEM is based on model design and variable 

relationships being analyzed, and techniques for measuring it may be highly sensitive to 

the size and type of sample data.  The Chi-Square statistic, intended to evaluate how 

different the sample is from the fitted covariance matrices (Hu & Bentler, 1999), and its 

degrees of freedom and p value were reported as per Kline (2011).  The Goodness of Fit, 

or GFI, was also reported to show the proportion of variance accounted for by the 

estimated population covariance (Tabachnick & Fidell, 2007).  Because both of these 

statistics have shown an upward bias with large sample sizes (Barrett, 2007; Hooper, 

Coughlan, & Mullen, 2008; Miles & Shevlin, 2007), supplementary model fit indices 

were provided.  First, the standardized Root Mean Square Residual (SRMR) was selected 

over the Root Mean Square to account for varying ranges of variable scores.  

Additionally, the Parsimonious Goodness of Fit (PGFI) statistic was reported, which 

adjusts the GFI to account for loss in degrees of freedom (Mulaik, 2007; Mulaik et al., 

1989). 
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A framework extensively studied for verbal and mathematics self-concepts is the 

internal/external (I/E) frame of reference model (Marsh, 1986) which asserts that 

academic self-concept in various subjects, including mathematics, is subject to both 

internal and external comparison processes.  Externally, a student develops his academic 

self-concept by comparing him/herself to other students in the same area of academics 

and according to achievement measures like grades and test scores.  Internally, a student 

compares his/her performance and ability in one subject to that of other subjects.  Though 

the I/E frame of reference model is not evaluated as part of the present study, findings 

regarding its validity are pertinent to moderation analyses according to gender and race.  

Specifically, Marsh, Hau, Artelt, Baumert, and Peschar (2006), in their study of 25 

countries using the PISA 2000 database, demonstrated the cross-cultural generalizability 

of the I/E framework.  Likewise, Möller, Pohlmann, Köller, and Marsh (2009), in their 

meta-analytical path analysis of the I/E model, confirmed generalizability of the positive 

path from mathematics achievement to mathematics self-concept across gender, nation, 

and age.  

Simultaneous group analysis procedures were conducted to determine whether 

gender and race moderated the relationships between number sense, mathematics self-

concept, and mathematics achievement.  This was carried out by first estimating the 

model separately for males and females, and then White, Black, Hispanic, and Asian 

student groups.  Upon determining which of these models fit the data well, further 

analysis continued regarding how the path estimates varied according to demographic.  

The next chapter will detail the findings from the path analysis and will provide 

descriptive statistics for the sample.  The last chapter will then discuss these findings in 
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light of the theoretical frameworks chosen for the analysis and in relation to previous 

related research.  Limitations of the data will be addressed as well as research 

implications for the future.  Finally, how the results can be utilized at the student, 

classroom, district, and state levels as well as what this means in the context of the 

CCSSM will be discussed.   
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Chapter 4: Results 
 
 

 As students enter and progress through middle school, they experience multiple 

and profound life changes, and the present study’s goal is to address some of these by 

integrating the content and socioemotional characteristics of mathematics education at 

this time.  A path analysis tested the predictive capabilities of number sense in terms of 

mathematics achievement and mathematics self-concept, and then whether mathematics 

self-concept serves as an intervening variable for the path from number sense to 

mathematics achievement.   

 The following portion of the present study provides a description of study variable 

values, details preliminary procedures conducted to prepare the data for analysis, and 

finally relays how each research question was answered and what results followed.  The 

Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K) 

implemented a complex sample design.  Therefore, the weighted figures provided were 

found by applying appropriate sample weights and design variables to account for 

stratified and cluster sampling.   

 
Descriptive Statistics for Study Variables 
 

 Means and standard deviations for number sense, mathematics self-concept, and 

mathematics achievement are summarized in Table 3.    
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Table 3 

Descriptive Statistics for Study Variables (N = 4,250) 

Variable Range Unweighted Weighted 

        M SD M SD 

Number Sense 

Mathematics Self-Concept 

Mathematics Achievement 

3.00 - 7.00 

1.00 - 4.00 

1.14 - 4.94 

6.29 

2.62 

3.09 

.70 

.89 

.94 

6.24 

2.60 

3.01 

.02 

.02 

.03 

 
 
 The number sense scores for the eighth grade were based on seven proficiency 

probability scores, corresponding to the following content areas: (1) number and shape, 

(2) relative size, (3) ordinality and sequence, (4) addition and subtraction, (5) 

multiplication and division, (6) place value, and (7) fractions.  The scores for the current 

study ranged from 3 to 7, indicating that the eighth graders tested had at a minimum 

mastered number and shape, relative size, and ordinality and sequence.  These levels 

required identifying and reading one-digit and two-digit numerals, counting beyond 10, 

recognizing geometric shapes, pattern sequences and ordinal positions of objects, 

determining the next number in a sequence, comparing items with nonstandard 

measurement units, and performing basic word problems.  At the other end of the 

spectrum, students scoring a 7 additionally exhibited dexterity in addition, subtraction, 

multiplication, and division problems as well as place value to the hundredth place and 

working with fractional parts.  A minimum score of 3 is no surprise given that students, 

by the time they reach middle school, are likely able to recognize and count numbers and 

understand them in terms of size and order.  A high score of 7 is also reasonable given 
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that mathematics curriculum prior to eighth grade includes mathematics skills from all 

seven levels.  An unweighted mean score of 6.29 (weighted at 6.24) indicates that the 

average eighth grade student in the sample has not mastered fractions nor area and 

volume, but has mastered levels corresponding to number and shape, relative size, 

ordinality and sequence, addition and subtraction, multiplication and division, and place 

value. 

Mathematics self-concept had a value range of 1 to 4, 1 indicating a consistent 

response of  “not at all true,” and 4 reflecting a consistent response of “very true” 

regarding questions about interest and perceived skill in the subject of mathematics.  The 

unweighted mathematics self-concept mean was 2.62 (weighted at 2.60).  This value is 

reasonable, indicating a slightly above average rating of mathematics self-concept for the 

sample of eighth graders.   

Mathematics achievement scores ranged from 1.14 to 4.94, and the unweighted 

mean measured 3.09 (with a weighted mean of 3.01).  Based on teacher responses to 

seven difficulty-related questions about each student’s mathematics skills, the range 

reflects ratings at both ends of the spectrum, with 1 representing “poor” and 5 

representing “outstanding.”  The mean is a bit above average, falling in between “good” 

and “very good.”   

 
Preliminary Analyses 

 

Factor analysis.  The four mathematics items in the Student Description 

Questionnaire (SDQ) administered for the ECLS-K were not identical to the four 

questions in the shorter version of the SDQ II, the SDQ II-S (Marsh, Ellis, Parada, & 
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Richards, & Heubeck, 2005).  Moreover, the current study’s sample did not include all 

eighth graders but only those with mathematics academic rating scale scores.  For these 

reasons, a confirmatory factor analysis using oblique rotation with version 20 of the 

Statistical Package for the Social Sciences (SPSS) was first performed for the four 

mathematics self-concept items.  

An analysis of the eigenvalues confirmed a total of one factor with an eigenvalue 

greater than 1 (see Table 4).  This single factor accounted for about 75.16% of the 

variance.  An examination of the scree plot suggested that only one factor be retained (see 

Figure 3).  The factor loadings by item are presented in Table 5.  

 
Table 4 

Total Variance Explained, ECLS-K Mathematics Self-Concept Items 

Component Initial Eigenvalues Extraction Sums of Squared Loadings 

  
Total % of 

Variance 
Cumulative 

% 
Total % of 

Variance 
Cumulative 

% 

1 3.006 75.157 75.157 3.006 75.157 75.157 

2 .552 13.795 88.952    

3 .274 6.845 95.797    

4 .168 4.203 100.000    

Extraction Method: Principal Component Analysis. 
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Figure 3. Scree plot, ECLS-K mathematics self-concept items 

 
Table 5  

Component Matrix, Mathematics Self-Concept Items 

  
Component 

  1 

Math is one of my best subjects .896 

I get good grades in math .787 

I like .910 

I enjoy doing work in math .870 

Extraction Method: Principal Component Analysis. 
1 component extracted. 
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The four items fit best on one factor, which supports their combination into a 

single scale for the mathematics self-concept construct.  The coefficient alpha for the 

combined scale was .89, and as shown in Table 3, the weighted mean and standard 

deviation for mathematics self-concept were 2.60 and .02, respectively.  The factor 

analysis confirmed the dimensional structure of the SDQ items used to gauge interest and 

competence in mathematics. 

 
Test for mediation.  Steps in establishing mediation according to Kenny (2012), 

Kenny and Baron (1986), and Judd and Kenny (1981) were followed in preparation for 

testing the model.  Results of preliminary regression analyses are presented in Table 6.  

They confirm that number sense is a predictor of mathematics achievement (β = .47, p < 

.0001) and mathematics self-concept (β = .24, p < .0001).   These values, in addition to 

the absence of high modification indices in the structural equation modeling software 

used, indicated that neither multicollinearity nor correlated error were an issue in the 

model.   The precision of the path coefficients was not weakened by independent variable 

correlation.   

 A regression with mathematics achievement as the criterion variable and both number 

sense and mathematics self-concept as the input variables was also conducted to show 

that the mediator variable does in fact impact the outcome variable.  In this case, 

controlling the input variable number sense accounts for the possibility of both the 

mediator mathematics self-concept and outcome mathematics achievement being 

influenced by number sense.  Regression results in Table 6 indicate a significant 

standardized coefficient of .40, p < .0001.  The last step testing for mediation implies 

establishing complete mediation, which would indicate that the impact of number sense 
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on mathematics achievement is 0 after accounting for mathematics self-concept.  

However, since the current study does not assert that mathematics self-concept 

completely mediates the relationship between number sense and mathematics, this was 

not conducted.  Partial mediation is indicated by the affirmation of steps one through 

three which is in accordance with the hypotheses.  

 
Table 6 
 
Multiple Linear Regression Results in Testing for Mediation 

 
 

 

 

 

 

Note. ***p < .001 

 
Path Analysis Findings 

 

Several goodness-of-fit indices were utilized to evaluate the model.  As revealed 

in Table 7, the Chi-square statistic was .00 (with 0 degrees of freedom and a p value <  

.001), and the Goodness of Fit Index (GFI) was 1.00.  Both of these values indicate 

perfect fit as a result of model saturation, and their bias due to large sample size was no 

surprise (Bentler & Bonnet, 1980).  To further test model fit, the Standardized Root Mean 

Square Residual (SRMR) and Parsimonious Good-ness of Fit (PGFI) were calculated, 

Path B  β SE t 

Number Sense to  

Mathematics Achievement 

Number Sense to  

Mathematics Self-Concept 

Mathematics Self-Concept to 

Mathematics Achievement 

(Controlling for Number Sense) 

 

.62 

 

.30 

 

.53 

  

.47 

 

.24 

 

.40 

 

.02 

 

.02 

 

.02 

 

32.70*** 

 

15.10*** 

 

28.51*** 
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both with a .00 value as shown in Table 7.  As the model fit the data well, the study 

hypotheses were evaluated vis-à-vis the proposed structural model findings.   

 
Table 7 
 
Fit Indices for the Path Analysis 

Index Value 

Chi-Square 

Goodness of Fit Index (GFI) 
Standardized root mean square residual (SRMR) 

Parsimonious Goodness of Fit (PGFI) 

.00 

1.00 
.00 

.00 

 

 

First hypothesis.  It was hypothesized that, after controlling for gender, 

socioeconomic status (SES), special education services, and race, that number sense 

would significantly predict mathematics achievement.  As shown in Figure 4 and Table 8, 

number sense significantly and positively predicted mathematics achievement (β  = .27,  

p < .001).  Thus, higher number sense scores for eighth graders were associated with 

higher mathematics achievement values.  Specifically, each one-unit increase in number 

sense corresponded to a .27-unit increase in mathematics achievement. The first 

hypothesis was supported. 

 
Second hypothesis.  It was hypothesized that, after controlling for gender, SES, 

special education services, and race, number sense would significantly predict 

mathematics self-concept.  As shown in Figure 4 and Table 8, number sense significantly 

and positively predicted mathematics self-concept (β  = .25, p < .001).  This pattern 

indicates that higher number sense scores were associated with higher mathematics self-
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concept scores.  Specifically, each one-unit increase in number sense corresponded to a 

.25-unit increase in mathematics self-concept, which had a range in value from 1 to 4.  

The data supported the second hypothesis as well. 

 
Third hypothesis.  It was hypothesized that, after controlling for SES, gender, 

special education services, and race, that mathematics self-concept would mediate the 

effect of number sense on mathematics achievement.   The Sobel test, which assesses the 

statistical significance of indirect effects, was used to test this hypothesis.  The findings 

reveal that the indirect effect of number sense on mathematics achievement (β = .08) was 

statistically significant (z = 11.99, p < .001).  Therefore, mathematics self-concept 

mediated the effect of number sense on mathematics achievement.  The third hypothesis 

was supported. 
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Figure 4.  A path model for number sense, mathematics self-concept, and mathematics 
achievement (standardized coefficients) 
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Table 8 
 
 
Path Coefficients for the Path Analysis 

Path     B β SE t  

Number Sense to: 
   Mathematics Self-Concept 
   Mathematics Achievement 

Mathematics Self-Concept to: 
 Mathematics Achievement 

Gender to: 
Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

SES to: 
Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

Special Education Services to: 
Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

Black vs. White to: 
 Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

Hispanic vs. White to: 
Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

Asian vs. White to: 
Number Sense 
Mathematics Self-Concept 
Mathematics Achievement 

 
.32 
.36 

 
.33 

 
-.14 
-.10 
.23 

 
.27 

-.02 
.19 

 
-.55 
.11 

-.46 
 

-.31 
.01 

-.20 
 

-.12 
-.08 
-.08 

 
.08 
.10 
.10 

 
.25 
.27 

 
.32 

 
-.10 
-.05 
.12 

 
.31 

-.02 
.17 

 
-.25 
.04 

-.16 
 

-.16 
.00 

-.08 
 

-.07 
-.03 
-.03 

 
.02 
.02 
.02 

 
.02 
.01 
 
.01 
 
.01 
.02 
.01 
 
.01 
.02 
.01 
 
.01 
.02 
.01 
 
.01 
.02 
.01 
 
.02 
.02 
.01 
 
.01 
.02 
.01 

 
14.13 

18.53 

 
24.98 

 
-7.12 

-3.36 

9.65 

 
21.17 

-1.13 

11.51 

 
-18.09 

2.41 

-12.07 

 
-11.04 

0.16 

-5.84 

 
-4.43 

-1.95 

-2.31 

 
1.44 

1.38 

1.63 

 
*** 

*** 

 

*** 

 

*** 

** 

*** 

 

*** 

 

*** 

 

*** 

* 

*** 

 

*** 

 

*** 

 

*** 

* 

* 

 

*** p < .001 



	   77	  

Direct, indirect, and total effects.  Direct effects for the model are represented 

previously in Figure 4 and Table 8 by standardized path coefficients (regression 

coefficients).  Using Cohen (1988) standards, the effect size is small at .10, medium at 

.30, and large at .50.  Since gender was coded as 0 for males and 1 for females, Figure 4 

and Table 8 indicate that being female corresponded to a small reduction in number sense 

(β = -.10) but a small increase in mathematics achievement (β = .12).  SES had a medium 

positive effect on number sense (β = .31) as well as a small positive effect on 

mathematics achievement (β = .17).  Students not receiving special education services 

were coded as 0, and those receiving such services were coded as 1.  The data reveal that 

receiving special education services was associated with a small negative effect on 

number sense (β = -.25) and mathematics achievement (β = -.16).   In terms of race, 

Black students were the only group to indicate a negative relationship with number sense 

(small at -.16) in comparison to White students, and no racial categories show direct 

effects for mathematics self-concept or mathematics achievement.   

 Shrout and Bolger (2002) recommend gauging effect size for mediation via the 

previously referenced Cohen (1988) thresholds.   However, Kenny (2012) suggests that 

these values be squared since indirect effect is the product of two effect sizes, yielding 

the following figures: .01 for small, .09 for medium, and .25 for large.  It is also 

noteworthy that Cohen himself pointed out the importance of perpective in such 

interpretations when he urged effect size measures be interpreted in the context of 

population variability (Cohen, 1994).  For the present study, the indirect effect size is 

found by multiplying the direct effect paths from number sense to mathematics self-

concept (.25) and mathematics self-concept to mathematics achievement (.32).  The 
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calculation yields an indirect, mediator effect measure of .08, which may be interpreted 

as small to medium in the current study.   

It is important to remember that, in the current study, number sense was not 

presented as the sole predictor of mathematics achievement, nor was mathematics self-

concept suggested as a complete mediator of their relationship.  As mentioned in the 

methods section, the comprehensive assessment of mathematics for eighth graders in the 

study also includes measurement, geometry and spatial sense, data analysis, statistics, 

probability, patterns, algebra, and functions (Tourangeau, Nord et al., 2009).  Even this 

formulation does not account for other contributing achievement factors, such as practice 

and parental influence.  Cast in this light, direct effects from number sense to 

mathematics achievement of .27 and from number sense to mathematics self-concept of 

.25 more dramatically reflect how critical number sense is to the much broader measure 

of mathematics achievement at the middle school level.  It also indicates how crucial an 

indirect effect value of .08 represents for mathematics self-concept.   

Total effects are “the sum of all direct and indirect effects of one variable on 

another” (Kline, 2011, p.167).  For the current path analysis, the direct effect of number 

sense on mathematics achievement was represented by a path coefficient of .27.  The 

indirect effect of this path by way of mathematics self-concept was found to be .08.  Total 

effects for the model are therefore represented by .35, the sum of .27 and .08.  This 

interpretation of standardized effects as path coefficients indicates that a one standard 

deviation increase in eighth grade number sense will positively impact student 

mathematics achievement by .35 standard deviations.  This outcome is the result of all 

suggested direct and indirect causal relationships between number sense and mathematics 
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achievement.  For the current study, this includes the direct causal link between number 

sense and mathematics achievement and the indirect causal link between number sense 

and mathematics achievement through mathematics self-concept. 

  
 Moderating effects.  Moderation (or interaction) effects were evaluated in the 

model for the race and gender.  The full model was therefore estimated separately for 

males and females, and then for each racial group in comparison to the other racial 

categories.  This process was intended to determine whether the demographic variables of 

gender and race uniquely affect the strength of the causal relationship between number 

sense, mathematics self-concept, and mathematics achievement and to test the external 

validity of the model (Kenny, 2011).  Table 9 shows the direct, indirect, and total effects 

for each gender and racial category. 
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Table 9 

Standardized effects on Mathematics Achievement by Gender and Race 

Variable Total 
Effect 

Direct 
Effect 

Indirect 
Effect 

Females 

Mathematics Self-Concept 
Number Sense 

Males 
Mathematics Self-Concept 

Number Sense 
Whites 

Mathematics Self-Concept 
Number Sense 

Blacks 
Mathematics Self-Concept 

Number Sense 
Hispanics 

Mathematics Self-Concept 
Number Sense 

Asians 
Mathematics Self-Concept 

Number Sense 

 

.31 

.44 

 
.33 

.30 
 

.31 

.35 

 
.30 

.15 
 

.34 

.42 

 
.30 

.46 

  

.31 

.37  

 
.33 

.21 
 

.31 

.28 

 
.30 

.09 
 

.34 

.31 

 
.30 

.37 

  

 
.08 

 
 

.08 
 

 
.07 

 
 

.06 
 

 
.11 

 
 

.09 

Note. p < .001 for all values. 

 
Gender.  The results for the simultaneous group analyses for gender are depicted 

in Figure A1 and summarized in Tables A1 and A2 in Appendix A.  Gender did moderate 

the relationships between number sense, mathematics self-concept, and mathematics 

achievement as both models fit the data well.  Table 9 shows that the total effect of the 

model was .30 for males and .44 for females.  The indirect effect of mathematics self-
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concept is the same for both females and males (.08).  Looking more closely at the direct 

effects, it appears the influence of number sense on mathematics achievement is stronger 

for females than males (.37 for females, .21 for males).  In the case of gender, therefore, 

model variation is likely attributable to differences in the direct effect of number sense on 

mathematics achievement. 

 
Race.  In the midst of developmental changes during adolescence and 

contributing forces like parental and teacher relationships, many students may find race, 

whether directly or indirectly, influences their educational progress.  According to 

Graham and Hudley (2005), this is truly unique for each individual, and how a person 

views their ethnic minority’s competence significantly impacts how they view their 

personal abilities and the ways in which they seek achievement.   Specifically, ethnic 

identity can serve a protective role: “When adolescents of color are strongly identified 

with their ethnic group, they are more motivated to achieve and have a greater repertoire 

of skills to ward off threats to their competence” (Graham & Hudley, 2005, p. 406).  In 

many cases, it is impossible to disentangle ethnic factors from SES, which has the ability 

to directly impact a student’s well being.  SES can impact health, access to resources, and 

subsequently, overall academic readiness (Brooks-Gunn, Linver, & Fauth, 2005).  To 

explore how race might impact the relationship between number sense, mathematics self-

concept, and mathematics achievement, the model was evaluated separately for each 

group for comparison.  All results are summarized in Tables A3 and A4.  

 
Whites versus Blacks.  The results for the simultaneous group analyses of 

Whites versus Blacks are depicted in Figure A2.  Strong model fit for both racial 
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categories reveals that race (Whites versus Blacks) did moderate the relationships 

between number sense, mathematics self-concept, and mathematics achievement.  The 

model total effect was .35 for White students and .15 for Black students.  The indirect 

effects were similar, but the direct path from number sense to mathematics achievement 

was only .09 for Black students and .28 for White students.  Black students did show a 

medium direct effect for mathematics self-concept on mathematics achievement that was 

similar to the White students (.30 compared to .31).  So mathematics self-concept impacts 

achievement for Black students, but not as much by way of number sense, and number 

sense is much less influential for Black students compared to White students in terms of 

overall mathematics achievement. 

 
Whites versus Hispanics.  The results for the simultaneous group analyses for 

Whites versus Hispanics are depicted in Figure A3.  Strong model fit for both racial 

categories reveals that race (Whites versus Hispanics) did moderate the relationships 

between number sense, mathematics self-concept, and mathematics achievement.  As 

Table 9 shows, the model total effect was .35 for White students and .42 for Hispanic 

students, and this was attributable to both direct and indirect effects.  Whereas the 

indirect effect for White students was .07, this value was .11 for Hispanic students.   The 

direct effect from number sense to mathematics achievement was also higher for 

Hispanic students (.31) than White students (.28).   

 
Whites versus Asians.  The results for the simultaneous group analyses for 

Whites versus Asians are depicted in Figure A4.  Strong model fit for both racial 

categories reveals that race (Whites versus Asians) did moderate the relationships 
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between number sense, mathematics self-concept, and mathematics achievement.  As 

Table 9 shows, the model total effect was .35 for White students and .46 for Asian 

students.  The indirect effects are similar, but the direct path from number sense to 

mathematics achievement was .37 for Asian students in comparison to .28 for White 

students. 

 
Blacks versus Hispanics.  The results for the simultaneous group analyses for 

Blacks versus Hispanics are depicted in Figure A5.  Strong model fit for both racial 

categories reveals that race (Blacks versus Hispanics) did moderate the relationships 

between number sense, mathematics self-concept, and mathematics achievement.  As 

Table 9 shows, the model total effect was only .15 for Black students and .42 for 

Hispanic students, and both indirect and direct effects impacted this difference.  Whereas 

the indirect effect for Black students was only .06, this value was .11 for Hispanic 

students.   Likewise, the direct effect from number sense to mathematics achievement 

was higher for Hispanic students (.31) than Black students (.09).   

 
Blacks versus Asians.  The results for the simultaneous group analyses for 

Blacks versus Asians are depicted in Figure A6.  Strong model fit for both racial 

categories reveals that race (Blacks versus Asians) did moderate the relationships 

between number sense, mathematics self-concept, and mathematics achievement.  As 

Table 9 shows, the model total effect was only .15 for Black students and .46 for Asian 

students.  The indirect effects were somewhat smaller for Black students (.06 compared 

to .09), but the direct path from number sense to mathematics achievement was 

substantially different, being .37 for Asian students and only .09 for Black students. 
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Hispanics versus Asians.  The results for the simultaneous group analyses for 

Blacks versus Hispanics are depicted in Figure A7.   Strong model fit for both racial 

categories reveals that race (Hispanics versus Asians) did moderate the relationships 

between number sense, mathematics self-concept, and mathematics achievement.  

However, a closer look at model effects indicates that the group differences are minimal.  

As Table 9 shows, the model total effect was .42 for Hispanic students and .46 for Asian 

students.  Indirect and direct effects were also relatively similar, though the indirect affect 

of mathematics self-concept appears to be somewhat stronger for Hispanic students (.11) 

than Asian students (.09).  In terms of the direct effects of number sense on mathematics 

achievement, Asian students were higher than Hispanic students (with standardized path 

coefficients of .37 and .31, respectively).   

 
Summary 
 

 The goal of the path analysis was to determine the predictive extent of number 

sense on mathematics self-concept and mathematics achievement for eighth graders, and 

additionally, to explore the meditational capability of mathematics self-concept on the 

path from number sense to mathematics achievement.  Direct and indirect effects for the 

structural equation model confirm all hypotheses.  Number sense positively and 

significantly predicts both mathematics self-concept and mathematics achievement.  

Additionally, the relationship between number sense and mathematics achievement is 

clearly mediated by mathematics self-concept.   

Considering the broad context and content of mathematics achievement, all of the 

findings are noteworthy.  First, they highlight just how critical number sense remains in 
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middle school.  Whereas previous studies have shown the positive impact of number 

sense on elementary mathematics performance and growth (Jordan, Glutting, & 

Ramineni, 2009; Jordan, Glutting, Ramineni, & Watkins, 2010; Jordan, Kaplan, 

Locuniak, & Ramineni; 2007), a total effect value of .35 at the middle school level 

indicates how this construct must remain a key element of curriculum as students 

transition from arithmetic to algebra.  In terms of mathematics self-concept, the results 

indicate that number sense is a strong component of the link between this affective 

domain and overall mathematics performance.  This narrows the focus of previous 

findings of the cause and effect relationship between mathematics self-theories and 

mathematics self-concept (Valentine, DuBois, & Cooper, 2004) to number sense.  

Finally, results of the present study provide a first look at number sense in the context of 

middle school motivation and indicate that this relationship is carried over to a certain 

extent in how number sense contributes to mathematics achievement at this academic 

stage.   
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Chapter 5: Discussion 
 
 

The present study sought to determine to what degree number sense, or the ability 

to flexibly apply knowledge of numbers and operations, contributes to both the academic 

and affective transformation of students at the middle school level.  This task was carried 

out through a path analysis using cross-sectional data from the Early Childhood 

Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K).  Results suggest that 

number sense influences mathematics self-concept and mathematics achievement in 

eighth grade.  This chapter will detail the significance of these findings in educational 

research and practical classroom application, review limitations posed by the data and 

analyses employed, and discuss how the results can be elaborated in future research. 

 
Rationale for the Present Study 

 

Forming one’s identity is the “defining life task of adolescence – the question of 

who one is, who one belongs with, what one is good at, and where one is going in the 

future” (Roeser & Lau, 2002, p. 93).  This process is nowhere more evident than in 

middle school where students typically reveal a decrease in both values and expectancies, 

possibly due to a disconnect between changing instructional techniques and their 

developmental desire for independence, competence, and relevance (Eccles & Midgley, 

1989).  Unfortunately, there is strong evidence that students at this stage of maturation 

experience lower engagement and performance in mathematics at the same time that they 

exhibit a decreased appreciation for its value as a subject (Anderman & Maehr, 1994; 

Pajares & Graham, 1999; Wigfield, Eccles, MacIver, Reuman, & Midgley, 1991).  

Academically, this juncture represents a stage of critical mathematics development as 
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students transition from material focused more on arithmetic to that involving complex 

topics like algebra (Geary, 1994; Ketterlin-Geller, Jungjohann, Chard, & Baker, 2007; 

Schielack & Seeley, 2010).  

 In an atmosphere of intense accountability and in the midst of an unprecedented 

emphasis on mathematics and science, educational policy is striving to create consistent 

and effective learning experiences.  The Common Core State Standards Initiative 

(CCSSI) represents an effort in the United States to shape curriculum and instruction in a 

way that maximizes student potential and opportunity.  At each grade level of the 

Common Core State Standards for Mathematics (CCSSM), Standards for Mathematical 

Practice (SMPs) provide a framework for instruction that emphasizes meaningful 

mathematical behaviors, such as modeling operations in relevant contexts, thinking both 

concretely and abstractly about mathematics, and dedicating oneself to finding accurate 

solutions (National Governors Association Center for Best Practices, Council of Chief 

State School Officers, 2010).  Underlying this framework is a persistent call for number 

sense, one that changes in scope and application as students progress from elementary to 

middle to high school.   

 
How the Present Study Adds to the Literature 
 

 There is ample empirical support for the advantages of early number sense in 

student mathematical growth, particularly at the elementary level (Baroody, Lai, & Mix, 

2006; Jordan, Glutting, & Ramineni, 2009; Jordan, Glutting, Ramineni, & Watkins, 2010; 

Jordan, Kaplan, Locuniak, & Ramineni, 2007).  Education research has also 

demonstrated how elements of number sense, such as place value and computational 
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fluency, contribute positively to elementary mathematics achievement (Byrnes & Wasik, 

2009; Cowan, et al., 2011; Duncan, et al., 2007; Kikas, Peets, Palu, & Afanasjev, 2009; 

LeFevre, et al., 2010; Mazzocco, Feigenson, & Halberda, 2011; Moeller, Pixner, Zuber, 

Kaufmann, & Nuerk, 2011).  In secondary and higher education, the emphasis has been 

on particular skills within number sense, such as fraction or arithmetic abilities, as they 

relate to more advanced coursework (Brown & Quinn, 2007; Geary, Saults, Liu, & 

Hoard, 2000; Geary, Liu, Chen, Saults, & Hoard, 1999; Lyons & Beilock, 2011; Tolar, 

Lederberg, & Fletcher, 2009).  At the middle school level, the literature primarily 

addresses studying gaps by looking at number sense components (Alajmi & Reys, 2010; 

Ben-Chaim, Fey, Fitzgerald, Benedetto, and Miller, 1998; Gay & Aichele, 1997; 

Herscovics & Linchevski, 1994; Stacey & MacGregor, 1997; Royer, Tronsky, Chan, 

Jackson, & Marchant, 1999).   

What is missing from this discourse is the issue of how number sense plays an 

active part in middle school mathematics achievement.  Just as the CCSSM do at these 

grade levels, educators, parents, and the public assume that number sense is providing a 

foundation for more complex mathematics topics.  But as many teachers still administer 

benchmark tests and attend to curriculum in keeping with No Child Left Behind 

guidelines, a focus on grade-level standard requirements may leave little room for 

incorporating number sense into instruction.  As a result, necessary provisions for 

students who have not excelled in this construct over the years may be neglected.  A 

primary goal of the current study is to encourage a renewed emphasis on number sense 

due to its potential for enhancing differentiated instruction and progression into more 
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advanced mathematics coursework while still following SMPs and striving for those 

content elements delineated by the CCSSM.   

 Research in educational psychology has provided strong evidence for the 

relationship between affective domains and mathematics achievement.  Specifically, 

mathematics self-concept has been linked to mathematics development in elementary, 

middle, and high school (Möller, Pohlmann, Köller, & Marsh, 2009).  However, this 

research has not looked at more specific elements of mathematics in this context.  

Exploring the strength of the relationships between mathematics self-concept and skill 

areas like number sense allows for a better pinpointing of developmental obstacles.  In 

turn, intervention can be more optimally tailored for student improvement and 

performance. 

 The present study adds to the literature on middle school mathematics by 

interconnecting content and socioemotional factors in hopes of better informing 

application of the CCSSM, now adopted by 45 of the 50 United States.  The importance 

of affective domains in the study of mathematics achievement is not a new notion, and in 

fact, the significant motivational declines documented as children move through 

adolescence may be more extreme for mathematics than other subjects (Gottfried, 

Marcoulides, Gottfried, Oliver, & Guerin, 2007).  Not surprisingly, there is evidence that 

interest in mathematics drops from childhood to adulthood (Gottfried, Fleming, & 

Gottfried, 2001), and this waning interest is stronger in adolescence (Fredericks & 

Eccles, 2002; Watt, 2008).  As a motivational construct, mathematics self-concept has 

been supported as a contributing factor in as well as an outcome of mathematics 

achievement (Marsh, 1990b, 2007; Marsh, Byrne, & Yeung, 1999; Marsh & Craven, 



	   90	  

2006; Marsh & O’Mara, 2008; Marsh & Yeung, 1997), and an additional objective of the 

present study was to explore this dynamic by narrowing mathematics achievement to 

number sense as one of its key elements.  In exploring the link between number sense and 

adolescent mathematics self-concept, a focused look at the way this pattern empowers 

overall mathematics achievement provides a more well-rounded view of how curriculum 

and instruction can shape mathematical development. 

 
Summary of Methods and Findings 
 

 Data for the study was drawn from the last round of data collection for the ECLS-

K, occurring during the spring of students’ eighth grade year.  The large sample size and 

extensive data allowed for cognitive, demographic, and affective measures to be 

incorporated into the study design.  Single-indicator measures within the ECLS-K 

database with strong psychometric characteristics were identified for the number sense, 

mathematics self-concept, and mathematics achievement constructs (Tourangue, Nord, 

Lê, Sorongon, & Najarian, 2009).  The path analysis technique, the oldest form of 

structural equation modeling, was best suited for studying the relationship between the 

single observed variables.  The five steps identified by Kline (2011) for conducting a 

structural equation model are: specification, identification, measure selection and data 

collection, estimation, respecification, and reporting the results.  These guidelines will 

frame the summary description of the current study.   

 Specification began with the inclusion of the primary exogenous predictor 

variable number sense and the endogenous outcome variables of mathematics self-

concept and mathematics achievement.  As an indicator of number sense, highest 
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proficiency level mastered detailed skill level based on clusters of questions including 

number sense items.  The perceived interest and competence in mathematics score, 

derived from Marsh’s Student Descriptive Questionnaire II, was utilized as a measure of 

mathematics self-concept.  Finally, the mathematics teacher academic rating scale was 

chosen to represent mathematics achievement.  Directionality presumed causal effects 

from number sense to both mathematics achievement and mathematics self-concept, and 

from mathematics self-concept to mathematics achievement.  The paths from number 

sense to mathematics achievement and mathematics self-concept corresponded to the first 

two research hypotheses stating that number sense predicts both mathematics 

achievement and mathematics self-concept.  With the additional path from mathematics 

self-concept to mathematics achievement, the third research hypothesis is represented, 

asserting that mathematics self-concept mediates the path from number sense to 

mathematics achievement. 

Identification of the recursive model implied unidirectional causal effects and 

uncorrelated disturbances, as represented in the proposed model diagram from chapter 3 

(Figure 2, p. 59).  Estimation was conducted by evaluating the Comparative Fit Index, the 

Root Mean Squared Error of Approximation, and the Standardized Root Mean Square 

Residual in accordance with Kline (2011).  Since each of these measures was deemed 

sufficient, no respecification was necessary.  Consequently, the initial proposed model 

supported all three research hypotheses. 

The first research question asked whether number sense predicts mathematics 

achievement.  Analysis revealed that number sense scores positively and significantly 

contributed to teacher academic ratings in mathematics for eighth graders in the study.  
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Whereas previous findings have involved elementary growth patterns following initial 

number sense ratings, the results of the current study provide strong evidence for the 

continued contribution of number sense as students move into higher-level coursework.  

Having obtained positive results for the first research question (with a path coefficient of 

.27), the present study succeeded in empirically extending the beneficial role of number 

sense in mathematics achievement to middle school.   

For the second research question, number sense was significantly and positively 

linked to mathematics self-concept for participants.  The confirmatory results reveal how 

number sense, as a specific and critical component of mathematics achievement, predicts 

mathematics self-concept at the middle school level.  The strength of this path coefficient 

(.25) indicates that number sense may influence mathematics self-concept more than 

other content domains within mathematics achievement (i.e. geometry and spatial sense, 

data analysis, statistics, and probability, and algebra and functions). 

Finally, a model of mathematics self-concept mediating the impact of number 

sense on mathematics achievement was verified in accordance with the third research 

question.  This finding provides support for the indirect effects of number sense on 

mathematics achievement through mathematics self-concept.  The total effect coefficient 

of .35 (combining the direct effect of .27 with the indirect effect of .08) indicates that 

number sense and mathematics self-concept play a substantial role in mathematics 

success for eighth graders, and that their interaction and mutual influence must be taken 

into consideration when studying middle school mathematics.   

Moderation analyses revealed that the interrelationship of number sense, 

mathematics self-concept, and mathematics achievement in the present study was 



	   93	  

mediated by gender and race.  Such findings indicate that the results of the path analysis 

must also be considered in the context of student demographics.  Namely, it appears that 

middle school mathematics achievement is tied more strongly to number sense for 

females than males.  Specifically, the direct path from number sense to mathematics 

achievement was only .21 for males but .37 for females.  However, the path from 

mathematics self-concept to mathematics achievement is similar for both males and 

females (.33 and .31 respectively), and this is in keeping with the Marsh and Yeung study 

(1998) revealing similar path coefficients for prior mathematics self-concept and follow-

up mathematics performance for boys and girls.  It is likely that the main reason for the 

disparity in total effects by gender is due to the high direct effect of number sense on 

mathematics achievement for females. 

In terms of race, variations in the model are more complex, especially considering 

that special education services and socioeconomic status were included as covariates.  

Though all racial groups show positive, significant direct effects for number sense on 

mathematics achievement, and indirect effects on this relationship through mathematics 

self-concept, there are variations in degree across groups.  First, White students reflect 

the total effects average for the model of .35.  However, it is noteworthy that the paths 

comprising this figure are not necessarily similar across all model paths.  For example, 

the direct path from number sense to mathematics achievement for White students is .28, 

just a bit above the model average of .27.  For mathematics self-concept to mathematics 

achievement, the direct effect of .31 is also close to the model average of .32.  However, 

the direct effect from number sense to mathematics self-concept is .31 compared to the 
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model path of .25.  It seems the relationship between number sense and mathematics self-

concept indirectly lowers the total model effects (.07 versus .08).     

Hispanic students seem to be most influenced by indirect effects (.11 versus the 

model average of .08) compared to all other racial groups, and this is due to the elevated 

direct effects of number sense on their mathematics self-concept and mathematics self-

concept on their mathematics achievement.  In conjunction with an above-average direct 

effect value for the path from number sense to mathematics achievement (.31 versus .27), 

the Hispanic group shows the second highest total effects value of .42.  

Asian students reveal the largest total effect calculation (.46) for the model.  Since 

the path from mathematics self-concept to mathematics achievement is the model average 

of .30 for this racial group, their heightened total effect is primarily due to their elevated 

path from number sense to mathematics achievement (.37 compared to the model average 

of .27).  However, the group also shows a larger path coefficient from number sense to 

mathematics self-concept (.30 versus the model average of .25), which also increases the 

indirect effect value of number sense on mathematics achievement via mathematics self-

concept to .09 (just above the model average of .08).  Though the majority of their higher 

total effect figure is due to number sense directly, it is still augmented by an above-

average indirect effect.   

The model applied to Black students reflects weaker, though still positive and 

significant, model effects.  This lower value (.15 versus the model’s .35) does not appear 

to be substantially related to the influence of mathematics self-concept on mathematics 

achievement (which is .30 compared to .32 for the model).  However, the path from 

number sense to mathematics self-concept is only .20 compared to the model’s path 
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average of .25, and this lowers the indirect value of number sense on mathematics 

achievement via mathematics self-concept to .06 (versus .08 for the model).  

Additionally, and perhaps most noteworthy, the path coefficient for number sense to 

mathematics achievement for Black students is only .09 compared to the model average 

of .27, and with a t-value of 1.79, isn’t considered significant.  

 
Limitations 

 

The first round of data collected for the ECLS-K was representative of the U.S. 

population, but longitudinal analyses were complicated by student mobility, and therefore 

it was not possible to maintain this level of generalizability throughout the eight-year 

period.  The present study looked solely at students for whom a mathematics teacher 

provided a skills rating and who themselves completed the student descriptive 

questionnaire.  Because of this constraint, results are indicative of a large sample of 

eighth graders at one point in time and not necessarily from randomly selected 

demographics.   The use of ECLS-K sample weight and design effect variables, however, 

does strengthen the accuracy of interpreting results in relation to the broader population 

by somewhat compensating for nonresponse and selection bias. 

Measurement of the variables selected to represent mathematics constructs, in this 

case number sense, mathematics self-concept, and mathematics achievement, is not 

without flaws.  For number sense, the proficiency level mastery score is based on 

questions not selected by the researcher, and because of this constraint, it is not possible 

to confirm that all elements of the McIntosh, Reys, and Reys (1992) framework were 

addressed.  Furthermore, as the CCSSM reveal, number sense is a piece of many different 
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problem types, varies in scope as students develop, and is often represented in 

mathematical behavior not captured by standardized tests.  Ideally, a more 

comprehensive and broadly measureable scale would be used to represent the number 

sense variable.   

Although utilizing teacher academic ratings for mathematics achievement is an 

excellent way to incorporate mathematical thinking and behavior not necessarily reflected 

in multiple-choice questions, teachers are human, and as such, susceptible to personal 

bias and subjectivity.  Moreover, standards for curriculum at the eighth grade level vary 

immensely across the United States.  Whereas some schools offer multiple levels of 

mathematics curriculum in eighth grade, including General Mathematics, Pre-algebra, 

Algebra I, and Geometry, others may only teach one curriculum, and in both 

circumstances, tracking may or may not be applicable.  This coursework factor 

potentially impacts the way that teachers interpret academic skills for their students. 

The ECLS-K mathematics self-concept scale has strong empirical support in the 

literature (Ellis, Marsh, & Richards, 2002; Marsh, 1993b; Marsh, Ellis, Parada, Richards, 

& Heubeck, 2005), as implemented for the Department of Education (Najarian, Pollack, 

& Sorongon, 2009; Tourangeau, Lê, Nord, & Sorongon, 2009; Tourangeau, Nord et al., 

2009), and as revealed by the factor analysis performed in the current study.  However, 

the context of this mathematics self-concept is not explored beyond its broad relation to 

number sense and mathematic achievement.  Students may be affected differently by 

variables beyond their control, such as academic setting, range of mathematics topics 

being covered, or instructional format.  Further study of this affective domain according 
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to such environmental factors might provide even more informative data regarding how it 

influences students.  

As is the case in all causal-modeling analyses, the path analysis was constructed 

based upon hypotheses proposed by the researcher.  Though a strong theoretical basis 

supports each component of the model, specification results in effect priority based upon 

researcher hypotheses.  This model assumes the well-established reciprocal link between 

academic self-concept and achievement (Marsh, 1990b; Wigfield, Eccles, & Pintrich, 

1996).  However, directionality for the model is confounded by the introduction of 

number sense, which is a distinct element of mathematics achievement, and which has 

never been studied in relation to mathematics self-concept.  Neither the path from number 

sense to mathematics self-concept, nor the path from number sense to mathematics 

achievement is reciprocated in the model analyses.  Rather, previous reciprocal findings 

were utilized to predict that number sense, related to mathematics achievement through 

content and skill, partially predicts mathematics self-concept, and that mathematics self-

concept partially predicts mathematics achievement.  However, since number sense 

clearly plays a part in mathematics achievement, it is likely that it influences mathematics 

self-concept in a similar manner.   

 
Future Research Implications 
 

 The current study depicts number sense as a predictor of mathematics self-

concept and mathematics achievement, controlling for gender, special education services, 

race, and socioeconomic status.  More environmental details, such as those pertaining to 

curriculum, pedagogy, and overall classroom and school climate, might provide insight 
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into how the specific aspects of number sense, mathematics self-concept, and 

mathematics achievement impact one another.  Additionally, informative factors 

potentially influencing the study variables often occur outside of the classroom, as in the 

case of parental involvement and pressure and the amount of practice and real-life 

exposure students have to mathematical ideas.  When teachers encounter students with 

underdeveloped number sense skills, descriptive data on the context of deficiencies will 

better direct their methods of intervention and how they approach instruction.  The 

present study provides evidence of number sense and mathematics self-concept as 

contributing factors in the myriad of details surrounding middle school mathematics 

education, and ongoing achievement research must explore details pertaining to both 

constructs, including how the two may be related contextually.  

 The number sense construct would benefit from more practical specification, 

providing deeper awareness of obstacles hindering success.  For example, a student might 

only struggle with ratio and proportion in a word problem, but not when directed to find 

equivalent fractions in completing a proportion.  This circumstance could be remedied 

with more context-specific application in the classroom.  Some students may need to 

witness a recipe ingredient adaptation or construct a reduced scale diagram of a room in 

their home to truly comprehend the problem.  For another student, the issue might be less 

about context and more about operations.  While grasping the physical representation and 

appreciating the concepts behind comparing different quantities and measurements, 

students might get lost in operations like multiplication and division that are required to 

solve the problem accurately and completely.  With a closer look at the context of 

number sense, whether dealing with numbers, operations, or application, it might be 
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possible to determine which factors are most influential on a student’s mathematics 

progress. 

 The results of the current study indicate the need for a sharper research focus on 

mathematics self-concept as well as number sense, possibly providing information on if 

and when students are more influenced by affective elements.  For example, could 

mathematics self-concept be more of an issue in the classroom than at home?  Might it 

correspond to individual versus group environments?  Is it susceptible to influence 

through pedagogy or classroom structure, such as direct versus cooperative instruction?   

Likewise, how are various applications of number sense a part of these dynamics and do 

these patterns fluctuate across different content objectives?  Even though such 

determinations will vary by student, understanding the underlying structure of 

mathematics self-concept from this perspective might inform more effective curriculum 

and instruction design. 

A more detailed look at the key study variables of number sense and mathematics 

self-concept must also include further exploration of the reciprocal effects model for 

mathematics self-concept and mathematics achievement.  Number sense as well as other 

content domains should be analyzed with mathematics self-concept in an effort to 

determine whether causal links at this level are also reciprocal.  This claim is supported 

by a recent kindergarten study by Ivrendi (2011) that found behavioral self-regulation, 

already linked to motivational constructs (Ning & Downing, 2010; Ommundson, Haugen, 

& Lund, 2005; Zimmerman, 1989, 1994; Zimmerman & Martinez-Pons, 1990), is a 

significant predictor of number sense.  Additional studies would benefit not only from a 
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more detailed and context-specific analysis of number sense and mathematics self-

concept, but also consideration of the directionality of their interaction with one another. 

Finally, moderation results indicating differences in the model according gender 

and race should be used as a basis for further research into number sense as it impacts 

both mathematics self-concept and mathematics achievements demographically.  For 

instance, why does number sense have a stronger relationship with mathematics 

achievement for females than males in middle school?  Males have shown an advantage 

in number sense skills at the elementary level, and this has given them an edge over time 

as well, even though growth trajectories remain similar (Jordan et al., 2007; Jordan, 

Kaplan, Olah, & Locuniak, 2006).  An analysis of NAEP data from 1990 to 2003 

determined that gender gaps favoring males in mathematics achievement were highest in 

measurement and number and operations in grade eight (McGraw, Lubienski, & 

Stutchens, 2006).  Likewise, though males have not shown a growth advantage in 

mathematics self-concept, they do maintain a higher level of mathematics self-concept 

than females that continues at the middle school level (Nagy et al., 2010).   It’s feasible 

that initially and consistently lower levels of both number sense and mathematics self-

concept for females makes the reliance of mathematics achievement on number sense, or 

perhaps their valuing of the number sense content domain, that much stronger for them 

compared to male students. 

 In terms of race, results of the present study provide extensive research options 

for the number sense construct according to race as well as how number sense influences 

mathematics self-concept and mathematics achievement for different racial groups.  

Furthermore, this line of study must determine whether these relationships are similar, 
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less, or more significant in middle school than at other developmental stages.  For 

instance, it is imperative to more deeply examine why this relationship is so much 

stronger for Hispanic and Asian students.  Previous literature indicates that Hispanic 

students may enter elementary school with lower mathematics proficiency skills, and that 

the White-Hispanic achievement gap may go down in magnitude but that it continues to 

exist (Borman, Stringfield, & Rachuba, 2000; Reardon & Galindo, 2007, 2009).  

Considering these circumstances in light of the clear link between mathematics self-

concept and mathematics achievement for students and the connection between early 

number sense and mathematics achievement growth, it is possible that this initial 

disadvantage may be related to their beliefs about mathematics ability and their progress 

in this subject in middle school.  However, similar findings have shown that Black 

students also may enter with lower mathematics skill levels (Borman, Stringfield, & 

Rachuba, 2000; Cheadle, 2008), and yet their number sense is less heavily tied to 

mathematics self-concept and mathematics achievement.  Such discrepancies may require 

a deeper look at contextual variables like school quality, community and family 

background, teacher racial bias, or stereotype threat for example.   

 
Practical Implications 
 

 The findings from the current study have important implications for multiple 

groups of individuals and organizations across the United States. It includes the state 

policymakers shaping the curriculum standards and pedagogical strategies employed by 

districts.  It includes superintendents, principals, and mathematics department heads 

administering such guidelines.  It includes the teachers attempting to reach every student 
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in their classroom in the most effective ways, regardless of background and skill.  And it 

includes the students transitioning from curriculum focused more on arithmetic to that 

more heavily concerned with complex algebraic topics.  These students are young 

adolescents who have been told they can achieve the American Dream through education, 

and who may or may not realize just how critical this year of their mathematical progress 

is to their future education and career paths.   

 The CCSSI has provided mathematics standards adopted by the majority of the 

United States through the CCSSM, and their purpose is to ensure consistency as well as 

authentic and comprehensive curriculum on par with international performance and 

intended to provide all students with the opportunity to succeed.  These standards, 

however, are not intended to provide a rigid road map for content, nor do they assume 

that alternative and additional subject matter should be precluded from curriculum.  

Furthermore, the CCSSM do not attempt to tell teachers how to instruct in every setting 

nor how to attend to the needs of each individual student.  They speak to how students 

should think about and engage in mathematics.   

To provide a CCSSM example and how results of the current study might work to 

aid multiple education participants, consider standard 5 for the eighth grade Expressions 

and Equations domain.  Within the cluster “Understand the connections between 

proportional relationships, lines, and linear equations,” this standard calls for the 

following: “Graph proportional relationships, interpreting the unit rate as the slope of the 

graph.  Compare two different proportional relationships in different ways” (National 

Governors Association Center for Best Practices, Council of Chief State School Officers, 

2010, p. 54).  Mathematics achievement in this area might be gauged by accurately 
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calculating gas mileage based on a hypothetical visit to the local Exxon Mobile and then 

plotting a line representing this mileage rate through slope and points corresponding to 

gallons used and miles traversed.  Number sense comes into play on multiple 

levels.  First, the student must be able to grasp a proportional relationship, which means 

he or she must understand what a ratio represents, how the numerator and denominator 

are related, and how this can be applied to not just gas mileage, but recipe calculations or 

discounts at a retail sale.  Going deeper, the student must understand how to multiply and 

divide and how to apply such operations when working with proportions.  If a student is 

not comfortable with any of these basic prerequisites, all components of number sense, 

they may not only be unable to construct and apply the proportion based on mileage read 

and gasoline dispensed, but also be intimidated by the more complex operations that 

correspond to this practical life application.  In this sense, their lack of mathematical 

foundational skills may be even further hindered by their insecurity surrounding the 

larger problem at hand.  So, even if they were capable of learning how to calculate 

proportions and subsequently attending to the graphing aspect of the problem, they might 

be less inclined to engage in this process due to their belief that they are not good at 

mathematics because they are not good at multiplication and division.   

A great deal of responsibility for effectively working with students experiencing 

such learning predicaments falls on teachers at the classroom level.  There is, without a 

doubt, a wealth of supplemental materials available for mathematics instruction, whether 

through textbook publishing companies, online teacher forums, professional expertise 

within schools or districts, or education resource software.  However, none of these aids 

are in the classroom and interacting with a student at any given time.  Nor can they 
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account for extenuating circumstances like family background and influence, personal 

expectations and values, teacher knowledge and experience, or administrative support.  

So how can teachers use the results of the present study in practice?  There is no formula, 

just as there is no prescribed plan provided by the CCSSM on how to instruct or attend to 

student needs.  However, whereas previous research has emphasized key components of 

mathematics content in relation to mathematics success distinctly from student 

motivation as it pertains to mathematics achievement, the present study wishes to make 

teachers aware of the diversity and flexibility implied by curriculum and required in 

instruction by integrating these areas of study.   

When a middle school student is hesitant to participate in a lesson on interest 

rates, teachers are faced with the larger task of exploring the nature of this reluctance.  Is 

it because the student does not understand the purpose of interest rates?  Is it because they 

have not mastered decimals and percentages, and have therefore shut down in the face of 

related material?  Does it go as far back as fractions, multiplication, or division?  

Moreover, are any or all of these circumstances compounded by the student’s low 

mathematics self-concept as it relates to their skill deficiencies and/or in accordance with 

their gender or race?   The scope of the current study cannot account for funding issues, 

large class sizes, disparate skill levels within a classroom, or teacher capacity to cope 

with so many issues simultaneously.  Without question, the established mediating impact 

of mathematics self-concept in the relationship between number sense and mathematics 

achievement complicates the already rigorous and vital role of educators.  Hopefully, 

however, the results will enable mathematics teachers to more prosperously relate and 

respond to their students. 
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The present study’s confirmation of the strong connection between number sense, 

mathematics self-concept, and mathematics achievement at the middle school level 

serves to enhance the ways in which schools employ the standards.  It reveals the need to 

emphasize consistently the number sense represented by SMPs at every grade level, 

whether or not corresponding operations are explicitly documented in the relevant 

CCSSM.  Moreover, it highlights some important elements of instruction not represented 

solely by mathematical content.  The results should guide states as they develop measures 

of accountability, districts as they purchase and employ textbooks and technology, 

schools and teachers as they structure and carry out classroom operations, and students as 

they practically apply their mathematical knowledge and seek fresh mathematical 

challenges. 

 
Conclusion  

 

Reviewing advances and setbacks in the implementation of various curriculum 

and instruction methodologies, the CCSSM authors have now provided a comprehensive 

framework for student progress that is rooted in number sense at all levels of mathematics 

instruction.  The present study set out to better inform this framework by determining that 

mathematics self-concept has a partial mediating effect on the positive relationship 

between number sense and mathematics achievement in eighth grade.  Put differently, the 

influence of number sense on mathematics achievement varies depending on the level of 

a student’s mathematics self-concept.  These results amplify the established literature 

linking both number sense and mathematics self-concept to mathematics achievement.  



	   106	  

By providing insight into how instruction must attend to not only content and teaching 

style, but also internal and external factors influencing student engagement and success. 

The number sense construct has been recognized, researched, and implemented in 

instruction for decades, but accountability for it has always been vague due to its flexible 

interpretation and pervasive role in mathematics curriculum.  The impetus for the present 

study was the conjecture that the attention placed on number sense, both in new 

curriculum and remediation, attenuates around the middle school level.  Results confirm 

that the important role that number sense plays in mathematics achievement throughout 

elementary school remains critical as students mature into adolescence.  In light of the 

clear need for continued number sense emphasis, the general decline in academic 

motivation as students move from childhood to adolescence (Eccles & Midgley, 1989; 

Schielack & Seeley, 2010) cannot be ignored.  Findings from the current study reveal that 

the impact of mathematics self-concept in adolescence is specifically linked to number 

sense, and in fact, that this relationship heightens the manner in which number sense 

influences mathematics achievement. 

The field of education has provided strong evidence in support of instruction and 

curriculum that considers a broad spectrum of learning preferences and capabilities 

(Bransford, Brown, & Cocking, 2000; Driscoll, 2005; Eisner, 2002), so why has it not 

implemented this sort of diversity in analyzing a construct as broad as mathematics 

achievement?  It is imperative that the evaluation of the advantages of number sense in 

mathematics achievement trajectories and intervention strategies not only place more 

emphasis on middle school students, but that it be strengthened by the incorporation of 
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affective domains like mathematics self-concept, already known to enhance mathematics 

achievement (Valentine, DuBois, & Cooper, 2004).   

The present study has highlighted the benefits of analyzing education in an 

interdisciplinary fashion, in this case, integrating mathematics education and educational 

psychology in order to better address a critical juncture in student academic development.  

Confirmation of the direct impact of number sense on early adolescent mathematics 

success in conjunction with the indirect influence experienced through mathematics self-

concept should thus inform construction and measurement of future curriculum and 

instruction across the United States and presumably beyond.   
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APPENDIX A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1. Standardized path coefficients for males (top) and females (bottom). 
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Table A1 
 
 
Fit Indices for Model According to Gender  

Index Value 

Female: 
Comparative fit index (CFI) 
Root mean squared error (RMSEA) 
Standardized root mean square residual (SRMR) 

Male: 
Comparative fit index (CFI) 
Root mean squared error (RMSEA) 
Standardized root mean square residual (SRMR) 

 
1.00 
.00 
.00 

 
1.00 
.00 
.00 

 

 
 
Table A2 
 
 
Path Coefficients for Model According to Gender  

 
Path                                                                                  B      SE         β          t 

Female: 
Number Sense to Mathematics Self-Concept 

   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 
Male: 

Number Sense to Mathematics Self-Concept 
   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 

 
.33 
.50 
.32 

 
 

.31 

.28 

.35 

 
.02 
.02 
.02 

 
 

.02 

.02 

.02 

 
.25 
.37 
.31 

 
 

.25 

.21 

.33 

 
10.25*** 

19.08*** 

17.83*** 

 
 

10.22*** 

10.02*** 

17.80*** 

 

*** p < .001  
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Figure A2.  Standardized path coefficients for Whites (top) and Blacks (bottom). 
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Figure A3.  Standardized path coefficients for Whites (top) and Hispanics (bottom).  
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Figure A4.  Standardized path coefficients for Whites (top) and Asians (bottom). 
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Figure A5.  Standardized path coefficients for Blacks (top) and Hispanics (bottom). 
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Figure A6.  Standardized path coefficients for Blacks (top) and Asians (bottom). 
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Figure A7.  Standardized path coefficients for Hispanics (top) and Asians (bottom). 
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Table A3 
 

Fit Indices for Model According to Race  

Index Value 

White: 

Chi-Square 
Goodness of Fit Index (GFI) 

Standardized root mean square residual (SRMR) 
Parsimonious Goodness of Fit (PGFI) 

Black: 
Chi-Square 

Goodness of Fit Index (GFI) 
Standardized root mean square residual (SRMR) 

Parsimonious Goodness of Fit (PGFI) 
Hispanic: 

Chi-Square 
Goodness of Fit Index (GFI) 

Standardized root mean square residual (SRMR) 
Parsimonious Goodness of Fit (PGFI) 

Asian: 
Chi-Square 

Goodness of Fit Index (GFI) 
Standardized root mean square residual (SRMR) 

Parsimonious Goodness of Fit (PGFI) 
 

 

1.00 
.00 

.00 

.00 

 
1.00 

.00 

.00 

.00 
 

1.00 
.00 

.00 

.00 

 
1.00 

.00 

.00 

.00 
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Table A4 
 

Path Coefficients for Model According to Race  

 
Path                                                                                  B      SE         β          t 

White: 
Number Sense to Mathematics Self-Concept 

   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 
Black: 

Number Sense to Mathematics Self-Concept 
   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 
Hispanic: 

Number Sense to Mathematics Self-Concept 
   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 
Asian: 

Number Sense to Mathematics Self-Concept 
   Number Sense to Mathematics Achievement 
   Mathematics Self-Concept to Mathematics 

Achievement 
 

 
.31 
.37 
.33 

 
 

.30 

.12 

.27 
 
 

.41 

.41 

.36 
 
 

.35 

.50 

.34 

 
.02 
.01 
.01 

 
 

.05 

.05 

.04 
 
 

.04 

.04 

.03 
 
 

.07 

.06 

.05 

 
.24 
.28 
.31 

 
 

.20 

.09 

.30 
 
 
.32 
.31 
.34 
 
 
.30 
.37 
.30 

 
11.56*** 

15.99*** 

19.94*** 

 
 

3.62*** 

    1.79 

6.72*** 

 

 

7.94*** 
8.38*** 
10.45*** 

 
 

4.23*** 
6.42*** 
5.88*** 

 

*** p < .001  
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