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ABSTRACT
REDUCING RADIATION DOSE TO THE FEMALE BREAST DURING

CONVENTIONAL AND DEDICATED BREAST
COMPUTED TOMOGRAPHY

Franco John Rupcich

Marquette University, 2013

The purpose of this study was to quantify the effectiveness of techniques intended to
reduce dose to the breast during CT coronary angiography (CTCA) scans with
respect to task-based image quality, and to evaluate the effectiveness of optimal
energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential
for reducing breast dose, during energy-resolved dedicated breast CT.

A database quantifying organ dose for several radiosensitive organs irradiated
during CTCA, including the breast, was generated using Monte Carlo simulations.
This database facilitates estimation of organ-specific dose deposited during CTCA
protocols using arbitrary x-ray spectra or tube-current modulation schemes without
the need to run Monte Carlo simulations. The database was used to estimate breast
dose for simulated CT images acquired for a reference protocol and five protocols
intended to reduce breast dose. For each protocol, the performance of two tasks
(detection of signals with unknown locations) was compared over a range of breast
dose levels using a task-based, signal-detectability metric: the estimator of the area
under the exponential free-response relative operating characteristic curve, ÂFE.
For large-diameter/medium-contrast signals, when maintaining equivalent ÂFE, the
80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols
reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded
protocol increased breast dose by 68%. Results for the small-diameter/high-contrast
signal followed similar trends, but with smaller magnitude of the percent changes in
dose. The 80 kV protocols demonstrated the greatest reduction to breast dose,
however, the subsequent increase in noise may be clinically unacceptable. Tube
output for these protocols can be adjusted to achieve more desirable noise levels
with lesser dose reduction.

The improvement in CNR of optimally projection-based and image-based weighted
images relative to photon-counting was investigated for six different energy bin
combinations using a bench-top energy-resolving CT system with a cadmium zinc
telluride (CZT) detector. The non-ideal spectral response reduced the CNR for the
projection-based weighted images, while image-based weighting improved CNR for
five out of the six investigated bin combinations, despite this non-ideal response,
indicating potential for image-based weighting to reduce breast dose during
dedicated breast CT.
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“Sick? ...Why haven’t we fixed sick yet? You scientists there — put down those
starfish and help us. I hereby demand that all the people who are good at math
make the world free of illness. The rest of us will write you epic poems and staple
them together into a booklet.”

Daniel Handler, Adverbs
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For my dad, who always knew I would one day graduate from law school.
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Chapter 1

Introduction

1.1 Motivation

Breast cancer is the most commonly diagnosed cancer among women,

excluding cancers of the skin, and only lung cancer accounts for more cancer deaths

[1]. The American Cancer Society estimates that in 2013 approximately 232,340

new cases of invasive breast cancer will be diagnosed among women, from which

39,620 women are expected to die [2]. While some of the major predisposing factors

for breast cancer are unavoidable by nature (increasing age, dense breast

composition, inherited genetic mutations, etc.), many environmental risk factors can

be mitigated (“environmental” is broadly defined to encompass all factors that are

not inherited through DNA, including exogenous hormones, diet, physical activity,

tobacco and alcohol consumption, and exposure to various metals, industrial and

consumer chemicals, and ionizing and non-ionizing forms of radiation). A recent

report published by the Institute of Medicine concluded that exposure to ionizing

radiation is one of the environmental factors most clearly associated with an

increased risk of breast cancer incidence [3].

As of 2010, it is estimated that approximately 10% of the United States

population undergoes a CT scan each year, with a total of 75 million scans being

conducted, half of which are on women. Further, the number of scans performed

continues to increase each year by approximately 10% [4]. While these scans can be
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crucial in diagnosing disease, they can impart from ten to several hundred times the

dose received during a typical chest x-ray or mammographic screening, depending

on the protocol [5]. Although no large-scale epidemiological study has established

specific levels of cancer risk associated with CT scans per se for adults, risk

projections in general for radiation-attributable cancer incidence resulting from

exposure to low levels of ionizing radiation (similar to those procured during a

typical CT examination) have been estimated largely on the basis of radiation

epidemiology studies of atomic bomb survivors, and to a lesser extent, populations

living near nuclear accident sites and workers with occupational exposures. In

particular, Tokunaga et al. report a higher incidence of breast cancer among the

cohort of atomic bomb survivors [6], and the Biological Effects of Ionizing

Radiation (BEIR) VII Phase 2 Report, which considers data from all of the

aforementioned cohorts, further indicates that women exposed to radiation at any

age suffer a higher lifetime attributable risk (LAR) of general cancer incidence and

mortality than men exposed at the same age [7]. Using epidemiological risk models

proposed in the BEIR VII report, Einstein et al. have estimated the LAR of general

cancer incidence associated with a single CT coronary angiography (CTCA) scan to

be 1 in 143 for a 20-year-old female and 1 in 284 for a 40-year-old female, with the

primary contributors to the overall risk being breast and lung cancer specifically [8].

Similarly, Smith-Bindman et. al have estimated the LAR of general cancer incidence

associated with a single CTCA scan to be 1 in 150 for a 20-year-old female and 1 in

270 for a 40-year-old female, again with the primary contributors to the overall risk

being breast and lung cancer [9]. Further, other studies have shown increased

incidence of breast cancer for women that have undergone multiple fluoroscopic

examinations [10] or have been treated by radiotherapy [11].

Considering the evidence of higher breast cancer incidence following exposure

to low levels of ionizing radiation, recent recommendations from the International
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Commission on Radiological Protection (ICRP) have increased the tissue weighting

factor of the breast such that it is now considered one of the most highly

radiosensitive organs [12]. This recommendation, along with the data from the

above mentioned studies, has motivated clinicians and researchers to seek methods

of reducing dose to the breast during computed tomography (CT) examinations in

which it is directly irradiated.

1.1.1 CT Coronary Angiography

CT coronary angiography scans accounted for approximately 12.8% of the

collective dose from all CT examinations in the United States in 2006, even though

they accounted for only 6.4% of all CT procedures performed [13]. Further, it was

estimated in 2007 that 2.3 million CTCA exams would be performed, from which a

projected 2200 women would develop cancer during their lifetime. While the breast

is often directly irradiated during CTCA protocols, it is rarely an organ of primary

diagnostic interest, suggesting that there is opportunity to reduce breast dose by

decreasing the amount of direct radiation exposure it receives. The recent increase

in the tissue weighting factor of the breast proposed by the ICRP [12], as well as the

previously mentioned studies indicating higher breast cancer incidence following

radiation exposure specifically during CTCA protocols, has motivated researchers to

investigate and optimize new and existing methods of reducing dose to the breast

during such scans.

1.1.2 Dedicated Breast CT

Because the pathological severity of breast cancer is strongly influenced by

the stage of the disease, early detection is paramount in reducing morbidity and

mortality. According to the American Cancer Society, mammography is the most
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common and most effective form of screening [1], however, it is not without its

limitations. Mammography has been associated with a high percentage of false

positives, leading to an undesirably large number of patients receiving unnecessary

biopsies [14]. Moreover, mammography is known to have reduced sensitivity in

detecting lesions in patients with denser breast tissue, particularly those patients of

younger age [15, 16]. Alternate forms of (radiation-free) screening, such as magnetic

resonance imaging (MRI) and ultrasound, have demonstrated higher sensitivity [16],

yet remain costly and time consuming relative to mammography. Digital breast

tomosynthesis, which has recently been approved by the United States Food and

Drug Administration (FDA), has demonstrated increased sensitivity and specificity

as well [17, 18] and is cheaper than MRI, however, the duration of breast

compression, which many patients find painful or uncomfortable, can be longer than

in conventional mammographic procedures. In recent years, dedicated breast CT

has received attention as a viable breast imaging modality [19–25], due to its wider

accessibility (i.e., lower costs) than MRI, higher sensitivity than mammography, and

lack of breast compression. One early study has demonstrated the potential for

obtaining high signal-to-noise ratio (SNR) images using dedicated breast CT at dose

levels comparable to those used in mammography [19]. In addition, recent advances

in photon-counting detector technology have motivated some researchers to

investigate the ability of methods such as energy-resolved CT [22–24] to produce

high-contrast diagnostic images, which could subsequently lead to reduced breast

dose during screening and/or follow-up procedures.

1.2 Problem Statement

In CT, dose and image quality are inextricably linked. If all other

parameters remain constant (e.g., patient size, reconstruction method and kernel,
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etc.), a decrease in dose results in an increase in image noise, and hence a decrease

in image quality. Therefore, any scan technique that can be shown to improve image

quality has the potential for reducing dose. As we are concerned primarily with dose

to the breast, we pose the following two research questions:

1. What is the effectiveness of CTCA dose-reduction techniques in reducing

breast dose without reducing image quality?

2. What is the effectiveness of optimally-weighted energy-resolved breast CT in

increasing contrast-to-noise ratio (CNR), and thus reducing breast dose,

compared to photon-counting breast CT?

1.3 Purpose

The purpose of this study was to investigate and evaluate the following:

1. the relative effectiveness of several dose-reduction techniques in reducing

breast dose during CTCA with respect to a task-based image quality metric

2. the effectiveness of optimally-weighted energy-resolved breast CT in increasing

CNR, and thus reducing breast dose

These investigations were organized into the following three specific aims.

1.3.1 Specific Aim 1: Creation of Dose Database for CT Coronary

Angiography

We created a database using Monte Carlo methods that quantifies organ

dose for several different radiosensitive organs irradiated during CTCA. The

database facilitates the estimation of organ-specific dose (including breast)

deposited during CTCA protocols that use arbitrary x-ray spectra or tube current



23

modulation schemes without the need to run Monte Carlo simulations. Because this

database contains dose tables for organs other than the breast, it may also prove

useful in CT dose related studies that are beyond the scope of this project.

1.3.2 Specific Aim 2: Objective Assessment of Image Quality for CT

Protocols Intended to Reduce Dose to the Breast during CT

Coronary Angiography

We simulated several CT protocols intended to reduce breast dose during

CTCA, including reduced kV, partial-angle scanning, tube current modulation, and

bismuth shielding, with respect to image quality, which was quantified using an

objective, task-dependent metric — area under the exponential free response

relative operating characteristic curve (AUC EFROC). AUC EFROC is a

signal-detectability performance indicator for cases in which the image contains

multiple signals at unknown locations. Breast dose for each protocol, excluding the

shielded scan, was estimated using the dose database described in Section 1.3.1,

while breast dose for the shielded protocol was estimated by performing a Monte

Carlo simulation. For each protocol, we plotted AUC EFROC as a function of breast

dose and compared the signal detectability between protocols at a given breast dose.

1.3.3 Specific Aim 3: Quantification of the Effects of Energy-weighting

on the Depiction of Calcium in Energy-resolved Breast CT

The effects of optimal image and projection-based energy weighting on the

CNR of calcium were investigated through experiments on a bench-top

energy-resolving CT system.
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Chapter 2

Background

This chapter provides the relevant background material required for

understanding the motivation, principles, procedures, and technologies presented in

this dissertation.

2.1 Interaction of Radiation with Matter

Radiation is energy that travels through space or matter. There are two

basic types of radiation: particulate and electromagnetic (EM). Particulate

radiation refers to energy in the form of charged or uncharged particles, such as

alpha particles, electrons, protons, and neutrons. EM radiation is a massless form of

energy composed of oscillating electric and magnetic field components. EM

radiation can be characterized by wavelength (λ), frequency (ν), and energy per

photon (E), and the range of frequencies (or equivalently, wavelengths or energies)

spanned is known as the EM spectrum (Figure 2.1). When the energy of particulate

or EM radiation is high enough to eject an orbiting electron from an atom, it is

referred to as ionizing radiation.

X-rays are a form of ionizing, EM radiation with frequencies ranging from

approximately 3× 1016 Hz to 3× 1019 Hz, corresponding to energies in the range of

100 eV to 150 keV. The various ways in which x-rays interact with matter play a

fundamental role in CT image formation. In addition, these interactions can lead to



25

Figure 2.1: Electromagnetic spectrum. EM to the left of the black vertical line is
considered non-ionizing, while that to the right is considered ionizing.

partial or complete transfer of the incident x-ray energy to kinetic energy of

electrons (ionizing, particulate radiation), which in turn deposit some or all of their

energy in the surrounding medium. The energy deposited by these energetic

electrons is essentially what is commonly referred to as “radiation dose,” or simply

“dose.” Radiation dose and its associated health risks will be discussed in further

detail in Sec. 2.3. The remainder of this section deals with the types of interactions

between particulate and x-ray radiation with matter.

2.1.1 Particle Interactions with Matter

There are several particles of ionizing radiation, including uncharged

particles, such as neutrons, and charged particles, such as alpha particles, beta

particles, positrons, protons, and electrons. In the context of CT, we are primarily

concerned with electrons and two types of interactions they may undergo: excitation

and ionization. Both interactions result in a loss of kinetic energy of the incident

electron.
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Excitation

Excitation refers to the transfer of some of the incident electron’s energy to

orbiting electrons of an atom, thereby promoting them to a higher energy level (i.e.,

an outer shell with a lower binding energy). A promoted electron will eventually

return to its original lower energy level in a process known as de-excitation. When

an electron moves from a higher to a lower energy level (i.e., from an outer to an

inner shell), the difference in binding energies between the shells is either emitted as

a photon (known as a characteristic x-ray) or transferred to another orbiting

electron, which is subsequently ejected from the atom (known as an Auger electron).

Ioniziation

When the energy transferred from the incident electron exceeds the binding

energy of the orbiting electron, then the orbiting electron is ejected from the atom,

resulting in ionization. Ions play an important role in radiation-induced damage, as

discussed in Sec. 2.3.

2.1.2 X-ray Interactions with Matter

In the energy range used in diagnostic radiology (≈ 15–150 keV), there are

three primary types of interactions of x-ray photons with matter: (1) Rayleigh

scattering, (2) Compton scattering, and (3) photoelectric absorption.

Rayleigh Scattering

Rayleigh (or coherent) scattering occurs when the electric field of an incident

photon expends energy, causing the electrons within an atom to oscillate in phase.

The energy from the oscillating electron cloud is instantaneously released in the
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form of an emitted photon with energy equivalent to that of the incident photon but

with a slightly different (i.e., “scattered”) direction (Figure 2.2). Rayleigh scattering

occurs mainly with relatively low-energy photons (≈ 15–30 keV) and with a

relatively low probability of occurrence (≈ 5–10%). Unlike the other types of

interaction, Rayleigh scattering does not cause ionization of the atom.

Figure 2.2: X-ray interactions with matter. E0 is the energy of the incident photon,
λ1. λ2 is the scattered photon, and e− is an electron.

Compton Scattering

Compton scattering occurs when an incident photon interacts with an

electron that is bound to an atom with a binding energy that is substantially less

than the incident photon’s energy. Thus, Compton scattering mostly occurs with

outer-shell electrons, which generally have low binding energies. The electron is

ejected from the atom, and the incident x-ray photon is scattered with a partial loss

in energy (Figure 2.2). The energy of the scattered photon, Eλ,sc can be calculated
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from the energy of the incident photon, Eλ,0, and the scattering angle, θ:

Eλ,sc =
Eλ,0

1 +
Eλ,0

511 keV
(1− cos θ)

(2.1)

Eq. 2.1 implies that incident photons of low energy are more likely to back-scatter

(θ = 90–180◦), while those of high energy are more likely to forward-scatter (θ =

0–90◦).

Due to the law of conservation of energy, we can calculate the energy that is

transferred to the ejected electron, Ee− , assuming that the binding energy is

negligible:

Ee− = Eλ,0 − Eλ,sc (2.2)

For the lower x-ray energies used in diagnostic imaging, most of the incident

photon’s energy is retained by the scattered photon, and thus only a small amount

of that energy is locally absorbed (i.e., transferred into kinetic energy of a charged

particle, such as the ejected electron, which in turn deposits its energy in the

medium via excitation or ionization of local atoms) compared to photoelectric

absorption.

Because the incident photon energy must be considerably greater than the

electron’s binding energy before a Compton interaction is likely to occur, the

relative probability of occurrence of Compton scattering increases with increasing

incident photon energy, compared to Rayleigh scatter and photoelectric absorption.

In addition, the probability of occurrence of Compton scattering is proportional to

electron density. However, it is nearly independent of the atomic number, Z!. Thus,

since there is little variation in electron density within soft tissues, Compton

scattering provides little contrast information between materials of biological

interest. Compton scattering is the predominant interaction of x-rays with soft
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tissue for energies above 26 keV.

Photoelectric Absorption

Photoelectric absorption, also known as the photoelectric effect, occurs when

the energy of the incoming photon is greater than or equal to the binding energy of

an orbiting electron. The photon gives up all of its incident energy (i.e., it is

absorbed) to the ejected electron, which is called a photoelectron. The kinetic energy

of the photoelectron, Epe, is given by the following equation:

Epe = Eλ,0 − Ebinding (2.3)

where Eλ,0 is the energy of the incident photon, and Ebinding is the binding energy of

the electron. Photoelectric absorption is most likely to occur with an orbiting

electron whose binding energy is closest to, but still less than, that of the incident

photon. In other words, the effect is most likely to occur within the innermost shell

whose binding energy is less than that of the incident photon. The vacancy caused

by the ejection of the photoelectron from an inner shell is filled by an electron from

a lower binding energy shell, which in turn is filled by an electron from an even

lower binding energy shell. This process is known as an electron cascade, and it

results in either the emission of characteristic x-rays or Auger electrons, as

described in Sec. 2.1.1.

The probability of occurrence of photoelectric absorption is proportional to

Z3/E3. Thus, photoelectric absorption is the predominant interaction of x-rays with

low energies (below 26 keV) in materials with high Z. Further, because the

probability of occurrence depends so highly on Z, the photoelectric effect can provide

contrast information between tissues with only slightly different atomic numbers.
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2.2 CT Physics and Image Formation

Computed tomography is a widely used medical imaging modality used for

both the screening and diagnosis of several diseases. In CT, an x-ray projection is

acquired at each of several thousand angles about the patient. These projections are

then processed in a mathematical algorithm known as reconstruction to produce

high-contrast, high-spatial resolution, two-dimensional slices of the internal patient

anatomy or three-dimensional volume images. The following sections briefly

describe the fundamental steps of CT image formation.

2.2.1 X-ray Attenuation and the Beer-Lambert Law

When a photon travels through a length of matter, there are three possible

outcomes: (1) it will interact with the matter and scatter (via Compton or Rayleigh

scattering), (2) it will interact with the matter and be absorbed (via photoelectric

absorption), or (3) it will pass through the matter without undergoing any

interaction. The first two outcomes, both of which effectively remove some or all of

the incident photon’s energy, are collectively referred to as attenuation. X-ray

attenuation is the fundamental physical process underlying CT image formation.

The attenuation properties of a homogenous material can be described by

that material’s energy-dependent linear attenuation coefficient, µ(E). For a

monoenergetic beam of initial intensity, I0, traveling in a straight line of length, L,

through an object composed of homogenous material with linear attenuation

coefficient, µ(E) = µ (since our beam contains only a single energy), the attenuated

beam intensity, I, after passing through the object is given by a simplified form of

the Beer-Lambert Law:

I = I0 e−µL (2.4)

We assume that both I and I0 are known (i.e., they can be measured).
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In CT, the object of interest is usually a patient and thus is composed of

heterogenous material. Eliminating the homogeneity assumption above causes µ to

become dependent upon the position along the line, s, and the Beer-Lambert Law

becomes:

I = I0 e−
∫
L µ(s)ds (2.5)

The exponent in Eq. 2.5 is known as the line integral, `, along the line, s, and in

general is defined as:

` ≡
∫
L

µ(E, s) ds (2.6)

Image formation via reconstruction requires the line integral at each angle (over at

least 180◦) about the object. We have assumed we can measure I0 and I, thus an

estimate of the line integral, also referred to as the projection measurement, p, can

be obtained by substituting Eq. 2.6 into Eq. 2.5 and rearranging:

p = − ln
I

I0
(2.7)

In the case in which we have assumed a monoenergetic x-ray beam, p = `. However,

as will be discussed in Sec. 2.2.2, in practice x-ray beams are polyenergetic, thus:

I0 =

∫
E

I0(E) dE (2.8)

and the Beer-Lambert Law becomes:

I =

∫
E

I0(E) e−
∫
L µ(E,s)ds dE (2.9)

Substituting Eq. 2.8 and Eq. 2.9 into Eq. 2.7, the projection measurement assuming
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a polyenergetic x-ray beam is:

p = − ln

[∫
E
I0(E) e−

∫
L µ(E,s)ds dE∫

E
I0(E) dE

]
(2.10)

The filtered backprojection reconstruction algorithm (discussed in Sec. 2.2.3)

does not take into account the energy dependence of µ, but instead relies on a single

“effective” value of µ. Along a given path through the object, the lower energy

photons of the polyenergetic beam will be preferentially attenuated relative to the

high energy photons, resulting in the beam containing a greater proportion of high

energy photons, i.e., the beam becomes “hardened.” This results in an upward shift

of the average x-ray energy and a corresponding downward shift in the effective

value of µ along that path-length. The magnitude of the shift in µ is greater for

more attenuating path-lengths, resulting in artifacts in the reconstructed image due

to lower values of µ for pixels that lie along longer path-lengths or along

path-lengths containing dense materials, such as bone. These artifacts are referred

to as beam hardening artifacts, which can be reduced using correction algorithms.

2.2.2 Acquiring X-ray Projections

During CT, the object of interest is positioned between an x-ray source and

detector, which are affixed to a gantry that rotates about the object. The x-ray

source consists of a tube containing a cathode and an anode, usually composed of

tungsten. An electric potential can be applied across the tube, causing electrons to

accelerate from the cathode to the anode. When these electrons come near or

directly interact with the nucleus of an atom, they lose part or all of their energy,

resulting in the emission of an x-ray photon, referred to as bremsstrahlung radiation.

The energy of the bremsstrahlung photon is determined by the proximity of the

electron to the nucleus when the energy transfer occurs. Thus, the x-ray source
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produces an x-ray beam that is polyenergetic (i.e., consisting of a spectrum of

energies). The tube potential, measured in kilovolt (kV), can be used to control the

quality of the beam energy, while the tube current, measured in mA, can be used to

control the quantity (i.e., intensity) of the beam. The intensity is also often referred

to as the tube-current time-product, which is the product of the tube-current and

the duration of time during which the x-ray source is on. The tube-current

time-product is measured in milliamp seconds (mAs).

The detector measures the intensity of the x-ray beam incident upon it. The

projection of an object, I, is the signal measured by the detector in the presence of

the object. Assuming the attenuation through air is negligible, we can estimate I0

as the signal at the detector when no object is present. Thus, we can obtain the

projection measurement, p, of the object at each angle using Eq. 2.7 with the

measured projections, I and I0.

2.2.3 Reconstruction

Once we have estimated the line integral for each angle over at least 180◦

about the object, a two-dimensional slice through the object can be formed via a

process known as reconstruction. Traditionally, images have been reconstructed

using an algorithm known as filtered backprojection, in which the projection data

(line integrals) are Fourier transformed into the spatial frequency domain, high-pass

filtered, inverse-transformed back to the spatial domain, and finally “backprojected”

over a grid to form the image. More recently, iterative reconstruction algorithms are

being investigated and used to reconstruct images, whereby maximum likelihood

estimation methods are used to estimate the object that is most likely to have

produced the measured data. Iterative methods incorporate models of the system

and noise. Thus, while such algorithms are more computationally demanding than

filtered backprojection, they have been shown to produce less noisy images.



34

Immediately following reconstruction, the value of a pixel at a particular

location in a CT image is an estimate of the linear attenuation coefficient value, µ,

at the corresponding location within the object being scanned. The pixel values are

typically linearly transformed to a standardized scale, measured in Hounsfield

unit (HU), according to Eq. 2.11:

H(x, y) =
µ(x, y)− µwater

µwater

× 1000 (2.11)

where H(x, y) is the value of the pixel located at (x,y) in HU.

2.2.4 Image Noise and Contrast Considerations

Noise

Assuming an ideal detector, the probability, QD(k), of detecting k photons

after transmitting through an object is:

QD(k) =
Nk eN

k!
(2.12)

where N is the expected number of photons transmitted through the object, which

in turn is dependent upon the number of photons incident upon the object, N0 (as

governed by the Beer-Lambert Law). QD(k) is a Poisson process with rate, N .

Thus, the expected number of photons detected and the variance in the number of

photons detected are both N . For images reconstructed using filtered

backprojection, this leads to the following proportionality [26]:

σ ∝ 1/
√
Ntot (2.13)

where σ is the standard deviation (noise) of the value of an image pixel, and Ntot is

the total number of photons that passed through that pixel and were detected.
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Here, the pixel value is considered to be a random variable for which we can collect

many samples from which we can estimate its expected value and variance. In a CT

image, the expected value of an image pixel is the actual value of the linear

attenuation coefficient, µ, at that location in the object. Thus, the relationship

between the signal-to-noise ratio of an image pixel and the total number of photons

passing through that pixel that are detected is given by:

SNR ∝ µ

1/
√
Ntot

∝
√
Ntot (2.14)

It is apparent that an increase in the number of detected photons leads to a

decrease in image noise, or equivalently, an increase in SNR. Because dose is

directly proportional to the number of photons used in a CT scan (i.e., the

tube-current), the proportionalities given in Eq. 2.13 and Eq. 2.14 represent the

fundamental tradeoff between dose and image quality in CT. Note that the SNR

given by Eq. 2.14 is not the same as the SNR metric discussed in later sections.

Contrast

As mentioned in Sec. 2.2.1, µ is energy-dependent. In the diagnostic energy

range used in CT, there is a greater difference between the µ values of two biological

tissues at a lower energy than than at a higher energy (Figure 2.3). Thus, lower

energies provide greater contrast between tissues in the image. However, lower

energy photons are also more likely to be absorbed via photoelectric absorption,

resulting in less detected photons, and thus increased image noise. While higher

energy photons provide lesser contrast information, they are more likely to transmit

through the object and be detected, thereby decreasing image noise. As discussed in

Sec. 2.2.2, the energy spectrum of the x-ray photons incident upon the object is

controlled via the tube potential. Thus, there is generally a tradeoff between image
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Figure 2.3: Linear attenuation coefficient values for biological tissues in the diagnostic
energy range [27].

contrast and image noise with respect to the chosen kV of the scan.

2.3 Radiation Dose and Associated Health Effects and

Risks

The ionizing radiation that a patient is exposed to during a CT scan (be it

the x-ray photons or the electrons ejected from atoms as a result of photoelectric

absorption and Compton scattering) has the potential to cause biological changes,

such as deoxyribonucleic acid (DNA) strand breaks or other molecular or cellular

damage. A biological change is said to be direct if a photon or electron directly

damages a biologically important macromolecule through excitation or ionization. A

biological change is said to be indirect if the photon or electron ionizes other

(non-biologic) molecules (usually water), which results in the creation of chemically

reactive species that can lead to the formation of free radicals, which in turn

damage biologic macromolecules. (Most radiation-induced damage to DNA is
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caused by free radicals). Barring cases of severe overexposure, only a fraction of the

radiation energy deposited during a CT scan brings about biological changes, and

some of the damage that does occur can be repaired. Still, the risk of adverse health

effects from exposure to low levels of ionizing radiation does exist. While the risk of

effects such as carcinogenesis resulting from exposure to radiation during CT

procedures may be small, the fact that tens of millions of such procedures are

performed each year warrants cause for concern.

2.3.1 Dose Definitions, Quantities, and Units

Before we begin our discussion of the health effects and risks of radiation

dose, it is important to understand exactly what is meant by the term “dose.” In

fact, this term on its own can imply several different definitions, including absorbed

dose, equivalent dose, or effective dose.

Absorbed Dose

When the term “radiation dose” or “organ dose” is used, often what is

implied is absorbed dose. The absorbed dose, D, for a given material is the energy,

E, imparted by ionizing radiation per unit mass, m, of irradiated material:

D =
E

m
(2.15)

“Energy imparted” refers to the energy transferred by the incident photon to the

kinetic energy of charged particles (i.e., electrons) that remain in the volume of

interest. The SI unit for absorbed dose is the gray (Gy), where 1 Gy = 1 J/kg.
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Equivalent Dose

Different types of ionizing radiation can lead to more severe biological

damage per unit absorbed dose than others. For example, alpha particles are

estimated to be 20 times more damaging per Gy than x-rays. To account for the

relative severity of biologic damage produced, each type of ionizing radiation has

been assigned a radiation weighting factor, wR, by the ICRP (Table 2.1). The

Table 2.1: ICRP recommended radiation weighting factors.

Type of radiation Radiation weighting factor, wR

X-rays, gamma rays, beta
1

particles, electrons

Protons 2

Neutrons (energy dependent) 2.5–20

Alpha particles 20

Source: ICRP Publication 103 The 2007 Recommendations of the International
Commission on Radiological Protection. Ann. ICRP 37 (2–4), Elsevier, 2008.

equivalent dose, H, is the absorbed dose, D, multiplied by the radiation weighting

factor, wR

H = D wR (2.16)

The SI unit for equivalent dose is the /acSv, where 1 sievert (Sv) = 1 J/kg. X-rays

and electrons both have a wR of 1, and so 1 Sv = 1 Gy in the context of CT.

Effective Dose

As will be discussed in further detail in following sections, there has been a

significant amount of research devoted to investigating the biological effects of

ionizing radiation. One observation has been that different biological tissues vary in

sensitivity to the effects of ionizing radiation. Thus, the ICRP has also established a

tissue weighting factor, wT, for each type of tissue in the body (Table 2.2). The

value of wT assigned to a particular tissue is meant to reflect the proportion of the
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Table 2.2: ICRP recommended tissue weighting factors.

Tissue Tissue weighting factor, wT Sum of wT values

Breast, red bone-marrow, colon, lung,
0.12 0.72

stomach, remainder tissuesa

Gonads 0.08 0.08

Bladder, esophagus, liver, thyroid 0.04 0.16

Bone surface, brain, salivary glands, skin 0.01 0.04

TOTAL 1.0
aRemainder tissues: adrenals, extrathoracic region, gall bladder, heart, kidneys, lym-
phatic nodes, muscle, oral mucosa, pancreas, prostate (♂), small intestine, spleen, thymus,
uterus/cervix (♀).
Source: ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protec-
tion. Ann. ICRP 37 (2–4), Elsevier, 2008.

detriment from stochastic effects resulting from radiation-induced damage to that

tissue compared to a uniform whole-body exposure. The effective dose, HE is the

sum of the products of the equivalent dose to each tissue, HT, multiplied by the

corresponding tissue’s weighting factor, wT:

HE =
∑
T

HT · wT (2.17)

The effective dose can be thought of as the mean absorbed dose from a uniform

whole-body irradiation that results in the same total radiation detriment as from the

nonuniform, partial-body irradiation in question [28]. Like equivalent dose, effective

dose is measured in sieverts.

2.3.2 Biological Effects of Ionizing Radiation

The clinical manifestations of biological changes brought about by ionizing

radiation are referred to as biological effects and are classified as either deterministic

or stochastic. Deterministic effects are those for which the severity of the effect

increases with radiation dose. For example, at very high exposures, the predominant

deterministic effect is the death of cells, which results in degeneration of the exposed
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tissue. Stochastic effects, on the other hand, are those for which the probability of

the effect increases with radiation dose. As mentioned above, free radicals may

damage DNA. If not properly repaired, the damaged DNA may mutate, potentially

leading to impaired cell function, cell death, or, if the mutation occurs at a location

responsible for controlling the rate of cell division, carcinogenesis. Thus, cancer

formation is a stochastic effect of exposure to ionizing radiation.

2.3.3 Risk of Cancer Incidence from CT

The risk of radiation-induced cancer formation has recently become of

particular concern in the medical imaging community due to the rapid increase in

CT procedures being performed over the past several decades (the United States

has gone from performing less than 5 million CT scans a year in 1980 to 75 million a

year in 2010, with the number of CT scans performed each year increasing by

approximately 10% [4, 29]). Most of the epidemiological data available for

estimating the risk of general cancer incidence resulting from exposure to low levels

of ionizing radiation, such as those typically procured during radiologic imaging

procedures, comes from a large cohort (86,572 people) of atomic bomb survivors.

Analysis of this data has led to two particularly important observations: (1) there is

a statistically significant increase in the excess relative risk (ERR) of mortality for

solid cancers among atomic bomb survivors that were exposed to doses as low as

≈125 mSv, and (2) there is a statistically significant linear relationship between

dose and ERR for doses as low as ≈125 mSv. (ERR = (Mdose −Mnatural)/Mnatural,

where Mdose is the radiation-induced cancer mortality rate, while Mnatural is the

natural cancer mortality rate). Based on these observations, as well as other data

from the cohort study, the prevailing theory regarding radiation dose and cancer

incidence is that the risk of cancer incidence from exposure to low levels of ionizing

radiation increases linearly with cumulative dose, and there is no threshold dose
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below which the magnitude of the risk is zero. This model is referred to as the linear

no-threshold (LNT) model, and is the driving motivation behind the concerted effort

among clinicians, radiologists, researchers, government agencies, and manufacturers

of radiologic imaging systems to reduce the radiation dose to patients as low as

reasonably achievable (ALARA).

Based on the data from the atomic bomb survivors, as well as from

populations living near nuclear accident sites and workers with occupational

exposures, and under the assumption of the LNT model, the BEIR VII Phase 2

Report has proposed epidemiological risk models that can be used to estimate the

LAR of cancer incidence for a given radiation dose, where LAR is typically given as

the number of cancer cases per a given exposed population. Several studies

[8, 9, 30–32] have since used the proposed risk models to estimate the LAR of cancer

incidence resulting from doses received during CT exams. In general, the results of

these studies suggest non-negligible LAR of cancer incidence associated with dose

levels received during several types of protocols, including head and neck, chest, and

abdominal CT procedures (typical organ doses for different radiological procedures

are shown in Table 2.3). Additionally, data from these studies suggest that women

generally show a higher LAR of cancer incidence than men. For example, Einstein

et. al have reported an LAR of cancer incidence of 1 in 143 for a 20-year-old female

compared to an LAR of 1 in 686 for a 20-year-old male for a CTCA protocol [8].

A recent retrospective cohort study assessing cancer risk from CT scans

taken during childhood found that when cumulative doses reach 50 mGy, the risk of

leukemia almost triples, and when cumulative doses reach 60 mGy, the risk of brain

cancer almost triples, although the cumulative absolute risks are small (within ten

years of the first scan for patients under ten years of age, one excess case of

leukemia and one excess case of brain cancer per 10,000 head CT scans is estimated

to occur) [32]. This is the first study to provide direct evidence of a link between
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Table 2.3: Typical absorbed organ doses procured during
radiologic imaging procedures.

Procedure Organ Organ dose [mSv]

PA chest radiography Lung 0.01

Mammography Breast 3.5

CT chest Breast 21.4

CT coronary angiography Breast 51.0

Abdominal radiography Stomach 0.25

CT abdomen Stomach 10.0

CT abdomen Colon 4.0

Barium enema Colon 15.0

PA = posterio-anterior
Source: Davies HE, et. al, Risks of exposure to radiological imaging and how
to minimise them, BMJ, 2011

exposure to radiation from CT and cancer risk for children. However, there has yet

to be a similar cohort study for adult patients. Thus, most estimates of LAR of

cancer incidence from CT rely on the risk models proposed by the BEIR VII report.

Overall, evidence suggests that the LAR of cancer incidence resulting from

exposure to dose during a single CT procedure is significant, albeit relatively small.

However, considering (1) the growing number of scans being performed each year,

and (2) the assumption that risk is proportional to the cumulative dose received

coupled with the fact that many patients receive multiple scans, it has recently

become a goal of the medical imaging community to minimize radiation dose,

especially during CT, while maintaining diagnostic image quality. In addition,

particular attention is being given toward efforts to reduce dose to the female breast

due in part to (1) the relatively high amount of dose it receives during some CT

procedures, such as CTCA (Table 2.3), despite it not being the organ of interest,

coupled with (2) the fact that for a given radiation dose, the LAR of breast cancer

incidence is among the highest of all cancer types [7].
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2.4 Dose Reduction Techniques

The following sections discuss a few techniques intended to reduce dose to

the breast.

2.4.1 Reduced kV

Reducing the kV during a CT acquisition eliminates from the incident x-ray

beam some of the higher energy photons that are capable of depositing more energy

within the patient. Due to the presence of more lower energy photons, this

technique generally increases both image contrast and noise. Studies have indicated

that reducing the kV has the potential of reducing dose to the breast by 27 – 50%

while maintaining equivalent image quality [33, 34].

2.4.2 Bismuth Shielding

Similar to reducing the kV, bismuth shielding placed over the breast acts to

filter out high energy photons before they can enter the patient. Numerous studies

[33, 35–39] have indicated potential for dose savings to the breast (29 – 57%).

However, a number of disadvantages associated with shielding, including its misuse

in conjunction with automatic exposure control or tube-current modulation settings

in place on most scanners and streak artifacts in the resulting image, has led the

Board of Directors of the American Association of Physicists in Medicine (AAPM)

to recently release a position statement advocating the use of alternative

dose-reduction methods over bismuth shielding [40].
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2.4.3 Angular Tube-current Modulation

The level of noise in a CT image is governed by the projection containing the

highest level of noise. Thus, for a scan in which each projection angle receives the

same number of incident photons, those with lesser attenuating path-lengths are

effectively receiving “wasted” dose. Angular tube-current modulation aims to

reduce tube-current during certain angles so as to optimize the dose. Almost all

scanners are equipped with tube-current modulation algorithms, which have been

shown [33, 35, 36, 41] to reduce dose to the breast by 10 – 64% while maintaining

equivalent image quality.

2.4.4 Partial Angle Scanning

Partial angle scanning involves drastically reducing or completely turning off

the tube-current during the range of angles in which the breast is directly exposed.

At least one study has shown the potential for breast dose savings up to 50% [35].

2.5 Image Quality

In medical diagnostic imaging, image quality must express the effectiveness

with which the image can be used for a specific diagnostic task (e.g., detection of a

lesion or estimation of the degree of stenosis). Accordingly, the International

Commission on Radiological Units (ICRU) recommends the objective assessment of

image quality, and more specifically, the use of task-dependent metrics over

task-independent metrics, as the latter may not always be directly indicative of the

diagnostic performance of the intended task and thus may not fully accurately

represent the true “quality” of an image [42].

The objective assessment of image quality comprises four main elements: the
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diagnostic task (e.g., detection of an object or signal), a description of the statistical

properties of the data (e.g., a set of images from each class from which statistical

properties can be derived), the observer (a mathematical model or human that

performs the given task), and the figure of merit (a scalar summary metric

estimated from the output of the observer that indicates how well the observer

performed the given task) [43].

The following sections discuss these four components in more detail. In

addition, some commonly used task-independent metrics are discussed.

2.5.1 The Task, Observer, and Data Statistics

Many tasks in diagnostic medical imaging can be simplified to a binary

decision problem, in which an observer must decide if the image belongs to one of

two classes or hypotheses: H1 and H2, corresponding to signal absent and signal

present, respectively. The signal, in this case, refers to an anatomical abnormality,

e.g., a lesion or microcalcification. The observer’s decision is based on the value of a

test statistic, t, which is computed from the image data, g via a discriminant

function, T (·):

t = T (g) (2.18)

The observer then classifies the given image under one of the two hypotheses by

comparing the value of the t to a decision threshold, tc:

t

D2

>

<
D1

tc (2.19)

where D1 denotes the decision that H1 is true, and D2 denotes the decision that H2

is true. The notation of the above inequality reads “decide hypothesis H2 whenever

the greater-than sign holds; decide hypothesis H1 whenever the less-than sign

holds.” Because it is dependent on the data, t is a random variable with a
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probability density function that depends on the underlying hypothesis:

pr(t|Hj) =

∫
pr(t |g) pr(g |Hj) dg (2.20)

where pr(·) is the probability density function. In Sec. 2.5.2, we will see how Eq. 2.19

and Eq. 2.20 are used in computing various measures of the task performance.

Model Observers

The discriminant function can take on many forms, both linear and

non-linear. One form of the discriminant function that is of particular interest is:

T (g) =
pr(g |H2)

pr(g |H1)
(2.21)

This test statistic is known as the likelihood ratio, and it can be shown that any

observer that uses the likelihood ratio as its test statistic makes optimal use of all

available information in the data to achieve the highest possible performance for the

given task [44]. Thus, such observers are referred to as optimal or ideal observers.

From Eq. 2.21, it is apparent that an ideal observer requires full knowledge of

the probability distribution function of the data under both the signal-absent and

signal-present hypothesis. Because this information is rarely known, simplifying

assumptions about the statistics of the data are typically made. For example, if the

data is assumed to be normally distributed under both hypotheses, then only the

mean and variance are required, which can usually be estimated by collecting

several samples of the data.

Other forms of the discriminant function lead to various other model

observers, which are generally classified as either optimal or suboptimal and as

either linear or non-linear. Model observers and their associated figures of merit

(discussed in Sec. 2.5.2) are extremely useful tools in the objective assessment of
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image quality. For example, in CT, a model observer that operates on the

projection data (i.e., before reconstruction) obtained for a particular system is

useful in evaluating and optimizing that system. Similarly, a model observer

operating on a CT image is useful for evaluating the particular reconstruction

algorithm or acquisition technique used. In addition, some observers, such as the

channelized Hotelling observer, have been shown to correlate well with human

observer performance for certain tasks in CT [44, 45]. Thus, model observers can be

used in lieu of lengthy human observer studies.

2.5.2 Measures of Task Performance

The fourth and final component of the objective assessment of image quality

is the figure of merit, which is a computable and scalar measure summarizing the

performance of the observer for the given task. Before we begin our discussion of a

few particular figures of merit, it is first important to understand the concept of the

relative operating characteristic (ROC) curve.

Relative Operating Characteristic Curves

There are four possible outcomes of a binary decision problem, as shown in

Table 2.4. Given knowledge of the probability density function of t under each

Table 2.4: Binary decision outcomes

1. True positive (TP) H2 is true; observer decides H2 is true (D2)

2. False positive (FP) H1 is true; observer decides H2 is true (D2)

3. True negative (TN) H1 is true; observer decides H1 is true (D1)

4. False negative (FN) H2 is true; observer decides H1 is true (D1)

hypothesis (Eq. 2.20), we can compute the true positive fraction (TPF) and false
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positive fraction (FPF) for a specified decision threshold, tc:

TPF = Pr(t ≥ tc|H2) =

∞∫
tc

pr(t|H2) dt (2.22)

FPF = Pr(t ≥ tc|H1) =

∞∫
tc

pr(t|H1) dt (2.23)

These fractions, as well as the true negative fraction (TNF) and false negative

fraction (FNF), which can be calculated similarly, are the areas under the

appropriate probability density function on t for the specified threshold, tc, as

shown in Figure 2.4.

Figure 2.4: Probability density function of the test statistic under the competing
hypotheses for a binary decision problem. Shown are the TPF, TNF, FPF, and FNF
for a specified threshold setting, tc.

From Eq. 2.22, Eq. 2.23, and Figure 2.4, it is apparent that the TPF and

FPF depend on the decision threshold, tc. Thus, as the threshold is varied, we

obtain corresponding pairs of values for the TPF and FPF, which can be plotted in

what is called an ROC curve (Figure 2.5). Points further down the curve (toward
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the lower left) correspond to strict decision criteria, i.e., those resulting in relatively

few positive decisions, while points further up the curve (toward the upper right)

correspond to lax decision criteria, i.e., those resulting in a relatively high number of

positive decisions. Overall, the ROC curve makes apparent the tradeoff between the

sensitivity and specificity (equivalent to 1 minus the FPF) of the given image

acquisition system and parameters (via the data they produce), task, and observer.
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Figure 2.5: Example of an ROC curve.

The standard ROC curve is used for binary detection tasks in which the

signal location is known exactly. For more complex tasks, alternative forms of the

ROC curve exist. For example, the localization ROC (LROC) curve is used for

detection tasks in which the signal location is unknown. The LROC curve plots the

fraction of positive images in which the signal is correctly localized versus the false

positive fraction (Figure 2.6a). In cases in which there are multiple signals, the

free-response ROC (FROC) curve is used, which plots the fraction of signals

correctly detected and localized versus the average number of false positives

detected per image (Figure 2.6b).



50

Figure 2.6: Example of (a) LROC and (b) FROC curves.

Figures of Merit

The ROC curve gives information about the performance of an observer for a

particular task and system over a wide range of operating points (decision

thresholds). Figures of merit are measures aimed at summarizing the observer’s

task-performance, thereby providing a more practical means of comparing the

performance between different observers, systems, image-acquisition techniques, etc.

The degree of overlap of the probability density functions of the test statistic

under the competing hypotheses (signal-present and signal-absent) determines the

separability of the hypotheses. In other words, this overlap determines the

detectability of the signal [44]. Two particular figures of merit, SNRt and the area

under the ROC curve (AUC ROC), are measures of this overlap, and hence are

considered signal-detectability metrics.

Model Observer Signal-to-noise Ratios

SNR is one of the most often used figures of merit. The SNR associated with

the test statistic, t, is:
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SNRt =
〈t〉2 − 〈t〉1√
1
2
σ2
1 + 1

2
σ2
2

(2.24)

where 〈t〉2 and σ2
2 denote the expected value and variance of the test statistic under

the signal-present hypothesis, and 〈t〉1 and σ2
1 denote the expected value and

variance of the test statistic under the signal-absent hypothesis. If the variance of

the distribution of t is the same under each hypothesis, then Eq. 2.24 can be

simplified to:

SNRt =
〈t〉2 − 〈t〉1

σ
(2.25)

An important note about SNRt is that it may not be a useful figure of merit when

the test statistic is not normally distributed under both hypotheses, since then the

variance may not be an accurate measure of the spread of the distributions.

However, Zeng et. al have shown that, due to the central limit theorem, this is a

reasonable assumption for regions-of-interest (ROIs) in a CT image [46].

As an example of how SNRt is used, let us return to the ideal observer in the

particular case for which the signal location is known exactly. Assuming that the

data is normally distributed under both hypotheses results in the ideal observer test

statistic being normally distributed under both hypotheses as well, and so Eq. 2.24

can be confidently used to determine SNRt. This SNR is given a special name, the

ideal observer SNR (IOSNR), and is given by:

SNR2
ideal = ∆sTK−1n ∆s (2.26)

where Kn is the noise covariance matrix, and ∆s is the mean (i.e., noise-free)

signal-only image.

If we assume the noise is uncorrelated, then the noise covariance matrix is
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diagonal, and Eq. 2.26 can be simplified to:

SNR2
ideal =

M∑
m=1

∆s2m
σ2
m

(2.27)

where M is the number of pixels in the image.

If we further assume the noise is stationary, then σm = σ for all m, and the

IOSNR further simplifies to:

SNR2
ideal =

||∆s||2

σ2
(2.28)

Noise in CT images is neither stationary, nor uncorrelated. The degree of

non-stationarity in the noise of CT images as well as the effects that both of these

assumptions have on the performance of the observer are ongoing subjects of

investigation [46–50]. Nonetheless, Eq. 2.28, for which both of these assumptions are

implicit, is often used in estimating SNR.

Area under the ROC curve

The AUC ROC is defined as:

AUC ROC =

1∫
0

TPF(FPF) dFPF (2.29)

Because the TPF and FPF both range from 0 to 1, so does the AUC ROC. In

general, higher values of AUC ROC indicate a higher average level of performance

with respect to the given signal-detectability task.

When the test statistic is normally distributed under both hypotheses, the
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AUC ROC can be derived from SNRt:

AUC ROC =
1

2
+

1

2
erf

(
SNRt

2

)
(2.30)

where erf(·) is the error function. This is often how the AUC ROC is estimated in

image quality studies. Analogous area under the curve (AUC) metrics exist for

other types of ROC curves. We use one such metric, the area under the

free-response exponential ROC curve (AUC EFROC), for investigating task-based

image quality of CT dose-reduction techniques. AUC EFROC will be discussed in

more detail in Chapter 4.

2.5.3 Commonly Used Task-independent Metrics

While it is recommended to use objective, task-based metrics when assessing

image quality, there are a number of commonly used task-independent metrics used

as well. While they may not provide a measure of performance for the specific task,

the information they do offer can still prove useful. Image noise and CNR are two

such metrics.

Noise

Image noise is most often quantified as the standard deviation in a

homogenous background ROI. Noise quantified in this fashion ignores the spatial

correlations of the data. The noise power spectrum (NPS) quantifies the magnitude

of the noise at each spatial frequency, thus providing information about the spatial

correlations in the image. However, the NPS implicitly assumes stationarity of the

data, and thus may be an inaccurate measure in CT [47, 48]. The noise covariance

matrix quantifies the noise covariance between all pixels and makes no assumptions
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about the data. Thus, it provides the most accurate and complete information

regarding the magnitude of the noise and its spatial correlations.

Contrast-to-noise Ratio

CNR in an image is:

CNR =
|µs − µbg|

σ
(2.31)

where µc is the mean of an ROI within the signal or contrast element, and µbg and σ

are the mean and standard deviation of a background ROI. Whereas the SNR

operates on an image or ROI in which the signal is fully contained, the CNR only

considers an ROI within the signal itself. Thus, the CNR is not dependent on the

task.

2.6 Energy-resolved CT

Conventional CT detectors are solid-state scintillators. Scintillating detectors

operate by absorbing incoming x-rays and converting them to visible light photons,

which are in turn converted to current flow, amplified, and digitized via

photo-multiplier tubes and electronic circuits. While scintillating detectors have

high detection efficiency, they exhibit poor energy resolution, meaning they are

unable to determine the energy of an incident photon with good accuracy. Further,

while they are able to count individual photons (pulse mode), the very high flux

rates experienced by detectors in CT necessitates current mode operation. Thus,

during CT, scintillating detectors operate by integrating the incoming charges and

disregarding the charge amplitudes, which are proportional to the incident photons’

individual energies. Scintillating detectors operating in this manner are often
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referred to as charge-integrating detectors.

Photon-counting detectors are capable of counting the individual photons

incident upon them. Recent advancements in solid-state semiconductor technology

have led to development of state-of-the-art energy-resolving photon-counting

detectors, which are additionally able to determine the energy of each incident

photon.

Because the contrast between biological tissues is generally greater at lower

energies, an ideal detector is one that would assign more weight to lower-energy

photons. Thus, conventional energy-integrating detectors, which assign more weight

to higher-energy photons, and non-energy-resolving photon-counting detectors,

which assign equal weights to all photons, are sub-optimal. Energy-resolving CT

detectors, on the other hand, are capable of sorting photons into discrete energy

bins based on specified energy thresholds. This additional spectral information can

then be used to produce optimally energy-weighted images. While photon

count-rate limitations generally restrict their use during conventional CT protocols,

energy-resolving detectors may be practical for protocols requiring lower flux rates,

such as dedicated breast CT.

2.7 Dedicated Breast CT

In recent years, dedicated breast CT has received attention as a viable

screening modality, due to its wider accessibility (i.e., lower costs) than MRI, higher

sensitivity than mammography, and lack of breast compression. During dedicated

breast CT, the patient lies prone on a table containing a hole through which the

pendant breast is placed. The x-ray source and detector, located beneath the table,

rotate to collect projections through the breast for which images may then be

reconstructed. Because the breast is the only object through which the x-ray
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photons are transmitted, lower tube-currents compared to conventional CT may be

used. Thus, energy-resolving detectors, which generally have low count-rates, may

be well suited for this application.

2.8 Monte Carlo Radiation Transport Simulations

Monte Carlo algorithms use random sampling methods to obtain numerical

results for a given application. In the field of medical physics, they are often used to

simulate the transport of photons or energetic particles through matter by modeling

the underlying physical interaction mechanisms (Compton and Rayleigh scattering,

photoelectric absorption, etc.), which are stochastic processes by nature.

Throughout the simulation, user-specified tallies are updated periodically,

ultimately resulting in an estimate of one or more useful physical quantities (e.g.,

the energy deposited in a specified material) based on a set of input parameters.

Because Monte Carlo algorithms rely on statistical methods, the variance of the

estimated physical quantity is dependent upon the number of simulated events.

Achieving a sufficiently low statistical uncertainty in estimates for radiation

transport simulations often requires simulating the numerous interactions undergone

by hundreds of millions of individual particles, which can take hours to days and

even up to weeks to complete, depending on the computing resources available.

Thus, while useful, Monte Carlo algorithms can also be computationally demanding,

often requiring graphical processing units (GPUs) or high-performance computing

clusters to be able to run quickly and efficiently.
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Chapter 3

Database for Estimating Organ Dose for

Coronary Angiography and Brain Perfusion CT

Scans

3.1 Introduction

Several groups have evaluated methods of reducing dose to radiosensitive

organs such as the breast, including reduced kV and tube-current modulated scans

[33, 35, 41, 51, 52]. In addition to developing new protocols for dose reduction,

studies are also required to optimize dual-kV protocols, which involve two kV

settings, novel filtration materials, tube current modulation, and angular kV

switching methods. Many of these studies rely on organ dose data obtained from

experimental measurements or Monte Carlo simulations. Because each proposed

scan protocol may include unique scan parameters (kV, mAs, etc.), a separate

measurement or Monte Carlo simulation is required for each dose reduction scheme,

which can be both costly and time-consuming. Monte Carlo simulations generally

require computing resources that may not always be readily available and can take

an extensive amount of time to complete depending on the scan protocol, phantom

resolution, and statistical uncertainty required.

One commonly used dosimetry software tool, ImPACT’s CTDosimetry

Calculator [53], enables scanner-specific organ dose estimation. However, the tool
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cannot estimate organ dose for scan protocols involving angular tube current

modulation, partial angular scanning, or arbitrary spectra. This study developed a

database for estimating organ dose for a single-rotation axial coronary angiography

or brain perfusion CT scan with any spectral shape and angular

tube-current/voltage modulation settings. The proposed database quantifies dose to

a number of radiosensitive organs as a function of both projection angle and

incident photon energy so that novel acquisition methods can be investigated. The

database was created using tens of thousands of Monte Carlo simulations requiring

high-performance computing resources and several weeks of running time. Users of

the database are able to take advantage of the pre-calculated data to estimate organ

dose for both existing and novel acquisition techniques without requiring Monte

Carlo simulations. The database includes tables quantifying CTDIvol in head and

body computed tomography dose index (CTDI) phantoms in order to provide

approximate conversion factors to reflect the tube output of conventional CT

scanners. Overall, the proposed database is intended to facilitate the development

of dose reduction methods and optimized single and multiple kV acquisitions,

especially for researchers without the resources required to perform Monte Carlo

simulations.

3.2 Materials and Methods

3.2.1 Overview

Monte Carlo simulations were performed to obtain organ dose estimates for

several energy levels and projection angles through anthropomorphic chest and

thorax and CTDI head and body phantoms. The dose data was then organized into

a set of dose deposition tables, which quantify the organ dose per photon emitted

from the source. Finally, we present examples demonstrating how to use the tables
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to estimate the percent change in organ dose between protocols.

3.2.2 Monte Carlo Software

Monte Carlo simulations in this study were performed with the penImaging

software package [54–56], which relies on the previously validated PENELOPE

Monte Carlo radiation transport routines [57].

3.2.3 Phantoms

Five separate phantoms were used in this study: (1) anthropomorphic chest,

(2) anthropomorphic head, (3) anthropomorphic head tilted 30◦ about the coronal

plane, (4) CTDI body, and (5) CTDI head.

Anthropomorphic Chest and Head Phantoms

This study used the 0.5 mm voxelized anthropomorphic female phantom,

Ella, from the Virtual Family [58], representing an average-sized 26 year old (height:

1.63 m, weight: 58.7 kg). To relax computational memory requirements, we cropped

the phantom for the head and chest simulations. For the chest simulation, the

phantom was cropped to the thorax, measuring 31 cm by 22 cm in the lateral and

anteroposterior directions, respectively, and 30 cm in the axial direction. For the

non-tilted head simulation, the phantom was cropped to the head, measuring 18 cm

by 23 cm in the lateral and anteroposterior directions, respectively, and 25 cm in the

axial direction. For the tilted head simulation, the cropped head phantom was tilted

30◦ about the coronal plane, as if the patient were to tuck their chin toward their

chest. Topograms of the whole body and cropped phantoms are shown in

Figure 3.1. To assure that the axial lengths of the cropped phantoms were sufficient

to capture most scattered radiation dose, we compared organ doses between the
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cropped phantoms and the full phantom for a single simulated projection. Relative

to the organ doses calculated when simulating the full phantom, the cropped

phantoms capture 94% of the dose for bone and muscle, and 99% of the dose for all

other organs.

The breast was modeled as two separate parts: an internal glandular mass

and an external 1 cm thick surrounding layer of adipose. Thus, voxels representing

the internal glandular mass were modeled as 100% glandular tissue, while the

surrounding layer of voxels were modeled as 100% adipose. As such, “dose to breast”

in the context of this study refers to dose to the 100% glandular material. Voxels

representing the following organs/tissues were modeled according to their respective

atomic compositions and densities as given by ICRP publication 110 [59]: fat

(adipose), glandular tissue, adrenals, blood, cartilage, esophagus, eye lens, stomach,

heart, kidney, liver, muscle, pancreas, skin, spleen, teeth, thyroid, and soft tissue.

Voxels representing the following organs/tissues were modeled according to their

respective atomic compositions and densities as given by Woodard & White [60]:

lung (blood filled, 50% inflated, 50% deflated, density: 0.655 g/cm3), cerebrospinal

fluid, connective tissue. The brain was divided into three organs with slightly

different atomic compositions and densities: “brain (grey matter)” including grey

matter, the hippocampus and the thalamus were modeled as grey matter according

to the composition given by Woodard & White [60]; “brain (white matter)”

including white matter, the commissura anterior, and the commissura posterior

were modeled as white matter according to the composition given by Woodard &

White [60]; and “brain (mean grey/white matter)” including the cerebellum,

medulla, midbrain, and pons were modeled as a 50/50 mixture of grey and white

matter as defined in ICRP Publication 110 [59]. The diaphragm, larynx, and tongue

were modeled as muscle. All skeletal voxels were modeled as homogenous bone

(density: 1.4 g/cm3) as given by Cristy & Eckerman [61]. This study quantified dose
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only in the organs listed in Table 3.1. Most of these organs were fully included in

the cropped phantoms except those listed in Table 3.2, which gives the ratio of the

organ mass in the cropped phantoms to the organ mass in the full phantom.

Table 3.1: Dose deposition tables. Shown are the dose deposition tables generated
for each of the five phantoms.

Phantom Dose Tables Generated

Chest

lung
breast

esophagus
heart
bone

red marrow
skin

muscle

Head

brain (grey matter)
brain (white matter)

brain (mean grey/white matter)
eye lens

Head (30◦ tilt)
bone

red marrow
skin

muscle

CTDI body

CTDI head
CTDIvol

Table 3.2: Fractional organ masses. Shown are the fractional organ masses (ratio of
organ mass in cropped phantom to full phantom). Those organs not listed in the
table have a fractional mass of 1.0 (i.e., they are completely included in the cropped
phantoms).

Phantom Organ Fractional Mass

Chest

esophagus 0.92
bone 0.18

red marrow 0.16
skin 0.17

muscle 0.18

Head
bone 0.19

red marrow 0.09

Head (30◦ tilt)
skin 0.09

muscle 0.04
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CTDI Body and Head Phantoms

A 32-cm-diameter virtual CTDI body phantom [62] was created using simple

cylindrical and planar mathematical quadrics. The five holes in which the ion

chambers are placed were 100 mm long and 12.4 mm in diameter and located at the

phantom center and at the 12 o’clock, 3 o’clock, 6 o’clock and 9 o’clock positions, 1

cm interior from the surface of the phantom. The phantom was made of polymethyl

methacrylate (PMMA) material (density: 1.19 g/cm3). Each of the five ion chamber

holes was also modeled as PMMA material (i.e., as if PMMA filled the holes).

Dose-to-PMMA was converted to dose-to-air in order to calculate CTDIvol, which is

explained in Sec. 3.2.6. A virtual CTDI head phantom [62] measuring 16 cm in

diameter was similarly created. Both CTDI phantoms were 15 cm in height.

3.2.4 Simulation Geometry

The source-to-detector distance for each simulation was 100 cm, with a

source-to-isocenter distance of 50 cm. We modeled a single-rotation stationary

cone-beam system with no table translation and a beam width at isocenter of 8 cm,

which was chosen to represent the volume scanning capabilities of 320 detector row

CT scanners during brain perfusion and coronary angiography scans [63, 64]. We

modeled a point source with a fan angle of 53.13◦, which was wide enough to cover

the entire width of each phantom.

3.2.5 Energy Deposition Simulations

The transport of monoenergetic photons through each of the five phantoms

was simulated between 5 and 150 keV in 1 keV increments for 1000 projections in

0.36 degree increments. Monoenergetic simulations were performed for two reasons:

(1) so that results may be used to investigate the effects of specific incident photon
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energy levels on organ dose, and (2) so that organ dose may be calculated for any

polyenergetic spectral shape, as will be explained in detail in Sec. 3.2.7. For each

photon energy at each projection angle, 107 photons emitted from the source within

the collimated beam (henceforth referred to simply as “emitted photons”) were

tracked through the anthropomorphic and CTDI phantoms, and the energy

deposited in each organ or material of interest for each phantom was tallied. A

bowtie filter corresponding to that used for head protocols of a Toshiba Aquilion 64

scanner [65], and a bowtie filter corresponding to that used for body protocols of a

Siemens AS+ scanner [66] were modeled by calculating the fan-angle dependent

transmission spectra at each incident photon energy for the same materials and

thicknesses representative of the physical bowtie attenuation characteristics

described in Abboud et al. [65] and McKenney et al. [66]. These head and body

bowtie spectra were then used for the radiation-transport simulations respective of

the head and chest phantoms of this study (Sec. 3.2.3).

3.2.6 Organ Dose Tables

A table of normalized dose deposition, QO(θ, E), quantifying the dose to

organ, O, per emitted photon (mGy/emitted photon) for each incident photon

energy, E, and projection angle, θ, was generated for the organs of the phantoms

listed in Table 3.1. Figure 3.1 shows the scan field-of-view (FOV) for the

simulations of the anthropomorphic chest and head phantoms. The following three

subsections describe how the tables were generated.

Non-skeletal Dosimetry

For each organ of interest except the bone and red bone marrow (explained

separately in Sec. 3.2.6), the energy deposited (reported in eV per emitted photon),
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was converted to dose by converting eV to Joules and dividing by the mass of the

organ in the respective cropped phantom. These calculations resulted in tables of

normalized dose deposition, QO(θ, E), quantifying the dose to organ, O, per emitted

photon (mGy/emitted photon) for each incident photon energy, E, and projection

angle, θ.

Skeletal Dosimetry

Due to the difficulty in accurately modeling the anatomical microstructure of

trabecular spongiosa, doses to the radiosensitive red marrow cells and bone surface

cells contained within the skeletal tissue are often approximated using one of several

widely accepted techniques [67]. We approximated dose to bone as dose to the

homogenous bone material described in Sec. 3.2.3, using the same method of

converting from energy deposited to dose as described in Sec. 3.2.6, and using the

mass of bone in the respective cropped phantoms. These calculations resulted in a

table of normalized dose deposition for homogenous bone, QHB(θ, E).

We used Eq. 3.1, originally proposed by Rosenstein [68] and employed by

Turner et al. [69], to estimate the dose to red bone marrow from the dose to

homogenous bone:

DRBM = DHB ·
(µen/ρ)RBM

(µen/ρ)HB

(3.1)

where DRBM and DHB are the doses to red bone marrow and homogenous bone,

respectively, and (µen/ρ)RBM and (µen/ρ)HB are the mass energy absorption

coefficients of red bone marrow and homogenous bone. We created the table of

normalized dose deposition for red bone marrow by using Eq. 3.1 and the table of

normalized dose deposition for homogenous bone. To calculate the table of

normalized dose deposition for homogenous bone for each phantom, we divided the
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energy deposited by the mass of the homogenous bone in the cropped phantoms.

The mass energy absorption coefficients of both materials were calculated using

Eq. 3.2:

(µen/ρ)material =
∑
i

wi · (µen/ρ)i (3.2)

where wi is the percent composition by mass and (µen/ρ)i the mass energy

absorption coefficient of the ith element comprising the material. Elemental percent

compositions for red bone marrow were taken from Woodard & White [60], while

those for homogenous bone were taken from Cristy & Eckerman [61]. Elemental

mass energy absorption coefficients were obtained from tables published by Hubbell

& Seltzer [27].

CTDIvol Tables

We also created tables quantifying the CTDIvol in mGy per emitted photon

for both the head and body CTDI phantoms. First, the CTDI100 at each incident

photon energy for both the center and peripheral chambers of the CTDI phantoms

were obtained using Eq. 3.3:

CTDIx,100 =
Ex · e · L
m ·N · T

· 1000 · (µen/ρ)AIR

(µen/ρ)PMMA

(3.3)

where CTDIx,100 is the CTDI100 at the center (CTDIc,100) or periphery (CTDIp,100)

chamber of the CTDI phantom, Ex is the total energy deposited in the center or

peripheral chamber (eV/emitted photon), e is the electron charge constant

(conversion factor from eV to Joules), L is the active length of the chamber (10 cm),

N is the number of slices, T is the tomographic section thickness, (N · T is the

nominal beam width [8 cm]), m is the mass of PMMA in the chamber, the factor of

1000 is used to convert from Gy to mGy, and (µen/ρ)AIR and (µen/ρ)PMMA are the
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Figure 3.1: Topograms of female phantom. Topogram of the whole- body (non-
cropped) female phantom (a). Anterioposterior and lateral topograms of the cropped
chest phantom, (b) and (c); non-tilted head phantom, (d) and (e); and the tilted
head phantom, (f) and (g). The scan field of view for each of the cropped phantoms
is represented by the space between the white horizontal lines and corresponds to a
coronary angiography scan for (b) and (c) and a brain perfusion scan for (d)-(g).

mass energy absorption coefficients for air and PMMA, respectively. Multiplying by

the ratio of the mass energy absorption coefficients converts dose-to-PMMA to

dose-to-air. The method of modeling the ion chambers as PMMA and converting to

dose-to-air has been previously validated [70]. Mass energy absorption coefficient

values for air and PMMA were obtained from Hubbell & Seltzer [27].

CTDIw was then calculated using Eq. 3.4 [71]:

CTDIw = 1/3 · CTDIc,100 + 2/3 · CTDIp,100 (3.4)
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Because CTDIvol is equal to CTDIw divided by the pitch, and since we used a pitch

of one, our CTDIvol is equivalent to CTDIw.

3.2.7 Using the Database to Estimate Dose

The total dose to an organ, DO, for a scan can be calculated using Eq. 3.5.

DO =
∑
θ

N0(θ)
∑
E

Φ(θ, E)QO(θ, E) (3.5)

where N0(θ) is the number of emitted photons at projection angle, θ; Φ(θ, E) is the

fraction of photons incident at projection angle, θ, with energy, E (i.e., the spectral

distribution at projection angle, θ); and QO(θ, E) is the table of normalized dose

deposition (i.e., dose to organ, O, per emitted photon at angle, θ, and energy, E, as

described in Sec. 3.2.6). As seen in Eq. 3.5, the total organ dose is a linear

combination of the values in the table of normalized dose deposition for that organ

with the weights dependent on the spectrum and number of emitted photons at

each projection angle.

The table of normalized dose deposition, QO(θ, E), for each organ is the

output of the presented Monte Carlo simulations for the specific CT geometry we

have described, while N0(θ) and Φ(θ, E) are user-modifiable parameters. Together,

N0(θ) and Φ(θ, E) represent an input x-ray spectrum. Modifying these two

parameters allows for calculating total organ dose for various acquisition methods,

filtration schemes, and scan parameters. For example, tube voltage settings and

spectra filtration can be changed by properly modifying Φ(θ, E). While our method

does not allow a user to directly specify an mAs value when calculating organ dose,

a relative change in mAs by a certain factor between protocols is represented by the

same relative change in N0(θ) in Eq. 3.5, since the number of incident photons is

proportional to the tube-current time-product. In this manner, N0(θ) can be
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modified across rotation angle, θ, to model angular tube current modulation. As

described in Sec. 3.2.9, the database includes information about the phantoms’

attenuation as a function of angle and energy to facilitate calculation of tube

current modulation settings, as will be performed in Sec. 3.2.10. In addition, setting

N0(θ) to zero at desired angles represents partial-angle scanning. Angularly

interlaced dual-kV protocols can be modeled by changing N0(θ) and Φ(θ, E) at

alternating angles.

While Eq. 3.5 gives an organ dose in units of mGy, this estimate depends on

the selected N0(θ) and is not indicative of organ dose from a specific scanner. Thus,

Eq. 3.5 can be used to compare the change in organ doses between protocols, which

depends on the change in N0(θ) across protocols rather than the specific value of

N0(θ). Secs. 3.2.10 and 3.2.11 demonstrate examples of using the database for

studying changes in dose between protocols.

If the mAs-to-photon-fluence conversion factor for a specific scanner is known

or measured, a realistic N0(θ) could be determined and used with the database to

obtain a dose estimate that reflects typical tube output. For example, the IPEM

Report 78 software provides an estimate of these conversion factors [72]. Another

approach for obtaining dose estimates for a specific scanner’s output is to calculate

a scaling factor using CTDIvol normalization, as described in Eq. 3.6:

Dscanner = Ddatabase ·
CTDIvol,scanner
CTDIvol,database

(3.6)

where Ddatabase and CTDIvol,database are the organ dose and CTDIvol, respectively,

calculated using the dose tables. CTDIvol,scanner is the CTDIvol measured on the

scanner of interest using the same spectrum, Φ(θ, E), as that used from the dose

table estimations. This scaling factor adjusts for differences in scanner output and

has been previously validated by Turner et al. for fully irradiated organs in

abdominal scans with constant tube current [69, 73]. Our database, however,



69

presents organ dose data for coronary angiography and brain perfusion scans and

for partially irradiated organs, therefore the conversion presented in Eq. 3.6 is

expected to provide an approximate estimate of scanner-specific organ dose. A

preliminary validation of the organ dose estimates normalized by CTDIvol is

presented in Sec. 3.2.8.

As explained in Sec. 3.2.6, we estimated the organ dose in the dose

deposition tables by dividing energy deposited in an organ by the mass of the organ

in the cropped phantom. For those organs that are not completely included in the

cropped phantoms (see Table 3.2), this method of evaluation can lead to an

overestimate of the whole-organ dose. If whole-organ dose is desired, then the organ

dose estimate obtained using Eq. 3.5 should be adjusted using the fractional mass

values of Table 3.2.

3.2.8 Validation

PENELOPE’s Monte Carlo routines have been previously validated [57]. To

validate that the linear combination of database values (Eq. 3.5) does not introduce

additional biases, we compared organ doses estimated by the database to those

estimated by Monte Carlo simulations of the cropped head and chest phantoms,

each consisting of 1000 views, 109 emitted photons per view, and a 120 kV

polyenergetic spectrum generated using the IPEM Report 78 software [72] (tungsten

target, 12◦ anode angle, 0% voltage ripple, and 6 mm aluminum filtration). The

scan geometry was identical to that used to generate the tables of normalized dose

deposition, QO(θ, E), described in Sec. 3.2.4. The total dose to each organ output

from these simulations was compared to that calculated using Eq. 3.5 assuming the

120 kV spectrum and 109 emitted photons per view.

A study was also performed to validate the organ dose estimates normalized

by the CTDIvol estimates, which can be used to adjust the database dose estimates
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to reflect realistic scanner output (Eq. 3.6). In this study, the breast and lung dose

per CTDIvol estimated by the database were compared to those reported by Turner

et al. from Monte Carlo simulations of a different voxelized phantom. The Turner

study found that organ dose per CTDIvol is generally scanner-independent [69].

However, the entire breast and lung were irradiated in the Turner study, while only

a portion of the breast and lung were irradiated in our system geometry. Therefore,

the organ dose per CTDIvol estimated from the database was scaled by the fraction

of irradiated organ volume (57.7% for breast, 49.7% for lung) prior to comparison to

Turner’s values.

3.2.9 Obtaining Patient Attenuation Data

Analytical ray-tracing was performed to determine the attenuation at each

incident photon energy and projection angle for the anthropomorphic head, tilted

head, and chest phantoms. The attenuation was defined as the inverse of the

transmission (i.e., A = eµ·L) averaged over the central 100 pixels (2.5 cm) of the

detector. The attenuation data can be used in modeling attenuation-based

tube-current modulation schemes, as will be demonstrated in Sec. 3.2.10.

3.2.10 Example 1: Using the Dose Database to Investigate Change in

Dose to Breast

In this section, we demonstrate how to use the dose database to calculate the

change in dose to the breast for three protocols commonly used to reduce breast

dose - reduced kV, partial scanning, and angular tube current modulation. Because

acquisition techniques designed to reduce breast dose may increase lung dose (for

example, during partial angle protocols, which typically increase dose during

posterioanterior (PA) views for which the lung is less shielded by the rib cage and
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thus more directly exposed to incident radiation), we also estimate the subsequent

change in dose to the lung for each protocol. Changes in organ dose are reported

relative to a 120 kV reference protocol.

Reference 120 kVp Protocol

The total dose to the breast for the reference protocol was calculated using

Eq. 3.5 and Qbreast(θ, E). Φ(θ, E) was set equal to a normalized 120 kV spectrum

for all θ. Since we are interested only in change in dose, the absolute number of

emitted photons used in Eq. 3.5 is irrelevant. Therefore, we set the number of

emitted photons per view, N0(θ), equal to one for all θ (Figure 3.2). Similarly, we

used Eq. 3.5 with Qlung(θ, E) to calculate total dose to the lung.

Figure 3.2: N0(θ) for the protocols listed in Sec. 3.2.10. The area under the curve (i.e.,
N0(θ) summed across all angles) is equal for the 120 kV, tube-current modulation,
and partial scan protocols, while the 80 kV protocol has 1.3 times the number of
emitted photons from the source.
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Reduced kVp Protocol

The total dose to the breast for the 80 kV protocol was calculated using

Eq. 3.5 and Qbreast(θ, E). Φ(θ, E) was set equal to a normalized 80 kV spectrum for

all θ. We had previously determined that to obtain a noise variance similar to that

of the 120 kV protocol, the number of emitted photons at each angle of the 80 kV

protocol should be increased by a factor of 1.3 relative to the 120 kV protocol [74].

Thus we set N0(θ) equal to 1.3 for all θ (Figure 3.2). Similarly, we used Eq. 3.5 with

Qlung(θ, E) to calculate total dose to the lung.

Tube Current Modulation Protocol

The total dose to the breast for this protocol was calculated using Eq. 3.5

and Qbreast(θ, E). Φ(θ, E) was set equal to a normalized 120 kV spectrum for all θ.

Using the patient attenuation data, an optimal attenuation based tube-current

modulation scheme was modeled in which the number of emitted photons at each

angle, N0(θ), was proportional to the square root of the attenuation at that angle,√
A(θ) [75], while the total number of emitted photons for the scan remained the

same as in the reference protocol (Figure 3.2). Similarly, we used Eq. 3.5 with

Qlung(θ, E) to calculate total dose to the lung.

Partial Angle Protocol

The total dose to the breast for this protocol was calculated using Eq. 3.5

and Qbreast(θ, E). Φ(θ, E) was set equal to a normalized 120 kV spectrum for all θ.

We set N0(θ) equal to zero during the 360 projections (130◦) centered about

anterioposterior (AP) and to 1.56 during the remaining 640 projections (230◦).

These factors were chosen to represent the x-ray tube giving no output during the

AP views and increased output during the PA views such that the total number of
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emitted photons for the entire 360◦ scan remained the same as in the reference

protocol (Figure 3.2). Similarly, we used Eq. 3.5 with Qlung(θ, E) to calculate total

dose to the lung.

3.2.11 Example 2: Using the Dose Database to Investigate Change in

Dose to Eye Lens

In this section, we demonstrate how to use the dose database to calculate the

change in dose to the eye lens for a tilted head scan relative to a non-tilted scan.

Reference (Non-tilted) Protocol

The total dose for the reference protocol was calculated using Eq. 3.5 and

Qeye(θ, E) for non-tilted head phantom. We set Φ(θ, E) equal to a normalized 80 kV

spectrum for all θ, and we set the number of emitted photons per view, N0(θ), equal

to one for all θ.

Tilted Protocol

The same method used for the non-tilted protocol was used to calculate the

total dose except that in Eq. 3.5 we used the table of normalized dose deposition,

Qeye(θ, E), for the tilted head phantom.

3.3 Results

3.3.1 Dose Tables

Our simulations resulted in a table of normalized dose deposition, QO(θ, E),

for each of the organs (or CTDIvol) of the phantoms listed in Table 3.1, quantifying
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the dose per emitted photon (mGy/emitted photon) for each incident photon

energy, E, and projection angle, θ. Head [65] and body [66] bowtie filters were

modeled for the simulations. Examples of tables of normalized dose deposition for

the breast, lung, eye lens, and brain (grey matter) are shown in Figure 3.3. Viewing

the tables graphically may provide insight for designing new protocols, since the

projection angles and energies that deposit the most dose can be visualized. The

uncertainty of the normalized dose deposition values varied across photon energy,

projection angle, and organ. For example, the uncertainty in breast dose for the PA

projection was 2.92% at 20 keV and 0.16% at 120 keV. When calculating the organ

dose using Eq. 3.5, the individual statistical uncertainties at each incident photon

energy and projection angle propagate such that the total statistical uncertainty for

a calculated total organ dose or CTDIvol for a given spectrum and number of

emitted photons is on the order of 0.0005%, indicating that the dose estimates have

a high degree of certainty.

For each of the studied phantoms, it took approximately 7–10 days for the

dose simulations to complete on our cluster of 500 CPUs, including simulation

set-up time.

The tables of normalized dose deposition are saved as ASCII formatted files

and are freely available for download at

http://www.eng.mu.edu/medicalimaging/dose_database and as supplemental

material for Rupcich et. al [76]. In addition, the patient attenuation data for the

head, tilted head, and chest phantoms are also made available for use in designing

attenuation-based tube current modulation schemes.

3.3.2 Validation

The percent differences between total organ doses obtained from the 120 kV

polyenergetic Monte Carlo simulations and those calculated using Eq. 3.5 varied

http://www.eng.mu.edu/medicalimaging/dose_database
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Figure 3.3: Examples of tables of normalized dose deposition. Table of normalized
dose deposition QO(θ, E) for (a) breast, (b) lung, (c) eye lens, and (d) brain (grey
matter), quantifying organ dose per emitted photon (mGy/emitted photon) at each
incident photon energy, E and projection angle, θ. Note that 0◦ and 180◦ correspond
to AP and PA projections, respectively, and 90◦ and 270◦ correspond to left lateral
and right lateral incidence, respectively.

between -0.91% and 0.15% for all organs except the red bone marrow, which yielded

a percent difference of 6.1% for coronary angiography simulation and 4.3% for the

brain perfusion simulation. These results demonstrate that the database yields dose

estimates comparable to those calculated using conventional Monte Carlo

simulations. The larger percent differences in the red bone marrow estimates may

be due to the errors involved in estimating the mass energy absorption coefficient

for an energy spectrum (as is done in the case of the Monte Carlo simulation) as
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opposed to using the monoenergetic coefficient values (as is done when using the

dose tables). The smaller percent differences for the other organs are expected due

to the statistical variation inherent in results obtained via Monte Carlo simulations.

The lung and breast organ dose per CTDIvol estimated from the database were 1.24

and 1.59, respectively (after scaling by the fraction of irradiated organ mass),

compared to 1.59 and 1.77 as estimated by Turner et al. [69]. The differences in

dose per CTDIvol (-22% for breast and -10% for lung) are reasonable considering the

anatomical differences between the phantoms used in the two studies.

3.3.3 Example of Estimating Change in Dose to Breast

There was a 2.1%, 1.1%, and -32% difference in dose to the breast and a

2.1%, 0.6% and 4.7% difference in dose the lung for the reduced kV, tube current

modulated, and partial angle scan protocols, respectively, relative to the 120 kV

reference protocol, where a negative percentage indicates a decrease in dose

(Table 3.3). The percent increase in dose to the lung for the partial angle scanning

(as compared to the percent decrease in breast dose) is likely due to the increased

tube-current during the PA views for which the lung is less shielded by the the rib

cage than it is during the AP views and thus more directly exposed to the incident

photons.

3.3.4 Example of Estimating Change in Dose to Eye Lens

There was a -19.2% difference in dose to the eye lens for tilted head scan

relative to the non-tilted reference protocol, where the negative percentage indicates

a decrease in dose.



77

Table 3.3: Percent change in breast and lung dose for dose-reduction protocols. The
percent change in breast and lung dose for reduced kV, TCM and partial angular
scanning (Partial) protocols relative to the 120 kV reference scan. A negative per-
centage indicates a decrease in dose.

Scan Type Spectrum (kV) N0(θ)
Change in Change in

Breast Dose (%) Lung Dose (%)
Reference 120 1.00 - -

Reduced kV 80 1.30 2.1% 2.1%

TCM 120 ∝
√
A(θ) 1.1% 0.6%

Partial 120
0.0 (130◦ AP)

-32% 4.7%
1.56 (230◦ PA)

3.4 Discussion

The presented database allows investigation of numerous dose reduction

techniques with various scan parameters and protocols (e.g., x-ray spectrum,

filtration, and tube-current modulation) for a specific scan geometry and voxelized

phantom model without Monte Carlo simulations. Compared to available organ

dose estimators [53], our database can model novel coronary angiography and brain

perfusion acquisition techniques for the scan geometry presented, thus facilitating

the development and optimization of new acquisition protocols. For example, a

variety of dual-kV techniques can be modeled by changing N0(θ) and Φ(θ, E). The

database may enable researchers with limited access to high-performance computing

resources to develop novel acquisition methods. The presented method of

calculating tables of normalized dose deposition could also be applied to other CT

applications. For example, several studies evaluated the impact of spectral shape on

dose and image quality in breast CT [20, 21]. Future work could develop dose

deposition databases for phantoms and geometries specific to breast CT to enable

efficient optimization of acquisition techniques.

The estimated organ dose results presented in this paper reflect changes in

dose without quantifying image quality. The purpose of our examples is not to make
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claims with respect to dose reduction for any of the studied protocols, but to

illustrate how our method can be used to estimate changes in organ dose between

protocols. To determine the optimal protocol from our examples, the reported

changes in dose would need to be evaluated alongside a corresponding image quality

study.

Because the data we have collected for each phantom are specific to the

simulated geometries, dose estimates for helical trajectories, longitudinal

tube-current modulation schemes, and FOVs other than those shown in Figure 3.1

cannot be obtained directly with our database. One strength of other dose

databases, including those used by ImPACT’s CTDosimetry Calculator [77, 78], is

that organ dose coefficients are given for each of several 5 or 10 mm thick

cross-sectional slabs that together constitute a large portion of the phantom (e.g.,

thigh to head). With the data organized in this fashion, one can obtain the total

organ dose for a particular FOV by summing all of the organ coefficients for the

slabs included in that FOV. The database presented in this paper enables organ

dose estimation for coronary angiography and brain perfusion scans in particular, as

these applications are of recent concern with regard to dose [7, 8, 79–81]. Future

studies could aim to extend our database to include tables of normalized dose

deposition for a number of thin cross-sectional slabs that together comprise the

entire length of the phantom, in which case it would be possible to estimate total

organ dose to all organs of the body for arbitrary FOVs and trajectory types as well

as longitudinal tube-current modulation schemes.

Several studies have shown that absorbed organ dose tends to increase with

decreasing patient size [41, 73, 82, 83]. Our database presents organ dose deposition

tables for one average-sized female phantom. Thus, results for relative dose

reduction between protocols obtained using our database are limited to a patient of

similar size. Future studies could expand the database to include smaller and larger
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patients, as well as pediatric and adult male phantoms, so that the effects of patient

size on organ dose reduction for novel protocols may be investigated. Alternatively,

coefficients for scaling organ dose estimates based on patient size have been

investigated [73]. These scaling factors could be combined with a full-phantom

database to enable more patient-size specific dose estimates from a single-phantom

database.

The CTDIvol normalization and multiplication method proposed in Sec. 3.2.7

provides an approximate conversion to scanner-specific dose estimates. At present,

however, the method has not been fully validated for partially irradiated organs or a

wide range of exam protocols [69, 73]. This does not limit the databases ability to

quantify relative organ dose differences between protocols.

Despite these limitations, the proposed database and method of estimating

organ dose (Eq. 3.5) can be used in conjunction with image quality studies to

determine which dose reduction protocols provide the best ratio of image quality to

dose. Since the database provides quantification and visualization of dose deposition

across energy and projection angle, it may aid in determining optimal spectra and

tube current modulation parameters. The database may be useful in understanding

the dose implications of novel spectral, partial scanning, and few-view techniques,

and may be particularly beneficial for developing dual kV techniques [84–87], for

which the kV, filtration, and mA must be optimized for both the low and high

energy acquisitions with respect to image quality and dose. This optimization may

require numerous combinations of scan parameters, which can be easily modeled

with the proposed database by modifying the spectra, Φ(θ, E), and number of

emitted photons, N0(θ), in Eq. 3.5.
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Chapter 4

Simulation Study Comparing CT Coronary

Angiography Breast Dose Reduction

Techniques using an Unknown-Location

Signal-Detectability Metric

4.1 Introduction

Several studies have reported reduction in adult female breast dose during

chest CT scans using dose reduction techniques such as breast shielding (29 – 57%

reduction in breast dose) [33, 35–39] , angular tube current modulation (10 – 64%)

[33, 35, 36, 41], partial-angle scanning (50%) [35], and reduced x-ray kV (27 – 50%)

[33, 34]. When assessing the resultant image quality, however, these studies

performed a subjective analysis [33, 37–39] and/or quantified task-independent

metrics such as noise (pixel standard deviation) or contrast-to-noise ratio (CNR)

[34–36, 39]. In medical diagnostic imaging, image quality must express the

effectiveness with which the image can be used for a specific diagnostic task (e.g.,

detection of a lesion or estimation of the degree of stenosis). Accordingly, the

International Commission on Radiological Units (ICRU) recommends the objective

assessment of image quality, and more specifically, the use of task-dependent metrics

over task-independent metrics, as the latter may not always be directly indicative of

the diagnostic performance of the intended task and thus may not accurately
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represent the true “quality” of an image [42].

As discussed in Chapter 2, the AUC ROC figure of merit can be used as a

signal-detectability metric for signal detection tasks consisting of a single signal for

which the location is known. For tasks for which the signal location is unknown,

which are often more clinically relevant, we can estimate the localization ROC

(LROC) curve, which plots the fraction of true positive images with a correctly

localized signal versus the fraction of false positive images. The area under the

LROC curve (AUC LROC), may then be used as a detectability metric instead of

AUC ROC for tasks in which the signal location is unknown [88]. For cases in which

there are multiple signals with unknown locations, we may use the free-response

operating characteristic (FROC) method, which allows the observer to mark and

score all potentially suspicious locations. The FROC curve plots the ratio of true

signals detected versus the average number of false signals reported per image. As

such, the FROC graph does not have a well-defined right side limit, and so the area

under the FROC curve is undefined and cannot be used as a performance index.

Popescu recently introduced an exponential transformation of the FROC curve

(EFROC) that maps the infinite interval of the abscissa to a finite one and then

shows that the area under the EFROC curve (AUC EFROC), can be used as a

detectability metric [89]. Moreover, this method is nonparametric in that AUC

EFROC is estimated directly from the confidence scores reported by the observer,

thereby avoiding the reliance on specific models or assumptions typically required

when estimating an area under the curve metric via direct integration under its

associated ROC curve.

In general, image quality metrics can be plotted as a function of a physical

parameter of the imaging process (e.g., radiation dose) to summarize the effect of

that parameter on signal detectability [42]. Such plots can then be obtained for

several different imaging systems, reconstruction algorithms, or techniques to
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determine which ranks the highest with respect to the chosen parameter. For

example, a recent study compared CT images reconstructed using filtered

backprojection to those reconstructed using an iterative algorithm by plotting AUC

LROC vs. dose (mAs) curves for the two algorithms and observing which produced

a higher detectability at a given radiation dose [90].

The purpose of this study was to compare the signal detectability, as

quantified by the AUC EFROC estimator, ÂFE, of several dose reduction techniques

over a range of breast dose levels. Because the lung is also considered a highly

radiosensitive organ [91] and lung dose may be affected by breast dose reduction

methods, we further investigated AUC EFROC versus lung dose. We estimated

other commonly used image quality metrics, including noise, contrast, and CNR, to

assess their relationship to AUC EFROC and determine whether they may serve as

accurate predictors of signal detectability or are sufficient quantifiers of image

quality. We studied two tasks —detection and localization of small diameter/high

contrast and large diameter/medium contrast signals — to investigate how the dose

savings potential may vary depending on the task, where “detection and

localization” refers to the case in which the signal location is unknown, and thus the

signal must be both detected and have its location correctly identified.

4.2 Materials and Methods

We performed analytical raytracing of x-rays across an anthropomorphic

female thorax phantom for a 120 kV reference protocol, as well as five “dose

reduction” protocols intended to reduce dose to the breast during CT coronary

angiography (CTCA) acquisitions, including 120 kV posteriorly-centered partial

angle, 120 kV angular tube-current modulated (TCM), 120 kV breast-shielded, 80

kV, and 80 kV posteriorly-centered partial angle protocols. Images were then
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reconstructed using filtered backprojection. The first image quality task was

detection and localization of 4-mm diameter, 3.25 mg/mL (≈ 34 HU contrast at 120

kV) iodine signals randomly located in the heart region, chosen to loosely represent

detection of iodine uptake during a CTCA scan. A second task, the detection and

localization of 1-mm, 6.0 mg/mL (≈ 55 HU contrast at 120 kV) iodine signals, was

chosen to investigate if and how task variability may affect potential dose savings.

For each protocol, we calculated the AUC EFROC estimator, ÂFE, and plotted it

versus breast dose to investigate the potential of that protocol to reduce dose to the

breast without affecting the image quality as quantified by ÂFE, i.e., the

detectability of the signals. Because noise, contrast, and CNR are often used in

assessing image quality, we also plotted these metrics against breast dose. We

further investigated each of the metrics versus lung dose. The following subsections

describe in further detail the phantom and task design, CT simulation geometry,

and our methods for simulating the images, estimating dose, and calculating ÂFE

for each protocol and task.

4.2.1 Unknown-Location Signal-Detectability Metric Estimation

This study estimated image quality using a task-based procedure that

detected signals at unknown locations in the image region of interest (cardiac

region). The procedure comprises (1) a signal searching algorithm that produces

free response data, i.e., the scores of all suspicious locations (either true or false

signals) and their respective location marks, and (2) a nonparametric free response

data analysis method [89]. The signal searching and the data analysis have been

applied as recently presented by Popescu and Myers [92]. The signal searching

algorithm was initially presented in Popescu and Lewitt [93].

For a given (signal-absent or signal-present) image region of interest (ROI),

signal detection is performed using a signal search algorithm with two main steps.
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The first step generates an auxiliary scan image by cross-correlating the image ROI

with a series of shifted signal templates. We assume that an image ROI consists of

M pixels and is represented in vectorized form by f . A signal template, wi, consists

of M pixels, all with a value of zero except those located within the disk of radius

Rt centered at point i, which have a value of one. The value of the scan image at

the ith pixel location, zi is given by Equation 4.1:

zi =
M∑
i=1

wT
i f (4.1)

In other words, zi is the sum of the pixel values within the disk of radius Rt

centered at point i, providing a measure of the match between the signal template

and the pixels around that location. zi is the scan score for the ith pixel in f , and z

is referred to as the scan image. The second step involves marking all suspicious

locations of the image. We first determine the maximum scan score of the scan

image, z. The scan score is recorded, and the pixels within a disk of radius twice

that of the signal radius around this point are masked (i.e., set to zero). This step is

then repeated with the remaining unmasked pixels of z until the local maximum

scan score is less than a chosen stopping limit, z0. The output of this step is a

descending list of scan scores for all suspicious locations of the image with a value

above z0.

Using this procedure, we obtain {Xi}, the scan scores for I true signals

present, and {Yj}, the scan scores of a total of J false signals retrieved from N

signal-absent image ROIs. From these two sets of data, we can estimate AUC

EFROC as:

ÂFE =
1

I

I∑
i=1

e−
1
N

∑J
j=1H(Yj−Xi) (4.2)

where H(k), the Heaviside equation, is equal to 1 if k > 0; 1
2

if k = 0; or 0 if k < 0.
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The statistical properties of this signal-detectability estimator and its

relations with ROC, LROC, and alternative FROC (AFROC) metrics have been

studied in detail in [89]. In addition, nonparametric equations for the variance

calculations are provided.

4.2.2 Simulation Setup

The raytracing and Monte Carlo simulations described in this study were

performed with the penEasy Imaging software package [54, 55] which relies on the

previously validated PENELOPE Monte Carlo radiation transport routines and

material attenuation database [57]. The raytracing software did not model x-ray

scatter.

This study used the 0.5 mm voxelized anthropomorphic phantom, Ella, from

the Virtual Family [58, 94], representing an average-sized 26 year old female (height:

1.63 m, weight: 58.7 kg). To relax computational memory requirements during

simulations, we cropped the phantom to the thorax, measuring 31 cm by 22 cm in

the lateral and anteroposterior directions, respectively, and 30 cm in the axial

direction. Topograms of the whole body and cropped phantom are shown in

Figure 4.1.

The breast was modeled as two separate parts: an internal glandular mass

and an external 1 cm thick surrounding layer of adipose. Thus, voxels representing

the internal glandular mass were modeled as 100% glandular tissue, while the

surrounding layer of voxels were modeled as 100% adipose. As such, “dose to

breast” in the context of this study refers to dose to the 100% glandular material.

Voxels representing the following organs/tissues were modeled according to their

respective atomic compositions and densities as given by ICRP publication 110 [59]:

fat (adipose), glandular tissue, blood, cartilage, esophagus, stomach, heart, kidney,

liver, muscle, pancreas, skin, spleen, thyroid, and soft tissue. Voxels representing the
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Figure 4.1: (a) Topogram of the whole body (non-cropped) female phantom. (b)
Anterioposterior and (c) lateral topograms of the cropped phantom. The scan field-
of-view is represented by the space between the white horizontal lines and corresponds
to a CTCA scan.

following organs/tissues were modeled according to their respective atomic

compositions and densities as given by Woodard & White [60]: lung (blood filled,

50% inflated, 50% deflated, density: 0.655 g/cm3), cerebrospinal fluid, and

connective tissue. The diaphragm was modeled as muscle. All skeletal voxels were

modeled as homogenous bone (density: 1.4 g/cm3) as given by Cristy & Eckerman

[61].

The image quality tasks were detection and localization of 4-mm, 3.25

mg/mL and 1-mm, 6.0 mg/mL iodine contrast signals located within the heart

region (Figure 4.2a). As was explained in subsection 4.2.1, the signal search

algorithm and method for calculating ÂFE requires a set of signal-absent ROIs,

which were obtained by simulating images of the phantom with no iodine contrast

elements present, as well as a set of signal-present ROIs, which were obtained by
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simulating images of the phantom with either five 4-mm, 3.25 mg/mL (Figure 4.2b)

or five 1-mm, 6.0 mg/mL (Figure 4.2c) cylindrical iodine contrast elements located

in a single axial plane within the heart region.

Figure 4.2: (a) A full field-of-view reconstructed image of the phantom (4-mm, 3.25
mg/mL signal-present). The black box in the heart region indicates the signal search
ROI (52.5 × 40 mm2) used for calculating ÂFE for both tasks. (b) An example
of a signal-present ROI with the 1-mm, 6.0 mg/mL signals. (c) An example of a
signal-present ROI with the 4-mm, 3.25 mg/mL signals.

4.2.3 Simulation geometry

The source-to-detector distance for each simulation was 100 cm, with a

source-to-isocenter distance of 50 cm. We modeled a single-rotation stationary

cone-beam system with a flat-panel detector, no table translation, and a beam

width at isocenter of 8 cm (Figure 4.1b and 4.1c), which was chosen to represent the

scanning capabilities of volumetric CT scanners during CTCA scans [63, 64]. We

modeled a point source with a fan angle of 53.13◦, which was wide enough to cover

the entire width of the cropped phantom. A bowtie filter corresponding to that used

for the body protocols of a Siemens AS+ scanner [66] was modeled during all



88

simulations and dose estimations.

4.2.4 Investigated protocols

We simulated six CT protocols for each of the two tasks, including one

reference and five dose reduction protocols:

1. 120 kV (reference)

2. 120 kV partial angle (232◦ posteriorly centered)

3. 120 kV angular TCM (proportional to square root of attenuation [75])

4. 80 kV

5. 80 kV partial angle (232◦ posteriorly centered)

6. 120 kV breast shielded

Both the 120 kV and 80 kV spectra used in this study were generated using

the IPEM Report 78 software [72] (tungsten target, 12◦ anode angle, 0% voltage

ripple, and 6 mm aluminum filtration).

One thousand projections were collected over 360◦ for the four non-partial

angle protocols: 120 kV, 120 kV TCM, 80 kV, and 120 kV shielded. The two partial

angle protocols reduce direct exposure to the breast by applying tube-current only

during the posteriorly-centered 232◦; thus only the posteriorly-centered 645

projections were collected for these protocols.

For the 120 kV angular TCM protocol, the number of photons emitted from

the source (i.e., tube-current) at each projection angle was modulated

proportionally to the square root of the attenuation at that angle. This modulation

scheme is theoretically optimal with respect to noise (pixel standard deviation)

within a homogenous phantom [75].
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For the 120 kV shielded protocol, a 6 mm thick lead shield with density

0.1134 g/cm3 (1% the actual density of lead) with an approximate length of 42 cm

was created using mathematical quadrics and positioned approximately 1 cm above

the chest (Figure 4.3). Commercially available bismuth shields are typically

composed of a bismuth mixture. Due to the proprietary nature of this mixture, we

instead modeled the shield using the abovementioned thickness and density of lead,

which has been shown to provide attenuation equivalent to commonly used bismuth

breast shields (56% attenuation at 120 kVp)[35, 38].

Figure 4.3: An image of the phantom with the breast shield.

4.2.5 Dose Estimation

We used our previously proposed dose database [76] to estimate

protocol-specific “dose conversion factors,” which quantified the breast dose and

lung dose per photon emitted from the source for each protocol. Because our dose

database cannot model shielded scans, we performed Monte Carlo simulations

(following the methods of Rupcich et. al [76]) of the female phantom with the shield

described in subsection 4.2.4 to estimate the dose per photon emitted from the

source for the shielded protocol. These conversion factors were then multiplied by

the number of photons emitted from the source during raytracing simulations to

calculate the breast and lung dose.
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4.2.6 Image Generation

Ray-traced images with added Poisson noise were generated for each of the

studied protocols assuming the scan parameters described in subsection 4.2.4. CT

projection data was simulated for the 4-mm, 3.25 mg/mL task for the reference 120

kV protocol at 14 different breast dose levels ranging from approximately 1 to 81

mGy, corresponding to a number of photons emitted from the source ranging from

approximately 4.0e9 to 4.0e11. Similarly, projection data was simulated for the

1-mm, 6.0 mg/mL task for 18 different breast dose levels ranging from

approximately 1 to 254 mGy, corresponding to a number of photons emitted from

the source ranging from approximately 5.7e9 to 1.3e12. These photon numbers were

selected empirically to provide corresponding values of ÂFE that spanned the full

performance range (i.e., from very poor to virtually certain signal detectability).

The breast dose resulting from the reference 120 kV protocol for each simulated

number of photons was calculated by multiplying the breast dose conversion factor

of the reference protocol (subsection 4.2.5) by the number of photons emitted from

the source. Similarly, each of the five studied breast dose reduction protocols were

then simulated at the 14 (4-mm, 3.25 mg/mL task) or 18 (1-mm, 6.0 mg/mL task)

different breast dose levels. The simulated CT data was reconstructed using filtered

backprojection onto 0.25 mm2 pixels. The partial-scan data was reconstructed using

filtered backprojection with Parker weighting [95]. A water beam-hardening

correction algorithm was implemented to reduce cupping artifacts [96].

4.2.7 Assessment of Dose and Image Quality

We assessed task-based objective image quality by comparing ÂFE vs. dose

curves of the studied protocols. We also estimated the noise, contrast, and CNR for

each protocol.
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Signal Detectability, ÂFE

For this study, the signal search area for signal-present and signal-absent

images for both tasks was a two-dimensional 52.5 × 40 mm2 ROI located in one

axial plane inside the heart (Figure 4.2a). The radius of the disk within each 2D

signal template was one pixel larger than that of the signal, i.e., Rt = 0.75 mm for

the 1-mm diameter signal and Rt = 2.25 mm for the 4-mm diameter signal. To

assure low statistical uncertainty in ÂFE, we used 40 signal-present and

signal-absent ROIs for the 1-mm signal task, and 70 signal-present and signal absent

ROIs for the 4-mm task. The threshold, z0, was chosen so that a large enough

number of suspicious locations per image were retrieved.

The AUC EFROC estimator is scalable with the search area size. For

homogeneous regions, ÂFE can be scaled relative to a given reference image size, Ω,

by setting N = ΩT/Ω, where ΩT is the total searched area for false signals (i.e., the

signal search area times the number of signal-absent images). We used Ω = 3200

mm2 (e.g., 56.6× 56.6 mm2) for the 4-mm, 3.25 mg/mL task and Ω = 312.5 mm2

(e.g., 17.7× 17.7 mm2) for the 1-mm, 6.0 mg/mL task.

AUC LROC is used for tasks involving detection and localization of a single

signal. In theory, the AUC LROC estimator, ÂL is equivalent to ÂFE when the

latter is expressed for a search area size that is twice the size of the ROI area used

in estimating the former[89]. Thus, for the 4-mm task, our values of ÂFE for a

search area size of 3200 mm2 are equivalent to corresponding ÂL values for an ROI

size of 1600 mm2 (e.g., 40× 40 mm2). Similarly, for the 1-mm task, the search area

size of 312.5 mm2 represents an AL ROI size of 15.7 mm2 (e.g., 12.5× 12.5 mm2).

ÂFE was calculated for each CT protocol for both tasks from images

simulated at several equivalent breast dose levels. It is important to quantify the

effects of the different CT protocols on dose to organs other than the breast. The

lung dose was calculated for each protocol at each breast dose level by multiplying
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the lung dose conversion factors described in subsection 4.2.5 by the number of

simulated photons emitted from the source. We investigated lung dose because of

its high radiosensitivity and presence throughout the thorax for the chosen scan

geometry.

Dose Reduction at Equivalent ÂFE

The percent change in dose for a given protocol (relative to the reference

protocol) was estimated by comparing the doses required to achieve a specified ÂFE.

An ÂFE value too far outside the operating range of a real imaging system could

produce misleading results. We chose a value of 0.96, which is close to a clinically

realistic AUC ROC operating point for systems performing multislice CTCA [97].

Thus, for any given “dose reduction” protocol, we quantified dose performance as

the percent difference in dose relative to the reference protocol achieved while

maintaining an ÂFE of 0.96.

For a given protocol and signal size, we randomly sampled 500 ÂFE vs.

breast dose curves assuming a normal distribution of ÂFE at each dose value with

the mean and variance of ÂFE as estimated in section 4.2.7. Each realization of the

ÂFE vs. breast dose curve was interpolated to estimate the breast dose at

ÂFE = 0.96. This resulted in 500 estimates of breast dose at ÂFE = 0.96, from

which we calculated the mean breast dose, D̂, and variance, σ̂2. The percent change

in breast dose for protocol p relative to the reference protocol, ref , was estimated

using Equation 4.3:

% change in dose =
(D̂p − D̂ref )

D̂ref

· 100% (4.3)

The variance in the estimate of a percent change in dose was calculated by

propagating σ̂2 through Equation 4.3. The percent change in lung dose for each
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protocol was calculated similarly.

Pixel Noise, Contrast, and Contrast-to-noise Ratio Estimation

Noise was estimated for each protocol by taking the pixel standard deviation

of background ROIs across all images collected for that protocol for the given task.

The background ROI in each image was a 27.75× 19.5 mm2 rectangle located in the

center of the heart region (the background ROIs did not contain signals). Contrast

was estimated by calculating the absolute value of the difference between the mean

across all images of a background ROI and the mean across all images of an ROI

within a signal. The area of the signal ROI for the 1-mm-diameter signal was 0.79

mm2 and the area of the signal ROI for the 4-mm-diameter signal was 12.6 mm2.

CNR was then calculated by dividing the contrast by the noise. Similar to ÂFE,

noise and CNR were also plotted against breast dose and lung dose. The pixel noise,

contrast, and CNR associated with an ÂFE of 0.96 for protocol p were obtained by

interpolating the noise, contrast, and CNR vs. dose curves, respectively, for D̂p.

4.3 Results

Figure 4.4 plots ÂFE versus breast dose and lung dose for each of the studied

protocols and for both tasks. Figure 4.4a and Figure 4.4c indicate that for both

tasks, the 80 kV, 80 kV partial, and 120 kV partial protocols exhibited better signal

detectability than the reference protocol at a given breast dose, while the shielded

protocol exhibited poorer detectability. The TCM protocol exhibited comparable

performance to the reference protocol. Further, at a given breast dose, performance

was better for a partial scan than for a full scan (at the same kV).

Figure 4.4b and Figure 4.4d indicate that for both tasks, the 80 kV and 80

kV partial protocols exhibited better performance per lung dose than the reference
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protocol. At a given lung dose, the TCM protocol exhibited comparable

performance to the reference protocol, while the 120 kV partial and shielded

protocols exhibited poorer performance. Unlike the ÂFE vs. breast dose curves, the

ÂFE vs. lung dose curves indicate better performance for full scans than for partial

scans (at the same kV). In general, 80 kV protocols showed better performance per

breast dose or lung dose than 120 kV protocols.

Figure 4.4: (a) ÂFE vs. breast dose and (b) lung dose for the 4-mm, 3.25 mg/mL
signals. (c) ÂFE vs. breast dose and (d) lung dose for the 1-mm, 6.0 mg/mL signals.
Note that error bars are present in the plots and represent one standard deviation in
either direction, but in most cases are too small to see over the plot markers.

Figure 4.5 plots the noise standard deviation versus breast dose and lung

dose for each of the studied protocols. Because the signals are small, it is safe to



95

assume the noise is not dependent on the signal. Thus, the following results apply

for both the 4-mm and 1-mm signal sizes. Figure 4.5a indicates higher noise per

breast dose for the 80 kV, 80 kV partial, and shielded protocols, and lower noise per

breast dose for the 120 kV partial protocol, relative to the reference protocol. The

TCM protocol showed comparable noise per breast dose to the reference scan.

Figure 4.5b shows relatively higher noise per lung dose for all protocols except the

TCM protocol, which exhibited comparable noise per lung dose to the reference

protocol. Noise per breast dose was lower for a full scan than for a partial scan (at

the same kV), while the opposite was true for noise per lung dose. In general, 80 kV

protocols yielded higher noise per breast dose or lung dose than 120 kV protocols.

Figure 4.5: (a) Noise vs. breast dose and (b) lung dose. Noise is measured as pixel
standard deviation.

Figure 5.4 plots the CNR of the investigated protocols versus breast and lung

dose for both tasks. The CNR curves indicate a similar relative ranking of protocol

performance as the corresponding ÂFE curves.

Table 4.1 and Table 4.2 list values of ÂFE, CNR, contrast, noise, and lung

dose for each protocol for the 4-mm, 3.25 mg/mL and 1-mm, 6.0 mg/mL task at

equivalent breast dose (≈ 21 mGy for the 4-mm task, and ≈ 81 mGy for the 1-mm

task). The probability of signal detection for the 80 kV and 80 kV partial protocols
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Figure 4.6: (a) CNR vs. breast dose and (b) lung dose for the 4-mm, 3.25 mg/mL
signals. (c) CNR vs. breast dose and (d) lung dose for the 1-mm, 6.0 mg/mL signals.

Table 4.1: Image quality metrics and lung doses for each protocol for the 4-mm, 3.25
mg/mL task at equivalent breast dose (≈ 21 mGy).

Protocol ÂFE CNR Contrast [HU] Noise [HU] Lung dose [mGy]
120 kV (ref) 0.63 0.55 33.8 61.2 19.5
120 kV Partial 0.84 0.62 32.5 52.4 29.7
120 kV TCM 0.67 0.54 33.3 61.2 18.6
120 kV Shield 0.40 0.50 32.4 64.3 23.7
80 kV 1.00 1.30 99.3 76.4 19.5
80 kV Partial 1.00 1.43 91.4 64.1 30.9

is virtually certain (ÂFE = 1.0), with lower detectability for the other protocols.

Figure 4.7 shows an example of a signal-present image for each protocol at

equivalent breast dose for the 4-mm, 3.25 mg/mL task.
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Figure 4.7: Example of a 4-mm, 3.25 mg/mL signal-present image for each protocol
at equivalent breast dose (≈ 21 mGy). Window/level is 400/115 HU for the 120 kV
images, and 400/280 HU for the 80 kV images.

Table 4.2: Image quality metrics and lung doses for each protocol for the 1-mm, 6.0
mg/mL task at equivalent breast dose (≈ 81 mGy).

Protocol ÂFE CNR Contrast [HU] Noise [HU] Lung dose [mGy]
120 kV (ref) 0.71 1.81 56.4 31.2 75.9
120 kV Partial 0.80 2.17 58.2 26.9 115.7
120 kV TCM 0.71 1.87 58.4 31.2 72.5
120 kV Shield 0.47 1.67 54.3 32.7 92.3
80 kV 1.00 3.13 121.5 38.8 76.6
80 kV Partial 1.00 3.61 117.1 32.5 120.3

Table 4.3 lists values of CNR, contrast, noise, breast dose and lung dose for

each protocol at an equivalent ÂFE of 0.96 for the 4-mm, 3.25 mg/mL task.

Figure 4.8a indicates for this task and value of ÂFE that the 120 kV TCM, 120 kV

partial, 80 kV, and 80 kV partial protocols reduced dose to the breast by 6.0%,

17.6%, 80.5%, and 85.3%, respectively, while the shielded protocol increased dose to
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Figure 4.8: Percent change in (a) breast and (b) lung dose for each protocol, relative
to the reference protocol, for both tasks.

Table 4.3: Image quality metrics and dose estimates for each protocol at approxi-
mately equivalent ÂFE (≈ 0.96) for the 4-mm, 3.25 mg/mL task.

Protocol CNR Contrast [HU] Noise [HU] Breast dose [mGy] Lung dose [mGy]
120 kV (ref) 0.72 33.2 46.3 36.8 34.5
120 kV Partial 0.74 31.8 43.3 30.3 43.2
120 kV TCM 0.70 33.1 47.3 34.6 30.9
120 kV Shield 0.78 29.1 37.3 61.8 70.2
80 kV 0.71 94.8 132.6 7.2 6.7
80 kV Partial 0.75 93.9 125.5 5.4 8.0
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Figure 4.9: Example of a signal-present image for each protocol at equivalent ÂFE
(≈ 0.96). Window/level is 400/115 HU for the 120 kV images, and 400/280 HU for
the 80 kV images.

Table 4.4: Image quality metrics and dose estimates for each protocol at approxi-
mately equivalent ÂFE (≈ 0.96) for the 1-mm, 6.0 mg/mL task.

Protocol CNR Contrast [HU] Noise [HU] Breast dose [mGy] Lung dose [mGy]
120 kV (ref) 2.45 56.3 23.0 148.9 140.4
120 kV Partial 2.40 53.7 22.4 115.8 166.0
120 kV TCM 2.35 54.6 23.3 144.9 129.7
120 kV Shield 2.75 56.0 20.0 214.5 242.2
80 kV 2.57 122.9 47.9 52.0 48.7
80 kV Partial 2.56 116.0 45.4 41.1 60.8

the breast by 67.8%. Figure 4.8b indicates that the 120 kV partial and shielded

scans increased dose to the lung by 25.3% and 103%, respectively, while the TCM,

80 kV, and 80 kV partial scans reduced dose to the lung by 10.4%, 80.5%, and

76.7%, respectively. At this equivalent ÂFE of 0.96, the 80 kV and 80 kV partial

protocols yielded an approximate three-fold increase in both image noise (186% and
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171%, respectively) and contrast (186% and 183%, respectively), while CNR across

all protocols varied between a 1.4% decrease to an 8.6% increase relative to the

reference protocol. An example of a signal-present image for each protocol for the

4-mm, 3.25 mg/mL task at this equivalent ÂFE of approximately 0.96 is shown in

Figure 4.9.

Table 4.4 lists values of CNR, contrast, noise, breast dose, and lung dose for

each protocol at an equivalent ÂFE of 0.96 for the 1-mm, 6.0 mg/mL task. Similar

trends in these values were observed for the 1-mm task as for the 4-mm task,

including dose performance, as seen in Figure 4.8. However, the 80 kV and 80 kV

partial protocols demonstrated higher breast and lung dose savings for the 4-mm,

3.25 mg/mL task than for the 1-mm, 6.0 mg/mL task, and the shielded protocol

showed a higher increase in breast and lung dose for the 4-mm, 3.25 mg/mL task

than for the 1-mm, 6.0 mg/mL task, whereas the 120 kV partial and TCM protocols

demonstrated more comparable dose savings to the breast and lung across tasks.

4.4 Discussion

Overall, for the 4-mm, 3.25 mg/mL task, the 80 kV and 80 kV partial angle

protocols demonstrated the highest dose savings to the breast (80.5% and 85.3%,

respectively), as well as to the lung (80.5% and 85.3%, respectively). This is due in

large part to the approximate three-fold increase in contrast that resulted from the

lowered kV (Table 4.3). We also saw a nearly three-fold increase in image noise

(Table 4.3). In theory, equivalent ÂFE across protocols represents equivalent signal

detectability, and thus equivalent image quality for the specified (signal detection)

task. In practice, certain characteristics of the signal (e.g., size, shape, and contrast)

may be unknown a priori or may vary. In such cases, the increased noise that would

result when acquiring images with the 80 kV or 80 kV partial protocols at the dose
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required to achieve the reported breast dose savings could be deemed clinically

unacceptable, as it may hinder the observer’s ability to detect signals with

characteristics other than those of that presented in this study. Some dose savings

may still be realizable with reduced kV protocols even if the tube-current is

increased to achieve a more desirable noise level. For example, Figure 4.10 displays

an image produced by the 80 kV partial scan with the breast dose level indicated in

Table 4.3, as well as an image produced by the 80 kV partial scan with a breast

dose level five times greater, which would yield a 26.6% reduction in breast dose, a

21.2% increase in noise, and a 132% increase in CNR relative to the reference

protocol, and an ÂFE of 1.0.

Figure 4.10: (a) A 4-mm, 3.25 mg/mL signal-present image using the 80 kV partial
protocol with ÂFE ≈ 0.96 (the same image as shown in Figure 4.9). This image yields
85.3% dose savings to the breast and 171% increase in noise relative to the reference
protocol. (b) A 4-mm, 3.25 mg/mL signal-present image using the 80 kV partial
protocol with five times the dose of that shown in (a), resulting in a 26.6% decrease
in breast dose and 21.2% increase in noise, relative to the reference protocol, and an
ÂFE of 1.0. Both images are shown at a window/level of 400/280 HU.

The 120 kV partial protocol decreased breast dose by 17.6% for the 4-mm,

3.25 mg/mL task, but at the cost of 25.3% increased lung dose. The 120 kV partial

protocol resulted in small decreases in both the noise (6.6%) and the contrast

(4.3%) when maintaining equivalent ÂFE to the reference protocol (Table 4.3).
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Thus, the relative increase in performance versus breast dose was mostly

attributable to the lack of direct exposure of the breasts to radiation during the

partial scan protocol, for which the tube-current is turned off during the AP

projections. Similarly, the increased tube-current during PA projections caused the

decreased performance versus lung dose.

The 80 kV and 80 kV partial protocols showed greater reduction in breast

and lung dose for the 4-mm task than for the 1-mm task, while the shielded

protocol demonstrated increased breast and lung dose for the 4-mm task compared

to the 1-mm task. This suggests that estimated percent changes in dose are

task-dependent. We also note that the reported increase in breast and lung dose

produced by the shielded protocol for both tasks is contrary to the original

hypothesis that the breast shield may be used as a dose reduction method.

In general, the CNR curves indicate a similar relative ranking of protocol

performance as the corresponding ÂFE curves. At an ÂFE of 0.96, the shielded

protocol resulted in a 8.6% higher CNR than the 120 kV reference protocol for the

4-mm task (Table 4.3). If the CNR of the shielded protocol was adjusted to match

that of the reference protocol, the shielded protocol would increase breast and lung

dose by 42.2% and 72.4%, respectively, compared to the reference scan. In

comparison, when both protocols maintained equivalent ÂFE of 0.96, the shielded

protocol increased breast and lung dose by 67.8% and 103%, respectively. A similar

higher CNR for the shielded protocol relative to the reference protocol was observed

for the 1-mm task (12.3%). CNR can be considered an incomplete metric in the

sense that it does not account for noise correlations or image artifacts. For example,

two signal-present images in which all properties are the same except for differing

noise correlations can be shown to have the same CNR [98]. Unlike CNR, ÂFE is a

task-based metric, and both noise correlations and image artifacts affect its

performance. Although it is not obviously visually apparent from Figure 4.7 or
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Figure 4.9, it is possible that the streaking commonly associated with the use of

shields [33, 35–37] altered the noise correlations in such a way as to result in a 8.6%

(4-mm task) and 12.3% (1-mm task) increase in CNR at equivalent ÂFE compared

to the reference protocol. For all other cases, the CNR varied by less than 5.0%

across all protocols in images with an ÂFE of 0.96, and so ÂFE and CNR resulted in

similar estimates of dose performance (within 8.5% of one another) for these cases.

Although there are differences in signal detectability performance for the

4-mm and 1-mm signal-size tasks, as shown in Figure 4.4 and Figure 4.8, the plots

show similar trends. This indicates a robustness of ÂFE with regard to the

particular task being investigated.

There are several advantages in using a signal detectability metric for signals

at unknown locations compared with SNR calculations obtained for fixed signals

with various other model observers (ideal, Hotelling, channelized Hotelling,

non-prewhitening, etc.). The unknown-signal-location metrics compare the signal

realizations with the extreme occurrences of false signal-like features that randomly

occur in the background due to noise. On the other hand, the SNR metrics derived

for known signal locations compare signal realizations with the fluctuations of a

fixed signal-sized patch of image background, where extreme values are much less

likely to occur and hence much less likely to be confounded with a signal. Therefore,

the metrics derived for unknown signal locations are more sensitive to differences in

noise levels and/or noise patterns. In addition, unlike the fixed signal location

metrics, unknown-signal-location metrics take into account the clinically relevant

case of correctly identifying the signal location.

By using nonparametric methods to estimate AFE, we avoid the reliance on

any specific models of or assumptions about the data. Further, while the calculation

of ideal and quasi-ideal observer SNRs can require several hundreds or even

thousands of signal-present and signal-absent images, which can be difficult to



104

obtain experimentally, the nonparametric estimator, ÂFE, can be calculated with

fairly low statistical uncertainty using relatively few image samples (on the order of

tens).

It is important to note that the reported dose and image quality estimates,

and thus the reported percent changes in dose for each protocol, are specific to our

simulation geometry, patient size, and reconstruction algorithm. For example, the

noise increase quantified for the 80 kV protocols is expected to increase with patient

size, and so additional work is required to study task-based detectability over a

range of patient sizes. In addition, we used the same reconstruction algorithm for

each protocol, however, it is unlikely that this algorithm (e.g., reconstruction kernel)

was optimal across all protocols. Thus, additional work is required to study

task-based detectability over a range of patient sizes, as well as to determine how

the performance of such protocols may change when protocol-specific reconstruction

kernels are used.
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Chapter 5

Experimental Study of Optimal Energy

Weighting in Energy-resolved CT using a CZT

Detector

5.1 Introduction

In recent years, dedicated breast CT has received attention as a viable breast

imaging modality [19–25], due to its expected lower costs than MRI, higher

sensitivity than mammography, and lack of compression. One early study

demonstrated the potential for obtaining high SNR images using dedicated breast

CT at dose levels comparable to those used in mammography [19]. In addition,

recent advances in photon-counting detector technology have motivated

investigations [22–24] of the ability of energy-resolved CT to produce high-contrast

diagnostic images, which could subsequently lead to reduced breast dose.

As discussed in Chapter 2, conventional energy-integrating detectors and

photon-counting detectors use sub-optimal photon-weighting schemes. On the other

hand, the additional spectral information provided by energy-resolving CT

detectors, which are capable of sorting photons into discrete energy bins based on

specified energy thresholds, can be used to produce optimally energy-weighted

images. Previous work has suggested that optimal energy weighting provides

increased CNR for energy-resolved CT compared to photon-counting and
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conventional energy-integrating CT [22–24, 99, 100], which suggests the potential for

reduced dose during conventional and dedicated breast CT. Improvements in CNR

obtained from either optimal projection- or image-based weighting are expected to

vary depending on the number of energy bins as well as the energy bin thresholds.

This study experimentally investigated the effects of energy-bin selection on the

improvement in CNR of projection-based and image-based weighted images relative

to photon counting during energy-resolved CT. Further, we performed a preliminary

investigation of the effects of spectral tailing on the performance of image-based and

projection-based weighting, where spectral tailing is the non-ideal detector spectral

response that causes high energy photons to be detected in lower energy bins [101].

The purpose of this study was to quantify the potential for image quality

improvement and/or dose reduction for energy-resolved breast CT.

5.2 Materials and Methods

5.2.1 Overview

We acquired multi-energy CT data of a breast phantom containing a calcium

contrast agent using our bench top energy-resolving CT system with a cadmium zinc

telluride (CZT) detector. Images were obtained using both projection-based and

image-based weighting for six different empirically chosen energy-bin combinations,

and the CNR for each energy-bin combination for both weighting schemes was

compared to that of an image obtained using photon-counting detection.

5.2.2 Bench Top Energy-resolving CT System

Our bench top energy-resolving CT system (Figure 5.1a) consists of a CZT

detector (NEXIS, Nova R&D, Riverside, CA) with two pixel rows, each consisting of
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128, 1× 1 mm pixels. The detector pixel array is read out by the XENA chip (Nova

R&D, Riverside, CA), which can sort detected photons above user-selected energy

thresholds into a maximum of five bins per acquisition. The system also consists of

a microfocal x-ray source (Fein-Focus-100.50, YXLON Intl, Hamburg, Germany)

with a 3 micron effective focal spot. Cylindrical phantoms can be affixed to a

rotating stage positioned between the x-ray source and CZT detector.

Figure 5.1: Experimental setup. (a) Bench-top system and (b) breast phantom.

5.2.3 Breast Phantom

A phantom representing the breast was constructed from a 70-mm diameter

PMMA cylinder containing four, 19-mm-diameter cylindrical inserts composed of

the following materials: 1) PMMA (chosen because of its similar density of 1.19

g/mm2 to breast tissue) embedded with a 10 mm diameter calcium sulfate element,

2) low-density polyethylene (representing adipose tissue), 3) and 4) PMMA

(Figure 5.1b).
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5.2.4 System Calibration

The detector energy-bin threshold settings were calibrated by sweeping the

threshold levels while acquiring transmission measurements through channels

containing iodine solution and tungsten film. The k-edges of iodine and tungsten

were identified from the transmission measurements and used as reference threshold

settings.

Knowledge of the x-ray spectrum is required for calculating the optimal

projection-based weights and for investigating the spectral tailing effects. The x-ray

spectrum was estimated from transmission measurements through varying

thicknesses of acrylic and Teflon. The spectrum was estimated using measurements

of all counts above the lowest energy threshold (i.e, photon counting detection), and

was therefore unaffected by spectral tailing. An expectation maximization

algorithm [102] estimated the spectrum that maximized the likelihood of obtaining

the transmission measurements.

5.2.5 Acquiring Projections

Two hundred projections of the phantom were acquired in step-and-shoot

mode over 360◦ (1.8◦ per projection) at 100 kV and 4.4 mAs. Flat-field projections

were collected at 100 kV and 4.4 mAs. The source-to-detector distance was 72 cm,

and the source-to-isocenter distance was 40 cm. The raw photon count for each

projection was measured using eight detector energy threshold bins: 25, 30, 35, 40,

45, 50, 60, and 70 keV. The total photon count between any two energy thresholds

was obtained by calculating the difference in counts between those two threshold

bins. Six combinations of energy bins (Table 5.1) were constructed from the raw

data.
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Table 5.1: Energy-bin combinations investigated for projection-based and image-
based weighting

Energy-bin Cutoff (keV)
Bin Combination 1 2 3 4 5 6 7 8

A 25-30 30-35 35-40 40-45 45-50 50-60 60-70 >70

B 25-35 35-45 >45 - - - - -

C 25-35 35-50 >50 - - - - -

D 25-40 40-60 >60 - - - - -

E 25-30 30-35 35-40 40-50 50-60 60-70 >70 -

F 25-40 40-50 50-60 60-70 >70 - - -

5.2.6 Weighting and Reconstructing Images

For each energy-bin combination in Table 5.1, projections were flat-field

corrected and images were obtained using projection-based and image-based

weighting. In addition, we reconstructed a reference photon-counting image. All

images were reconstructed with filtered backprojection. Details on the

implementation of each weighting scheme are provided in the following subsections.

Photon-counting

A photon-counting detector weights each photon equally, independent of its

energy. Therefore, the raw projections obtained from the lowest energy threshold

(all photons with an energy above 25 keV) were log-normalized and reconstructed to

obtain a photon-counting image.

Projection-based Weighting

Projection-based optimal energy weighting linearly combines the energy-bin

data prior to log normalization, with the weights proportional to the expected

contrast-to-noise variance ratios of the binned projection data[23, 103]. The optimal
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energy-dependent weights for maximizing CNR between a projection through

background material and a projection through background material with an

embedded contrast element of length d are described in Equation 5.1 [104, 105]:

wPB(E) =
1− e−[µc(E)−µb(E)]d

1 + e−[µc(E)−µb(E)]d
(5.1)

where µb and µc are the energy-dependent linear attenuation coefficients of the

background and contrast element materials, respectively. For each bin combination,

we estimated the projection-based line integrals by weighting, combining, and then

log-normalizing the projection data according to Equation 5.2[23]:

˜̀
PB = − ln

(∑M
i=1(wPBi ·

∫
Ei
N0(E)e−

∫
µ(l,E)dldE)∑M

i=1wPBi ·
∫
Ei
N0(E)dE

)
(5.2)

where M is the number of energy bins, Ei is the energy range of the ith bin, N0(E)

is the number of incident photons at each energy, E, and µ(l, E) is the

energy-dependent linear attenuation coefficient of the object along ray path, l. The

weight of the ith bin, wPBi, was estimated using Equation 5.1 assuming the average

attenuation coefficients, µ̄i as described in Equation 5.3:

µ̄i =

∫
Ei

µ(E) · Φ(E)dE (5.3)

where Φ(E) is the estimated normalized spectrum, as described in Section 5.2.4.

Once the projection data were weighted, combined, and log-normalized, we used

filtered backprojection reconstruction to obtain a projection-based weighted image

for each energy-bin combination described in Table 5.1.
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Image-based Weighting

Whereas projection-based weighting performs a linear combination of the

energy-binned data prior to log normalization and reconstruction, image-based

weighting performs a linear combination of the reconstructed energy-bin images[23]:

Imagecombined =
M∑
i=1

wIBi · Imagei (5.4)

The optimal weights are derived to maximize the CNR in the final reconstructed

image. The optimal weight of the ith energy-bin image, wIBi, is proportional to the

contrast-to-noise-variance ratio (CNVR) of the binned images, and is calculated

using Equation 5.5 [23]:

wIBi =
Ci/σ

2
i∑M

n=1Cn/σ
2
n

(5.5)

where σi is the noise standard deviation and Ci the contrast in the ith energy-bin

image. Image-based weights may also be calculated prior to reconstructing the

energy-bin images [23]. Assuming the use of a linear reconstruction algorithm, such

as filtered back projection, we can obtain an image equivalent to that described by

Equation 5.4 by weighting and combining the energy-bin data after

log-normalization but before reconstruction. This method requires only a single

reconstruction of the combined energy-bin data, and the estimated image-based

weighted line integral is [23]:

˜̀
IB =

M∑
i=1

−wIBi ln

(∫
Ei
N0(E)e−

∫
µ(l,E)dldE∫

Ei
N0(E)dE

)
(5.6)

We performed image-based weighting using the first method – linearly

combining the reconstructed energy-bin images, as described in Equation 5.4. We
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estimated the contrast using the following equation:

Ci = |µ̄c,i − µ̄b,i| (5.7)

where µ̄c,i and µ̄b,i are the mean reconstructed attenuation coefficients within

regions-of-interest (ROIs) of the calcium contrast element and background material,

respectively, in the ith energy-bin image. Similarly, σi was estimated as the

standard deviation within a background ROI in the ith enegy-bin image. Two

reconstructed images for each energy bin were subtracted from one another to

obtain an estimate of the standard deviation in images containing only noise, thus

preventing ring artifacts, which are caused by discrepancies in the threshold

calibrations between adjacent detector pixels, from contributing to the noise

estimate. Similarly, the background and calcium ROIs were circular regions with

equivalent diameters and at an equivalent radius from the phantom center, thereby

assuring the same relative effects of ring artifacts on the means of both ROIs.

5.2.7 Image Quality Assessment

For each energy-bin combination, we measured the contrast, noise, and CNR

for the projection-based and image-based weighted images relative to the

photon-counting image. Contrast was estimated as the absolute value of the

difference between the means of a background ROI and an ROI within the calcium

element. Noise was estimated as the standard deviation of a background ROI. For

all cases, two reconstructions were performed and the images subtracted to obtain a

noise-only image and prevent ring artifacts from contributing to the noise estimate,

as described in Section 5.2.6. Similarly, contrast and background ROIs were chosen

carefully so that any ring artifacts would have the same effect on the means of both

ROIs, also described in Section 5.2.6.
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5.3 Results

Figure 5.2 shows the individual energy-binned images for bin combination E.

In general, the lower energy bins demonstrate higher contrast and noise, while the

higher energy bins demonstrate the opposite.

Table 5.2 lists the contrast, noise, and CNR for each energy-bin combination

for projection-based and image-based weighting relative to those of the

photon-counting image. The ratios of the CNR of the energy-weighted images over

the photon-counting image ranged between 0.85 (bin combinations A and D) and

1.01 (bin combination C) for the projection-based weighted images and between

0.91 (bin combination 2) and 1.43 (bin combination E) for the image-based

weighted images. In general, the projection-based weighted images showed relatively

higher contrast at the expense of higher noise, resulting in lower CNR compared to

the photon counting case for all but one of the six bin combinations. While the

image-based weighted images demonstrated relatively lower contrast, they also

produced lower noise, resulting in higher CNR than the photon counting case for five

of the six bin combinations. These results are visually evident in Figure 5.3, which

displays images reconstructed using projection-based and image-based weighting for

energy-bin combinations 3 and 5, along with the photon-counting image.

Table 5.2: Results for projection-based and image-based weighted images. Contrast,
noise, and CNR are reported relative to the photon-counting case.

Projection-Based Weighting Image-Based Weighting
Bin Combination Contrast Noise (stdev) CNR Bin Combination Contrast Noise (stdev) CNR

A 1.11 1.30 0.85 A 0.82 0.79 1.04

B 0.94 1.06 0.89 B 0.79 0.87 0.91

C 1.01 1.00 1.01 C 0.80 0.67 1.20

D 1.15 1.35 0.85 D 0.92 0.69 1.33

E 1.10 1.18 0.93 E 0.85 0.59 1.43

F 1.01 1.06 0.95 F 0.75 0.65 1.15
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Figure 5.3: Reconstructed energy-weighted image. Shown are images reconstructed
using (a) photon-counting; (b) projection-based weighting with bin combination C; (c)
projection-based weighting with bin combination E; (d) image-based weighting with
bin combination C; (e) image-based weighting with bin combination E. All images
have the same window (6000 HU) and level (1800 HU).

Figure 5.4a plots the CNR for each bin combination for projection-based and

image-based weighting relative to photon-counting. The differences in the shape of

the curves suggests that an optimal bin combination (in terms of CNR) depends on

the type of weighting used. Figure 5.4b plots the normalized photon-counting,

projection-based, and image-based weights for bin combination E. For this

particular bin combination, the projection-based weighting gives more weight to the

lower energy photons, whereas the image-based weighting gives more weight to the

higher energy photons.

In theory, both image-based and projection-based weighting should provide

CNR that is at least as good as photon-counting weighting. As seen in Table 5.2,

the CNR was equal to or lower than the photon-counting CNR for all

projection-based weighted images and for one image-based weighted image. This

discrepancy is likely caused by the fact that the theoretically calculated weights in
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Figure 5.4: CNR and normalized weights. (a) CNR for each bin combination of
projection-based and image-based weighting, relative to photon-counting. (b) Nor-
malized photon-counting, image-based, and projection-based weights for bin combi-
nation E.

the case of projection-based weighting may not reflect the measured CNVR in the

energy-bin projection data. To quantify the magnitude of spectral tailing in the

measured data, Figure 5.5 plots the number of photons expected at each energy bin

based on the estimated 100 kV spectrum (whose measurement was minimally

affected by spectral tailing, as described in Section 5.2.4) and the number of

photons measured in each bin of a flat-field projection. The lowest two energy bins

detected nearly 4.5 and 2.5 times the number of expected photons, respectively,

while the highest three energy bins detected between 0.5 and 0.83 the number of

expected photons, indicating the presence of spectral tailing. Due to the presence of

more higher energy photons, spectral tailing reduces the contrast in the lower

energy bins. On the other hand, the increase in the total number of photons in the

bin leads to a reduction in noise. The inverse is true for the higher energy bins.
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5.4 Discussion

Previous work suggested similar CNR performance for optimal projection-

and image-based weights [23, 24]. Furthermore, previous work also predicted that

optimal weighting improves contrast compared to photon-counting weighting, due to

the increased weighting of the low-energy bins [22–24, 99]. In our preliminary

experimental results, projection-based weighting provided reduced CNR compared

to photon-counting, and the images resulting from image-based weighting had

increased CNR but reduced contrast compared to photon counting. We believe

these discrepancies are due to the non-ideal spectral response in the CZT detector,

which leads to spectral tailing effects, i.e., higher energy photons being counted in

lower energy bins (Figure 5.5). Results suggest that these spectral tailing effects

generally reduce the CNR in images reconstructed with projection-based weighting.

On the other hand, image-based weighting was able to produce improved CNR

despite the spectral tailing effects. This is likely due to the fact that the

projection-based weights estimated in this work were based on the theoretical signal

properties, while the image-based weights were estimated from the measured image
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projection for each energy bin and the number of expected photons in each energy
bin for the estimated 100 kV spectrum
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data (i.e., noise and contrast estimated directly from the binned images). Thus, the

image-based weights may be adjusted to at least partially account for such system

non-idealities. The results of the projection-based weighting could be improved by

calculating the weights based on estimates of contrast and noise obtained directly

from the projection data, although this measurement may be challenging in

practice. The reduced ring artifacts in the image-based weighted images are likely

caused by the increased weighting of high-energy bins, due to spectral tailing,

compared to the projection-based weights. Work is in progress to develop methods

to correct the spectral tailing response [24, 101, 106–109] to provide further CNR

improvements for energy weighting with energy-resolving detectors.

Overall, the results indicate that image-based weighting during

energy-resolved CT improves CNR and thus shows potential for reducing breast

dose during procedures such as dedicated breast CT. Further studies are required to

investigate the performance of each weighting scheme when combined with spectral

tailing correction.
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Chapter 6

Conclusions and Future Directions

The two overall goals of this work were (1) to quantify the effectiveness of

techniques intended to reduce dose to the breast during CTCA scans with respect

to a task-based image quality metric, and (2) to evaluate the effectiveness of

optimal energy weighting in improving CNR, and thus the potential for reducing

breast dose, during energy-resolved dedicated breast CT.

With respect to the first goal, we used the task-based signal-detectability

metric, ÂFE, to compare the performance of two signal-detection tasks for five dose

reduction protocols over a range of breast dose levels. Our results indicated that for

both the small-diameter/high-contrast and large-diameter/medium-contrast tasks,

the 80 kV and 80 kV partial protocols demonstrated the greatest reduction to

breast dose. However, in clinical applications, due to the more complex nature of

the tasks, the subsequent increase in image noise may be considered too large. In

these situations, tube output for these protocols can be adjusted to achieve a more

desirable noise level at a lesser reduction in dose.

The “quality” of an image used for diagnostic purposes should be assessed in

the context of a specified diagnostic task. Because task-based image quality is

fundamentally linked to dose, it should not be surprising that dose reduction

estimates for a given acquisition protocol vary with the task. Indeed, we have shown

that relatively greater dose reduction is achievable for a task involving detection of

large-diameter/medium-contras signals compared to small-diameter/high-contrast
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signals. An interesting follow-up study would be to investigate how dose reduction

estimates vary as a function of both signal size and signal contrast (and perhaps

even signal shape). In addition, it would be interesting to investigate how well ÂFE

correlates to human observers.

The dose database we developed to facilitate our breast and lung dose

estimates can be used for future dose and image quality studies and is already

publicly available online. While the dose tables are currently patient- and

geometry-specific, similar procedures to those outlined in Chapter 3 can be used to

expand the database to include male and female phantoms of various sizes and ages,

as well as to include dose tables for cross-sectional slabs to facilitate organ-dose or

effective-dose estimates for arbitrary field-of-views and trajectory types.

With respect to our second goal, we found that the non-ideal spectral

response of our detector reduced the CNR for the projection-based weighted images,

while image-based weighting was able to provide improved CNR for five out of the

six investigated bin combinations, despite this non-ideal response. This indicates

the potential for image-based weighting to reduce breast dose during dedicated

breast CT, even in the presence of some non-ideal effects. Greater improvements in

the CNR for both image-based and projection-based weighting are expected in

conjunction with methods to reduce spectral tailing. In addition to correcting for

non-ideal effects of the detector, further studies can be performed investigating

optimizing the x-ray spectrum and corresponding energy bin thresholds with respect

to CNR.

One may wonder why after spending a considerable amount of time stressing

the importance of using task-based metrics when assessing image quality, we

seemingly ignore our own advice through our use of CNR during the experimental

portion of this work. While it may be fairly simple on a commercial scanner to

experimentally collect the relatively few image samples required to estimate a
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metric such as ÂFE, it is simply not yet feasible to do so for each bin combination

using our bench-top system. Nonetheless, both contrast and noise play a crucial role

in task-based image quality, and thus CNR was used in this preliminary study to

compare performance of optimal and sub-optimal energy-weighting methods. Future

work may consider the use of simulations, or, if possible, experimentally acquiring

larger data sets, to investigate task-based image quality for optimal

energy-weighting methods used during energy-resolved CT.

Overall, we demonstrated the potential for 80 kV, 80 kV partial, 120 kV

partial, and 120 kV tube-current modulated protocols to reduce dose to the breast

during CTCA, and we further demonstrated that the magnitude of the dose

reduction is task-dependent. Finally, we have demonstrated the ability of optimal

image-based weighting to improve CNR compared to photon-counting during

energy-resolved dedicated breast CT, thereby demonstrating its potential for

reducing breast dose.
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Appendix A

Code for Generating Scan Image

The following MATLAB code generates and writes to a file the auxiliary scan

image required for calculating the scan-scores that are then used for estimating ÂFE.

% Author : Franco Rupcich

% Date : 18 December 2012

% Filename : c r ea t e s can image s .m

% Desc r ip t i on : c r e a t e s the a u x i l i a r y scan images used in

c a l c u l a t i n g

% A EFROC

%%% Test s i g n a l l o c a t i o n s 6

% s i g n a l l o c = { [ 765 341 ] , [ 728 441 ] , [ 798 441 ] , [ 830 381 ] ,

[ 690 381 ]} f o r

% args :

% basename image no i sy s i gna l p r e s en t

% basename image no i sy s i gna l absent
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% nrows −−> number o f rows in image

% nco l s −−> number o f c o l s in image

% nimgs −−> number o f images w/ s i g n a l ( same as f o r w/o

s i gna l , so j u s t use one arg )

% n i t r −−> number o f i t e r a t i o n s per image (how many times

should we s e l e c t an ROI from each image ?)

% s i g n a l l o c −−> c en te r coord o f each s i g n a l in e n t i r e image .

This should be a c e l l array , where each c e l l i s [ x 0 s i g

y 0 s i g ] ;

% s igna l d iam −−> diameter o f each s i g n a l [ cm ] . We assume a l l

s i g n a l s are equal diameter ( and con t ra s t f o r that matter )

% vararg in (1 ) : r o i s i z e −−> d e f a u l t i s 10 ∗ s i gna l d iam

%%% DeBuG − comment out func t i on and use these to debug

% nr ow s f u l l im g = 1400 ;

% n c o l s f u l l i m g = 1000 ;

% img f i l ename = ’˜/ iq / roc / t e s t s i g n a l l o c a t i o n s / s l i c e s /

t e s t s i g n a l l o c a t i o n s 6 . 0 . s l i c e ’ ;

% scan img f i l ename = ’˜/ iq / roc / scan / t e s t s i g n a l l o c a t i o n s 6 .

s i g n a l p r e s e n t . 0 . scan ’ ;

% s i g n a l r a d i u s = 0 . 0 5 ; %[cm]

% s i g n a l s e a r c h b b o x =[668.745967741936 321.266129032258

208.51814516129 159 .475806451613 ] ; % ˜21sqcm r e c t a n g l e

i n s i d e heart

% p i x r e s = 0 . 0 2 5 ;
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func t i on z = crea t e s can image ( img f i l ename ,

scan img f i l ename , nrows fu l l img , n c o l s f u l l i m g ,

s i g n a l r a d i u s , s i gna l s ea r ch bbox , p i x r e s )

% Check nargs

i f ( narg in ˜= 7)

f p r i n t f (2 , ’\ nError : At l e a s t 7 arguments r equ i r ed \n ’ ) ;

f p r i n t f ( 2 , ’ 1 ) img f i l ename −−> f i l ename o f image to be

scanned\n ’ ) ;

f p r i n t f ( 2 , ’ 2 ) s can img f i l ename −−> name o f a u x i l i a r y

scan image\n ’ ) ;

f p r i n t f ( 2 , ’ 3 ) n r ows fu l l i mg −−> number o f rows in image\

n ’ ) ;

f p r i n t f ( 2 , ’ 4 ) n c o l s f u l l i m g −−> number o f c o l s in image\

n ’ ) ;

f p r i n t f ( 2 , ’ 5 ) s i g n a l r a d i u s −−> rad iu s o f s i g n a l [ cm]\n ’ )

;

f p r i n t f ( 2 , ’ 6 ) s i g n a l s e a r c h b b o x −−> takes the form [ xmin

ymin width he ight ] . Use imrect \n ’ ) ;

f p r i n t f ( 2 , ’ 7 ) p i x r e s −−> p i x e l r e s o l u t i o n o f image [ cm]\n

\n ’ ) ;

r e turn

end
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%%% Takes the form [XMIN YMIN WIDTH HEIGHT]

xmin = round ( s i g n a l s e a r c h b b o x (1 ) ) ;

ymin = round ( s i g n a l s e a r c h b b o x (2 ) ) ;

xmax = xmin + round ( s i g n a l s e a r c h b b o x (3 ) ) ;

ymax = ymin + round ( s i g n a l s e a r c h b b o x (4 ) ) ;

n rows ro i = length ( ymin : ymax) ;

n c o l s r o i = length ( xmin : xmax) ;

n p i x r o i = nrows ro i ∗ n c o l s r o i ;

%%% NOTE: S igna l template rad iu s should be s l i g h t l y l a r g e r

than the

%%% s i g n a l rad iu s . This i s Rt in Popescu & Myers . We’ l l go

with 1 p i x e l

%%% s i z e l a r g e r ( e . g . , 0 .025cm)

temp la t e rad iu s = ( s i g n a l r a d i u s + p i x r e s ) / p i x r e s ; % [ p i x e l s ]

% a u x i l i a r y scan image

z = ze ro s ( nrows ro i , n c o l s r o i ) ;

% read in img

img = loadReconSliceMu ( img f i l ename , nrows fu l l img ,

n c o l s f u l l i m g ) ; % use mu va lue s in s t ead o f HU, s i n c e

we want only p o s i t i v e va lue s

%img = loadReconSliceHU ( img f i l ename , nrows fu l l img ,

n c o l s f u l l i m g ) ; % try us ing HU va lues

img ro i = img ( ymin : ymax , xmin : xmax) ;
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% be c a r e f u l to use c o l s f i r s t and rows second f o r meshgrid !

[ xx yy ] = meshgrid ( 1 : n c o l s r o i , 1 : n rows ro i ) ;

%%% scanning a lgor i thm

f o r y0 = 1 : nrows ro i

f o r x0 = 1 : n c o l s r o i

C = s q r t ( ( xx − x0 ) . ˆ2 + ( yy − y0 ) . ˆ 2 ) <=

templa t e rad iu s ;

z ( y0 , x0 ) = sum( img ro i (C) ) ;

end

end

%%% wr i t e scan−image to binary f i l e

wr i t eF loa t ( z , s can img f i l ename ) ;
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Appendix B

Code for Generating Scan Scores

The following MATLAB code reads in scan images created using

createscanimage.m and outputs a signal-present scan-score file, a signal-absent

scan-score file, and a file containing other relevant information. These files are then

read in by calcAefroc.c and used to calculate ÂFE.

% Author : Franco Rupcich

% Date : 19 December 2012

% Filename : r e a d s c a n i m a g e s w r i t e s c a n s c o r e s .m

% Desc r ip t i on : reads in a s e t o f scan images ( f o r s i g n a l

pre sent and s i g n a l

% absent images ) and w r i t e s the cor re spond ing s c o r e s .

%%% [ x coord y coord ]

%%% Coords w/ r / t e n t i r e image : s i g n a l l o c = { [ 765 341 ] , [ 728

441 ] , [ 798 441 ] , [ 830 381 ] , [ 690 381 ]}

%%% Coords w/ r / t ROI above : s i g n a l l o c = { [ 97 2 1 ] , [ 162

6 1 ] , [ 129 121 ] , [ 60 121 ] , [ 22 61 ]}
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%%% output

%%% X −−> scan s c o r e s o f t rue s i g n a l s pre sent

%%% Y −−> scan s c o r e s o f f a l s e p o s i t i v e s

%%% I −−> number o f t rue s i g n a l s pre sent

%%% J −−> number o f f a l s e p o s i t i v e s

%%%%%%%%%%%%%%%%%%%%%%% DeBuG %%%%%%%%%%%%%%%%%%%%%

% scan image s i gna l p r e s ent basename = ’˜/ iq / roc / scan /

e l l a ches t hb contras t5x4mm3 .25 mgmL 120kvp 1 . 5 e9photons ’ ;

% scan image s igna l absent basename = ’˜/ iq / roc / scan /

e l l a c h e s t h b n o c o n t r a s t 1 2 0 k v p 1 . 5 e9photons ’ ;

%

% nimgs = 1 ;

% nrows =160;

% nco l s =210;

% p i x r e s = 0 . 0 2 5 ; % [ cm]

% s i g n a l r a d i u s = 0 . 2 ; %[cm]

% s i g n a l l o c = { [ 97 2 1 ] , [ 162 6 1 ] , [ 129 121 ] , [ 60 121 ] , [ 22

6 1 ] } ;

% z0 = 5 6 . 5 3 ;

%

% s e a r c h a r e a = 21 ;

% %%% z0 va lue s f o r 1mm s i g n a l

% % z0 = 6.60 −−> 15 f a l s e p o s i t i v e s f o r 1 . 5 e9 photons
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% % z0 = 6.60 −−> 127 f a l s e p o s i t i v e s f o r 7 . 0 e8 photons

% % z0 = 6.67 −−> 11 f a l s e p o s i t i v e s f o r 7 . 0 e8 photons

% % z0 = 6 . 6 3 ; −−> 55 f a l s e p o s i t i v e s f o r 7 . 0 e8 ( use t h i s per

Lucret iu )

%%% z0 va lue s f o r 4mm s i g n a l

% % z0 = 5 6 . 6 3 ; 34 f a l s e p o s i t i v e s f o r 1 . 0 e9 photons

% % z0 = 5 6 . 5 3 ; 50 f a l s e p o s i t i v e s f o r 1 . 6 e9 photons

%%%%%%%%%% END DEBUG

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on r e a d s c a n i m a g e s w r i t e s c a n s c o r e s (

s can image s igna l pre sent basename ,

scan image s igna l absent basename , output base fn , nimgs ,

nrows , nco l s , p ix re s , s i g n a l r a d i u s , s i g n a l l o c , z0 ,

s e a r c h a r e a )

% Check nargs

i f ( narg in ˜= 11)

f p r i n t f (2 , ’\ nError : 11 input args r equ i r ed \n ’ ) ;

f p r i n t f ( 2 , ’ 1 ) s can image s i gna l p r e s ent basename −−> base

f i l ename o f s i gna l−present scan image ( e . g . ,

e l l a c o n t r a s t 1 2 0 k v p ) . The func t i on w i l l au tomat i ca l l y

append . scan\n ’ ) ;
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f p r i n t f ( 2 , ’ 2 ) s can image s igna l absent basename −−> base

f i l ename o f s i gna l−absent scan image ( e . g . ,

e l l a n o c o n t r a s t 1 2 0 k v p ) . The func t i on w i l l

au tomat i ca l l y append . scan\n ’ ) ;

f p r i n t f ( 2 , ’ 3 ) output base fn −−> base f i l ename o f f i l e s

that w i l l conta in scan s c o r e s \n ’ ) ;

f p r i n t f ( 2 , ’ 4 ) nimgs −−> number o f scan images\n ’ ) ;

f p r i n t f ( 2 , ’ 5 ) nrows −−> nrows in image\n ’ ) ;

f p r i n t f ( 2 , ’ 6 ) nco l s −−> nco l s in image\n ’ ) ;

f p r i n t f ( 2 , ’ 7 ) p i x r e s −−> p i x e l r e s o l u t i o n [ cm]\n ’ ) ;

f p r i n t f ( 2 , ’ 8 ) s i g n a l r a d i u s −−> rad iu s o f s i g n a l [ cm ] \n

’ ) ;

f p r i n t f ( 2 , ’ 9 ) s i g n a l l o c −−>c en te r coords o f each s i g n a l

in ROI . Should be c e l l array , where each c e l l i s [

x 0 s i g y 0 s i g ] . Use loadReconS l i ce ( ) to f i n d

coo rd ina t e s .\n ’ ) ;

f p r i n t f ( 2 , ’ 1 0 ) z0 −−> s topping l i m i t f o r r e co rd ing l o c a l

maxima\n ’ ) ;

f p r i n t f ( 2 , ’ 1 1 ) s e a r c h a r e a −−> area o f search r eg i on o f

one image [ cmˆ2 ] \n ’ ) ;

r e turn

end
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%%% i n i t i a l i z e scan−s co r e v e c t o r s . Their s i z e w i l l change

l a t e r

X = −99999∗ones ( nimgs∗ l ength ( s i g n a l l o c ) , 1 ) ;

Y = −99999∗ones (1 e6 , 1 ) ;

%%% index in to X and Y vec to r s

x ind = 1 ;

y ind = 1 ;

%%% mask rad iu s i s twice that o f s i g n a l

mask rad ius p ix = ( s i g n a l r a d i u s ∗ 2) / p i x r e s ; % [ p i x e l s ]

%%% mask rad iu s i s a few p i x e l s l a r g e r than s i g n a l rad iu s

%mask rad ius p ix = s i g n a l r a d i u s / p i x r e s + 2 ; % [ p i x e l s ]

% be c a r e f u l to use c o l s f i r s t and rows second f o r meshgrid !

[ xx yy ] = meshgrid ( 1 : nco l s , 1 : nrows ) ;

f o r i = 0 : ( nimgs − 1)

%%%%%%%%%%%%%%%%% s igna l−present scan image

%%%%%%%%%%%%%%%%%%%%%%%%%%

fn = s t r c a t ( s can image s igna l pre sent basename , ’ . ’ ,

num2str ( i ) , ’ . scan ’ ) ;
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z = readFloat ( fn , nrows , n co l s ) ;

%%%%% f o r s i g n a l pre sent images , j u s t s co r e the t rue

s i g n a l s , don ’ t search

f o r j = 1 : l ength ( s i g n a l l o c )

x s i g = s i g n a l l o c { j } (1) ;

y s i g = s i g n a l l o c { j } (2) ;

X( x ind ) = z ( y s i g , x s i g ) ;

x ind = x ind + 1 ;

% %%% DeBuG − c r e a t e mask over s i g n a l s %%%

% C = s q r t ( ( xx − x s i g ) . ˆ2 + ( yy − y s i g ) . ˆ 2 ) <=

mask rad ius p ix ;

% z (C) = 0 ;

% %%% end debug %%%

end

% %%% debug %%%

% f i g u r e ; imagesc ( z ) ; a x i s image ;

% %%% end debug %%%

%%%% The commented out code s ea r che s f o r the maxima

% %%% Find only the f i r s t max

% [ y loca l max , x loca l max ] = f i n d ( z==max( z ( : ) ) , 1 , ’ f i r s t

’ ) ;
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% loca l max = z ( y loca l max , x loca l max ) ;

%

% %%% keep going whi l e max i s g r e a t e r than z0

% whi le ( loca l max > z0 )

%

% % check i f t h i s i s a t rue s i g n a l l o c a t i o n

% f o r j = 1 : l ength ( s i g n a l l o c )

%

% x s i g = s i g n a l l o c { j } (1) ;

% y s i g = s i g n a l l o c { j } (2) ;

% r = s q r t ( ( x s i g −x loca l max ) ˆ2 + ( y s i g −

y loca l max ) ˆ2) ; % d i s t ance between true s i g n a l and

l o ca t ed s i g n a l [ p i x e l s ]

%

% % i f d i s t anc e between true s i g and l o c a t e s i g

i s with in one

% % s i g n a l rad iu s o f the s i g n a l center , than

count i t as a

% % c o r r e c t l y l o ca t ed s i g n a l and add the scan−

s co r e to X vec to r

% i f r <= s i g n a l r a d i u s p i x

% X( x ind ) = loca l max ;

% x ind = x ind +1;

% break ;

% e l s e

% % do nothing − we don ’ t care about the

f a l s e p o s i t i v e s from
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% % s igna l−present images .

% end

%

% end

%

%

% %%% mask p i x e l s with in double the s i g n a l rad iu s

around t h i s po int

% C = s q r t ( ( xx − x loca l max ) . ˆ2 + ( yy − y loca l max

) . ˆ 2 ) <= mask rad ius p ix ;

% z (C) = 0 ;

%

% %%% f i n d next maximum

% [ y loca l max , x loca l max ] = f i n d ( z==max( z ( : ) ) , 1 , ’

f i r s t ’ ) ;

% loca l max = z ( y loca l max , x loca l max ) ;

%

% end

%

% %%% debug %%%

% f i g u r e ; imagesc ( z ) ; a x i s image ;

% %%% end debug %%%

%%%%%%%%%%%%%%%%%% s igna l−absent scan image

%%%%%%%%%%%%%%%%%%%%%%%%%%
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fn = s t r c a t ( scan image s igna l absent basename , ’ . ’ , num2str

( i ) , ’ . scan ’ ) ;

z = readFloat ( fn , nrows , n co l s ) ;

% %%% debug %%%

% f i g u r e ; imagesc ( z ) ; a x i s image ;

% %%% end debug %%%

%%% Find only the f i r s t max

[ y loca l max , x loca l max ] = f i n d ( z==max( z ( : ) ) , 1 , ’ f i r s t ’ )

;

loca l max = z ( y loca l max , x loca l max ) ;

%%% keep going whi l e max i s g r e a t e r than z0

whi le ( loca l max > z0 )

Y( y ind ) = loca l max ;

y ind = y ind +1;

%%% mask p i x e l s with in double the s i g n a l rad iu s around

t h i s po int

C = s q r t ( ( xx − x loca l max ) . ˆ2 + ( yy − y loca l max ) . ˆ 2 )

<= mask rad ius p ix ;

z (C) = 0 ;

%%% f i n d next maximum
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[ y loca l max , x loca l max ] = f i n d ( z==max( z ( : ) ) , 1 , ’ f i r s t ’ )

;

loca l max = z ( y loca l max , x loca l max ) ;

end

end

% %%% debug %%%

% f i g u r e ; imagesc ( z ) ; a x i s image ;

% %%% end debug %%%

%%% reshape X and Y vec to r s us ing X = X(X˜=−99999) ;

X = X(X˜=−99999) ;

Y = Y(Y˜=−99999) ;

I = length (X) ;

J = length (Y) ;

omega t = s e a r c h a r e a ∗ nimgs ;

%%% wr i t e INJO f i l e ( I , nimgs , J , and omega t )

fn = s t r c a t ( output base fn , ’ . in jo ’ ) ;

f i d = fopen ( fn , ’w’ ) ;

f p r i n t f ( f i d , ’%d\ t%d\ t%d\ t%f ’ , I , nimgs , J , omega t ) ;

f c l o s e ( f i d ) ;

%%% wr i t e scan s co r e f i l e s ( . s s c r == scan s co r e )
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fn = s t r c a t ( output base fn , ’ . s i g n a l p r e s e n t . s s c r ’ ) ;

f i d = fopen ( fn , ’w’ ) ;

f o r i = 1 : I

f p r i n t f ( f i d , ’%.6 f \n ’ ,X( i ) ) ;

end

f c l o s e ( f i d ) ;

fn = s t r c a t ( output base fn , ’ . s i g n a l a b s e n t . s s c r ’ ) ;

f i d = fopen ( fn , ’w’ ) ;

f o r j = 1 : J

f p r i n t f ( f i d , ’%.6 f \n ’ ,Y( j ) ) ;

end

f c l o s e ( f i d ) ;
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Appendix C

Code for Calculating ÂFE

The following C code calculates the AUC EFROC estimator, ÂFE and its

variance, based on the signal-present and signal-absent scan-score files output by

readscanimageswritescanscores.m.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Author : Franco Rupcich

∗ Filename : c a l c A e f r o c . c

∗ Last Modif ied : 12/19/12

∗ Desc r ip t i on : c a l c u l a t e s e s t imate f o r A EFROC and i t s

var i ance . See Popescu paper ” Nonparametric ROC and LROC

a n a l y s i s ”

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ input args ∗/

// 1) s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e −−> name o f f i l e

conta in ing Xi ( scan s c o r e s f o r t rue p o s i t i v i e s )
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// 2) s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e −−> name o f f i l e

conta in ing Yj ( scan s c o r e s f o r f a l s e p o s i t i v e s )

// 3) i n j o f i l e n a m e −−> name o f f i l e conta in ing the v a r i a b l e s

I ( t o t a l # true s i g n a l s pre sent ) , J

// ( t o t a l # f a l s e p o s i t i v e s ) , n (# s i g n a l absent images ) ,

and O ( t o t a l area scanned f o r a s i n g l e image )

// 4) out f i l ename −−> name o f output f i l e conta in ing

es t imate f o r A EFROC and i t s var i ance

/∗ Standard i n c l u d e s ∗/

#inc lude <s t d i o . h>

#inc lude <s t d l i b . h>

#inc lude <s t r i n g . h>

#inc lude <math . h>

/∗ Function Prototypes ∗/

i n t readINJOFile (FILE ∗ , i n t ∗ , i n t ∗ , i n t ∗ , f l o a t ∗) ;

i n t r eadScanScoreF i l e (FILE ∗ , f l o a t ∗ , i n t ) ;

f l o a t h e a v i s i d e ( f l o a t ) ;

f l o a t ca l cS11 ( int , f l o a t , int , f l o a t ∗ , f l o a t ∗ , f l o a t ) ;

f l o a t ca l cS12 ( int , f l o a t , int , f l o a t ∗ , f l o a t ∗ , f l o a t ) ;



151

f l o a t ca l cS21 ( int , f l o a t , int , f l o a t ∗ , f l o a t ∗ , f l o a t , f l o a t

) ;

f l o a t calcA ( int , f l o a t , int , f l o a t ∗ , f l o a t ∗) ;

/∗∗

∗ Main Function

∗∗/

i n t main ( i n t argc , char ∗∗ argv )

{

char ∗ s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e ; /∗ name o f

f i l e conta in ing s i gna l−present scan score s , Xi

∗/

char ∗ s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e ; /∗ name o f

f i l e conta in ing s i gna l−absent scan sco re s , Yj

∗/

char ∗ i n j o f i l e n a m e ; /∗ name o f

f i l e conta in ing I ,N, J , and Omega total

∗/

char ∗ out f i l ename ; /∗ name o f

output f i l e conta in ing A EFROC and standard dev i a t i on

∗/

f l o a t S11 , S12 , S21 ; /∗ v a r i a b l e s used to

c a l c u l a t e e r r o r bar ( s ee Popescu paper ) ∗/
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f l o a t c1 , c2 , c3 ; /∗ v a r i a b l e s used to

c a l c u l a t e e r r o r bar ( s ee Popescu paper ) ∗/

f l o a t ebar ; /∗ e r r o r bar ( one standard

dev i a t i on ) ∗/

f l o a t A; /∗ area under EFROC curve

∗/

/∗ p o i n t e r s to I , N, J , and Omega ∗/

i n t ∗ p t r I = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ) ; /∗

po in t e r to t o t a l number t rue s i g n a l s pre sent ∗/

i n t ∗ptrn = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ) ; /∗

po in t e r to number o f s i g n a l absent images ∗/

i n t ∗ptrJ = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ) ; /∗

po in t e r to number o f f a l s e p o s i t i v e s ∗/

f l o a t ∗ptrO = ( f l o a t ∗) mal loc ( s i z e o f ( f l o a t ) ) ; /∗

po in t e r to t o t a l scanned area ∗/

f l o a t omega tota l ; /∗ t o t a l area scanned ( f o r

a l l images combined ) [ cmˆ2 ] ∗/

f l o a t omega ref ; /∗ r e f e r e n c e area scanned (

f o r a s i n g l e image ) , used to s c a l e EFROC to d e s i r e d

search area [ cmˆ2 ] ∗/

i n t I , n , J ;

f l o a t N; /∗ N = omega t/ omega ref ∗/

i n t RC; /∗ Return Code ∗/
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/∗ Read args ∗/

i f ( argc != 6)

{

f p r i n t f ( s tde r r , ”\nERROR in %s : 5 args r equ i r ed ! ” , argv

[ 0 ] ) ;

f p r i n t f ( s tde r r , ”\ n1 )

s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e −−> name o f

f i l e conta in ing Xi ”) ;

f p r i n t f ( s tde r r , ”\ n2 )

s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e −−> name o f

f i l e conta in ing Yj ”) ;

f p r i n t f ( s tde r r , ”\ n3 ) i n j o f i l e n a m e −−> name o f f i l e

conta in ing I ,N, J , and omega tota l ”) ;

f p r i n t f ( s tde r r , ”\ n4 ) out f i l ename −−> name o f output

f i l e conta in ing A EFROC and standard dev i a t i on ”) ;

f p r i n t f ( s tde r r , ”\ n5 ) omega ref −−> r e f e r e n c e area (

f o r a s i n g l e image ) [ cm ˆ 2 ] . NOTE: To s c a l e A EFROC

to A LROC r e s u l t s , use omega ref = twice the area

o f an ROI from the LROC study ( e . g . , i f ROI i s

1 .5625 cmˆ2 , use 3 .125 cmˆ2)\n\n”) ;

r e turn 1 ;

}

e l s e
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{

s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e = argv [ 1 ] ;

s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e = argv [ 2 ] ;

i n j o f i l e n a m e = argv [ 3 ] ;

ou t f i l ename = argv [ 4 ] ;

omega ref = a t o f ( argv

[ 5 ] ) ;

}

// Read in I ,N, J ,O

FILE ∗ f p i n j o = fopen ( i n j o f i l e n a m e , ” r ”) ;

RC = readINJOFile ( f p i n j o , ptr I , ptrn , ptrJ , ptrO ) ;

I = ∗ p t r I ; f r e e ( p t r I ) ;

n = ∗ptrn ; f r e e ( ptrn ) ;

J = ∗ptrJ ; f r e e ( ptrJ ) ;

omega tota l = ∗ptrO ; f r e e ( ptrO ) ;

// f p r i n t f ( stdout ,”\n\n I : %d , N: %d , J : %d , O: %f \n” , I ,N,

J , omega tota l ) ;

i f ( RC != 0)

{

f p r i n t f ( s tde r r , ”\n\nERROR read ing from %s\n” ,

i n j o f i l e n a m e ) ;
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re turn 2 ;

}

f c l o s e ( f p i n j o ) ;

N = omega tota l / omega ref ;

// Read in x and y

f l o a t ∗x = ( f l o a t ∗) mal loc ( I ∗ s i z e o f ( f l o a t ) ) ;

f l o a t ∗y = ( f l o a t ∗) mal loc ( J ∗ s i z e o f ( f l o a t ) ) ;

FILE ∗ f p x s s = fopen ( s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e

, ” r ”) ;

RC = readScanScoreF i l e ( fp x s s , x , I ) ;

i f ( RC != 0)

{

f p r i n t f ( s tde r r , ”\n\nERROR read ing from %s\n” ,

s i g n a l p r e s e n t s c a n s c o r e s f i l e n a m e ) ;

r e turn 3 ;

}

f c l o s e ( f p x s s ) ;



156

FILE ∗ f p y s s = fopen ( s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e , ”

r ”) ;

RC = readScanScoreF i l e ( fp y s s , y , J ) ;

i f ( RC != 0)

{

f p r i n t f ( s tde r r , ”\n\nERROR read ing from %s\n” ,

s i g n a l a b s e n t s c a n s c o r e s f i l e n a m e ) ;

r e turn 3 ;

}

f c l o s e ( f p y s s ) ;

/∗

// DeBuG − pr in t va lue s

i n t d i rka ;

f o r ( d i rka =0; dirka<J ; d i rka++)

{

f p r i n t f ( stdout ,”\ ny[%d ] : %f ” , dirka , y [ d i rka ] ) ;

}

∗/

// c a l c u l a t e c terms from Popescu paper

c1 = N ∗ ( 1 . 0 − exp (−1.0/N) ) ;

c2 = (N/2 . 0 ) ∗ ( 1 . 0 − exp (−2.0/N) ) ;

c3 = N ∗ ( exp (−1.0/N) − exp (−2.0/N) ) ;
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// c a l c u l a t e S terms from Popescu paper

S11 = ca lcS11 ( I , N, J , x , y , c1 ) ;

S12 = ca lcS12 ( I , N, J , x , y , c2 ) ;

S21 = ca lcS21 ( I , N, J , x , y , c1 , c3 ) ;

// c a l c u l a t e A

A = calcA ( I , N, J , x , y ) ;

// c a l c u l a t e e r r o r bar ( standar dev i a t i on o f A)

ebar = s q r t ( S12 ∗ (1 . 0/ I ) + S21 ∗( ( I −1.0) / I ) − ( S11 ∗ S11 )

) ;

/∗

// DeBuG code − pr in t out some va lue s

f l o a t var ;

var = ( S12 ∗ (1 . 0/ I ) + S21 ∗( ( I −1.0) / I ) − ( S11 ∗ S11 ) ) ;

f p r i n t f ( stdout ,”\n\nA: %f \n” , A) ;

f p r i n t f ( stdout , ” ebar : %f \n” , ebar ) ;

f p r i n t f ( stdout , ” I : %d\nN: %f \nJ : %d\nO: %f \n” , I ,N, J ,

omega ref ) ;

f p r i n t f ( stdout , ” c1 : %f \nc2 : %f \nc3 : %f \n” , c1 , c2 , c3 ) ;

f p r i n t f ( stdout , ” S11 : %f \nS12 : %f \nS21 : %f \n” , S11 , S12 , S21 )

;

f p r i n t f ( stdout , ” var : %f \n” , var ) ;

f p r i n t f ( stdout ,”1/ I ∗S12 : %f \n ” , ( 1 . 0/ I )∗S12 ) ;

f p r i n t f ( stdout , ” I−1/I ∗ S21 : %f \n” , S21∗ ( ( I −1.0) / I ) ) ;

f p r i n t f ( stdout , ” S11 ˆ2 : %f \n\n” , S11 ∗ S11 ) ;



158

∗/

// output e r r o r bar ( standard dev i a t i on ) to f i l e

FILE ∗ f p out = fopen ( out f i l ename , ”w”) ;

f p r i n t f ( fp out ,”% f \ t%f ” ,A, ebar ) ;

f c l o s e ( fp out ) ;

// f r e e a l l o c a t e d memory

f r e e ( x ) ;

f r e e ( y ) ;

}

/∗∗

∗ Reads a column o f scan s c o r e s from f i l e

∗

∗ @param fp

∗ A f i l e po in t e r to the input f i l e

∗

∗ @param b u f f e r

∗ A po in t e r to the b u f f e r that w i l l hold max−scan va lue s f o r

s i g n a l pre sent images

∗

∗ @param n

∗ Number o f data po in t s in f i l e

∗

∗ @return
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∗ Returns 0 upon s u c c e s s

∗/

i n t readScanScoreF i l e (FILE ∗ fp , f l o a t ∗ bu f f e r , i n t n)

{

i f ( fp == (FILE ∗) NULL)

{

r e turn 1 ;

}

i n t i ;

/∗ read in va lue s ∗/

whi le ( f s c a n f ( fp ,”% f ”,& b u f f e r [ i ] ) != EOF )

{

i ++;

}

i f ( i != n)

{

f p r i n t f ( s tde r r , ”ERROR: Expected %d data po in t s in

f i l e but read %d\n” ,n , i ) ;

r e turn 2 ;

}

/∗
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f o r ( i =0; i<n ; i++)

{

f s c a n f ( fp ,”% f ”,& b u f f e r [ i ] ) ;

}

∗/

return 0 ;

}

/∗∗

∗ Reads I ,N, J , and Omega total from f i e l

∗

∗ @param fp

∗ A f i l e po in t e r to the input f i l e

∗

∗ @param p t r I

∗ A po in t e r to the b u f f e r that w i l l hold the number o f t rue

s i g n a l s pre sent s c o r e s

∗

∗ @param ptrn

∗ A po in t e r to the b u f f e r that w i l l hold the number o f

s i g n a l absent images

∗

∗ @param ptrJ

∗ A po in t e r to the b u f f e r that w i l l hold the number o f f a l s e

p o s i t i v e s c o r e s

∗
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∗ @param ptrO

∗ A po in t e r to the b u f f e r that w i l l hold the t o t a l area

scanned ( f o r a s i n g l e image )

∗

∗ @return

∗ Returns 0 upon s u c c e s s

∗/

i n t readINJOFile (FILE ∗ fp , i n t ∗ptrI , i n t ∗ptrn , i n t ∗ptrJ ,

f l o a t ∗ptrO )

{

i f ( fp == (FILE ∗) NULL)

{

r e turn 1 ;

}

f s c a n f ( fp ,”%d%d%d%f ”,& p t r I [ 0 ] ,& ptrn [0 ] ,& ptrJ [0 ] ,& ptrO [ 0 ] )

;

r e turn 0 ;

}

/∗∗

∗ The h e a v i s i d e func t i on . Reads in a value and re tu rn s

h e a v i s i d e ( z )

∗
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∗ @param z

∗ Value to re turn h e a v i s i d e fn f o r

∗

∗ @return

∗ r e tu rn s H = H( z )

∗∗/

f l o a t h e a v i s i d e ( f l o a t z )

{

f l o a t h ;

i f ( z > 0)

{

h=1.0;

}

e l s e i f ( z == 0)

{

h=0.5;

}

e l s e // z<0

{

h=0.0;

}

r e turn h ;

}
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/∗∗

∗ Ca l cu l a t e s S11 ( see Popescu paper )

∗

∗/

f l o a t ca l cS11 ( i n t I , f l o a t N, i n t J , f l o a t ∗x , f l o a t ∗y ,

f l o a t c1 )

{

f l o a t H;

f l o a t S11 ;

double inner sum ;

double outer sum = 0 ;

i n t i , j ;

f o r ( i =0; i<I ; i++)

{

inner sum = 0 ;

f o r ( j =0; j<J ; j++)

{

H = h e a v i s i d e ( y [ j ] − x [ i ] ) ;

inner sum = inner sum + H∗c1 ;

}

outer sum = outer sum + exp ( (−1.0/N) ∗ inner sum ) ;



164

}

S11 = outer sum ∗ ( 1 .0/ I ) ;

r e turn S11 ;

}

/∗∗

∗ Ca l cu l a t e s S12 ( see Popescu paper )

∗

∗/

f l o a t ca l cS12 ( i n t I , f l o a t N, i n t J , f l o a t ∗x , f l o a t ∗y ,

f l o a t c2 )

{

f l o a t H;

f l o a t S12 ;

double inner sum ;

double outer sum = 0 ;

i n t i , j ;

f o r ( i =0; i<I ; i++)

{

inner sum = 0 ;

f o r ( j =0; j<J ; j++)
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{

H = h e a v i s i d e ( y [ j ] − x [ i ] ) ;

inner sum = inner sum + H∗c2 ;

}

outer sum = outer sum + exp ( (−2.0/N) ∗ inner sum ) ;

}

S12 = outer sum ∗ ( 1 . 0/ I ) ;

r e turn S12 ;

}

/∗∗

∗ Ca l cu l a t e s S21 ( see Popescu paper )

∗

∗/

f l o a t ca l cS21 ( i n t I , f l o a t N, i n t J , f l o a t ∗x , f l o a t ∗y ,

f l o a t c1 , f l o a t c3 )

{

f l o a t H1 , H2 ;

f l o a t S21 ;

double outer sum1 = 0 ;

double outer sum2 = 0 ;
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double inner sum1 , inner sum2 ;

i n t i1 , i2 , j ;

f o r ( i 1 =0; i1<I ; i 1++)

{

f o r ( i 2 =0; i2<I ; i 2++)

{

inner sum1 = 0 ;

i f ( x [ i 1 ] >= x [ i 2 ] )

{

f o r ( j =0; j<J ; j++)

{

H1 = h e a v i s i d e ( y [ j ] − x [ i 1 ] ) ;

H2 = h e a v i s i d e ( y [ j ] − x [ i 2 ] ) ;

inner sum1 = inner sum1 + H1∗c3 + H2∗c1 ;

}

outer sum1 = outer sum1 + exp ( (−1.0/N) ∗

inner sum1 ) ;

}

}

}
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f o r ( i 1 =0; i1<I ; i 1++)

{

f o r ( i 2 =0; i2<I ; i 2++)

{

inner sum2 = 0 ;

i f ( x [ i 1 ] < x [ i 2 ] )

{

f o r ( j =0; j<J ; j++)

{

H1 = h e a v i s i d e ( y [ j ] − x [ i 1 ] ) ;

H2 = h e a v i s i d e ( y [ j ] − x [ i 2 ] ) ;

inner sum2 = inner sum2 + H1∗c1 + H2∗c3 ;

}

outer sum2 = outer sum2 + exp ( (−1.0/N) ∗

inner sum2 ) ;

}

}

}

S21 = ( 1 . 0 / ( I ∗ I ) ) ∗ outer sum1 + ( 1 . 0 / ( I ∗ I ) ) ∗ outer sum2

;

re turn S21 ;

}
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/∗∗∗∗∗∗∗

∗ Ca l cu l a t e s A, the area under EFROC curve . ( See Popescu )

∗

∗/

f l o a t calcA ( i n t I , f l o a t N, i n t J , f l o a t ∗x , f l o a t ∗y )

{

f l o a t H;

f l o a t A;

double inner sum ;

double outer sum = 0 ;

i n t i , j ;

f o r ( i =0; i<I ; i++)

{

inner sum = 0 ;

f o r ( j =0; j<J ; j++)

{

H = h e a v i s i d e ( y [ j ] − x [ i ] ) ;

inner sum = inner sum + H;

}

outer sum = outer sum + exp ( (−1.0/N) ∗ inner sum ) ;
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}

A = (1 . 0/ I ) ∗ outer sum ;

re turn A;

}


	Marquette University
	e-Publications@Marquette
	Reducing Radiation Dose to the Female Breast During Conventional and Dedicated Breast Computed Tomography
	Franco Rupcich
	Recommended Citation


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND SYMBOLS
	Introduction
	Motivation
	CT Coronary Angiography
	Dedicated Breast CT

	Problem Statement
	Purpose
	Specific Aim 1: Creation of Dose Database for CT Coronary Angiography
	Specific Aim 2: Objective Assessment of Image Quality for CT Protocols Intended to Reduce Dose to the Breast during CT Coronary Angiography
	Specific Aim 3: Quantification of the Effects of Energy-weighting on the Depiction of Calcium in Energy-resolved Breast CT


	Background
	Interaction of Radiation with Matter
	Particle Interactions with Matter
	X-ray Interactions with Matter

	CT Physics and Image Formation
	X-ray Attenuation and the Beer-Lambert Law
	Acquiring X-ray Projections
	Reconstruction
	Image Noise and Contrast Considerations

	Radiation Dose and Associated Health Effects and Risks
	Dose Definitions, Quantities, and Units
	Biological Effects of Ionizing Radiation
	Risk of Cancer Incidence from CT

	Dose Reduction Techniques
	Reduced kV
	Bismuth Shielding
	Angular Tube-current Modulation
	Partial Angle Scanning

	Image Quality
	The Task, Observer, and Data Statistics
	Measures of Task Performance
	Commonly Used Task-independent Metrics

	Energy-resolved CT
	Dedicated Breast CT
	Monte Carlo Radiation Transport Simulations

	Database for Estimating Organ Dose for Coronary Angiography and Brain Perfusion CT Scans
	Introduction
	Materials and Methods
	Overview
	Monte Carlo Software
	Phantoms
	Simulation Geometry
	Energy Deposition Simulations
	Organ Dose Tables
	Using the Database to Estimate Dose
	Validation
	Obtaining Patient Attenuation Data
	Example 1: Using the Dose Database to Investigate Change in Dose to Breast
	Example 2: Using the Dose Database to Investigate Change in Dose to Eye Lens

	Results
	Dose Tables
	Validation
	Example of Estimating Change in Dose to Breast
	Example of Estimating Change in Dose to Eye Lens

	Discussion

	Simulation Study Comparing CT Coronary Angiography Breast Dose Reduction Techniques using an Unknown-Location Signal-Detectability Metric 
	Introduction
	Materials and Methods
	Unknown-Location Signal-Detectability Metric Estimation
	Simulation Setup
	Simulation geometry
	Investigated protocols
	Dose Estimation
	Image Generation
	Assessment of Dose and Image Quality

	Results
	Discussion

	Experimental Study of Optimal Energy Weighting in Energy-resolved CT using a CZT Detector
	Introduction
	Materials and Methods
	Overview
	Bench Top Energy-resolving CT System
	Breast Phantom
	System Calibration
	Acquiring Projections
	Weighting and Reconstructing Images
	Image Quality Assessment

	Results
	Discussion

	Conclusions and Future Directions
	BIBLIOGRAPHY
	Code for Generating Scan Image
	Code for Generating Scan Scores
	Code for Calculating FE

