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ABSTRACT

A NOVEL DESIGN OPTIMIZATION OF A

FAULT-TOLERANT AC PERMANENT

MAGNET MACHINE-DRIVE SYSTEM

Peng Zhang, B.S., M.S.

Marquette University, 2013

In this dissertation, fault-tolerant capabilities of permanent magnet (PM) ma-
chines were investigated. The 12-slot 10-pole PM machines with V-type and spoke-
type PM layouts were selected as candidate topologies for fault-tolerant PM machine
design optimization problems. The combination of 12-slot and 10-pole configuration
for PM machines requires a fractional-slot concentrated winding (FSCW) layout,
which can lead to especially significant PM losses in such machines. Thus, a hybrid
method to compute the PM losses was investigated, which combines computation-
ally efficient finite-element analysis (CE-FEA) with a new analytical formulation for
PM eddy-current loss computation in sine-wave current regulated synchronous PM
machines. These algorithms were applied to two FSCW PM machines with different
circumferential and axial PM block segmentation arrangements. The accuracy of this
method was validated by results from 2D and 3D time-stepping FEA.

The CE-FEA approach has the capabilities of calculating torque profiles, induced
voltage waveforms, d and q-axes inductances, torque angle for maximum torque per
ampere load condition, and stator core losses. The implementation techniques for
such a method are presented. A combined design optimization method employing de-
sign of experiments (DOE) and differential evolution (DE) algorithms was developed.
The DOE approaches were used to perform a sensitivity study from which significant
independent design variables were selected for the DE design optimization procedure.
Two optimization objectives are concurrently considered for minimizing material cost
and power losses. The optimization results enabled the systematic comparison of four
PM motor topologies: two different V-shape, flat bar-type and spoke-type, respec-
tively. A study of the relative merits of each topology was determined.

An automated design optimization method using the CE-FEA and DE algorithms
was utilized in the case study of a 12-slot 10-pole PM machine with V-type PM
layout. An engineering decision process based on the Pareto-optimal front for two
objectives, material cost and losses, is presented together with discussions on the
tradeoffs between cost and performance. One optimal design was finally selected



and prototyped. A set of experimental tests, including open circuit tests at various
speeds and on-load tests under various load and speed conditions, were performed
successfully, which validated the findings of this work.
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CHAPTER 1

INTRODUCTION

In this chapter, the background of the topic in this dissertation is briefly introduced.

Through a large amount of literature search, the recent trends in several topics re-

lated to the subject of this dissertation are reviewed. This includes different types of

permanent magnet (PM) machines and their corresponding applications, as well as

modeling and analysis approaches for electric machines and associated design opti-

mization algorithms. Based on these previous investigations, the main objectives of

this work are delineated below.

1.1 Background of the Problem

Over the last decade, brushless (BL) PM motor technology was established as the

preferred choice for high efficiency applications [1], and because such motors have high

torque and power to volume densities, as well as wide speed ranges. These qualities

make PM machines more popular in applications of medical devices, hybrid elec-

tric vehicles (HEV) and other automotive applications, motion control and aerospace

applications, and renewable wind energy systems [2]. Meanwhile, some typical draw-

backs are associated with these popular PM machines. One of these drawbacks is the
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possible poor thermal dissipation of rotor losses which may cause overheating and

consequently irreversible demagnetization of permanent magnets. Another typical

and severe drawback is that when a PM machine runs under field weakening con-

dition at high speed, and in the event of a partial failure in the control system of

the drive, the high-speed rotating magnetic field produced by the PMs in the rotor

will cause very large terminal voltages across the stator windings. This in turn, will

cause catastrophic damage to the switches in any drive connected to such a machine.

Some of the most common faults in such PM machines include failures of insulation

in stator windings [3], and eccentricities resulting from the stator and rotor misalign-

ment. Given these concerns, nowadays the need for the design of fault-tolerant PM

machine-drive systems has become a high-priority topic to various investigators and

users.

Another important endeavor in the design optimization of electric machines is the

development of design optimization tools. For different topologies of electric machines,

without an effective optimization procedure, conceivably an unreasonable comparison

might be performed between the worst design for one topology and the best design

for another topology. Depicted in Figures 1.1 and 1.2, are the performance points

of three different machine topologies in the cost-losses plane, which are located in

three different clusters bounded by the “Pareto-front” [4] in this cost-losses plane.

This means that for one single topology, the performance varies a great deal with
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the variation of geometric variables. In order to provide effective means for the

systematic comparison between different machine topologies, a fast and automated

design optimization method needs to be developed, investigated and implemented in

this dissertation.

1.2 Review of the Literature

1.2.1 Fault-Tolerant Permanent Magnet Machines

The design of fault-tolerant PM machine drive systems can be classified into two main

areas, the electric machine area and drive control area. Reference [5] gives a review of

different topologies of fault-tolerant PM machines and drives. A fault-tolerant electric

machine needs to sustain a comparable performance under faulty conditions to that

performance when such a machine is healthy. Meanwhile, such a machine needs to

fail safely without leading to a catastrophic damage to the associated system. These

properties require that such fault-tolerant PM machines must have good electrical,

magnetic, thermal and physical isolations [3], and good loss/thermal dissipation in

such machine structures. Based on these requirements, various investigations on the

design optimization of fault-tolerant machines have been performed and presented

[6–23].

Compared with the integer-slot distributed windings (ISDWs), the factional-slot
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concentrated windings (FSCWs) [6] have shorter end-winding connections, which

means less copper losses and cost. Meanwhile, PM machines with FSCWs are also

an excellent option for the design of modular electrical machines [7], which have the

merits of physically, thermally and magnetically isolated windings. In reference [8],

an approach was presented for the optimized combination of stator slot and rotor pole

numbers to eliminate the magnetic coupling between phases for such fault-tolerant

PM machines.

Multi-phase (greater than or equal to three-phase) stator windings, especially five-

phase fault-tolerant PM machines have received substantial attention in the literature

[9–11]. Reference [9] covers three fault types: the open circuit fault of a single phase,

the open circuit fault of two nonadjacent phases, and the open circuit fault of two

adjacent phases, for two motors with two different stator windings. The postfault

current control strategies of five-phase PM machine was investigated in reference

[10], which covers both the open circuit faults of one and two phases and the short

circuit fault at the machine terminal of one phase. Another five-phase interior PM

(IPM) machine with FSCWs was designed with low torque pulsation in reference [11].

In reference [13], the influence of parallel paths on PM machines’ unbalanced

magnetic pull with motor eccentricities was investigated. The authors concluded

that unbalanced currents in the parallel paths of stator windings can reduce the

unbalanced magnetic pull with the increase in the number of parallel paths.
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Figure 1.3: Cross section of a DSPM machine.

In references [14] and [15], double-salient PM machines (DSPMs), Figure 1.3, were

designed and analyzed, where the PMs were embedded in the stator, which leads to

good thermal dissipation of losses in the PMs. In references [16] and [17], the design

principles and analysis of flux-switching PM machines (FSPMs), Figure 1.4, were

given, and the fault-tolerant capabilities of such machines were also described. The

work in [18] compared the DSPM and FSPM classes of machines. For the FSPMs, the

good fault-tolerant capability requires high manufacturing technology to assemble the

combined structure of the modular stator cores and PMs. Meanwhile, some FSPMs

with odd-number of rotor teeth will lead to significant magnetic asymmetry leading

to radial forces which would cause various eccentricity faults.

In references [19–23], the spoke-type PM layout rotor, Figure 1.5, was adopted to
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Figure 1.4: Cross section of a FSPM machine.

Figure 1.5: Cross section of a spoke-type PM machine.
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Figure 1.6: Cross section of a novel spoke-type rotor in reference [23].

generate the concentrated effect of the air-gap flux,in which ferrite magnets were used

to reduce the material cost. A 9-slot, 6- pole, spoke-type PM machine was designed as

a brushless dc (BLDC) motor and compared with a prototype IPM machine in [22].

A 12-slot 10-pole spoke-type ferrite magnet machine with a novel rotor structure,

Figure 1.6, was proposed and tested in [23], in which this motor was utilized in a

traction application for low-speed Electric Vehicles (EV).

Based on the literature search on motor configurations provided above, in this

dissertation the fault-tolerant topology study will focus on the stator geometry with

FSCWs, proper selection of stator slots and rotor poles, and interior as well as spoke-

type PM layouts in such rotors.
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1.2.2 Modeling and Analysis of Electric Machines

There are two main branches in the modeling and analysis of electric machines includ-

ing numerical and analytical methods. As an effective and powerful tool, the finite

element analysis (FEA) and finite differences methods are the most frequently used

numerical methods for analyzing magnetic field problems. An evaluation of these two

numerical methods is provided in [24], from which FEA was found to be superior in

improved accuracy, computer time and storage requirements, as well as programming

flexibility (gridding) and implementation aspects. The FEA method possesses not

only high accuracy but also general applicability for materials with non-linear mag-

netic characteristics and for magnetic circuits with complex geometric boundaries.

This method has been used in the analysis of induction machines in [25, 26], PM

machines in [27–29], and synchronous generators in [30]. In these references, two

dimensional (2D) FEA methods were implemented. A more accurate magnetic field

computation method is the three dimensional (3D) FEA method, which was inves-

tigated in [31–33]. Both 2D and 3D FEA methods require good meshing layouts in

such machine models. More dense mesh elements lead to longer simulation times.

Thus, these long simulation times associated with the FEA method, render such a

method not practical for direct application in design optimization problems, when

combined with population-based optimization techniques.

Analytical solutions can clearly express physical principles and be conveniently
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used in machine design work. The most commonly used analytical solution is the

magnetic equivalent circuit (MEC) modeling method, also known as permeance net-

work models, as presented in [34–40]. In [34], the fundamentals of the MEC method

and the corresponding application to the computation of induction machine dynamics

have been presented. The simplifications associated with such a method were inves-

tigated and presented in [35]. In [36], the MEC method was utilized in the modeling

and analysis of a field regulated reluctance machine. In [37], the MEC modeling

method was used to simulate squirrel-cage rotor faults in a 5 hp induction machine.

In the same reference, the accuracy of this modeling method was also validated by

comparison to results obtained from a time-stepping FEA (TS-FEA) method. The

MEC method was also implemented in the analysis of a line start PM machine in [38],

a surface-mounted PM (SPM) machine in [39], and a synchronous machine in [40].

Although the MEC has fast computational speed and reasonable accuracy, the analyt-

ical expressions of such a method can be only obtained while the geometry of the field

region is simple and the materials involved have linear (linearized) characteristics. For

PM machines with complicated PM layouts, the accuracy of this MEC method might

not be sufficiently satisfactory in the estimate of the performance characteristics of

such machines.

In order to overcome the drawbacks of the analytical solution (MEC method),

combined numerical-analytical methods were investigated and presented in [41–43].
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Even though such combined modeling and analysis methods have led to improved

accuracy, the corresponding computational speeds were not sufficiently fast for uti-

lization in population-based optimization problems.

Based on this concern, efficient FE modeling methods have been reviewed by

Sizov, et. al., in [44]. Efficient FE analysis techniques reviewed in this reference aim

to minimize the computational effort required to obtain the maximum possible infor-

mation about the performance of a device being modeled, through the least number of

FE solutions. Recently, these authors have proposed a technique for Computationally

Efficient-Finite Element Analysis (CE-FEA) in [45–47]. The method uses only a re-

duced set of magnetostatic field solutions in order to satisfactorily estimate sinewave

current regulated BLPM motor performance. The accuracy of such a method has

been validated by comparison to the TS-FEA method and experimental test results

in [47]. Meanwhile, significant reduction of simulation times was also achieved, which

led to corresponding applications of such a method to large design spaces for machine

design optimization purposes [48, 49].

1.2.3 Design Optimization Methods

By and large, the design optimization of electric machines inherently has multiple

design objectives that need to be achieved. Also in general, the objective functions

are non-differentiable, non-continuous, and have multiple constraints. There are two
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main methods used in the design optimization of electric machines. One is the De-

sign of Experiments (DOE) techniques combined with Response Surface Methodology

(RSM) [50], and another is the population-based evolutionary algorithms [51]. The

first method is more suitable for local design optimization problems with a limited

number of geometric design variables. The latter one is more adaptable for global

design optimization of electric machines with a significant number of geometric design

variables.

In reference [52], direct and stochastic search algorithms for both single- and

multi- objective design optimization problems were discussed. Meanwhile, in the same

reference benchmark studies of comparing RSM and Differential Evolution (DE) were

investigated. This paper shows that the DE approach is more effective than RSM

when more parameters (design variables) need to be optimized.

The method of DOE was first developed and applied by Ronald A. Fisher in 1919

[50], which has the advantage of providing engineering insights for the interactions

between design variables and design objectives. Furthermore, this method points

out the sensitive ranges of all design variables for each design objective. The RSM

approach [53], used as a data processing procedure in DOE methods, is widely used

in many applications in the industrial world, particularly in situations where several

input variables potentially influence some measured performance or quality charac-

teristics of a product. This approach was first introduced by G. E. P. Box and K. B.
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Wilson in 1951 [53].

One DOE method [54], the Full Factorial Design (FFD) technique, was employed

to establish the design variable and objective space for applying RSM for the design

optimization of slotless-type PM linear synchronous machines. In this reference, only

three geometric variables were chosen to pursue the highest thrust and the lowest

thrust ripples. The same approach was implemented for the design optimization of

other types of PM machines, such as double-layer IPM motors in reference [55].

The Central Composite Design (CCD) technique is another DOE method, which

can be implemented to estimate a second-degree polynomial model. This method

was utilized in the design optimization of a PM reluctance motor (PRM) in [56], IPM

machines with concentrated windings in [57], and SPM machines in [58]. In these

referenced papers, only three to five independent design variables were considered for

the DOE studies.

DOE combined with RSM approach was also useful in the design optimization of

induction machines as presented in [59, 60]. In these references, the Box-Behnken

experimental design was chosen over the common CCD method because of two fac-

tors. First, Box-Behnken requires fewer samples (costly simulations) versus the CCD

method. Second, the sample points of the independent variables are not located at

the extreme of their ranges. This can improve a model’s robustness. Another ap-

plication of the Stochastic Response Surface Methodology (SRSM) was presented in
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[61], in which the SRSM approach was implemented to analyze the manufacturing

tolerance for a BLDC SPM machine.

Stochastic evolutionary optimization methods include Genetic Algorithms (GAs)

[62], Evolutionary Programming (EP), Evolutionary Strategies (ES), Genetic Pro-

gramming (GP), Differential Evolution (DE) [63], as well as the swarm intelligence

algorithms [51]. The swarm intelligence algorithms also contain Ant Colony Optimiza-

tion (ACO), Particle Swarm Optimization (PSO), Bees algorithm, Bacterial Foraging

Optimization (BFO), and so on. For electric machine design optimization, the DE,

PSO and GA are the most popular choices, as described for example in [48, 49, 64–

72]. Comparisons between DE and other optimization algorithms have been reported

in [63], and for electric machine optimization problems in a recent study [52]. The

results show that although there is no guarantee that DE is the fastest method, it is

nevertheless the one that typically yields the best results.

In [68], Barcaro et. al. utilized the GA method in the design optimization of a

three-layer IPM machine for a high performance drive. A multi-objective is considered

in the optimization process including the torque density and the sensorless detection

capability. Meanwhile, the total losses in the motor and the minimum operating

point in the PMs were set up as constraints. The GA method was also used in [64],

in which Pellegrino and Cupertino focused on the rotor design of a three-layer IPM

machine to achieve the optimized machine with maximum torque, minimum torque
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ripple, maximum flux weakening capability, and minimum rotor harmonic losses.

In reference [70], Arkadan et. al. implemented the PSO method in the design

optimization of an axially laminated anisotropic (ALA) rotor synchronous reluctance

machine (synRM). The objective of this optimization is to maximize the developed

torque while minimizing torque ripples and the copper and core losses for traction

applications.

The PSO method and GA method were compared by Duan et. al. in [73]. This

reference used the design of a 15 kW SPM machine with an analytical model as a

benchmark and compared the performance of PSO and GA in terms of their ac-

curacy, the robustness to population size and algorithm coefficients. In the design

optimization procedure, single weighted design optimization method was set up for

the machine volume, weight, efficiency, weight of PM and the torque per Ampere

as optimization variables. The results show that PSO has advantages over GA with

regard to these optimization variables and is preferred over GA when computation

time is a limiting factor.

The DE approach, which is another popular optimization method for machine

design problems, has been utilized in several publications [65–67, 74]. In [66], Zarko

et. al. implemented the FEA and DE method for minimizing the rotor inertia in

the design optimization of a servo motor. In this reference, the cavity area in the

rotor was maximized, and the PM dimension was also calculated to fit four different
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International Electrotechnical Commission (IEC) frame sizes of servo motors while

occupying the maximum space on the rotor circumference. In [67], two benchmark

studies on the design optimization of PM machines were performed by Ouyang et.

al.. The first case was regarding optimizing one single weighted objective function of

maximum average torque, and minimum torque ripple, with constant air gap for IPM

machines with a modular stator. In the second case, the rotor of an IPM machine

with a conventional stator was design optimized to achieve the maximum average

torque and maximum flux weakening capability (maximum normalized characteristic

current). Here, the maximum normalized characteristic current is defined as follows:

inc =
λpm − λd

Ld
(1.2.1)

where, λpm is the flux linkage of the PM, and λd is the flux linkage along the d-axis

due to the armature current, while Ld is the d-axis inductance.

In reference [65], a cloud computing technique was implemented in the design

optimization of PM machines utilizing FEA and DE algorithms. In this reference,

only one objective, the torque density, was optimized for a 30 kW, 12-slot, 10-pole,

SPM machine with a FSCW.

The DE algorithm was integrated into the Computationally Efficient FEA (CE-

FEA) method by Sizov et. al. in [47, 48, 74]. The detailed explanation of the principle

and implementation of the CE-FEA was presented in [46, 47]. In [48], the torque

ripple was minimized and the “goodness”, a measure of average torque production
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with respect to total losses, was maximized for a 9-slot, 6-pole, IPM machine. In this

reference, the decision-making by the assistance of a Pareto-set was described. The

same procedure was implemented in multi-MW direct drive PM machines in [74], in

which a reasonable systematic comparison between the fractional slot (FS) SPM, FS

IPM, integer slot (IS) SPM and IS IPM were presented.

Several publications proposed combined design optimization methods using both

of the statistical and population-based evolution algorithms [72, 75, 76]. In [75],

the DOE method was combined with GA algorithm by Jolly et. al. to maximize

the constant power speed range (CPSR) for a 36-slot, 4-pole IPM machine with

several hundred watts. In this reference, the DOE and RSM methods were used

to obtain the response surface (polynomial function) of the design objective, which

was implemented in the GA algorithm instead of performing FEA for all designs.

The same principle was implemented by Hasanien et. al. in the design optimization

of PM-type Transverse Flux Linear Machines (TFLM) in [72]. In [76], Hasanien

combined the DOE and PSO design optimization methods to reduce the machine’s

weight, maximize the thrust and minimize the detent forces of the TFLM. Here, the

detent force is analogous to the cogging torque of a rotating PM machines.

Based on this literature search regarding the design optimization methods for

electric machines, a new combined DOE and DE method is proposed to be utilized

in conjunction with the CE-FEA method in the design optimization of fault-tolerant
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PM machines.

1.3 Statement of the Problem

For the investigation on topologies of fault-tolerant PM machines, the FSCWs, opti-

mal combination of stator slots and rotor poles, as well as the interior and spoke-type

PM layouts in rotors will in investigated in this dissertation. Based on these investi-

gations, a 12-slot, 10-pole, IPM machine with a V-type PM layout will be optimally

designed and built for the experimental calibration.

For PM machines with FSCWs, the eddy current losses in PMs can be especially

significant because of a rich content of magnetic motive force (mmf) harmonics. In

order to take account of these losses, a hybrid method must be investigated, which

needs to combine the CE-FEA method with a new analytical formulation for the

eddy current losses in PMs of such machines. The 3D end effects and the effect of

PWM switching harmonics will be incorporated in such an analytical calculation.

The accuracy of this method will be validated by comparison to the results obtained

from 2D and 3D TS-FEA.

Before embarking on the design optimization process, the material properties of

steel laminations, permanent magnets and copper will be described in this disserta-

tion. Meanwhile, the FEA parametric models of different stator and rotor topologies
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will be included.

A combined design optimization method of DOE and DE will be developed and

implemented in optimization problems of PM machines with fault-tolerant capabili-

ties. In this combined design optimization method, the DOE approach will be used

to perform the sensitivity studies of geometric variables for multiple design objec-

tives. This procedure will be useful for designers to select geometric variables with

significant effects on objectives, and also choose reasonable ranges for each geomet-

ric variable. In a following step, the DE algorithm will be utilized to perform the

population-based optimization procedure. This developed design optimization proce-

dure must be combined with the CE-FEA techniques to improve the computational

speed.

By utilizing the combined design optimization method and CE-FEA approach,

Pareto-fronts of PM machines with different geometric topologies can be obtained and

compared. This will provide more systematic comparison between different types of

PM machines. In essence, a fast and automated design optimization method will be

developed in this dissertation research, for optimization of the design of fault-tolerant

PM machines with FSCWs and interior as well as spoke-type PM layouts.
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1.4 Dissertation Organization

In view of the problem background and the literature search, several fault-tolerant

topologies for PM machines are discussed in Chapter 2, including the IPM machines

and spoke-type ferrite magnet machines with fractional-slot concentrated windings.

In Chapter 3, a new hybrid calculation method of the eddy-current losses in PMs is

proposed for the CE-FEA method and the accuracy was validated by two case studies.

In order to improve the stability of the design optimization procedure, the robust FEA

parametric method for the geometry model is provided in Chapter 4. In Chapter 5,

the combined design optimization method utilizing DOE and DE method is described

and implemented for the design optimization of IPM machines with different rotor

topologies. In Chapter 6, the implementation of the CE-FEA method and automated

design optimization method are presented. In Chapter 7, this method is calibrated

through a case study and the accuracy is validated by the experimental results. The

conclusions, contributions and future works are discussed in Chapter 8.
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CHAPTER 2

FAULT-TOLERANT PERMANENT MAGNET

MACHINES

In this chapter, based on the fault-tolerant requirements for PM machines, stator

winding layouts are investigated first. Then, a discussion is conducted for the selection

of numbers of stator slots and rotor poles. At last, the various rotor PM layouts are

compared. Finally, the V-type and the spoke-type PM layouts are adopted. This

is in order to reduce the losses in the rotor portion of the magnetic circuits of this

type of machines. This also leads to an increase in such rotors’ thermal dissipation

capability.

2.1 Introduction

Several important design principles for fault-tolerant PM machines were summarized

by Mecrow et. al. in [3] and Mitcham et. al. in [8], from which two points are

emphasized as follows:

• Stator windings of the PM machines are wound around alternate stator teeth

with the concentrated winding layout, so that the coils of different phases are

physically separated.
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Figure 2.1: Different types of stator winding failures.

• The number of rotor poles must be close to the number of stator slots. Typically,

the number of slots per pole should be in the range between 0.7-1.5. Meanwhile,

proper selection of the number of stator slots and rotor poles can eliminate or

reduce the magnetic coupling between different phases.

For electric machines, failures occur most often in stator windings, which consti-

tute about 35%-37% of machine faults [77]. Different types of stator winding failures

are shown in Figure 2.1, which include the turn-to-turn fault, coil-to-coil fault, open

circuit fault, line-to-line fault, and line-to-ground fault. Among these faults, the

first likely fault is the turn-to-turn short-circuit, which is usually due to insulation

failures in several turns of a stator coil within one phase. When this type of fault

happens, excessive heat in the shorted turns can be generated due to resulting large
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(a) Distributed winding (b) Concentrated winding

Figure 2.2: Two different types of stator windings.

circulating currents, which can develop rapidly into catastrophic failures. Therefore,

properly choosing stator winding layouts can dramatically improve such electric ma-

chines’ fault tolerant capabilities by providing strong magnetic, thermal and physical

isolations.

2.2 Stator Windings With Fault-Tolerant Capabil-

ities

The distribution of stator windings in an ac machine has a significant impact on the

machine’s performance characteristics. There are two main types of stator windings,

distributed windings and concentrated windings, as shown in Figure 2.2.

A distributed winding generally results in a more sinusoidal MMF distribution,

which makes it very popular in applications of PM brushless ac (BLAC) machines.
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However, because of the manufacturing limitation, the slot fill factor is generally low,

which is around 35%-45% [6]. This means that over half of the slot is a combination

of insulation and non-magnetic filler. This low slot fill factor has a significant effect

on limiting the maximum torque and power densities that can be achieved with

these types ac machines. Meanwhile, the long end-winding connection, which can

be discerned in Figure 2.2 (a), causes large copper losses, which can lead to thermal

issues in these ac machines.

Once again, for fault-tolerant electric machines, the stator windings are required to

have good electrical, magnetic, and physical isolations between phases to prevent turn-

to-turn shorts from cascading into the occurrence of catastrophic winding failures.

Based on these concerns, concentrated types of windings are more popular in the

construction of fault-tolerant machines. The winding layout shown in Figure 2.2

(b), in which each coil surrounds only a single stator tooth, constitutes such a fault

tolerant design. This type of stator winding has a reduced volume of copper used

in the end-winding connections. This leads to some reduction in the stator copper

losses. For this type of concentrated winding, the slot fill factor can be increased

to 50% to 65%, if coupled with segmented stator structures [6], which can increase

such machines’ power density and torque density. This type of stator winding also

eliminates the overlap between coils in the end winding region, which can reduce the

chance for short circuit faults between different phases. Thus, PM machines with
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(a) Alternate-teeth-wound (b) All-teeth-wound

Figure 2.3: Two different concentrated windings for 12-slot 10-pole PM machines.

FSCWs were investigated in this work. One of the key challenges of PM machines

with FSCWs is the significantly increased rotor core loss, PM loss and sleeve loss

in case of conductive magnet retainment sleeves. This is due to various mmf and

airgap flux harmonic components inherent in such waveforms associated with these

winding configurations. The calculation method for such PM losses caused in such

PM machines with FSCWs will be discussed in Chapter 3.

There are two types of concentrated windings, which are alternate-teeth-wound

and all-teeth-wound concentrated windings, as shown in parts (a) and (b) of Figures

2.3 and 2.4, respectively. Here, Figure 2.3 shows the winding layout for a 12-slot,

10-pole, PM machine, and Figure 2.4 is for a 12-slot, 8-pole, PM machine. These two

slot and pole combinations are popular for low-rating three-phase PM machines with
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(a) Alternate-teeth-wound (b) All-teeth-wound

Figure 2.4: Two different concentrated windings for 12-slot 8-pole PM machines.

fault-tolerant capabilities.

Compared with all-teeth-wound concentrated windings, the alternate-teeth-wound

layout has more fault-tolerant capabilities because of the reduced winding contact in

each stator slot between the various phases. Yet, this type of concentrated winding

might lead to lower fundamental frequency winding factor and higher harmonic com-

ponents in the back-emf waveforms for certain combinations of stator slots and rotor

poles. For example, a typical back-emf waveform for a 12-slot, 10-pole, PM machine

is shown in Figure 2.5 (a), and the corresponding harmonic breakdown/spectral anal-

ysis is given in Figure 2.5 (b). The harmonics with the order of multiple of three can

be ignored because they are eliminated from the line-to-line voltage waveforms due to

the Y-connection of the three-phase stator windings in such machines. For the 12-slot



27

10-pole combination, the alternate-teeth-wound stator winding provides more 5th and

7th order harmonics than the all-teeth-wound winding layout. However, this is not

always the case. Different phenomenon was observed from the 12-slot, 8-pole, PM

machines with alternate-teeth-wound and all-teeth-wound stator windings, for which

the back-emf waveforms and harmonic analysis are shown in Figure 2.6 (a) and (b),

respectively. Both of the alternate-teeth-wound and all-teeth-wound stator windings

provide the same phase back-emf waveforms. Compared with the 12-slot 10-pole

combination, the 12-slot 8-pole combination has higher 5th and 7th order harmonics

and lower 11th and 13th order harmonics.

2.3 Different Combinations of Stator Slots and Ro-

tor Poles

A more effective means of limiting inter-phase coupling is by the precise choice of

the numbers of stator slots and rotor poles. Two popular slot and pole combinations

for lower-rating three-phase PM machines with fault-tolerant capabilities are the 12-

slot 10-pole and 12-slot 8-pole topologies, which are shown in Figures 2.3 and 2.4,

respectively.

In order to observe the magnetic coupling between the three phases, a finite el-

ement (FE) analysis was performed on a 12-slot, 10-pole, PM machine with two
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Figure 2.5: Phase back-emfs and harmonics of 12-slot 10-pole PM machines with
two different concentrated windings.
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Figure 2.6: Phase back-emfs and harmonics of 12-slot 8-pole PM machines with two
different concentrated windings.
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(a) Alternate teeth wound (b) All teeth wound

Figure 2.7: Flux plot for 12-slot 10-pole PM machines with single phase excitation
and un-magnetized magnets.

different stator winding layouts, for which only a single phase was excited and the

PMs were not magnetized. The corresponding flux plots are shown in Figure 2.7.

From this Figure, one can observe that the flux generated from phase-A only links

(goes through) the teeth surrounded by the coils for phase-A. This means that there

is no magnetic/flux coupling between the three phases for such 12-slot, 10-pole, PM

machines with either one of the alternate-teeth-wound and all-teeth-wound stator

windings.

The same type of FE analysis were repeated for a 12-slot, 8-pole, PM machine with

alternate-teeth-wound and all-teeth-wound stator windings, and the corresponding

flux plots are shown in Figure 2.8. One can observe that the flux established by the
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(a) Alternate teeth wound (b) All teeth wound

Figure 2.8: Flux plot for 12-slot 8-pole PM machines with single phase excitation and
un-magnetized magnets.

excitation of phase-A flows through all the stator teeth, which leads to a substantial

magnetic coupling between the three phases of such a 12-slot, 8-pole, PM machine.

Based on these observations and the back-emf comparison in the previous section, the

12-slot, 10-pole, PM machine with all-teeth-wound stator windings is selected to be

the focus point of this work. Meanwhile, insulation material can be added between

the two coil sides in one slot to reduce the physical contacts.

2.4 PM Layouts in the Rotor

For PM machines, there are five popular PM layouts in the rotors of such machines

as shown in Figure 2.9, which includes SPM, IPM, PRM, permanent-magnet assisted
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(a) SPM (b) IPM

(c) PRM (d) PMa-SynRM

(e) Spoke

Figure 2.9: Rotor layouts for PM machines.
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Figure 2.10: Torque and speed curves of PM machines. PRM: permanent-magnet re-
luctance machine; PMa-SynRM: permanent magnet assisted-synchronous reluctance
machine.

synchronous reluctance machine (PMa-SynRM) and spoke-type PM machine. Their

typical torque and speed capability profiles are shown in Figure 2.10, in which five

types of PM machines are assumed to have the same type of stator winding layout.

The operation speed range is significantly affected by the flux weakening capabilities

of these designs, which are positively affected by the saliency ratio of inductances

(Lq/Ld) of such PM machines. The saliency ratio of PM machines can be varied by

changing the stator winding and PM layouts. For SPM machines, the saliency ration

is a little larger than one, because of the almost equal reluctances along the d- and

q-axes magnetic circuits. In the case of IPM and spoke-type layouts in the rotor, the

saliency ratio is lower than two for machines with FSCWs, and is around the value

of three for machines with distributed windings. For PRMs and PMa-SynRMs, the

saliency ratio can achieve a value as high as five with effective optimization procedures,
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(a) Flat bar-type (b) V-type

Figure 2.11: Rotor layouts for IPM machines.

which leads to a larger speed range than the SPM, IPM and spoke-type PM machines.

Conventional SPM machines have advantages of simple control schemes and simple

rotor structures, thus reducing the number of design variables [78–80]. However, this

type of PM machine also has poor flux-weakening ability, which limits the speed

range of such a machine as shown in Figure 2.10. Meanwhile, it is hard to hold such

PMs in place when the machine runs at high speed without complex PM retaining

structures. Besides these disadvantages, large air-gaps in SPM machines lead to very

small synchronous inductances, which may not limit short-circuit currents in the

event that winding shorts take place. Thus, such SPM machines are not suitable if

fault-tolerant PM machine designs are required.

Two of the most popular IPM topologies are the flat bar-type and the V-type PM

mounting configurations, which are shown in Figures 2.11 (a) and (b), respectively.

In principle, in comparison with the flat bar-type PM layout, the V-type can have
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higher saliency ratio and lower PM losses, making it more suitable for high speed

and flux-weakening constant-power operation. The V-type IPM is in fact a common

choice for hybrid and electric vehicle applications.

Spoke-type PM machines are known for their inherent flux concentration capabil-

ity, as the flux per pole is contributed by two adjacent PMs, which are radially located

and tangentially magnetized [19]. In principle, a spoke-type PM machine can achieve

very high flux densities in the air-gap yielding increased specific power output. This

capability allows the rare earth magnet material to be potentially replaced by ferrite

magnets to achieve a competitive performance and reduce the material cost of this

type of electric machines.

The PRMs, as presented in [81], and the PMa-SynRMs [82] have the most advan-

tage of high saliency ratios, which leads to a wide speed range for these types of PM

machines, as shown in Figure 2.10. This property makes them very popular in the

applications of EVs, railway systems and elevator systems. However, the complicated

rotor geometries bring out considerable difficulties for the design optimization of these

two types of PM machines. Thus, they will not be investigated in this dissertation,

and will be left for future work.
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2.5 Summary

Summing up the investigations provided above, the 12-slot, 10-pole, PM machines

with V-type and spoke-type PM layouts are selected as the candidate topologies for

the fault-tolerant PM machine design to be investigated and optimized here in this

work. These motors can be operated by sine-wave current regulated vector controlled

power electronic drives, which are commonly referred to as PM synchronous or sine-

wave machines. Because of the importance of the losses in the PMs of such machines

to the overall efficiency of PM motor-drive systems, the computation of such losses is

the subject of the next chapter.
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CHAPTER 3

COMPUTATION METHOD FOR PERMANENT

MAGNET EDDY-CURRENT LOSSES

In this chapter, a hybrid method combines CE-FEA with a new analytical formu-

lation for the computation of eddy-current losses in the PMs of sine-wave current

regulated brushless synchronous machines. The CE-FEA only employs a reduced set

of magnetostatic solutions yielding substantial reductions in the computational time

as compared with conventional time-stepping FEA (TS-FEA). The 3D end effects

and the effect of PWM switching harmonics were incorporated in the analytical cal-

culations. The algorithms were applied to two fractional-slot concentrated-winding

IPM machines with different circumferential and axial PM block segmentation ar-

rangements. The method was validated versus 2D and 3D TS-FEA.
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3.1 Introduction

The latest generations of BLPM sine-wave motors employ rare earth PMs, such as

neodymium iron boron (NdFeB) magnets, which are electrically conductive and there-

fore prone to eddy-current losses. The satisfactory estimation of PM losses is very

important not only for optimizing the design of high-efficiency motors, but also for

the growing number of machines dedicated to fault-tolerant applications, in which

local losses and heating are of particular concern. The PM losses can be especially

significant in BLPM motors that have a rich content of mmf harmonics. This is the

case for FSCW topologies, which in turn are recommended due to their potential

benefits for lower material cost at specified performance and enhanced fault handling

capability. Two such IPM machines serve as case studies in this chapter.

Calculation of rotor losses has been a common theme for different types of electric

machines, e.g., [83–90]. In reference [83], Demerdash and Nehl presented the applica-

tion of the concept of effective permeability using the FEA method to the calculation

of eddy current problems in solid iron rotors of a turbogenerator. In reference [84],

Krawczyk and Tegopoulos presented the methodology explanation and applications

of the numerical analysis of eddy current problems.
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It is well known that TS-FEA numerical solutions have, in principle, the advan-

tage of high accuracy. However, this method’s applicability, especially for optimiza-

tion studies involving many candidate designs, is still limited due to the prohibitive

requirements for computational resources. Thus, analytical techniques are often pre-

ferred for predicting the rotor PM losses at the design stage [85–88]. In reference [85],

Deng has presented the analytical models for predicting the eddy-current losses in

rotors due to the field variations caused by current commutation in the stator wind-

ings of such PM machines. In this reference, the stator current was assumed constant

during periods between switching. The same method was improved by Deng and Nehl

[86] to predict the effects of inverter high frequency PWM switching on eddy-current

losses in a BLDC PM machine (an SPM machine). The accuracy of such an analytical

approach presented in these two references was verified by the FEA computation. In

reference [87], Atallah et. al. developed an analytical model to predict rotor-induced

eddy currents in SPM machines, and to quantify the effectiveness of circumferentially

segmenting the PMs in reducing the rotor losses. In reference [88], an improved an-

alytical model was developed by Zhu et. al. to calculate the eddy-current losses in

both the PMs and the retaining sleeve of an SPM machine in a traction application.

Such an analytical method is more suitable for SPM machines because of its

corresponding simple rotor geometry. For interior and spoke-type PM machines,

complicated rotor geometries bring about the challenges of the application of such an
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analytical method to the calculation of PM eddy current losses. The presence of 3D

end effects further complicates the problems and hence hybrid analytical combined

with FEA algorithms have been proposed by Yamazaki et. al. [91, 92]. The method

introduced in this chapter is of the combined solution type, which is of particular

interest as it leads to a satisfactory trade-off between accuracy and computational

speed.

Recently, simplified and fast FEA techniques, such as the CE-FEA [45–47], have

been coupled to large-scale design optimization procedures. The method uses only a

reduced set of magnetostatic field solutions in order to satisfactorily estimate sine-

wave current regulated BLPM motor performance. The satisfactory accuracy of the

this CE-FEA method, for calculating the torque profiles (including cogging torque),

waveforms of induced voltages, and stator core losses, has been demonstrated in

previous publications [47–49]. The work in this chapter brings further significant

contributions that enable the calculation of PM eddy-current losses based on magnetic

FEA solutions and on a theoretical development that includes the 3D end effects.

The PWM switching losses in the PMs are also quantified, together with the effect

of various PM block segmentation techniques, on two IPM example machines of the

12-slot 10-pole and 12-slot 8-pole type, respectively.
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3.2 Electromagnetic Field Analysis Using CE-FEA

During steady-state operation, the rotor moves synchronously with the rotating air-

gap magnetic field. This rotation takes place in the presence of stator slots, discrete

distribution of the windings, and time harmonics present in the phase currents due

to PWM type power supplies. This causes a time-domain variation in the PM flux

density under steady state conditions, that can be expressed as follows:

B(t) = B0 +
∑
k

Bkcos(kω1t+ ϕk) , (3.2.1)

where, Bk and ϕk, are the peak magnitude/amplitude and phase angle corresponding

to the harmonic of order, k, and B0, is the dc component. Note that because the

above Fourier series is expressed in term of the fundamental angular frequency of the

ac stator current, ω1, the order of the rotor field harmonics, k, can be, in principle, a

non-integer number as explained later.

The traditional approach for calculating the PM flux density waveform employs a

time-consuming time-stepping transient FEA with a small time sampling/time step.

The alternative approach proposed in this work builds upon the CE-FEA method,

which was previously introduced with particular emphasis on the distribution of the

magnetic field in the stators of brushless PM machines operated from sine-wave cur-

rent regulated drives [45–47]. In that case, the CE-FEA can fully exploit both the

electric and magnetic symmetries existent at the winding layout and slot pitch levels.
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For the rotor field, the periodicity is identified at the pole pitch level, and under

the eddy-current related assumptions specified in the next section, a relatively small

number of magnetostatic solutions, together with a space-time transformation, are

employed to “construct” (calculate) the PM flux density waveforms, the nature of the

function of which can be expressed generically as follows:

B(r, θ, t) = B

(
r, θ +mθp, t+

mθp
ω1

)
, (3.2.2)

where, r, is the radial position, and θ, is the electrical angular space position of a

point within the rotor. Here, θp is the electrical pole-pitch, and m is an integer. By

utilizing the CE-FEA approach, the computational effort is substantially reduced and

the calculation speed is increased, as compared to obtaining equivalent results from

the TS-FEA approach.

In principle, the application of the CE-FEA approach, with s magnetostatic so-

lutions for a rotor field domain that includes np poles provides n solution points,

where,

n = s× np + 1 , (3.2.3)

That is, there are n points/samples on the rotor flux density waveform. The maximum

harmonic order that can be used in this Fourier analysis is determined by the Nyquist

criterion. In order to avoid any aliasing effects, this number should be higher than

the order of any rotor harmonic that is expected to have a significant magnitude.
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3.3 Eddy-Current Losses in Permanent Magnets

Rare earth PMs, such as those of the NdFeB type, are electrically conductive, and

hence variations of the magnetic field with time produce eddy currents. In order to

minimize these currents, a typical engineering approach is to “segment” the PMs,

i.e. to employ multiple individual PM blocks both in the rotor axial direction as well

as in the circumferential direction. The expectation is that the power losses in PMs

will be minimized and that the eddy current effect will rather be resistance limited,

such that these eddy currents will not change the original magnetic field distribution,

which would be present in the machine should there be no eddy currents.

In order to reduce the eddy-current losses, it is also recommended to select the

thickness of the PM blocks, h, along the magnetization direction to be smaller than

the skin depth corresponding to the frequency of the highest order field harmonic that

is expected to have a significant magnitude. This harmonic is typically generated by

the PWM switching frequency, and further details regarding this topic are presented

in reference [93].

The skin depth for a frequency, f , can be calculated as:

δ =

√
ρ

πfµ0µr
(3.3.1)

where, in the following case studies one assumes a typical constant value for the

relative permeability, µr, of 1.05, and a PM resistivity, ρ, of 1.5 × 10−7m/S, at an
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Figure 3.1: Variation of skin depth with frequency for a typical NdFeB permanent
magnet (PM).

operating temperature of 100◦C, which yields the dependency plotted in Figure 3.1.

The method implemented in this chapter is based on the assumption, as it is

generally the case in industrial practice, that the eddy current effect is resistance lim-

ited through the employment of adequate engineering design solutions, such as the

aforementioned PM segmentation, which could be based on laborious computational

methods [91, 92], or more often, based on practical experience. Other typical assump-

tions employed are that the PM material is isotropic and that there is no variation

of the electromagnetic field in the axial z-direction (axial symmetry prevails).

The eddy current and flux density distributions in a PM are demonstrated in

Figures 3.2 (a) and (b), respectively, and the corresponding eddy-current circulating

loops are illustrated with dotted lines in Figure 3.3. In this figure, portions (a) and (b)

represent the 3D and 2D view of a PM block, respectively. For the initial explanation,
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(a) Eddy-current (b) Flux density

Figure 3.2: Example electro-magnetic field distribution in a PM calculated by 3D
FEA.

(a) 3D view (b) 2D view in the x-z plane

Figure 3.3: Schematic eddy-current loops in a rectangular PM block.

assuming that the magnetic field is uniformly distributed in space, a filamentary loop

in the x − z plane, which is perpendicular to the PM direction of magnetization,

extends along the y−direction to the full extent of the magnet thickness, h.

The variable for the axial direction, z, is not independent and can be expressed

as a function of the PM width, w, height, h, and axial length, `, as well as of the
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x-location, which is expressed as follows:

z(x) =
`

2
−
(w

2
− x
)
kz = z0 + kzx , (3.3.2)

where,

kz = tanα , and z0 = `/2− wkz/2. (3.3.3)

Here, the magnetic flux through an eddy-current loop can be expressed as follows:

φ(x, t) = B(t) [2x · 2z(x)] = 4B(t)
[
z0x+ kzx

2
]
. (3.3.4)

Hence, the induced voltage in the eddy-current circulating loop is calculated from

Faraday’s law as shown in the following expression:

E(x, t) = −dφ(x, t)

dt
= −4

dB(t)

dt

[
z0x+ kzx

2
]
. (3.3.5)

The differential resistance of the eddy-current loop can be determined using the

following expression:

dR(x) =
4 [kex+ z(x)] ρ

hdx
=

4ρ

h

(ke + kz)x+ z0
dx

, (3.3.6)

where, ke, is a coefficient with an original value equal to 1, which can be adjusted to

correct for end effects. Here, 4 [kex+ z(x)] and [hdx] are the length and cross section

area of each eddy-current circulating loop (the blue dash line in Figure 3.3). For

example, if the PM is very long in comparison with the width, the angle α can be
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assumed to be zero, and in such a case, kz as well as ke, are equal to zero. Hence, the

end effect contribution to the resistance is neglected and the resistance calculation is

simplified to the following expression:

dR(x) =
2`ρ

hdx
. (3.3.7)

Although this approach for modeling end effects is mostly based on geometry

rather than physics, it is very useful as it enables, on one hand, the implementation

of a means for calibrating, if necessary, the analytical results against other data

provided by experiments or 3D-FEA. On the other hand, when the resistive end

effects are neglected, the results can be compared against (quasi) 2D-FEA, which

implicitly considers an ideal short circuit at the two axial ends of the eddy-current

loop.

The power loss associated with one eddy current loop having the end effect resis-

tance incorporated through (3.3.6) is equal to:

E2(x, t)

dR(x)
=

(
dB(t)

dt

)2
4ρ

h

(z0x+ kzx
2)2

(ke + kz)x+ z0
dx . (3.3.8)

Integrating over the entire PM block yields the total eddy-current loss, which is
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deduced as follows:

PPM(t) =

∫ w/2

0

(
dB(t)

dt

)2
4ρ

h

(z0x+ kzx
2)2

(ke + kz)x+ z0
dx

=

(
dB(t)

dt

)2
4hk2z

ρ(ke + kz)

[
w4

64
+

(kz + 2)z0w
3

24kz(ke + kz)

+
z20w

2

8k2z(ke + kz)2
− z30w

2k2z(ke + kz)3

+
z40

k2z(ke + kz)4
ln
w(ke + kz) + 2z0

2z0

]
. (3.3.9)

In the general case, the spatial distribution of the PM flux density is non-uniform.

In principle, in order to increase the accuracy of loss calculation, the calculation of

flux densities in one magnet block can be discretized in a computational grid with

columns along the x−axis and rows along the y−axis. A 4× 4 example grid is shown

in Figure 3.4. The flux density within the grid is denoted by Bij, where i and j are

the indices for the row and column, respectively. The flux density in one PM block

is still assumed to be independent of the location along the z−axis. That is, any Bij

has a single constant value derived from an average of a flux density distribution that

varies with the x and y locations of each block.

In this case, the magnetic flux through a rectangular eddy current loop is provided

by the following expression:

φi(x, t) =



[Bi2(t) +Bi3(t)] 2xz(x) for 0 ≤ |x| ≤ w
4
,

[Bi2(t) +Bi3(t)]
wz(x)

2
+ (3.3.10)

[Bi1(t) +Bi4(t)] 2
(
x− w

4

)
z(x) for w

4
< |x| ≤ w

2
.
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Figure 3.4: Example computational grid used for calculating the magnetic flux in a
PM.

The resistance of an eddy current loop considering the end effects is the same as that

given by the expression (3.3.6), and the total eddy-current losses in the PM can be

calculated as:

PPM(t) =
∑
i

∫ w/2

0

h

16ρ[(ke + kz)x+ z0]

(
dφi(x, t)

dt

)2

dx . (3.3.11)

The resistive end effects can be ignored by setting ke = 0 in equation (3.3.11).

3.4 Case Studies and Discussions

The methods previously presented were implemented using ANSYS electromagnetic

FEA software [94]. The following results are provided for two case study IPM mo-

tor designs rated at 10 hp and 1800 r/min. The machines’ stator magnetic circuit

topologies are based on FSCW arrangements and a conventional internal flat bar-

type PM rotor topology. Results from the study of these two case study machines
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Table 3.1: The number of PM blocks per pole in example segmentation schemes for
a topology with one rotor slot per pole.

Segmentation scheme SEG1 SEG2 SEG3 SEG4
Axial PM blocks 1 2 1 2
Circumferential PM blocks 2 2 3 3

are given next in sections 3.4.1 and 3.4.2. Such IPM designs are prone to relatively

high PM losses due to the high harmonic content of the stator field and because of

the proximity of the magnets to the air-gap. In order to minimize PM eddy-current

losses, various segmentation arrangements with multiple PM blocks per rotor slot

were considered, as specified in Table 3.1.

As a first step of the analysis, the FEA domain is modeled and the PMs are

discretized for computational purposes in a uniform grid as shown in Figure 3.4.

Secondly, the PM flux density waveforms are obtained using the CE-FEA approach

and the results are analyzed both for harmonic content as well as for spatial variation.

Finally, the PM eddy-current losses are calculated and compared with data obtained

through 2D- and 3D-TS-FEA.

3.4.1 The First Case Study-an IPM Machine With 12 Slots

and 10 Poles

For the 12-slot 10-pole IPM case study, the computational domain corresponding to

the general electromagnetic periodicity comprises 5 poles as shown in Figure 3.5. For
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Figure 3.5: Geometry of a 12-slot, 10-pole, IPM machine case study.

Table 3.2: Example harmonic spectrum of the flux density in the PMs of the 12-slot
10-pole IPM.

f1 = 150Hz
Frequency [Hz] 0 180 360 540 720 1080
B [T] 0.870 0.045 0.094 0.003 0.013 0.003

any point within a PM, a CE-FEA employing 7 magnetostatic solutions yields the

discrete points shown on a flux density waveform in Figures 3.6 and 3.7. Using the CE-

FEA techniques, the waveform corresponding to an entire time cycle is “constructed”

(assembled) based on (3.2.2) and on the information provided by each individual pole,

as illustrated in Figure 3.6 through the use of colored coded points and arrows.

In this case, there are 35 points on the resultant flux density waveform. That is,

harmonics up to the 15-th order can be reasonably predicted (Table 3.2). The CE-

FEA obtained waveform virtually overlaps the results obtained using the substantially

more accurate and computationally more intensive conventional TS-FEA, see the
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Figure 3.6: PM flux density waveform construction according to CE-FEA for the
12-slot 10-pole IPM motor case study.
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Figure 3.7: PM flux density waveform at rated load operation calculated by CE-FEA
and time-stepping (TS) 2D FEA.
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Figure 3.8: Definition of one PM block’s width, thickness and axial length.

black solid curve in Figure 3.7.

For reference purposes, the PM blocks employed in the SEG1 arrangement, see

Table 3.1 and Figure 3.8, have a width of 18.44 mm, a thickness of 4.24 mm and an

axial length of 83.15 mm. Accordingly, in the SEG2 arrangement, which uses two

PM blocks per rotor length, the ratio of PM axial length per width is 2.257, and

consequently the end effects are expected to be significant.

The spatial distribution of the flux density across the PM cross-section was ob-

tained using a 4× 4 grid as per Figure 3.4. In line with expectations for the example

under consideration, the variation of both the flux density and its time derivative along

the radial direction is slight. Meanwhile, more noticeable differences are observable

along the circumferential direction as shown in Figures 3.9 and 3.10, respectively.

To evaluate the capabilities of the PM eddy current loss calculation method, even

in its simpler formulation, only the average value of the flux density was considered for
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Figure 3.9: Waveforms of flux densities at various points in a PM of the 12-slot 10-pole
IPM with the SEG1 segmentation.
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Figure 3.10: Waveforms of dB(t)/dt at various points in a PM of the 12-slot 10-pole
IPM with the SEG1 segmentation.
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Figure 3.11: Time variation of PM losses in the 12-slot 10-pole IPM with SEG1 (top
graph) and SEG2 segmentations, respectively.
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Figure 3.12: Time variation of PM losses in the 12-slot 10-pole IPM with SEG3 (top
graph) and SEG4 segmentations, respectively.



57

Table 3.3: Average PM eddy-current losses for a 12-slot, 10-pole, IPM machine with
different PM block segmentations.

Seg. type 2D-TS-FEA 3D-TS-FEA CE-FEA without CE-FEA with
end effect end effect

[W] [W] [W] [W]
SEG1 68.2 51.8 65.5 49.4
SEG2 68.2 44.6 65.5 45.0
SEG3 35.5 28.1 35.0 27.4
SEG4 35.5 26.2 35.0 26.2

each PM block, Figure 3.4, in conjunction with the loss calculation expression (3.3.9).

The rated load results for the different PM segmentation arrangements of Table 3.1 are

illustrated in Figures 3.11, 3.12 and summarized in Table 3.3. Reasonable engineering

agreement is observed between the 3D-FEA and the new method at hand including

the consideration of the end effects. Further validation is provided in Figures 3.11

and 3.12 as well as Table 3.3 through the correlation noted between the 2D-FEA

results and the results of the new method at hand when the resistive end effects are

neglected.

3.4.2 The Second Case Study-an IPM Machine With 12 Slots

and 8 Poles

In the case of a 12-slot, 8-pole, IPM machine case study, the minimum domain re-

quired for FEA contains only two poles as shown in Figure 3.13. Similar to the
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Figure 3.13: Geometry of the 12-slot 8-pole IPM motor case study.

previous case study, the CE-FEA model employed 7 magnetostatic solutions yield-

ing in this case 15 points on a full cycle flux density waveform constructed under

the steady-state space-time transformation and procedure schematically illustrated

in Figures 3.14 and 3.15. Again, very good agreement was reached in comparison

with the flux density waveform calculated from the conventional TS-FEA.

Using the resulting CE-FEA waveform data for this case study, the rotor field

harmonics up to the 15-th order can be reasonably predicted as given in Table 3.4. It

should be noted that, according to the obtained numerical results, the fundamental

frequency of the rotor flux variation with time is different from the fundamental

frequency, f1, of the stator mmf and air-gap revolving field. This can be observed

both in the previous 12-slot 10-pole IPM case study, as well for the current 12-slot

8-pole IPM case study for which there are three electric cycles of the field inside the
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Figure 3.14: PM flux density waveform construction according to CE-FEA for the
12-slot 8-pole IPM motor case study.
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Figure 3.15: PM flux density waveform at rated load operation calculated by CE-FEA
and time-stepping (TS) FEA.
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Table 3.4: Example harmonic spectrum of the flux density in the PMs of the 12-slot
8-pole IPM.

fs = 120Hz
Frequency [Hz] 0 360 720 1080 1440
B [T] 0.916 0.049 0.011 0.005 0.002

Table 3.5: Average PM eddy-current losses for the 12-slot 8-pole IPM.
Seg. type 2D-TS-FEA 3D-TS-FEA CE-FEA without CE-FEA with

end effect end effect
[W] [W] [W] [W]

SEG1 33.2 27.6 33.4 26.6
SEG2 33.2 22.3 33.4 23.7
SEG3 15.4 14.1 15.3 13.3
SEG4 15.4 11.6 15.3 12.6

PM for each one electric cycle of the stator fundamental field.

The variation of the flux density derivative with respect to time within a 4×4 grid,

see Figure 3.4, is shown in Figure 3.16. In comparison with the 12-slot 10-pole IPM

design, these flux density variations are lower, leading to reduced losses for comparable

PM segmentation arrangements in the 12-slot 8-pole configuration as illustrated in

the waveforms in Figures 3.17 and 3.18 as well as the average eddy-current loss results

summarized in Table 3.5. For reference purposes, the SEG1 arrangement, Table 3.1,

was utilized for PM segmentation, in the 12-slot 8-pole IPM case study with a width

of 23 mm, a thickness of 4.24 mm and an axial length of 166.3 mm, see Figure 3.8.

It is interesting to note that, as indicated by the results plotted in Figures 3.17

and 3.18 and by the data given in Table 3.5, for this case study 12-slot 8-pole IPM
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Figure 3.16: Waveforms of dB(t)/dt at various points in a PM of the 12-slot 10-pole
IPM with the SEG1 segmentation.
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Figure 3.17: Time variation of PM losses in the 12-slot, 8-pole, IPM machine with
SEG1 (top graph) and SEG2 segmentations, respectively.
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Figure 3.18: Time variation of PM losses in the 12-slot, 8-pole, IPM machine with
SEG3 (top graph) and SEG4 segmentations, respectively.
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machine, as well as for the previous 12-slot 10-pole case study, the most effective

means for substantially reducing the PM eddy-current losses is the circumferential

magnet segmentation approach. This observation might not be applicable to other

types of PM machines, because PM losses would depend on the aspect ratio of the

magnet width and axial length in relation to the pole pitch of each of the space

harmonics that are causing the losses.

3.4.3 Discussion

PM eddy-current losses are very important as they can directly impact the heat

generation, the rotor temperature and the motor efficiency. For example, in the

worst case scenario, for the 10 hp IPM case studies, the PM losses can cause the

motor efficiency to drop by 1 percentage point, a reduction of efficiency that can be

very significant in many applications.

The developed computational method is sensitive to the effects of circumferential

and axial magnet segmentations and is able to calculate the PM losses with satisfac-

tory precision, as demonstrated in both IPM case studies.

The CE-FEA based calculation technique for PM eddy-current losses incorporates

the end effects and the axial segmentation effects, which represents a major improve-

ment over conventional 2D-FEA. At the same time, for the above two case studies,

the results of the new method at hand are comparable with those results obtained
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Table 3.6: Examples of computational time for different case studies.
IPM example CE-FEA 2D-TS-FEA 3D-TS-FEA
12s 10p SEG1 40 sec 2 min 4 days
12s 8p SEG1 30 sec 1.5 min 2 days

from the 3D-FEA, while the computational resources are significantly reduced and

the speed of computation is increased by several orders of magnitudes for such a PM

loss calculation method. This major advantage is demonstrated in the computation

times listed in Table 3.6, which corresponds to results obtained with comparable FE

meshes and with 7 magnetostatic solutions for the CE-FEA approach, 42 time steps

per electrical cycle for the 2D-TS-FEA, and with 42 time steps per electrical cycle for

the 3D-TS-FEA. All the simulations were performed on an HP Z800 workstation with

12 cores (2 Xeon X5690 processors) and 32GB RAM memory with ANSYS Maxwell

V14.0.

3.5 PWM Switching Losses in the PMs

The effect of the harmonics in the supplied current waveforms, including those as-

sociated with the PWM switching frequency, is not incorporated in the previously

described CE-FEA technique. For this purpose, an extension of the method is inves-

tigated in this section. Explanations are provided for the generic case, in which the
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phase current waveform, ia, contains, apart from the fundamental frequency compo-

nent, one additional high-frequency component. Hence, the expression for the phase

current waveform can be written as follows:

ia(t) = I1pkcos (ω1t+ ϕ1) + IWpkcos (ωW t+ ϕW ) , (3.5.1)

where, I1pk and ϕ1, are the magnitude of the fundamental peak current, and its

phase angle, respectively. Also here, IWpk, ωW and ϕW are the magnitude of the

high-frequency component’s peak current, its angular frequency, and its phase angle,

respectively.

The algorithm can of course be extended to include multiple time harmonics in

the current waveform under the assumption that the contribution of each harmonic to

the non-linear magnetic field is relatively low, such that superposition can be applied

as a generally acceptable engineering approximation. Here, in the example current

waveforms shown in Figure 3.19, the magnitude of the higher frequency PWM current

component is set equal to 20% of the fundamental peak current. This PWM current

component is modulated on top of the fundamental component to produce a typical

current waveform for PM brushless motors supplied from power electronic inverters.

The variation of the flux densities in a PM block under the open-circuit condition

is caused by the slotted stator structure under the influence of the traveling rotor

magnetic field (tooth-slot induced pulsation). Further variation is exhibited under

load conditions, and the difference between the two waveforms, which are calculated
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Figure 3.19: Fundamental and high frequency PWM components of the phase current.

by the CE-FEA approach and shown in Figure 3.20, can be used to estimate the

flux density in a PM block, Ba, due to the stator armature reaction caused by the

fundamental current. Numerically, this PM flux density component, Ba(t), can be

expressed as a function of a permeance function of time, Λ(t), and the stator mmf

which can be expressed as a function of time, F (t), caused by the rotor rotating, thus

yielding the following expression:

Ba(t) = Λ(t) · F (t) . (3.5.2)

Further simplification for calculating an equivalent permeance waveform with re-

spect to time can be introduced by neglecting the high-order mmf space harmonics.

In this case, only the stator fundamental mmf is present, which is a standing compo-

nent in the rotor reference frame with a time-independent value proportional to the
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Figure 3.20: PM flux densities at open circuit and on load with sine-wave rated
current supply.

peak fundamental phase current.

The equivalent permeance function approach can be utilized also for the study

of the high frequency fields in the PM. After superposition of the effects of this

high frequency component and the effects of the low frequency CE-FEA data, this

approach can provide satisfactory results. Such an approximated waveform is labeled

as harmonic injection (HI) and is shown in Figure 3.21 together with the PM flux

density waveform computed by the more laborious 2D-TS-FEA.

Using the previously described method, calculations of PM eddy-current losses

were performed for the two IPM motor case studies in the SEG1 arrangement, see

Table 3.1, operating under the rated load condition with a PWM switching frequency
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Figure 3.21: PM flux density for the example PWM supply from Figure 3.19. The
flux density in the top figure is obtained from a 2D-TS-FEA, and the flux density in
the bottom one is calculated from the harmonic injection technique.

of 5 kHz and 8 kHz respectively and a PWM current ripple as illustrated in Figure

3.19. The results summarized in Figure 3.22 indicate satisfactory accuracy of the new

method at hand, with reasonable engineering agreement between the CE-FEA and

2D-TS-FEA obtained results.

At the same time, the data is in line with expectations because the PM losses

increase with the PWM switching frequency and they can be significant as compared

to losses under pure sine-wave supply. This trend correlates with the reports of other

authors, which are based on experimentation and other more laborious 3D-FEA based

methods, e.g. [91].
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Figure 3.22: PM eddy-current losses with PWM switching. Results are expressed in
per unit. The 2D-TS-FEA with sinewave current supply was defined as the standard
value for each motor.

3.6 Summary

The CE-FEA technique described in this chapter combines a relatively low number of

magnetostatic field solutions coupled to space-time transformations, in conjunction

with a new analytical formulation for calculating PM eddy-current losses. The results

provided by two FSCW IPM machine case studies demonstrate satisfactory accuracy

and significant decrease in the computational time as compared with the conventional

approaches, which are based on the more time consuming TS-FEA method. Based

on these advantages, the new method is considered to be particularly suitable for

incorporation into large-scale design optimization tools in industrial environments.

Because this developed power loss calculation method incorporates the 3D end

effects, it can be employed to study the impact on losses of PM block segmentation in
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the circumferential and axial directions, under the typical assumptions of resistance

limited eddy currents. The sensitivity of the method to PWM switching harmonics

was also successfully demonstrated on two IPM machine case studies.

Besides the calculation method for the PM eddy-current losses presented in this

chapter, the CE-FEA method also has the capabilities of estimating torque profiles,

induced voltage waveforms and stator core losses as described in [46, 47]. In order to

improve the computational speed, the “distributed solve” function in ANSYS Maxwell

software packages can be integrated into the implementation techniques for the CE-

FEA approach. Such implementation techniques for the CE-FEA method in ANSYS

Maxwell are the main subjects in the next chapter.
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CHAPTER 4

IMPLEMENTATION OF COMPUTATIONALLY

EFFICIENT FINITE-ELEMENT ANALYSIS IN

ANSYS MAXWELL

In this chapter, a detailed procedure and principle of the implementation of the CE-

FEA method with ANSYS Maxwell software packages is described. Before embarking

on the CE-FEA principle, the basic conception of the phasor diagram for PM machines

is presented in section 4.2. Then the CE-FEA calculation techniques for PM flux

linkages and inductances are presented in section 4.3. These parameters are useful

for the torque angle calculation for the maximum torque per ampere (MTPA) load

condition, which is provided in section 4.4. In section 4.5, computation methods for

the waveforms of flux densities in the stator teeth and yokes as well as the stator core

losses are investigated. Then, the skew effects are taken into account in the CE-FEA

method in section 4.6. At last, robust FEA parametric models for PM machines with

different topologies are presented in section 4.7
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4.1 Introduction

In the automated multi-objective design optimization procedure, shown in the flowchart

of Figure 4.1 [74], there are several major modules, including preparation of para-

metric FEA models, CE-FEA implementation, a DE optimization algorithm, and

decision-making from Pareto-sets. Here, the CE-FEA method is used to calculate

the performances including the torque profile, emf/induced voltage waveforms and

losses (stator iron, PM and copper). Meanwhile, material costs and masses, as well

as resistances and inductances are also calculated for each design candidate. In the

design optimization procedure, each design is assumed to operate under the maximum

torque per ampere (MTPA) load condition. The distributed solve function package

in ANSYS Maxwell software is utilized to improve the computational speed of this

global design optimization. Previous publications provide detailed explanations of

the CE-FEA method [46, 47, 74] and of DE algorithms [63]. This chapter mainly

focuses on the implementation procedures of the CE-FEA techniques in the ANSYS

Maxwell and MATLAB scripting functions.

There are numerous ways to determine the electromagnetic field distribution

within an electric machine. For very simple geometries, for instance SPM machines,

the magnetic field distribution can be found analytically [85–88]. However, in most

cases, the field distribution can only be approximated. Magnetic field approximations
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Figure 4.1: Flowchart of the automated design optimization utilizing the computa-
tionally efficient-FEA and differential evolution algorithm [73].
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appear in two general forms. In the first, the direction of the magnetic field is assumed

to be known everywhere within an electric machine. This leads to magnetic circuit

analysis [34–40, 85–88], which is analogous to electric circuit analysis. In the other

form, the electric machine is discretized geometrically using a meshing technique, and

the magnetic field is numerically computed at discrete points in such an electric ma-

chine. From this information, the magnitude and direction of the magnetic field can

be approximated throughout the whole electric machine. The FEA method is one of

the numerical solutions, which is commonly utilized in the modeling and analysis of

different types of electric machines [25–30].

Of these two magnetic field approximations, the FEA approach produces the most

accurate results if the geometric discretization (meshing) is fine enough. The CE-FEA

technique is an ultrafast FEA approach with significantly improved computational

speed. This method still requires a detailed model of an electric machine, which

includes the modeling of material properties as well as a transformable and robust

parametric model.

4.2 Phasor Diagram

Before embarking on the CE-FEA method, some basic principles of modeling and

analysis of PM machines are introduced here. First is the phasor diagram as shown

in Figure 4.2. The dq-frame formulation in the phasor form can be expressed as
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Figure 4.2: Phasor diagram of PM machines.

follows:

V̄ = ωλ̄pm +RsĪ + jXdĪd + jXq Īq (4.2.1)

where, V̄ and Ī, are the terminal phase voltage and current phasors, respectively,

and λ̄pm, is the PM flux linkage phasor, while Rs, is the phase resistance. Here,

the subscripts d and q represent the d- and q-axes components, and X stands for

reactances, X = ωL, while L stands for inductances, and ω, is the electrical rotating

speed (angular frequency) in elec. rad./s. This relationship is also shown in the dq-

phasor diagram of such PM machines in Figure 4.2. Here, the phase angle between

the current phasor and the d-axis is defined as the torque angle, γ. The phase angle

between the voltage phasor and current phasor is the power factor angle, ϕ.
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4.3 PM Flux Linkages and Inductances

In the design optimization of PM machines, all the designs are assumed to be simu-

lated under the MTPA load condition. Thus, in order to calculate the correct torque

angle for this load condition, the PM flux linkages and dq-axes inductances are re-

quired. In this section, the methods to compute these three parameters are described.

When implementing the CE-FEA with ANSYS Maxwell software, there are two

methods to calculate the d-axis and q-axis inductances. Both of the methods utilize

Park’s transformation

Ts =
2

3


cos(θ) cos(θ − 2π

3
) cos(θ − 4π

3
)

− sin(θ) − sin(θ − 2π
3

) − sin(θ − 4π
3

)

1/2 1/2 1/2

 (4.3.1)

where, θ = θ0 + ωt, and θ0 is the initial rotor position as shown in Figure 4.3.

From Park’s transformation, the well-known dq-frame formulation of flux linkages

is given in the following expression [95]:λd = λpm + Ldid

λq = Lqiq

(4.3.2)

Method 1: The detailed procedure to utilize expression (4.3.2) and Park’s trans-

formation is described in the following steps:

1. With the simulation model running at 90oe torque angle, one can obtain FEA

solutions for a sufficient number of rotor positions. From these solutions, the
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Figure 4.3: Phasor diagram of abc- and dq-reference frames.

three phase flux linkages can be exported. Under this load condition, the d-axis

current is equal to zero. In this case, the flux linkage of permanent magnets

can be calculated as follows:

λpm = λd =
2

3
[cos(θ)λa + cos(θ − 2π/3)λb + cos(θ − 4π/3)λc] . (4.3.3)

2. Simulating the FEA model under the load condition of a torque angle between

100oe and 120oe, another set of three phase flux linkages, λabc, and currents,

iabc, can be obtained. After the application of the dq-transformation, the real

time values of the dq-reference frame flux linkages, λdq0, and currents, idq0, can

be expressed as follows: λdq0 = T s λabc

idq0 = T s iabc

(4.3.4)
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3. From the dq-frame formulation, the d-axis and q-axis inductances can hence be

computed using the following expressions:Ld = (λd − λpm) /id

Lq = λq/iq

(4.3.5)

Method 2: when implementing the CE-FEA approach with ANSYS Maxwell

software packages, there is another method to calculate the dq-axes inductances. This

method utilizes Park’s transformation to calculate the d-axis and q-axis inductances

directly from the three phase self and mutual inductance profiles. These profiles show

how such self and mutual inductances vary with the rotor angular position, covering

at least a complete ac cycle (2-pole pitches or more depending on the design of a

machine). This requires one to activate/enable the inductance calculation function

in the ANSYS Maxwell simulation software. One should notice that in the default

state of the software this function is disabled. The detailed procedure to calculate

the inductances is as follows:

1. For a sufficient number of rotor positions (such as in the CE-FEA method) one

obtains FEA solutions, with the simulation model running at 90o torque angle.

The PM flux linkage can be calculated using the same procedure as in expression

(4.3.3). Meanwhile, the three phase self and mutual inductance profiles can be

obtained.

2. One conducts a Fourier analysis of these inductance profiles from which one
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obtains expressions for self inductances, Laa(θ), Lbb(θ) and Lcc(θ), and mutual

inductances, Lab(θ), Lbc(θ) and Lca(θ) [96–100] as follows:

Laa(θ) = Lsa + Lsv cos(2θ)

Lbb(θ) = Lsa + Lsv cos(2θ − 4π/3)

Lcc(θ) = Lsa + Lsv cos(2θ − 2π/3)

Lab(θ) = −Lma + Lmv cos(2θ − 2π/3)

Lbc(θ) = −Lma + Lmv cos(2θ)

Lca(θ) = −Lma + Lmv cos(2θ − 4π/3)

(4.3.6)

3. Through Park’s transformation
Ld 0 0

0 Lq 0

0 0 L0

 = T s


Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

T−1s , (4.3.7)

one can show that the d-axis and q-axis inductances, Ld and Lq, can be ex-

pressed as follows [96, 98]:

Ld = Lsa + Lma + Lmv +
1

2
Lsv (4.3.8)

Lq = Lsa + Lma − Lmv −
1

2
Lsv (4.3.9)

Case study: A 12-slot 10-pole IPM machine is chosen as a case study to compare

the results obtained from the two above mentioned inductance calculation methods.

The cross-section of this example machine is shown in Figure 4.4.

The first step in method 2 mentioned above is to determine the self and mutual

inductance profiles versus rotor position utilizing the CE-FEA method. For this case
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Figure 4.4: Cross section of a 12-slot 10-pole PM machine.

study, the constructed self- and mutual-inductances were compared to the inductance

profiles from TS-FEA simulations, and the results are shown in Figures 4.5 and 4.6.

Based on Fourier analysis of the inductance profiles and the reconstruction of these

inductance profiles utilizing expression (4.3.6), new inductance waveforms can be ob-

tained, which only include the dc and second-order harmonic components. These

waveforms were validated by the simulation results from the TS-FEA as shown in

Figures 4.7 and 4.8. This slight difference in profiles is resulting from the inherently

more rigorous nature of the TS-FEA computations in comparison to the cruder sam-

pling rate of the CE-FEA approach. From these profiles, the average (dc) value and

the peak value of the second-order harmonic of the self- and mutual-inductances, see

equation (4.3.6), were provided as follows: Lsa = 18.00mH, Lsv = −2.63mH, Lma =

0.71mH, and Lmv = −0.72mH. Utilizing expressions (4.3.8) and (4.3.9), the d- and
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Figure 4.5: Self-inductance construction using the CE-FEA (validated by the TS-
FEA).
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Figure 4.6: Mutual-inductance construction using the CE-FEA (validated by the
TS-FEA).
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Figure 4.8: Mutual-inductance construction using Equ. (4.3.6) (validated by the
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Table 4.1: Comparison of inductances, Ld and Lq. The test values of inductances
were measured in the open circuit condition.

Test Method 1 Method 2
Ld [mH] 10.59 11.8 11.12
Lq [mH] 13.36 15.5 13.83
Saliency ratio, Lq/Ld 1.26 1.31 1.24

q-axes inductances were calculated, and the results are as follows: Ld = 16.68 mH,

and Lq = 20.74mH. Compared with the experimental results, these inductance val-

ues should be divided by 1.5. This ratio is from the inherent nature of the internal

solver of the Maxwell software packages. The comparison between the two inductance

calculation methods are provided in Table 4.1. In this table, the tested inductances

were measured under the open circuit condition. From this table, one can observe

that method 2 for inductance calculations provides higher accuracy than method 1.

4.4 Maximum Torque per Ampere

Here, the electromagnetic torque, Te, developed by the PM machine can be expressed

as follows:

Te =
3

2

P

2
(λdiq − λqid) (4.4.1)

where P is the number of poles. Substituting (4.3.2) into the above expression, the

electromagnetic torque can be re-expressed as follows:

Te =
3

2

P

2
(λpmiq + (Ld − Lq)idiq) . (4.4.2)
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Figure 4.9: Two components in the electromagnetic torque: magnetic (synchronous)
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This torque expression identifies two torque components: (1) the magnetic (align-

ment/synchronous) torque component 3
2
p
2
λpmiq, and (2) the reluctance torque com-

ponent 3
2
P
2

(Ld − Lq)idiq.

Example: a 10 hp PM machine with parameters: P = 10, Irms = 12A, λpm =

0.342, Ld = 11mH, and Lq = 19mH. The average electromagnetic torque varies with

the torque angle, γ, as shown in Figure 4.9. In this figure the gross electromagnetic

torque and its two components, the magnetic (alignment/synchronous) torque and

the reluctance torque, mentioned above are shown separately.

In an SPM machine, the reluctance torque is very small or negligible due to the

almost equal magnitudes of the d-axis inductance, Ld, and q-axis inductance, Lq.

Thus the torque angle for the MTPA load condition is generally around 90o for SPM

machines. However, for IPM machines, because of the existence of the reluctance
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component, the torque angle for the MTPA load condition is usually greater than

90o. One should notice that in an IPM machine, Lq > Ld, unlike a wound-field,

salient-pole, synchronous machine, or an SPM machine.

Substituting for id = I cos(γ) and iq = I sin(γ) into expression (4.4.2), the elec-

tromagnetic torque expression can be reformulated as follows:

Te =
3

2

P

2

(
λpmI sin(γ) + (Ld − Lq)I2 sin(γ) cos(γ)

)
. (4.4.3)

Equating the derivative of the electromagnetic torque expression to zero, equation

(4.4.4), can yield the angle, γ, that gives the maximum torque, as given in expression

(4.4.5) below.

dTe

dγ
=

3P

4

[
λpmI cos(γ) + (Ld − Lq)I2(2 cos2(γ)− 1)

]
= 0, (4.4.4)

γ = arccos

−λpmI +
√
λ2pmI

2 + 8(Ld − Lq)2I4

4(Ld − Lq)I2

 . (4.4.5)

This is the expression used to obtain the torque angle for the MTPA load condition.

4.5 Core Loss Calculation Method

4.5.1 Specific Core Loss Coefficients

Generally, the specific core loss data for steel laminations can be tested and obtained

from different test equipment, which include an Epstein frame, a toroid tester, a single



87

sheet tester, etc. [101]. These specific core loss test data can be used to estimate the

material core loss coefficients. The modified Steinmetz formula for the specific core

loss with the unit of Watts, W/lb or W/kg, is given as follows [102]:

wFe = khfB
α + kef

2B2 + kaf
1.5B1.5, (4.5.1)

where, kh, ke and ka, are the so-called hysteresis, eddy-current and excess loss coeffi-

cients, respectively. While, f , is the frequency in Hz of the sinusoidal field excitation,

and B is the peak value of the field flux density in Tesla for the corresponding fre-

quency.

In the ANSYS Maxwell software, the above formula is utilized to calculate core

losses, for which the power exponent of the hysteresis losses, α, is equal to 2, and

the excess loss is neglected. Based on the experimental results of specific core losses

versus different frequencies, constant coefficients for the hysteresis and eddy-current

core losses can be calculated, which are used to estimate the total core losses under

different load conditions.

In the CE-FEA method, the excess loss is neglected, and the CAL2 model [103]

can be used to estimate the core loss coefficients kh(f,B) and ke(f,B), which are

used in the following specific core loss calculation model:

wFe = kh(f,B)fB2 + ke(f,B)(fB)2, (4.5.2)

where, the coefficients, kh and ke, are functions of the peak flux density, B, and the
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frequency, f . Here, f stands for a range of frequencies.

Previously obtained results [104–106] demonstrated that, for certain frequency

ranges, the kh and ke coefficients can be considered as functions of the flux density

only. Thus, the third-order polynomials for these two coefficients with the lowest

relative error values, as validated in [104–106], were utilized in the CE-FEA method,

which are given as follows:kh(B) = kh3B
3 + kh2B

2 + kh1B + kh0

ke(B) = ke3B
3 + ke2B

2 + ke1B + ke0

(4.5.3)

Example: for the core material used in a 210-frame PM machine, the experimen-

tal results of specific core losses versus four different frequencies are available. The

coefficients for the hysteresis and eddy-current core losses were estimated and shown

in Figures 4.10 (a) and (b), respectively.

The specific core loss comparison between the experimental results and the CAL2

model interpolation and their relative error are provided in Figures 4.11 and 4.12,

respectively. Here, kh(f,B) and kc(f,B) are calculated for a range of frequencies of

50Hz, 60Hz, 100Hz and 400Hz. From Figure 4.12, one can observe that the CAL2

model has a reasonable accuracy for estimating the specific core losses using the

changeable hysteresis and eddy-current core loss coefficients.
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90

0 0.5 1 1.5 2
0

10

20

30

40

50

60

Flux density [T]

S
pe

ci
fic

 c
or

e 
lo

ss
es

 [W
/lb

]

 

 
Exp 50Hz
CAL2 50Hz
Exp 60Hz
CAL2 60Hz
Exp 100Hz
CAL2 100Hz
Exp 400Hz
CAL2 400Hz

Figure 4.11: Specific core loss comparison between test and CAL2 model interpola-
tion.

0 0.5 1 1.5 2
−10

−5

0

5

10

Flux density [T]

R
el

at
iv

e 
er

ro
r 

[%
]

 

 

50Hz
60Hz
100Hz
400Hz

Figure 4.12: Relative error between W/lb losses calculated from test and CAL2 model
interpolation.



91

4.5.2 Flux Densities in the Stator Core

The symmetry property of the magnetic circuits of electric machines results in the

following relationships for the radial (r) and tangential (t) components, Br,t, of stator

core flux densities at different rotor positions [47]:

Br,t

((
t+

ksθs
ω

)
, r, θ

)
= Br,t (t, r, (θ + ksθs)) (4.5.4)

where, t, is time, and ks, is a positive integer, while θs, is the slot-pitch in electrical

measure (electrical radians), as shown in Figure 4.13. At the middle of the back

iron/yoke, for example, at point 1 in Figure 4.13, the flux lines are mostly along the

tangential direction. Thus, the best way to calculate the flux density at that point

is by utilizing the concept of “search coils” with a single turn around the yoke. The

same approach is used to obtain the flux densities in the middle of a stator tooth, for

instance, such as at point 2 in Figure 4.13.

Using several steps of FEA solutions, the flux density waveforms in the stator

teeth and yoke can be reconstructed [47]. The Fourier series of the elemental flux

densities can thus be created as follows:

Br,t(θ) =
nmax∑
n=1

Bn cos(nθ + φn) (4.5.5)

where, n, is the harmonic order, in which Bn and φn are the amplitude (peak) and the

phase angle of the flux density for the nth harmonic, respectively. Utilizing the poly-

nomial functions in equations (4.5.3) and the flux density amplitude of each harmonic



92

Figure 4.13: Magnetic circuit symmetry and sampling points of flux densities in the
stator core. (For the purpose of the core loss calculation, the junction area between
the tooth and yoke is taken into account in the yoke area calculation.)

obtained above, the coefficients, kh and kc, can be obtained. These coefficients can

be substituted into expression (4.5.2) with the corresponding frequency to estimate

the specific core losses of stator teeth and yoke separately.

4.5.3 Total Core Losses in the Stator

Based on the specific core loss coefficients and constructed flux densities in the stator

teeth and yoke, the total stator core losses can be calculated according to the following

steps:

1. The specific hysteresis harmonic losses and eddy-current losses in the stator
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teeth and yoke are calculated as follows:

wh =
nmax∑
n=1

kh(Bn)(nf1)B
2
n, W/kg or W/lb (4.5.6)

we =
nmax∑
n=1

kc(Bn)(nf1)
2B2

n, W/kg or W/lb (4.5.7)

where, f1, is the fundamental frequency.

2. The total core losses in the stator can thus be calculated as follows:

PFe stator = (wh tooth + we tooth)mtooth + (wh yoke + we yoke)myoke, (4.5.8)

where, mtooth and myoke, are the mass of the stator teeth and yoke, respectively.

4.6 Skew Effects

In this section, the method to take account of the skew effect into the performance

calculation using a single CE-FEA evaluation is described. A non-skewed machine is

simulated with a 2D-FEA solver assuming the sine-wave current supply. Based on the

performance results of this non-skewed machine, the open circuit back-emf/induced

voltage and the torque profile with skew can be calculated [107].

4.6.1 Flux Linkages and Induced Voltages

There are two methods to take account of the skew effect in the calculation of flux

linkages and induced voltages.
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Figure 4.14: Representation of the stator and/or rotor skew [108].

Method 1: in this method, the waveforms of flux linkages are phase shifted and

averaged over a rotational angle equal to the skew angle, ρ, as shown in the Figure

4.14 [107]. This process can be expressed as follows:

λa =
1

ρ

ρ
2∫

− ρ
2

λa(θ + α)dα. (4.6.1)

Thus, the back-emf/induced voltage can be deduced from the derivative of the flux

linkage, λa.

Method 2: in this method, the harmonic skew factor is applied to the individual

harmonics of the flux linkage and induced voltage waveforms. The harmonic skew

factor is provided in the following expression [108]:

ksn =
sin
(
nρ
2

)
nρ
2

(4.6.2)

Application of the harmonic skew factors to the Fourier series of the flux linkage

and induced voltage waveforms that are readily available from a single non-skewed
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Figure 4.15: Open circuit back-emf at 1800 r/min of the PM machine in Figure 4.4.

CE-FEA evaluation is depicted as follows [107]:

λa =
3s−1∑
n=1

ksnλn cos(nθ + φn), (4.6.3)

ea = ω
3s−1∑
n=1

nksnλn sin(nθ + φn). (4.6.4)

where, s, is the number of FEA solutions in the CE-FEA.

Example: A PM machine with 12-slot and 10-pole is shown in Figure 4.4. The

open circuit back-emf waveforms at 1800 r/min are calibrated in Figure 4.15, which

shows that method 2 with the harmonic skew factor provides a more accurate result in

comparison with method 1. Thus, it is recommended that method 2 be applied to the

calculation of flux linkages and induced voltages. Utilizing method 2 to calculate the
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Figure 4.16: Induced voltages under a load condition.

induced voltage under a load condition, the obtained voltage waveform is compared

with the time-stepping sliced transient FEA results, which are shown in Figure 4.16.

4.6.2 Torque Profiles

When implementing the CE-FEA method with ANSYS Maxwell software packages,

there are three methods to evaluate the torque profiles including the skew effects.

Method 1: this method utilizes the field calculation function in the Maxwell

software to obtain the energy profiles to calculate the torque profile, which is given

in the following expression:

Te =
P

2

(
ia
dλa
dθ

+ ib
dλb
dθ

+ ic
dλc
dθ

)
− dW

dθ
(4.6.5)
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where, λa, λb and λc, are the three phase flux linkages, which can be calculated by

equation (4.6.3). Here, W , is the energy profile including the skew effect, which can

be expressed in a periodic Fourier series as follows [107]:

W =
3s−1∑
n=1

ksnWn cos(nθ + φn). (4.6.6)

This method takes longer simulation time when implemented with ANSYS Maxwell

software, thus it was not utilized in this work.

Method 2: in this method, the harmonic skew factor is applied to the torque

profile obtained from a single CE-FEA evaluation. The procedure is as follows:

• A Fourier analysis is conducted on the torque profile obtained from a single

CE-FEA evaluation, from which one obtains the harmonic expression for the

torque as follows:

Te = Tavg +
∑
n=6,12

Tn cos (nωt+ φn) (4.6.7)

• When considering the harmonic skew factor, the average component in the

torque profile should be multiplied by the fundamental skew factor, which is

deduced in the Appendix I. Thus, the torque profile with skew effect is expressed

as follows:

Te = ks1Tavg +
∑
n=6,12

0.5(ks(n−1) + ks(n+1))Tn cos (nωt+ φn) . (4.6.8)
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Figure 4.17: Torque profiles with skew effects of a 12-slot 10-pole PM machine.

Method 3: alternatively, the torque including the skew effect also can be esti-

mated by phase shifting, integrating, and averaging the torque profile obtained from

a single CE-FEA evaluation [107], which can be expressed as follows:

Te =
1

ρ

ρ
2∫

− ρ
2

Te(θ + α)dα. (4.6.9)

Example 1: A 12-slot 10-pole PM machine is shown in Figure 4.4. The calculated

torque profiles with skew effects are compared with the result from the multi-sliced

transient FEA simulation, which are shown in Figure 4.17. Their average torques and

torque ripples are provided in Table 4.2. In this figure, the torque calculated from the

multi-sliced transient FEA is the most accurate waveform for the real machine with

skew. Here, the multi-sliced transient FEA means that several FEA evaluations were
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Table 4.2: Average torque and torque ripples of a 12-slot 10-pole PM machine. Errors
are calculated by Sliced TSFEA−method 2 or 3

Sliced TSFEA
100%.

Calculation method CE-FEA CE-FEA Multi-sliced
method 2 method 3 transient FEA

Average torque [Nm] 41.4 41.9 41.4
Error [%] 0.00 -1.21
Torque ripple [%] 1.8 1.8 2.4
Error [%] 25 25

Figure 4.18: Cross-section of a 36-slot and 6-pole PM machine.

performed at the same torque angle with different skew angle shift, from which all

the induced voltage and torque profiles were added up and then averaged to achieve

the profiles with the skew effect.

Example 2: A 36-slot 6-pole PM machine is shown in Figure 4.18. The com-

parison between the torque profiles is provided in Figure 4.19, and the corresponding

average torques and torque ripples are given in Table 4.3.
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Figure 4.19: Torque profiles with skew effects of a 36-slot 6-pole PM machine.

Table 4.3: Average torque and torque ripples of a 36-slot 6-pole PM machine. Errors
are calculated by Sliced TSFEA−method 2 or 3

Sliced TSFEA
100%.

Calculation method CE-FEA CE-FEA Multi-sliced
method 2 method 3 transient FEA

Average torque [Nm] 67.2 67.9 67.5
Error [%] 0.4 -0.6
Torque ripple [%] 1.8 2.8 3.7
Error [%] 51.3 24.3
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The two examples presented above include two different types PM machines. One

is a PM machine with FSCWs, and another is a PM machine with integer-slot dis-

tributed windings. From the results of both case studies, one can observe that the

CE-FEA with method 2 can be used to calculate the average torque, and CE-FEA

with method 3 can be utilized to estimate the torque ripple. The most accurate

method is the CE-FEA with method 1, which has been validated in [107]. However,

this method takes longer time because of the “field calculation function” in the AN-

SYS Maxwell software package. Thus, when implementing the CE-FEA method with

such a FEA software in a population-based design optimization problem, method 1,

as shown in expression (4.6.5), is not recommended.

4.7 Parametric Modeling of Permanent Magnet

Machines

A requisite step for the automated design optimization of PM machines is building a

robust and flexible parametric model for each design optimization problem. In this

section, the parametric modeling of PM machines using FEA software packages is

described. In order to increase the robustness of the parametric model for the design

optimization procedure, several geometric parameters are ratio parameterized, which

are described separately for the stator slots and rotor poles. Meanwhile, the outer
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Figure 4.20: Cross-section and geometric parameters of stator open slot.

boundary of the whole model was extended by 20% of the stator outer radius in the

FEA model.

4.7.1 Stator Tooth and Slot Layouts

4.7.1.1 Open slot with wedges

For the stator with open slots and wedges shown in Figure 4.20, the descriptions of

all the geometric parameters are given as follows:

• Input stator geometric parameters:

1. Ns : number of stator slots

2. Rso : stator outer radius
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3. ksi: split ratio between the stator inner radius and outer radius, ksi =

Rsi/Rso

4. hg: airgap height

5. kwt: tooth width ratio, kwt = αwt/αs

6. dy: depth of yoke/back iron in the stator

7. dw: depth of wedges

8. ww: width of wedges

9. TL: tooth tip length

• Auxiliary calculated geometric variables and expressions can be deduced based

on the input geometric variables, which are listed as follows:

1. αs: slot pitch, mechanical degree, αs = 360/Ns

2. Rsi: stator inner radius, Rsi = ksiRso

3. wt: tooth width, wt = 2Rsi sin(kwtαs/2)

4. Rslot: stator slot bottom radius, Rslot = Rso − dy

5. OOs = wt/2/ sin(αs/2)
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For the points defining the outlines of the stator slot and yoke shown in Figure

4.20, the corresponding x-y position/coordinate functions are expressed as follows:xp1 = Rsi

yp1 = 0xp2 = Rso − dy

yp2 = 0xp3 = Rslot cos(AngP3), where AngP3 = αs/2− arcsin(wt/2/Rslot)

yp3 = Rslot sin(AngP3)xp4 = xp5 + xd, where xd = yp5(xp5−OOS)−yp17(xp5−OOS)
yp17+xp5−OOS

yp4 = yp5 − xdxp5 = xp6 + ww

yp5 = yp6xp6 = dw +Rsi − hg/2

yp6 = (xp6 −OOS) tan(αs/2) + TLxp7 = xp6

yp7 = (xp6 −OOS) tan(αs/2)xp8 = Rsi cos(αs/2− arcsin(wt/2/Rsi))

yp8 = Rsi sin(αs/2− arcsin(wt/2/Rsi))xp15 = xp5 + yp5

yp15 = 0xp17 = xp5

yp17 = (xp5 −OOS) tan(αs/2)

(4.7.1)
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Figure 4.21: Cross-section and geometric parameters of stator 1.

xp20 = xp4 + yp8 sin(αs/2)

yp20 = yp4 − yp8 cos(αs/2)xp21 = xp22 + yp8 sin(αs/2)

yp21 = yp22 − yp8 cos(αs/2)xp22 = xp2 − (xp2 −OOS) sin(αs/2) sin(αs/2)

yp22 = (xp2 −OOS) sin(αs/2) cos(αs/2)

(4.7.2)

4.7.1.2 Semi-closed slot type 1

For the semi-closed stator slot type 1 in Figure 4.21, several of the geometric param-

eters are the same as in the previous stator layout including: Ns, Rso, ksi, Rsi, kwt,

dy, αs, and wt. Extra geometric variables for the stator tooth tips, slot and coils are
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provided as follows:

• kso: slot opening ratio, kso = αso/(αs − αwt), thus, the slot opening angle:

αso = kso(αs − αwt)

• dt2 and dt3: tooth tip depths as shown in Figure 4.21

• wso: slot opening width, and, wso = 2Rsi sin (αso/2)

• dct: insulation thickness between the tooth and coil

• dcc: distance between two coils in one slot.

For the six points defining the outlines of the stator slot and yoke, the x-direction

of the coordinate should align on the x-axis (1) in Figure 4.21. Thus, the x-y position

functions for these points are expressed as follows:xp1 = Rsi

yp1 = 0xp2 = Rsi cos (αs/2− αso/2)

yp2 = Rsi sin (αs/2− αso/2)xp3 = (Rsi + dt2) cos (αs/2− αso/2)

yp3 = (Rsi + dt2) sin (αs/2− αso/2)xp4 = xp3 + dt3

yp4 = wt/2, where wt = 2x4 tan (αskwt/2)

(4.7.3)
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xp5 = Rso − dy

yp5 = wt/2xp6 = (Rso − dy) cos(αs/2)

yp6 = (Rso − dy) sin(αs/2)

(4.7.4)

Before introducing the functions for the four points defining the outline of the

coil, several auxiliary functions are defined in the following expressions:Rc1 =
√

(xp4 + dct)2 + (yp4 + dct)2

αc1 = 2 arctan
(
yp4+dct
xp4+dct

)
Rc2 =

√
(xp5 + dct)2 + (yp5 + dct)2

αc2 = 2 arctan
(
yp5+dct
xp5+dct

)
(4.7.5)

For the four points defining the outline of the coil, the x-direction of the coordinate

should align with the x-axis (2) in Figure 4.21. The x-y position functions of these

four points are expressed as follows:xc1 = Rc1 cos(αs/2− αc1/2)

yc1 = Rc1 sin(αs/2− αc1/2)xc2 = Rc2 cos(αs/2− αc2/2)

yc2 = Rc2 sin(αs/2− αc2/2)xc3 = Rso − dy − dct

yc3 = dcc/2xc4 = (Rsi + dt2 + dct) cos(αso/2), where αso = 2 arcsin
(
wso
2Rsi

)
yc4 = dcc/2

(4.7.6)
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Figure 4.22: Cross-section and geometric parameters of stator 2.

4.7.1.3 Semi-closed stator slot type 2

Another type of semi-closed stator slot is shown in Figure 4.22. The only geometric

difference from stator type 1 exists at the bottom of the slot, and the corresponding

radius of this bottom arc is defined as Rsb. The distance between the stator inner

radius and the center point of the bottom arc of the slot is ds.

For the five points defining the outlines of the stator slot and yoke in Figure 4.22,

the x-y position functions are expressed as follows:xp1 =
√
R2
si − (wso/2)2

yp1 = wso/2xp2 = xp1 + dt2

yp2 = yp1xp3 = xp2 + dt3

yp3 = yp2 + dt3/ tan(β)
xp4 = Rsi + ds −Rsb

yp4 = Rsb, where, Rsb =
(Rsi+ds) tan(αs2 )− wt

2 cos(αs2 )

1+tan(αs2 )

(4.7.7)
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Figure 4.23: Cross-section and geometric parameters of the V-type PM layout with
four segments per pole.

xp5 = Rsi + ds

yp5 = 0
(4.7.8)

4.7.2 Rotor Pole Layouts

4.7.2.1 V-type PM layout with four segments per pole

For the V-type PM layout with four segments per pole as shown in Figure 4.23, the

descriptions of all the geometric parameters are given as follows:

• Input rotor geometric variables:

1. P : number of rotor poles
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2. Rri: rotor inner radius/shaft radius

3. hpm: PM slot height along the magnetizing direction including the clear-

ance, hpm = hpmi + hc

4. wrad: radial bridge width of the flux barrier on the top of PM

5. wFe1: bridge width between two flux barriers in the middle of one pole

6. wFe2: bridge width between two PM segmentations

7. hc: PM clearance height along the magnetizing direction

8. dq: depth of the flux barrier on the top of PM

9. τpp: pole arc, elec. deg.

10. kdpm: PM depth ratio, kdpm = dpm
Rro−Rri

11. kwpm: PM width ratio, kwpm = wpm
wpm max

, where,

wpm max =
√

(yq3 − wFe1/2)2 + (xq3 − (Rro − dpm))2. Here, xq3 and yq3 are

given in the following coordinate functions.

12. kwq: ratio of the bridge width between two flux barriers of two adja-

cent poles, kwq = wq
wq max

, where, wq max = 2(
√
x2q30 + y2q30) sin(αp/2 −

arctan(yq30/xq30)). Here, xq30 = xq3 − hpm sin(τP/2), and yq30 = yq3 +

hpm cos(τP/2).

• Auxiliary calculated geometric variables and expressions can be deduced based

on the input geometric variables, which are listed as follows:
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1. αp: pole pitch, mechanical degree, αp = 360/P

2. Rro: rotor outer radius, Rro = Rsi − hg

3. wpm: PM width of one segmentation, wpm = kwpmwpm max

4. wq: bridge width between two flux barriers of two adjacent poles, wq =

kwqwq max

5. hpmi: PM height along the magnetizing direction, hpmi = hpm − hc

6. τp = 2 arctan
(

yq3−wFe1/2
dpm−(Rro−xq3)

)
For the sixteen points defining the outlines of the geometry of the rotor cross-

section shown in Figure 4.23, the x-y position/coordinate functions can be expressed

as follows: xq1 = xq2 − hpm sin (τp/2)

yq1 = wFe1/2xq2 = Rro − dpm

yq2 = wFe1/2xq3 = (Rro − wrad) cos(τpp/2)

yq3 = (Rro − wrad) sin(τpp/2)xq4 = (Rro − wrad) cos
(
αp/2− arcsin

(
wq

2(Rro−wrad)

))
yq4 = (Rro − wrad) sin

(
αp/2− arcsin

(
wq

2(Rro−wrad)

))
xq5 = xq4 − dq cos(αp/2)

yq5 = yq4 − dq sin(αp/2)

(4.7.9)
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xq6 = xq2 + (2wpm + wFe2) cos(τp/2)

yq6 = yq2 + (2wpm + wFe2) sin(τp/2)xq7 = xq6 − hpm sin(τp/2)

yq7 = yq6 + hpm cos(τp/2)xq8 = xq7 − wpm cos(τp/2)

yq8 = yq7 − wpm sin(τp/2)xq9 = xq8 + hpm sin(τp/2)

yq9 = yq8 − hpm cos(τp/2)xq10 = xq2 + wpm cos(τp/2)

yq10 = yq2 + wpm sin(τp/2)xq11 = xq10 − hpm sin(τp/2)

yq11 = yq10 + hpm cos(τp/2)xq12 = xq2 − hpm sin(τp/2)

yq12 = yq2 + hpm cos(τp/2)xq13 = xPM1 = xq2 − hpmi sin(τp/2)

yq13 = yPM1 = yq2 + hpmi cos(τp/2)xq14 = xPM4 = xq10 − hpmi sin(τp/2)

yq14 = yPM4 = yq10 + hpmi cos(τp/2)xq15 = xPM5 = xq9 − hpmi sin(τp/2)

yq15 = yPM5 = yq9 + hpmi cos(τp/2)xq16 = xPM8 = xq6 − hpmi sin(τp/2)

yq16 = yPM8 = yq6 + hpmi cos(τp/2).

(4.7.10)
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Figure 4.24: Cross-section and geometric parameters of the spoke-type PM layout.

4.7.2.2 Spoke-type PM layout

The input geometric parameters for the spoke-type PM layout shown in Figure 4.24

are listed as follows:

1. Rsh: rotor shaft radius

2. dbr: the depth of bridges on top of the magnets

3. krc: an auxiliary ratio of the magnet width, wpm. It is defined as krc = (Rro −

Rpm)/(Rro−Rsh), where, Rro, Rpm and Rsh are the rotor outer radius, magnet

bottom radius and shaft radius, respectively, see Figure 4.24. Here, Rro =

Rsi − hg.
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4. kapm: the magnet angle ratio, kapm = αpm/αpm max, where, αpm max = αp −

2 arcsin(1/2/Rpm). Here, Rpm = Rro − krc(Rro −Rsh).

5. kwbr: the magnet bridge width ratio, kwbr = wbr/hpm, where,

hpm = 2Rpm sin(αpm/2). Thus, the top bridge width of the PM, wbr = kwbrhpm.

For the six points defining the geometry of the rotor cross-section in Figure 4.24,

the x-y position functions are expressed as follows:xq1 = xq4 − dbr − wpm

yq1 = hpm/2xq2 = xq4 − dbr

yq2 = hpm/2xq3 = xq4 − dbr

yq3 = wbr/2xq4 =
√
R2
ro − (wbr/2)2

yq4 = wbr/2xq5 = xq2

yq5 = yq2 + hcxq6 =
√
R2
pm − y2q6

yq6 = yq1 + hc

(4.7.11)
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Figure 4.25: Cross-section and geometry parameters of the morphing spoke-V-type
PM layout.

4.7.2.3 Morphing spoke-V-Type PM layout

A morphing parametric model was developed for the spoke-V-type (SV) PM layout

as shown in Figure 4.25. The input geometric parameters are described as follows:

• d1: distance between the PM outer flux barrier and the rotor outer circle

• d2: depth of the PM outer flux barrier

• wq: width of the bridge between two adjacent PM segments along the q-axis

• β: PM tilt angle

• αfb: flux barrier spanning angle
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• d3: depth of the non-magnetic material for the PM inner flux barrier

• kwpm: PM width ratio, wpm/wpm max. Here, wpm max is the maximum possible

width for PM segment limited by the other geometric variables as shown in

Figure 4.25.

Based on these input variables, some calculated auxiliary geometric variables and

expressions can be deduced, which are listed as follows:

• Rr1: radius of point 1, Rr1 = Rro − d1

• α1: spanning angle between point 1 and x-axis, α1 = arctan(yq1/xq1)

• hpm: PM height along the magnetizing direction,

hpm =
√

(xq2 − xq1)2 + (yq2 − yq1)2 cos
(
β + arctan

(
xq1−xq2
yq1−yq2

))
For the eleven points defining the geometry of the rotor cross-section in Figure

4.25, the x− y position functions are expressed as follows:xq1 =
√
R2
r1 − (wq/2)2

yq1 = wq/2xq2 = Rr2 cos(αfb + α1)

yq2 = Rr2 sin(αfb + α1)xq3 = xq2 − d2 cos(β)

yq3 = yq2 + d2 sin(β)xq4 = xq2 − hpm sin(β)

yq4 = yq2 − hpm cos(β)

(4.7.12)
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xq5 = xq4 − d2 cos(β)

yq5 = yq4 + d2 sin(β)xq6 = xq3 − wpm cos(β)

yq6 = yq3 + wpm sin(β)xq7 = xq6 − hpm sin(β)

yq7 = yq6 − hpm cos(β)xq8 = xq6 − d3 cos(β)

yq8 = yq6 + d3 sin(β)xq9 = xq7 − d3 cos(β)

yq9 = yq7 + d3 sin(β)xq10 =
√
x2q6 + y2q6 cos(αp/2− arctan(yq6/xq6)) cos(αp/2)

yq10 =
√
x2q6 + y2q6 cos(αp/2− arctan(yq6/xq6)) sin(αp/2)xq11 =

√
x2q9 + y2q9 cos(αp/2− arctan(yq9/xq9)) cos(αp/2)

yq11 =
√
x2q9 + y2q9 cos(αp/2− arctan(yq9/xq9)) sin(αp/2)

(4.7.13)

When the q-axis bridge width, wq, and the PM tilt angle, β, are not equal to

zero, the SV-PM parametric model can be used as a V-type PM layout as shown in

Figure 4.26 (a). At the extreme, for this SV-PM parametric model, wq and β equal

to zero, the layout morphs into a spoke-type PM configuration, as shown in Figure

4.26 (b). It should be noted that for such constructions the material for the bottom

flux barrier has to be non-magnetic in order to prevent substantial magnetic leakage.

When wq and β are not equal to zero, the SV-PM parametric model can be used as

a V-type PM layout as shown in Figure 4.26 (a).
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(a) V-type (b) Spoke-type

Figure 4.26: Morphing cross-sections of the SV-PM layout parametric model.

4.7.2.4 Morphing flat-V-type PM layout

Another parametric model can morph between the flat bar-type and V-type PM

layout, which is named FV-PM model as shown in Figure 4.27. This model has the

same input geometric variables, except the PM width ratio, kwpm, which is set up

equaling to 1 for this FV-PM parametric model.

The x−y position expressions for points 1 through 3 and 6 through 9 are the same

as in the previous morphing SV parametric model. The expressions for the other two

points, 4 and 5, are given as follows:xq4 = xq5 + (yq5 − wq/2) tan(90o − β)

yq4 = wq/2xq5 = xq3 − hpm cos(90o − β)

yq5 = yq3 − hpm sin(90o − β)

(4.7.14)

where, hpm = yq3 − wq/2.

For the FV-PM parametric model illustrated in Figure 4.27, and a PM tilt angle,
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Figure 4.27: Cross-section and geometry parameters of the morphing flat-V-type PM
layout.

β, of 72o, the rotor geometry corresponds to a flat bar-type PM arrangement as shown

in Figure 4.28 (a). For β < 72o, the geometry morphs to a generic V-type PM layout

as shown in Figure 4.28 (b).

4.8 Summary

This chapter focused on the implementation techniques for the CE-FEA method in

the ANSYS Maxwell software packages. The calculation method for PM flux linkage

and dq-axes inductances utilizing the CE-FEA method is presented first. These

parameters can be utilized to calculate the torque angle for the MTPA load condition

for each design in the automated design optimization procedure. The CE-FEA based
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(a) Flat bar-type (b) V-type

Figure 4.28: Morphing cross-sections of the FV-PM layout parametric model.

calculation procedure for the stator core losses was also presented in this chapter.

Several methods for taking account of the skew effects into the calculation of the

phase flux linkages, phase induced voltages and torque profiles were discussed. The

accuracy of the CE-FEA method was validated by several case studies provided above

and presented in a previous publication [47] by Sizov et. al.

This fast and accurate electromagnetic field analysis method, the CE-FEA tech-

nique, and the associated robust parametric modeling for PM machines with sine-wave

current supplies were utilized in conjunction with design optimization techniques to

achieve the desired highly efficient automated design optimization process subject of

the next chapter. Therefore, in the next chapter, design optimization techniques will

be investigated and implemented for PM machines with different geometric topolo-

gies.
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CHAPTER 5

DESIGN OPTIMIZATION METHODS OF

DESIGN OF EXPERIMENTS AND

DIFFERENTIAL EVOLUTION

In this chapter, a combined design optimization method utilizing design of experi-

ments (DOE) and differential evolution (DE) algorithms was investigated and im-

plemented to provide practical insights in the multi-objective design optimization of

PM machines with different rotor topologies. The basic principle of DOE and DE

algorithms are introduced in sections 5.2 and 5.3, respectively. In section 5.4, this

combined design optimization method was implemented on four PM machine case

studies. All these PM machines have the combination of 12 slots and 10 poles with

different rotor geometries, which include two different V-type, spoke-type, and flat

bar-type PM layouts. Finally, a systematic comparison between these PM machines

were performed.
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5.1 Introduction

Based on the literature search in section 1.2.3 in Chapter 1, a combined DOE and

DE design optimization method was developed and investigated in this Chapter. The

detailed procedure for the new method is depicted in the flowchart of Figure 5.1.

In this combined design optimization method, the Central Composite Design (CCD)

approach combined with the Response Surface Method (RSM) was used to perform a

sensitivity study. Based on the results, the design variables without significant effect

on the objectives can be eliminated from the global DE optimization. The study is

also useful for establishing the ranges for the selected design variables. The overall

process contributes to the reduction of the simulation time and to the convergence

of the DE algorithm. The DOE procedures are only desirable for a total number of

design variables greater than five. A CE-FEA technique [46, 47] was employed to

evaluate the electromagnetic performance of the candidate designs. This combined

design optimization method was implemented on four PM machine case studies with

different rotor topologies: namely the V-SV-shape, the spoke-type, the flat bar-type,

and the V-FV-shape, which are shown in Figure 4.26 (a), 4.26 (b), 4.28 (a), and 4.28

(b), respectively. The DE optimization results enable the systematic rationalized

comparison between such four types of PM machines. A discussion on the relative

merits of each topology is included.
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Figure 5.1: Combined design optimization procedure. The performance estimation is
based on the computationally efficient - finite element analysis (CE-FEA).
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5.2 Design of Experiments and Response Surface

Methodology

The DOE and RSM approaches are statistical and mathematical techniques useful

for developing, improving and optimizing processes and products. In general, sup-

pose that the electric machine designer is concerned with a motor/generator’s per-

formances, e.g. the efficiency, material cost, torque ripple, etc. These performances

can be defined as objectives, y, which depend on the independent geometric variables

(including the stator, rotor , airgap, and stack length). These geometric variables can

be defined as the input variables X = [x1, x2, . . . , xDv ], where Dv is the number of

geometric design variables.

The relationship between the response/objective and design variables is given as

follows:

yn = f(x1, x2, . . . , xDv) + ε, (5.2.1)

where,x1, x2, . . ., xDv , are usually called the natural variables, because they are

expressed in the natural units of measurement, such as length unit, mm, and angle

degree for electric machines. It is convenient to transform the natural variables to

coded variables C = [c1, c2, . . . , cDv ], which are defined as follows:

C =
X − (Xmin +Xmax)/2

(Xmax −Xmin)/2
. (5.2.2)
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These coded variables are defined to be dimensionless with zero mean and the same

spread or standard deviation. In terms of the coded variables, the true response

function can be reformulated as follows:

y = f(c1, c2, . . . , cDv), (5.2.3)

In many cases, either a first-order or a second-order model for expression (5.2.3)

can be used. The form of the first-order model only shows the main effects of in-

put/design variables. If there is an interaction between these design variables, the

second-order polynomial function is preferred, which is presented as follows:

y = β0 +
Dv∑
i=1

βici +
Dv∑
i=1

βiic
2
i +

Dv∑
i=1

Dv∑
j=i+1

βijcicj, (5.2.4)

where, β0, βi, βii and βij, are the regression coefficients for the coded design variables

ci and cj.

The second-order polynomial model is widely used in the RSM technique for

several reasons [50], which are summarized as follows:

1. The second-order model is very flexible, which can take on a wide variety of

functional forms. Thus, it will often work well as an approximation to the true

response surface.

2. It is easy to estimate the regression coefficients in the second-order model by

using the method of least squares.
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3. There is considerable practical experience indicating that second-order models

work well in solving real response surface problems.

The second-order model, as given in expression (5.2.4), can be analyzed by multiple

linear regression techniques.

For example, a second-order response surface model for two design variables is

given as follows:

y = β0 + β1c1 + β2c2 + β11c
2
1 + β22c

2
2 + β12c1c2 + ε, (5.2.5)

Let β3 = β11, c3 = c21, β4 = β22, c4 = c22, β5 = β12, and c5 = c1c2, then the expression

(5.2.5) can be rewritten as follows:

y = β0 + β1c1 + β2c2 + β3c3 + β4c4 + β5c5 + ε, (5.2.6)

This is a linear regression model. In general, if the regression coefficients of a model

are linear, then this model is a linear regression model, regardless of the shape of the

response surface that it generates.

5.2.1 Estimation of Regression Coefficients

In a multiple linear regression model, the method of least squares is typically used

to estimate the regression coefficients. Suppose that the DOE method can generate

Nr designs, there will be Nr responses for each design objective, which are y1, y2, . . .,
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yNr . For each response, the second-order model can be expressed as follows:

yi = β0 +
Dv∑
j=1

βjcij + εi, i = 1, 2, . . . , Nr (5.2.7)

This expression can be written in matrix notation as follows:

y = C β + ε (5.2.8)

where, y =


y1

y2
...

yNr

, C =


1 c11 c12 · · · c1Dv

1 c21 c22 · · · c2Dv
...

...
...

...

1 cNr1 cNr2 · · · cNrDv

, and ε =


ε1

ε2
...

εNr

.

The least squares function is expressed as follows:

L =
Nr∑
i=1

ε2i (5.2.9)

= (y − Cβ)′(y − Cβ) (5.2.10)

= y′y − 2β′C ′y + β′C ′Cβ (5.2.11)

The least squares estimators, b, must satisfy the following expression:

dL

dβ

∣∣∣∣
b

= −2C ′y + 2C ′Cb = 0 (5.2.12)

Thus, the least squares estimator of β is b, which can be expressed as follows:

b = (C ′C)−1C ′y (5.2.13)

Here, the fitted regression model is

ŷ = Cb. (5.2.14)
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Figure 5.2: Parametric model of the 12-slot 10-pole spoke-type PM machine.

Thus the above is the computation method for the regression coefficients for the

second-order polynomial function.

5.2.2 Central Composite Design

The model described by (5.2.4) contains [1 + 2Dv +Dv(Dv + 1)/2] regression param-

eters. Therefore, the set of numerical experiments must comprise at least [1 + 2Dv +

Dv(Dv + 1)/2] distinct design samples/candidates. In addition, the design set must

include at least three levels for each design variable to estimate the pure quadratic

terms in equation (5.2.4). When the CCD method is implemented for generating a set

of designs, the resulting are five levels, [−α,−1, 0, 1, α] for the coded design variables.

This method will be explained through a case study for a 12-slot 10-pole spoke-

type PM machine with three design variables as shown in Figure 5.2. The three

design variables are the PM width, wpm, PM height along the magnetizing direction,
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Table 5.1: Definitions and ranges for three independent design variables of the spoke-
type PM machine depicted in Figure 5.2.

Variables Definition Min Max
wpm PM width [in] 0.50 1.0
hpm PM height [in] 0.20 0.30
wT stator tooth width [in] 0.25 0.435

hpm, and stator tooth width, wT , for which the corresponding value ranges are listed

in Table 5.1. Two design objectives were investigated including the material cost and

losses defined in expressions (5.2.15) and (5.2.16), respectively, which are listed as

follows:

1. minimize the material cost with a weighted function,

y1 = min(cPMmPM + cCumCu + cFemFe), (5.2.15)

where, mPM , mCu and mFe are the masses of PM, copper and laminated steel,

respectively, and cPM , cCu and cFe are their corresponding material cost’s coef-

ficients per unit of mass.

2. minimize the losses including the copper loss, PCu, stator core loss, PFe, and

mechanical loss Pme:

y2 = min(PCu + PFe + Pme), (5.2.16)

The CCD method generated 20 designs, which are given in Table 5.2. Utilizing the

method of least squares described in the previous section, the regression coefficients,
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Table 5.2: Designs generated by the CCD method. x1 and c1: wpm; x2 and c2: hpm;
x3 and c3: wT .

Designs x1 x2 x3 c1 c2 c3 Cost Losses
[in] [in] [in] [$] [W]

1 0.68 0.25 0.3425 0 0 0 10.25 103.56
2 0.5 0.3 0.25 -1 1 -1 11.64 126.69
3 0.86 0.3 0.25 1 1 -1 10.01 109.95
4 0.68 0.25 0.3425 0 0 0 10.25 103.56
5 0.68 0.3341 0.3425 0 1.6818 0 9.67 93.99
6 0.68 0.25 0.3425 0 0 0 10.25 103.56
7 0.5 0.2 0.435 -1 -1 1 12.61 106.10
8 0.68 0.25 0.3425 0 0 0 10.25 103.56
9 0.68 0.1659 0.3425 0 -1.6818 0 11.76 124.69
10 0.68 0.25 0.3425 0 0 0 10.25 103.56
11 0.68 0.25 0.1869 0 0 -1.6818 12.63 146.60
12 0.9827 0.25 0.3425 1.6818 0 0 9.28 96.93
13 0.68 0.25 0.3425 0 0 0 10.25 103.56
14 0.5 0.3 0.435 -1 1 1 11.38 92.10
15 0.68 0.25 0.4981 0 0 1.6818 10.80 82.41
16 0.86 0.3 0.435 1 1 1 9.16 80.36
17 0.86 0.2 0.435 1 -1 1 10.33 90.10
18 0.5 0.2 0.25 -1 -1 -1 12.98 149.62
19 0.3773 0.25 0.3425 -1.6818 0 0 13.01 127.15
20 0.86 0.2 0.25 1 -1 -1 11.30 132.07
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Figure 5.3: Variable effects and interaction on the cost objective.

β, can be calculated. For the material cost, the fitted second-order model based on

the coded design variables is given as follows:

ycost = 10.2486− 1.0315c1 − 0.6254c2 − 0.4050c3 + 0.3016c21 + 0.1508c22 +

0.5036c23 + 0.0142c1c2 − 0.1475c1c3 + 0.0273c2c3.

The sensitivity study for the cost objective is shown in Figure 5.3, in which the per

unit values of each regression coefficient are defined as follows: β1
β0

, β2
β0

, · · · , β23
β0

.

The same procedure was repeated for the loss objective, and the second-order

model is given as follows:

ylosses = 103.614− 8.264c1 − 8.818c2 − 18.864c3 + 2.660c21 + 1.706c22 +

3.532c23 + 0.633c1c2 + 0.820c1c3 + 2.666c2c3.

The corresponding sensitivity study for the loss objective is shown in Figure 5.4.
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Figure 5.4: Variable effects and interaction on the loss objective.

From the examination of the results in Figures 5.3 and 5.4, it turns out that the

PM width and PM height have more significant effects on the cost objective, and

meanwhile the stator tooth width and PM height have more significant effects on

the loss objective. For this multi-objective design optimization problem, all the three

design variables should be included in the DE algorithm for design optimization to

meet both the design objectives of minimum cost and minimum loss. There is no

conflict between the loss and cost objectives in such a design optimization problem.

In this section, the principle of the CCD method and the corresponding calculation

method for regression coefficients were explained through a PM machine case study

with three design variables. This method can be extended to more complicated

electric machine design problems, which will be included in section 5.4 of this chapter.
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5.3 Differential Evolution

DE algorithms employ the following definitions:

• Population: PXg = (Xi,g), where the individual design index i = 1, . . . , Np, and

the individual generation index g = 1, . . . , gmax. A DE optimization contains a

number of gmax generations, and each generation has Np individual designs.

• Design constraints: Γm(X) = fcm(X) − fcrm ≤ 0, where the constraint index

m = 1, 2, . . . ,M , for which, fcm(X), is the mathematical function of the mth

physical variable, and M , is the total number of constraints, while, fcrm is the

reference value of the mth constraint.

• Design objectives: min(fn(X)), where the objective index n = 1, 2, . . . , N , for

which, fn(X), is the mathematical function of the nth physical performance

quantity, and N , is the total number of objectives.

The main DE process includes the procedures of initialization, mutation, crossover

and selection, which are described in Figure 5.5, and discussed in this section, respec-

tively.
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Figure 5.5: Implementation procedure of the DE algorithm in the design optimization
of electrical machines. The Lampinen’s selection criteria is interpreted in the pseudo-
code expression in (5.3.7).
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5.3.1 Initialization

Before the initialization of the first generation, both upper and lower limits (bounds)

for each design variable must be assigned. These limits are organized into two initial-

ization vectors, XL and XU , for which subscripts, L and U , indicate the lower and

upper bounds, respectively. Utilizing a random process, the initial values of the jth

design variable of the ith vector in the first generation can be expressed as follows

[63]:

xj,i,1 = randj(0, 1) · (xj,U − xj,L) + xj,L (5.3.1)

where, 0 ≤ randj(0, 1) < 1, here j, indicates that a new random value is generated

for each design variable.

After generating the first generation containing Np designs/vectors, the design

objectives and constraints can be evaluated through the utilization of the CE-FEA

method.

5.3.2 Mutation

The differential mutation process adds a scaled difference between two randomly

selected vectors to a third vector. The following expression shows how to combine

three different, randomly chosen vectors to create a mutant vector, Vi,g [63]:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) . (5.3.2)
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where, F, is the scale factor, F ∈ (0, 1+), which is a positive value without upper

limit. However, its effective value is seldom greater than 1 [63]. This factor is used to

control the rate at which the population evolves. In the above expression, g indicates

the number of current generation. Here, the target index, i, specifies the vector index

in the mutant generation, while, the subscripts r1, r2, and r3 are randomly selected

vector indices per mutant, and i 6= r1 6= r2 6= r3. These mutually exclusive indices

enable the DE algorithm to achieve both good convergence speed and probability of

convergence with a relatively small population [63].

For the mutation scale factor, F , see [63], the recommended range for F is (0, 1),

that is, 0 < F < 1. Beyond this range for F , when F > 1, the DE algorithm tends

to be time-consuming and less reliable than if F < 1. In 2002, Zaharie proposed a

method to calculate a critical value of F [63], which can be expressed as follows:

Fcrit =

√
(1− Cr/2)

Np

(5.3.3)

where, Fcrit, is the lower limit for F , and Cr, is the crossover probability, which is

explained in the next “crossover” section. In reality, the larger value of F leads to a

better diversity of populations and better convergence of the DE algorithm.

5.3.3 Crossover

The crossover procedure builds trial vectors, Ui,g, out of variable values that have

been copied from two different vectors, Xi,g and Vi,g, which can be formulated as
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follows [63]:

Ui,g = (uj,i,g), where uj,i,g =

vj,i,g, if randj(0, 1) ≤ Cr

xj,i,g, otherwise
(5.3.4)

where the crossover probability, Cr ∈ [0, 1], that is 0 ≤ Cr ≤ 1, is a user-defined

value that controls the fraction of variables’ values that are copied from the mutant

process. In the above equation, if the random number of the jth variable in the ith

vector, randj(0, 1), is less than or equal to Cr, the trial variable of vector Ui,g is equal

to the mutant variable of vector Vi,g. Otherwise, the trial variable is copied from the

variable in vector Xi,g. Through this process, a new trial generation can be produced.

Consequently, utilizing the CE-FEA method, the design objectives and constraints

can be calculated for the comparison and selection that take place in the next step.

In the mutant process of expression (5.3.2), the design variables’ values generated

in the mutant vector, Vi,g, can very easily violate such variables’ limits, xj,L, and

xj,U . Thus, at the end of the crossover procedure, the resetting process must be

utilized to modify out-of-bounds variables so that the trial vectors satisfy all boundary

constraints (upper and lower limits). There are two methods to perform the resetting

procedure, which are described as follows [63]:

1. Random re-initialization:

uj,i,g = xj,L + randj(0, 1) · (xj,U − xj,L), if (uj,i,g < xj,L) or (uj,i,g > xj,U) (5.3.5)
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2. Bounce-back:uj,i,g = xj,r1,g + randj(0, 1) · (xj,L − xj,r1,g), if (uj,i,g < xj,L)

uj,i,g = xj,r1,g + randj(0, 1) · (xj,U − xj,r1,g), if (uj,i,g > xj,U)
(5.3.6)

In contrast to the random re-initialization process, the bounce-back strategy takes

the progress toward the optimum objective into account by selecting a variable value

that lies between its base value, xj,r1,g, and the bound (lower or upper limit) being

violated.

5.3.4 Selection

In the selection step, the trial vectors, Ui,g, are compared to the target vectors in the

current generation, Xi,g, including the design constraints and objectives. Lampinen’s

selection criterion [63] is adopted here to perform this procedure, which is described

as follows:

Xi,g+1 =



Ui,g, if



Γm(Ui,g) ≤ 0 and Γm(Xi,g) ≤ 0,

fn(Ui,g) ≤ fn(Xi,g);

orΓm(Ui,g) ≤ 0,

Γm(Xi,g) > 0;

orΓm(Ui,g) > 0,

max(Γm(Ui,g), 0) ≤ max(Γm(Xi,g), 0);

Xi,g, otherwise

(5.3.7)



139

Once a new generation is obtained and analyzed by the CE-FEA approach, the

process of mutation, recombination and selection is repeated until the stoping criteria

are satisfied.

5.3.5 Stopping Criteria for DE Algorithms

Stopping criteria are needed to terminate the execution of the DE algorithm. Differ-

ent stopping criteria were examined for unconstrained single-objective optimization

in [109]. Ten stopping criteria were examined and classified into six classes: reference,

exhaustion-based, improvement-based, movement-based, distribution-based and com-

bined criteria in [110]. Recently, a criterion based on a combination of variations in

the design space and the objectives has been proposed for electric machine problems

[111]. The stopping criteria presented in the above references can work properly for

design optimization problems with single-objective or a weighted function for multi-

objective problems. For such a weighted function, there is no explicit rules/methods

to define a correct weight for each objective. Meanwhile, in multi-objective design

optimization problems, objectives often conflict, which also can complicate the defi-

nition of a weighted function for such a problem. Satisfying one objective may leave

another unfulfilled. Accordingly, it is not always clear when to stop the search pro-

cess for a better compromise. The typical stopping criterion for a multi-objective and

multi-constraint design optimization problem is based on setting a maximum number
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of generations gmax [63], [110], which was used in this work.

5.3.6 Implementation of a DE Algorithm in MATLAB in

Combination With CE-FEA

The programming of the DE algorithm in MATLAB software is explained in detail

in [63]. In this section, the implementation technique of the DE algorithm in combi-

nation with the CE-FEA method in the design optimization of PM machines is the

focus point.

5.3.6.1 General structure of a DE algorithm in MATLAB

The MATLAB script for the DE algorithm consists of the *.m files shown in Figure

5.6. A brief description of these files is provided as follows:

Figure 5.6: Files for the DE MATLAB code.

• Rundeopt dis.m: This is the main script file for the definition of design specifi-

cations, including design variables and corresponding ranges, design constraints
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and objectives, as well as the population size, Np, and number of generations,

gmax. Meanwhile, the control variables of the DE algorithm, F and Cr, are also

defined in this file. In this main file, three functions are invoked, which are

“initialize structure 12S10PV.m”, “initialize Sval.m” and “deopt dis.m”.

• initialize structure 12S10PV.m: This script code is used to save all the

variables and performance characteristics into a MATLAB structure named as

“generation”, which will be shown in the MATLAB workspace after completing

the whole design optimization.

• initialize Sval.m: This script code is used to save the design objectives and

constraints temporarily during the design optimization procedure.

• deopt dis.m: This file contains the main DE engine, including the initializa-

tion, mutation, crossover and selection procedures, in which three functions,

“MTPA 12S10PV.m”, “objfun dis.m” and “left win.m”, are invoked.

• MTPA 12S10PV.m: This file contains the script code for invoking Maxwell

models and calculating the torque angle for the MTPA load condition for each

design, which was presented early in section 4.4. In this function, there are two

subfunctions, “Fluxlinkage pm.m” and “Inductance 100deg.m”, which are used

to calculate the PM flux linkage and dq-axes inductances, respectively. Based on

these three calculated parameters, the torque angle for the MTPA load condition
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can be computed, which is coded in the function “Inductance 100deg.m”.

• objfun dis.m: This file is used to evaluate the design constraint and objective

functions, in which one subfunction file, “cefea dis.m” is invoked to perform the

CE-FEA process to calculate all the performance characteristics and parameters

including the torque profiles, induced voltage waveforms, core losses, copper

losses, PM losses, phase resistance, dq-axes inductances, masses, and material

costs.

• cefea dis.m: This function file is the main code for the implementation of the

CE-FEA method, in which nine subfunctions are invoked, see Fig. 5.6, which

are introduced as follows.

• density construction.m: This code is used to construct the flux density wave-

forms in the middle of stator teeth and yoke. The corresponding principle was

described in section 4.5 and reference [47].

• flux construction.m: This code is used to construct three phase flux linkages

in the CE-FEA method, which can be used to calculate three phase induced

voltages.

• flux fourier.m: This code is used to perform the FFT analysis on one phase

flux linkage waveform.
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• emf fourier.m: This code is used to perform the FFT analysis on one phase

voltage waveform.

• density fourier.m: This code is used to perform the FFT analysis on flux

density waveforms constructed above for the stator teeth and yoke.

• core loss C113.m: This code is used to save the core loss coefficients versus

the variation of the flux density values, which is used in the core loss calculation.

• torque FE fourier.m: This code is used to perform the FFT analysis on the

torque waveform/profile.

• emf fourier LL.m: This code is used to perform the FFT analysis on the

line-to-line voltage.

• axial scaling loop.m: This function is used to scale the axial stack length to

achieve the required shaft torque for all the designs.

• left win.m: This is a function that defines the selection criterion in the DE

algorithm described in expression (5.3.7).

The above is an explanation of the MATLAB script functions for the automated

design optimization procedure utilizing the DE and CE-FEA methods, for the case

study of a 12-slot 10-pole PM machine.
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5.4 Case Studies and Systematic Comparison

In this section, the combined design optimization method presented above was im-

plemented for four case studies including the V-type using SV-PM parametric model

(V-SV), the spoke-type, the flat bar-type, and the V-type using FV-PM parametric

model (V-FV) PM machines. Utilizing the Pareto-front from the DE design optimiza-

tion results, the systematic rationalized comparison between these four topologies was

performed.

The design specifications of these design optimization case studies are listed as

follows:

• slot/pole combination: 12 slots and 10 poles

• four types of rotor topologies: V-SV-shape, spoke-type, flat bar-type, and V-

FV-shape

• stator winding: concentrated winding, all-teeth-wound layout

• rated condition: 10 hp at 1800 r/min (the stack length will be scaled to achieve

this rated condition.)

• stator outer diameter: 233.6 mm

• conductor current density: 4 A/mm2
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• stator slot fill factor: 0.38

• stator winding temperature: 100oC

• PM operating at a temperature resulting in µR = 1.05, and Br = 1.05 T .

Two design objectives are described as follows:

1. minimize the material cost with a weighted cost function given in expression

(5.2.15)

2. minimize the losses including the copper loss, PCu, stator core loss, PFe, PM

loss, Ppm, and mechanical loss Pme.

Meanwhile, three design constraints are set up as follows:

1. torque ripple under the rated load condition ≤ 15%, and

2. total harmonic distortion (THD) of the induced voltage at rated operation ≤

5%, and

3. minimum flux density in the PMs ≥ 0.3Br, where the remanent flux density,

Br = 1.05T .
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Figure 5.7: Geometric variables for the SV-PM morphing model.

5.4.1 Case Study I: V-Type PM Machine Using an SV-PM

Parametric Model (V-SV)

Using the previously described DOE and RSM techniques, a sensitivity study of the

design variables was performed for the V-shape PM machine utilizing the SV-PM

Parametric model shown in Figure 5.7, which is referred to as V-SV PM machine.

Nine geometric independent variables were selected as specified in Table 5.3, and

the ranges of such geometric variables were defined based on mechanical limitations

and engineering experience. In this case, the un-coded design variable vector, X, in

(5.2.4) is represented by [ksi, hg, wT , dY , αfb, dfb, β, kwpm, wq]. A total of 156 candidate

designs were generated by the CCD method and analyzed by the CE-FEA approach.

The normalized regression coefficients in expression (5.2.4) were calculated and
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Figure 5.8: Sensitivity study for the V-SV PM machine. Two geometric variables,
dfb and wq, were eliminated from the DE optimization.
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Table 5.3: Definitions and ranges for nine independent design variables of the V-type
PM machine depicted in Figure 5.7. For the spoke-type the variables wq and β are
equal to zero, and dfb was kept at its minimum value.

Variables Definition Min Max
ksi Dsi/Dso 0.55 0.7
hg airgap height 0.6mm 1.2mm
wT tooth width 14.0mm 30mm
dY yoke thickness 12.0mm 20mm
αfb flux barrier angle 2.5o 5.5o

dfb PM top flux barrier depth 0.5mm 5mm
β PM tilt angle 0o 30o

kwpm wpm/wpm max 0.5 0.95
wq q-axis bridge width 0.5mm 4mm

quantified as the sensitivity study results and given in Figure 5.8, where the first-

order regression coefficients are expressed in a per unit system defined as βi/β0. From

these results, one can observe that the objectives of material cost and losses are con-

flicting for all geometric independent variables with the exception of the the PM

width ratio, kwpm, and stator yoke thickness, dY . The flux barrier depth on top

of the PM, dfb, and q-axis bridge width, wq, have no significant effects on any of

the objectives. Furthermore, the increase of both of these two variables, leads to

higher material cost, losses and torque ripple. The second-order regression coeffi-

cients in per unit for interaction effects between dfb, wq and the following variables:

[ksi, hg, wT , dY , αfb, dfb, β, kwpm, wq] are given in Table 5.4. From this table, it was

found out that dfb and wq have no significant interaction effects with the other design

variables on the two main design objectives, cost and losses. Consequently, dfb and
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Table 5.4: Second-order regression coefficients in per unit for interaction effects be-
tween dfb, wq and [ksi, hg, wT , dY , αfb, dfb, β, kwpm, wq] for V-SV PM machines.

dfb∗ ksi hg wT dY αfb dfb β kwpm wq
Cost 0 0.001 0.002 0.001 0 0 0.003 -0.002 0
Loss -0.003 0 -0.001 -0.003 0 0 0.003 -0.003 0

Ripple 0 -0.002 0 -0.006 0.002 0 0.004 -0.002 0
wq∗ ksi hg wT dY αfb dfb β kwpm wq
Cost 0 0 0 0 0 0 0.001 0 0
Loss -0.002 0 -0.001 0 0 0 0.002 -0.002 0

Ripple 0.004 -0.005 -0.012 -0.004 -0.037 0 0.003 -0.006 -0.007

wq, should be fixed to their minimum values leading to simplifications in the DE op-

timization process, which was afterwards run with a total of seven design variables,

[ksi, hg, wT , dY , αfb, β, kwpm].

The DE algorithm employed 60 generations and 50 individual designs per gen-

eration. The scatter plot and the optimal Pareto-front for the material cost and

losses of the resulting 3,000 designs are shown in Figure 5.9, where the torque ripple

is presented using the color map. In this figure, the solid black line represents the

Pareto-front for the optimal V-SV PM machines. As a general observation for all

studied rotor configurations, it should be noted that, in line with expectations for a

12-slot 10-pole configuration, the torque ripple is typically low.
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Figure 5.9: Scatter plot and Pareto-front for the V-SV PM machines.

5.4.2 Case Study II: Spoke-Type PM Machine Using an SV-

PM Parametric Model

In this case study, the SV-PM morphing parametric model was studied in the geomet-

rical configuration (spoke-type) depicted in Figure 4.26 (b). The geometric variables

wq, β, and dfb, identified in Figure 5.7, were equal to 0 mm, 0o, and 0.5 mm, respec-

tively. In the sensitivity study, there were six design variables, corresponding to the

un-coded design variable vector [ksi, hg, wT , dY , αfb, kwpm], and having the ranges as

given in Table 5.5.

Through the CCD method, a total of 53 designs were generated. The sensitivity

study results for this spoke-type PM machine are shown in Figure 5.10. Based on
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Table 5.5: Definitions and ranges for six independent design variables of the spoke-
type PM machine depicted in Figure 5.7. For the spoke-type, the variables wq and β
are equal to zero, and dfb was kept at its minimum value.

Variables Definition Min Max
ksi Dsi/Dso 0.55 0.7
hg airgap height 0.6mm 1.2mm
wT tooth width 14.0mm 30mm
dY yoke thickness 12.0mm 20mm
αfb flux barrier angle 2.5o 5.5o

kwpm wpm/wpm max 0.5 0.95

examination of these results, one can observe that none of the six independent design

variables can be eliminated from the DE design optimization process.

Accordingly, the DE optimization was performed with six independent design

variables, which required 60 generations and 50 individual designs per generation.

This resulted in a total 3,000 PM machine designs that were investigated, and the

corresponding scatter plot and Pareto-front of this case study are shown in Figure

5.11.

5.4.3 Case Study III: Flat bar-Type PM Machine Using an

FV-PM Parametric Model

In this case, a sensitivity study of the design variables was performed for the flat

bar-type PM machine, for which the semi-closed stator slot (type 1 in section 4.7.1.2)

and the morphing FV-PM model in section 4.7.2.4 were employed. Consequently, the
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Figure 5.10: Sensitivity study for the spoke-type PM machine. No geometric variables
could be eliminated from the DE optimization.
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Figure 5.11: Scatter plot and Pareto-front for the spoke-type PM machines.

whole cross-section and geometric variables are shown in Figure 5.12.

The definitions for seven independent design variables are given in Figure 5.12 and

Table 5.6. The un-coded variable vector was defined asX = [ksi, hg, wT , dY , αfb, dfb, wq].

By utilizing the CCD method a total of 88 candidate designs were generated and an-

alyzed by the CE-FEA approach. The normalized regression coefficients for this case

study are shown in Figure 5.13.

For flat bar-type PM machines, the design objective of material cost conflicted

with the loss objective. Two out of the seven independent design variables, the PM

flux barrier depth, dfb, and the q-axis bridge width between PM flux barriers, wq,

have a relatively insignificant and positive effect on the objectives of cost, losses and

torque ripple. The second-order regression coefficients in per unit for interaction
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Figure 5.12: Geometric variables for the FV-PM morphing model.

Table 5.6: Definitions and ranges for seven independent design variables of the flat
bar-type PM machine depicted in Figure 5.12.

Variables Definition Min Max
ksi Dsi/Dso 0.55 0.7
hg airgap height 0.6mm 1.2mm
wT tooth width 14.0mm 30.0mm
dY yoke thickness 12.0mm 20.0mm
αfb flux barrier angle 2o 5o

dfb PM flux barrier depth 0.5mm 10mm
wq q-axis bridge width 0.0mm 4.0mm



155

1 2 3 4 5 6 7
−0.02

0

0.02

0.04

0.06

0.08

0.1

C
os

t r
eg

re
ss

io
n 

co
ef

fic
ie

nt
s 

[p
u]

k
si

h
g

w
T

d
Y α

fb
d

fb
w

q

(a) Cost

1 2 3 4 5 6 7
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Lo
ss

 r
eg

re
ss

io
n 

co
ef

fic
ie

nt
s 

[p
u]

k
si

h
g

w
T d

Y
α

fb

d
fb

w
q

(b) Losses

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

R
ip

pl
e 

re
gr

es
si

on
 c

oe
ffi

ci
en

ts
 [p

u]

k
si

h
g

d
Y

w
T

α
fb

d
fb

w
q

(c) Torque ripple

Figure 5.13: Sensitivity study for the flat bar-type PM machine. Two geometric
variables, dfb and wq, were eliminated from the DE optimization.
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Table 5.7: Second-order regression coefficients in per unit for interaction effects be-
tween dfb, wq and [ksi, hg, wT , dY , αfb, dfb, wq] for flat bar-type PM machines.

dfb∗ ksi hg wT dY αfb dfb wq
Cost 0 0.004 0.005 0.003 0 0 0.002
Loss -0.007 0 0 -0.002 0 0 0.003

Ripple -0.004 -0.002 -0.008 -0.002 0.003 -0.021 0.003
wq∗ ksi hg wT dY αfb dfb wq
Cost -0.001 0 0 0 -0.002 0.002 0
Loss -0.006 -0.002 -0.003 -0.002 -0.001 0.003 0

Ripple -0.002 0 -0.005 0 0.040 0.003 0.018

effects between dfb, wq and the following variables: [ksi, hg, wT , dY , αfb, dfb, wq] are

given in Table 5.7. From this table, it was found out that dfb and wq have no

significant interaction effects with the other design variables on the two main design

objectives, cost and losses. Thus, these two geometric variables can be set to their

minimum values, and only five geometric variables were left for the DE global design

optimization, [ksi, hg, wT , dY , αfb].

Based on the DOE sensitivity, five independent variables [ksi, hg, wT , dY , αfb] were

selected to be optimized using the DE algorithm. A total of 60 generations, each with

40 individuals, making a total population of 2,400 candidate designs were generated

and studied by the CE-FEA approach. The scatter plot for the three design objectives,

material cost, losses and torque ripple, is shown in Figure 5.14.
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Figure 5.14: Scatter plot and Pareto-front for the flat bar-type PM machines.

5.4.4 Case Study IV: V-Type PM Machine Using an FV-PM

Parametric Model (V-FV)

In this case study, the FV-PM parametric model, as shown in Figure 5.12, was utilized

in the design optimization procedure, which is referred to here as the V-FV PM

machine. Eight design variables were selected for this V-FV PM machine study.

Thus, X = [ksi, hg, wT , dY , αfb, dfb, β, wq]. The corresponding ranges are specified in

Table 5.8. A total of 90 designs were generated by the CCD method.

The normalized regression coefficients for the material cost, losses, torque ripple

are shown in Figure 5.15. The second-order regression coefficients in per unit for inter-

action effects between dfb, wq and the following variables: [ksi, hg, wT , dY , αfb, dfb, β, wq]
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Table 5.8: Definitions and ranges for eight independent design variables of the V-FV
PM machine using the parametric model depicted in Figure 5.12.

Variables Definition Min Max
ksi Dsi/Dso 0.55 0.7
hg airgap height 0.6mm 1.2mm
wT tooth width 14.0mm 30.0mm
dY yoke thickness 12.0mm 20.0mm
αfb flux barrier angle 2o 5o

dfb PM flux barrier depth 0.5mm 10mm
β PM tilt angle 5o 70o

wq q-axis bridge width 0.0mm 4.0mm

are given in Table 5.9. Similar to the case study of the flat bar-type PM machines,

the design objective of material cost conflicted with the loss objective. Two geometric

variables, the PM flux barrier depth, dfb, and the q-axis bridge width between PM

flux barriers, wq, were eliminated from the DE optimization, and both of them are

kept at their minimum values. Thus, only six geometric variables were left for the DE

global design optimization, [ksi, hg, wT , dY , αfb, β]. A total population of 3000 designs

(60 generations and 50 individual designs per generation) were generated by the DE

algorithm. The scatter plot of these designs is shown in Figure 5.16.
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Figure 5.15: Sensitivity study for the V-FV PM machine. Two geometric variables,
dfb and wq, were eliminated from the DE optimization.
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Table 5.9: Second-order regression coefficients in per unit for interaction effects be-
tween dfb, wq and [ksi, hg, wT , dY , αfb, dfb, β, wq] for V-FV PM machines.

dfb∗ ksi hg wT dY αfb dfb β wq
Cost 0 0.002 0.005 0.002 0 0 0.004 0.002
Loss -0.006 0 -0.003 -0.002 0 0.002 0.006 0.003

Ripple 0.005 -0.042 0 -0.021 -0.006 0 0 0
wq∗ ksi hg wT dY αfb dfb β wq
Cost -0.002 0 0 0 -0.002 0.002 0.004 0
Loss -0.005 -0.001 -0.004 -0.002 -0.002 0.003 0.005 0

Ripple 0 -0.004 0.002 -0.007 0.047 0 0.015 0.025
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Figure 5.16: Scatter plot and Pareto-front for the V-FV PM machines.
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Figure 5.17: Optimal Pareto-fronts corresponding to Figures 5.9, 5.11, 5.14, and 5.16
on zoomed scales.

5.4.5 Systematic Comparisons Between the Four Case Stud-

ies

In order to provide a systematic comparison between the V-SV, spoke-type, flat bar-

type, and V-FV PM machines, the corresponding optimal Pareto-fronts are co-plotted

and compared in Figure 5.17. For the given design problem formulation, including the

variable ranges and the imposed constraints, the flat bar-type configuration is able

to consistently deliver, somewhat surprisingly, both the lowest cost and the lowest

losses.

For the V-type PM machines, different parametric models lead to different loca-

tions of the Pareto-fronts. This can be used to judge the goodness of the parametric
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FEA models. Regarding the V-SV optimal results, it should be kept in mind that the

morphing geometry parametric model SV-PM inherently restricts some of the vari-

able ranges. However, the V-FV design optimization provides the almost overlapping

Pareto-front with the flat bar-type PM machine case study. The V-FV topology can

provide designs with lower material cost and higher losses than the designs from the

flat bar-type topology.

The spoke-type PM machines can match the results for much of the cost and loss

objectives, but falls behind for very high-efficiency high-cost designs. This could be

because the spoke lends itself to high magnetic loading designs, which in turn may

call for silicon steel with lower specific losses than the one considered throughout

this study. Also, the comparison from Figure 5.17 does not convey the potential

advantages of the spoke in terms of increased protection against demagnetization

during faults and the ability to employ lower energy magnets, such as sintered ferrite,

as an alternative to higher cost neodymium iron boron, NdFeB [112].

From the comparison of the Pareto-fronts in Figure 5.17, one significant observa-

tion is that the flat bar-type, V-FV, and spoke-type PM machines can achieve the

same objectives of material cost and losses, which is marked with a black circle in

Figure 5.17. The corresponding cross-sections and flux plots of three optimal designs

for these three topologies are shown in Figures 5.18, 5.19 and 5.20, which are referred

to as F-PM, V-PM and S-PM in this work, respectively. Several important geometric
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(a) Cross-section (b) Flux plot

Figure 5.18: Cross-section and flux plot of the optimal design of the flat bar-type PM
machine (F-PM).

(a) Cross-section (b) Flux plot

Figure 5.19: Cross-section and flux plot of the optimal design of the V-FV PM ma-
chine (V-PM).

variables are given in Table 5.10.

One should notice that the losses presented in Figure 5.17 include the stator

core loss, winding copper loss, PM eddy-current loss, and mechanical loss. Here, the

mechanical loss is assumed to be constant for all the designs with 10 hp rating at 1800

r/min. The rotor core loss was not included in the design optimization. Thus, when

comparing the optimal designs of these three topologies, the total losses are different

as shown in Table 5.11. The S-PM machine has lowest rotor core loss, which leads
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(a) Cross-section (b) Flux plot

Figure 5.20: Cross-section and flux plot of the optimal design of the spoke-type PM
machine (S-PM).

Table 5.10: Geometric variables for the three candidate designs in Figures 5.18, 5.19
and 5.20.

Geometric Units F-PM V-PM S-PM
variables

Stator inner diameter [mm] 134.02 136.88 133.01
Airgap height [mm] 0.619 0.738 0.704
Tooth width [mm] 21.58 20.27 16.52

Back iron depth [mm] 13.14 13.30 14.38
PM width per pole [mm] 30.36 31.02 29.38

PM height [mm] 4.46 4.55 7.97
Stack length [mm] 76.08 74.47 53.19
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Table 5.11: Performances of the recommended designs in Figures 5.18, 5.19 and 5.20.
Torque angle is defined as the phase shift between the d-axis and the current phasor.

Performance Units F-PM V-PM S-PM
Torque angle [deg.] 103.3 104.1 100.2
Electromagnetic torque [Nm] 41.50 41.59 41.57
Electromagnetic power [W] 7839.8 7836.0 7822.4
Copper loss [W] 137.7 138.9 129.7
Input power [W] 7977.5 7974.8 7952.1
Core loss [W] 233.3 228.2 217.0
PM loss [W] 22.5 18.8 17.3
Mechanical loss [W] 91.0 91.0 91.0
Total losses without rotor core loss [W] 442.1 441.3 442.8
Total losses [W] 484.5 476.8 455.0
Output power [W] 7493.0 7498.0 7497.1
Shaft torque [Nm] 41.69 41.62 41.65
Efficiency [%] 93.92 94.02 94.28
Material cost [pu] 1.21 1.21 1.22
Total losses without rotor core loss [pu] 0.86 0.86 0.86
Torque ripple [%] 13.38 13.41 10.99
Mass distribution
PM [kg] 0.773 0.789 0.934
Copper [kg] 3.405 3.434 3.207
Steel [kg] 18.211 17.643 12.129
Total mass [kg] 22.388 21.866 16.270

to the most efficient machine. Meanwhile, this S-PM machine also has the shortest

axial stack length, which leads to a higher torque density for this design compared

with the F-PM and V-PM machines.

For the F-PM and V-PM machines, the same parametric FV-PM model was used

with different geometric values. For the flat bar-type PM machine design, the PM

tilt angle, β, is fixed to be 72o. For the optimal design V-PM, this angle is 69.79o,
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Table 5.12: Simulation time for the design optimization of the V-SV, spoke-type, flat
bar-type, and V-FV PM machines. “D” stands for the number of candidate designs.

Topology DOE DE Total
D Time D Time D Time

V-SV 156 55 min 3,000 17.5 h 3,156 18.5 h
Spoke 53 15 min 3,000 17.5 h 3,053 17.8 h
Flat 88 31 min 2,400 14 h 2,488 14.5 h

V-FV 90 32 min 3,000 17.5 h 3,090 18.0 h

which leads to a slight-V topology, and hence the corresponding geometry shown in

Figure 5.19 (a) is very similar to the optimal F-PM machine that is shown in Figure

5.18 (a).

These design optimization case studies were performed on an HP Z800 workstation

with 12 cores (2 Xeon X5690 processors) and 32GB RAM memory. The “distributed

solve” function in the ANSYS Maxwell software was utilized for parallel processing

of the candidate designs [94]. The employed typical FEA models have 5,000-6,000

second-order triangular elements. A summary of simulation times is provided in Table

5.12 illustrating the fast computational speed of this combined design optimization

method.

5.5 Summary

In this chapter, a combined design optimization method, utilizing the DOE and DE

algorithms, was developed and implemented into four design optimization case studies



167

for PM machines with four different rotor topologies. These rotor topologies include

the V-SV, spoke-type, flat bar-type, and V-FV PM layouts. Before embarking on

these case studies, the principle of DOE and DE algorithms were first introduced.

From the design optimization results for the four case studies, a systematic comparison

between PM machines with four different rotor topologies was performed.

In order to verify the efficacy of the automated design optimization method in an

industry environment, a 12-slot 10-pole PM machine with V-type PM layout in the

rotor was designed, prototyped and experimentally calibrated as will be given in the

next chapter. In this case study subject of the next chapter, only the DE algorithm

was utilized in the automated design optimization procedure.
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CHAPTER 6

CASE STUDY OF A 12-SLOT 10-POLE

PERMANENT MAGNET MACHINE

In this chapter, the automated design optimization method was performed on a case

study of a 12-slot 10-pole V-type IPM machine. A robust parametric CE-FEA model

of such an IPM machine with concentrated windings, driven by a sine-wave current

regulated power electronic drive, is laid out in section 6.2. A multi-objective and

multi-constraint design optimization, including two objectives and three constraints,

was executed on nine geometric design variables of such a PM machine in section

6.3. In section 6.4, an engineering decision process based on a Pareto-set of optimal

designs and a tradeoff study leading to the selection of a recommended design are

presented. Consequently, the optimal design was prototyped and tested successfully

and the experimental calibration is given here in section 6.5.
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6.1 Introduction

The latest developments in computer hardware and software technologies enabled

substantial research work on automated design optimization of electric machines us-

ing the CE-FEA method and DE algorithms. The detailed procedures of such an

automated design optimization method was presented in Figure 4.1 in Chapter 4. In

such an automated design optimization procedure, there are several major modules,

including preparation of parametric FEA models, CE-FEA implementation, a DE

optimization algorithm, and design decision making from Pareto-sets.

Unlike the TS-FEA approach, the CE-FEA method only employs the minimum

number of static field solutions such as in [46], [47]. Based on the pole-pitch and

slot-pitch symmetrical and periodic property of the electromagnetic field in PM ma-

chines, the three phase flux linkages and flux density distributions in the stator core

and PMs can be constructed using space-time transformation in [46], [47], [113]. As a

consequence, the back-emf and induced voltage waveforms, ripple and average torque,

as well as stator core losses can be calculated systematically using the CE-FEA tech-

nique [47], [74]. In PM machines with FSCWs, the PM eddy-current losses can

be estimated using a hybrid method combining the CE-FEA method with a novel

analytical formulation as outlined in Chapter 3. Furthermore, the minimum-effort

calculation methods for the PM flux linkage, dq-axes inductances, torque angle for
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the MTPA load condition, together with further insights into the stator core losses,

as well as the skew effects were described in the Chapter 4. The principle and im-

plementation techniques of the DE algorithm have been presented in section 5.3 in

Chapter 5.

New contributions described in the chapter include a robust parametric CE-FEA

model of a 12- slot 10-pole concentrated winding IPM topology for a brushless (BL)

machine driven by a sine-wave current regulated power electronic drive, and a sys-

tematic multi-objective design optimization case study. This includes an engineering

decision process based on a Pareto-set of optimal designs, and a tradeoff study leading

to the selection of a recommended design, which was prototyped and tested.

6.2 Parametric Modeling of a PM Machine

In this section, a 12-slot 10-pole IPM machine, with a V-type layout of permanent

magnets in the rotor and a standard NEMA 210-frame, was parameterized and design

optimized with the rated condition of 10 hp at 1800 r/min. The detailed parametric

model is shown in Figure 6.1 with a zoom-in for the PM component and its parameters

given in Figure 6.2.

In order to avoid the geometric conflicts in the automated design optimization

procedure, design variables such as the stator inner diameter, Dsi, tooth width, wT ,
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Figure 6.1: Parametric model of a 12-slot 10-pole BLPM machine.

Figure 6.2: Zoom in of the red rectangular in Figure 6.1.
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Table 6.1: Definition and ranges of nine design variables depicted in Figures 6.1 and
6.2.

Design variables Definition Min Max
ksi Dsi/Dso 0.5 0.7
hg airgap height 0.7mm 1.3mm
kwT αT/αs 0.35 0.55
dY yoke thickness 13.0mm 20.0mm
hpm PM height 2.5mm 5.0mm
kwpm 2wpm/wpm max 0.65 0.95
kdpm 2dpm/(Dro −Dri) 0.15 0.65
wq q-axis bridge width 0.5mm 4.0mm
αpm pole arc [elec. deg.] 95 130

PM width, wpm, and PM depth, dpm, were defined using the ratio expressions of

ksi, kwT , kwpm, and kdpm, as also given in Table 6.1. Here, ksi is the split ratio

between the stator inner diameter and outer diameter, and kwT is the ratio between

the tooth arc angle, αT , and the slot pitch, αs = 2π/Ns, where, Ns is the number

of stator slots. In the ratio expression of kwpm, the maximum width of two magnets,

wpm max, can be decided by the magnet depth, dpm, and the pole arc, αpm. In the

design optimization, several geometric variables were fixed, such as the stator outer

diameter, Dso, rotor inner diameter, Dri, distances between PM segments, wFe1 and

wFe2, and the distance from the PM top flux barrier to the rotor outer diameter,

wrad. Based on these definitions and assumptions, the selected geometric variables

for the DE design optimization are [ksi, hg, kwT , dY , hpm, kwpm, kdpm, wq, αpm] with the

corresponding variable ranges provided in Table 6.1.

In the manufacturing process, the slot of the magnet is always wider and thicker
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than the actual PM physical cross-sectional dimensions, as shown by the clearances

under the PMs in Figure 6.2. Here, the clearance under the PM, hc, is aligned in

series along the flux path in the magnetic circuit. This renders it having significant

effects on the performance estimation in the FEA, which will lead to 2-3% difference

in the open circuit back-emf estimation. Thus, when parameterizing the model, the

clearance must be taken into account.

6.3 Design Optimization Using the DE Algorithm

In the automated design optimization, a DE algorithm was utilized to generate a

set of candidate designs, which were analyzed with the CE-FEA method to estimate

the torque and induced voltage waveforms, and the losses in the stator core and

copper, and PMs [46], [47], [107], [113]. Meanwhile, material costs for the copper,

steel lamination, and PM were also calculated. All the simulations were performed

on an HP Z800 workstation with 12 cores (2 Xeon X5690 processors) and 32GB

RAM memory. Parallel execution for CE-FEA was implemented in order to fully

utilize the multiple CPUs and the distributed solve functions available within the

ANSYS Maxwell software [94]. Overall, this resulted in a substantial increase of the

computational speed as compared with the conventional TS-FEA method.

The DE algorithm aims to find a global minimum or maximum by iteratively

improving a population of candidate designs until the stopping criterion is satisfied.
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The principles of DE optimization and its application to electrical machine problems

were previously introduced in [63], [74], [112]. In the case of single-objective problems,

the evolution and the “goodness” of the optimized design can be evaluated through

simple comparison to other designs. In case of multi-objective problems with multiple

constraints, where conflicts may exist between objectives, the stopping criteria and

the decision-making based on a Pareto-front are more complicated [114], [111].

6.3.1 Problem Statement

A multi-objective optimization for this BLPM machine requires the DE algorithm to

search for designs in order to:

• minimize losses: Ploss = PFe + PCu + Ppm + Pfw

• minimize the material cost: Cost = cpmmpm + cCumCu + cFemFe ,

where, PFe, PCu, Ppm, and Pfw are the stator core losses, copper losses, magnet losses,

and friction and windage losses, respectively, while mpm, mCu, and mFe are the masses

of the PM, copper and steel materials, respectively. Here, the specific material costs

are denoted by cpm, cCu and cFe.

Three design constraints are required and defined by the following expressions:

• the torque ripple under the rated load contion, max(Te)−min(Te)
average(Te)

≤ 5%,
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• the total harmonic distortion (THD) for the rated load induced voltage wave-

form ≤ 3%, and

• minimum flux density in the PMs, Bmin, under rated load, should be equal to

or greater than 0.3Br, where, for the PM material used here the retentivity,

Br = 1.1T .

In the design optimization procedure, the operating temperature in the windings

and PMs for all the candidate designs was assumed to be 100oC. Meanwhile, all

the candidate designs have the same slot fill factor and current density, which lead

in each case to different ampere-turns due to the changed net slot areas. For each

candidate design, the stack length was scaled to obtain a shaft torque of 42 Nm,

which corresponds to 10.6 hp output power rating at 1800 r/min.

6.3.2 Design Optimization Results

Based on the previously introduced design specifications, the design optimization

of this BLPM machine was performed utilizing the DE algorithm coupled with the

electromagnetic CE-FEA. There were 70 individual designs per generation and 50

generations, which yielded a total of 3,500 design candidates. The results of the

optimization study in the two-dimensional plane of material cost versus stator loss is

shown in Figure 6.3.
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Figure 6.3: Scattered plot for 3,500 candidate designs (50 DE generations, each with
70 individuals) analyzed with electromagnetic CE-FEA. Three recommended designs
M-1, M-2, and M-3, are identified on the Pareto-front.

From the Pareto-optimal front, defined as the collection of results for which an

improvement of one objective can only be achieved through the deterioration of an-

other objective, three candidate designs were selected and labeled as M-1, M-2 and

M-3. Design M-1 represents a high efficiency solution, and motor M-3 has lower cost,

while machine M-2 is a compromise alternative. The cross sections of these three PM

machines are provided in Figure 6.4, and the corresponding geometric variables are

presented in Table 6.2, where design M-3 was defined as the reference/base for a per

unit system.
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(a) M-1

(b) M-2

(c) M-3

Figure 6.4: Cross sections and flux plots of three recommended 12-slot 10-pole designs
from the Pareto-front shown in Figure 6.3.
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Table 6.2: Relative values for the geometric variables. Machine M-3 was selected as
the reference for the other candidate designs.

Geometric variables M-1 M-2 M-3
Axial stack length 1.23 1 1
Stator inner diameter,Dsi 1.06 0.99 1
Airgap height,hg 1.82 1.12 1
Tooth width, wT 1.12 1.05 1
Stator back iron thickness, dY 0.94 0.97 1
PM thickness, hpm 0.90 0.88 1
PM width, wpm 1.22 1.29 1
PM depth, dpm 1.28 1.40 1
Q-axis bridge width, wq 1.24 1.08 1
Pole arc, αp 0.92 1.04 1

6.4 Comparison Between Candidate Designs and

Optimal Trade-off Studies

For the optimally designed M-1, M-2 and M-3 motors, the weights and material costs,

and the performance characteristics at the rated power and rated speed of 1800 r/min

are summarized in Tables 6.3 and 6.4, respectively. In industrial applications, such

motors operate in a range of variable torque and speed, and in order to provide a

more systematic comparison for the three candidate designs, the so-called efficiency

maps have been calculated and are shown in Figures 6.5 (a), (b) and (c). On these

efficiency maps, the black solid curve corresponds to a typical fan/pump load for the

given 10 hp power rating.

Design M-3 was selected for prototyping and in serving as a performance reference,
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Table 6.3: Weight and cost distributions in percentage. For each design, the total
weight and cost are set as the base value.

Weights [%] Cost [%]
M-1 M-2 M-3 M-1 M-2 M-3

PM 3.5 3.5 3.1 70.2 70.2 66.6
Steel 81.6 81.2 80.1 11.9 11.7 12.3
Copper 14.9 15.3 16.8 17.9 18.1 21.1

Table 6.4: Performance of the recommended motor designs from Figure 6.3.

Performance units M-1 M-2 M-3
Saliency ratio 1.17 1.24 1.29
Torque angle [deg.] 96 97 99
Electromagnetic torque [Nm] 42.31 42.83 42.87
Electromagnetic power [W] 7975 8073 8081
Copper loss [W] 145 124 133
Input power [W] 8120 8197 8214
PM loss [W] 18 20 16
Core loss [W] 166 206 199
Mechanical loss [W] 91 91 91
Total loss [W] 420 440 439
Output power [W] 7700 7757 7775
Shaft torque [Nm] 41.69 41.62 41.65
Efficiency [%] 94.83 94.63 94.65
Material cost [pu] 1.00 0.84 0.78
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Figure 6.5: Efficiency maps for three candidate optimum designs.
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mainly due to the fact that it has the lowest cost, while still meeting the rated

efficiency requirements, hence offering a good tradeoff between the two optimization

objectives. The efficiency difference between M-3 and M-1 provided in Figure 6.6 (a),

indicates, that for fan/pump applications motor M-1 can provide 0.3% to 0.8% higher

efficiency than motor M-3. Nevertheless, design M-3 is superior for high torque low

speed operation. The efficiency map difference from Figure 6.6 (b) shows that the

M-3 motor has 0% to 0.5% higher efficiency than the M-2 motor.

6.5 Experimental Calibration

An IPM machine prototype based on the recommended M-3 design was built and

tested on an active dyno set-up with a computer data acquisition system, as shown

in Figures 6.7 and 6.8, respectively. The IPM prototype was energized from a com-

mercially available Yaskawa A1000, sensorless controlled sine-wave drive.

6.5.1 Open Circuit Test

Prior to the load measurements, an open circuit test was performed under “cold”

temperature conditions at a winding temperature of 35oC. The phase back-emf val-

idation for open circuit operation at 1800 r/min provided in Figure 6.9 confirms the

satisfactory accuracy of the CE-FEA method for such simulations.
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Figure 6.7: Test dyno for the 210-frame 10 hp BLPM machine.

Figure 6.8: Data acquisition system for the 210-frame 10hp BLPM machine.
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Figure 6.9: Phase back-emf validation at 1800r/min.

6.5.2 On-Load Tests

A comprehensive on-load test for speeds from 600 r/min to 1800 r/min in increments

of 300 r/min and for loads from 25% to 125% in increments of 25% of rated torque

was performed. It should be noted that with the employed sensorless drive the user

has limited control in accurately setting the torque angle, β, accordingly operation

at exactly the predicted MTPA could not be ascertained. Instead, the rotor position

was measured and this value together with the measured current value were employed

in CE-FEA and TS-FEA calculations.

In line with expectations and with previous publications, e.g. [47], [74], the results

for the two FEA techniques are in satisfactory agreement, while CE-FEA is one

order of magnitude faster. Current and voltage waveforms measured at rated load
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operation (1800 r/min and 100% load) are shown in Figure 6.10. Another set of three

phase current and voltage waveforms are shown in Figure 6.11, which were tested at

600 r/min under 25% load condition. A sample of computed and measured data is

provided in Table 6.5.

6.5.3 Discussion for the Loss Separation

In Table 6.5, the calculated copper losses just include the loss component corre-

sponding to the dc resistance part at the measured winding temperature of 35oC.

The calculated core losses and PM losses were computed by the two-dimensional

(2D) TS-FEA method. For the core loss calculation, the TS-FEA method utilized

verified specific core loss coefficients kh and ke, which were validated based on a set

of open-circuit loss separation tests for a 10 hp prototype PM machine. From such

tests, the friction and windage losses were measured separately, for which the PMs

were not inserted into the rotor laminations.

When the motor runs at the same speed at various load conditions, the flux density

distributions in the stator core do not change significantly, which can be observed from

the time-domain flux density waveforms in Figure 6.12 for four distinct locations in

the stator core at five load conditions. In this figure, the variation of flux densities

at the center points of two adjacent stator teeth and two locations in the yoke were

shown, respectively. The locations of these sampling points are shown in Figure 6.13.
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Figure 6.10: Three phase current and voltage waveforms at 1800 r/min under rated
load condition.
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Table 6.5: Losses for different load and speed conditions. Here, PCu is calculated
based on the measured dc resistance, and PFe and Ppm were calculated using the
TS-FEA, while Pfw is estimated based on a 10 hp prototype IPM machine.

Calculated Tested Loss
Speed Load I PCu PFe Ppm Pfw Total loss Diff.
r/min % Arms W W W W W W W

1800

25 3.3 11 97 3 91 200 219 19
50 6.3 41 106 5 91 241 290 49
75 9.4 90 112 9 91 297 383 86
100 13.0 172 106 13 91 374 530 156
125 17.6 319 102 20 91 518 807 289

1500

25 3.2 10 71 2 69 152 174 23
50 6.2 39 75 3 69 187 225 39
75 9.2 88 82 6 69 244 324 83
100 12.4 159 84 9 69 321 443 129
125 15.8 257 88 13 69 428 614 197

1200

25 3.2 11 48 1 49 109 138 29
50 6.2 39 56 2 49 146 177 32
75 9.2 87 63 4 49 203 260 61
100 12.4 157 69 6 49 281 367 93
125 15.7 253 70 8 49 382 517 146

900

25 3.2 10 31 1 32 74 96 23
50 6.2 40 33 1 32 106 144 40
75 9.2 87 36 2 32 157 205 51
100 12.4 157 39 3 32 232 305 80
125 15.7 254 41 5 32 332 434 112

600

25 3.1 10 17 0 17 45 65 20
50 6.1 39 19 1 17 75 98 25
75 9.1 85 20 1 17 124 155 35
100 12.3 156 22 2 17 196 240 50
125 15.7 252 23 2 17 294 351 67
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Figure 6.12: Flux densities in the stator teeth and yoke (four points in Fig. 6.13)
at 1800 r/min under different load conditions. (a) Point 1 for tooth. (b) Point 2 for
tooth. (c) Point 3 for yoke. (d) Point 4 for yoke.

In the Steinmetz formula in expression (4.5.1), the specific core loss only depends on

the flux densities and frequencies in the stator core . Thus, when this PM machine

was operated at the same speed under various load conditions, the core losses did not

vary significantly. This becomes evident upon examination of the results in Table 6.5.

The tested losses provided in Table 6.5 were equal to the difference between the
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Figure 6.13: Flux distribution in the optimal design under the rated load condition.

measured input power and output power of the tested machine, while the output

power of such a machine was calculated from the measured shaft torque. The differ-

ences between the calculated losses and tested losses are given in the last column in

Table 6.5. It was found out that these loss differences, Pdif , have a linear relationship

with the square of phase current, I2, plots of which at various speeds are shown in

Figure 6.14. These linear relationships can be expressed as follows:

Pdif = a I2 + b (6.5.1)

For each operation speed, such a linear expression was computed and provided in

Figure 6.14. These differences between the calculated and test losses stem from the
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of the phase current. Pdif is the loss difference between the calculated results and
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extra ac copper losses in the stator windings, which are caused by the skin and

proximity effects resulting from the fringing flux around the stator slots, a depiction

of which is shown in Figure 6.13 [115–117].

6.6 Summary

The method presented in this work for the large-scale design optimization of current-

regulated synchronous PM machines based on the CE-FEA method was demonstrated

on a concentrated winding 12-slot 10-pole IPM case study rated at 10 hp. Based

on a robust parametric model, nine independent variables were selected for a DE
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optimization with the concurrent objectives of minimizing losses and material cost. A

total of 3,500 candidate designs were analyzed and automatically compared yielding a

Pareto-set of recommended designs. An engineering analysis and discussion of trade-

offs between several candidate designs under variable speed operation were performed.

This led to a reasonable selection of one design, which has been prototyped and

successfully tested. The differences between the calculated losses and test losses

were calibrated. This calibration points to excess ohmic losses in the stator coils

attributable to fringing flux proximity effects and skin effects, in the stator conductors,

which will be the subject of future investigations. Overall, the experimental tests

confirmed the results of the design optimization study and soundness of the approach

presented in this work.

In the next chapter, the conclusions, contributions of this work will be summa-

rized. Based on the obtained research results, possible future work in continuation of

this research will be presented.
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CHAPTER 7

CONCLUSIONS, CONTRIBUTIONS AND

FUTURE WORK

In this chapter, the conclusions and main contributions resulting from these research

activities associated with this dissertation are summarized. This is followed by some

recommendations regarding possible research directions for future work.

7.1 Summary and Conclusions

This dissertation focused on the study of a novel design optimization technique for

fault-tolerant permanent magnet (PM) machine-drive systems. In Chapter 1, the

problem background regarding this research topic was introduced. Through a rela-

tively extensive literature search, the recent trends in several topics related to the sub-

ject of this dissertation were reviewed. This includes different types of PM machines

and their corresponding applications, as well as modeling and analysis approaches

for electric machines and associated design optimization algorithms. Based on this

literature search, the main objectives of this work were delineated in Chapter 1.

In Chapter 2, several fault-tolerant topologies for PM machines were discussed.

Based on the fault-tolerant requirements for PM machines, the 12-slot, 10-pole, PM

machines with V-type and spoke-type PM layouts were selected as the candidate
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topologies for the fault-tolerant PM machine design to be investigated and optimized

in this dissertation.

Accordingly, the combination of 12-slot and 10-pole configuration requires the

stator windings for PM machines to be of the fractional-slot concentrated winding

(FSCW) type. Thus, the PM losses can be especially significant because of the ex-

pected rich harmonic content in the armature mmf. Consequently, in Chapter 3, a

hybrid method which combines the computationally efficient finite element analysis

(CE-FEA) method with a new analytical formulation was developed to compute the

eddy-current losses in the PMs of sine-wave current regulated brushless PM machines

subject of this dissertation. The results provided by two FSCW interior permanent

magnet (IPM) machine case studies demonstrated satisfactory accuracy of PM loss

calculation and significant decrease in the associated computational time as compared

with the well-known, though time-consuming, time-stepping finite element analysis

(TS-FEA) method. Based on these advantages, the new PM loss calculation method

is considered to be particularly suitable for incorporation into large-scale design opti-

mization tools in industrial environments. Because this developed PM loss calculation

method incorporates the 3D end effects, it can be employed to study the impact on

losses of PM block segmentation in the circumferential and axial directions, under the

typical assumptions of resistance limited eddy currents in the PMs. The sensitivity

of the method to PWM switching harmonics was also successfully demonstrated on
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two IPM machine case studies.

In Chapter 4, a detailed procedure and principle of the implementation of the

CE-FEA method within ANSYS-Maxwell software packages was described. First, the

calculation method for PM flux linkage and dq-axes inductances was presented. Then,

these parameters were utilized to calculate the torque angle for the maximum torque

per ampere (MTPA) load condition for each design case in the automated design

optimization procedure. The CE-FEA based calculation procedure for the stator core

losses was also presented in this chapter. Several methods for taking account of the

skew effects into the calculation of the phase flux linkages, phase induced voltages and

torque profiles were discussed. The accuracy of the CE-FEA method was validated by

several case studies provided in this chapter. For the automated design optimization

of PM machines, a requisite step is building a robust and flexible parametric model

for each design optimization problem. In this Chapter, the parametric modeling of

PM machines using FEA software packages was described. In order to increase the

robustness of the parametric model for the design optimization procedure, several

geometric parameters were ratio parameterized to avoid geometry conflicts, which

were described separately for the stator slots and rotor poles.

In Chapter 5, a combined design optimization method, utilizing the design of

experiments (DOE) and differential evolution (DE) algorithms, was developed. Ac-

cording to this procedure, based on a DOE sensitivity study, design variables with
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significant or with conflicting effects on the multiple optimization objectives, for ex-

ample the total material cost, power losses and torque ripples, were selected to be

independent parameters for a global DE optimization. This resulted in a reduction

of the design space, which in turn led to fewer candidate designs to be considered

per generation/population. Further advantages in terms of reducing the computa-

tional effort for the DE optimization were provided through narrower ranges for the

variables, as per the DOE findings. This combined two-pronged design optimiza-

tion method was implemented into design optimization case studies for PM machines

with four different rotor topologies. These rotor topologies include the two different

V-shape, spoke-type, and flat bar-type PM layouts. The optimal DE results for the

10 hp 1,800 r/min example rating represent the basis for a systematic comparison

between these four IPM motor topologies. The data provides interesting insights into

the relative merits of each configuration for the specified objectives and constraints,

which were detailed in this chapter.

In Chapter 6, the automated design optimization method utilizing the CE-FEA

techniques and a DE algorithm was implemented for a case study of a 12-slot 10-pole

V-type PM machine which is in demand for several industrial drive applications. One

optimal design was selected based on an engineering analysis and discussion of trade-

offs under variable speed operation. The final selected design has been prototyped

and successfully tested. The differences between the calculated losses and test losses
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were calibrated and explained. The experimental tests confirmed the results of the

design optimization study and approach presented in this dissertation.

7.2 Contributions

The main contributions resulting from this dissertation’s work can best be summa-

rized as follows:

1. A comparison between PM machines with different rotor topologies and stator

winding layouts was performed for fault-tolerant PM machine investigations.

Finally, a combination of 12-slot and 10-pole configuration was selected to be

investigated in this dissertation, which requires a FSCW layout in the stator.

Meanwhile, based on the results of this work, the V-type and spoke-type PM

layouts in the rotor were recommended for the design of such fault-tolerant PM

machines.

2. A new analytical formulation for the calculation of the PM eddy-current losses

was developed to be combined with the CE-FEA method. The results from

two FSCW IPM machine case studies demonstrated satisfactory accuracy and

significant decrease in the computational time as compared to the 2D and 3D

TS-FEA method. This method can be utilized in large-scale design optimiza-

tion problems for PM machines with FSCWs to calculate the PM eddy-current

losses.
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3. The automated design optimization method, including the novel idea of uti-

lizing the CE-FEA and DE algorithms was implemented, using the MATLAB

script function and ANSYS Maxwell software. The detailed implementation

techniques for such a method were clearly described. The “distributed solve”

function package in ANSYS-Maxwell software was utilized to take advantage of

parallel processing, leading to improvements in the computational speed of this

global design optimization method, by a factor of more than “2” for the case

studies considered in this dissertation.

4. A new combined design optimization method utilizing DOE and DE algorithms

was developed and coupled to the CE-FEA techniques. The central composite

design (CCD) approach, which is the most popular DOE method, was utilized to

perform design variables’ sensitivity studies. The response surface methodology

(RSM) approach was utilized to generate the response surface function (second-

order polynomial function for the CCD method) for each design objective. This

process contributed to the reduction of the simulation time to practical ranges

between zero and seven hours per case study, and to the successful convergence

of the DE algorithm for the whole design optimization procedure in all the case

studies considered here in this dissertation.

In addition to the above mentioned main contributions, this dissertation also

contributed to the following investigations:
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First, the PM machines with different stator and rotor topologies were ratio pa-

rameterized in this dissertation. This can increase the robustness of the parametric

model for the design optimization procedure. A detailed explanation for these para-

metric models were given in this dissertation.

Second, the efficacy of the automated design optimization method was verified

in an industrial environment through the application to a 10 hp, 12-slot, 10-pole, V-

type, PM machine case study. An optimal design was selected based on an engineering

comparison and tradeoffs study of three candidate designs. The selected design was

prototyped and successfully tested to validate the findings of this work.

7.3 Possible Future Work

Based on the research results and progress obtained from this dissertation, as well

as earlier research work by others, possible research directions in continuation of this

work should be considered. Some of this future work may include the following:

1. In the modeling analysis of PM machines with sine-wave current supply utilizing

the CE-FEA method, the rotor core loss has not been investigated. Especially

for PM machines with FSCWs, which have mmfs with rich harmonic content,

that will cause higher rotor core losses. The symmetric and periodic properties

of the magnetic field in the rotor need to be first investigated. Then, space-time
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transformation techniques can be accurately employed for the rotor magnetic

fields’ construction in the CE-FEA method, for purposes of rotor loss calcula-

tions.

2. A more accurate modeling method that will consider the PWM carrier frequency

effects into the calculation of the PM eddy-current loss and core loss need to

be investigated, especially for the integration of such loss computation into the

CE-FEA based design optimization techniques. For the PM eddy-current losses,

more sampling grids in the PMs can be implemented to observe the magnetic

field distribution in such PMs. This will provide more accurate results for the

computation of PM losses especially with PWM excitations.

3. The CE-FEA method can be implemented into different electric machine de-

signs, for example the surface-mounted permanent magnet (SPM) machines,

synchronous reluctance machines (Syn-RMs), PM assisted Syn-RMs, etc. Mean-

while, the combined design optimization method utilizing DOE and DE algo-

rithms can be implemented for these design optimization problems. This will

provide more systematic comparison between different electric machines, for

example the comparison between PM machines and Syn-RM machines.

4. Different mutation and crossover strategies as well as stopping criteria for DE

algorithms can be implemented into the automated design optimization tools
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to study the convergence property of such design optimization problems.

5. Multi-physics modeling techniques including the embedded thermal and vibra-

tion analysis need to be investigated for incorporation to a systematic design

optimization of electric machines.

6. Modeling and analysis methods for studying of skin and proximity effects on

the stator winding ohmic losses for PM machines need to be investigated. This

part of the stator winding ohmic losses is more significant for PM machines

with FSCWs, because of the wider slot opening in comparison to PM machines

with integer-slot distributed windings, which results in larger amounts of flux

fringing into such stator slots of FSCW configurations.
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APPENDIX I

Three phase induced voltages with skew effects:
ea =

∑
n ksnEn cos(nωt+ φn)

eb =
∑

n ksnEn cos
(
n
(
ωt− 2π

3

)
+ φn

)
ec =

∑
n ksnEn cos

(
n
(
ωt− 4π

3

)
+ φn

)
where, n = 1, 3, 5, 7.

Three phase currents:
ia =

∑
n In cos(nωt+ ϕn)

ib =
∑

n In cos
(
n
(
ωt− 2π

3

)
+ ϕn

)
ic =

∑
n In cos

(
n
(
ωt− 4π

3

)
+ ϕn

)
The electromagnetic power:

Pe = eaia + ebib + ecic.

Substituting ea,b,c and ia,b,c into the expression for Pe, the electromagnetic power

can be deduced as follows:

Pe = Pavg + P6 + P12

where, Pavg and P6, are shown as follows:

Pavg =
3

2
[ks1E1I1 cos(φ1 − ϕ1) + ks3E3I3 cos(φ3 − ϕ3)

+ks5E5I5 cos(φ5 − ϕ5) + ks7E7I7 cos(φ7 − ϕ7)]

P6 =
3

2
[ks5E5I1 cos(6ωt+ φ5 − ϕ1) + ks7E7I1 cos(6ωt+ φ7 − ϕ1)]
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APPENDIX II

ACO Ant Colony Optimization

ALA Axially Laminated Anisotropic

BFO Bacterial Foraging Optimization

BL Brushless

CCD Central Composite Design

CE-FEA Computationally Efficient-Finite Element Analysis

CPSR Constant Power Speed Range

DE Differential Evolution

DOE Design of Experiments

DSPM Double-Salient Permanent-Magnet Machine

EP Evolutionary Programming

EV Electric Vehicles

ES Evolutionary Strategies

FEA Finite Element Analysis

FFD Full Factorial Design

FSCW Fractional Slot Concentrated Winding

FSPM Flux-Switching Permanent-Magnet Machine

GA Genetic Algorithms

GP Genetic Programming

HEV Hybrid Electric Vehicle
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HEV Hybrid Electric Vehicle

IEC International Electrotechnical Commission

IPM Interior Permanent Magnet

ISDW Interger-Slot Distributed Winding

MEC Magnetic Equivalent Circuit

MTPA Maximum Torque per Ampere

PM Permanent Magnet

PRM Permanent-Magnet Reluctance Machine

PSO Particle Swarm Optimization

RSM Response Surface Methodology

SPM Surface-mounted Permanent Magnet

SV Spoke-V-type

SynRM Synchronous Reluctance Machine

TFLM Transverse Flux Linear Machines

TS-FEA Time Stepping-Finite Element Analysis
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