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ABSTRACT 

BIOAUGMENTATION FOR RECOVERY OF ANAEROBIC DIGESTERS 
SUBJECTED TO ORGANIC OVERLOAD 

 

Vaibhav P. Tale 

Marquette University, 2010 

Anaerobic digester upset due to organic overload is common and methods to 
reduce recovery time would be beneficial. One potential method is bioaugmentation, the 
addition of an external culture for performance improvement. Methanogenic community 
structure differs from digester to digester and there may exist a relation between specific 
methanogenic activity (SMA) and microbial community composition. The research 
presented herein tested whether there is a relationship between SMA and community 
structure. Also, the effectiveness of bioaugmentation was tested by hypothesizing that 
bioaugmenting with a methanogenic, propionate-degrading culture acclimated to small 
oxygen doses will help rapid recovery of organically overloaded digesters. 

Fourteen different anaerobic cultures were tested for SMA and microbial 
community using the mcrA gene and DGGE to establish a relationship between SMA and 
community structure. The culture with the highest SMA was enriched by feeding 0.17g 
propionate/L-day and different oxygen doses. The enrichment cultures were used to 
bioaugment organically overloaded anaerobic digesters. Microbial communities present 
in bioaugmented, non-bioaugmented and undisturbed control digesters as well as the 
bioaugmentation culture were analyzed using 16S rDNA. 
 A statistically significant relationship between SMA and community structure 
could not be established, highlighting the difficulty in establishing activity/community 
structure relationships. However, the results indicated that there was a relation between 
SMA and methanogenic community compositions studied. Enriching a culture for 
25mgO2/L-day increased its SMA by 29.7%, but higher oxygen doses yielded lower 
SMA values. Bioaugmentation with this enrichment culture reduced the time required for 
upset digester effluent to decrease below 1000mgSCOD/L by 114 days (11.4 SRTs) and 
the time required to reach 25mLCH4/day by 37 days (3.7 SRTs) respectively. 
Bioaugmented digesters consistently produced lower effluent SCOD and more methane 
than non-bioaugmented digesters. Bioaugmentation is a promising approach for speeding 
up recovery of organically overloaded digesters. Bacterial and archaeal communities of 
the bioaugmented and undisturbed control digesters had similar phylogenetic tree 
structures (p>0.3), whereas the tree structures of non-bioaugmented and undisturbed 
control digesters differed significantly (p<0.01). Bioaugmentation helped restore the 
microbial communities of overloaded digesters to their original undisturbed state. Higher 
relative abundance of clones related to Methanospirillum hungatei may have caused 
better performance of bioaugmented digesters.  
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CHAPTER 1: METHANOGENIC COMMUNITY STRUCTURE AND SPECIFIC 
METHANOGENIC ACTIVITY OF ANAEROBIC BIOMASS 

 

1.1 Introduction 

1.1.1 Anaerobic Wastewater Treatment and Propionate 

Anaerobic biological treatment converts chemical oxygen demand (COD) exerted 

by organic substances into methane gas as the means of COD removal from wastewater, 

sludge or other organic feedstocks. Essentially there are four steps involved in anaerobic 

digestion of a complex substrate. In the first step, complex organic matter is hydrolyzed 

to simple organics. In the second step, the simple organics are further broken down into 

volatile fatty acids such as propionate, by a group of organisms called acidogens. Then 

the volatile fatty acids are converted to acetate and hydrogen gas by the acetogens. The 

fourth and final step involves the conversion of acetate as well as the hydrogen and 

carbon dioxide to methane by a microbial group called the methanogens. During the 

degradation process, many odd-numbered carbon chains pass through propionate. 

Efficient flow of electrons through this metabolic intermediate requires efficient 

methanogenic metabolism of hydrogen and acetate and efficient metabolism of 

propionate (Speece, 2008). 

Gracia et al. (2006) applied anaerobic digestion model -1 for evaluating the COD 

flow for anaerobic digestion of a simulated organic compound exerting 100 g COD. Out 

of the 100 g total COD, 20 g COD was exerted by carbohydrates, 20 g COD was exerted 

by proteins and 30 g COD was exerted by lipids. The remaining 30 g COD was 

considered to be exerted by non-biodegradable material present in the substrate. Out of 
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70 g of biodegradable COD, 6.14 g COD (8.7%) passed through propionate. This may 

seem to be relatively small, but this mass of propionate or propionic acid can lower pH, 

causing process upset or failure. 

Under standard conditions, metabolism of propionate to acetate and hydrogen gas 

is energetically unfavorable as demonstrated by the first reaction given in Table 1.1, but 

conversion of acetate to methane and carbon dioxide and conversion of hydrogen and 

carbon dioxide to methane drives the overall reaction in the forward direction (see the last 

reaction Table 1.1). Degradation of propionate is theoretically favorable only when the 

hydrogen concentration in an anaerobic digester lies between 10-4 to 10-6 atm (McCarty 

and Smith, 1986). If the dissolved hydrogen gas concentration goes above this range, then 

propionate degradation becomes energetically unfavorable and stops. This may result in 

build-up of propionic acid and other reduced compounds such as n-propanol and four-

through seven-carbon n-carboxylic acids in the digester, such as butyric acid (McCarty 

and Smith, 1986). This acid build-up can cause the pH to decrease which inhibits or stops 

methane production. 

Table 1.1: Conversion of Propionate to Methane (McCarty and Smith, 1986). 

 ∆Go’ kJ/mole propionate 

CH3CH2COO- + 2H2O = CH3COO- + 3H2 + CO2 +71.67 

3H2 + (3/4) CO2 = (3/4) CH4 + (3/2) H2O -98.06 

CH3COO- + H+ = CH4 + CO2 -35.83 

CH3CH2COO- + H+ + (1/2) H2O = (7/4) CH4 + (5/4) CO2 -62.22 
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Propionate accumulation has typically been observed as an indicator of anaerobic 

digester process imbalance. Therefore, propionate-utilizing microbial consortia play an 

important role when anaerobic digesters are subjected to organic overload (Smith and 

McCarty, 1990). 

Smith and McCarty (1990) studied the effect of substrate overloading on a 

continuous-stirred tank reactor (CSTR) operated at a 9.1-day solids retention time (SRT) 

and a 5-day hydraulic retention time (HRT). The reactor was fed daily with 0.1M ethanol 

and 0.1M propionate until a quasi steady state was achieved in terms of effluent ethanol, 

propanol, acetate and propionate concentrations. After the steady state, the reactor was 

shock overloaded with 0.3M ethanol while the same daily dose of 0.1M propionate was 

also fed. Figure 1.1 shows the effluent characteristics. Although the reactor was shock 

overloaded with ethanol, the effluent propionate concentration remained elevated even 

after 18 days (3.6 HRTs), whereas the ethanol concentration decreased to its normal low 

value after 4 days. This experiment affirmed that propionate concentrations can remain 

chronically elevated for a significant time after a process upset. 
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Figure 1.1: Effect of Organic Overload on Effluent Composition of A CSTR 
Reactor. Adopted from Smith and McCarty (1996) 

 

1.1.2 Methanogens and Methanogenesis 

Methanogens have been isolated from virtually every habitat where anaerobic 

biodegradation occurs (Jones et al., 1987; Stams, 1994; Zheng and Raskin, 2000; 

Madigan and Martinko, 2006). Methanogens are among the last links in the anaerobic 

biodegradation process and convert end products of previous degradation steps to 

methane and carbon dioxide. They also provide a hydrogen sink for degradation of 

organic acids like propionic and butyric acids which are otherwise difficult to degrade. 

Previous studies have revealed that methanogens are often the most important fraction of 
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biomass in anaerobic digesters (Zheng and Raskin, 2000; Diaz et al., 2006; Keyser et al., 

2006; Hulshoff Pol et al., 2004; Zheng and Raskin, 2000; Hobson and Wheatley, 1993; 

Griffin et al., 1998; Chen et al., 2005). Various methanogens are known to consume one 

or more of the eleven different substrates given in Table 1.2 and convert them to methane 

(Madigan and Martinko, 2006). This process involves unique methanogenic coenzymes 

and the process is called methanogenesis (Woese and Fox, 1977; White, 2000). 

 

Table 1.2: Substrates Converted to Methane by Methanogenic Archaea (Madigan 
and Martinko, 2006) 
 

Carbon dioxide, CO2 (with electrons derived from H2, certain alcohols or pyruvates) 

Formate, HCOO- 

Carbon monoxide, CO 

Methanol, CH3OH 

Methylamine, CH3NH3
+ 

Dimethylamine, (CH3)2NH2
+ 

Trimethylamine, (CH3)3NH+ 

Methylmercaptan, CH3SH 

Dimethylsulfide, (CH3)2SH 

Acetate, CH3COO- 

Pyruvate, CH3COCOO- 
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 Anaerobic biomass samples contain a microbial community with syntrophic 

relationships. Closely co-existing microbial groups utilize metabolic products of other 

groups, finally leading to the production of methane. Characteristics of the microbial 

communities present may significantly differ from one anaerobic culture to another 

(Leclerc et al., 2004) and hence may affect the overall digester function.  

Since hydrogenotrophic methanogens are responsible for the conversion of 

hydrogen and carbon dioxide to methane, it was hypothesized that the methanogenic 

community structure of an anaerobic culture may significantly influence the overall 

propionate degradation function of the community. There may exist a relationship 

between the propionate degradation rate and the methanogenic community structure of an 

anaerobic biomass sample. To test the hypothesis, a study was undertaken with the aim of 

establishing a relationship between specific methanogenic activity (SMA) value against 

propionic acid and methanogenic community organization. 

 

1.2 Methods and Materials 

1.2.1 Sample Collection and Locations 

Anaerobic biomass samples were collected from wastewater treatment plants 

serving different industries and municipalities. All the biomass samples were maintained 

at 4 0C following their collection until SMA tests were conducted. Table 1.3 summarizes 

the anaerobic biomass samples collected. 
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Table 1.3: Anaerobic Biomass Samples Collected for Testing SMA Against 
Propionate 
 

Biomass Sample Source Naming Used 
Type of Reactor 

 

City Brewery Wastewater Treatment Plant Brewery WWTP-1 UASB* 

New Belgium Brewery Wastewater 
Treatment Plant Brewery WWTP-2 Anaerobic plug flow 

Anheuser Busch Brewery Wastewater 
Treatment Plant Brewery WWTP-3 UASB 

City of Des Moines Municipal Wastewater 
Treatment Plant Municipal WWTP-1 CSTR** 

Ocean County, New Jersey Municipal 
Wastewater Treatment Plant Municipal WWTP-2 CSTR 

City of Akron Municipal Wastewater 
Treatment Plant Municipal WWTP-3 High solids plug flow 

digester 

Philadelphia Water Department Municipal 
Wastewater Treatment Plant Municipal WWTP-4 CSTR 

Kerry Ingredients Wastewater Treatment 
Plant Food Industry WWTP-1 UASB 

Axium Foods Wastewater Treatment Plant Food Industry WWTP-2 CSTR 

Smuckers Wastewater Treatment Plant Food Industry WWTP-3 UASB 

Hilmar Cheese Wastewater Treatment Plant Food Industry WWTP-4 EGSB*** 

Wis-Pak Wastewater Treatment Plant Soft Drink Bottling 
Industry WWTP UASB 

American Crystal Sugar Wastewater 
Treatment Plant Sugar Industry WWTP Anaerobic contact 

process 

F & A Dairy Products Wastewater 
Treatment Plant Dairy Industry WWTP CSTR 

*UASB – Upflow anaerobic sludge blanket, **CSTR- Completely stirred tank reactor, ***EGSB- 
Expanded granular sludge blanket 
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1.2.2 SMA Tests of Anaerobic Cultures Against Calcium Propionate 

Maximum propionate utilization rates can be determined by conducting specific 

methanogenic activity (SMA) testing (Sorensen and Ahring, 1993; Speece, 2008; Zitomer 

et al., 2008). SMA of the biomass samples was analyzed using propionate as the substrate 

by a standard protocol (Owen et al., 1979). 

The assays were conducted in 160-mL glass serum bottles. All test and control 

assays were run in triplicate. All the test and control assays were supplied with 25mL of 

diluted biomass samples having less than 2g volatile suspended solids (VSS)/L. Basal 

media given in Table 1.4 was used for diluting biomass samples. All test assays received 

3 g/L of propionate in the form of calcium propionate, whereas control assays contained 

no substrate. This substrate concentration is typically employed for propionate utilization 

testing (Speece, 2008; Zitomer et al., 2008), is not toxic to anaerobic biomass and is 

significantly higher than the Monod half-saturation constant values. Therefore, the 

systems were not substrate limited during the initial testing period. Biogas generated by 

control assays accounted for endogenous methane production during the testing period. 

Headspace for all test and control assays was flushed by a nitrogen and carbon dioxide 

gas mixture (7:3 volumetric proportion, respectively) to ensure anaerobic conditions. 

Further, all assays were incubated at 35±2 0C and were continuously shaken at 150 rpm 

using a gyratory shaker-incubator. Gas production from each assay was monitored every 

12 hours using a syringe displacement method over a period of 30 days. Graphs of 

cumulative gas production versus time were plotted. At the end of the testing period, 

methane content of the biogas was measured by gas chromatography (Series 600, 
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GLOW-MAC Instrument Co., Bethlehem, MA) using a thermal conductivity detector 

(TCD) and a CTR I column (Agilent Associates, Inc., Deerfield, IL). Helium was used as 

the carrier gas at a flow of 30±2 mL/min with the temperature of the injector and detector 

set at 120o C and the temperature of the oven set at 38o C. VSS concentration of the 

diluted biomass was measured before and after the test using standard methods (APHA, 

1998) and the average of initial and final VSS concentration was used for calculating 

SMA. Cumulative methane production was calculated by subtracting the average 

methane produced by the control assays. A portion of the resulting curve having the 

steepest slope was used to calculate SMA using linear regression. The activity of each 

test assay was expressed as mL CH4/hr-gVSS. Finally the average and standard deviation 

of the SMA values were calculated. Statistical analysis of the SMA values was done by 

pair-wise comparison of the SMA using Student’s t statistic for unequal population 

variances. A probability threshold of 0.05 (95% confidence interval) was used as a 

criterion for clustering samples based on similarity in their SMA values. The DOTUR 

program (v. 1.53), was used for assigning samples to different clusters by the farthest 

neighbor algorithm (Schloss et al., 2005). 
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Table 1.4: Basal Media Constituents 

 Concentration (mg/L) 

NH4Cl 400 

MgSO4 250 

KCl 400 

CaCl2 120 

(NH4)2HPO4 80 

FeCl3.6H2O 55 

CoCl2.6H2O 10 

KI 10 

Metals* 0.5 

Alkalinity 5000 

Resazurin 1 

*Metals include MnCl2.4H2O, NH4VO3, CuCl2.2H2O, Zn(C2H3O2)2.2H2O, AlCl3.6H2O, NaMoO4.2H2O, 
H3BO3, NiCl2.6H2O, NaWO4.2H2O and Na2SeO3 added together to make a 0.5mg/L of each metal in 
solution. 

 

1.2.3 SMA Before and After Enrichment 

The effect of the initial (before enrichment) SMA value of an anaerobic culture on 

the SMA value after enrichment was evaluated for selected samples.  

Three cultures with the highest SMA and three cultures with the lowest SMA 

were selected for enrichment against calcium propionate. When selecting the cultures for 

enrichment, cultures having no initial SMA against propionic acid were excluded. The 

selected cultures were enriched in 750-mL serum bottle digesters operated in CSTR 

mode. The serum bottle digesters were innoculated with 150 mL of the selected culture. 



11 

 

Headspace of all the digesters was sparged with a nitrogen-carbon dioxide gas mixture 

(mixed in 7:3 ratio v/v) to establish anaerobic conditions. The enrichment digesters were 

shaken continuously at 150 rpm and maintained at 35±2 oC.  All the enrichment digesters 

were fed 0.17g propionate/L-day (0.25 gCOD/L-day) with basal medium (see Table 1.4) 

while maintaining a 15-day SRT. After 580 days (38.6 SRTs), the SMA of all the 

enrichment cultures against propionate was measured by following the procedure 

described in Section 1.2.1. 

The cultures were ranked and listed according to their initial SMA values. Also a 

second list was prepared which contained cultures ranked according to their enriched 

SMA values. Spearman’s rank correlation coefficient was used to determine if the initial 

SMA values before enrichment had a significant effect on the SMA values after 

enrichment based on the ranks of the cultures in the lists. 

1.2.4 mcrA Gene as a Tool For Phylogenetic Analysis 

Methyl coenzyme-M reductase (MCR) is the terminal enzyme complex in the 

biological methane generation pathway and catalyzes the reduction of the methyl group 

bound to coenzyme-M, with the concomitant release of methane (Woese and Fox, 1977). 

This enzyme complex is thought to be unique to and ubiquitous in methanogens (Thauer, 

1998), making it a suitable tool for the detection of methanogens. The MCR operon exists 

in two forms, MCRI and MCRII. The MCRI form is thought to be present in all 

methanogens, while the MCRII form has been found to be present in the members of the 

orders Methanobacteriales and Methanococcales. Researchers have selected one peptide 

of the MCRI complex, encoded by the mcrA gene, as a suitable candidate for the 
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development of PCR-based detection of methanogens. Suitability of this marker for 

analysis of the order Methanosarcinales has also been demonstrated (Springer et al., 

1996). Further studies have highlighted the use of the mcrA gene as a target for the 

detection of methanogens in a wide range of environments including rice paddies 

(Lueders et al., 2001), peat bogs (Hales et al., 1996; Lloyd et al., 1998; Nercessian et al., 

1999; Juottonen et al., 2006), termite gut (Ohkuma et al., 1995), anaerobic digesters 

(Rastogi et al., 2008), polluted water (Ufnar et al., 2007), hypereutrophic lakes (Earl et 

al., 2003), hydrothermal sediments (Dhillon et al., 2005), subsurfaces of tidal flats 

(Wilms et al., 2007) and marine environments (Bidle et al., 1999).  Table 1.5 shows the 

primers developed by Luton et al. (2002) targeting the mcrA gene that leads to a 470-

base-pair-long amplified DNA product.  These primers are commonly used by 

researchers (Wilms et al., 2007; Juottonen et al., 2006; Ufnar et al., 2007; Rastogi et al., 

2008). 

 

Table 1.5: Primers Used for mcrA Gene Amplification 

Primers Sequence 

mcrA1f 5’- GGTGGTGTMGGA TTCACACARTAYGCWACAGC -3’ 

GCmcrA1f 5’- *GC-clamp-GGTGGTGTMGGA TTCACACARTAYGCWACAGC -3’ 

mcrA500r 5’ – TTCATTGCRTAGTTWGGRTAGTT – 3’ 

* GC-clamp = 5’ – CGCCCGCCGCGCCCCGCGCCCGTGCCGCCGCCCCCGCCCG – 3’ 
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1.2.5  Molecular Techniques 

 

1.2.5.1  DNA Extraction 

The DNA was extracted using the PowerSoil™ DNA Isolation Sample Kit 

(MoBio Laboratories, Inc., Carlsbad, CA) according to the manufacturer’s instructions 

modified by the inclusion of the alternative lysis method. This alternative lysis method 

states that "if the cells are difficult to lyse, a 10 min incubation at 70 oC after addition of 

solution C1 can be performed." (PowerSoil Protocol, 2007). This method replaces the 

horizontal vortexing of the PowerBead Tubes and is meant to reduce DNA shearing. The 

presence of extracted DNA was confirmed using agarose gel electrophoresis. 

1.2.5.2  Agarose Gel Electrophoresis 

A 1% agarose gel (w/v) was prepared by mixing agarose with tris-acetate- 

ethylenediaminetetraacetic acid (TAE) buffer (Sambrook and Russell, 2001). The 

resulting mixture was heated in a microwave until all the solid agarose was melted and 

dissolved in the TAE buffer. Afterwards, 0.8mL/L ethidium bromide was added to the gel 

mixture for staining nucleotides. A mixture of 2 uL 6X blue-orange loading dye and a 5-

uL DNA sample were placed into the wells (Hartwell et al., 2004). A λϕ ladder with 40 

ng/µL Lambda (λ) DNA, HindIII cut and 30 ng/µL phi X 174 (ϕ) DNA, HaeIII cut was 

used for comparison. A 100 volt of current was passed across the gel which caused 

migration of the DNA. The DNA bands were illuminated and photographed under 

ultraviolet light using GDS-8000 Bioimaging System (UVP Inc. Upland, CA). 
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1.2.5.3  Polymerase Chain Reaction (PCR) 

PCR was performed on DNA samples using EconoTaq® PLUS 2X Master Mix, 

which includes the Taq polymerase (Lucigen Corporation, Middleton, WI). Forward and 

reverse primers were added to the PCR tube with nuclease-free H2O to make a 100-μL 

reaction volume. The extracted DNA was first amplified for mcrA1f and mcrA500r 

primers and then the amplified product was re-amplified for GCmcrA1f and mcrA500r 

primers which yielded a gene product that was approximately 500 nucleotides long 

(Luton et al., 2002). The primers used for nested PCR amplification of the mcrA gene are 

given in Table 1.5. The PCR was carried out using a thermo-cycler (Biometra T-

Personal). Figure 1.2 shows the thermocycler programs used for the nested PCR 

amplification. 
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(a) (b) 

Figure 1.2: Thermocycler Programs Used for (a) First Amplification for mcrA Gene 
(b) Nested Amplification of mcrA Gene With GC-Clamp 
 

1.2.5.4  Denaturing Gradient Gel Electrophoresis (DGGE) 

DNA is a two stranded molecule made of four types of nucleotide bases i.e. 

adenine, cytosine, guanine and thymine. A series of these bases form a deoxyribose sugar 

backbone of each DNA strand and both the strands of the molecule are held together with 

hydrogen bonds shared by the nucleotides present on opposite strands. Adenine and 

thymine share two hydrogen bonds, whereas guanine and cytosine share three hydrogen 
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bonds, so separation of guanine and cytosine takes more energy or denaturant 

concentration than separation of adenine and thymine (Muyzer et al., 1998). 

Genetic fingerprinting techniques like denaturing gradient gel electrophoresis 

(DGGE) can provide a community diversity profile on the basis of physical separation of 

unique nucleic acid sequences (Muyzer et al., 1999). The DGGE technique is based on 

decreased electrophoretic mobility of partially melted, double-stranded DNA molecules 

in polyacrylamide gels containing a linear concentration gradient of DNA denaturants (a 

mixture of urea and formamide). Molecules with different nucleotide compositions have 

different melting behavior, and, therefore, may stop migrating at different positions in the 

gel (Muyzer et al., 1998). The DGGE technique has been extensively used in the field of 

microbial ecology to compare microbial communities and use of DGGE with mcrA as a 

target gene have been reported (Wilms et al., 2007; Galand et al., 2002). 

Urea and formamide were used as denaturing reagents in acrylamide gels. Gels 

with a linear gradient of 40% at the top of the gel to 70% denaturant concentration at the 

bottom of the gel (expressed as v/v of the total gel volume) were used for electrophoresis. 

The highest and the lowest concentration of the denaturant was 75 mm apart. A BioRad 

Universal DCode Mutation Detection System device was used to run the DGGE gels. 

DGGE was performed on 1 mm thick 8 % polyacrylamide gel prepared as per the 

manufacturer’s protocol.  Forty uL of the amplified DNA product (equivalent to 

approximately 75 ng of DNA) was added to each lane of the polyacrylamide gel with 2X 

loading dye. An electric current of 100 V was run across the gel for 12 hours. A 1 % 

solution of SYBR® Green (Invitrogen, CA USA) dye was used for gel staining purpose. 
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The gel was immersed in the staining solution and rotated on a gyratory shaker table at 1 

rpm for 30 min before observing it under ultra violet light using GDS-8000 Bioimaging 

System (UVP Inc. Upland, CA). 

1.2.6  Image Analysis 

The obtained DGGE gel was visualized under ultraviolet light and its image was 

taken using a digital camera. The Lab Works software (v. 4.6.00.0) was used for digitally 

analyzing the number of bands present in each lane and their respective intensities in 

terms of optical density (OD). Parameters used for bands detection are presented in 

Appendix A, Table A.1. For the purpose of comparing densitometric data from two gel 

images, a common DNA sample extracted from a non-fat-dry-milk-fed, lab-scale 

anaerobic reactor and amplified for primers given in Table 1.5 was used as a marker 

(ladder). The marker was run in the first lane on every gel (Boon et al., 2002). The ratio 

between the densitometric data from the marker lanes of the first and the second gel 

images was used to normalize the densitometric data from all the other lanes of the 

second DGGE gel image. 

1.2.6.1  Cluster Analysis 

Dice and Jaccard coefficients as well as Pearson’s correlation coefficients have 

been used in the past to calculate similarity coefficients between banding patterns 

obtained from DGGE gels to make dendrograms showing differences between different 

banding patterns (Jackson et al., 1989; Zhang and Fang, 2000; Boon et al., 2002; Kosman 

and Leonard, 2005; Griffiths et al., 2000). Among all the similarity coefficients, 
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Pearson’s correlation coefficient seems to be the best suited for the application because, if 

used for the overall digitized lane data, then it takes into account the brightness of an 

individual band along with the presence or absence of the band, whereas other 

coefficients do not consider band intensities but only presence-absence of a band. 

Pearson’s correlation coefficients were calculated for each pair of densitometric 

data. The obtained values represented the similarities between the banding patterns of 

each lane. For calculating dissimilarities, one minus Pearson’s correlation coefficient was 

calculated and the values were used to make a distance matrix. The obtained distance 

matrix was used to make a dendrogram using the Phylogeny Inference Package 

(PHYLIP, v 3.68) and the unweighted pair group method with arithmetic mean 

(UPGMA) algorithm was used for clustering. Further, all the biomass samples were listed 

in ascending order of their pair-wise distances from the sample having the highest SMA 

(i.e. Brewery-1) and the obtained list of samples was ranked from 1 to 14. Another list of 

the biomass samples was prepared by arranging them in descending order of their SMA 

values and the list was ranked from 1 to 14. If there was a strong correlation between the 

SMA data and the densitometric data, then a strong correlation between the ranks of two 

lists was expected, so Spearman’s rank correlation coefficient (Zar, 1972 and Spearman, 

1904) was used to compare the two lists. 

Principle component analysis (PCA) was performed on the densitometric data 

using the MATLAB(v.7.6(R2008a)) software package. Optical densities of the bands 

were used as dimensional values and each biomass sample represented a data point. 

Finally a graph of the first versus the second principle component was plotted. The 
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samples were clustered into three groups using MATLAB(v.7.6(R2008a)) based on their 

first two principle components by the farthest neighbor algorithm. The SMA values were 

represented by a third dimension (diameter of the points) on the graph. If there was a 

strong correlation between the densitometric data and the SMA values, then samples with 

relatively similar SMA values were expected to cluster together. 

 

1.2.6.2  Range Weighted Richness (Rr) and Functional Organization (Fo) 

Marzorati et al (2008) defined two parameters, range weighted richness (Rr) and 

functional organization (Fo), for comparing DGGE banding patterns for the 16S rRNA 

gene.  

Range weighted richness (Rr) is a product of the square of the number of bands 

present in a particular banding pattern and the denaturant concentration difference 

between the first and last band locations (Marzorati et al., 2008). For DGGE of the 16S 

rRNA gene, Mazorati et al. (2008) hypothesized that Rr < 10 is indicative of an 

environment particularly adverse or restricted to colonization, leading to low range-

weighted richness. Rr values between 10 and 30 are hypothesized to be indicative of 

medium range-weighted richness, and samples having Rr > 30 are considered to have 

high range-weighted richness (Marzorati et al., 2008). 

To calculate Rr, the gel image was divided into sections, each representing a 5 % 

increase in the denaturant concentration along the gel length. From the image, the number 

of bands present and the number of sections of gel image comprising all the bands in a 
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lane were obtained. Finally Rr was calculated using Equation 1.1. In this equation, N is 

the total number of bands present in a particular lane and Dg is the denaturant 

concentration (expressed as a v/v fraction) difference between the first and last band of a 

particular lane. Rr was calculated as, 

Rr = (N2×Dg) .      (1.1) 

The Rr values obtained for each banding pattern were categorized as low, medium 

or high richness as proposed by others for 16S rRNA genes (Marzorati et al., 2008). 

Pareto-Lorenz (PL) evenness curves can be constructed from DGGE banding 

patterns to graphically represent the diversity of identified phylotypes (Mertens et al., 

2005; Wittebolle et al., 2008). To draw a PL curve using a banding pattern, respective 

bands present in a pattern are ranked from high to low abundance based on their band 

intensities (measured in terms of optical densities). The individual band intensity is 

divided by the total band intensity within a lane to normalize the data. The normalized 

band intensity represents the cumulative proportion of the phylotype relative abundance 

and is used as the y-coordinate for plotting PL curves as shown in Figure 1.3. Similarly, 

the number of bands is normalized by dividing by the total number of bands and the 

cumulative normalized number of bands is used as the x-coordinate for plotting PL curve 

as shown in Figure 1.3. A line with slope of 45o through the origin represents perfect 

evenness. As the un-even distribution among the community increases, the PL curve 

deviates from the line of perfect evenness as shown in Figure 1.3.  
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Figure 1.3: Possible Cases of P-L Curves. Adopted from Marzorati et al. (2008) 

 

For numerically interpreting a PL curve, it is suggested to focus on the cumulative 

number of bands that describe 20% of the normalized total population (Wittebolle at al., 

2008). For the 16S rRNA gene in ecological terms, it was concluded that the PL curve 

representing 25% cumulative band intensity (y-coordinate projection) for 20% of the total 

number of bands (x-coordinate) represents a community with high evenness. A PL Curve 

with high evenness is shown in Figure 1.3. The microbial community represented by a PL 

curve with high evenness has a low Fo value and it may result from a lack of selective 
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pressure. Such a microbial community doesn’t demonstrate a well defined structure since 

there are no phylotype present in a high relative concentration. A relatively long lag 

phase could be needed to counter a sudden stress experienced by this type of microbial 

community. The PL Curve representing 45% cumulative band intensity for 20% of the 

total number the bands represents a community with medium evenness as shown in 

Figure 1.3. In this case, the most fitting phylotypes are dominant and hence are present in 

high relative numbers while the other phylotypes are present in lower numbers. Such a 

community has a medium Fo value and may be able to preserve its functionality under 

changing environments. Finally the PL curve representing 80% cumulative band intensity 

for 20% of the total number of bands represents a specialized community having a small 

number of members dominating the overall number of microbes present. Such a 

distribution is categorized as high Fo and may be fragile when external changes are made 

because disruption may require long recovery times (Marzorati et al., 2008). 

Functional organization (Fo) of the banding patterns was evaluated using PL 

curves (Marzorati et al., 2008). For the purpose of analysis, it was assumed that the band 

intensity was a function of phylotype richness. For each lane, the respective bands were 

ranked from high to low based on their optical densities. The fraction of the total number 

of bands represented by an individual band was calculated by taking the reciprocal of the 

total number of bands present in a banding pattern as shown by Equation 1.2. In this 

equation, σxi is the fraction of the total number of bands represented by ith  band and N is 

the total number of bands. Similarly, the fraction of band intensity represented by every 

individual band in a banding pattern was calculated by taking the ratio of band intensity 

of that particular band and the sum of intensities of all the bands present in the banding 
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pattern as shown by Equation 1.3. In Equation 1.3, σyi is the fraction of the total intensity 

represented by ith  band and Xi is the intensity of ith band. σxi and σyi were calculated as, 

       ,     (1.2) 

        .    (1.3) 

 

Subsequently, the cumulative fraction of the total number of bands (σxi ) was used 

as the x-coordinate, and the respective cumulative fraction of the intensity of the bands 

(σyi ) was used as the y-coordinate. Furthermore, a vertical line was drawn to evaluate the 

fraction of microbial community represented by 20 % of the dominant bands. Functional 

organization for each biomass sample was categorized as low, medium or high as 

proposed by others (Marzorati et al., 2008). 

 

1.2.6.3  Regression Analysis 

The densitometric data obtained by the image analysis was also used to fit a 

multiple regression equation expressing SMA (dependent variable) as a function of band 

intensities (independent variables). Microsoft Excel® (v.2007) software was used for 

regression analysis by the least squares method and the results obtained were used to test 

the significance of the regression equation. 
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1.3 Results and Discussion 

1.3.1 SMA Results 

Figure 1.4 shows the SMA results for the anaerobic biomass samples arranged in 

descending order. The bar graph represents average SMA values, whereas the error bars 

represent standard deviation among the replicates. 

 

 

Figure 1.4: Results of SMA Testing.  
Groups 1 to 6 represent biomass samples having statistically distinct SMA values. 
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Interestingly all the brewery biomass samples had higher SMA values as 

compared to other biomass samples and 75 % of the municipal biomass samples had 

lower SMA values except the Municipal WWTP-1 biomass. The brewery biomass 

samples may have contained more suitable microbial communities for faster degradation 

of propionate as compared to the municipal biomass samples leading to higher SMA 

values. A reason for municipal biomass having a lower SMA may be the fact that the 

municipal biomass was used to digest sludge and some of the undigested sludge solids 

may have contributed to errors in estimating active biomass quantity measured in terms 

of VSS. This error using VSS to estimate active biomass may have caused lower SMA of 

municipal biomass samples. The probabilities (p) associated with the Student’s t statistic 

for pair-wise comparisons of SMA means are presented in Appendix A, Table A.2 in a 14 

× 14 sized, lower triangular matrix. The null hypothesis for the Student’s t test was that 

the population means (SMA values) of the two biomass samples compared were equal. 

Table A.3 in Appendix A, shows interpretation of the results for a 5% level of 

significance. In Table A.3, every gray colored cell, containing ‘True’ represents biomass 

samples with statistically equal SMA values whereas a cell containing signal ‘False’ 

represents biomass samples whose SMA values are statistically unequal. 

Figure 1.4 and Table 1.6 represent the clusters of the biomass samples formed by 

the farthest neighbor algorithm using (1-p) as the distance between two samples and a 

95% level of significance as the cutoff for cluster definition. The data were found to be 

clustered in six groups based on similarity in SMA values. Brewery-1 and Brewery-2 had 

unique SMA values among the samples tested. 
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Table 1.6: Clusters of Biomass Samples Based on SMA Values 

Cluster 

No. 
Members 

Average SMA, 

mLCH4/gVSS-hr 

Standard Deviation, 

mLCH4/gVSS-hr 

Cluster 1 Brewery-1 10.65 ±0.36 

Cluster 2 Brewery-2 5.80 ±0.26 

Cluster 3 

Municipal WWTP-1 

Brewery-3 

Food Industry-1  

Food Industry-2  

Food Industry-3 

4.09 ±0.61 

Cluster 4 
Sugar Industry-1 

Dairy-1 
2.86 ±0.32 

Cluster 5 

Municipal WWTP-2 

Food Industry-4 

Soft Drink Bottling 

2.25 ±0.35 

Cluster 6 
Municipal WWTP-3 

Municipal WWTP-4 
0.07 ±0.08 

 

1.3.2 Effect of Initial SMA on SMA After Enrichment 

 Based on the results of initial SMA screening (Figure 1.4), biomass samples with 

higher and lower SMA values were selected for enrichment. Since the Municipal 

WWTP-4 biomass sample was found to have zero initial SMA against propionate, it was 
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not selected for enrichment. Table 1.7 shows the list of biomass samples selected for 

enrichment and their initial and final SMA values after 580 days (38.6 SRTs). 

Table 1.7: Biomass Samples Selected for Enrichment 

Sample 
Initial SMA, 

mLCH4/gVSS-hr 

Final SMA after 

enrichment, 

mLCH4/gVSS-hr 

Brewery-1 10.65 ± 0.36 10.65 ± 3.27 

Brewery-2 5.80 ± 0.26 8.89 ± 3.20 

Municipal WWTP-1 4.38 ± 0.09 4.18 ± 0.50 

Food Industry-4 2.29 ± 0.18 2.21 ± 0.46 

Soft Drink Bottling 2.08 ± 0.21 2.14 ± 0.41 

Municipal WWTP-3 0.14 ± 0.06 1.94 ± 1.37 

 

Figure 1.5 shows the effect of initial SMA on the SMA after 580 days (38.6 

SRTs) of enrichment for different methanogenic cultures. The SMA values after 

enrichment tend to follow the pattern of initial SMA values of the samples which was 

verified statistically by ranks correlation coefficient. The ranks correlation coefficient 

used for proving the hypothesis that the SMA values after enrichment followed the trend 

of initial SMA values of the biomass samples was found to be 0.94, for which the critical 

value at 5% level of significance was only 0.886. This means there was a strong influence 

of the initial SMA and the microbial community on the SMA after enrichment. This 
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further highlights the need for analysis of the methanogenic communities present in the 

samples with higher or lower initial SMA. This indicates that the microbial communities 

present in the seed culture used for starting an anaerobic digester can dictate the long-

term digester behavior. 

 

 

Figure 1.5: Effect of Initial SMA on SMA After Enrichment 

 

1.3.3 mcrA – DGGE Analysis 

Two DGGE gel images were compared by lining up the bands present in the 

common marker (ladder). Figure 1.6 shows the combined DGGE image. Densitometric 

data from the two images were combined as described previously (see section 1.2.2.5) 

and used to calculate Rr and Fo. The densitometric data were also used to perform cluster 
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and multiple linear regression analysis. Significant bands were detected for the minimum 

optical density threshold of 0.15 and visual inspection. Each significant band in Figure 

1.6 b (i.e. B1, B2, B3……B10) was assumed to represent one phylotype of methanogen. 

The presence of the same band in different sample lanes indicated the presence of that 

particular phylotype in both samples. The brightness of a band in terms of optical density 

(OD) was considered to be an indicator of the abundance of that methanogenic phylotype 

as has been assumed by other researchers (Marzorati et al., 2008). Although helpful, 

these assumptions may not be accurate because of biases involved in molecular 

techniques such as DNA extraction, PCR amplification and DGGE (Head et al., 1998; 

Spiegelmann et al., 2005; Potens et al., 2007; Marzorati et al., 2008). 
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(a) (b) 

Figure 1.6: DGGE Gel Image Indicating (a) Denaturant Concentration Along the Length (b) Different Types of Bands Present 
in the Banding Patterns 
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1.3.3.1  Cluster Analysis 

Figure 1.7 presents the dendrogram obtained for banding patterns constructed 

using UPGMA algorithm and densitometric data. The distance between each pair of 

samples was calculated as one minus the correlation coefficient between densitometric 

data of two samples. If there was a strong relation between the mcrA DGGE banding 

patterns and the SMA values, then the clustering of the densitometric data was expected 

to follow results presented in Table 1.6. For example, Municipal WWTP - 1 was 

expected to be clustered with Brewery – 3, Food Industry -1, Food Industry -2 and Food 

Industry -3 according to results in Table 1.6. However these four biomass samples were 

present in different dendrogram clades. Also, Brewery – 1 biomass was found to cluster 

with Municipal WWTP -3 biomass in the dendrogram, whereas these biomass samples 

demonstrated significantly different SMA values.  
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Figure 1.7: Cluster Analysis of the Biomass Samples Based on DGGE Band 
Densitometric Data. The scale bar represents one minus correlation coefficient 
between the densitometric data of the two samples. 

 

Further, the rank correlation coefficient between the SMA data and the 

densitometric data was only 0.015, which was less than the critical value of 0.538 for a 

95% confidence level (Zar, 1972). The rank data used to calculate the rank correlation 

coefficient are presented in Appendix A, Table A.4. An insignificant rank correlation 

coefficient indicates that clustering based on densitometric data did not follow the 

clustering trend based on SMA values. 
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Figure 1.8 shows the three clusters obtained for principle component (PCA) 

performed using densitometric data. The first two principle components were employed 

as x and y-coordinate respectively and explain 81.6% of the total variation for 

densitometric data. On the right hand side of the figure, the biomass samples are listed in 

descending order of their SMA values and the samples are ranked from 1 to 14 according 

to their respective SMA values. In Figure 1.8, the circle diameter is used as the third 

dimension indicating SMA values (i.e., samples with higher SMA values are represented 

by circles with larger diameters). This means SMA values were not used to determine the 

principle components, but they were super-imposed on the plot as the third dimension 

(dot diameter). In Figure 1.8, Municipal WWTP-3 (Rank 13) and Municipal WWTP 

(Rank 14) were represented by ‘×’ symbols because of their negligible SMA values 

which led to non visible circle diameters. Projections of the densitometric data of the five 

bands having the highest contribution to the principle components (B1, B2, B3, B7 and B8) 

were also shown in Figure 1.8. The biomass samples clustered in three groups based on 

their principle component coordinates (see Figure 1.8). 

Cluster 1 represented biomass samples having high SMA ranks, whereas Cluster 2 

represented those with lower ranks. Cluster 3 represented biomass samples having 

variable SMA ranks. The banding pattern correlates to a high degree with the SMA ranks. 

However, Brewery-3 (Rank 4) and Municipal WWTP-2 (Rank 10) were outliers in 

Cluster 3 since ideally they would be contained in Cluster 1 and Cluster 2 respectively.  

Projections of the five dimensions causing the highest variation in data showed 

that higher OD values for bands B1 and B2 contributed significantly to Cluster 1. This 
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indicates that these may have a significant metabolic function leading to higher SMA 

values. This may be an indication of an underlying relationship between banding pattern 

and the SMA value, but as mentioned above, Figure 1.8 explains only 81.6% of the total 

variation in the data. 

 

 

Figure 1.8: Principle Component Analysis Results 
First principle component = -0.4655(X1) - 0.5228(X2) - 0.3663(X3) - 0.0875(X4) + 0.0044(X5) + 0.035(X6) 
- 0.5116(X7) + 0.2959(X8) + 0.0478(X9) + 0.1237(X10) 
Second principle component = -0.3467(X1) - 0.3190(X2) + 0.0285(X3) + 0.0070(X4) - 0.0662(X5) + 
0.0129(X6) + 0.0786(X7) - 0.8571(X8) - 0.0402(X9) - 0.1740(X10) 
Where, X1, X2, X3……X10 are the normalized optical densities for band B1, B2, B3……B10 of a banding 
pattern as shown in Figure1.6 b) 
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1.3.3.2  Range Weighted Richness (Rr) 

Figure 1.6 a and b show the gel image used to calculate Rr and Table 1.8 shows 

Rr values of biomass samples listed in descending order of SMA values. The Rr values 

for the biomass samples varied between 3.2 to 12.8 and 50% of the biomass samples had 

an Rr values of 12.8. Table 1.8 also shows classification of Rr values in low, medium and 

high categories as proposed by others for 16S rRNA gene (Marzorati et al., 2008). 

 

Table 1.8: Range Weighted Richness (Rr) of The Biomass Samples 
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Figure 1.9 Presents SMA versus Rr values. The correlation coefficient for the data 

presented in Figure 1.9 was found to be 0.18 and Student’s t test for testing significance 

of the correlation coefficient showed that the obtained correlation coefficient was not 

significant at a 5% level of significance (p=0.53). This means that the Rr values of the 

samples did not correlate with the SMA values. 
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Figure 1.9: Correlation Between Rr and SMA.  
Error bars represent the standard deviation among the replicates of the biomass samples. 
Absence of error bar represents that only one sample had the Rr value represented by the 
point. 
 

 

1.3.3.3  Functional Organization (Fo) 

Figure 1.10 shows PL curves used to describe functional organization values (Fo) 

of biomass microbial communities existing in the biomass samples. PL curves for all the 

samples except Municipal WWTP - 3 and Food Industry - 4 were in the medium 

functional organization range (45 to 80% cumulative phylotype abundance for 20% 
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et al., 2008). The Municipal WWTP - 3 and the Food Industry - 4 biomass samples were 

categorized as having low functional organization, and their 20 % cumulative population 

values represented 44% and 43% cumulative phylotype abundance respectively. In 

contrast, 80% of the cumulative phenotype abundance for dairy biomass was observed at 

the 20%-cumulative-population value; meaning the dairy biomass had lower diversity. 

 

 

Figure 1.10: Pareto-Lorenz Curves for the Anaerobic Biomass Samples 

 

The correlation coefficient between Fo and SMA values was 0.061 and Student’s 

t test for testing significance of the correlation coefficient showed that the correlation was 
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not significant at a 5% level of significance (p=0.83). When two samples with the lowest 

SMA values were dropped from the correlation analysis (Municipal WWTP-3 and 

Municipal WWTP-4), the correlation coefficient was found to be 0.594 which was 

statistically significant (p=0.013). Figure 1.11 shows the graph of Fo and five groups of 

SMA values (see Figure 1.4 and table 1.6 for groups of SMA). The group of SMA values 

with the two low-SMA outliers was removed. Horizontal error bars represent the standard 

deviation among Fo values of the samples having the same SMA. Vertical error bars 

represent standard deviation among the replicates. The Brewery-1 biomass sample was 

represented by a point that is far away from the curve because of its significantly higher 

SMA value. Interestingly, Fo seems to have a negative correlation with the SMA value 

which indicates that high evenness in the methanogenic community may be important for 

higher propionate degradation rates. 
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Figure 1.11: Correlation Between Fo and SMA.  
Error bars represent the standard deviation among the replicates of biomass samples. 
Vertical error bars represent standard deviation among the SMA replicates. Horizontal 
error bars represent the standard deviation among Fo values of the samples. 
 

1.3.3.4  Regression Analysis 

The following theory was considered to attempt to establish a relationship 

between SMA values against propionate and the DGGE bands. It was assumed that the 

SMA test systems operated at low H2 concentrations (10-4 to 10-6 atm partial pressure), 

which was necessary for propionate conversion to methane (McCarty and Smith, 1986). 

Also, it was assumed that the H2 concentration was constant when methane production 
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rate was constant during the SMA test utilized, and the CH4 production rate was 

proportional to the H2 utilization rate. 

Figure 1.12 shows the first-order degradation kinetic relationship with respect to 

H2 concentration for two hypothetical microbial phylotypes 1 and 2. Previous researchers 

have stated that many hydrogenotrophic methanogenic archaea require a minimum 

threshold hydrogen concentration to be metabolically active (Karadagli and Rittmann, 

2007a; Karadagli and Rittmann, 2007b). 

 

 

Figure 1.12: First-Order Degradation Kinetics for Hypothetical Microbial 
Phylotype 1 and 2 
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Equation 1.4 shows the expression for specific methanogenic activity (r1, moles-

CH4/gVSS1-hr) due to methanogenic phylotype 1 against hydrogen, k1 is the first order 

kinetic rate constant for phylotype1 and has units (hr-1), [H2] is the hydrogen 

concentration and has units (moles/L), [H2]threshold is the threshold hydrogen concentration 

for methanogenic phylotype1 and has units (moles/L), X is concentration of all the 

methanogenic phylotypes and has units (gVSS) and X1 is the concentration of 

methanogenic phylotype 1 and has units (gVSS1). Specific methanogenic activity due to 

phylotype 1 was assumed to be given as, 

SMA1= r1= k1 ([H2] - [H2]threshold-1) (X1/X).   (1.4) 

 

Average first order degradation rate constant for all the phylotypes (ka, hr-1) can 

be given by Equation 1.5. In Equation 1.5, δ1 is the difference between the average first-

order rate constant and first-order rate constant for microbial phylotype 1 and has units 

(hr-1). Average first-order degradation rate constant was assumed to be given as, 

k1 = ka + δ1 .          (1.5) 

Substituting the value of k1 in Equation 1.4 leads to, 

                       r1 = (ka + δ1) ([H2] - [H2]threshold-1) (X1/X) , 

           r1 = (ka [H2] + δ1 [H2] - ka [H2]threshold-1 – δ1 [H2]threshold) (X1/X) , 

                       r1 = ka [H2] (X1/X) + (δ1 [H2] - [H2]threshold-1 ( ka + δ1)) (X1/X) .     (1.6) 
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If the overall SMA (SMAT, moles-CH4/gVSS1-hr) of a biomass sample is 

assumed to be the sum of individual SMA values of the different methanogenic 

phylotypes present in a biomass sample, then, 

SMAT = r1 + r2 + r3…rn  ,         (1.7) 

where, n is the total number of methanogenic phylotypes present in the biomass. 

From Equations 1.6 and 1.7, the following theoretical linear equations can be generated, 

           SMAT = ka[H2]((X1+X2+X3…Xn)/X)+(δ1[H2]-[H2]threshold-1(ka+δ1))(X1/X) 

                        +(δ2 [H2]-[H2]threshold-2(ka+δ2))(X2/X)+(δ3[H2]-[H2]threshold-3(ka+δ3))(X3/X) 

                        +…+(δn[H2]-[H2]threshold-n(ka+δn))(Xn/X)        (1.8) 

          SMAT = a n/X)+ m1(X1/X)+m2(X2/X)+m3(X3/X)+…+ mn(Xn/X)     (1.9) 

 

Let a=ka[H2], the y-intercept of the linear equation, and mi=(δi[H2]-[H2]threshold –i(ka+δi)), 

the slope of the linear equation, then Equation 1.9 is valid for the following conditions: 

1. if δi < 0, then | δi | < ka; 

2. [H2] > [H2]threshold ; 

3. mi < 0 if δi [H2] < [H2]threshold -i ki. 

A multiple linear regression equation was generated by the least sum of squared 

residual method using the OD of DGGE bands shown in Figure 1.6 b). The obtained 

regression equation was, 
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SMA = 0.0942( i/X) + (-6.4968(X1/X)) + 5.2921(X2/X) + 0.6974(X3/X)  

             +5.1697(X4/X) + 1.1422(X5/X) + (-0.0549(X6/X)) + (-1.3621(X7/X))  

             + (-1.8603(X8/X)) + (-25.6866(X9/X)) + 17.1986(X10/X) .      (1.10) 

 

In Equation 1.10, (X1/X) and (X2/X) are the standardized ODs of band B1 and B2 

shown in Figure 1.6 b).  For the above equation, the coefficient of determination (r2) was 

found to be 0.864. Figure 1.13 shows a plot of predicted SMA values versus actual SMA 

values. The diagonal line in Figure 1.13 represents the locus of perfect correlation. 

 

 

Figure 1.13: Plot of Measured SMA Values Versus SMA Values Estimated From 
DGGE Banding Pattern Data Using Multiple Linear Regression 
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Although the equation seems to fit relatively well to the test data, the ‘F-statistic’ 

for the regression equation revealed that there was a 35.6% chance of obtaining a better 

‘F-statistic’ value by random occurrence. Hence the obtained equation does not represent 

a strong relationship between banding patterns and SMA values for the data evaluated. 

To demonstrate this, the data were randomly divided into two groups. One group was 

used as the training set to obtain a regression equation and the second group was used to 

test the resulting correlation equation. Figure 1.14 shows the graph of estimated versus 

measured values. The equation predicted the training data SMA values well, but test data 

were found to be scattered. This highlights the finding that there was no predictive 

correlation between the SMA values and the densitometric data from the DGGE image 

for the tested dataset. 

 

Figure 1.14: Predicted and Estimated SMA Values For the Training and Testing Data 
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There may be several reasons behind the multiple regression equation being 

statistically insignificant, including an insufficient amount of data, the amplified mcrA 

gene not being a true estimator of the active MCR enzyme in anaerobic cultures, the 

possibility of the MCR enzyme not being the rate-limiting enzyme during degradation of 

propionate, and the difficulties in measuring the actual quantity of biomass present in a 

sample using VSS values. These factors t are discussed below. 

1) When estimating SMA values, volatile suspended solids (VSS) concentration was 

used as a measure of the amount of active biomass present in the samples. It was 

assumed that all the VSS present in the samples was active biomass. This 

assumption may not be true since biomass samples digesting insoluble wastes 

(particulate material) such as waste activated sludge contain undigested 

particulate material that is not active biomass. This may have led to erroneous 

SMA values. These erroneous SMA values may also have led to a statistically 

insignificant regression relationship between the DGGE banding patterns and 

SMA values. 

2) The number of samples used to perform the regression analysis was insufficient 

for the number of variables tested. Topliss and Costello (1972) recommended that 

for quantitative structure-activity relationship (QSAR) models,  if r2 =0.4 is 

considered to be an acceptable level of correlation, then ≥30 samples are required 

to test 5 variables and ≥50 samples are required to test 10 variables. In the current 

study, only fourteen samples were used to fit an equation having ten variables, 

whereas ≥ 50 samples were required. 
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3) The mcrA gene copy number may not be representative of the active biomass 

involved in methane production. It is known that gene copies don’t necessarily 

correlate to the number of translated enzymes (Freitag et al., 2009; Radl et al., 

2007; Steinberg et al., 2009). An approach based on mRNA quantification may 

yield better data to establish such a relationship because the presence of mRNA 

indicates that the gene is not only present but also actively transcribed. 

4) Also there are a number of biases involved in the molecular techniques such as 

DNA extraction, PCR amplification, DNA purification and DGGE (Head et al., 

1998; Spiegelmann et al., 2005; Potens et al., 2007; Marzorati et al., 2008). These 

biases may have led to DGGE results that were not necessarily true 

representations of the methanogenic communities. 

5) Another reason behind the poor regression could be that there was actually very 

little or no correlation between the methanogenic community structure and SMA 

values against propionate because the rate of propionate degradation by 

syntrophic bacteria may actually be the rate-limiting step. Although consumption 

of H2 by hyderogenotrophic methanogens is a very important step in the 

degradation of propionate, the consumption rate of H2 may not be representative 

of the overall propionate degradation rate. 

6) To avoid complications during analysis, it was assumed that the methanogenic 

phylotypes worked independently and any interdependence among two or more 

methanogenic phylotypes was ignored. This led to the assumption that the total 

SMA value was an additive function of individual SMA values. The validity of 

this assumption is not known and if two or more methanogenic phylotypes do 
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share interdependence, then the additive relationship assumed would not be 

accounted for during regression analysis. 

 

1.4 Conclusions and Recommendations for Future Work 

 

The anaerobic biomass samples demonstrated SMA values that varied over two 

orders of magnitude and the samples were statistically categorized in 6 different groups 

based on their SMA values (for 5% level of significance). After enrichment of six 

different biomass samples it was observed that the initial SMA value had a strong 

influence on the final enriched SMA values even after enrichment over 38 SRTs (580 

days). The samples with higher initial SMAs demonstrated higher enriched SMAs. This 

means that the initial microbial community present in an anaerobic culture significantly 

affects the enriched SMA value. This is particularly important since the biomass used as 

a seed culture to start an anaerobic culture may significantly influence the operating 

characteristics of a reactor over a long period of time. 

 Cluster analysis of DGGE banding pattern densitometric data using UPGMA 

algorithm showed that the grouping pattern based on DGGE pattern did not correlate to 

the clustering based on SMA values and samples with significantly different SMA values 

were found to be clustered together (see Figure 1.7). This indicates that there was no 

correlation between the densitometric data and the SMA values. The principle component 

analysis of the densitometric data indicated that the biomass samples were clustered in 

three groups according to their SMA values on a plot of the first two principle 

components. This may indicate an underlying relation since the principle components 
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were found without using the SMA values and the SMA values were imposed as a third 

dimension on the plot using DGGE banding pattern principle components. Furthermore, 

band B1 and B2 were found to have the highest positive influence on the SMA values of 

the biomass samples analyzed, which means the presence of phylotypes represented by 

bands B1 and B2 had a positive effect on biomass SMA values. 

 Range weighted richness (Rr) and functional organization (Fo) showed 

statistically insignificant correlation with SMA values. This indicates that the distribution 

of phylotypes among samples was independent of their SMA values. Also, multiple 

regression analysis done using SMA values as the dependent variable and band intensities 

as independent variables showed a 0.864 r2 value but the associated F statistic value 

indicated that there was a 35.6% chance of obtaining a better correlation by random 

occurrence. Hence, the obtained relationship between DGGE banding patterns and SMA 

values was not statistically significant. 

In conclusion, there are several factors that may have caused poor correlation 

between molecular and the SMA analysis such as an insufficient amount of data, the 

amplified mcrA gene not being the true estimator of the active MCR enzyme in anaerobic 

cultures, the possibility of MCR enzyme not being the rate limiting enzyme for 

degradation of propionate, and complications in measuring the actual quantity of biomass 

present in the samples using VSS data. 

In lieu of the current study, the following recommendations for future work are 

made. At least 50 samples representing different SMA values should be considered to 

attempt to obtain a statistically significant QSAR model. 
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Instead of genes (DNA), mRNA should be extracted from the biomass samples 

and reverse transcriptase polymerase chain reaction (RT-PCR) should be performed on 

the extracted mRNA to convert them to stable DNA sequences. The stable DNA can then 

be quantified using real-time PCR techniques and then finally a fingerprinting technique 

like DGGE could be used for analysis of the amplified DNA. This approach may be more 

reliable since mRNA is a better estimator of the quantity of active enzyme involved in 

methane production and active biomass. Furthermore, the amount of target mRNA found 

in each sample can be used instead of VSS to calculate SMA values to eliminate any bias 

involved in VSS measurement to determine active biomass i.e. SMA values may be 

expressed in units of mLCH4/(g target mRNA-hr). Importantly, mRNA coding for the 

enzyme that determines the overall rate of degradation should be selected for the study 

since it may show better correlation with the methane production rate. 

In conclusion, SMA values against propionate for biomass from different 

anaerobic digesters varied over two orders of magnitude. SMA values after enrichment 

showed high correlation with the initial SMA values of cultures after 580 days (38.6 

SRTs) of enrichment. Therefore, seed biomass for new reactors should be chosen 

carefully, and activity testing is recommended when selecting seed biomass. Comparison 

of DGGE banding patterns for the mcrA gene with SMA values for 14 biomass samples 

indicate an underlying relation between methanogenic community structure and activity. 

However, more research is required to establish a quantative structure-activity 

relationship (QSAR). In the future, QSARs may be developed, and more highly-defined 

microbial communities may be employed to improve specific aspects of anaerobic 

digester performance. 
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CHAPTER 2: BIOAUGEMNTATION FOR RECOVERY OF ORGANICALLY 
OVERLOADED DIGESTERS 

 

2.1 Anaerobic Wastewater Treatment and Propionate 

2.1.1 Importance of Hydrogen in Propionate Degradation 

Traditionally, propionate accumulation has been seen as an indicator of process 

imbalance in an anaerobic digester and propionate-utilizing microbes play an important 

role when anaerobic digesters are subjected to organic overload due to complex substrate. 

Under standard conditions, metabolism of propionate to acetate and hydrogen gas is 

energetically unfavorable (see Table 1.1), but conversion of hydrogen and carbon dioxide 

to methane drives the overall reaction in the forward direction. Degradation of propionate 

is theoretically favorable only when the hydrogen concentration in an anaerobic digester 

lies between 10-4 to 10-6 atm (McCarty and Smith, 1986). If the dissolved hydrogen gas 

concentration goes above this range, then propionate degradation becomes energetically 

unfavorable and stops. (see section 1.1.1 for the review). 

 

2.1.2 Propionic Acid Toxicity 

Besides being an energetically challenging substrate, propionic acid can be 

inhibitory to methanogens at high concentrations. Barredo and Evison (1991) studied the 

effect of propionate toxicity at pH values of 6.5, 7.0 and 8.0 on methanogen-enriched 

sewage sludge and pure cultures of the hydrogen-utilizing methanogens 

Methanobrevibactor smithii and Methanospirillum hungatii. Test assays fitted with screw 

caps and butyl rubber septa were fed with different doses of the sodium salt of propionate 
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and equal amounts of biomass to determine propionate toxicity. Toxicity of propionate 

was characterized by a decrease in the amount of methane produced and the microbial 

count. Results of the study indicated that even 20 to 30 mM (1.48 g/L to 2.22 g/L) of 

propionic acid decreased the methanogen count from the enriched sludge at all pH 

ranges. At a propionic acid concentration of 80 mM (5.92 g/L), the methanogen count in 

enriched sludge decreased by two orders of magnitude. Also, comparison of pure cultures 

with the enriched culture showed that they were equally sensitive to propionic acid. There 

was a clear tendency for cumulative methane production to decrease as the propionate 

concentration increased. 

Ahring et al. (1995) studied the effect of volatile fatty acids (VFAs) on methane 

production rates during digestion of manure in batch experiments. Different doses of 

sodium salts of acetate, propionate, butyrate and valerate were added to the mixed culture 

to evaluate their toxicity. Methane production rate increased with increasing 

concentrations of VFA up to 50 mM (3.7 g/L of propionic acid) for all VFA tested. A 

slight decrease was observed in the methane production rate at 200 mM (1200 mg/L of 

acetic acid) acetate and butyrate, while methane production rate from propionate 

decreased by 50% when the propionate concentration was increased from 50 mM (3.7 

g/L) to 100 mM (7.4 g/L). 

Dhakad et al. (2003) studied the effect of propionic acid toxicity on a mixed 

culture degrading night soil at psychrophilic (10 0C) and mesophilic (30 0C) temperatures 

at different pH conditions. The decrease in biogas production of 60.4% at 10 0C and 77% 

at 30 0C was reported at the propionate dose of 200 mM (14.8 g/L equivalent to 30.8 g 

propionate/g VS) at pH 7. Also, a 2 log decrease in methanogenic cell counts was 
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observed for the pH values 6, 7 and 8 at 10 0C for a propionic acid concentration of 200 

mM (14.8 g/L), whereas a similar decrease in methanogenic count at 30 0C was only 

observed at a pH 7. 

Savant and Ranade (2004) studied toxicity of propionate on Methanibrevibacter 

acididurans (MCM B 613) and Methanobacterium bryantii (MCM B 608) separately at 

mesophelic temperatures. Autoclaved growth medium suitable for growing 

Methanibrevibacter acididurans and Methanobacterium bryantii was added to 38-mL 

glass vials and the medium pH was adjusted to 5.0, 6.0 or 7.0 respectively using NaHCO3 

or HCl. Furthermore, the sodium salt of propionate was added to provide 0 and1.0 g/L 

propionate concentration in the vials maintained at pH 5. Vials maintained at pH 6 were 

supplied with 0, 1.0, 5.0 and 10.0 g propionate/L, and the vials maintained at pH 7 were 

supplied with 0, 1.0, 5.0, 10.0 and 20.0 g/L propionate. Sodium salt of propionate was 

used for the experiments. Pure cultures of M. acididurans and M. bryantii having optical 

density of 0.4 were mixed in a 1:9 (w/w) proportion in the vials containing propionate 

and the growth medium. H2:CO2 gas (80:20 v/v) was used as the substrates for the 

methanogenic strains. The headspace of each vial was flushed by H2:CO2 gas once a day 

and a headspace pressure of 2 atm (absolute) was maintained. All the vials were 

maintained anaerobically at 350C on a shaker table for 8 days. Samples of the headspace 

gas were analyzed for methane content every day using gas chromatography and the 

cumulative methane produced after 8 days was determined to evaluate propionate 

toxicity. Results of the study revealed that at pH 7.0, cumulative methane production 

from M. acididurans was reduced to half of its maximum value at 14 g/L propionate 

concentration, whereas there was a 30% decrease in cumulative methane production by 
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M. bryantii at 20g/L propionate concentration. At pH 6.0, cumulative methane production 

from M. acididurans and M. bryantii was reduced by 50% of its maximum value at 9 g/L 

and 4.6 g/L propionate concentration respectively, whereas at pH 5.0, cumulative 

methane production from M. acididurans and M. bryantii was reduced by 25% and 32% 

of their maximum values at a 1 g/L propionate concentration. 

 

2.1.3 Bioaugmentation for Enhancing Microbial Community Function 

 

Bioaugmentation is defined as adding specialized microorganisms or enzymes to 

biological systems to improve process performance (Rittmann and Whitemann, 1994; 

Maier et al., 2000; Deflaun and Steffan, 2002; Mulligan, 2002; Evans and Furlong, 

2003).  Bioaugmentation can also be viewed as the use of preselected specialized, mutant 

or adapted bacterial blends that can help enhance overall system performance and 

stability and reduce costs (Nyer and Bourgeois, 1980). Bioaugmentation has been 

traditionally considered for remediation of hazardous waste sites, but more recently has 

been studied for use in other applications, such as improving anaerobic digesters. 

Applications for wastewater treatment include more reliable nitrification, improved 

sludge settling, enhanced grease degradation and accelerated transformation of xenobiotic 

organic contaminants (Rittmann and Whitemann, 1994). A review of bioaugmentation 

research relating to environmental remediation, wastewater treatment and finally, 

anaerobic digestion is presented below. 
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2.1.3.1   Removal of Contaminants from Environmental Systems 

Bioaugmentation has been used for remediation of sites contaminated with 

specific chemicals such as chlorinated volatile organic compounds (CVOCs) (Deflaun 

and Steffan, 2002; Streger at al., 2002; McCarty, 1997); benzene, toluene, etheylene and 

xylene (BTEX); phenols; methyl tertiary butyl ether (MTBE) and polychlorinated 

biphenyls (PCBs). The added organisms may mineralize the pollutant in the environment 

and may remediate the site at a faster rate than the indigenous microorganisms (Singer et 

al., 2005). 

2.1.3.1.1 Chlorinated Volatile Organic Compounds (CVOCs) 

For a review of various types of bioaugmentation projects to remediate CVOC 

contaminated sites, refer to Deflaun and Steffan (2002) and Cupples (2008).   

Cupples (2008) provides an overview of the applications for investigating the 

importance of Dehalococcoides sp. for bioremediation purposes. Dehalococcoides sp. is 

known to reductively dechlorinate a wide variety of environmental contaminants 

including CVOC’s. It was therefore concluded that these organisms can be used to 

bioaugment various sites that may contain these pollutants (Ellis et al., 2000; Major et al., 

2002; He et al., 2002; Lendvay et al., 2003; Rahm et al., 2006; Sleep et al., 2006). 

Ellis et al., (2000) studied bioaugmentation for dechlorinating tricloroethylene 

(TCE) to ethene in a contaminated aquifer. Before implementation of bioaugmentation, 

there was no dechlorination beyond cis-dichloroethylene (DCE). An ethene-forming 

microbial mixed culture that contained Dehalococcoides ethenogenes was introduced on 
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days 269 and 284 of the study. Vinyl Chloride (VC) was observed in the aquifer by day 

360, which was followed by ethene on day 367. By day 509, TCE and cDCE were 

completely degraded to ethene, suggesting that bioaugmentation can act as a supplement 

to natural attenuation and make bioremediation more effective. 

Major et al. (2002) studied bioaugmentation of groundwater contaminated with 

perchloroethylene (PCE), TCE and cDCE for reductive dechlorination. The initial 

biostimulation of the site using methanol and acetate effected dechlorination of PCE to 

cDCE.  A natural dechlorinating culture containing organisms related to Dehalococcoides 

ethenogenes was then added to the groundwater.  Results of the study indicated that the 

dechlorination proceeded until ethene became the prominent constituent (88% of the total 

concentration) in the groundwater 142 days after bioaugmentation. 

He et al. (2002) determined the reductive dechlorination process end points in 

microcosms established with aquifer material contaminated with chloroethene using a 

variety of electron donors including H2 and acetate. The microorganisms in the aquifer 

dechlorinated PCE, TCE, cis-DCE, and VC completely to ethene within 14 weeks. These 

microcosms were bioaugmented with Dehalococcoides multivorans or a defined 

Dehalococcoides sp. containing a strict hydrogenotrophic, PCE-dechlorinating mixed 

culture. 

Lendvay et al. (2003) compared bioaugmentation and biostimulation of 

chloroethene-contaminated aquifers.  Biostimulation was achieved by continuous lactate 

and nutrient injection which resulted in complete dechlorination after a three-month lag 

period. The bioaugmentation experiment involved addition of a Dehalococcoides-
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containing consortium that degraded PCE to ethene and resulted in complete 

dechlorination to ethene within six weeks. 

Rahm et al. (2006) studied the microbial communities of two different sites that 

experienced biostimulation and bioaugmentation.  At the first site, biostimulation with 

lactate led to complete dechlorination of TCE to ethane, whereas at the second site, 

biostimulation resulted in incomplete dechlorination. The bioaugmentation strategy was 

then explored by using a mixed culture that contained Dehalococcoides sp.. The 

bioaugmentation resulted in complete reduction to ethene. 

Sleep et al. (2006) observed enhanced PCE reduction from a dense nonaqueous 

phase liquid (DNAPL) source. Using contaminated soil and groundwater from Dover Air 

Force Base in Delaware, dechlorination was studied using biostimulation alone and 

biostimulation along with bioaugmentation. The biostimulation using methanol, acetate 

and ethanol addition produced no dechlorination, but when one system was 

bioaugmented with a dechlorinating culture containing Dehalococcoides sp., 

dechlorination to ethene was effectively achieved. 

2.1.3.1.2  Benzene, Toluene, Ethylene and Xylene (BTEX) 

Da Silva and Alvarez (2004) studied whether anaerobic bioaugmentation 

enhances the natural attenuation of BTEX in groundwater contaminated with ethanol-

blended gasoline. They studied bioaugmentation using two different microbial consortia: 

one enriched with toluene and o-xylene and another enriched with benzene. High BTEX 

removal efficiency (88% removal of benzene and 99% removal of o-xylene) was 
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sustainable for over one year in soil bioaugmented with both consortia. When 

investigating soil that was not bioaugmented, toluene was the only contaminant that 

could be biodegraded and this took a period of two years. 

2.1.3.1.3  Phenols 

Zou et al. (2000) investigated the removal of pentachlorophenol (PCP) through a 

comparison of biostimulation and bioaugmentation.  The culture used for 

bioaugmentation was a PCP-degrading methanogenic consortium from a fluidized bed 

reactor and was immobilized on a porous silica/alumina support material that was 

approximately 0.5 mm in diameter. Biostimulation was accomplished using 2 g 

glucose/kg soil and was almost as effective as bioaugmentation with 0.14 g VSS/kg soil 

(90% removal in 20 days by biostimulation as compared to 90% removal in 15 days by 

bioaugmentation). A combination of both treatments removed PCP at a faster rate than 

the treatments by themselves with the combination reaching 90% removal of PCP in less 

than 14 days. 

Ramadan et al. (1990) investigated the mineralization of p-nitrophenol (PNP) in 

lake water using Burkholderia cepacia. Burkholderia cepacia was known to grow on and 

mineralize PNP in a salt solution.  This species did not mineralize 1.0 μg of PNP per mL 

and the cell population declined in 13 hours until no cells were detected.  The authors 

suggested that the decline in the population of the bioaugmented culture may have 

occurred because they were eliminated by protozoan grazing or nutrient deficiencies. 

Results of Ramadan et al. (1990) validated earlier findings of Goldstein et al., (1985) who 

also arrived at similar conclusions when studying bioaugmentation for remediation of 
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PNP in various environmental systems. It was concluded that it is important to introduce 

a bioaugmentation culture that can establish itself in the environment and the 

environment must have the required nutrients for the survival of the bioaugmentation 

culture. 

2.1.3.1.4  Methyl Tertiary-Butyl Ether (MTBE) 

Streger (2002) studied removal of MTBE using Hydrogenophaga flava ENV735 

and the adhesion-deficient strain ENV735:24 using lab soil columns and serum bottles. 

The authors concluded that even though the rate of MTBE degradation was slightly lower 

in the adhesion-deficient strain, the improved transport through the soil of that strain 

outweighed the slight decrease in the removal rate. This adhesion-deficient strain can 

disperse throughout the column and cause a significant reduction of contaminant levels 

throughout a contaminated aquifer. 

2.1.3.1.5 Polychlorinated Biphenyls (PCBs) 

Luepromchai et al. (2002) studied bioaugmentation of PCB-contaminated soil 

with a combination of PCB-degrading bacteria (Ralstonia eutrophus and Rhodococcus 

sp. strain ACS ) and earthworms. Results of the study showed that 50% PCB removal 

occurred in the top 9 cm of the soil when bioaugmentation and earthworms were used in 

combination. When the bioaugmentation or earthworms were implemented separately, 

50% removal could only occur within the top 3 cm. 

Singer et al. (2000) studied the use of two bacterial species (Arthrobacter sp. 

strain BIB and Ralstonia eutrophus H850) along with a surfactant to remove PCBs from 
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contaminated soil. After bioaugmentation for 34 weeks, PCB removal in the 

bioaugmented soil was found to be 55-59% as compared to only 30-36% removal in the 

soil that was introduced to only the surfactant. Even though complete removal of PCBs 

did not occur, introducing the bacteria did provide partial decontamination and could be 

used with other remediation strategies. 

Specific microorganisms able to degrade specific compounds can be used for 

bioaugmentation if the environment is right for the establishment and growth of these 

microorganisms. Without the proper environmental conditions, however, the 

microorganisms may not survive and therefore the degradadation of the pollutant may not 

take place (Goldstein et al., 1985; Ramadan et al., 1990). 

2.1.3.2  Wastewater Treatment 

Bioaugmentation for wastewater treatment may have started in the 1960s in order 

“to address problems of slow biomass recovery and to supplement lost bacterial 

populations.” (Rittmann and Whiteman, 1994). Bioaugmentation can theoretically help 

prevent problems from BOD/COD overload, improve the degradation of pollutants, 

induce or stabilize nitrification, speed recovery from plant upsets, and prevent odor, 

foaming, and algae growth (Gaiek, 1988). 

Stephenson and Stephenson (1992) provided a review of the bioaugmentation 

literature completed by independent investigators.  The review consisted of five full-scale 

cases and 14 lab-scale cases.  There was varied performance when bioaugmentation was 

applied as seen in Table 2.1.  A full explanation of each of these studies with references 
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can be found in Stephenson and Stephenson (1992). The authors concluded that 

bioaugmentation can sometimes be successful for the improvement of various wastewater 

treatment systems but failures can also occur when adding cultures to wastewater 

treatment systems. A number of reasons for failure have been postulated including 

inhibitory substances or conditions in the system, competition with other 

microorganisms, low microorganism count and improper environment for the specific 

bioaugmentation culture. In order to clearly understand these successes and failures, more 

bioaugmentation studies are needed. 

Van Limbergen et al. (1998) compiled a review of wastewater treatment 

bioaugmentation. They suggested that bioaugmentation can be used to improve 

flocculation and degradation of recalcitrant compounds. They reviewed four activated 

sludge bioaugmentation projects using different Pseudomonas organisms, as shown in 

Table 2.2. Since survival of the bioaugmented microorganisms is very important for 

bioaugmentation in wastewater treatment applications to succeed, the authors proposed 

that pre-adaptation of the strains to the activated sludge conditions before 

bioaugmentation could help prevent problems with lack of survival caused by a sudden 

change in environmental conditions. 
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Table 2.1: Overview of Bioaugmentation Literature (Stephenson and Stephenson, 1992) 

Waste Type Process Scale Result 

Bearing factory Trickling filter Full Improved BOD removal in cold 
weather 

Dairy Extended aeration system Full Improved BOD removal and 
prevented bulking 

Municipal Aerated lagoon Full Reduced sludge blanket 

Municipal Activated sludge Lab Little effect on performance 

Dairy Fill and draw Lab Failed to prevent bulking 

PNP Activated sludge Lab Product gave same result as 
adding fresh organisms 

Phenol Batch Lab Municipal sludge better than 
product 

Municipal Activated sludge Lab Little effect 

Hazardous Batch Lab Feasibility uncertain 

Phenol SBR steady state Lab Improved start-up 

Phenol SBR non-steady state Lab Improved performance 

Potato Activated sludge Lab Improved COD removal 

Pineapple waste Activated sludge Lab Increased total organic carbon 
(TOC) removal and nitrification 

3-CB SBR Lab Improved start-up but not 
performance 

3-CB SBR Lab Enhanced degradation rates 

Shock organic load Anaerobic filters Lab No significant influence on 
recovery 
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Table 2.2: Overview of Bioaugmentation Experiments Using Pseudomonas Strains (Van 
Limbergen et al., 1998) 

Strain Process Scale Result 

Pseudomonas putida 
ATCC11172 

Sequencing Batch 
Reactor (SBR) Lab Increased phenol degradation 

Pseudomonas sp. 
FR120 

CSTR 

 
Lab Increased degradation of 3-

Chlorobenzoate and 4-methylbenzoate 

Pseudomonas putida 
EB62 CSTR Lab Slight increase in degradation of 4-

ethylbenzoate 

Pseudomonas putida 
UWC1 Activated sludge Lab No increased degradation of 3-

Chlorobenzoate 

 

2.1.3.3  Bioaugmentation and Nitrification 

Addition of nitrifying bacteria has been studied for wastewater treatment 

bioaugmentation (Rittmann and Whiteman, 1994).  Using bioaugmentation for 

nitrification is especially promising because the nitrifying bacteria have slow growth 

rates and therefore recover very slowly when encountering issues such as uncontrolled 

biomass loss, pH swings, toxic shocks, or temperature decrease (Rittmann and 

Whiteman, 1994; Abeysinghe et al., 2002; Satoh et al., 2003; Head and Oleszkiewicz, 

2005).  Also, the nitrifying activity can be easily monitored in a wastewater treatment 

system using measures such as loss of Kjeldahl-N, formation of NO3-N, and consumption 
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of alkalinity (Rittmann and Whiteman, 1994).  Finally, molecular tools can be used to 

track nitrifying bacteria throughout the system (Rittmann and Whiteman, 1994). 

Rittmann and Whiteman (1994) presented two case studies that demonstrate 

successful bioaugmentation related to nitrification. The first case study involved a 

municipal wastewater treatment system that was unable to nitrify during the cold 

temperatures of winter. The 5,000 m3/day facility was bioaugmented with an initial dose 

and maintenance dose that were not fully described in the paper (Rittmann and 

Whiteman, 1994). The effluent ammonia levels were reduced from approximately 35 

mg/L at the beginning of the experiment to 10-15 mg/L after 15 days. It was determined 

that the maintenance dose would have to continue for the bioaugmentation to be 

successful because conditions were not sufficient to build up the Nitrosomonas biomass 

to a stable level (Rittmann and Whiteman, 1994). 

The second case study was performed at a chemical-manufacturing plant using 

Nitrosomonas bioaugmentation cultures (Rittmann and Whiteman, 1994). An initial dose 

was introduced into the system, followed by a maintenance dose. The initial dose and the 

maintenance dose were not fully described in the paper (Rittmann and Whiteman, 1994). 

Full nitrification was seen after approximately 15 days of bioaugmentation with ammonia 

removal of 100%, whereas other oxidized forms of nitrogen (NO2
- and NO3

-) increased. 

This bioaugmentation program was successful and the chemical facility continued to add 

the microorganisms for five years in order to improve process performance without any 

additional plant modifications. 
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Satoh et al. (2003) conducted a laboratory study to observe the effect of 

bioaugmentation and biostimulation on the start-up of nitrification process in three 

rotating disk biofilm reactors. One reactor was bioaugmented with an enrichment culture 

of nitrifying bacteria, another was fed with synthetic medium that contained NH4
+ and 

NO2
- for biostimulation, and the third was used as a control.  NH4

+ and NO2
- oxidation 

occurred 10 to 20 days faster in the bioaugmented reactor as compared with the control, 

whereas the biostimulated reactor achieved NH4
+ and NO2

- oxidation 10 to 20 days after 

the control (Satoh et al., 2003). 

Operating a nitrifying system at cold temperatures can cause nitrifiers to wash out 

of a system and, therefore, Abeysinghe et al. (2002) studied the effect of bioaugmentation 

during this stressed condition. Laboratory-scale CSTRs were operated by decreasing the 

temperature to 4°C with an SRT of 5 days. When the nitrifying organisms were added to 

this low temperature system, the effluent NH4
+-N concentration decreased to 

approximately 25 mgN/L, whereas the control reactor had an effluent concentration of 

approximately 100 mgN/L. Following the one-time bioaugmentation event, the NH4
+-N 

concentration increased again to levels similar to the control reactor which was attributed 

to the washout of the organisms. These results demonstrate the possible need of continual 

bioaugmentation in order to ensure low effluent NH4
+-N concentrations at cold 

temperature and low SRT. 

Head and Oleszkiewicz (2005) studied the effect of the bioaugmentation culture 

temperature (10, 20, 25, and 30°C) on the success of bioaugmentation of a sequencing 

batch reactor (SBR) operating below 100C. The authors concluded that partial NH3-N 
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removal could be achieved using the bioaugmentation cultures that were acclimated to 

20, 25 and 30°C when the HRT was 24 hours but continual and consistent 

bioaugmentation was necessary for sustained NH3-N removal. 

2.1.3.4  Anaerobic Bioaugmentation 

The effect of bioaugmentation on the anaerobic removal of specific organic 

chemicals, removal of fats oil and grease, degradation of cellulose, odor reduction and 

recovery of stressed reactors has been studied to a limited extent. 

 

2.1.3.4.1 Specific Organics Removal 

Guiot et al. (2000) studied degradation of phenol, ortho- and para-cresol in upflow 

anaerobic sludge blanket reactors bioaugmented with different amounts of an enriched 

methanogenic mixed culture that was able to degrade these specific chemicals. Addition 

of 2 to 5% enrichment culture (expressed as mass/mass with respect to the non-

acclimated granular innoculum biomass) decreased the start-up period of the reactor to 55 

days to achieve 80% phenol degradation, whereas the control reactor fed with no 

enrichment culture took 100 days to achieve the same level of phenol degradation. 

During continuous operation of the reactors, the bioaugmented reactors showed at least 

two-fold more specific activity to degrade the targeted compounds as compared to the 

non-bioaugmented reactor. 

Guiot et al. (2002) studied enrichment of anaerobic sludge for the degradation of 

pentachlorophenol (PCP) by an on-line control-based selective stress strategy (controlling 

the feeding rate of PCP by feedback control from methane percentage in the biogas 
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produced) and bioaugmentation of anaerobic sludge using the PCP-degrading microbe 

Desulfitobacterium frappieri (PCP-1). Both the selective stress strategy and the PCP-1-

augmented culture resulted in a specific degradation rate of 4 mg PCP g-1 VSS day-1, but 

the selective stress control system culture took 120 days to attain complete degradation 

capacity while the bioaugmented culture took only 56 days. Furthermore, fluorescent in 

situ hybridization (FISH) of granule cross sections showed no fluorescence signal for 

PCP -1 specific probes in the selective stress strategy enrichment culture, whereas a 

strong fluorescence signal for PCP-1 was present in the culture bioaugmented with PCP-1 

after 5 and 9 weeks. 

Ahring et al. (1992) bioaugmented anaerobic granules using a pure culture of a 3-

chlorobenzene (3-CB) degrading microbe (Desulfomonile tiedjei) to impart 3-CB 

dechlorinating ability to UASB reactors. Also a three-member consortium containing D. 

tiedjei, a benzoate degrading coculture and a hydrogen-utilizing methanogen was used to 

bioaugment a separate UASB reactor. A third control UASB reactor with no 

bioaugmentation was also operated. All the reactors were fed with basal medium, 

formate, acetate and 3-CB. Results of the study indicated that 3-CB did not degrade in the 

control reactor, whereas the reactors bioaugmented with D. tiedjei and the three-member 

consortium transformed 3-CB at a rate of 54 µmol/day/g granule biomass. Even after 

reducing the HRT of the bioaugmented reactors to 0.5 days (which is much shorter than 

the generation time of D. tiedjei), the reactors still dechlorinated 3-CB, indicating 

immobilization of microbes in the granules which was further confirmed by 

immunological studies. 
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Saravanane et al. (2001) bioaugmented fluidized bed reactors with a cephalexin-

enriched anaerobic culture to evaluate cephalexin-degrading behavior of the reactor. 

Results of the study revealed an initial COD removal of 88% for the first 2 to 8 days after 

which the removal efficiency rapidly declined suggesting cell biomass washout. Further 

study revealed that periodic inoculation of the enrichment culture every 2 days yielded 

COD removal efficiency of 88% for the entire duration of the experiment (32 days). 

 Tartakovsky et al. (1999) inoculated anaerobic sludge granules obtained from a 

UASB treating food processing wastewater with a stain of pentachlorophenol (PCP) 

degrader, Desulfitobacterium frappieri PCP-1, and used competitive polymerase chain 

reaction (cPCR) to observe the adaptability of PCP-1 strains in the granules. Also, the 

PCP degrading ability of the resulting consortium was tested using a lab-scale UASB 

reactor. The PCP-1 stain succeeded in competing within the microbial community present 

in the granule and it increased from 106 to 1010 cells/g volatile suspended solids within 70 

days resulting in PCP removal efficiency of 99%. 

 Tawfiki et al. (2000) studied the effect of mixing two different anaerobic 

consortiums, one capable of removing phenol and ortho-cresol and the other capable of 

removing para-cresol, in a fixed film anaerobic reactor. For continuous flow, phenolic 

compounds removal with the mixed consortia was as good as that achieved by each of the 

two individual consortia against their respective substrates. Further batch studies revealed 

that, for the mixture of cultures, phenol removal was complete after 11 days while the 

phenol degrading consortium alone took 35 days for the same amount of phenol 

degradation. Also, the mixed consortia totally removed o-cresol after 22 days while no 

removal of o-cresol was observed even after 35 days in the phenol degrading consortium 
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alone. On the other hand, the mixed consortium took 17 days more for degradation of p-

cresol as compared with the time taken for degradation of p-cresol by the p-cresol 

degrading consortium alone. 

 Horber et al. (1998) studied dechlorination of PCE in UASB reactors. A strictly 

anaerobic, reductively dechlorinating bacterium, Dehalospirillum multivorans, was 

incorporated into granular sludge used for the test assay. Also a control reactor (R1) 

containing pre-autoclaved granular sludge was supplied with D. multivorans and a third 

UASB reactor (R2) was seeded with the same amount of active granular biomass but no 

bioaugmentation. All the reactors were fed PCE, formate and acetate. Both the test 

reactor and reactor R1 converted 93% of the PCE to DCE, whereas the non-

bioaugmented reactor (R2) converted only 43% of the PCE to trichloroethane. 

Interestingly, the test reactor and reactor R1 showed conversion of PCE to DCE at 

hydraulic retention times (HRTs) much lower than the reciprocal maximum growth rate 

of D. multivorans, indicating immobilization of the microbe in the living and autoclaved 

granules which was further confirmed by immunological studies conducted on the 

granules. 

 Lenz et al. (2009) studied the effect of bioaugmentation of a UASB reactor with 

immobilized selenate-accumulating Sulfurospirillum barnesii cells on selenate removal. 

Initially, S. barnesii cells were immobilized in acrylamide gels and the gel cubes were 

used for bioaugmentation of a mesophilic anaerobic digester fed with lactate (electron 

donor) at an organic loading rate (OLR) of 5 gCOD/L-day. The reactor was also fed 

2mM sulfate and 10µM selenate and 15mM nitrate (electron acceptor). Selenate was 

reduced efficiently (more than 97%) in the reactor and the scanning electron micrograph 
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revealed that the selenate was reduced by the immobilized S. barnesii cells. Furthermore, 

to validate these findings under a microbial competitive environment, S. barnesii 

immobilized cells were added to a granular UASB biomass and the reactor was operated 

on the same synthetic waste described above. Operation of the reactor showed that the 

bioaugmented reactor took 24 HRTs to attain 97% selenate removal as compared with 44 

HRTs required by the non-bioaugmented reactor. Microbial community analysis of the 

reactor biomass revealed that the S. barnesii cells were effectively immobilized in the 

bioaugmented reactor even after 58 days of operation. 

 

2.1.3.4.2 Fats Oil and Grease Removal 

Cirne et al. (2006) studied the effect of bioaugmentation of anaerobic reactors 

degrading lipid rich waste (containing 10% lipids triolein) with a lipolytic bacterial strain, 

Clostridium lundense (DSM 17049T). Results of the study indicated that bioaugmentation 

increased the methane production rate and hence reduced the time required for 80% of 

the total methane recovery by approximately 30 %. 

 

2.1.3.4.3  Cellulose Degradation 

 Many organic substrates contain cellulosic material which degrades relatively 

slowly under anaerobic conditions. Bioaugmentation strategies were examined to 

improve the overall degradation rate of cellulose-containing substrates under anaerobic 

conditions. 

 Weiß et al. (2010) studied degradation of xylan (heteropolysaccharides with a 

homopolymetic backbome chain of β-1,2-linked D-xylopyranose units) using enriched 
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hemicellulolytic bacteria immobilized on activated zeolite. Second stage sludge 

containing hemicellulolytic bacteria from a two stage biogas plant was enriched for 

0.1%(w/v) xylan in a nutrient medium. After 5 days of cultivation, 10% (v/v) of the 

enriched culture again was transferred in fresh nutrient medium containing 0.1% (w/v) 

xylan. After 13 enrichment cycles, 10% of dry cell mass was immobilized on 5g zeolite 

and the immobilized bacterial cells and the zeolite was air dried for two days. About 

0.2% (w/v) of this dry material was introduced in batch anaerobic digesters containing 

xylan. Control digesters were augmented with 0.2% (w/v) zeolite material without 

bacterial cells. All the digesters were operated for 34 days. The effect of bioaugmentation 

was visible in terms of methane production from day 9. On the 26th day of the 

experiment, bioaugmentation with the immobilized bacteria increased methane recovery 

by 73.2 LCH4/kgVS equivalent to 121% more methane production than control digesters. 

The authors concluded that bioaugmentation with hemicellulolytic bacteria immobilized 

on activated zeolite increased xylan degradation rate of anaerobic digesters. 

Nielsen et al. (2007) studied the effect of bioaugmentation of two therophilic 

strains Caldicellulosiruptor lactoaceticus (strain 6A) and Dictyoglomus (strain B4a) on 

the degradation of manure, liquid fraction of manure, fibers from the manure and 

anaerobically digested fibers. Results of the batch studies revealed that both strains 

increased methane recovery from all the substrates tested and strain 6A showed better 

potential for improving the methane yield as compared to strain B4a. Stain 6A was 

further used to bioaugment a two-stage thermophilic (68oC/55oC) digester. Results of the 

study indicated a 93% increase in the methane yield of the pretreatment reactor, whereas 

the overall methane yield of both the reactors was only slightly improved. The 
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improvement was attributed to degradation of cellulose material in the pretreatment 

reactor due to bioaugmentation. Also it was observed that the increased methane yield 

lasted till day 47 of the experiment and at day 50, the methane production suddenly 

dropped which was attributed to washout of strain 6A from the reactor. 

Mladenovska et al. (2001) carried out batch studies on anaerobic Avicel- and 

xylan-degrading bacteria Ruminococcus albus DSM 20455, Acetivibrio cellulolyticus 

DSM 1870, Clostridium cellulovorans DSM 3052, Clostridium aerotolerans DSM 5434, 

and two new isolates (SA14 and KMX1). It was found that under methanogenic 

conditions, DSM 3052 and SA14 showed the maximum potential for cellulosic biomass 

degradation, so they were further used for bioaugmentation studies of a mesophilic 

continuously stirred tank reactor (CSTR). Bioaugmentation with isolate SA14 resulted in 

increased methane production by 62 % for the first five days and a decrease to 

background values on day 7 which was attributed to washout of the cell biomass of SA14 

from the reactor. 

 Angelidaki and Ahring (2000) carried out experiments on the improvement of 

biogas yield from manure by the treatment of recalcitrant matter present in the manure by 

hemicellulose degrading bacterium B4. The treatment resulted in a 30% increase in 

methane production compared to the control reactors. 

 

2.1.3.4.4 Increased Biogas Production 

Savant and Ranade (2004) studied the effect of bioaugmenting with a 

Methanobrevibacter acididurans strain on the cumulative methane production from a 

distillery wastewater. Anaerobic cultures from lab-scale acidogenic and  methanogenic 
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digesters treating distillery wastewater were used as inocula and were added to 125-mL 

serum bottles with 10 mL distillery waste. Headspace of the bottles was flushed with N2 

gas and sealed to maintain anaerobic conditions. One liter of the freshly grown M. 

acididurans culture was centrifuged to concentrate M. acididurans biomass. Further, one 

gram of the concentrated biomass was resuspended in 10 mL basal media and the 

resuspension liquid was used for bioaugmentation of test assays. Respective control 

assays were supplied with 10 mL of basal media. All the test and control assays were 

maintained anaerobically at 350C under shaking conditions for 8 days. The test assays 

containing acedogenic culture showed 12% more cumulative methane then their 

respective control assays. The increase in cumulative methane production from the test 

assays supplied with methanogenic culture was found to be 7.5% as compared with 

respective control assays. Also headspace of the test assays supplied with acidogenic 

cultures showed 23.5% less hydrogen accumulation as compared to their control assays. 

The authors concluded that bioaugmenting with M. acididurans increased the methane 

production rate of methanogenic systems. 

Bagi et al. (2007) carried out laboratory-scale experiments on bioaugmentation of 

batch fed anaerobic digesters operating on sewage sludge, pig manure and Jerusalem 

choke with two different hydrogen producing bacteria (HPB) Caldicellulosyruptor 

saccharolyticus (DSM 8903) and Enterobactor cloacae (DSM 16657) at thermophilic 

(550C) and mesophelic (350C) temperatures. An anaerobic culture obtained from an 

anaerobic, thermophilic wastewater sludge digester was used as an innoculum for 

carrying out the experiment. An equal amount of the innoculum was added to 12 serum 

bottles simulating anaerobic digesters. The serum bottles were divided in three groups 
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and each group was supplied with either sewage sludge, pig manure or Jerusalem choke 

so that the substrate:biomass ratio of 10:90 (v/v) was maintained in each reactor. The pH 

value of all the assays was adjusted to 7.0 using phosphate buffer. Furthermore, two test 

assays from each group were bioaugmented with pure cultures of C. saccharolyticus and 

E. cloacae. The pure cultures represented 5% of the active volume of the test assays. The 

associated control assays from the same group were supplied with equivalent amounts of 

the growth medium of the respective organism. Headspace of all the assays was flushed 

with nitrogen gas to maintain anaerobic conditions. The test assays bioaugmented with C. 

saccharolyticus and respective control assays having growth medium of C. 

saccharolyticus were incubated at 550C and the remaining assays were incubated at 350C 

to provide optimal growth temperatures for the bioaugmented cultures. Biogas from all 

the assays was collected by a water displacement method and all the assays were operated 

for 30 days. The biogas produced by the test assays per unit mass of substrate dry matter 

was higher by 42 to 57% as compared to that of their respective control assays. Further 

field studies carried out on the effect of bioaugmentation by a pure culture of C. 

saccharolyticus on a 5 m3, anaerobic CSTR digester operated at 550C confirmed the 

earlier findings. Molecular techniques used during the field study revealed that the C. 

saccharolyticus strain was absent in the field reactor before bioaugmentation, but C. 

saccharolyticus was detectable in the reactor even after 12.6 SRTs following 

bioaugmentation, which proved its survival in the reactor. 
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2.1.3.4.5 Odor Reduction 

 Duran et al. (2006) studied the effects of bioaugmenting laboratory-scale 

anaerobic biosolids digestion with a commercial product containing microbes from the 

genera Bacillus, Pseudomonas and Actinomycetes marketed by Organica Biotech, 

(Norristown, PA). The bioaugmented digester generated 29% more net methane during 

the 8 weeks of operation. In addition, the average residual propionic acid concentration in 

the bioaugmented digester was 54% of that in control and the biosolids digested in the 

bioaugmented digester generated a negligible amount of odorous methyl mercaptan 

(CH3SH) during 10 days of post-digestion storage, while CH3SH concentration in the 

control reached nearly 300 ppmv during the same period. Similarly, peak dimethyl sulfide 

(CH3SCH3) generated by the stored biosolids from the bioaugmented digester was only 

37% of that from the control.  Thus lower concentrations of CH3SH and CH3SCH3 in the 

bioaugmented reactor result in lesser odor and may have been due to improved 

methanogenesis during storage of the digested and dewatered biosolids. Although 

laboratory-scale results were promising, full scale pilot-testing did not result in process 

improvement (Toffey et al., 2007). 

 

2.1.3.4.6 Stressed Reactor Recovery 

Lynch et al. (1987) studied the effect of bioaugmentation using two anaerobic 

cultures enriched for (i) propionic acid and butyric acid and (ii) lactic acid and ethanol on 

organically overloaded anaerobic filters. Following a shock overload, the filter receiving 

propionate-butyrate enriched culture was inoculated on day 95, whereas the other shock-

overloaded filter receiving lactic acid-ethanol enriched culture was inoculated on days 95 
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and 105. All the shocked filters (including controls which didn’t receive any 

bioaugmentation) recovered from the shock and apparently bioaugmentation didn’t play a 

role in recovery. To confirm the findings, one more filter which was not subjected to 

shock overload was bioaugmented with propionate-butyrate enrichment culture on day 98 

and lactic acid-ethanol enrichment culture on day 105. In both the cases, a temporary 

decrease in effluent volatile fatty acid concentration and improvement in TCOD removal 

was observed which was attributed to normal variations. The authors further attributed 

failure of the bioaugmentation experiment to the following : 

(1) low number of enrichment organisms introduced during bioaugmentation, (2) 

introduced organisms exposed to inhibitory environment and (3) possible antagonistic 

relationship between the introduced organisms and the indigenous community. The 

authors concluded that bioaugmentation with this type of enrichment may be more 

successful in a suspended growth systems where original biofilm biomass is not 

dominant. 

 O’Flaherty et al. (1999) and O’Flaherty and Colleran (1999) performed 

bioaugmentation studies on 17-L hybrid reactors treating potentially toxic, high sulphate-

containing waste. One hybrid reactor received 4 g/L sulphate in the influent which 

resulted in less than 60% COD removal efficiency in the reactor, whereas a control 

reactor received no sulphate and maintained a COD removal efficiency of more than 

95%. Successful bioaugmentation was achieved when 25g VSS/L of sulphate-adapted 

sludge from a full-scale digester was inoculated in the reactor. Improvement in the COD 

removal efficiency was observed after one retention time (48 hrs) and the COD removal 

efficiency then exceeded 95%. Inoculation resulted in the establishment of propionate- 
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and hydrogen-utilizing, sulphate-reducing bacteria in the biofilm section, but not in the 

granular sludge bed section of the anaerobic hybrid reactor. 

Schauer (2008) studied the effect of bioaugmenting with cultures acclimated to 

(1) hydrogen, carbon dioxide gases and glucose (C1) and (2) hydrogen, air, carbon 

dioxide and glucose (C2) on anaerobic reactors subjected to a toxicant (oxygen). A series 

of anaerobic digesters was operated and subjected to oxygen in air. Following the air 

exposure, half of the digesters were bioaugmented with either C1 or C2 and the 

remaining digesters were supplied with autoclaved C1 or C2 cultures which served as 

controls. The augmentation rate was maintained at 1.2 mgVSS/L-day over the entire 

period of bioaugmentation. Results of the experiment showed 47% more methane 

production from digesters that received active cultures as compared to their respective 

controls. Also, the effluent soluble COD concentrations from the bioaugmented digesters 

decreased below 2,000 mg/L 83 days before that of the control digesters. 

 

2.1.3.4.7 Anaerobic Augmentation 

Augmentation of anaerobic digesters means the addition of non-active organisms, 

enzymes, or components of organisms that can aid in the digestion process.  

Rigo et al. (2008) studied the effect of lipases for pre-treatment of oil- and grease-

rich dissolved air floatation (DAF) float from the swine and bovine meat industry. Two 

different lipases were tested. The first lipase (Lipolase 100T) was obtained from a 

commercial firm and the second lipase (Lipase-SEP) was produced by solid-state 

fermentation of babassu cake by Penicillium restrictum. Meat industry wastewater mixed 
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with different concentrations of DAF float (250 to 3000 mg/L) was used. Experiments 

were carried out in batch anaerobic digesters using 0.1 and 5.0% (w/v) lipase. A control 

digester fed with wastewater without DAF float was also operated. The high 

concentration of lipase (5.0 %) decreased biodegradation due to production of excess 

amounts of volatile fatty acids, whereas benefits of lipase treatment were visible at the 

low lipase concentration (0.1%). Lipase-SEP yielded better digester performance than 

Lipolase 100T in terms of effluent COD. At a 1200 mg/L FOG float concentration, 

Lipolase 100T pre-treatment caused only a 3 % increase in effluent COD removal than 

the control digester, whereas Lipase-SEP pre-treatment showed a 22 % increase in 

effluent COD removal. The authors concluded that augmenting with lipases may improve 

performance of biological treatment systems treating oil- and grease-rich wastes. 

Noyola and Tinajero (2005) studied the effect of augmentation on anaerobic 

digestion of primary sludge from enhanced primary treatment (EPT) of municipal 

wastewaster. Two additives, (a) lyophilized bacilli and enzymes and (b) a solution of 

micronutrients (iron, cobalt, nickel, and molybdenum) were studied separately and in 

combination to determine their effect. The lyophilized bacilli alone was found to yield 

higher methane production than the control (95% higher on day 17) and the combination 

of lyophilized microorganisms and micronutrients resulted in methane production that 

was 167% higher than the control on day 17. The combination also achieved lower VFA 

concentrations and greater volatile solids reduction than the control and digestion with 

the bacilli alone. The authors concluded that the use of biological additives and 

micronutrients had a positive effect on sludge stabilization. 



84 

 

Davidsson et al. (2007) studied the effect of augmenting with polysaccharide-

degrading enzymes, lipase, and protease in the pre-treatment of pilot-scale anaerobic 

digestion of primary sludge and waste activated sludge mixed in a 1:1 proportion.  It was 

hypothesized that the enzymes would hydrolyze biopolymers resulting in increased 

release of proteins and carbohydrates from the substrate. A 71% increase in methane 

yield (compared to non-augmented sludge) was observed when the enzymes were added 

together with the fresh sludge as compared to a 57% increase in the methane yield 

(compared to non augmented sludge) observed when the enzymes were added through 

the recirculation pipe together with the digested sludge. 

2.1.4  Oxygen and Methanogenic Systems 

Oxygen toxicity tolerance of anaerobic cultures used for bioaugmentation is of 

particular importance due to difficulties involved in handling large volumes of anaerobic 

cultures. Contact with oxygen is almost inevitable if cultures have to be transported from 

one location to another during handling. In the past, researchers have studied the effect of 

oxygen addition on methanogenic cultures as presented below. 

Zitomer and Shrout (1997) studied the effect of oxygen addition on anaerobic 

digestion in batch reactors fed ethanol and propionate as the primary carbon source. 

Three assay cultures for each substrate were prepared and 0, 10 and 30 mL air (20 oC) 

was added to each assay, respectively. The cultures supplied with air showed 10- to 18- 

hr lag periods, whereas the cultures supplied with no air showed no lag. 
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Zitomer and Shrout (1998) reported the effect of oxygen addition on anaerobic 

digestion systems in batch and continuously stirred tank reactors (CSTRs). In the batch 

studies, a factorial approach was used in which two oxygenation conditions and three 

oxygen doses corresponding to 10, 30 and 125% of the added COD were supplied. 

Cultures maintained under the first oxygenation condition (30% oxygen) received oxygen 

at the time of medium addition whereas the cultures maintained under the second 

condition (125% oxygen) received oxygen 1 day in a two- day feeding cycle. It was 

observed that cultures receiving an oxygen dose of 125% were able to produce methane 

and they showed a 20% higher specific methanogenic activity (mL biogas/g-VSS-day) 

than the cultures maintained under strictly anaerobic conditions. Also the cultures 

maintained under oxygen-limited conditions showed a yield of 0.13 to 0.07 gVSS/g COD 

which is more typical for strictly methanogenic processes. In the CSTR studies, two 

bench scale anaerobic reactors were operated and fed 1 and 0.1 g O2/L(reactor)-day and 

additionally conventional anaerobic and aerobic reactors were operated in parallel. 

Organic loading rates of 0.25 to 4 g COD/L(reactor)-day was fed to all the reactors. 

Methane was detected in the headspace gas of both CSTRs operated under oxygen-

limited conditions. Furthermore, the reactor fed with 1 g O2/L-day showed a residual 

COD concentration of 1400 mg/L, whereas the aerobic CSTR showed a much higher 

residual COD concentration of 2400 mg/L. Also it was observed that reactor pH after a 

pH drop caused by a shock overload of COD returned to >7 in the 1 g O2/L-day and 0.1 

gO2/L-day reactors after 34 and 28 days respectively, whereas the strictly anaerobic 

reactor showed no pH recovery even after 52 days. 
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As described above, propionate plays a major role in contributing to elevated 

effluent COD of some organically overloaded anaerobic digesters. It was hypothesized 

that the function of upset digesters can possibly be restored at a faster rate if the elevated 

effluent SCOD concentrations are lowered by using a bioaugmenting strategy. Using 

bioaugmentation cultures especially enriched for the degradation of propionate may 

prove beneficial. Exposure of bioaugmentation cultures to small amounts of oxygen may 

help retain its activity during its transfer from enrichment digester to stressed digester. 

The study presented herein involved enrichment of an anaerobic culture for propionate 

and different doses of oxygen and evaluation of bioaugmentation effectiveness following 

the organic overload of an anaerobic digester. 

 

2.2 Methods and Materials 

2.2.1 Acclimation of Anaerobic Cultures to Propionate and Oxygen 

Results of the SMA test conducted on different anaerobic cultures were used to 

select cultures with the highest and lowest SMA against propionate. Figure 1.4 shows the 

results of the SMA testing for cultures arranged in descending order. The bar graph 

represents average SMA of the cultures against propionate, whereas the error bars 

represent the standard deviations among the replicates. 

The selected cultures presented in Table 2.3 were enriched in 750-mL serum 

bottle digesters operated in CSTR mode. The serum bottle digesters were supplied with 

150 mL of the selected culture. Digester headspace was sparged with a nitrogen-carbon 

dioxide gas mixture (mixed in 7:3 ratio v/v) so that anaerobic conditions were 
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maintained. The enrichment cultures were shaken continuously at 150 rpm and 

maintained at 35±3 oC.  All the enrichment digesters were fed 0.17g propionate/L-day 

(0.25 gCOD/L-day) with basal medium (see Table 1.4). All enrichment cultures were 

operated at a 15-day SRT. The feeding schedule followed for enrichment cultures is 

presented in Table 2.3. After 580 days of operation, the SMA of all the enrichment 

cultures against propionate was tested by following the procedure described in Section 

1.2.2. 

The effect of oxygen on bioaugmenting ability of the culture and its SMA against 

calcium propionate were observed for the culture with the highest initial SMA for 

propionate (Brewery WWTP-1). The selected culture was enriched for propionate in the 

same manner as explained above and additionally oxygen equivalent to 0%, 10%, 50% 

and 90% of the COD exerted by the daily propionate dose was supplied in the form of 

atmospheric air. The equivalent doses of air were 14, 68 and 124 mL air @350C/ L-day 

respectively. The resulting oxygen doses were 0, 0.025, 0.125 and 0.225 gO2/L-day 

respectively. The schedule of feeding for enrichment cultures acclimated to different 

doses of atmospheric oxygen is given in Table 2.3. 
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Table 2.3: Enrichment Cultures 

Biomass Designation 

1.  Culture with best activity against propionate  

(a) Replicate -1 C1a 

(b) Replicate -2 C1b 

(c) Replicate -3 C1c 

2.  Culture with best activity against propionate and O2 – dose 1 (10% of 

the COD fed daily) 
 

(a) Replicate -1 C2a 

(b) Replicate -2 C2b 

(c) Replicate -3 C2c 

3.  Culture with best activity against propionate and O2 – dose 2 (50% of 

the COD fed daily) 
C3 

4.  Culture with best activity against propionate and O2 – dose 3 (90% of 

the COD fed daily) 
C4 

 

2.2.2  Bioaugmentation Experiment 

The effectiveness of bioaugmentation of anaerobic digesters was evaluated by 

organically overloading small-scale, non-fat-dry-milk-fed anaerobic digesters and 

bioaugmenting them with cultures enriched for propionate and different oxygen doses. 

Enrichment cultures selected for the bioaugmentation study are described in Table 2.4. 

For the bioaugmentation study, anaerobic seed sludge was from a laboratory-scale 

digester fed with non-fat-dry milk. The obtained sludge was used to seed different 160-
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mL serum bottle digesters and each digester received 50 mL of seed sludge. Headspace 

of all the digesters was sparged with a nitrogen-carbon dioxide gas mixture (mixed in 7:3 

ratio v/v) so that anaerobic conditions were maintained. The digesters were operated at a 

10-day SRT by wasting sludge volumetrically equivalent to the daily feed volume from 

the digesters. The digesters were incubated and maintained at 35±3 oC. All the digesters 

were fed daily with basal medium (composition given in Table 1.4) and non-fat-dry milk 

(2.7 g COD/L-day) for a period of 3 SRTs. Biogas production from the digesters and pH 

of the waste biomass was recorded daily and effluent soluble COD (SCOD) concentration 

and methane percentage in the biogas was measured twice a week. After attaining a 

quasi-steady state condition (i.e. after 3 SRTs), a shock overload of non-fat-dry milk 

substrate (32g COD/L digester volume) was given for one day to all the digesters except 

the undisturbed control digesters. This shock dose of COD was expected to cause an 

increase in VFAs leading to reduced methane production and increased effluent COD. 

Following the organic overload, bioaugmented digesters were provided with a 

daily dose (1.7 mL/day equivalent to 70 mgVSS/L-day) of an enrichment culture. Non-

bioaugmented digesters were fed with 1.7 mL/day of the autoclaved version of the 

appropriate acclimated enrichment culture. Table 2.4 shows the number of bioaugmented 

and non-bioaugmented digesters maintained for the study. 
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Table 2.4: Bioaugmentation Digesters 

Name of the digester Enrichment culture 
used 

Number of 
Replicates 

Undisturbed Control Digester (UCD) - 4 

Bioaugmented Digester (TD) – 0% - 1 C1a 1 

TD – 0% - 2 C1b 1 

TD – 0% - 3 C1c 1 

TD – 0% - 4 C1c 1 

Non-bioaugmented Digester (CD) – 0% - 1 Autoclaved C1a 1 

CD – 0% - 2 Autoclaved C1b 1 

CD – 0% - 3 Autoclaved C1c 1 

CD – 0% - 4 Autoclaved C1c 1 

TD – 10% - 1 C2a 1 

TD – 10% - 2 C2b 1 

TD – 10% - 3 C2c 1 

CD – 10% - 1 Autoclaved C2a 1 

CD – 10% - 2 Autoclaved C2b 1 

CD – 10% - 3 Autoclaved C2c 1 

TD – 50% C3 1 

CD – 50% Autoclaved C3 1 

TD – 90% C4 1 

CD – 90% Autoclaved C4 1 

 

2.2.3  Analytical Methods 

Effluent samples from the digesters were analyzed for SCOD and pH and also the 

digesters were tested for daily biogas production quantity and headspace gas 



91 

 

composition. The SCOD concentration was determined using procedure 5220-D in 

Standard Methods (APHA et al., 1998). For SCOD analysis, solids were removed at 

13,000 rpm for 10 minutes using a centrifuge (Galaxy 14D, VWR International, West 

Chester, PA) and further prepared by filtering the supernatant through a 0.45-µm filter 

(Whatman International Ltd., Maidstone, England). The filtrate was then tested for COD 

using the above method.  

The pH was measured using a bench-top pH meter (Orion Model 720A, Thermo 

Fisher Scientific, Inc., Waltham, MA) and a general-purpose pH electrode (Orion, 

Thermo Fisher Scientific, Inc., Waltham, MA). 

The digester biogas quantity was measured daily using the plunger displacement 

method of a water lubricated glass syringe. The headspace gas composition was 

determined using gas chromatography using either a GOW-MAC Series 600 (GOW-

MAC Instrument Co., Bethlehem, MA) equipped with a thermal conductivity detector 

(TCD) or an Agilent 7890A GC system, equipped with a packed CTR I column Agilent 

Associates, Inc., Deerfield, IL and Helium as the carrier gas at a flow of 30±2 mL/min 

with the temperature of the injector and detector set at 120°C and the temperature of the 

oven set at 38±2 °C. 

 

2.2.4  Statistical Analysis 

Two sample Student’s  t test with unequal variances was used for comparison of 

results of (1) SMA against propionate before and after enrichment for the enrichment 
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cultures given in Table 2.3 and (2) bioaugmented and the non-bioaugmented digesters 

effluent SCOD and daily biogas production. 

 

2.3 Results and Discussion 

2.3.1 Effect of Oxygen on Activity of an Enrichment Culture 

Figure 2.1 shows the effect of oxygen addition to an enrichment culture on its 

SMA against propionate. The error bars in Figure 2.1 represent the standard deviations 

among the replicates. The horizontal line represents the initial SMA before enrichment. 

Surprisingly, there was no increase in SMA after 580 days (38.6 SRTs) of 

enrichment for 0 mgO2/L-day dose, but addition of 25 mgO2/L-day increased the average 

SMA by 29.7%; however, this increase in the activity was found to be statistically 

insignificant (p=0.23). Further increase in the oxygen dose had a negative effect on SMA. 

Addition of 225mgO2/L-day decreased the SMA by 90.3%; this decrease was found to be 

statistically significant for 5% level of significance (p=0.03). Addition of 25 mgO2/L-day 

to the enrichment culture may have increased its oxygen-tolerating capacity so that, when 

it was being transferred from enrichment digester to SMA assay digesters, it may have 

suffered minimal oxygen toxicity due to exposure to atmospheric air and, therefore 

retained its activity. The culture fed with no oxygen may have less capability to withstand 

any toxic effects due to air exposure. Excess doses of oxygen (>25 mgO2/L-day) may 

have decreased SMA of the enrichment culture since higher doses of oxygen may have 

been toxic to anaerobic microbes.  
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Figure 2.1: Effect of Oxygen on SMA Against Propionate After Enrichment.  
Error Bars Represent Standard Deviations Among Replicates. 
 

2.3.2  Bioaugmentation Experiments 

The purpose of the bioaugmentation investigation was to determine if faster 

recovery occurred with addition of a bioaugmentation culture after a digester was 

subjected to a shock organic overload. Also the aim was to evaluate if addition of oxygen 

to the bioaugmentation culture have any effect on its bioaugmenting ability. 

 

2.3.2.1  Effluent SCOD 

Figures 2.2 through 2.5 show the effluent SCOD concentrations of the 
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the series of solid diamonds represent the average effluent SCOD of digesters which did 

not receive organic overload, designated as the undisturbed control digesters (UCD), the 

series of hollow circles represent average effluent SCOD of the bioaugmented (test) 

digesters and the series of solid squares represent average effluent SCOD of non-

bioaugmented digesters. Since all the digesters were operated with daily feeding-wasting, 

the peak SCOD caused by the organic overload was expected to be diluted due to loss of 

SCOD in the effluent. Therefore, a dilution curve was plotted by using Equation 2.1 to 

account for the SCOD lost in the effluent which is shown by the series of hollow triangles 

in Figures 2.2 through 2.5. In Equation 2.1, B (mg/L) is the effluent SCOD concentration 

resulting due to dilution on day θ, A (mg/L) is the average of highest SCOD 

concentration of the bioaugmented and the non-bioaugmented digesters following the 

organic overload, θ (days) represents the time after the organic overload, and SRT (days) 

is the solid retention time. The dilution curve was plotted using the equation, 

B = A × e-(θ/SRT) .         (2.1) 

For simplicity in calculations, daily COD added to the digesters in the form of 

feed following the shock overload was not considered for plotting the dilution curve. The 

error bars in Figures 2.2 through 2.5 represent standard deviations among the replicates. 

As seen in the Figures 2.2 through 2.5, all the digesters initially required about 40 

days (4 SRT’s) to attain an average quasi steady-state effluent SCOD concentration of 

290±150 mg/L before shock organic overload. The shock organic overload was given on 

day 57 as explained in section 2.2 and shown in Figures 2.2 through 2.5. The organic 

overload resulted in higher effluent SCOD concentrations for all the bioaugmented (test) 
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and non-bioaugmented digesters and the resulting effluent SCOD was 5000±750 mg/L as 

shown in Figures 2.2 through 2.5. Following the organic overload, the effluent SCOD of 

the digesters started to decrease due to the dilution effect biological reactions and 

bioaugmentation. After about 3 to 6 SRTs following the overload event, the effect of 

bioaugmentation started to become visible in terms of lower effluent SCOD 

concentration of the bioaugmented digesters as compared with their respective non-

bioaugmented digesters. 

One of the four non-bioaugmented digesters fed with autoclaved bioaugmentation 

culture enriched for 0 mgO2/L-day oxygen dose (CD-0%-4), never recovered after 

receiving the organic overload and its effluent SCOD concentration never became less 

than 4000 mg/L throughout the study. Data from this digester were not considered in 

further analysis and not shown in Figure 2.2. 

Before organic overload, the average quasi-steady state pH of all the digesters 

was found to be 6.9±0.2. After the organic overload, the average pH of the overloaded 

digesters dropped to 6.5±0.2. Moreover, the average pH of the overloaded digesters 6 

SRTs following the organic overload was found to be 7.1±0.3. 

  



96 

 

 

Figure 2.2:Effluent SCOD of Digesters Bioaugmented and Augmented With C1a,C1b and C1c.  
Error Bars Represent Standard Deviations Among Replicates. 

 

Figure 2.3: Effluent SCOD of Digesters Bioaugmented and Augmented With C2a, C2b and C2c.  
Error Bars Represent Standard Deviations Among replicates. 
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Figure 2.4: Effluent SCOD of Digesters Bioaugmented and Augmented With C3.  
Error Bars Represent Standard Deviations Among Replicates. 

 

Figure 2.5: Effluent SCOD of Digesters Bioaugmented and Augmented With C4.  
Error Bars Represent Standard Deviations Among Replicates. 
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The time required after organic overload to reach an effluent SCOD concentration 

of 1000mg/L was used as a measure of recovery time. Figure 2.6 shows the time required 

by bioaugmented and non-bioaugmented digesters to attain a 1000mg/L effluent SCOD 

concentration. 

 

 

Figure 2.6: Time Required by Bioaugmented and Non-Bioaugmented Digesters to 
attain 1000mg/L Effluent SCOD Concentration Following the Organic Overload. 
Error bars represent standard deviation among replicates. Absence of error bars indicates 
that no replicates were operated. 
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respective non-bioaugmented digesters (p<0.03). Statistical analysis of bioaugmented and 

non-bioaugmented digesters fed with enrichment cultures enriched for 125 and 

225mgO2/L-day was not possible because no replicates were operated for these systems. 

Although statistical analysis of effluent SCOD data of these digesters was not possible, it 

was observed that there was considerable difference between the days required to reach 

1000mg/L effluent SCOD (92 and 95 days less by TD-50% and TD-90%, respectively) 

by the bioaugmented digesters (see Figures 2.4 through 2.6). 

It is interesting to note that all the bioaugmented digesters consistently produced 

lower average effluent SCOD as compared to their respective non-bioaugmented 

digesters after 6 SRTs following the shock overload. To demonstrate the same, the 

percent difference between the SCOD concentrations of the bioaugmented and the non-

bioaugmented digesters after 6, 9 and 12 SRTs following the organic overload were 

evaluated. Figure 2.7 shows the comparison of the percent decrease in effluent SCOD 

concentration of the bioaugmentation digesters for each oxygen dose used for 

bioaugmentation after 6, 9 and 12 SRTs following the overload. The average percent 

difference in the effluent SCOD of the bioaugmented and the non-bioaugmented 

digesters for each oxygen dose is shown as the percent decrease in effluent SCOD in 

Figure 2.7. All curves in Figure 2.7 followed a similar pattern which was tested by 

calculating the ranks correlation coefficient for each pair of curves. The rank correlation 

for each pair of curves was found to be 1.0, which means that the percent decrease in 

effluent SCOD of the bioaugmented digesters followed a similar pattern after 6, 9 and 12 

SRTs. This shows that the beneficial effect of bioaugmentation was observed for a 

prolonged period of time following the shock overload. This is in contrast to the findings 
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of other researchers (Lynch et al., 1987) who found that bioaugmenting with cultures 

enriched for propionate and butyrate following an organic overload did not speed up 

recovery (see section 2.1.3.4.6) for prolonged periods. The reason behind successful and 

prolonged recovery of shock overloaded digesters may be because, in the current study, 

the bioaugmentation cultures were supplied on a daily basis, whereas the previous 

researchers (Lynch et al., 1987) supplied bioaugmentation culture only once leading to 

washout from the bioaugmented digester. 

Moreover, as shown in the Figure 2.7, the set of digesters receiving 

bioaugmentation culture enriched for 25mgO2/L-day (C2a, C2b and C2c) produced a 

higher percent decrease in the effluent SCOD as compared to the other enrichment 

cultures. The reason behind the better performance may be the higher SMA associated 

with the bioaugmentation culture enriched for 25mgO2/L-day (see Section 2.3.2) which 

may have led to more rapid metabolism of propionate in the bioaugmented digesters 

following the organic overload. 
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Figure 2.7: Effect of Oxygen Acclimation of Bioaugmentation Culture on Percent 
SCOD Decrease of Bioaugmented Digesters 
 

2.3.2.2  Effluent VFA Concentrations 

 Concentrations of acetic, propionic, butyric and iso-valeric acid in the effluent 
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after day 170. The VFA analysis showed that initially when there was higher effluent 

SCOD difference between TD-0% and CD-0%, the effluent VFA concentration 

difference between TD-0% and CD-0% was also higher, and as the difference between 
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Figures 2.8 through 2.11 show the effluent acetic, propionic, butyric and iso-

valeric acid concentration of UCD, TD-0% and CD-0% on day 170. Error bars in Figures 

2.8 through 2.11 represent the standard deviations among the replicates. 

0.0

20.0

40.0

60.0

80.0

100.0

0 50 100 150 200 250

Pe
rc

en
t d

ec
re

as
e 

in
 e

ff
lu

en
t 

SC
O

D

O2dose, mg/L-day

Percent SCOD decrease after 6 SRTs
Percent SCOD decrease after 9 SRTs
Percent SCOD decrease after 12 SRTs



102 

 

 

 

Figure 2.8: Effluent Acetic Acid Concentration of UCD, TD-0% and CD-0%.  
Error Bars Represent Standard Deviations Among Replicates. 

 

Figure 2.9: Effluent Propionic Acid Concentration of UCD, TD-0% and CD-0%. 
Error Bars Represent Standard Deviations Among Replicates. 
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Figure 2.10: Effluent Butyric Acid Concentration of UCD, TD-0% and CD-0%. 
Error Bars Represent Standard Deviations Among Replicates. 

 

Figure 2.11: Effluent Iso-Valeric Acid Concentration of UCD, TD-0% and CD-0%. 
Error Bars Represent Standard Deviations Among Replicates. 
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VFA concentration data on day 170 was selected for statistical analysis because 

on day 170, there were statistically significant differences between effluent SCOD of TD-

0% and CD-0% (p=0.0001) and between SCOD of TD-0% and UCD (p=0.0006). These 

differences between SCOD concentrations were reduced as the digesters recovered from 

the shock. Table 2.5 shows probabilities associated with the null hypothesis that the 

average effluent VFA concentrations of UCD, TD-0% and CD-0% were equal on day 

170. In Table 2.5, the gray cells have invalid null hypothesis at a 5% level of 

significance. 

It was observed that there were significant differences between effluent acetic 

acid, propionic acid and butyric acid concentrations of CD-0% and TD-0%, whereas 

there was non-significant differences between effluent iso-valeric acid concentrations on 

day 170 (see last column of Table 2.5). Also there were non-significant differences 

between average effluent VFA concentrations between UCD and TD-0% (see first 

column of Table 2.5) on day 170. It is important to note that, not only TD-0% received 

shock overload on day 120, but also it received more daily COD exerted by the 

bioaugmentation culture, whereas UCD did not receive any organic overload or daily 

excess COD like TD-0%. Moreover there were significant differences between effluent 

propionic acid concentration and iso-valeric acid concentration of UCD digesters and 

CD-0% digesters. 

 The differences between the effluent VFA concentrations during the recovery of 

bioaugmented and non-bioaugmented digesters showed that the digesters receiving active 

bioaugmentation culture had effluent VFA characters much similar to the UCD digesters. 
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Moreover, the non-bioaugmented digesters had higher effluent acetic acid, propionic acid 

and butyric acid concentrations then their respective bioaugmented digesters. 

 

Table 2.5: Probabilities Associated with Student’s t Statistic for Effluent VFAs 

 
Null Hypothesis 

 

Average 
concentration in 
UCD= Average 
concentration in 

TD-0% 

Average 
concentration in 
UCD= Average 
concentration in 

CD-0% 

Average 
concentration in 

TD-0%= Average 
concentration in 

CD-0% 
Acetic Acid 0.84 0.02* 0.01* 
Propionic Acid 0.11 0.16 0.02* 
Butyric Acid 0.29 0.04* 0.05* 
Iso-Valeric Acid 0.39 0.09 0.13 
*cells for which null hypothesis is invalid at 5% level of significance 
 

2.3.2.3  Methane Production 

Figures 2.12 through 2.15 show the methane production from bioaugmentation 

digesters. In Figures 2.12 through 2.15, the series of solid diamonds represents daily 

methane produced by the control digesters which didn’t receive an organic overload 

(UCD), the series of hollow circles represents daily methane produced by the 

bioaugmented test digesters and the series of solid squares represents daily methane 

produced by the non-bioaugmented digesters. The error bars represent standard 

deviations among the replicates.
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Figure 2.12: Daily Methane Production from Digesters Bioaugmented and Augmented With C1a, C1b and C1c.  
Error Bars Represent Standard Deviations Among Replicates. 
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Figure 2.13: Daily Methane Production from Digesters Bioaugmented and Augmented With C2a, C2b and C2c.  
Error Bars Represent Standard Deviations Among Replicates. 
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Figure 2.14: Daily Methane Production from Digesters Bioaugmented and Augmented With C3.  
Error Bars Represent Standard Deviations Among Replicates. 
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Figure 2.15: Daily Methane Production from Digesters Bioaugmented and Augmented With C4.  
Error Bars Represent Standard Deviations Among Replicates. 
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 Like effluent SCOD concentration, all the digesters required about 40 days (4 

SRTs) to reach an average quasi-steady-state 32±4 mLCH4/day methane production. 

During this period, average methane content in the biogas produced by all the digesters 

was 59±4% (v/v). The organic overload was given on day 57 and, following the organic 

overload, methane production from the digesters decreased to 18±13 mLCH4/day and the 

average methane content in biogas produced by the all the digesters was 16±11% (v/v). 

The daily methane production started to recover and after about 180 days of operation 

(i.e. 12 SRTs after the organic overload), all the digesters attained their quasi-steady state 

average gas production. For statistical analysis, the time required to attain 25mLCH4/day 

following the organic overload was considered. Figure 2.16 shows the time required by 

bioaugmented and non-bioaugmented digesters to attain 25 mLCH4/day methane 

production following the organic overload.
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Figure 2.16: Time Required by Bioaugmented and Non-Bioaugmented Digesters to 
attain 25 mLCH4/day Following the Organic Overload.  
Error bars represent standard deviation among replicates. Absence of error bars indicates 
that no replicates were operated. 
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25mLCH4/day than its non-bioaugmented digester, whereas the bioaugmented digester 

receiving culture enriched against 225mgO2/L-day oxygen took 22 days less to reach 

25mLCH4/day than its non-bioaugmented digester. 

To evaluate the consistency of bioaugmentation on methane production during the 

recovery period, the percent increase in methane production after 6, 9 and 12 STRs 

following the organic overload was evaluated. Figure 2.17 shows the percent increase in 

methane production after 6, 9 and 12 SRTs which was calculated as the percent 

difference between daily methane production from bioaugmented digesters and non-

bioaugmented digesters. The ranks correlation coefficient between the percent methane 

increase after 6 and 9 SRTs was found to be 1.0. This means the methane production 

from digesters bioaugmented with cultures acclimated to different doses of oxygen 

followed a similar trend during recovery (i.e. after 6 and 9 SRTs). The bioaugmentation 

culture acclimated to 25 mgO2/L-day showed the highest increase in the methane 

production after 6 and 9 SRTs following the organic overload. After 12 SRT’s following 

the organic overload, the bioaugmentation culture acclimated to 225 mgO2/L-day showed 

the highest increase in methane production. The rank correlation coefficient for percent 

increase in methane production after 9 and 12 SRTs was 0.83. This rank correlation 

coefficient was found to be statistically insignificant for 5% level of significance 

(p=0.08). This means the percent increase in the methane production after 12 SRTs didn’t 

follow the 6- and 9-SRT trend. This may be because, after 12 SRTs, all the digesters 

nearly recovered to their pre-overloaded quasi steady-state methane production values. 
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 Moreover, as shown in the Figure 2.17, the set of digesters receiving 

bioaugmentation culture enriched for 25mgO2/L-day (C2a, C2b and C2c) produced a 

higher percent increase in methane production up to 6 SRTs after upset. The reason 

behind the better performance may be the higher SMA associated with the 

bioaugmentation culture enriched for 25mgO2/L-day (see Section 2.3.1) which must have 

led to quicker metabolism of propionate. 

 

 

Figure 2.17: Effect of Oxygen Acclimation of Bioaugmentation Cultures on Percent 
Methane Increase from Bioaugmented Digesters 
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2.3.2.4  Glass Floor Effluent SCOD Concentrations 

Interestingly, the “glass floor”, that is, the quasi steady-state effluent SCOD 

concentration, for the digesters augmented with the inactivated version of 

bioaugmentation cultures were greater than the glass floor effluent SCOD concentration 

of the respective bioaugmented digesters (see Figures 2.3 through 2.5). However, the 

glass floor effluent SCOD concentrations of the digesters augmented with inactivated 

bioaugmentation culture fed with 0 mgO2/L-day equaled the glass floor effluent SCOD 

concentrations of the respective bioaugmented digesters (see Figure 2.2). It was 

hypothesized that a fraction of bioavailable trace nutrients present in the bioaugmentation 

cultures was oxidized due to the addition of oxygen to the bioaugmentation cultures and 

the higher effluent SCOD was due to unavailability of oxidized nutrients in the 

autoclaved cultures. 

To test this hypothesis, digesters fed with active bioaugmentation culture C13 and 

its inactivated version (i.e. TD-90% and CD-90%) were operated after day 227without 

bioaugmentation and augmentation. Three times higher concentration of basal medium 

containing trace nutrients (see Table 1.4) was provided to CD-90% with the daily feed. 

Figure 2.18 shows the effluent SCOD of TD-90% and CD-90% after day 227. The 

effluent SCOD of CD-90% remained higher than TD-90% until day 325. This may have 

been caused by the oxidized nature of the nutrients present in the basal medium. From 

day 325 onwards, the nutrients were first acidified to pH 2.0 by using 0.1 N HCl solution 

in stock solution before addition to CD-90%. Since the salts of metals present in the basal 

medium remain in dissolved form at the lower pH, acidifying the nutrients prior to their 
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addition may have increased their bioavailability. Addition of the acidified nutrients 

resulted in an immediate decrease in the effluent SCOD of CD-90% as shown in Figure 

2.18. This decrease highlights the importance of the form of trace nutrients added to 

anaerobic digesters which is often ignored in actual practice. It is important to note that 

addition of acidified nutrients had negligible effect on the digester pH of both test and 

control digesters which stayed in the range of 7.01±0.1. 

From day 405 onwards, TD-90% was also supplied with three times more 

concentrated acidified basal medium containing trace nutrients, while the SRT was kept 

constant. The effluent SCOD concentration of TD-90% after day 405 remained constant 

for 3 SRTs indicating that the digester was not trace-nutrient limited. During day 227 and 

day 435, effluent volatile acid concentrations from TD-90% and CD-90% were evaluated 

by gas chromatography as described in Section 2.2.3. Acetic, propionic, butyric and 

valeric acid concentrations in the effluent from TD-90% and CD-90% were below the 

detection limits. 
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Figure 2.18: Effluent SCOD Concentration of TD-90% and CD-90% 

 

2.4  Conclusions 

Enrichment of an anaerobic culture for propionate degradation did not result in 

increase in SMA even after 580 days of enrichment (38.6 SRTs) for 0 mgO2/L-day 

oxygen dose, whereas addition of 25 mgO2/L-day oxygen resulted in increased SMA by 

29.7%. Additional increase in oxygen dose resulted in lower SMA values. 

Shock organic overloaded digesters were bioaugmented with cultures enriched to 

degrade propionate. Digesters bioaugmented with cultures enriched for propionate 

resulted in lower effluent SCOD than non-bioaugmented digesters. The difference 
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between effluent SCOD of the bioaugmented and non-bioaugmented digesters was 

apparent even after 12 SRTs following the shock overload. Digesters bioaugmented with 

cultures acclimated to 25mgO2/L-day consistently showed higher reduction in effluent 

SCOD as compared to other bioaugmented digesters. These digesters took 114 days less 

to reach 1000 mgSCOD/L effluent concentration. Higher SCOD reduction from the 

digesters bioaugmented with 25mgO2/L-day may have been due to the higher SMA value 

associated with this bioaugmentation culture, which may have led to more rapid 

metabolism of propionic acid. 

On day 170 of the experiment (11.3 SRTs following the organic overload), 

Effluent VFA concentrations of the bioaugmented digesters were found to be statistically 

equal to the effluent VFA concentrations of the undisturbed control digesters, whereas 

there was more acetic and butyric acid concentration in the non-bioaugmented digesters 

as compared with the undisturbed control digesters. 

Bioaugmentation with cultures enriched for propionate and oxygen resulted in 

higher methane production from shock overloaded digesters and the effect of 

bioaugmentation was apparent for 6 SRTs following the shock overload, after which 

digester methane production reached quasi steady-state. Digesters bioaugmented with 

25mgO2/L-day showed a higher increase in methane production for 9 SRTs and required 

37 days less than non-bioaugmented digesters to reach 25 mLCH4/day. Higher methane 

production from the digesters bioaugmented with 25mgO2/L-day may have been due to 

the higher SMA value associated with this bioaugmentation culture, which may have led 

to more rapid metabolism of propionic acid. 
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Addition of acidified nutrients reduces the final quasi-steady-state effluent SCOD 

concentration in some digesters. 

In conclusion, recovery time of some digesters subjected to organic overload can 

be reduced by bioaugmentation with cultures enriched to degrade propionate. Also, the 

effect of bioaugmentation was apparent for a long period of time after recovery. The 

enrichment culture acclimated to 25mgO2/L-day showed a 29.7% increase in SMA value, 

but further addition of oxygen resulted in decreased SMA values. 
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CHAPTER 3: MICROBIAL COMMUNITY ANALYSIS 

 

3.1 Introduction 

Anaerobic digesters contain a complex microbial community. Members of this 

community carry out diverse metabolic functions leading to the overall digestion process. 

These microorganisms include members of the domains Bacteria and Archaea which 

work together to convert many organic substrates into methane and carbon dioxide. 

Syntrophic relations make the understanding of the microbial community important for 

the successful application of anaerobic biotechnology, but practitioners in the past 

haven’t paid significant attention to the delicate balance of microorganisms doing the 

work in anaerobic digesters (Amann et al., 1998; Scully et al., 2007). 

It was believed that a smoothly operating digester possessed a stable microbial 

community. But recent insight in the composition of these communities reveals that there 

may be continuous change within the microbial consortia although the overall function of 

the community appears to be at steady state (Fernandez et al., 1999; Fernandez et al, 

2000; Zumstein et al., 2000). It is difficult to obtain pure cultures of many members of 

these complex communities and, for a number of years, the underlying microbiology of 

anaerobic digesters remained undiscovered and was often thought of as a ‘black box’ 

(Godon et al., 1997; Riviere et al., 2009). With the advent of new molecular tools, efforts 

have been made to view these consortia in their habitats and to observe their 

compositional changes following environmental purturbation (Fernandez et al., 1999; 

Verstraete, 2007; Riviere et al., 2009; Leclerc et al., 2004). 



125 

 

An overall review of the microbiology associated with anaerobic digestion is 

presented below, followed by a discussion of the methanogens and their syntrophic role 

with bacteria in a phenomenon called interspecies hydrogen transfer. 

3.1.1  Anaerobic Digesters Community Analysis  

In the past, it was difficult to analyze the microbial community of anaerobic 

digesters because classical techniques (presense/absense of indicator organisms, isolation 

of pure cultures) and direct monitoring approaches (profiles of respiratory quinones, 

polyamine, phospholipid, fatty acid patterns) proved to have limitations (Raskin et al., 

1994; Amann et al., 1998; Godon et al., 1997; Riviere et al., 2009). But recently, 

molecular techniques like direct rRNA gene sequence analysis followed by hybridization, 

direct cloning-sequencing (metagenomic approaches), randomly amplified polymorphic 

DNA (RAPD), fluorescence in situ hybridization (FISH) as well as polymerase chain 

reaction (PCR) followed by clone library or amplified ribosomal DNA restriction 

analysis (ARDRA), denaturing gradient gel electrophoresis (DGGE), single strand 

conformation polymorphism (SSCP), and ribosomal intergenic spacer analysis (RISA) 

have been developed to explore microbial diversity. Use of these molecular techniques 

has been initiated to explore the community profile of anaerobic digesters (Raskin et al., 

1994; Raskin et al., 1995; Griffin et al., 1998; McHugh et al., 2003; Leclerc et al., 2004; 

McHugh et al., 2004; McMahon et al., 2004; Calli et al., 2005; Chen et al., 2005; Diaz et 

al., 2006; Hori et al., 2006; Keyser et al., 2006; Mladenovska et al., 2006; McGarvey et 

al., 2007; Hatamoto et al., 2007). Moreover, a few other techniques like metagenomics 

and pyrosequencing can be used without any need to culture microbes (Ansorge, 2009). 
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Although these techniques have opened up an entirely new world for the 

understanding of microbial communities and diversity in anaerobic digesters, it is 

important to realize that there are potential problems associated with them which can lead 

to misleading conclusions (von Wintzingerode et al., 1997; Head et al., 1998; Spiegelman 

et al., 2005; Pontes et al., 2007; Janda and Abbott et al., 2007; Marzorati et al., 2008). 

There are biases involved in the DNA extraction step due to the difference in the cell wall 

structures of microbes which may lead to preferential extraction of DNA from a few 

species (von Wintzingerode et al., 1997). Many techniques require PCR amplification of 

the target DNA gene and PCR involves many potential problems such as chimera 

formation, deletion or insertion mutation, preferential amplification of the desired gene 

from a few species due to primer specificity, and inhibition due to the presence of humic 

or other inhibitory substances (von Wintzingerode et al., 1997). Subsequent steps used 

for the separation of amplified DNA from a mixture of DNA may lead to preferential 

cloning of particular DNA types leading to erroneous data (von Wintzingerode et al., 

1997). Finally, the obtained sequence data is compared to data present in databanks 

which are not conclusive, which may ultimately lead to identifying microbes as being 

‘uncultured or unnamed’ which doesn’t give much information about phenotypic 

properties (von Wintzingerode et al., 1997).  

Community profiles of anaerobic digesters have been studied for different 

purposes.  For example, comparing microorganism surveys for a variety of digesters can 

help to understand the organisms living in the digesters (Raskin et al., 1994; Raskin et al., 

1995; McHugh et al., 2003; Leclerc et al., 2004).  Another type of community profile 

survey has been completed specific to UASB digesters (Zheng and Raskin, 2000; Diaz et 
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al., 2006; Keyser et al., 2006). These digesters use granules that serve as a habitat for the 

microorganisms. Studying the underlying complex microbiology of these granules can be 

beneficial for understanding how microorganisms interact in these reactors and the 

knowledge gained can be used to shorten start-up time or overcoming upset events. 

The effect of specific conditions on microbial community structure has also been 

explored with the objective to analyze the microorganisms responsible for various 

process functions and aid in digestion optimization. One of the process functions that has 

been studied is the start-up of anaerobic digesters (Griffin et al, 1998; McMahon et al., 

2004).  Establishment of desirable microbiota is crucial for anaerobic digester start-up 

and without the proper microorganisms the digester may fail (Hobson and Wheatley, 

1993; Griffin et al., 1998).  Therefore, knowing the identity of the microorganisms that 

aid in the start-up of anaerobic digesters is important. 

More complete treatment of waste is another important process function 

(McGarvey et al., 2007; Mladenovska et al., 2006). Studies have aimed to identify the 

microbial communities that were capable of carrying out additional enhanced treatment 

so that reactor size could be reduced and may help to uncover organisms that are unique 

to a specific treatment goal (McGarvey et al., 2007; Mladenovska et al., 2006). 

Also, the microbial communities within digesters treating specific substrates have 

been studied (Chen et al., 2005; McHugh et al., 2004; McMahon et al., 2004; Hatamoto 

et al., 2007). Acclimation of these microbes to substrates they were used to treat, showed 

potential for better degradation in an anaerobic digester (McMahon et al., 2004). 

Acclimation was found to be important if the reactor contained an excess of the substrate 
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or if the substrate was toxic to members of the microbial community (Hobson and 

Wheatley, 1993). 

3.1.2  Microbial Survey of Anaerobic Digesters 

Molecular techniques have been used to survey microbial communities in various 

environmental habitats such as soils, groundwater, aquifers, tidal flats, marine and lake 

waters as well as anaerobic digesters. 

Riviere et al. (2009) surveyed seven different municipal anaerobic digesters 

operated at mesophilic temperatures. All the digesters had a cylindrical shape and were 

used for the digestion of municipal sludge with or without industrial waste. The industrial 

effluents represented less than 30% (v/v) of the total influent volume. A clone library 

approach based on the 16S rRNA gene for comparison of microbial communities was 

followed. A core group of microbes was ubiquitously found in all the samples tested. The 

core group consisted of microbes related to Methanosarcinales, Meathanomicrobiales 

and Arc I from the domain Archaea and Chloroflexi, Betaproteobacteria, Bacteroidetes 

and Firmicutes from the domain Bacteria. The researchers concluded that the role of this 

core group appears to be critical for overall digester function and needs to be investigated 

further. A non-core group of microbes was identified and members were related to 

Crenarchaeota from the domain Archaea and Aminanaerobia, WWE-1, Actinobacteria, 

Synergestetes, Coprothermobacteria and Spirochaete from the domain Bacteria. 

Tang et al. (2005) studied two mesophilic anaerobic chemostats fed the protein 

bovine serum albumin as the substrate. Chemostat-1 was supplied with 0.1mgNi2+/L and 

Chemostat-2 was supplied with 0.12 mgCo2+/L. Chemostat-1 produced higher effluent 
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VFA and NH3 as well as negligible CH4, whereas CH4, CO2 and NH3 were the main 

products of Chemostat-2 at steady state. Microbial community analysis based on 16S 

rRNA gene analysis showed that the genera Methanosaeta and Methanoculleus were 

abundantly present in chemostat-2, whereas there were very limited total archaeal cells 

present in chemostat-1. In the bacterial clone library, clones related to the phyla 

Firmicuties (32%), Bacteroidetes (11%) and Proteobacteria (13%) were found in 

Chemostat-2 and the remaining clones were found to be uncultured organisms (44%). 

Clones related to phyla Firmicuties (43%), Bacteroidetes (50%) and Proteobacteria (7%) 

were found in Chemostat-1 and no uncultured bacterial clones were detected. 

Leclerc et al. (2004) surveyed the archaeal communities of 44 anaerobic digesters 

using the SSCP technique. The V3 region of the 16S rRNA gene was selected for the 

analysis. These various-sized digesters treated different waste types, including 

agricultural, food processing, petro-chemical, pulp and paper, brewery, slaughterhouse, 

and municipal wastes. The organisms found most frequently among the different 

digesters included an aceticlastic methanogen Methanosaeta concilii (84% of the 

digesters) and clone vadinDC06, which was located within the hydrogenotrophic genus 

Methanobacterium (73% of the digesters). 

McHugh et al. (2003) surveyed three full-scale anaerobic digesters treating 

industrial wastes and three lab-scale anaerobic hybrid reactors operated at different 

temperatures (mesophilic, thermophilic and psychrophilic). Microbial diversity was 

quantified based on a clone library and the ARDRA patterns. Methanosaeta sp., was 

present in all digesters. Other methanogens found included Methanococcus, 



130 

 

Methanosarcina and members of the methanogen orders Methanobacteriales and 

Methanomicrobiales. 

Raskin et al, (1995) studied the community profiles of 21 single-phase, full-scale, 

anaerobic digesters digesting municipal sewage sludge using oligonucleotide probes. It 

was found that all of these digesters had similar community profiles, with the majority of 

the Archaea belonging to the genera Methanosaeta and order Methanomicrobiales.  

Methanogenic members of the order Methanococcales were also found. The digester 

which was determined to have “poor” performance due to increased concentrations of 

acetate and propionate had low levels of Methanosaeta and Methanomicrobiales species. 

Raskin et al. (1994) analyzed the communities of various types of digesters: lab-

scale solid waste digesters and full-scale sewage sludge digesters using oligonucleotide 

probes complementary to conserved regions of the 16S rRNAs of groups of methanogens.  

In the solid-waste lab digester, members of the order Methanobacteriales were the major 

hydrogenotrophic methanogens (Raskin et al., 1994).  The full-scale digesters had similar 

methanogenic community profiles, which consisted of Methanogenium and 

Methanosaeta (Raskin et al., 1994). 

The data presented above suggests that Methanosaeta sp. was found as a common 

component of digesters (Raskin et al., 1994; Raskin et al., 1995; McHugh et al., 2003; 

Leclerc et al., 2004) and also at least one hydrogenotrophic group of methanogens existed 

in each digester. 
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3.1.3  Microbial Communities in the Granules of UASB Digesters 

UASB digesters typically form a blanket of anaerobic granules that have a higher 

settling velocity than flocculent biomass. These granules also provide a location for the 

microorganisms to attach and grow. Because of a low HRT, the UASB is one of the most 

preferred anaerobic biotechnologies for treating high strength organic wastes. Each 

granule from the anaerobic blanket of a UASB consists of a complex microbial colony 

structure containing members that can share syntrophic relationships. 

Zheng and Raskin (2000) investigated the microbial community profile of UASB 

granules from a full-scale UASB reactor treating corn milling waste and two lab-scale 

UASB reactors treating synthetic wastewaters containing glucose or glucose and 

propionate by using genus- and species-specific hybridization probes. The authors 

concluded that the outer layer of granules from all the reactors was thin and contained 

mostly bacterial cells with a small number of archaea, whereas the inner layer was denser 

and contained almost only archaea. Methanosaeta concilii was found to be present 

throughout the granule structure, and it was most abundant in the cores. It was concluded 

that the spatial orientation of the granule microbes may be critical for optimal reactor 

function (Keyser et al., 2006). 

Diaz et al. (2006) studied UASB granules from a full-scale facility treating 

brewery wastewater that were sorted by color (black, brown, and grey) using a 

combination of molecular techniques (FISH, DGGE, and cloning), They compared the 

granule structure, microbial diversity, and age-specific development of each type of 

methanogenic granule. The black granules were characterized as “young” and contained 
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the archaea Methanospirillum and Methanosarcina.  The black granules were the only 

type that contained active microorganisms within the entire interior of the granule. The 

grey granules were classified as “middle-aged” and contained Methanosaeta, which was 

similar to the brown, or “old” granules, the only difference being they were more 

filamentous, soft and fluffy (Diaz et al., 2006). 

Keyser et al. (2006) identified the methanogens present in UASB granules 

treating different wastewaters. Using DGGE and further sequencing of DGGE bands, the 

microorganisms from waste treatment for three different industries, winery, brewery, and 

canning, were studied. The brewery and winery UASB granules contained Methanosaeta 

concilii. This was important because studies by Hulshoff Pol et al. (2004) indicated that 

Methanosaeta played a key role in UASB granulation. These organisms were considered 

to be responsible for the formation of the nucleus of the granules and they provided a 

structure for the bacteria and other methanogens to grow syntrophically, forming the 

entire granule (Hulshoff Pol et al., 2004). The brewery granules also contained 

Methanosaeta thermophilia and Methanobacterium formicicum, whereas the winery 

granules contained Methanosarcina mazeii (Keyser et al., 2006). The canning industry 

granules contained three uncultured archaea named APL1, APL2, and APL3.  These 

uncultured archaea showed the closest similarity to previously uncultured archaeons with 

a sequence similarity of only 88%, 85% and 88%, respectively (Keyser et al., 2006). 

Diaz et al (2006) and Keyser et al (2006) suggested that certain microorganisms 

seem to favor specific conditions when it comes to granule habitat. But, similar to Zheng 

and Raskin (2000), these studies concluded that Methanosaeta was an important 
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organism in nearly all UASB granules. Also Methanosaeta was found to form the core of 

the granule so its presence appeared to be extremely important for starting the granulation 

process (Zheng and Raskin, 2000; Diaz et al., 2006).  

Therefore, knowing the organisms present in optimally performing UASB 

reactors may help digester operators choose supplemental organisms to help recover 

poorly performing reactors. Also, in order to develop the proper granules for a reactor, 

bioaugmentation with a proper methanogenic culture may be an option for reducing start-

up time. 

3.1.4  Microbial Communities During Start-up of Anaerobic Digesters 

Start-up of anaerobic digesters is a very crucial step; it can be time-consuming 

and failures are possible (Hobson and Wheatley, 1993; Griffin et al., 1998). Community 

profile analysis of microorganisms during successful start-up can be used to design 

subsequent reactors favoring these particular organisms allowing for a shorter start-up 

time. 

Griffin et al. (1998) analyzed a methanogenic community during start-up of two 

anaerobic lab scale CSTRs. One CSTR was maintained at a mesophilic temperature 

(37°C) and the other at a thermophilic temperature (55°C). Using rRNA-targeted 

oligonucleotide probes, large variations in the digester methanogenic community 

structures were observed when start-up was not performing well as indicated by the 

accumulation of VFA. The thermophilic digester had a shorter start-up period and the 

levels of hydrogenotrophic methanogens (Methanobacteriaceae) were found to be higher 

in the thermophilic digester than the mesophilic digester. The reason behind the quicker 
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start by the thermophilic digester may have been the presence of a higher amount of 

hydrogenotrophic methanogens which might have led to more efficient metabolism of 

certain VFAs (like propionate and butyrate), but further research is needed to confirm this 

assumption. 

McMahon et al., (2004) studied the microbial communities during start-up of lab-

scale anaerobic co-digesters treating municipal solid waste and sewage sludge using 

oligonucleotide probes. The authors concluded that Methanosaeta concilii was an 

important methanogen for successful start-up and digesters with poor start-up 

performance contained a higher proportion of Methanosarcina spp. than Methanosaeta. 

The study also found that the presence of syntrophic propionate-oxidizing bacterium 

Syntrophobacter wolinii helped in degrading propionate during successful start-up. 

This research suggests that the acetotrophic methanogen, Methanosaeta sp., is an 

important component for successful start-up of anaerobic digesters. Also, since the start-

up may be process specific, the presence of other hydrogenotrophic methanogens (like 

Methanobacteriaceae) may also be critical (Griffin et al., 1998). 

 

3.1.5  Microbial Communities for Substrate Degradation/Conversion 

In the past, the microorganisms that specifically degrade or convert substrates like 

fatty acids and volatile sulfur compounds in anaerobic environments have been studied. 
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3.1.5.1  Fatty Acids 

Hatamoto et al. (2007) investigated long-chain fatty acids used as a substrate in a 

digester by comparing the microbial communities of lab-scale and full-scale reactors, 

along with the effect of different temperatures (mesophilic and thermophilic). They used 

RNA-based stable isotope probing, terminal restriction fragment length polymorphism 

(T-RFLP), cloning and sequencing. It was found that a diverse group of organisms were 

present to degrade long-chain fatty acids in anaerobic digesters, as shown in Table 3.1. 

Syntrophic associations were found to be important for the degradation of long-chain 

fatty acids because complete oxidation of the long-chain fatty acids is thermodynamically 

unfavorable in the anaerobic environment unless the consumption of hydrogen and/or 

formate is coupled with the oxidation of the long-chain fatty acids (Hatamoto et al, 2007). 
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Table 3.1: Bacteria Found in Anaerobic Digesters Degrading Long-Chain Fatty 
Acids 

Phylum 

Acidobacteria 

Spirochaetes 

Chlorobi 

Class Clostridia 

Family 

Geobacteraceae 

Deferribacteraceae 

Syntrophaceae 

Genus 

Anaerobaculum 

Synergistes 

Coprothermobacter 

Syntrophomonas 

Syntrophothermus 

Tepidanaerobacter 

Thermotoga 

 

McHugh et al. (2004) conducted a microbial community comparison for 

anaerobic digesters operating at psychrophilic temperatures that were fed different 

substrates and they used various molecular techniques (clone library, ARDRA, and 

sequencing). One reactor was fed sucrose and the other was fed a mixture of fatty acids 

(acetate, butyrate and propionate) along with ethanol. The VFA-fed reactor maintained 

successful performance levels at low temperatures (95% COD removal at 18°C), but 
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declined in performance when a shock (increase in upflow velocity) was introduced. The 

sucrose-fed reactor did not perform particularly well (50-60% COD removal at 16°C), 

but when the shock was introduced, the performance was actually enhanced (COD 

removal increased to greater than 80%). This showed that the sucrose-fed 

microorganisms may have been able to handle a shock to the reactor more easily than the 

VFA-fed microorganisms, which appeared to perform better under stable feeding 

conditions. The stressed condition caused an increase in Methanomicrobales sp. 

(hydrogenotrophic methanogens) along with a decrease in Methanosarcina sp. and 

Methanosaeta sp. (acetotrophic methanogens) in the microbial community profile of both 

the reactors (McHugh et al., 2004). 

McMahon et al. (2004) studied the microbial community in anaerobic digesters 

during organic overload. It was shown that the overload caused a rapid increase in VFAs, 

which inhibited the methanogens. But those reactors that had VFA accumulation in the 

past were shown to perform better during subsequent overload periods. This implied that 

there could be acclimation to high VFAs by microorganisms, or there was a community 

shift to those organisms that used the VFAs which may help when a future overload 

occurs. 

 

3.1.5.2  Volatile Organic Sulfur Compounds (VOSCs) 

The presence of hydrogen sulfide (H2S) and VOSCs, including dimethyl sulfide 

cause odor problems during anaerobic digestion. Methanogens have been found to 

degrade dimethyl sulfide and, therefore, can play a role in VOSC reduction. Chen et al. 
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(2005) analyzed the microbial communities from 12 anaerobically digested biosolid 

cakes using PCR-DGGE techniques. The profiles were found to be the same for all of the 

mesophilic digesters and the identified microorganisms were in the family 

Methanosarcinaceae.  The Archaea (including methanogens) demonstrated a simplified 

community profile compared to the Bacterial community, which was important because 

any stress imposed on the former community could result in a decrease in the degradation 

of VOSCs and a subsequent release of odors. The authors also suggested that the 

abundance of the overall methanogenic community was more important than the 

existence of a specific methanogen on VOSC degradation. 

 

3.1.6 Methanogenic Population Shift Due to Change in Operating Conditions 

Molecular techniques were also used to monitor community profiles when a set of 

operating conditions changed. When an environment is perturbed, the community may 

change in order to adapt to the change. The analysis of the microbial community shifts 

can lead to a determination of the function of certain microorganisms within a 

community and ultimately an ecosystem. 

Schauer (2008) Studied the archaeal community profiles of four lab-scale 

anaerobic enrichments (C1, C2, C3 and C4) using 16S rRNA gene and molecular 

techniques (PCR, cloning, restriction digests, and sequencing). The enrichment 

conditions differed based upon whether or not glucose and/or oxygen was fed to the 

enrichment. The substrates used for enriching the cultures were as follows: C1 – H2:CO2, 

C2 – H2:CO2 + glucose, C3 – H2:CO2 + air, and C4 – H2:CO2 + glucose and air. When 
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comparing the enrichment cultures that received air versus those that did not, a shift in 

the methanogen community occurred. In C1 and C2, Methanosaeta was the dominant 

genus. On the other hand, Methanosaeta was not dominant in C4 and was not detected in 

C3. Methanospirillum was the dominant methanogen genus in C3. Organisms related to 

Methanospirillum were also detected in C4 but Methanosaeta was the dominant genus. It 

was concluded that addition of air in absence of glucose significantly increased the 

Methanospirillum population in the hydrogen-enriched cultures. 

 
Hori et al. (2006) used a combination of molecular techniques (SSCP, quantitative 

PCR (rPCR), FISH) and concluded that that the hydrogenotrophic methanogen, 

Methanoculleus sp. was the predominant methanogen during stable reactor performance 

with no VFAs in the reactor. Once the VFA concentrations increased, the community 

shifted and Methanothermobacter sp. became dominant with an approximately 10,000-

fold increase. Once the VFA levels returned to normal (after 60 days), Methanoculleus 

sp. started to increase again. This means that methanogens can potentially recover from 

stressed conditions once the conditions return to favorable and the presence of certain 

hydrogenotrophic methanogens may correspond with lower effluent VFA concentration 

(propionate in particular). 

Delbes et al. (2001) analyzed a community profile shift of an anaerobic digester 

during an increase in acetate concentration by using SSCP analysis of 16S rDNA and 

rRNA PCR products. During the stressed period of 80 days, the effluent acetate 

concentration exceeded 1500 mg/L and small amounts of propionate started to 

accumulate. A shift in Archaea occurred during this period from Methanobacterium-
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related to Methanosaeta concilii-related and then back to Methanobacterium-related once 

the acetate levels decreased. This demonstrated a shift from hydrogenotrophic to 

acetotrophic methanogens in order to potentially degrade the excess acetate in the system. 

The Bacterial community also changed during this period with an increase in the 

Spirochetes spp. and then a return to the Synergistes spp. once the acetate levels 

decreased. 

Calli et al. (2005) investigated the effect of increased ammonia levels on various 

lab-scale digesters using a combination of molecular techniques (DGGE, FISH, cloning 

and sequencing). The free ammonia nitrogen (FAN) increase in these digesters caused a 

stressed condition. As FAN increased, the Methanosaeta-related species decreased and 

Methanosarcina-related methanogens were detected. One reactor was able to resist FAN 

levels as high as 750 mg/L. This reactor was seeded with sludge taken from a laboratory-

scale UASB reactor treating high ammonia acidogenic landfill leachate. The authors 

suggested that the inorganic particles from the seed sludge provided a good surface 

support for Methanosarcina species which enabled the reactor to withstand high 

concentration of FAN.  

The analyses of the microbial communities in the studies mentioned above are 

important for understanding the beneficial and critical microbes involved in the process 

of anaerobic digestion. As the above review suggests, stressed conditions may cause 

microbial community shifts in anaerobic digesters (Hori et al., 2006; Delbes et al., 2001; 

Calli et al., 2005). In light of the experimentation explained in the previous sections (see 

Section 2), it is important to know the composition of the microbial community in 
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organically overloaded conditions. It is also important to know which individual 

microbes are present in the recovering digesters following an organic overload. 

Knowledge of such microbial consortia may provide clues for improved recovery. Also, 

microbial analysis of the bioaugmentation culture may provide the underlying reasons 

behind the findings of earlier authors (Lynch et al., 1987) who concluded that the effect 

of bioaugmentation on the organically overloaded anaerobic packed bed reactors by the 

enrichment cultures acclimated to propionate was short-lived. 

In this study the microbial community analysis of an undisturbed control digester, 

a bioaugmented digester, a non-bioaugmented digester and the enrichment culture was 

carried out to test the hypothesis that bioaugmentation helps restore the microbial 

community of an anaerobic digester following an organic overload. 

 

3.2 Methods and Materials 

 To study the community structure in digesters during recovery from an organic 

overload, microbial community analysis was carried out. Microbial community structures 

were evaluated for the bioaugmentation culture enriched for both propionate and 

25mgO2/L-day (culture C2a), the digester bioaugmented with culture C2a (i.e. TD-10%-

1), the non-bioaugmented digester augmented with an autoclaved version of the culture 

C2a (i.e. CD-10%-1) and the undisturbed control digester (i.e. UCD-1) (see Table 2.3 and 

2.4 for designations). Effluent samples from digesters were collected on day 120 (6 SRTs 

following the organic overload). Day 120 was selected for collecting samples because 
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there was a statistically significant difference between the effluent SCOD concentrations 

of TD-10% and CD-10% on day 120 (see Section 2.2). Also DNA from culture C2a was 

extracted on the same day. 

 

3.2.1  Molecular Techniques for Community Analysis 

Clone libraries for the 16S rRNA gene of bacteria and archaea were constructed. 

Molecular techniques used for microbial community analysis and the analytical 

procedures followed are explained in this section. 

 

3.2.1.1  DNA Extraction 

Microbial DNA was extracted using the PowerSoil™ DNA Isolation Sample Kit 

(MoBio Laboratories, Inc., Carlsbad, CA) according to the manufacturer’s instructions 

modified by the inclusion of the alternative lysis method. This alternative lysis method is 

recommended if the cells are difficult to lyse and entails a 10 min incubation at 70 oC to 

aid in cell lysis (PowerSoil Protocol, 2007). This method replaced the horizontal 

vortexing of the PowerBead Tubes and was meant to reduce shearing of DNA. The 

presence of extracted DNA was confirmed using agarose gel electrophoresis. 

 

 

 



143 

 

3.2.1.2  Agarose Gel Electrophoresis 

Agarose gel electrophoresis was performed by the procedure explained in section 

1.2.5.2. 

 

3.2.1.3  Polymerase Chain Reaction (PCR) 

PCR was performed on DNA samples using 50 μL of EconoTaq® PLUS 2X 

Master Mix (Lucigen Corporation, Middleton, WI), which included 0.1 units/μL of 

EconoTaq DNA Polymerase, Reaction Buffer (pH 9.0), 400 μM each of dATP, dGTP, 

dCTP, and dTTP, 3mM MgCl2, and a proprietary PCREnhancer/Stabilizer (EconoTaq® 

PLUS 2X Master Mix Protocol). One μL per reaction of forward and reverse primer 

solution (concentration of 0.1 μM) were added to the PCR tubes with nuclease-free H2O 

to make a 100-μL reaction volume. The Bacteria primers used for amplification of the 

16S rRNA gene were 27F (5´-AGA GTT TGA TCA TGG CTC AG-3´) and 1492R (5´-

TAC GGY TAC CTT GTT ACG ACT T-3´) (Lane, 1991). The Archaea primers were 

A571 (5’-GCY TAA AGS RIC CGT AGC -3’) and UA1406R (5’-ACG GGC GGT 

GWG TRC AA -3’) specific to Archaea (Baker et al., 2003). The PCR reactions were 

completed by using a Bio-Rad PTC-200 DNA Engine Cycler thermal cycler. Figures 3.1  

a) and b) show the thermocycler programs used for bacterial and archaeal amplification. 
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(a) (b) 

Figure 3.1: Thermocycler Programs for PCR Amplification of (a) Bacterial 16S 
rDNA (b) Archaeal 16S rDNA (Fode-Vaughan et al., 2001 and Baker et al., 2003) 

 

3.2.1.4  Cloning 

Cloning of the PCR product was done utilizing the TOPO TA Cloning® Kit 

according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA). Transformants 

containing plasmids with amplified product were screened via blue/white selection 

(Sambrook and Russell, 2001). The light-colored colonies were picked and a PCR, with 

PucF (5´-GGA ATT GTG AGC GGA TAA CA- 3´) and PucR (5´- GGC GAT TAA GTT 

GGG TAA CG - 3´) primers was run on each colony to amplify the DNA. Figure 3.2 



145 

 

shows the PCR amplification programme that was used for Puc amplification. The PCR 

products obtained were run on an agarose gel to confirm the presence of amplified DNA. 

 

Figure 3.2: Thermocycler Program for PCR Amplification for Puc Primers 

 

3.2.1.5  PCR Purification 

To prepare the samples for sequencing, samples were cleaned using the 

UltraClean™ PCR Clean-up™ Kit (MoBio Laboratories, Carlsbad, CA). Clean-up was 

done in an effort to remove unwanted reaction components and purify the DNA for 

sequencing. The protocol included with the kit was used without modification. 
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3.2.1.6  DNA Sequencing 

The amplified products were sequenced at the University of Chicago Cancer 

Research Center’s DNA sequencing facility which sequenced individual clones for 

universal forward and reverse primers using a capillary automated DNA sequencer 

(Applied Biosystems, Foster City, CA). 

 

3.2.1.7  Analysis of sequences 

The forward and reverse sequences obtained from the sequencing facility were 

analyzed using the FinchTV, v 1.4.0 (Geospira Inc., Seattle, WA) and Vector NTI, v 11.0 

(Invitrogen Corporation, Carlsbad, CA) software. Contiguous sequences were assembled 

for each clone using forward and reverse sequences. Vector segments from the 

contiguous sequences were removed using Vecscreen, a tailor-made computer program 

written by Dr. Craig Struble, Department of Mathematics, Statistics and Computer 

Science, Marquette University. Vecscreen searches the UniVec database of the National 

Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html) using the Basic Local Alignment 

Search Tool (BLAST) (Altschul et al., 1997) for cloning vectors. If there is a match in the 

UniVec database sequences and the submitted query sequence then the program removes 

vector segments of the submitted sequence. 

Chimera detection analysis was performed using Chimera Check, v 2.7 (Cole et 

al., 2003; Maidak et al., 2000) and Bellerophon (Huber et al., 2004). Unaligned 
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sequences were submitted to online versions of Chimera Check and Bellerophon tools. 

While using Bellerophon tool, a window size of 200 was selected and no distance 

correction method was applied. The identified chimera sequences were removed from the 

data. 

After checking for chimeras, the sequences were submitted to Ribosomal 

Database Project (RDP) (Cole et al., 2003; Cole et al., 2007; Cole et al., 2009; Maidak et 

al., 2000; Wang et al., 2007) which uses the program Infernal, v 1.0 (Nawrocki et al., 

2009) that aligns 16S rRNA gene sequences based on their secondary RNA structure. The 

resulting alignment was downloaded from the RDP server (http://rdp.cme.msu.edu/). 

Distance matrices were calculated from the alignment by using ‘DNADIST’ 

algorithm of the Phylogeny Inference Package (PHYLIP, v 3.68) (Felsenstein, 2005). All 

the distances were calculated by the Kimura "2-parameter" model which assigns different 

probabilities for the transitions and transversions for a nucleotide base change. 

Operational taxonomic units (OTUs) were formed from the distance matrices 

using the DOTUR program, v 1.53 which assigned sequences to OTUs by the farthest 

neighbor algorithm (Schloss et al., 2005).  A criterion of 99% sequence similarity was 

used to form OTUs. DOTUR was also used to plot rarefaction curves and calculate 

coverage, richness and diversity indices. 

The SCHAO1 estimator was calculated from the clustering pattern obtained for the 

clones in each clone library. The SCHAO1 estimator is based on mark-release-recapture 
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techniques that yield an unbiased estimate of the probable number of phylotypes present 

in the source assemblage (Chao, 1984; Chao, 1987). SCHAO1 estimator was calculated as 

  -                 (3.1) 

In Equation 3.1, SOBS is the number of OTUs observed in the library, F1 is the number of 

OTUs containing one sequence only and F2 is the number of OTUs containing two 

sequences only.  

The SACE estimator was calculated for the clustering pattern of clones in each 

clone library. SACE estimator is another estimate for the probable number of phylotypes 

present in the source assemblage (Chao et al., 1993). The SACE estimator was calculated 

as, 

                     .                         (3.2) 

The Y2
ACE in Equation 3.2 can be calculated as, 

-
-

- , 

 , 

and - . 



149 

 

In the above equations, ni is the number of OTUs with I individuals, Srare is the number of 

OTUs with 10 or fewer individuals, and Sabund is the number of OTUs with more than 10 

individuals. 

OTU data from each clone library were used to calculate Good’s C estimate 

(Good, 1953). Good’s C estimate determines the number of OTUs that would actually be 

found in a library of infinite size based on the OTU data. Good’s C was calculated as, 

,     (3.3) 

where, n1 is the number of OTUs containing one sequence only and N is the library size. 

OTU heterogeneity in a sample was calculated by the Shannon-Weaver Index 

(Shannon and Weaver, 1963). Shannon-Weaver Index was calculated as, 

                            - .    (3.4) 

In Equation 3.4, HShannon represents Shannon-Weaver Index, n is the total number of 

OTUs present in a library, and pi is the ratio of number of sequences present in an OTU 

with the total number of sequences. 

Diversity of OTUs in a clone library was also found by Simpson's index. The 

Simpson’s index value gives the probability of two individual clones randomly selected 

from a sample belonging to the same OTU. Simpson’s diversity index was calculated as, 

-
-

  .     (3.5) 

 

C =1−
n1

N
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In Equation 3.5, HSimpson is Simpson’s Index, and Si is number of sequences in the ith 

OTU. 

All the unique sequences were submitted to the NCBI server 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) for nucleotide (BLASTN) search to find the 

closest related microorganisms in the database and subsequently DNA sequences of the 

closest related organisms from the database were collected to use as reference organisms 

for plotting phylogenetic trees. The selected reference sequences and the sample 

sequences were re-aligned using the Ribosomal Database Project server (Cole et al., 

2009; Maidak et al., 2000). Neighbor-joining, maximum parsimony and maximum 

likelihood trees were created using the Phylogeny Inference Package (PHYLIP, v 3.68) 

(Felsenstein, 2005) and bootstrap analysis was done for 100 replications. Consensus trees 

generated by bootstrap analysis were visualized using the software FigTree v1.2.2 

(Rambaut, 2008). Comparisons among different tree structures were done using the Tree 

Climber software package (Schloss et al., 2006). The online version of UniFrac tool 

(Lozupone et. al, 2006) was used to perform principle coordinate analysis (PCoA) on the 

phylogenetic trees. A combined tree containing all the bacterial or archaeal clone libraries 

was submitted to UniFrac software. UniFrac calculated pair-wise distances between the 

samples using ratio of sum of lineage lengths between two samples and total lineage 

length. While calculating pair-wise distances, the lineages that lead to descendants from 

either of the two samples were considered, whereas the lineages that contained clones 

from both the samples were not considered. The resulting distance matrix was used to 

perform PCoA. While performing PCoA, phylotype abundance weights were considered. 

Finally the first two principle components were used for plotting the data. 
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To perform PCA on the archaeal clone libraries, all the archaeal clone libraries 

were combined together and the distance matrix for the combined library was calculated 

using the RDP aligner and the DNADIST algorithm of the PHYLIP Package (PHYLIP, v 

3.68) (Felsenstein, 2005). All the distances were calculated by the Kimura "2-parameter" 

model which assigns different probabilities for the transitions and transversions for a 

nucleotide base change. The resulting distance matrix was submitted to the DOTUR 

program (v. 1.53) and OTUs were formed using 99% similarity criterion. Contribution of 

each sample to individual OTU was determined by calculating ratio of the number of 

clones present in that OTU from that particular samples and the total number of clones in 

that OTU. These fractions were used as dimensions for performing PCA. PCA was 

performed using MATLAB (v.7.6(R2008a)) software package which calculated a 

covariance matrix for the given data. The first two coordinates that represented the 

highest amount of variation among the data were determined. These two coordinates, 

called principle components, were used for plotting the data. The samples were clustered 

on the two dimensional space in three groups using farthest neighbor algorithm. 

Projections of the three dimensions that had highest contribution to the principle 

components were also projected on the plot of the first two principle components. Same 

procedure was followed for performing PCA on bacterial clone libraries and projections 

of the six dimensions that had highest contribution to the principle components were also 

projected on the plot of the first two principle components. The resulting PCA plots were 

expected to follow the same pattern as that of PCoA plots obtained from UniFrac 

software. 
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3.3 Results and Discussion 

3.3.1  Archaea 

3.3.1.1  Archaeal Diversity, Richness and Functional Organization 

PCR of 16S rRNA gene fragments followed by clone library construction yielded 

DNA sequence data. The data were analyzed and cleaned by removing chimera 

sequences as mentioned in the methods section (see Section 3.2.1.6). Following the 

chimera check, the data were submitted to RDP seqmatch query (Cole et al., 2003; Cole 

et al., 2007; Cole et al., 2009; Maidak et al., 2000). Interestingly it was found that many 

of the sequences obtained were classified under the domain Bacteria. The reason behind 

obtaining bacterial clone for the primers specific to the domain Archaea may be that the 

archaeal primers might have annealed to the bacterial genes present in the PCR product 

due to the lower annealing temperature used. This suggested that the PCR program used 

needs further fine-tuning. The clones classified under the Bacteria domain were not 

considered for further analysis. Table 3.2 shows the summary of the chimera-and 

bacteria-free archaeal clones obtained for each sample. 
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Table 3.2: Number of Good Archaeal Sequences Obtained 

DNA 

Sample 

Number of Clones 

Sequenced 

Number of Good Sequences Obtained, 

Classified Under Domain Archaea 

UCD-1 96 66 

TD-10%-1 96 68 

CD-10%-1 96 57 

C2a 96 55 

 

Rarefaction curves were constructed using the DOTUR program (Schloss et al., 

2005). Rarefaction curves are based on empirical calculations that help to estimate if the 

number of samples sequenced provides an accurate estimate of the diversity present in 

the population. The rarefaction value increases with each new OTU obtained in the 

sample (Kemp and Aller, 2004). 
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Figure 3.3: Rarefaction Curves for The Archaeal Clone Libraries 

 

Figure 3.3 shows that for the given library sizes, TD-10%-1 and UCD-1 clone 

libraries attained nearly complete coverage, whereas C2a and CD-10%-1 clone libraries 

did not attain complete coverage for a library size of 57 and 55, respectively. This 

indicates that the archaeal communities of C2a and CD-10%-1 were more diverse than 

the archaeal communities of UCD-1 and TD-10%-1. 

SCHAO1 and SACE provide estimates of the number of clones expected in a clone 

library (Kemp and Aller, 2004) and Good’s C provides another estimate of the amount of 

coverage obtained using the number of unique clones and the total library size (Good, 
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1953). Richness indices like SCHAO1, SACE and Good’s C are sensitive to the number of 

rare OTUs and so must be applied with caution but the confidence intervals associated 

with them give a better clue of accuracy of the richness estimation (Riviere et al., 2009). 

Table 3.3 shows SCHAO1, SACE and Good’s C estimates for the archaeal clone 

libraries. Again, all the estimates indicated that archaeal diversity of UCD and TD-10%-1 

was covered by the library size of 66 and 68, respectively, whereas there were still 

archaeal OTUs to be detected in samples CD-10%-1 and C2a. According to the SCHAO1 

estimates, approximately 78% of the archaeal diversity of sample CD-10%-1 was 

covered, whereas only 36% of the archaeal diversity of sample C2a was covered. 

According to SACE estimates, 64% of the archaeal diversity of sample CD-10%-1 was 

covered whereas 36% of the archaeal diversity of sample C2a was covered. Good’s C 

estimates indicated 91 and 87% coverage for samples CD-10%-1 and C2a respectively.  

It is known that the SACE estimator yields smaller coverage values than SCHAO1 

and Good’s C estimates since “it is derived from a larger subset of the complete 

frequency distribution than SCHAO1 estimator” (Kemp and Aller, 2004). Therefore, the 

SACE estimator is particularly appropriate for data sets in which some phylotypes (OTUs) 

occur more frequently. On the other hand, the SCHAO1 estimator is derived from the 

number of phylotypes appearing either one or two times in a given library so it is 

particularly appropriate for data sets in which most phylotypes are relatively rare in the 

library (Kemp and Aller, 2004). In the case presented herewith, the SACE estimator was 

found to be an appropriate choice due to skewed distribution of clones among the OTUs 

and because more than two clones were often associated with an OTU (explained in 

following paragraphs and Figure 3.4). 
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Table 3.3: SCHAO1, SACE and Good’s C Estimates for Archaeal Clone Libraries 

 Observed 

Number of 

OTUs 

SCHAO1 SACE Good's C 

Predicted 

Number of 

OTUs* 

Predicted 

Number of 

OTUs 

UCD-1 5 5 (5-5) 5 (5-5) 1.00 

TD-10%-1 4 4 (4-4) 4 (4-4) 1.00 

CD-10%-1 11 14 (12-33) 17 (12-43) 0.91 

C2a 12 33 (17-98) 33 (16-127) 0.87 

*values in the parenthesis indicate 95% confidence interval  

The Shannon-Weaver index is a measure of the diversity within a sample 

(Shannon and Weaver, 1963). Higher Shannon-Weaver index values indicate a higher 

diversity of microbes in a clone library and vice versa.  

Simpson’s Index gives another estimate of the diversity in a sample. The index 

value is the probability of two individual clones randomly selected from a sample 

belonging to the same OTU. A higher Simpson’s Index value indicates a less diverse 

sample and vice versa (Schloss et al., 2005). 

Table 3.4 shows Shannon-Weaver and Simpson’s diversity indices for the 

archaeal clone libraries obtained by using DOTUR program (Schloss et al., 2005). 

Culture C2a had the highest archaeal diversity among the samples tested, followed by 
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CD-10%-1, whereas the DNA sample from TD-10%-1 and UCD-1 had lower archaeal 

diversity. 

 

Table 3.4: Shannon-Weaver and Simpson’s Indices for Archaeal Clone Libraries 

 

HShannon HSimpson 

UCD-1 0.76 0.63 

TD-10%-1 0.93 0.51 

CD-10%-1 1.57 0.34 

C2a 1.94 0.17 

 

Both digesters UCD-1 and TD-10%-1 had lower archaeal diversity than CD-10%-

1 and C2a. Moreover, both UCD-1 and TD-10%-1 performed better than CD-10%-1 in 

terms of methane production and effluent SCOD removal. Interestingly since C2a was 

used as the bioaugmentation culture and was introduced in TD-10%-1 on a daily basis, 

TD-10%-1 was also expected to have a higher diversity of archaea similar to culture C2a, 

but this was not the case. 

All the diversity and coverage estimated indicated that both UCD-1 and TD-10%-

1 had lower diversity than CD-10%-1 which indicates that the better function of 

anaerobic digesters digesting milk waste may require less diverse, but a dedicated, 

archaeal community. 
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 Functional organization (fo) of microbes in a sample can be represented by Pareto-

Lorenz (P-L) evenness curves (Marzorati et al., 2008) (see Section 1.2.2.4). Figure 3.4 

represents P-L curves for the archaeal clone libraries. Interestingly, functional 

organization of all the archaeal clone libraries fell into the medium category (Marzorati et 

al., 2008). Moreover, the fo values of C2a and TD-10%-1 were about 0.6, whereas the fo 

values of UCD-1 and CD-10%-1 were 0.8 and 0.7 respectively. This means archaeal 

community distributions in the libraries C2a and TD-10%-1 were more even as compared 

to the distribution of the clones in UCD-1 and CD-10%-1. 

 

 

Figure 3.4: Pareto- Lorenz Evenness Curves of Archaeal Clone Libraries 
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3.3.1.2  Archaeal Phylogenetics 

A nucleotide BLAST query (BLASTN) conducted for the archaeal sequences 

using the GenBank database revealed either uncultured or named organisms based on 

similarity in 16S rRNA genes of query and database sequences. Almost all the archaeal 

sequences obtained were related to either methanogens or other uncultured archaea. The 

closely related sequences were used to construct phylogenetic trees as mentioned in the 

methods section (see Section 3.2.1.6). Phylogenetic trees were constructed by neighbor-

joining, maximum likelihood and maximum parsimony algorithms. It was confirmed that 

different algorithms had no effect on the distribution of clones among clades of the 

different trees. Hence, the same organisms were grouped together in trees formed by 

different algorithms. Figures 3.5 through 3.8 show the bootstrapped phylogenetic trees 

constructed by using the neighbor joining algorithm. The numbers at the nodes represent 

the bootstrap values. The non-bold taxa identify the reference sequences (both cultured 

and uncultured), followed by their GenBank accession number. The sample sequences 

are shown in bold-type font and are designated by the name of the culture following the 

letter “A” for archaea and the OTU number. Only one sequence per OTU is shown and 

the number of sequences represented by that particular sequence is mentioned in a 

bracket at the end of sequence designation. The scale at the bottom of the tree indicates 

the number of nucleotide changes per sequence position. All the archaeal trees were 

rooted to the organism Sulfolobus solfataricus (X03235). Classification of all the OTUs 

based on RDP classifier (Wang et al., 2007; Cole et al., 2007) is presented at the right 

side of the trees. 
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Figure 3.5: Phylogenetic Analysis of Culture UCD-1 Archaeal Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Sulfolobus 
solfaricus (X03235). 
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Figure 3.6: Phylogenetic Analysis of Culture TD-10%-1 Archaeal Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Sulfolobus 
solfaricus (X03235). 
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Figure 3.7: Phylogenetic Analysis of Culture CD-10%-1 Archaeal Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Sulfolobus 
solfaricus (X03235). 
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Figure 3.8: Phylogenetic Analysis of Culture C2a Archaeal Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Sulfolobus 
solfaricus (X03235). 
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3.3.1.2.1 Physiological Characters of the Orders of Methanogens Found 

Methanomicrobiales 

Organisms classified under the order Methanomicrobiales utilize H2 and formate 

as substrates (Garrity et al., 2001). The clones classified under the order 

Methanomicrobiales were related to methanogens Methanospirillum hungatei (M60880) 

and Methanolinea tarda (AB162774). Both these methanogens are classified under the 

family Methanomicrobiaceae and known to grow on H2 and/or formate as substrates 

(Madigan and Martinko, 2006; Ferry, 1993). The presence of these hydrogenotrophic 

methanogens may correspond to a lower effluent VFA concentration (propionate in 

particular) (Hori et al., 2006). 

Methanospirillum hungatei is a mesophilic methanogen (35-40oC optimum) 

(Yang et al., 1985; Ferry, 1993) and has a relatively short (0.7-day) doubling time (Ferry 

and Wolfe, 1977) whereas, Methanolinea tarda can grow between temperatures varying 

from 35 to 55oC -(50oC optimum) and has a 4-day doubling time at optimal conditions 

(Imachi et al., 2008). 

Methanosarcinales 

Organisms classified under the order Methanosarcinales from the clone libraries 

were also classified under the family Methanosataceae. Organisms classified under the 

family Methanosataceae are strict anaerobes and use acetate as the only energy source 

(Garrity et al., 2001). Also clones classified under family Methanosataceae were found to 
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be related to the organism Methanosaeta concilii (X51423) or Methanosaeta thermophila 

(CP000477). 

Methanosaeta concilii and Methanosaeta thermophila grow optimally at neutral 

pH. Methanosaeta concilii can grow at temperatures varying from 10 to 45oC (35-40oC 

optimum) and has a doubling time of 2.5 to 2.9-days under optimal growth conditions, 

whereas Methanosaeta thermophila grows at temperatures between 30 to 70oC (55-60oC 

optimum) and has a doubling time of 1 to 1.5-day under optimal growth conditions (Patel 

and Sprott, 1990; Garrity et al., 2001). 

 

3.3.1.2.2 Composition of Archaeal Clone Libraries 

Figure 3.9 shows the relative abundance of clones from the archaeal libraries. The 

first column of Figure 3.9 represents the order Methanomicrobiales and hence a portion 

of hydrogenotriphic population of the archaeal community, whereas the second column 

represents the order Methanosarcinales. All the clones classified under the order 

Methanosarcinales were also classified under family Methanosataceae which includes 

the aciticlastic population of the libraries. The third and fourth column in the Figure 3.9 

represent the population which could not be further classified based on similarity in 16S 

rRNA gene sequences by the RDP classifier (Wang et al., 2007; Cole et al., 2007). 

Figure 3.9 shows that both UCD-1 and TD-10%-1 had higher relative abundance 

of methanogens classified under the order Methanomicrobiales (≥85%). A higher relative 

abundance of organisms related to Methanomicrobiales may have led to better 
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metabolism of H2 and hence more complete degradation of propionate in the digesters 

UCD-1 and TD-10%-1 leading to better performance than digester CD-10%-1. Out of the 

total number of clones classified under the order Methanomicrobiales, 96, 100 and 92% 

of the clones from sample UDC-1, TD-10%-1 and CD-10-1 respectively were also 

classified under the family Methanomicrobiaceae and these clones were found to be 

related to Methanospirillum hungatei (≥95% similarity). It is important to note that 

among the culturable and strict hydrogenetrophic methanogens detected in these samples, 

Methanospirillum hungatei has the lowest doubling time which may be the reason behind 

the higher relative abundance of clones related to Methanospirillum hungatei in UDC-1, 

TD-10%-1 and CD-10-1. 

Archaeal clones from UCD-1, CD-10%-1 and C2a were found to be classified 

under the order Methanosarcinales (family Methanosataceae), members of which are 

known to metabolize acetate (Patel and Sprott, 1990; Fernandez et al., 2000). Since 

complete metabolism of propionate involves conversion of acetate to methane, finding 

organisms classified as Methanosarcinales (family Methanosaetaceae) in C2a was 

expected. It is known that acetate is a major intermediate in the anaerobic conversion of 

propionate to methane and during degradation of complex substrates, the majority of 

electron flow occurs through acetate (Speece, 2008). So the presence of 

Methanosarcinales or other acetate-utilizing methanogens was expected in all the 

libraries. Surprisingly, however, Methanosarcinales was not detected in TD-10%-1 and 

the rarefaction data show that the archaeal clone library for TD-10%-1 covered most of 

the novel OTUs. The archaeal clone group from TD-10%-1 classified under the phylum 

Euryarchaeota may contain acetate-utilizing methanogens that are not yet known. 
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It is important to note that 26.3% of the archaeal clones from C2a were closely 

related to Methanolinea tarda (AB162774) (sequence similarity > 98%) which shows 

optimum growth at 500C and has a 4-day doubling time (Imachi et al., 2008). Other 

researchers (Lynch et al., 1987) who tested recovery of organically overloaded anaerobic 

digesters using bioaugmentation with cultures acclimated to propionate (like C2a) used 

packed-bed filters. The packed-bed filter used had a 4 day HRT (Lynch et al., 1987) 

which may have led to washout of the slow-growing hydrogenotrophic methanogenic 

community members similar to Methanolinea tarda. Moreover, the failure of 

bioaugmentation was attributed to wash-out of the enrichment culture from the 

overloaded digesters. Also it was recommended that bioaugmentation may produce better 

recovery for CSTR digesters than for packed-bed filters (Lynch et al., 1987) (see details 

in Section 2.2). The study described herein presents a successful case of bioaugmentation 

using cultures acclimated to propionate. One reason for success may be because the 

CSTR digesters were operated at a 10-day SRT. The higher SRT may have allowed 

growth of slow-growing methanogens. Also adding the bioaugmentation culture on a 

daily basis may have helped recovery of the overloaded digesters. 
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Figure 3.9: Archaeal Diversity of Cultures UCD-1, TD-10%-1, CD-10%-1 and C2a. 
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3.3.1.2.3 Comparison of Archaeal Phylogenetic Trees 

It is important to note that OTUs with the highest archaeal relative abundance in 

all the digesters, represented by UCD-A-4, TD-10-A-2 and CD-10-A-8, shared ≥97% 

sequence similarity. Also these OTUs shared 95% sequence similarity with OTU 

represented by C2a-A-8 and 96% sequence similarity with OTU represented by C2a-A-

11. It was surprising to find low relative abundance of organisms related to 

Methanomicrobiales in culture C2a but the uncultured Euryarchaeota clones from C2a 

might have a significant proportion of H2- and formate-utilizing methanogens 

(hydrogenotrophs).  

Pair-wise comparison of phylogenetic tree structures of all the archaeal clone 

libraries was done using TreeClimber software (Schloss et al., 2006). TreeClimber uses 

the parsimony test for comparison of tree structures. TreeClimber randomly generates a 

specified number (in this case 1000) of sub-trees from the combined tree of two samples 

whose structures have to be compared. All the trees (including the initial combined tree) 

are given a parsimony score based on substitutions required. In the end, the ratio is 

calculated by dividing the number of sub-trees that had a better parsimony score than the 

initial combined tree by the number of sub-trees made (1000). This ratio represents the 

probability of the two tree structures being similar.  

The probabilities obtained for pair-wise comparisons are presented in Table 3.5. 

Lower scores indicate that the tree structures being compared are relatively different. 

Samples having similar archaeal tree structure for a 1% level of significance are 

represented by gray colored cells in Table 3.5. The archaeal tree of culture C2a had a 
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very unique structure among the archaeal trees (p=0.001). Also CD-10%-1 and TD-10%-

1 had very different tree structures (p=0.001) which means there was a significant 

difference between the archaeal communities of CD-10%-1 and TD-10%-1 after 6 SRTs. 

Interestingly TD-10%-1 and UCD-1 had very similar tree structures (p=0.55) and the tree 

structure of UCD-1 and CD-10%-1 had significant differences (p=0.007). It is important 

to note that both UCD-1 and TD-10%-1 had significantly lower effluent SCOD 

concentrations than CD-10%-1 (see Section 2.3). 

This means, that although C2a had a very different archaeal tree structure than all 

the other samples, addition of C2a to TD-10%-1 restored its archaeal community to its 

undisturbed state (similar to UCD-1) resulting in more rapid recovery of TD-10%-1 

following the shock organic overload. 

 

Table 3.5: Pair-Wise Comparison of Archaeal Tree Structures 

  UCD-1 TD-10%-1 CD-10%-1 C2a 

UCD-1 - 

   TD-10%-1 0.556 -  

  CD-10%-1 0.007 0.001 -  

 C2a 0.001 0.001 0.001 - 

 

Principle coordinate analysis (PCoA) was performed using online UniFrac 

software (Lozupone et. al, 2006), using lineages of the phylogenetic trees. Figure 3.10 a) 
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shows the graph of first two principle components obtained from UniFrac tool which 

account for 81.01% of the total variation in the data. Grouping of the archaeal clone 

libraries in Figure 3.10 a) followed the results obtained for the grouping by the parsimony 

test. In Figure 3.10 a), UDC-1 and TD-10%-1 were found to be closer than UDC-1 and 

CD-10%-1 which indicates that there were more similarities between the tree structures 

of UDC-1 and TD-10%-1 than UDC-1 and CD-10%-1. Also the enrichment culture C2a 

is represented by a point that is far from all the other points indicating that culture C2a 

possessed a unique archaeal tree structure among all the archaeal clone libraries. 

Figure 3.10 b) shows the plot of the first two principle components of the PCA 

performed using distribution of clones among the archaeal clone libraries using 

MATLAB(v.7.6(R2008a)) software package. Again grouping of the archaeal clone 

libraries in Figure 3.10 b) followed the results obtained for the grouping by the 

parsimony test. In figure 3.10 b), UDC-1 and TD-10%-1 were found to be closer than 

UDC-1 and CD-10%-1 which indicates that there were more similarities between the tree 

structures of UDC-1 and TD-10%-1 than UDC-1 and CD-10%-1. Also the enrichment 

culture C2a is represented by a point that was far from all the other points indicating that 

culture C2a possessed a unique archaeal tree structure among all the archaeal clone 

libraries. 

Projection of the dimensions indicated that organisms related to Methanospirillum 

hungatei had the highest relative abundance in UDC-1 and TD-10%-1, whereas 

organisms related to Methanolinea tarda had more significant relative abundance in 

UDC-1 and CD-10%-1. As explained previously, both these organisms are 
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hydrogenotrophic methanogens, but Methanolinea tarda has an optimum temperature of 

500C and at the optimum growth temperature, it takes about 4 days to double its 

population (Imachi et al., 2008), whereas Methanospirillum hungatei is a mesophilic 

methanogen (35-40oC optimum) (Yang et al., 1985; Ferry, 1993) and has a 0.7-day 

doubling time (Ferry and Wolfe, 1977). Since the digesters were operated at 35±30C, the 

higher relative abundance of organisms related to Methanospirillum hungatei may have 

resulted in better operation of UCD and TD-10% digesters by more rapid metabolism of 

hydrogen.
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(a) (b) 

Figure 3.10: Graph of First Two Principle Components for Archaeal Communities (a) PCoA Performed on Tree Lineages 
Using UniFrac (Lozupone et. al, 2006) (b) PCA Performed on Distribution of Clones in the Clone Libraries Using 
MATLAB(v.7.6(R2008a)). 
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3.3.2   Bacteria 

3.3.2.1   Bacterial Diversity, Richness and Functional Organization 

Like archaeal clone libraries, bacterial clones were sequenced after PCR cleanup 

was performed. The obtained sequence data were submitted for chimera detection as 

mentioned in the methods section. The chimera sequences were detected and 

subsequently removed from the dataset. Following the chimera check, the data were 

further submitted to the RDP seqmatch query (Cole et al., 2007). Table 3.6 shows the 

actual number of good sequences obtained for each bacterial clone library. 

Table 3.6: Number of Good Bacterial Sequences Obtained 

DNA 

Sample 

Number of Clones 

Sequenced 

Number of Good Sequences Obtained, 

Classified Under Domain Bacteria 

UCD-1 96 85 

TD-10%-1 96 88 

CD-10%-1 96 86 

C2a 96 87 

 

Figure 3.11 shows the rarefaction curves for the bacterial clone libraries. It is 

evident from the trends of the curves that none of the clone libraries reached complete 

coverage. Also the SCHAO1, SACE and Good’s C indices given in Table 3.7 indicate that all 

the bacterial clone libraries represented less than 55% of the respective bacterial 

community in the samples. 
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Figure 3.11: Rarefaction Curves for the Bacterial Clone Libraries 

 

Table 3.8 shows the Shannon-Weaver and Simpson’s diversity indices obtained 

for the bacterial clone libraries. Among the samples tested, enrichment culture (C2a) used 

for bioaugmentation had the highest bacterial diversity and, CD-10%-1 had the lowest 

bacterial diversity. The diversity indices indicated that UCD-1 and TD-10%-1 had similar 

bacterial diversity distributed across the OTUs. 
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Table 3.7: SCHAO1, SACE and Good’s C Estimates for Bacterial Clone Libraries 

 Observed 

Number of 

OTUs 

SCHAO1 SACE Good's C 

Predicted 

Number of 

OTUs* 

Predicted 

Number of 

OTUs* 

UCD-1 21 43 (27-108) 41 (27-89) 0.43 

TD-10%-1 25 35 (28-61) 38 (34-43) 0.48 

CD-10%-1 17 35 (21-92) 50 (26-141) 0.35 

C2a 47 87 (63-146) 104 (71-180) 0.36 

*values in the parenthesis indicate 95% confidence interval  

 

Table 3.8: Shannon-Weaver and Simpson’s Indices for Bacterial Clone Libraries 

 

Shannon-Weaver Index Simpson's Index 

UCD-1 2.16 0.22 

TD-10%-1 2.24 0.23 

CD-10%-1 1.62 0.37 

C2a 3.54 0.03 
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Figure 3.12 shows P-L evenness curves of the bacterial clone libraries. The P-L 

curves obtained for C2a, UCD-1 and TD-10%-1 were found to be in the medium fo range, 

whereas the P-L curve for CD-10%-1 had a higher fo value. This means that the 

enrichment culture (C2a) had a relatively more even distribution of clones among OTUs 

(fo = 0.48) and, on the other hand, the P-L curve for sample CD-10%-1 showed the most 

uneven distribution of clones among OTUs (fo = 0.82). Interestingly, both UCD-1 and 

TD-10%-1 had similar fo values (0.70 and 0.68 respectively). 

 

 

Figure 3.12: Pareto-Lorenz Evenness Curves of Bacterial Clone Libraries 
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3.3.2.2   Bacterial Phylogenetics 

Neighbor joining, maximum parsimony and maximum likelihood algorithms were 

used to construct phylogenetic trees. Figures 3.13 through 3.16 show phylogenetic trees 

for the bacterial clone libraries constructed using the neighbor joining algorithm. Since 

the bacterial phylogenetic tree of culture C2a had the highest diversity, it was broken up 

into three sections as shown in Figures 3.16-A, B and C. Due to the amount of data 

involved in the process and limitations on the computational memory, the bootstrapped 

maximum parsimony tree for culture C2a could not be created. The clades were found to 

be clustered similarly irrespective of the clustering algorithm employed. 
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Figure 3.13: Phylogenetic Analysis of Culture UCD-1 Bacterial Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). Numbers at 
the node represent bootstrap values. The scale bar represents the number of nucleotide changes 
per sequence position. The tree was rooted to the organism Aquifex pyrophilus (M83548). 
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Figure 3.14: Phylogenetic Analysis of Culture TD-10%-1 Bacterial Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). Numbers at 
the node represent bootstrap values. The scale bar represents the number of nucleotide changes 
per sequence position. The tree was rooted to the organism Aquifex pyrophilus (M83548). 
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Figure 3.15: Phylogenetic Analysis of Culture CD-10%-1 Bacterial Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). Numbers at 
the node represent bootstrap values. The scale bar represents the number of nucleotide changes 
per sequence position. The tree was rooted to the organism Aquifex pyrophilus (M83548). 
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Figure 3.16-A: Phylogenetic Analysis of Culture C2a Bacterial Clone Library.  
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). Numbers at the node represent bootstrap values. 
The scale bar represents the number of nucleotide changes per sequence position. The tree was rooted to the organism Aquifex 
pyrophilus (M83548). 
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Figure 3.16-B: Phylogenetic Analysis of Culture C2a Bacterial Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Aquifex 
pyrophilus (M83548). 
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Figure 3.16-C: Phylogenetic Analysis of Culture C2a Bacterial Clone Library. 
Calculations were based on neighbor-joining algorithm (bootstrap number = 100). 
Numbers at the node represent bootstrap values. The scale bar represents the number of 
nucleotide changes per sequence position. The tree was rooted to the organism Aquifex 
pyrophilus (M83548). 
 

3.3.2.2.1 Physiological Characters of the Phyla Found 

Like the other studies of bacterial clone libraries of anaerobic digesters, the phyla 

Bacteroidetes, Firmicutes and Proteobacteria were predominant in the clone libraries 

(Tang et al., 2004; Riviere et al., 2009; Godon et al., 1997; Wilms, et.al, 2006). The 
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following section gives the classification of the major microbial phyla found in the clone 

libraries. 

Bacteroidetes 

 The phylum Bacteroidetes has three distinct lineages that have been accorded the 

rank of class: Bacteroidetes, Flavobacteria, and Sphingobacteria; each class contains one 

order. In all the bacterial clone libraries presented in the current study, only the class 

Bacteroidetes was found.  The phylum Bacteroidetes is phenotypically diverse and 

overlaps significantly with members of other phyla because of the 16S rRNA gene 

similarity. Members of the phylum Bacteroidetes carry out diverse metabolic functions 

and a few anaerobic species are capable of fermenting sugars or proteins (Madigan and 

Martinko, 2006). “Member species can be ascribed to the following broad phenotypic 

categories: Gram-negative aerobic/microaerophilic rods; anaerobic Gram-negative rods; 

nonphotosynthetic, nonfruiting, gliding bacteria; bacterial symbionts of invertebrate 

species; sheathed bacteria; nonmotile or rarely motile, curved, Gram-negative bacteria.” 

(Garrity et al., 2005). In libraries UCD-1, TD-10%-1 and CD-10%-1, microbes related to 

the genera Rikenella were found to be present. Interestingly, although Rikenella 

microfuscus is currently classified under the phylum Bacteroidetes, it is considered as an 

outlier in current phylogenetic classification (Garrity et al., 2005). 

Firmicutes 

 Taxonomic outlines of the phylum Firmicutes have been revised recently due to 

the increase in taxonomic data (Ludwig et al., 2009; Euzeby, 2010). The phylum 

Firmicutes contains three classes, Bacilli, Clostridia and Erysipelotrichi out of which 
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only the class Clostridia was found in all the bacterial clone libraries. It is important to 

note that some Clostridium species are capable of carrying out anoxic digestion of 

cellulosic material (Madigan and Martinko, 2006) and amino acids (Tang et al., 2005). 

“Phenotypic groups of the Firmicutes include thermophilic and hyperthermophilic 

bacteria; anaerobic straight, curved, and helical Gram-negative rods; anoxygenic 

phototrophic bacteria; nonphotosynthetic, nonfruiting, gliding bacteria; aerobic, 

nonphototrophic, chemolithotrophic bacteria; sulfite- reducing bacteria; symbiotic and 

parasitic bacteria of vertebrate and invertebrate species; anaerobic Gram-negative cocci; 

Gram-positive cocci; endospore-forming Gram-positive rods and cocci; regular, 

nonsporulating Gram-positive rods; irregular, nonsporulating Gram-positive rods; 

mycoplasmas; and thermoactinomyces.” (Garrity et al., 2005). 

 

Proteobacteria 

 Proteobacteria is the largest phylum of bacteria known. Many species of this 

phylum are phototrophic or chemolithotrophic (Madigan and Martinko, 2006). 

The phylum Proteobacteria has classes Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Deltaproteobacteria and Epsilonproteobacteria (Garrity et al., 

2005) out of which, only Alphaproteobacteria and Deltaproteobacteria were found in the 

clone libraries. The microbes found in the class Alphaproteobacteria were related to the 

genus Devosia which mainly contains soil bacteria. Members of the genus Devosia are 

reportedly aerobic and have oxidase and catalase enzymes (Garrity et al., 2005). 

The Deltaproteobacteria found in C2a were classified under the genus Syntrophus 

and Syntrophobacter and one clade was classified under the order Desulfuromonales (see 
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Figure 3.16-B). “The class Deltaproteobacta comprises morphologically diverse, Gram-

negative, nonsporeforming bacteria that exhibit either anaerobic or aerobic growth. Most 

anaerobic members can use inorganic electron acceptors that allow energy conservation 

by anaerobic respiration. Utilization of inorganic electron acceptors is an important 

physiological and taxonomic characteristic. However, in a number of isolates the 

reduction of some electron acceptors (e.g., sulfur, ferric iron) may not be associated with 

growth (as in the case of oxygen reduction). Some anaerobic members are fermentative 

and/or exhibit syntrophic growth by proton reduction and interspecies hydrogen transfer. 

One important feature of the aerobic representatives is the ability to digest other bacteria” 

(Garrity et al., 2005).  

Members of the genus Syntrophus are strictly anaerobic and chemoorganotrophic. 

They possess a fermentative type of metabolism and can ferment crotonate. They can also 

oxidize substrates, such as benzoate or fatty acids in the presence of H2 or formate-

utilizing methanogenic or sulfate reducing partner bacteria (Garrity et al., 2005). 

Members of the genus Syntrophobacter are strictly anaerobic chemoorganotrophs. 

Their growth occurs at neutral pH (6.2-8.0) in low salinity media at mesophilic 

temperatures by syntrophic metabolism and sulfate reduction. They oxidize propionate to 

acetate and CO2 in the presence of either a H2/formate-using organism (a methanogen or 

a sulfate reducer) or sulfate as the electron acceptor. Moreover, they cannot oxidize 

acetate and other fatty acids. Some Syntrophobacter species can grow fermentatively 

with pyruvate, malate, or fumarate. They can also use lactate and propanol as electron 

donors for syntrophic metabolism or sulfate reduction. Syntrophobacter species cannot 

use other common bacterial substrates such as sugars and aromatic compounds. 
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Syntrophobacter species can use sulfite or thiosulfate as an electron acceptor and they are 

known to be found in the sludge from anaerobic waste treatment facilities (Garrity et al., 

2005). 

The order Desulfuromonales contains the families Desulfuromonaceae and 

Geobacteraceae having rod-shaped cells. They are strictly anaerobic 

chemolithoheterotphs or chemoorganotrophs with respiratory or fermentative 

metabolism. All the members of the order Desulfuromonales are moderate mesophiles 

with temperature optima for growth around 30oC. Members of order Desulfuromonales 

have been isolated from anoxic freshwater and marine environments (Garrity et al., 

2005). 

 

Chloroflexi 

 Chloroflexi are Gram-negative bacteria with non-motile and filamentous cells. 

Members of the genus Caldilineacea of phylum Chloroflexi were found to have grown 

under both aerobic and anaerobic conditions and were isolated from a UASB reactor 

operating under thermophilic conditions (Sekiguchi et al., 1998). 

 

Spirochaetes 

The phylum Spirochaetes is uniform in morphology and all of the validly named 

species are gram-negative, helically shaped, highly flexible cells motile by periplasmic 

flagella. They have chemoorganotrophic metabolism and their growth is observed under 

anaerobic, microaerophilic, facultatively anaerobic, or aerobic conditions. The organisms 
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are free-living or associated with host animals (arthropods, mollusks, and mammals, 

including humans) (Garrity et al., 2005). 

 

TM7 

 Members of candidate phylum TM7 can be PCR amplified by using universal 27F 

and 1492R bacterial primers (Luo et al., 2009). Members of the candidate phylum TM7 

have been referred to as biology’s “dark matter” problem (Luo et al.,2009; Marcy et al., 

2007), being a focus of study because although they have been identified (via clone 

sequences) in a wide variety of habitats, researchers have yet to obtain a stable culture of 

any isolate (Luo et al., 2009). 

 

3.3.2.2.2 Composition of the Bacterial Clone Libraries 

 Figure 3.17 shows the relative proportion of clones from the bacterial clone 

libraries. Each column in Figure 3.17 represents a phylum identified in the bacterial clone 

libraries. The phylum Bacteroidetes was the most abundantly-found phylum in the clone 

libraries of all the digesters (i.e. in UCD-1, TD-10%-1 and CD-10%-1) and it represented 

more than half of the community from all three digesters, whereas it was the second most 

abundantly-found phylum in the enrichment culture (C2a). Since the phylum 

Bacteroidetes carries out diverse metabolic functions and is capable of fermenting sugars 

and proteins under anaerobic conditions (Madigan and Martinko, 2006), its presence was 

not unexpected in the bacterial clone libraries of these digester fed non-fat-dry milk. The 

presence of the phylum Bacteroidetes in C2a may be because of endogenous decay of the 
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existing microbial community. The Bacteroidetes found in C2a could be degrading the 

cellular and extracellular materials released by other microbes existing in C2a. 

 Figure 3.17 shows that the phylum Firmicutes was the second most abundantly-

found phylum in all the digesters. Moreover, it was the third most abundantly-found 

phylum in culture C2a. Interestingly UCD-1 and TD-10%-1 had a relatively high 

proportion of Firmicutes. In all the clone libraries, organisms related to the class 

Clostridia were found. Since anoxic members of class Clostridia are capable of digesting 

cellulosic materials and amino acids, their presence in the clone libraries was not 

surprising. Moreover, it is important to note that some members of this class are capable 

of reducing sulfate or sulfite or having syntrophic relations in anaerobic environments 

(Garrity, 2005). Like Bacteroidetes, organisms related to the class Clostridia found in 

C2a may be present because of endogenous decay of other microbes. 

 The phylum Proteobacteria includes the organisms that share syntrophic 

relationships with hydrogenotropic methanogens. As expected, Proteobacteria was the 

most abundantly-found phylum in the bacterial clone library of culture C2a (39%), 

probably because degradation of propionate requires syntrophs (see Section 1.1). 

Moreover, about 30% of the Proteobacteria community from C2a was related to the 

order Syntrophobacterales. The phylum Proteobacteria was also detected in bacterial 

clone libraries from UCD-1 and TD-10%-1, whereas it was not detected in CD-10%-1. 

This finding has particular importance because UCD-1 and TD-10%-1 showed better 

performance in terms of lower effluent SCOD concentrations as compared to CD-10%-1. 

The presence of the phylum Proteobacteria in UCD-1 and TD-10%-1 may be an 
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indicator of more efficient syntrophic relationships existing among the microbial 

communities of these digesters leading to better metabolism of propionate, although this 

assumption needs to be proven by further experimentation.  

 A clone belonging to the genus Caldilineacea of the phylum Chloroflexi was 

detected in culture C2a and a clone belonging to the order Spirochaetales of the phylum 

Spirochaetes was detected in digester CD-10%-1. Members of both these phyla are 

known to survive under anaerobic conditions (Sekiguchi et al., 1998; Garrity et al., 2005) 

so their presence in the clone library was not surprising. 

 Figure 3.17 shows that 3% of the bacterial clones from culture C2a were related 

to phylum TM7 whose function is yet unknown (Luo et al., 2009). These members of the 

community may be key to some important metabolic functions which are not known.  
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Figure 3.17: Bacterial Diversity of Cultures UCD-1, TD-10%-1, CD-10%-1 and C2a. 
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3.3.2.2.3 Comparison of Bacterial Phylogenetic Trees 

Like archaeal phylogenetic trees, pair-wise comparisons of the bacterial 

phylogenetic tree structures were performed using TreeClimber (Schloss et al., 2006). 

Probabilities obtained for the pair-wise comparisons are presented in Table 3.9. Samples 

having similar archaeal tree structure for 1% level of significance are represented by gray 

colored cells in Table 3.9. Table 3.9 shows that the bacterial tree of C2a had a very 

unique structure among all the bacterial trees (p=0.001). Also CD-10%-1 and TD-10%-1 

had relatively different tree structures (p=0.008) which means there was a significant 

difference between the bacterial communities of CD-10%-1 and TD-10%-1 after 6 SRTs. 

Interestingly TD-10%-1 and UCD-1 had relatively similar tree structures represented by 

the highest probability in the table (p=0.297) and the tree structure of UCD-1 and CD-

10%-1 had significant differences (p=0.002). It is important to note that both UCD-1 and 

TD-10%-1 had significantly lower effluent SCOD concentration than CD-10%-1 (see 

Section 2.3). In conclusion, although C2a had a very different bacterial tree structure than 

all the other samples, addition of C2a to TD-10%-1 restored its bacterial community to its 

undisturbed state (similar to UCD-1) resulting in quicker recovery of TD-10%-1 

following the shock organic overload. 
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Table 3.9: Pair-Wise Comparison of Bacterial Tree Structures 

  UCD-1 TD-10%-1 CD-10%-1 C2a 

UCD-1 - 

   TD-10%-1 0.297 -  

  CD-10%-1 0.002 0.008 -  

 C2a 0.001 0.001 0.001 - 

 

PCoA was performed using online UniFrac software (Lozupone et. al, 2006). 

Phylogenetic lineage lengths were used to calculate the distance matrix. The first two 

principle components accounted for about 80% of the total variation in the data.  

The grouping of the bacterial clone libraries in Figure 3.18 a) were similar to the 

results obtained by the parsimony test. In Figure 3.18, a) UDC-1 and TD-10%-1 were 

found to be closer than UDC-1 and CD-10%-1 which indicates that there was more 

similarity between the tree structures of UDC-1 and TD-10%-1 than UDC-1 and CD-

10%-1. Also the enrichment culture C2a was represented by a point that was far from all 

the other points, indicating that culture C2a possessed a unique bacterial tree structure as 

compared to the other bacterial clone libraries. 
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(a) (b) 

Figure 3.18: Graph of First Two Principle Components for Bacterial Communities (a) PCoA Performed on Tree Lineages 
Using UniFrac (Lozupone et. al, 2006) (b) PCA Performed on Distribution of Clones In The Clone Libraries Using 
MATLAB(v.7.6(R2008a)). 
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 PCA was performed on the bacterial clone libraries as described in the methods 

section (see section 3.2.1.7). Figure 3.18 b) shows the plot of the first two principle 

components of the PCA performed using the MATLAB(v.7.6(R2008a)) software 

package. The first two principle components for PCA analysis of bacterial clone libraries 

explained about 84% of the total variation among the data. As expected, grouping of the 

bacterial clone libraries in Figure 3.10 b) was similar to those obtained by the parsimony 

test (Schloss et al., 2006) and the UniFrac method (Lozupone et. al, 2006). In Figure 3.10 

b), UCD-1 and TD-10%-1 clustered together and CD-10%-1 was significantly far from 

the cluster formed by UCD-1 and TD-10%-1. Also enrichment culture C2a was 

represented by a point that was far from all the other points indicating that culture C2a 

possessed a unique bacterial tree structure as compared to all the bacterial clone libraries. 

 Projection of the six significant dimensions indicated that organisms related to the 

order Desulfomononales had the highest abundance in C2a. As explained above, the order 

Desulfuromonales contains strict anaerobic chemolithoheterotphs or chemoorganotrophs 

with respiratory or fermentative metabolism. All the members of the order 

Desulfuromonales are moderate mesophiles with temperature optima for growth around 

30oC. Members of the order Desulfuromonales have been isolated from anoxic freshwater 

and marine environments (Garrity et al., 2005). All the other significant vectors 

represented microbes classified under the phylum Bacteroidetes and differences in the 

clones related to the phylum Bacteroidetes resulted in the grouping pattern on the PCA 

plot. Organisms related to the genera Rikenella were found to be abundant in UCD-1 and 

TD-10%-1. As explained previously, this organism is not accurately classified in the 
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current phylogenetic classification (Garrity et al., 2005). Also it is important to know that 

the results obtained for the bacterial clone libraries may be biased due to the low 

coverage obtained (see Table 3.7). 

3.4 Conclusions 

 Archaeal and bacterial communities from undisturbed control (UCD-1), 

bioaugmented (TD-10%-1), non-bioaugmented digesters (CD-10%-1) and the 

bioaugmentation culture (C2a) were analyzed using a clone library approach. DNA 

samples were extracted when there were significant effluent SCOD differences between 

TD-10%-1 and CD-10%-1. 

Rarefaction curves and the richness indices indicated that archaeal clone libraries 

for the bioaugmented (TD-10%-1) and undisturbed control (UCD-1) digesters attained 

complete coverage, whereas the clone libraries for non-bioaugmented digester (CD-10%-

1) and bioaugmentation culture (C2a) attained only 91 and 87% coverage according to 

Good’s C estimate. Also both Shannon-Weaver and Simpson’s indices showed that TD-

10%-1 and UDC-1 had less diverse archaeal communities than archaeal communities 

from CD-10%-1 and C2a. This indicates that better functioning of anaerobic digesters 

digesting milk waste may require less diverse but dedicated archaeal communities. 

Functional organization (fo) of the archaeal communities indicated that C2a and TD-

10%-1 had relatively more uniform communities than CD-10%-1 and C2a. 

Archaeal phylogenetic trees indicated that both UCD-1 and TD-10%-1 had higher 

relative abundance of methanogens classified under the order Methanomicrobiales 
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(≥85%) which may have led to better metabolism of H2 and, hence, more complete 

degradation of propionate in digesters UCD-1 and TD-10%-1 leading to better 

performance than digester CD-10%-1. Out of the total number of clones classified under 

the order Methanomicrobiales, 96, 100 and 92% clones from sample UDC-1, TD-10%-1 

and CD-10-1 respectively were also classified under the family Methanomicrobiaceae 

and these clones were found to be related to Methanospirillum hungatei (≥95% 

similarity). Archaeal clones from UCD-1, CD-10%-1 and C2a were found to be classified 

under the order Methanosarcinales (family Methanosataceae). Since complete 

metabolism of propionate involves conversion of acetate to methane, finding organisms 

classified as Methanosarcinales (family Methanosaetaceae) in C2a was expected. 

Importantly, 26.3% of the archaeal clones from C2a were closely related to 

Methanolinea tarda (AB162774) which shows optimum growth at 500C and has a 4-day 

doubling time (Imachi et al., 2008). Other researchers (Lynch et al., 1987) who tested 

recovery of organically overloaded anaerobic digesters using bioaugmentation with 

cultures acclimated to propionate (like C2a) used packed-bed filters with a 4 day HRT. 

This may have led to washout of the slow-growing hydrogenotrophic methanogenic 

community members similar to Methanolinea tarda. The failure of bioaugmentation was 

attributed to wash-out of the enrichment culture from the overloaded digesters and it was 

recommended that bioaugmentation may show better recovery for CSTR digesters than 

for packed-bed filters (Lynch et al., 1987). The reason behind successful bioaugmentation 

presented herein may be the use of CSTR digesters operated at a longer (10-day) SRT 

which may have allowed growth of slow-growing methanogens. Also adding the 
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bioaugmentation culture on a daily basis have helped recovery of the overloaded 

digesters. 

Pair-wise comparison of the tree structures of the archaeal clone libraries was 

done by parsimony test using TreeClimber software (Schloss et al., 2006). It was found 

that only UDC-1 and TD-10%-1 had similar archaeal phylogenetic tree structures 

(p=0.556). Surprisingly C2a had a very different community structure than TD-10%-1 

(p=0.001). Also there was a very low similarity between the tree structure of TD-10%-1 

and CD-10%-1 (p=0.001). These results were confirmed by PCoA performed on the tree 

lineages and PCA performed on the clone distribution data. Projection of the impact of 

each OTU on principle components indicated that organisms related to Methanospirillum 

hungatei had the highest relative abundance in UDC-1 and TD-10%-1, whereas 

organisms related to Methanolinea tarda had significant relative abundance in UDC-1 

and CD-10%-1. Among these two organisms, Methanolinea tarda has an optimum 

temperature of 500C and at its optimum growth temperature it takes about 4 days to 

double its population (Imachi et al., 2008), whereas Methanospirillum hungatei is a 

mesophilic methanogen (35-40oC optimum) (Yang et al., 1985; Ferry, 1993) and has a 

0.7-day doubling time (Ferry and Wolfe, 1977). Since the digesters were operated at 

35±30C, the higher relative abundance of organisms related to Methanospirillum hungatei 

may have resulted in better performance of UCD and TD-10% digesters by more rapid 

metabolism of hydrogen. 

Bacterial clone libraries of all the samples were more diverse than their archaeal 

clone libraries. Good’s C estimate indicated that only 35 to 48% coverage was achieved 
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in the current study. Among the samples tested, C2a had the highest bacterial diversity, 

whereas CD-10%-1 had the lowest bacterial diversity. Both UCD-1 and TD-10%-1 had 

similar bacterial diversities. 

The phylum Proteobacteria includes the organisms that share syntrophic 

relationships with hydrogenotropic methanogens, and they were abundantly found in 

culture C2a (39% of the total community). Moreover, about 30% of the Proteobacteria 

community from C2a was related to the order Syntrophobacterales. The phylum 

Proteobacteria was also detected in bacterial clone libraries from UCD-1 and TD-10%-1, 

whereas it was not detected in CD-10%-1. The detection of the phylum Proteobacteria in 

UCD-1 and TD-10%-1 may be an indicator of efficient syntrophic relationships existing 

among the microbial communities of these digesters leading to better metabolism of 

propionate. 

The phylum Bacteroidetes was the most abundantly found phylum in the clone 

libraries of all the digesters (i.e. in UCD-1, TD-10%-1 and CD-10%-1) and it represented 

more than half of the community from all the three digesters, whereas it was the second 

most abundantly found phylum in the enrichment culture (C2a). Since the phylum 

Bacteroidetes carry out diverse metabolic functions and its members are capable of 

fermenting sugars and proteins under anaerobic conditions (Madigan and Martinko, 

2006), its presence was not unexpected in the bacterial clone libraries of all the milk-fed 

digesters. The presence of the phylum Bacteroidetes in C2a may be because of 

endogenous decay of the existing microbial community. 
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 The phylum Firmicutes was the second most abundantly-found phylum in all the 

digesters. Moreover, it was the third most abundantly-found phylum in culture C2a. 

Interestingly UCD-1 and TD-10%-1 had a higher proportion of Firmicutes. In all the 

clone libraries, organisms related to the class Clostridia were found. Since anoxic 

members of class Clostridia are capable of digesting amino acids, their presence in the 

clone libraries was less surprising. Like Bacteroidetes, organisms related to the class 

Clostridia found in C2a may be present because of the endogenous decay of the existing 

microbial community. 

 Results of pair-wise comparison of the phylogenetic trees indicated that, similar to 

the archaeal clone libraries, only UCD-1 and TD-10%-1 shared a similar tree structure 

(p=0.297), whereas tree structures for TD-10%-1 and CD-10%-1 had significant 

differences (p=0.008). Also the bacterial tree structure of C2a was unique among the 

clone libraries (p=0.001). These results were also confirmed by PCoA analysis. 

In conclusion, community analysis of the clone libraries indicated that the 

undisturbed control digester and the bioaugmented digester exhibited similar microbial 

community. In contrast, the non-bioaugmented digester had a very different archaeal and 

bacterial communities than the undisturbed control and bioaugmented digester. Also, the 

enrichment culture used for bioaugmentation exhibited a very different community 

structure than the other cultures. This indicated that addition of the enrichment culture 

restored the microbial communities to their undisturbed states resulting in better 

performance of the bioaugmented digesters. Comparison of the archaeal communities 

indicated that a higher abundance of microorganisms related to Methanospirillum 
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hungatei resulted in similarities in the phylogenetic tree structures of the undisturbed 

control and bioaugmented digesters. Since Methanospirillum hungatei is a fast-growing 

hydrogenotrophic methanogen, its presence may have resulted in better functioning of the 

undisturbed control and bioaugmented digesters by causing higher degradation rates of 

substrates such as H2 and propionate. 
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Table A.1: Parameters Used for Bands Detection 

Minimum band height 0.050 

Dark bands and bright background √ 

Rows of equal molecular weight √ 

Allowed error (%) ±5 

Maximum OD level for the image √ 

Number of largest bands retained 10 

Center peak √ 
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Table A.2: The Probability Associated With The Student’s t Test For Pair-Wise Comparisons of SMA Means 
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Brewery-2 0.0001 1.0000 
            

Municipal 
WWTP-1 

0.0006 0.0062 1.0000 
           

Brewery-3 0.0003 0.0035 0.7938 1.0000 
          

Food Industry-1 0.0001 0.0152 0.6565 0.7163 1.0000 
         

Food Industry-2 0.0000 0.0007 0.0451 0.0431 0.2596 1.0000 
        

Food Industry-3 0.0084 0.1077 0.4801 0.4959 0.5817 0.9332 1.0000 
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Dairy-1 0.0000 0.0002 0.0016 0.0008 0.0252 0.0080 0.3667 0.8608 1.0000 
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Table A.3: Interpretation of Results of The Student’s t Test 
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Brewery-1 True                           

Brewery-2 False True                         

Municipal WWTP-1 False False True                       

Brewery-3 False False True True                     

Food Industry-1 False False True True True                   

Food Industry-2 False False True True True True                 

Food Industry-3 False True True True True True True               

Sugar Industry-1 False False False False True True True True             

Dairy-1 False False False False False False True True True           

Municipal WWTP-2 False False False False True True True True True True         

Food Industry-4 False False False False False False True True True True True       

Soft Drink Bottling False False False False False False True True False True True True     

Municipal WWTP-3 False False False False False False False False False False False False True   

Municipal WWTP-4 False False False False False False False False False False False False True - 

* True – Null hypothesis valid for 5% significance level (i.e. population means are statistically equal) 
** False – Null hypothesis is invalid  for 5% significance level (i.e. population means are statistically not equal) 
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Table A.4: Rank Correlation Coefficient Between Initial and Enriched SMA 

 
SMA Data Densitometric Data 

di  (di)2 ρ 
 

SMA, 

mLCH4/gVSS-

hr 

Rank(a) 

Distance 

from 

Brewery-1 

Rank 

(b) 

Brewery-1 10.65 1 0.00 1 0 0 

0.015 

Brewery-2 5.80 2 0.79 7 -5 25 

Municipal WWTP-1 4.38 3 0.64 3 0 0 

Brewery-3 4.35 4 0.95 13 -9 81 

Food Industry-1 4.23 5 0.87 8 -3 9 

Food Industry-2 3.79 6 0.91 11 -5 25 

Food Industry-3 3.72 7 0.98 14 -7 49 

Sugar Industry-1 2.89 8 0.72 5 3 9 

Dairy-1 2.83 9 0.90 9 0 0 

Municipal WWTP-2 2.38 10 0.91 10 0 0 

Food Industry-4 2.29 11 0.92 12 -1 1 

Soft Drink Bottling 2.08 12 0.67 4 8 64 

Municipal WWTP-3 0.14 13 0.64 2 11 121 

Municipal WWTP-4 0.00 14 0.75 6 8. 64 

 

Spearman’s Rank Correlation Coefficient (ρ) 

Where, 

 di = Rank(a) – Rank(b) 

 n= Number of samples 
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