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ABSTRACT 

THEORETICAL ANALYSIS OF TORSIONALLY VIBRATING 

MICROCANTILEVERS FOR CHEMICAL SENSOR 

APPLICATIONS IN VISCOUS LIQUIDS 

 

 

Tao Cai, B.E., M.E. 

 

Marquette University, 2013 

 

 

Dynamically driven microcantilevers excited in the transverse (or out-of-plane) 

direction are widely used as highly sensitive chemical sensing platforms in various 

applications. While these devices work very well in air, their performance in liquids is 

not efficient because of the combination of increased viscous damping and effective fluid 

mass. In order to improve the characteristics of microcantilevers in liquid environments, 

some other vibration modes such as the torsional mode and lateral (or in-plane) flexural 

mode have been proposed. 

 

In this work, the characteristics of torsionally vibrating rectangular 

microcantilevers with length L, width b and thickness h in viscous liquids are investigated 

taking into account the thickness effects. Finite element models are used to obtain the 

hydrodynamic loading (torque per unit length) and thus calculate values of the 

hydrodynamic function. An analytical expression of the hydrodynamic function in terms 

of the Reynolds number and aspect ratio, h/b, is then obtained by fitting the numerical 

results. This allows for the characteristics to be investigated as a function of both beam 

geometry and fluid properties, considering thickness effects on the torsional constant, the 

hydrodynamic function and the polar moment of area. For high aspect ratios, (h/b>0.16) 

microcantilevers vibrating in the 1
st
 torsional mode, ignoring thickness effects could 

result in a minimum error of 9%, 5%, 20%, 7% for the resonance frequency, quality 

factor, mass sensitivity, and normalized mass limit of detection, respectively. Clearly, for 

many sensing applications based on analyzing the resonance frequency and mass 

sensitivity, thickness effects should be taken into account. The resonance frequency is 

found to be dependent on h/(bL) and the quality factor is found to be dependent on h/L
1/2

 

for microcantilevers vibrating in the 1
st
 torsional mode in viscous liquids. In comparison, 

for microcantilevers vibrating in the 1
st
 lateral mode, the resonance frequency is 

dependent on b/L
2
 and the quality factor is dependent on hb

1/2
/L. Such different trends 

can be used to optimize device geometry and liquid property, thus maximizing quality 

factor and sensitivity in chemical sensing applications. Compared with microcantilevers 

in the 1
st
 transverse mode, microcantilevers that vibrate in their first torsional mode have 

higher resonance frequency and quality factor. The increase in resonance frequency and 

quality factor results in higher sensitivity and reduced frequency noise, respectively. This 

will yield much lower limits of detection in liquid-phase chemical sensing applications. 
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1. INTRODUCTION 

1.1 MEMS-based Sensors 

Microelectromechanical systems (MEMS) are miniaturized devices using 

mechanical and electro-mechanical elements by the microfabrication technology [1]. 

MEMS are also referred to as micromachines in Japan, or micro systems technology 

(MST) in Europe. The critical physical dimensions of MEMS devices can vary from 

below one micron to several millimeters. In any MEMS devices, there are at least some 

elements having some sort of mechanical functionality whether these elements can move 

or not. While the functional elements of MEMS are miniaturized structures, sensors, 

actuators, and microelectronics, one of the most notable elements is the microsensor. 

MEMS-based sensors are micro devices that convert the measured mechanical signals 

into electrical signals [1]. When the mechanical structure in a MEMS-based sensor is 

designed to vibrate at a resonance frequency, these sensors are called MEMS resonant 

sensors. One such mechanical structure in a MEMS-based sensor is the microcantilever. 

In this dissertation, microcantilever-based MEMS resonant sensors will be investigated. 

MEMS-based sensors have applications in industry, environment and other 

various areas. Based on the different sensing mechanisms [1], MEMS-based sensors can 

function as flow sensors [2-6], magnetic sensors, thermal sensors, thermal actuators, 

humidity sensors [7-8], and energy harvesters [9-18]. For example, MEMS-based micro 

hot-plate devices [19-21] are widely used as thermal sensors. This type of device consists 

of micro hot-plates as integrated heater elements. The advantages of the micro hot-plate 
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approach are the low power consumption, fast transient operation, direct integration with 

additional electronic components, miniaturization, and reduction of fabrication costs. 

Generally speaking, MEMS-based sensors have various applications in 

electronics, photonics, mechanics, chemistry and biology, etc. In this dissertation, 

chemical sensor applications will be investigated. Chemical sensors are characterized in 

many different ways by their sensitivity, resolution and selectivity [1]. The sensitivity is 

the ratio of the magnitude of the output signal to the magnitude of the input quantity to be 

measured. The resolution is a measure of the minimum change of the input quantity to 

which the chemical sensor can respond, which is also called the limit of detection (LOD). 

The selectivity is the degree to which the chemical sensor can distinguish one input 

quantity from another. Basically, a chemical sensor with high sensitivity, low limit of 

detection, and high selectivity is desired. 

For microcantilever-based MEMS resonant sensors, the two important 

characteristics are the resonance frequency and quality factor. The resonance frequency is 

the frequency of a vibrating system at which the response amplitude is a relative 

maximum. When operating at a resonant frequency, even a small periodic driving force 

can produce a large-amplitude vibration because the system can store and easily transfer 

energy between kinetic energy and potential energy. When the system reaches its steady 

state, the energy loss of the system is equal to the excitation energy from the driving 

forces in each cycle. Without driving forces, the amplitude of the system will reduce 

exponentially due to the energy loss. The quality factor is dependent on the damping 

mechanisms that are the sources of energy loss. It is a dimensionless parameter that 

describes how damped an oscillator or resonator is. Equivalently, the quality factor 
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characterizes a resonator’s bandwidth relative to its resonance frequency. Higher quality 

factor indicates a lower energy loss per cycle compared to the maximum stored energy of 

the system. 

In a liquid environment, liquid damping is one of the main physical damping 

mechanisms inherent to microcantilever-based MEMS resonant sensors [22]. The liquid 

damping relates to the energy loss due to the interaction between the microcantilever and 

the surrounding liquid at its vibrational state. The liquid damping has three contributions: 

viscous damping [23], acoustic radiation [24] and squeezed-film damping [25].  The 

viscous damping is due to the interaction i.e. friction between the liquid and the structure 

as well as the direction of the friction being parallel to the device motion. The acoustic 

damping is due to the acoustic radiation when the resonator excites a wave in the liquid in 

the direction perpendicular to the device motion. The squeezed-film damping is due to 

liquid motion perpendicular to the surfaces when the liquid is pushed into or out of the 

gap formed by adjacent surfaces. For example, the squeezed-film damping is significant 

for MEMS devices with a plate that moves against a trapped film. In this dissertation, 

only the liquid damping due to the viscous drag will be considered and all the other 

damping mechanisms will be ignored. 

The support damping, surface-effect damping, thermoelastic damping, and 

viscoelastic damping are four other main physical damping mechanisms inherent to 

microcantilever-based MEMS resonant sensors in a liquid [22]. The support damping, 

which is also called anchor losses, is the energy loss from the resonator to the substrate 

when the resonator anchors are stressed at the clamping points as a consequence of 

resonator displacement during vibration. Surface-effect damping is the energy loss due to 
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the roughness, contaminants, and etching residues on the surfaces. Thermoelastic 

damping is an intrinsic-material damping source due to the thermoelasticity present in 

almost all materials. It is caused by irreversible heat flow across the thickness of the 

resonator, which describes the energy coupling between the elastic field and the 

temperature field. The viscoelastic damping is another intrinsic-material damping source, 

which is due to the viscoelasticity present in viscoelastic materials such as polymers. The 

Young’s modulus of a viscoelastic material is represented by a complex number. The real 

part of this complex number is known as the storage modulus, which is associated with 

the elastic behavior of the material; the imaginary part is called the loss modulus, which 

is associated with the viscous behavior of the material and determine the energy 

dissipative ability of the material. 

Most MEMS-based sensors are fabricated from silicon wafers or silicon-on-

insulator (SOI) wafers by micromachining techniques [27]. The details of each step of the 

micromachining techniques are well-described in the literature [28-31]. The 

micromachining techniques make it possible to integrate the MEMS device with 

additional electronic components. For example, a mechanical sensing component can be 

integrated with the complementary metal-oxide-semiconductor (CMOS) [2] circuit on a 

silicon chip. 

The sensing elements of MEMS-based sensors are microstructures such as beams, 

bridges, membranes, and plates, which are fully or partially anchored, usually onto a 

silicon substrate. The three classical schemes of the mechanical structure in a MEMS 

resonant sensor are the cantilever, the fixed-fixed beam, and the folded beam. 
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The cantilever beam has the simplest structure, where one end of the beam extents 

from the substrate and the other end of the beam is free. A typical cantilever resonator is 

shown in Figure 1-1 [31]. Since one end of the cantilever is free, there are negligible 

residual stresses introduced from the fabrication. Compared to the fixed-fixed or folded 

beam, the cantilever beam is easier to fabricate, excite and analyze due to its simple 

structure [34]. Cantilever resonant sensors are mostly used to measure mass [31,35]. 

The fixed-fixed beam resonator has a vibrating mass fixed at two points. There 

are many variations of this basic structure. One of the popular implementations of this 

scheme is the double-ended tuning fork (DETF) [36-38], which consists of two parallel 

beams with identical length. A DETF type fixed-fixed resonator is shown in Figure 1-2 

[28]. Oscillation is usually performed laterally and in an anti-symmetric mode. One 

significant drawback of this design is the susceptibility of DETFs to post-fabrication 

stresses in the two beams which are clamped on both ends. DETFs have been used in 

many applications, including force sensors [36], gyroscopes [37], accelerometers [39], 

and strain sensors [40]. 

 

Figure 1-1:  Typical cantilever resonator, adapted from Ref. 31. 
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The folded beam resonator is the most complex, but most flexible design. In this 

design, the beams are extended out from a substrate anchor and then “folded” back onto 

themselves to extend in the opposite direction. A folded beam resonator is shown in 

Figure 1-3 [40]. Similarly to the cantilever resonator, there are negligible residual stresses 

 

Figure 1-2:  Double-ended tuning fork (DETF) type fixed-fixed resonator, adapted from 

Ref. 28. 

 

 

Figure 1-3:  Folded beam resonator, adapted from Ref. 40. 



7 

 

due to the fabrication in a folded beam resonator because the expansion of the beams is 

no longer bounded by the anchors. A rough analytical expression for the fundamental 

frequency of the folded beam resonator was proposed in Ref. 40. The folded beam 

resonators are used in many of the same applications as the fixed-fixed beam resonators, 

but they are more robust against spurious influences from post-fabrication dimensional 

variations [40] and temperature variations [41]. 

Of all the three classical schemes, the cantilever is the most widely used as a 

MEMS resonant sensor. For chemical sensing applications, the microcantilever, as the 

sensing element, is often coated with a chemically sensitive layer in order to interact with 

the target analyte [50]. The chemical sensing layer is the most important part of the 

chemical sensor since it contributes greatly to the overall sensitivity and determines the 

sensor’s selectivity to a certain analyte or class of analytes. The material of the coating 

could be a metal, a polymer, or a bio-functionalized coating. There are two different 

interactions between the analyte and the sensing layer: surface interaction and bulk 

interaction [50]. In the surface interaction, the analyte is adsorbed onto the surface of the 

sensing layer, whereas it is absorbed into the sensing layer in the bulk interaction. For a 

specific sensor, it could be either surface interaction when sensing some large size 

particle, or bulk interaction when sensing some small size particles. 

In order to achieve resonance in the mechanical structure of a MEMS resonant 

sensor, the device must be excited by an actuator and set to resonate by varying the 

excitation frequency.  The most popular and widely used excitation methods are 

capacitive actuation and piezoelectric actuation [26]. 
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The capacitive actuation is based on the principle of electrostatics. There are two 

main schemes: the parallel plate and the comb drive design. The parallel plate actuator is 

perhaps the only actuation method that can be used to drive any of the three resonator 

types [26]. The major drawback of this scheme is that the response is nonlinear [28]. The 

parallel plate scheme was demonstrated and used in a resonant mass sensor application 

[32,43]. The comb drive actuators consist of two interdigitated finger structures with one 

fixed and the other connected to a compliant suspension. It is widely used since the 

response of the comb is linear. A comprehensive analytical treatment of the comb 

structure was performed by taking into account many electrical field nonlinearities and 

discontinuities [46]. Since one of the combs must be physically coupled to the resonator, 

this excitation scheme is employed only for fixed-fixed and folded beam structures 

[33,36,43,47]. 

The piezoelectric actuation is based on the piezoelectric effect. The main 

drawback of piezoelectric actuation is the necessity of the additional piezoelectric 

material and the integration of the piezoelectric material with the SOI resonator 

[32,35,48]. 

Both the capacitive and the piezoelectric methods used in actuators can be also 

used in transducers. Besides the capacitive and piezoelectric methods, magnetic actuation 

[44-45], electrothermal actuation [77], photothermal actuation [42], piezoresistive 

detection [77], and optical detection [42-43] are also used in MEMS resonant sensor 

applications. For example, the electrothermal excitation and piezoresistive detection were 

chosen as driving and detector mechanisms in Ref. 77 because they can be easily 

integrated with the use of diffused resistors. In this implementation, two diffused p-type 
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silicon resistors, as electrothermal excitation elements, were integrated at the clamped 

edge of the microcantilever. One of the heating resistors was driven by an AC voltage 

superimposed on a DC voltage in order to excite the microcantilever and avoided 

frequency doubling. A full Wheatstone bridge configuration was chosen for the sensing 

piezoresistors on the microcantilever in order to reject common-mode signals such as 

deflection due to the common temperature change. 

The mechanical structure in a MEMS-based sensor can operate in different modes. 

Among the different chemical sensor platforms, microcantilever-based sensors are of 

high interest since they are easily fabricated and in many cases have high sensitivity and 

quality factor. Microcantilevers can operate in the static mode [50] or dynamic mode. 

When working in a dynamic mode, the microcantilever can operate in transverse (out-of-

plane flexural) mode [51-74], lateral (in-plane flexural) mode [71-86], torsional mode 

[51-60,85-94], longitudinal mode [95-96], or coupled modes [97]. 

The cross-section of a microcantilever could be uniform or non-uniform. In this 

dissertation, the term “rectangular microcantilever” stands for a microcantilever with a 

uniform rectangular cross-section. The term “circular microcantilever” stands for a 

microcantilever with a uniform circular cross-section. A rectangular microcantilever with 

length L, width b, and thickness h under transverse, lateral, torsional, or longitudinal 

mode is depicted in Figure 1-4.  Microcantilevers with some other shapes such as T-

shape beams [54,83,90-91,98-100], U-shaped beams [54], and V-shaped beams [53-54] 

have also been investigated and described in the literature. In addition to vibrating 

microcantilevers, trampoline-shape micro-structures [101-104] and rotational mode 

micro-disks [105-107] were also actively investigated and presented in the literature. 
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1.2 Modeling Vibrating Microcantilevers 

Microcantilevers torsionally, laterally, or transversely vibrating in vacuum have 

been investigated and presented in the literature [110,116]. The resonance frequencies 

associated with the different order of torsional, lateral, or transverse mode were obtained 

in closed-form analytical expressions in terms of the geometry and material properties of 

the microcantilever by solving the relevant equation of motion of the vibrating beam. 
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Figure 1-4:  Geometry of a rectangular microcantilever with length L, width b, 

and thickness h, vibrating (a) torsionally, (b) laterally, (c) transversely, (d) 

longitudinally, where , v, w, u are the rotational deflection (angle) in y-z plane, 

deflection in y direction, deflection in z direction, and deflection in x direction, 

respectively. The color coding represents the deflection in the relevant direction. 
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Although the resonance frequencies of cantilevers vibrating torsionally, laterally, 

or transversely in air are very close to those in vacuum, they decrease considerably when 

operating in liquids. For the cantilevers with low aspect ratio (h/b) vibrating torsionally, 

laterally, or transversely in an inviscid liquid, Chu [51-52] obtained closed-form 

analytical expressions for the resonance frequencies, in terms of the geometry and 

material properties of the microcantilever and the density of the liquid, by considering the 

liquid’s pressure effect and solving the Navier-Stokes equations of inviscid liquids [114]. 

The hydrodynamic loads due to the liquid’s pressure effect (effective added mass) were 

obtained using the chordwise hydrodynamic strip theory [51-52]. 

However, Chu’s analysis [51-52] is not applicable for a microcantilever in a 

viscous liquid where the viscosity of the liquid increasingly affects the motion of the 

liquid around the vibrating microcantilever. For a microcantilever vibrating in viscous 

liquids, both the pressure effect and viscous shear effect of the liquid must be taken into 

account. By calculating the hydrodynamic load (resisting force for transverse mode and 

resisting torque for torsional mode) per unit length, closed-form analytical expressions of 

the hydrodynamic functions of a transversely or torsionally vibrating circular 

microcantilever in viscous liquids were obtained by Stokes [115,87]. The hydrodynamic 

functions are in terms of the Reynolds number, which is a dimensionless parameter that 

gives a measure of the ratio of inertial forces to viscous forces. But these analytical 

expressions are only for circular cross-section microcantilevers and cannot be used for 

rectangular cross-section microcantilevers, which are widely used in MEMS resonant 

sensor applications. For a rectangular microcantilever vibrating laterally in a viscous 

liquid, Stokes [75] also obtained a closed-form analytical expression of the hydrodynamic 
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function in terms of the Reynolds number by assuming the microcantilever as an infinite 

flat plate and by calculating the resisting force per unit length from the liquid. 

For a rectangular microcantilever torsionally or transversely vibrating in viscous 

liquids, Sader [88,62] proposed an analytical expression of the hydrodynamic function 

and set up the procedure to calculate the resonance frequency and quality factor, 

assuming the microcantilever has negligible thickness (ribbon case). In these approaches, 

the microcantilever was assumed as an infinite flat plate with negligible thickness; as a 

result, the edge effect and thickness effect were not taken into account. The 

hydrodynamic function in term of the Reynolds number was obtained by solving the 

linearized Navier-Stokes equations for viscous liquids [114], using the numerical integral 

method introduced by Tuck [61]. Although the analytical expressions of the 

hydrodynamic function are accurate for the ribbon case, the expressions are very complex. 

Some simplified expressions were proposed by fitting the numerically obtained values of 

the hydrodynamic function in a range of Reynolds numbers [67,70]. 

Recently, Aureli [70,93] improved the analytical expression of the hydrodynamic 

function of a microcantilever vibrating torsionally or transversely in a viscous liquid by 

considering the nonlinear liquid effects due to moderately large amplitude rotations. In 

those approaches, the hydrodynamic functions were obtained by solving the nonlinear 

Navier-Stokes equations for viscous liquids [114] using a set of two-dimensional 

computational fluid dynamics (CFD) simulations of a rigid thin plate, representative of a 

cross section of the vibrating microcantilever. A correction term associated with the 

effect of the finite vibration amplitude was added to the hydrodynamic function proposed 

by Sader for the transverse mode [62] and torsional mode [88]. 
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Among the many modes mentioned above, microcantilevers vibrating in the 

transverse (out-of-plane) mode [51-74] are widely investigated and used as highly 

sensitive chemical sensor platforms in various applications. The shift in the resonance 

frequency of the microcantilevers is used to measure the presence and concentration of a 

chemical analyte in the operating environment. Especially in air, mass changes in the 

range of picograms [64], femtograms [66], even attograms [68] have been detected and 

the results have been presented in the literature. 

While transversely vibrating microcantilevers operate well in air, they have 

limited applications in viscous liquid media. The resonance frequency and quality factor 

of the device decrease greatly because of the additional fluid resistance (combination of 

increased viscous damping and effective fluid mass due to the liquid medium). Therefore, 

the mass sensitivity of the system decreases dramatically and the system’s susceptibility 

to frequency noise increases. In order to improve these characteristics, it has been 

proposed to reduce the length of the microcantilever, to operate in higher-order transverse 

flexural modes [57,72,85], or to investigate other vibration modes of microcantilevers, 

such as the torsional mode [51-60,85-94] or lateral (in-plane) flexural mode [71-86]. 

Reducing the length of the transversely vibrating microcantilever can increase the 

resonance frequency of the microcantilever since the resonance frequency of the 

microcantilever is roughly inversely proportional to its length squared. Also reducing the 

length of the microcantilever can increase the quality factor of the system since the fluid 

damping decreases due to the smaller surface area of the interface between the 

microcantilever and the surrounding medium. However, the shorter microcantilever with 

smaller sensing area leads to smaller amounts of analytes that can be sorbed into the 
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sensing layer, which result in a smaller shift of the resonance frequency due to the sorbed 

analyte. As the length of the microcantilever decreases, the support loss increases and 

may not be negligible compared to the viscous liquid loss. 

Operating in higher-order transverse flexural modes [57,72,85] can increase the 

resonance frequency and quality factor. However, the support loss and the difficulty to 

excite the microcantilever also increase. Furthermore, experimental work by Maali [67] 

indicates that the theoretical errors of the resonance frequency and quality factor increase 

as the mode number increases if the hydrodynamic function is calculated using the semi-

analytical model by Sader [62]. In order to resolve this issue, exact analytical solutions 

for the 3D flow field and hydrodynamic function were derived by Van Eysden and Sader 

for the microcantilever in incompressible viscous fluids [55-57] and compressible viscous 

fluids [58-59]. In these models, the hydrodynamic functions were obtained by solving a 

linear system of algebraic equations. Coefficients of the linear system were complex and 

expressed in terms of the Meijer G function [112]. 

For a rectangular microcantilever operating in the first lateral mode in viscous 

liquids, simple closed-form expressions were proposed in Ref. 78 to calculate the beam 

response, the resonance frequency and the quality factor by using a single degree of 

freedom (SDOF) model and a harmonic tip force. The SDOF model was based on beam 

theory and the assumption that the fluid resistance resulted from the shear stresses, which 

were given by the classical solution by Stokes for an oscillating infinite plate. A new 

analytical model was also derived in Ref. 79 for an electrothermally driven 

microcantilever experiencing lateral vibration in a liquid and successfully confirmed the 
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validity of the previously proposed closed-form expressions based on the SDOF model 

[78]. 

For a rectangular rigid plate laterally vibrating in viscous liquids, Brumley and 

Sader [73-74] obtained a table of values of the hydrodynamic function at some specific 

Reynolds number and aspect ratio (h/b, with thickness, h, and width, b). In this approach, 

the edge effects and thickness effects of liquids were considered and the boundary 

integral technique of Tuck [61] was extended. However, an analytical expression for the 

hydrodynamic function was not provided. 

Recently, the hydrodynamic function was obtained in Ref. 84 for a rigid bar with 

a rectangular cross-section laterally vibrating in a viscous liquid by ANSYS numerical 

simulations. The hydrodynamic function was then used to calculate the characteristics, 

such as resonance frequency and quality factor, of laterally vibrating microcantilevers in 

viscous liquids. In this approach, the edge effects and thickness effects of liquids were 

considered and an analytical expression of the hydrodynamic function in terms of 

Reynolds number and aspect ratio (h/b) was provided by fitting the numerical results. 

Based on the analytical expression of the hydrodynamic function, the characteristics such 

as resonance frequency, quality factor, and mass sensitivity of the laterally vibrating 

microcantilevers were investigated and compared to those of the transversely vibrating 

microcantilevers. The comparison indicates that operating dynamically driven 

microcantilevers in the lateral mode is better than transverse mode for liquid-phase 

(bio)chemical sensing applications. 

For a rectangular microcantilever torsionally vibrating in viscous liquids, the 

approaches to calculate the hydrodynamic function and the characteristics such as 



16 

 

resonance frequency and quality factor from both Sader [88] and Aureli [93] assume that 

the thickness of the microcantilever is negligible compared to its width and length. 

However, the results based on these approaches show that for torsional mode, both the 

resonance frequency and the quality factor increase as the thickness of the 

microcantilever increases. Thus, in order to improve the performance of a torsion-based 

cantilever liquid-phase chemical sensing platform, the thickness of the torsionally 

vibrating microcantilever should be considered. This necessitates the inclusion of the 

thickness effects when evaluating the hydrodynamic function, in addition to the polar 

moment of area and the torsional constant. Such improvements will be considered in this 

dissertation. 

1.3 Problem Statement and Objectives 

Microcantilevers operating in the out-of-plane flexural mode (also known as 

transverse mode) have applications in both gas and liquid phases. However, in liquid 

phase, this mode of operation does not yield efficient microcantilevers because the 

resonance frequency, sensitivity and frequency stability of the vibrating microcantilevers 

drastically decrease. This is due to the larger fluidic resistance forces in the liquid: the 

inertial force and damping force. In order to improve the characteristics of transversely 

vibrating microcantilevers, several methods have been investigated, which include 

reducing the length of the microcantilever, operating in higher-order modes, or changing 

the shape of the microcantilever from uniform rectangular cross-section to other shapes 

such as a hammerhead. Another promising method to implement highly efficient liquid-

phase sensors is to operate the microcantilever in the torsional mode [51-60,85-94] or in-
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plane flexural mode (or lateral mode) [71-86], in order to achieve higher resonance 

frequency and quality factor, hence higher sensitivity. 

For the laterally vibrating microcantilevers in viscous liquids, several attempts of 

modeling the hydrodynamic function have been made. Some investigations assume the 

thickness of the microcantilever to be negligible, thus treating the microcantilever as a 

ribbon [75]. Other investigations consider both the edge effects and the thickness effects 

of a rectangular microcantilever in viscous liquids [73-74, 84] and provide an analytical 

or semi-analytical expression of the hydrodynamic function in terms of Reynolds number 

and aspect ratio (h/b) [84]. On the other hand, for the hydrodynamic function of 

torsionally vibrating microcantilevers in viscous liquids, all the investigations [88, 93] 

presented in the literature ignore the edge effects and thickness effects and regard the 

microcantilever as a ribbon. 

The research objective of this dissertation is to theoretically investigate torsionally 

vibrating resonant rectangular microcantilevers for chemical sensor applications in liquid 

environments to determine whether improved characteristics can be achieved by 

optimizing the microcantilever geometry. 

In order to achieve this research objective, the governing equation for rectangular 

microcantilevers excited sinusoidally in time by a torque per unit length distributed 

arbitrarily along the axial direction in a viscous liquid will be derived and analyzed by 

considering the liquid effect as an external torque per unit length which, when normalized, 

will yield the hydrodynamic function. The hydrodynamic function of rectangular 

microcantilevers under torsional mode in liquids will be determined in terms of both 

Reynolds number and aspect ratio (h/b) by using numerical simulations, in which the 
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microcantilever is assumed to be a rigidly rotating body excited sinusoidally in time. An 

analytical expression for the hydrodynamic function will then be obtained by fitting the 

numerical results.  Based on the hydrodynamic function, analytical expressions for the 

device characteristics such as the resonant frequency, quality factor, mass sensitivity, and 

normalized mass limit of detection (LOD) will be derived and applied to evaluate various 

cantilever geometries and liquid properties. The trends of the characteristics of 

microcantilevers under torsional mode will be shown as functions of changes in the 

structure dimensions and liquid properties. The resonance frequencies and quality factors 

of torsionally vibrating microcantilevers in water will be calculated and the results will be 

compared to those under transverse and lateral vibration modes, and the limited 

experimental data that is available [125]. Finally, design procedures and design 

guidelines will be provided and discussed. 

1.4 Dissertation Organization 

This dissertation is organized into six chapters. In Chapter 1, an introduction to 

the chemical sensors is given. Emphasis is placed on the dynamic mode microcantilever-

based chemical sensors. The methods in the literature used to model the microcantilevers 

under transverse, lateral, or torsional mode are investigated. The main objectives of this 

dissertation are introduced, that is, to characterize the microcantilever-based chemical 

sensors operating under torsional mode in viscous liquids. 

In chapter 2, the equation of motion will be established and solved for the 

rotational deflection of a microcantilever vibrating torsionally in a viscous liquid. By 

using the undamped mode shapes and the method of mode superposition [110], the result 

will be expressed in terms of an arbitrary excitation frequency. This can be used to find 
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the response characteristics, such as the frequency spectrum, resonance frequency, and 

quality factor, and the sensing metrics of sensitivity and limit of detection if the device is 

used as a sensor. All of these quantities depend on the hydrodynamic function, i.e., the 

normalized hydrodynamic torque per unit length, which must be known. 

In chapter 3, the hydrodynamic functions will be obtained by solving Navier-

Stokes equations for incompressible Newtonian liquids. After a review of Stokes’ 

solution to the hydrodynamic function for circular microcantilevers, the numerical 

evaluation of the hydrodynamic function for rectangular microcantilevers for 19 

Reynolds numbers and 11 aspect ratios (thickness to width) will be obtained using 

numerical simulations in COMSOL. Three methods are used to extract the magnitude, 

phase, real part and imaginary part of the hydrodynamic function.  Thus, by fitting the 

numerical results, an analytical expression for the hydrodynamic function, including the 

thickness effects, is obtained for the first time for rectangular microcantilevers vibrating 

torsionally in viscous liquids.  

In chapter 4, the frequency spectra, resonance frequencies and quality factors of 

rectangular microcantilevers operating in the first torsional mode in viscous liquids are 

obtained. The dependencies of the resonance frequency and quality factor on the 

geometry of the microcantilever operating in the first torsional mode and the material 

properties of the liquid are investigated. The resonance frequencies and quality factors of 

rectangular microcantilevers operating in the first torsional mode in water are calculated 

and compared to those for first transverse and first lateral mode, and the limited 

experimental results that are available [125].  
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In chapter 5, the mass sensitivity and normalized mass limit of detection of 

torsionally vibrating rectangular microcantilevers in viscous liquids are defined and 

obtained. The mass sensitivity and normalized mass limit of detection of rectangular 

microcantilevers operating in the first torsional mode in viscous liquids are obtained. The 

dependencies of the mass sensitivity and normalized mass limit of detection on the 

geometry of the rectangular microcantilever operating in the first torsional mode and the 

material properties of the liquid are investigated. In addition, the design procedure for the 

rectangular microcantilever dimension is provided for a given working resonance 

frequency. 

Finally in chapter 6, a summary of the results, conclusions and suggestion on 

future research topics are given. 
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2. TORSIONALLY VIBRATING MICROCANTILEVERS IN VISCOUS 

LIQUIDS 

2.1 Problem Statement and Assumptions 

A typical rectangular microcantilever under torsional mode of operation is shown 

in Figure 2-1, where L, b, h are the length, width, thickness of the microcantilever, 

respectively. In analyzing the vibrating cantilever, the following assumptions are used: 

(1) The microcantilever is assumed to be an elastic Euler-Bernoulli beam. 

(2) For the purpose of calculating the hydrodynamic load, the microcantilever is 

assumed to be a rigidly rotating body. 

(3) The length (L) of the microcantilever is much greater than its width (b) or 

thickness (h) so that the support effect and edge effect can be ignored. 

 

Figure 2-1:  Geometry of a torsionally vibrating rectangular microcantilever with 

length L, width b, and thickness h, where   is the rotational deflection (angle). 

The color coding represents the z-axis deflection. 
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(4) The amplitude of the rotational deflections (rotation angles of the cross 

sections) is assumed to be very small such that the nonlinear convection term in Navier-

Stokes equations can be ignored.  

(5) Mode coupling between different orders and types of vibrating modes is not 

considered. 

(6) The longitudinal inertia and longitudinal stress due to warping of the cross 

section are neglected in developing the classical torsional model. 

(7) The interface between the microcantilever and the liquid is a non-slip interface. 

(8) The liquid domain is continuous and much larger than the size of the 

microcantilever. 

(9) The liquid is Newtonian with constant viscosity. The flow is incompressible. 

(10) There is no source or sink of mass or heat in the fluid domain, and heat 

transfer effects are ignored. 

(11) Body forces (gravitational forces) are ignored. 

(12) Applied torsional load is assumed to be purely sinusoidal in time. 

(13) Among damping mechanisms, only the viscous damping between the micro-

cantilever and the liquid is considered and other energy loss mechanisms such as support 

damping, surface-effect damping, and thermoelastic damping are ignored. 

2.2 Equation of Motion 

Based on the assumptions above, the equation of motion of a torsionally vibrating 

microcantilever in a viscous liquid is derived. The free-body diagram is shown in Figure 

2-2, where ρ is the mass density of the microcantilever material, Jp is the polar moment of 

the cross-section area of the microcantilever,   is the rotational deflection (angle) of the 
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microcantilever in y-z plane, Tx is the internal torque in the microcantilever at the 

location x, 
drive ( ) tjT x e   is the position-dependent sinusoidal excitation torque per unit 

length applied at an angular frequency of ω, and  hydro ,Re, /xT h b  is the resistance 

torque per unit length from the liquid. The parameter Re is the Reynolds number, a 

dimensionless number proportional to the ratio of inertial forces to viscous (friction) 

forces [113-115]. The Reynolds number is defined as 
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  (2.1) 

where ρl and η are the mass density and the viscosity of the liquid, respectively. Low 

Reynolds numbers indicate that the viscous (friction) forces are more important than the 

inertial forces; the inertial forces could be neglected and the liquid is viscous. On the 

other hand, high Reynolds numbers indicate that the inertial forces are dominant to the 

viscous (friction) forces; the viscous forces could be ignored and the liquid is considered 
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Figure 2-2:  Free-body diagram of a torsionally vibrating microcantilever in a 

viscous liquid. 
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inviscid. The equation of motion and characteristics for the system in an inviscid liquid 

can be easily obtained from similar systems in a viscous liquid by setting the viscosity of 

the liquid to zero, or setting the Reynolds number to infinity.  

From the free-body diagram, Figure 2-2, the torque equilibrium in a viscous liquid 

is expressed by the following equation, 
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The internal torque in Eq. (2.2) can be obtained using the theory of elasticity and is 

expressed as follows [110], 

 
( ,

.
)

x

x t
T GK

x





 (2.3) 

In Eq. (2.3), G and K are the shear modulus and the torsional constant of the 

microcantilever, respectively. Substituting Eq. (2.3) into Eq. (2.2) and assuming G and K 

are constants, the equation of motion is obtained as 
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The equation of motion is derived from the equilibrium of the torque per unit length. The 

four terms in Eq. (2.4), from left to right, represent the torques per unit length due to 

elastic deformation of the microcantilever, the rotational inertia of the microcantilever, 

the sinusoidal excitation, and the resistance of the liquid, respectively. The last term, the 

torque per unit length of the liquid resistance, is expressed as 
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with 
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In the above equations, g1,tors is the frequency-dependent coefficient associated with the 

liquid damping torque per unit length and is written in terms of the imaginary part of the 

hydrodynamic function, and g2,tors is the frequency-dependent coefficient associated with 

the liquid inertial torque per unit length and is written in terms of the real part of the 

hydrodynamic function. The hydrodynamic function, 
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is a dimensionless complex-valued function depending on the Reynolds number and the 

aspect ratio. The hydrodynamic function is obtained by solving the linearized Navier-

Stokes equations for the incompressible viscous liquid [88,113-115] 

 0, v  (2.9a) 
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where p and v are the hydrodynamic pressure and velocity at a particular point in the 

liquid, respectively; /l t  v  is the term related to the liquid’s inertial forces, while 

2 v  is the term related to the liquid’s viscous forces. The values and expressions for 

the hydrodynamic function will be covered in details in the next chapter. 

Solutions to the equation of motion of the torsionally vibrating microcantilever in 

vacuum will first be obtained. This is done by setting the torque per unit length of the 

liquid resistance to zero in Eq. (2.4), which is then reduced to [110], 
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It is noted that the boundary conditions for the torsionally vibrating microcantilever in a 

viscous liquid or in vacuum are the same and given as follows: 

 (0, ) 0,t   (2.11a) 
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The first boundary condition, Eq. (2.11a), indicates that the microcantilever is perfectly 

clamped on the left side, that is, there is no rotation at x=0. The second boundary 

condition, Eq. (2.11b), indicates that the microcantilever is free on the right side, that is, 

there is no torque at x=L since the torque is proportional to the derivative of the rotational 

deflection,  , with respect to x from Eq. (2.3). 

2.3 Natural Frequency and Mode Shape in Vacuum 

Before solving the equation of motion, Eq. (2.4), together with the boundary 

conditions in Eq. (2.11), to obtain the steady state solution of the rotational deflection 

response for the system in a viscous liquid, the natural frequency and mode shape for the 

system in vacuum is first obtained. The i-th undamped natural frequency and mode shape 

function for the system in vacuum can be obtained by solving the following equation of 

motion [110], which is based on Eq. (2.10), 
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together with the boundary conditions in Eq. (2.11). By using the method of separation of 

variables, 
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 ( , ) ( ) ,j tx t x e    (2.13) 

and substituting Eq. (2.13) into Eq. (2.12) and Eq. (2.11), the equation of motion and the 

relevant boundary conditions are rewritten as 
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The general solution to Eqs. (2.14a-c) is of the form, 

 sin(( ) ) cos( ),x A x B x    (2.15) 

where A and B are unknown amplitude parameters. Substituting Eq. (2.15) into Eqs. (2.14

a-c), the equation of motion and the relevant boundary conditions are rewritten as the 

following three algebraic equations 
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 cos( .) 0A L    (2.16c) 

There are infinitely many solutions to Eqs. (2.16a-c). Each solution is associated with one 

vibration mode. Thus the rotational deflection response, i.e., the general solution to the 

equation of motion described by Eq. (2.12) is obtained as 
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where Ai is the unknown parameter determined by the initial conditions, and the i-th 

undamped natural frequency and mode shape function of the system in vacuum are given 

by [110], 
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In the above equations, the constant associated with the i-th mode is as follows, 
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The mode shape function has the following orthogonal properties [110], 
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(2.20) 

and the following special values, 

  
0 0

( )d sin d / ,1
L L

i i ix x x x      (2.21a) 

 1( ) ( 1) .i

i L    (2.21b) 

2.4 Frequency Spectrum 

The expression, orthogonal properties and special values of the mode shape 

functions of the torsionally vibrating system in vacuum, which are obtained in the 

previous section, will be used to solve the equation of motion for the system in viscous 

liquids by using the mode superposition method. The steady state rotational deflection 

response of the torsionally vibrating microcantilever in viscous liquids is obtained here 
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by solving the equation of motion, Eq. (2.4), together with the boundary conditions, Eq. 

(2.11). Based on the mode superposition method, the steady state rotational deflection 

response can be expressed as the sum of the each response to each excitation associated 

with the i-th mode shape, i.e., 
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( ) ,, ) ( j

i

i

t

iCx t x e  




  (2.22) 

where Ci is the unknown coefficient representing the weight of contribution from the i-th 

mode to the total response. Substituting Eq. (2.22) into Eq. (2.4), the equation of motion 

is rewritten as 
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      (2.23) 

Multiplying both sides of Eq. (2.23) by the mode shape function, ( )i x , and integrating 

through the length of the beam, Eq. (2.23) is rewritten as 
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Finally, by applying the orthogonal properties of the mode shape functions given by Eq. 

(2.20), Eq. (2.24) is rewritten as 
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Thus, the unknown coefficients are solved and given by  
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The steady state rotational deflection response is then given by  
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Assuming the excitation torque per unit length is uniform along the x axis, i.e., 

drive drive( ) TxT   , and applying Eq. (2.21), the rotational deflection response of the system 

in viscous liquids is obtained as follows, 
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Evaluating Eq. (2.28) at x L , the magnitude of the dynamic tip rotational deflection is 

given by, 
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Furthermore, evaluating Eq. (2.29) at 0  , the magnitude of the static tip rotational 

deflection is obtained as 
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The normalized tip rotational deflection is the ratio of the magnitude of the dynamic tip 

rotational deflection, ( , )L t , to the static tip rotational deflection, static ( )L  , by using 

unit of dB, 
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By using Eq. (2.31), the frequency spectrum can be obtained by calculating the 

normalized tip rotational deflection in terms of the excitation frequency. 

2.5 Resonance Frequency 

By solving the equation of motion, Eq. (2.4), the resonance frequency of the 

system can be obtained. For the microcantilever in vacuum, the resonance frequency is 

the same as the natural frequency and is given by Eq. (2.18a). For the microcantilever in 

a liquid, the liquid could be treated as an inviscid liquid or a viscous liquid. 

For the microcantilever with low aspect ratio (h/b) immersed in an inviscid liquid, 

the i-th resonance frequency was obtained by Chu [51], 
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 (2.32) 

Eq. (2.32) indicates that for a rectangular microcantilever characterized by its density and 

geometry (length, width, and thickness) in an inviscid liquid characterized by its density, 

the resonance frequency is always less than that in vacuum and the ratio between them is 

dependent on the ratio of their density and the aspect ratio (h/b). 

For the microcantilever immersed in a viscous liquid, assuming that only the i-th 

torsional mode is excited, i.e., 

 
drive drive,( ) sin ,iix TT x  (2.33) 

and the vibration shape is given by the i-th undamped mode shape 

 .( , ) ( )sin ix t t x   (2.34) 
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The system will behave as a simple harmonic oscillator and the equation of motion, Eq. 

(2.4), can be rewritten as 
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For the single degree of freedom (SDOF) system, 
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its undamped natural frequency, damping ratio, and resonance frequency are given, 

respectively, by 
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2 212 ) /2 (1 2 .r r nf k m         (2.39) 

It is noted that Eq. (2.38) indicates 0   and Eq. (2.39) requires 2 / 2  . In order to 

apply the above formula, the damping ratio of the system has to meet the requirement 

0 2 / 2  . Such system is called moderately underdamped vibration system. For 

sensor applications, the damping ratio of the system is less than 0.5 and the above 

requirement is always met. 

 Comparing Eq. (2.35) and Eq. (2.36), the following relations are found, 

 
2,tors ,pm J g   (2.40a) 

 
1,tors ,c g  (2.40b) 

 2 .ik GK  (2.40c) 
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Substituting Eqs. (2.40a-c) into Eqs. (2.37-2.39), the damping ratio and the resonance 

frequency associated with the i-th mode are given by 
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For the cases where the Reynolds number is high, the energy loss is low, 1i  , 

and the general expression of the resonance frequency in Eq. (2.42) is reduced to 
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which is identical to the expression obtained for the resonance frequency of torsionally 

vibrating microcantilevers in viscous liquids when low loss is assumed [88]. Eq. (2.43) 

indicates that the resonance frequency in a viscous liquid is always less than the one in 

vacuum and the ratio of the two frequencies is dependent on the ratio of their inertias, i.e., 

the ratio of the liquid’s added moment of inertia to the microcantilever’s moment of 

inertia. For transversely or laterally vibrating microcantilevers in viscous liquids, these 

relationships are the same except that the inertias are given by the masses rather than the 

moments of inertia. 

Furthermore, for a rectangular microcantilever with low aspect ratio (h/b) in an 

inviscid liquid, the general expression for the resonance in Eq. (2.42) can be further 

reduced to Eq. (2.32). The polar moment of area of a rectangular microcantilever with 

low aspect ratio (h/b) is approximated as [88,116] 
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Substituting Eq. (2.7) and Eq. (2.44) into Eq. (2.43), the resonance frequency is rewritten 

as 
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In comparing Eq. (2.32) and Eq. (2.45), it is shown that the real part of the hydrodynamic 

function in this case is 1/16, i.e., 
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Finally, Eq. (2.45) can be reduced to the resonance frequency in vacuum by 

setting the density of the liquid to 0. 

2.6 Quality Factor 

As mentioned in the previous chapter, the quality factor is an important design 

parameter for resonant MEMS devices in various applications including sensor 

applications. The quality factor is defined as 2  times the ratio of the peak energy stored 

in a vibrating system to the energy lost per cycle, i.e., 
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e
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Before solving for the quality factor of the torsionally vibrating microcantilever in a 

viscous liquid, the quality factor of the moderately underdamped vibration system 

described by Eq. (2.36) is first obtained. For this system, the transfer function is given by 
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From Eq. (2.48), the magnitude and phase of the transfer function are obtained as, 
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The steady state response of the system is given by 

      0 cos .t F H f t     (2.51) 

Here, 0H  is the transfer function of the static system, which is the ratio of the static 

response 0  to the maximum excitation 0F  and is expressed as 
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.0H f H
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Substituting Eq. (2.39) into (2.49-2.50), the magnitude and phase of the transfer function 

at the resonance frequency are given by, 
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In order to evaluate Eq. (2.47) to obtain the quality factor, it is necessary to first 

calculate the kinetic energy, potential energy, total energy and energy loss per cycle of 

the steady state system, respectively. The kinetic energy is due to the motion of the 

system, which is defined and calculated as 
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The potential energy is due to the position and deformation, which is defined and 

calculated as 
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The total energy is the sum of both kinetic energy and potential energy, and is given by 
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The energy loss per cycle is the work done by the damping (friction) forces during each 

vibration period and given by 
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By calculating the first and second derivatives of the total energy, the ranges of the total 

energies for different excitation frequency are obtained as 
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where 
,maxkU and 

,maxpU  are the maximum kinetic energy and maximum potential energy 

during one cycle, respectively. So the maximum total energy for each case of the 

excitation frequency range is given, respectively, by 
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For this system, the quality factor defined by Eq. (2.47) is given by 
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Substituting Eq. (2.60) into Eq. (2.61), the quality factor is rewritten as 
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Since
2

0 01 2r f ff   , the quality factor of the SDOF system at its resonance 

frequency is given by 
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From Eq. (2.35), based on Eq. (2.41) and Eq. (2.63), the quality factor of the 

torsionally vibrating microcantilevers in viscous liquids can be obtained as 

 

1/2
2

2,tors 1,tors

tors
2

1,tors 2,tors

1 1
1

22 1 2

/
.

/

p

pi i

g

g

J g
Q

J g

 

  



  
         

  (2.64) 

For the cases where the Reynolds number is high, the energy loss is low, 1i  , 

and the expression of the quality factor in Eq. (2.64) is reduced to 
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which is identical to the expression obtained for the quality factor of torsionally vibrating 

microcantilevers in viscous liquids when low loss is assumed [88]. Eq. (2.65) indicates 

that the quality factor equals the ratio of the total inertia of the microcantilever and liquid 

to the damping parameter divided by the excitation frequency. For transversely or 
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laterally vibrating microcantilevers in viscous liquids, this relationship is the same except 

that the inertias are given by masses rather than moments of inertia and the damping 

parameter is associated with the transverse or lateral mode rather than the torsional mode. 

In order to calculate the frequency spectrum, resonance frequency and quality 

factor of a torsionally vibrating rectangular microcantilever in a viscous liquid, the 

expressions for the hydrodynamic function, the torsional constant and the polar moment 

of area have to be determined. 

2.7 Thickness Effects on Rectangular Microcantilevers 

The equations to calculate the frequency spectrum, resonance frequency, and quality 

factor of the torsionally vibrating microcantilevers in viscous liquids are expressed in 

terms of the hydrodynamic function, Γ, the torsional constant, K, and the polar moment 

of area, Jp. When calculating the resonance frequency and the quality factor of the 

torsionally vibrating rectangular microcantilevers in viscous liquids for the ribbon case 

[88], the thickness effects have been ignored. In the ribbon case, the hydrodynamic 

function is in terms of only the Reynolds number and is given by [88] 

 
ribbon,rect,tors,real rect,tors,real (Re, / 0),h b    (2.66a) 

 
ribbon,rect,tors,imag rect,tors,imag (Re, / 0).h b    (2.66b) 

The torsional constant is approximated by [88,116] 
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and the polar moment of area is approximated by [88,116] 
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Although the infinitely thin approximation in the ribbon case yields accurate results for 

transverse motion for moderately thin rectangular microcantilevers over a large range of 

aspect ratios (h/b), torsional or lateral motion of microcantilevers with high aspect ratio 

(h/b) is found to be poorly described by this infinitely thin model. The thickness effects 

should be taken into account when evaluating the hydrodynamic function, the polar 

moment of area, and the torsional constant of microcantilevers with high aspect ratio 

(h/b). 

In the present study, the thickness effects on the hydrodynamic function, the 

torsional constant, and the polar moment of area are considered as follows: 

 
rect,tors,real rect,tors,real rect,tors,real(Re, / ) (Re, / 0),h b h b     (2.69a) 
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Values of the parameter k2 in terms of the aspect ratio (h/b) are given in Table 2-1 [109]. 

The ribbon theory underestimates the real and imaginary parts of the hydrodynamic 

Table 2-1:  Parameter k2 for torsional constant [109] 

h/b 11 22/3 11/2 22/5 11/3 11/4 11/5 11/10 0 

k2 14.2 10.2 8.73 8.03 7.60 7.12 6.87 6.41 6 
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function since it underestimates the added inertia and damping by ignoring the thickness 

of the microcantilever. From Table 2-1, the value of parameter k2 for a microcantilever is 

greater than 6, so the ribbon theory overestimates the torsional constant. Eq. (2.71) 

indicates that the ribbon theory also underestimates the polar moment of area. 

Thickness effects on the hydrodynamic function, the torsional constant, and the 

polar moment of area affect the calculated values of the characteristics of 

microcantilevers vibrating torsionally, such as the resonance frequency and the quality 

factor. Substituting Eq. (2.18a) and Eq. (2.19) into Eq. (2.42), the resonance frequency 

for torsional mode is rewritten by 
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2,tors
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r i
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
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





 (2.72) 

The resonance frequency calculated by Eq. (2.72) and quality factor calculated by Eq. 

(2.64) indicate that, for torsional modes, increasing hydrodynamic function decreases the 

calculated values of both the resonance frequency and quality factor. Increasing torsional 

constant increases the calculated values of both the resonance frequency and quality 

factor. Increasing polar moment of area decreases the calculated values of the resonance 

frequency but increases the calculated values of the quality factor. Compared to the 

ribbon theory, the thickness effects on both hydrodynamic function and torsional constant 

decreases the calculated values of both the resonance frequency and quality factor; on the 

other hand, the thickness effect on polar moment of area decreases the calculated values 

of the resonance frequency, but increases the calculated values of the quality factor. 
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3. HYDRODYNAMIC FUNCTION OF A TORSIONALLY VIBRATING 

RECTANGULAR MICROCANTILEVER IN A VISCOUS LIQUID 

3.1 Introduction 

In the previous chapter, the equation of motion for a torsionally vibrating 

microcantilever in a viscous liquid, which is described by Eq. (2.4), is derived and 

appropriate solutions are found; the expressions to calculate the frequency spectrum, 

resonance frequency and quality factor are obtained. In order to evaluate the 

characteristics of the vibrating system, the expressions or values of the hydrodynamic 

function must be first obtained. The hydrodynamic function is obtained by comparing the 

excitation velocity and the normalized torque per unit length acted on the microcantilever 

from the surrounding liquid. The torque per unit length is obtained from the integral of 

the torque per unit area along the boundary of the cross-section of the microcantilever. 

The torque per unit area at a specific point on the boundary is induced by two 

hydrodynamic stresses: the normal stress, whose direction is perpendicular to the border, 

and the shear stress, whose direction is parallel to the border. The total stress is equal to 

the vector sum of the normal stress and the shear stress. The distributions of total, normal 

and shear stresses along the boundary of the cross-section of a rigid rectangular 

microcantilever in a viscous liquid are depicted in Figure 3-1. In this case, the 

hydrodynamic torque per unit length is given by 
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where 
yy and zz  are the normal stresses, 

yz is the shear stress, and t is the time. The 

normalized torque per unit length is defined by 

 
hydro

hydro
ˆ

( )
( ) ,

Re m

T t
T

b v
t

 
  (3.2) 

where b is the width of the microcantilever, η is the viscosity of the liquid, Re is the 

Reynolds number, and vm is the maximum magnitude of the excitation velocity and is 

given by 
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,
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b h




  (3.3) 

where   is the excitation frequency, h is the thickness of the microcantilever, and m  is 

the maximum magnitude of the rotational deflection. For the ribbon case, the thickness (h) 

y

z

O

h

b

Angular Velocity

 

Figure 3-1:  Hydrodynamic total stresses (in black), normal stresses (in red), and 

shear stresses (in blue) acting on the surfaces of a rigid rectangular cross-section 

of a torsionally vibrating microcantilever in a viscous liquid. 
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is much less than the width (b) and the maximum magnitude of the excitation velocity is 

approximated by 

 .
2

m m

b
v


  (3.4) 

Substituting Eq. (3.4) and the definition of the Reynolds number described by Eq. (2.1) 

into Eq. (3.2), the normalized torque per unit length for the ribbon case is rewritten as 
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This definition in the time domain is equivalent to the definition in the frequency domain 

for the ribbon case [88]. 

If the cross-section of the rigid microcantilever is circular, an analytical 

expression of the hydrodynamic function is given by the well-known expression [87] 

 0

circ,tors
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( Re)2
) .

Re Re ( Re)
(

jK j jj

j K j j



  


 (3.6) 

In Eq. (3.6), j is the imaginary unit, Re is the Reynolds number, and the functions K0 and 

K1 are modified Bessel functions of the third kind. 

If the cross-section of the rigid microcantilever is rectangular, the analytical 

expression of the hydrodynamic function obtained by the infinitely thin model for the 

ribbon case is given by [88] 

 11
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with 
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 log(Re).   (3.7f) 

It is apparent that the above expression for the ribbon case is very complex with many 

terms. This analytical expression of the hydrodynamic function is well approximated by 

the simple dependence on the nondimensional thickness of the viscous layer surrounding 

the microcantilever, Re
-0.5

. The numerical coefficients were determined through least 

square fitting to the above analytical expression and is given by [93] 

 
0.5 0.5

rect,tors,approx ) (0.0634( ) (0.400Re ).0.388Re j       (3.8) 

In the range of Reynolds numbers from 100 to 50,000, the maximum relative deviations 

between the approximated simple fit of Eq. (3.8) and the complex analytical expression 

of Eqs. (3.7a-f) are less than 1.1% for the real part and 2.5% for the imaginary part. 

The infinitely thin model used to solve for the above expression of the 

hydrodynamic function for the ribbon case is semi-analytical. For the case of a 

microcantilever with finite thickness, the problem to obtain an expression of the 

hydrodynamic function described by Eq. (2.8) is even more complex and cannot be 

solved by a pure analytical method. A numerical method will be used to solve for the 

values of the hydrodynamic function for a set of different Reynolds numbers and aspect 

ratios (h/b). An analytical expression for the hydrodynamic function will then be obtained 

by fitting the numerical results. 
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3.2 Numerical Evaluation of the Hydrodynamic Function for Rectangular 

Microcantilevers 

3.2.1 Simulation Procedure and Model Validation 

In order to calculate the values of the hydrodynamic function at specific Reynolds 

numbers and aspect ratios (h/b), 2D numerical simulations by COMSOL are used to 

extract the torque per unit length of the torsionally vibrating microcantilevers in viscous 

liquids as a function of time. In these models based on the finite element method (FEM), 

the rectangular cross-sections of the microcantilevers are assumed to be rigid with a 

constant width and variable thickness. The surrounding liquid domain, a square with the 

same center as the cross-section of the microcantilever, is modeled as an incompressible 

fluid governed by the linearized Navier-Stokes equations. A typical FEM mesh is shown 

in Figure 3-2. 

The boundary conditions are applied on both the inner boundary and the outer 

boundary. On the inner boundary, a sinusoidal angular excitation velocity is imposed and 

 

Figure 3-2:  A typical mesh of the FEM model of a viscous liquid surrounding to a 

rigid rectangular cross-section of the torsionally vibrating microcantilever: the 

whole model (Left) & the center part (Right). 



46 

 

the equivalent velocity components in the y and z directions are as follows, 

 
2 2

2 cos( )
,m

y

v tz
v

h b





  (3.9a) 

 
2 2

2 cos( )
.m

z

v ty
v

h b





  (3.9b) 

where vm is the maximum magnitude of the excitation velocity, h and b are the thickness 

and width of the microcantilever, respectively,   is the excitation frequency, and t is the 

time.  On the outer boundary, the pressure of the liquid and the viscous stress are set to 

zero. 

While the amplitude of the excitation velocity is held constant, the excitation 

frequency is varied in order to investigate the effect of different Reynolds numbers. The 

liquid’s mass density and viscosity are set to those of water (ρl = 1000 kg/m
3
 and η = 1 

cP). A transient analysis is performed over three cycles, which is verified to be long 

enough to let the system reach steady state. The torque per unit length is then extracted as 

a function of time from the integral of the torque per unit area induced by the 

hydrodynamic normal stresses and shear stresses along the entire inner boundary. A 

typical numerical result of the torque per unit length from COMSOL is shown as the blue 

dots in Figure 3-3. 

Furthermore, the thickness of the microcantilever is varied in different models in 

order to investigate the effect of different aspect ratios.  Both the excitation frequency 

and the thickness of the microcantilever are varied in order to find the real and imaginary 

parts of hydrodynamic function in terms of both the Reynolds number, Re, and aspect 

ratio h/b.  
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In this study, microcantilevers with 11 different aspect ratios (0.001, 0.002, 0.005, 

0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 1) vibrating with 19 different Reynolds numbers (1, 

1.778, 3.162, 5.623, 10, 17.78, 31.62, 56.23, 100, 177.8, 316.2, 562.3, 1000, 1778, 3162, 

5623, 10000, 17780, 31620) are investigated. This represents a total of 209 calculation 

cases. The investigated aspect ratios are chosen based on the fitting attempts which 

assume that the hydrodynamic function is approximately proportional to the aspect ratio. 

This “linear” dependence is confirmed when the analytical expression is obtained by 

fitting the numerical results. The investigated Reynolds numbers, whose logarithms to 

base 10 are from 0 to 4.5 with interval of 0.25, are chosen based on the assumption that 

     

Figure 3-3:  Normalized torque per unit length (blue dots), the excitation velocity 

(black solid), and the results on the magnitude, phase, real part and imaginary 

part of the hydrodynamic function for Re=1000 and h/b=0.1. 
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the hydrodynamic function is proportional to the power function of the Reynolds 

numbers, Re a
, where the unknown index, a, is obtained by fitting. This power function 

dependence is extended from the simple dependence, 
0.5Re

, for the ribbon case.  

In order to validate our numerical model, a convergence study is performed to 

identify an appropriate mesh distribution, mesh size, and time interval between data 

points. In our final model, the mesh size is much smaller around the microcantilever’s 

cross-section since higher gradients occur near the microcantilever. For each calculation 

case, with specific Reynolds number and aspect ratio, several models with different mesh 

sizes and time intervals are created and the convergence is proved by the fact that the 

difference in the numerical results from these models are very small and negligible. 

3.2.2 Methods to Extract the Magnitude, Phase, Real Part, and Imaginary Part of the 

Hydrodynamic Function 

Based on the numerical results (from COMSOL) for the magnitude and phase 

offset from the angular excitation velocity; the real and imaginary parts of the 

hydrodynamic function are then calculated. The magnitude and phase of the 

hydrodynamic function are calculated by the following three methods: zero comparison, 

average by integral on the last cycle [82], and the least square method (LSM). All of 

these three methods need the assumption that the numerical results (normalized torque 

per unit length) are sinusoidal with time. 

The first method is to compare the two zeros of both the normalized torque per 

unit length and the angular excitation velocity in the last cycle in order to obtain the 

phase offsets between them. The phase of the hydrodynamic function is the average of 

the two phase offsets subtracted from / 2 , 



49 

 

 0

/4+1- 3 /4+1-
 2

1
,

2
 2

2

nInterval n0a nInterval n0b

nInterval nInterval


  

 
  

 
  (3.10) 

where nInterval is the number of the time intervals between data points in one cycle, n0a 

and n0b is the interpolated time step number of the two values for the normalized torque 

per unit length, which are closest to 0 and with opposite signs. For instance, n0a is 

between 242 and 243 for the calculation case shown in Figure 3-3 since the first zero of 

the normalized torque per unit length during the last cycle occurs at the moment between 

the time step #242 and #243.  In this case, n0a is given by linear interpolation, 

 242
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
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where 242T̂  and 243T̂  are the normalized torques per unit length at the time step #242 and 

#243, respectively. 

The second method is to obtain the average phase of the hydrodynamic function 

by calculating the integral/summation of the product of the numerical results and the 

angular excitation velocity [82], 
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where sMax is the maximum value and ˆ
kT  is the normalized torque per unit length at the 

time step k in the last cycle. 

For the above two methods, the magnitude of the hydrodynamic function is the 

maximum value of the normalized torque per unit length in the last cycle. 

The third method is to use the least square method to obtain the fitting expression 

(sinusoidal with time and the magnitude is  ) for the numerical results and then 



50 

 

compare to the angular excitation velocity to get the phase of the hydrodynamic function 

as follows, 
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The results of the magnitude, phase, real part and imaginary part of the 

hydrodynamic function at Re=1000 and h/b=0.1 are shown in Figure 3-3. From the 

results, one can see that all three methods gave almost the same results (relative 

differences are less than 0.5%), which confirms the assumption that the torque per unit 

length is sinusoidal with time is valid. The numerical results from COMSOL simulation 

for this case are valid. Both the mesh size and the time interval between data points are 

small enough and don’t have to be further reduced. For each calculation case with 

specific combination of the Reynolds number and the aspect ratio, the mesh size and 

calculation parameters are adjusted in order to make sure the resultant values of the 

hydrodynamic function obtained by the three methods are very close, similarly to the case 

shown in Figure 3-3. 
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3.2.3 Results of the Numerical Simulations for Rectangular Microcantilevers 

A Java program, whose source file is provided in APPENDIX A, is developed to 

generate COMSOL models and compute the normalized torque per unit length. A 

MATLAB program, whose source file is provided in APPENDIX B, is developed to 

extract the magnitude, phase, real part, and imaginary part of the hydrodynamic function. 

Numerical results for the magnitude, phase, real part, and imaginary part of the 

hydrodynamic function in terms of the Reynolds number and aspect ratio (h/b) are given 

in Table C-1, Table C-2, Table C-3, and Table C-4 in APPENDIX C, respectively. 

Numerical results for the real and imaginary parts of the hydrodynamic function in terms 

of the Reynolds number and aspect ratio (h/b) are shown in Figure 3-4. Results using the 

analytical hydrodynamic function for the ribbon case [88] are also shown on the same 

figure for comparison purpose. From Figure 3-4, it can be seen that, as the Reynolds 

number increases, both real and imaginary parts of the hydrodynamic function decrease 

rapidly. Furthermore, as the aspect ratio (h/b) decreases, both the real and imaginary parts 

 

Figure 3-4:  The hydrodynamic function in terms of the Reynolds number and 

aspect ratio: the real part (Left) & the imaginary part (Right). 
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of the hydrodynamic function decrease and the numerical results approach the empirical 

analytical expression for the ribbon case [88]. For the cases with very small aspect ratios, 

it is noted that the difference between the numerical results and the values calculated by 

Eqs. (3.7a-f) for the ribbon case is finite; the difference will not asymptotically approach 

zero with the reduction of the aspect ratio. This is due to the infinite flat plane assumption 

used for the ribbon case, which ignores the edge effect. 

3.3 Analytical Expression of the Hydrodynamic Function for Rectangular 

Microcantilevers 

When choosing the investigated Reynolds numbers and aspect ratios, it is 

assumed that the hydrodynamic function is proportional to the power function of the 

Reynolds number and approximately proportional to the aspect ratio. This assumption is 

extended from the approximation expressions proposed in the literature for the ribbon 

case [67,70, 93]. For example, the approximated expression proposed in Ref. 93, which is 

rewritten as Eq. (3.8), indicates that both the real part and imaginary part of the 

hydrodynamic function dependent on 
0.5Re

, which is a power function with the index of 

-0.5. 

In general, the analytical expression of the hydrodynamic function can be written 

in the following form, 

 rect,tors R1 R2 I1 I2(Re)Re, .(Re)j
h h h

b b b

     
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by fitting the numerical results on the values of real and imaginary parts of the 

hydrodynamic function, an analytical expression of the hydrodynamic function in terms 

of the Reynolds number, Re, and aspect ratio, h/b, is obtained using the MATLAB 

surface fitting tool, the function sftool, and is given by [92] 
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rect,tors,r

4

l

3
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1 0.5

rect,tors,imag (Re 0.45Re )[0.75+ ( ]./ )h b     (3.17b) 

Using this analytical expression, the values of hydrodynamic function for any 

arbitrary aspect ratio and Reynolds number within the parameter ranges investigated 

could be rapidly obtained. For the investigated aspect ratios (from 0.01 to 0.2) and 

Reynolds numbers (from 1 to 31,620), the real part of the hydrodynamic function is 

within 6.2% of the numerical results, and the imaginary part of the hydrodynamic 

function is within 22% of the numerical results. It is noted that the largest discrepancy for 

the imaginary part occurs when the Reynolds number is high and the aspect ratio is either 

very small or very large. When Re<10,000 and 0.02≤h/b≤0.1, the largest discrepancy 

between the imaginary parts of the expression and the numerical results decreases to 8%. 

A more complicated model could be used for fitting the imaginary part of the 

hydrodynamic function over a wide range of Re and h/b. For high Reynolds numbers, 

although the relative discrepancy is high, the absolute difference is small since the values 

of the imaginary part of the hydrodynamic function are very small. For very high 

Reynolds number, the hydrodynamic function in viscous liquid could be approximated as 

that in inviscid liquid and the imaginary part is approximated as zero.  
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In order to improve the analytical expression of the hydrodynamic function, the 

following forms 

   0.5 0.25 2

rect,tors,real R1 R2 R3 R4 R5Re Re 1 ( / ) ( / ) ,c c c c h b c h b          (3.18a) 

  1 0.75 0.5 2

rect,tors,imag I1 I2 I3 I4 I5 I6Re Re Re 1 ( / ) ( / ) ,c c c c c h b c h b            (3.18b) 

are assumed to obtain the surface fitting and a new analytical expression is given by   
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For the ribbon case in inviscid liquids, the analytical expression of the 

hydrodynamic function, described by Eqs. (3.19a-b), reduces to 0.057 + 0.00018 j, which 

is close to 0.0625 given in Eq. (2.46) obtained by Chu [51]. The relative difference of 

these two real parts is 9.6%. In order to obtain better accuracy of the hydrodynamic 

function for viscous liquids, the constant terms 0.057 and 0.00018 are kept in the 

analytical expression rather than replaced by 0.0625 and 0, respectively. 

By using this analytical expression of the hydrodynamic function described by Eq. 

(3.19a-b), the real part is within 5.9% of the numerical results, and the imaginary part is 

within 11.2% of the numerical results for the investigated aspect ratios (from 0.01 to 0.2) 

and Reynolds numbers (from 1 to 31,620). The discrepancy on the imaginary part of the 

hydrodynamic function does not much affect the accuracy of the prediction on the 

resonance frequency. On the other hand, it does affect the accuracy of the prediction on 

the quality factor because the quality factor is inversely proportional to the imaginary part 

of the hydrodynamic function. For the cases with very high Reynolds numbers such as 
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17,780, the analytical expression Eq. (3.19b) rather than Eq. (3.17b) should be used to 

evaluate the imaginary part of the hydrodynamic function. 

The alternative method is to directly use the numerical values of the 

hydrodynamic function at the investigated Reynolds numbers and aspect ratios when 

calculating the quality factor. In Section 5.3, it will be shown in details how to design the 

microcantilever dimensions and calculate the characteristics (resonance frequency, 

quality factor, mass sensitivity, normalized mass limit of detection) by using the 

numerical results of the hydrodynamic function at the investigated Reynolds numbers and 

aspect ratios rather than the analytical expression of the hydrodynamic function. This 

approximation can only be used for the investigated Reynolds numbers and aspect ratios. 

It requires maintaining a table for the values of the hydrodynamic function, which is 

tedious. As a result, it is only used to design microcantilevers working with high 

Reynolds numbers.  
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4. CHARACTERISTICS OF TORSIONALLY VIBRATING 

RECTANGULAR MICROCANTILEVERS IN VISCOUS LIQUIDS 

4.1 Introduction 

Based on the analytical expression of the hydrodynamic function obtained in the 

previous chapter, the characteristics (frequency spectrum, resonance frequency and 

quality factor) of torsionally vibrating microcantilevers in viscous liquid media are 

theoretically evaluated in this chapter. The characteristics relevant to chemical sensor 

applications will be evaluated in the next chapter. A MATLAB program, whose source 

file is provided in APPENDIX D, was developed to calculate the characteristics and the 

design dimensions of rectangular microcantilevers. 

In this chapter, the resonance frequencies and quality factors of torsionally 

vibrating microcantilevers in viscous liquids are evaluated and their dependences on the 

geometry of the microcantilever and the properties of the liquid are investigated. Then the 

evaluated characteristics of a torsionally vibrating microcantilever in water are compared 

to those of the same microcantilever operating in transverse and lateral modes, and to 

experimental data obtained from the Center for MEMS and Microsystems Technologies, 

Georgia Institute of Technology in collaboration with the Microsensor Research Lab at 

Marquette University [125]. 

In order to calculate the characteristics of a vibrating microcantilever in viscous 

liquids, the material properties such as Young’s modulus and shear modulus should be 

determined. Silicon is the most common single material used in MEMS devices and it is 

an anisotropic crystalline material whose material properties depend on orientation 

relative to the crystal lattice [124]. In the frame of reference of a standard (100) wafer, 
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whose x, y , z axes are in the drections [110] , [110] , [001] , respectively, the Young’s 

modulus (Ex) is 169 GPa and the shear modulus (Gyz) is 79.6 GPa [124]. 

For the calculations in this dissertation, if there is no further description, the 

following material properties are used. The Young’s modulus, shear modulus and density 

of the silicon microcantilever are 169 GPa, 79.6 GPa, 2330 kg/m
3
, respectively; the 

density and viscosity of air are 1.205 kg/m
3
, 0.01827 cP, respectively; the density and 

viscosity of water are 1000 kg/m
3
, 1 cP, respectively. Besides water, aqueous glycerol 

solutions are also simulated as the operating liquid media in this dissertation. The ratios 

of density and viscosity between the solutions and water are given in Table 4-1 for 

aqueous glycerol solutions [117]. 

Table 4-1:  Ratios of density (ρag) and viscosity (ηag) between aqueous glycerol 

solutions and water [117] 

Percent (w/w) 0.5 1 2 3 4 5 6 7 8 

ρag / ρwater 0.9994 1.0005 1.0028 1.0051 1.0074 1.0097 1.012 1.0144 1.0167 

ηag / ηwater 1.009 1.02 1.046 1.072 1.098 1.125 1.155 1.186 1.218 

Percent (w/w) 9 10 12 14 16 18 20 24 28 

ρag / ρwater 1.0191 1.0215 1.0262 1.0311 1.036 1.0409 1.0459 1.0561 1.0664 

ηag / ηwater 1.253 1.288 1.362 1.442 1.53 1.627 1.734 1.984 2.274 

Percent (w/w) 32 36 40 44 48 52 56 60 64 

ρag / ρwater 1.077 1.0876 1.0984 1.1092 1.12 1.1308 1.1419 1.153 1.1643 

ηag / ηwater 2.632 3.082 3.646 4.434 5.402 6.653 8.332 10.66 13.63 

Percent (w/w) 68 72 76 80 84 88 92 96 100 

ρag / ρwater 1.1755 1.1866 1.1976 1.2085 1.2192 1.2299 1.2404 1.2508 1.2611 

ηag / ηwater 18.42 27.57 40.49 59.78 84.17 147.2 383.7 778.9 1759.6 
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In addition, if there is no further description, the investigated microcantilevers are 

80 rectangular silicon microcantilevers with lengths of 200, 400, 600, 800, 1000 μm, 

widths of 45, 60, 75, 90 μm and thicknesses of 12, 6, 3, 1.5 μm. These geometries are 

similar to the geometries used to investigate the characteristics of laterally vibrating 

microcantilevers in viscous liquids in Ref 82, and are selected here for comparison 

purpose. 

4.2 Resonance Frequency 

4.2.1 Trends in the Resonant Frequency as a Function of Microcantilever Geometry 

The resonance frequency of a torsionally vibrating microcantilever in vacuum 

calculated using Eq. (2.18a) is found to be dependent on h/(bL). The simulated resonance 

frequencies of the investigated microcantilevers operating in the 1
st
 torsional mode in 

water are shown in Figure 4-1 with respect to the parameter h/(bL). Two theories are used 

to evaluate the resonance frequencies: one is the ribbon theory [88] which ignores the 

thickness effects; the other one is the theory proposed in Chapter 2 which considers all 

three thickness effects. 

From Figure 4-1, it is seen that the 1
st
 torsional resonance frequency is dependent 

on the parameter h/(bL) for all investigated microcantilever geometries. On the other 

hand, the 1
st
 lateral resonance frequency is dependent on b/L

2 
[82-84]. Such different 

trends can be used to optimize device geometry in chemical sensing applications. It is 
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Figure 4-1:  Simulated resonance frequencies of silicon microcantilevers vibrating 

in the first torsional mode in water as a function of h/(bL) for widths of 45, 60, 75, 

and 90 μm, lengths of 200 μm (o), 400 μm (□), 600 μm (◊), 800 μm (×), 1000 μm 

(+), and thicknesses of 12, 6, 3, 1.5 μm. 
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also seen in Figure 4-1 that, as the aspect ratio (h/b) decreases, the resonance frequencies 

calculated by the theory in Chapter 2 approach those calculated by ribbon theory. In 

addition, the results indicate that the difference in the values of the 1
st
 torsional resonance 

frequencies in water obtained by these two theories could be greater than 9% for 

microcantilevers with h/b>0.16. This means that the error in the resonance frequency for 

the 1
st
 torsional mode could be also greater than 9% for microcantilevers with h/b>0.16 

operating in water if the thickness effects are ignored. 

4.2.2 Effects of the Liquid Medium’s Viscosity on the Resonant Frequency 

The resonance frequencies of two specific microcantilever geometries 

(200x60x6.7 μm
3
 and 1000x90x10.9 μm

3
) in aqueous glycerol solutions are investigated. 

The resonance frequencies calculated using the inviscid liquid theory [51-52], the ribbon 

theory [88] and the theory proposed in Chapter 2 are shown and compared in Figure 4-2 

for aqueous glycerol solutions. 

When the concentration of the aqueous glycerol solution is below 60%, from 

Figure 4-2, it is seen that the resonance frequency decreases approximately linearly as the 

concentration, hence the viscosity of the aqueous glycerol solution increases.The 

difference between the calculated values of the resonance frequency obtained by the 

ribbon theory [88] and the theory proposed in Chapter 2 is nearly constant. For example, 

this difference is around 80 kHz and the relative errors are greater than 8% for the 

200x60x6.7 μm
3 

microcantilever. This indicates that the error of the ribbon theory could 

be greater than 8% when evaluating the 1
st
 torsional resonance frequency of the 

microcantilever whose aspect ratio is greater than 0.11 in aqueous glycerol solutions with 
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Figure 4-2:  Resonance frequencies of the microcantilevers 200x60x6.7 μm
3
 (top) 

& 1000x90x10.9 μm
3
 (bottom) in aqueous glycerol solutions. 
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the glycerol concentration below 80%. 

4.3 Quality Factor 

4.3.1 Trends in the Quality Factor as a Function of Microcantilever Geometry 

The quality factors of torsionally vibrating microcantilevers obtained by ribbon 

theory [88] and the theory proposed in Chapter 2 are shown and compared in Figure 4-3 

as a function of hL
-0.5

. From Figure 4-3, it is seen that the quality factor in the 1
st
 torsional 

mode is dependent on the parameter hL
-0.5

 for all investigated microcantilever geometries. 

On the other hand, the quality factor in the 1
st
 lateral mode frequency is dependent on 

hb
0.5

/L [82-84]. Such different trends can be used to optimize the frequency stability in 

chemical sensing applications. It is also seen in Figure 4-3 that, as the aspect ratio (h/b) 

decreases, the quality factors calculated by the theory in Chapter 2 approach those 

calculated by ribbon theory. The results also indicate that the difference in the values of 

the quality factors obtained by these two theories could be greater than 5% for 

microcantilevers with h/b>0.16. This means that the error in the calculated quality factor 

for the 1st torsional mode could be also greater than 5% for microcantilevers with 

h/b>0.16 operating in water if the thickness effects are ignored. 
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Figure 4-3:  Simulated quality factors of silicon microcantilevers vibrating in the 

first torsional mode in water as a function of hL
-0.5

 for widths of 45, 60, 75, and 90 

μm, lengths of 200 μm (o), 400 μm (□), 600 μm (◊), 800 μm (×), 1000 μm (+), and  

thicknesses of 12, 6, 3, 1.5 μm.  
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4.3.2 Effects of the Liquid Medium’s Viscosity on the Quality Factor 

The quality factors of two specific microcantilever geometries (200x60x6.7 μm
3
 

and 1000x90x10.9 μm
3
) in aqueous glycerol solutions are investigated. The quality 

factors calculated by the ribbon theory [88] and the theory proposed in Chapter 2 are 

shown and compared in Figure 4-4. 

When the concentration of the aqueous glycerol solution is below 60%, from 

Figure 4-4, it is seen that the quality factor decreases approximately linearly as the 

concentration, hence the viscosity of the aqueous glycerol solution increases. When the 

concentration increases up to 60%, the difference between the calculated values of the 

quality factor obtained by ribbon theory [88] and the theory proposed in Chapter 2 

decreases. The relative errors are greater than 7%. As expected, the error could be greater 

than 7% for evaluating the quality factor of the microcantilever operating in the 1
st
 

torsional mode in aqueous glycerol solutions with the glycerol concentration below 60% 

when the aspect ratio is greater than 0.11. 
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Figure 4-4:  Quality Factors of the microcantilevers 200x60x6.7 μm
3
 (top) & 

1000x90x10.9 μm
3
 (bottom) in aqueous glycerol solutions. 
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4.4 Comparison on Torsional, Lateral, and Transverse Modes 

The resonance frequencies in air and water, the quality factors in water for four 

microcantilever geometries under torsional, lateral, and transverse modes are shown and 

compared in Table 4-2. 

The 1
st
 resonance frequency of a microcantilever operating torsionally, laterally, 

or transversely in water is found to shift to a lower value compared to that in air, as 

expected. However, the predicted resonance frequency shifts are found to be different for 

these three vibration modes. For instance, the 1
st
 lateral resonance frequencies only drop 

by a value of up to 10% while the 1
st
 torsional and 1

st
 transverse resonance frequencies 

Table 4-2:  Comparison on resonance frequencies and quality factors for four 

microcantilevers under 1
st
 torsional, 1

st
 lateral, and 1

st
 transverse modes 

Geometry Lxbxh [μm
3
] 400x45x12 200x45x6 200x45x12 200x90x12 

Torsional 

 

 

Mode 

fair  [MHz] 1.717 1.847 3.433 1.847 

fwater  [MHz] 1.355 1.257 2.726 1.276 
Percent 

Change [%] 
-21.1 -31.9 -20.6 -30.9 

Qwater 31.5 22.24 44.5 44.3 

Lateral 

 

Mode 

 

[80] 

fair  [MHz] 0.386 1.547 1.547 3.095 

fwater  [MHz] 0.347 1.443 1.411 2.934 
Percent 

Change [%] 
-10.1 -6.72 -8.79 -5.20 

Qwater 17.1 21.2 34.3 60.0 

Transverse 

 

Mode 

 

[80] 

fair  [MHz] 0.103 0.206 0.412 0.412 

fwater  [MHz] 0.064 0.102 0.264 0.214 
Percent 

Change [%] 
-37.8 -50.4 -35.9 -48.0 

Qwater 9.30 9.1 17.3 22.7 
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drop by as much as 32% and 50%, respectively. It is also shown in Table 4-2 that the 1
st
 

resonance frequency of torsionally or laterally vibrating microcantilevers in water is 

much higher than that of transversely vibrating microcantilevers with the same 

geometries. For liquid-phase chemical sensor applications, it is more advantageous to 

operate in the 1
st
 torsional or 1

st
 lateral mode because the sensitivity of a microcantilever 

as a chemical sensor is proportional to its resonance frequency. 

Furthermore, for the same geometry, the quality factor of microcantilevers 

vibrating in the 1
st
 torsional or 1

st
 lateral mode is much higher than that of 

microcantilevers vibrating in the 1
st
 transverse mode. It is also seen that the quality factor 

increases as the length of the microcantilever decreases or as the thickness of the 

microcantilever increases for all three modes. However, as the width of the 

microcantilever increases, the quality factors are found to remains almost constant for the 

torsional mode, whereas it increases for the lateral or transverse mode. 

4.5 Characteristics Comparison for a Specific Microcantilever with Effective 

Material Properties 

Before evaluating the characteristics of a microcantilever fabricated by hybrid 

layers with different materials, its effective material properties such as the Young’s 

modulus and shear modulus have to be determined. The resonance frequencies of the 

torsional, lateral and transverse modes of a microcantilever in vacuum are well known 

[110,116] and are given as follows, respectively, 

 tors,vac,1
4
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1

p

GK
f

L J
  (4.1a) 
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where L, b, h, G, K, ρ, Jp , E are length, width, thickness, shear modulus, torsional 

constant, mass density, polar moment of the cross-section area, Young’s modulus of the 

microcantilever, respectively. The number in the subscript is the mode number. Since the 

resonance frequencies in vacuum are close to those in air, the effective material 

properties are approximated as 
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By using the experimental results [125] of the resonance frequencies in air, the effective 

material properties are calculated as Geq=45.4 GPa and Eeq=110 GPa. They represent the 

values of the shear modulus and Young’s modulus of the microcantilever used in the 

simulations in this section. 
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The resonance frequencies and quality factors of a 400x90x22.3 μm
3
 (the length, 

width, thickness are 400, 90, 22.3 μm, respectively) microcantilever operating in the 1
st
 

torsional, 1
st
 lateral, 1

st
 transverse, and 2

nd
 transverse modes are obtained by both 

theoretical simulations and experimental measurements and are compared in Table 4-3. 

Table 4-3: Comparison of resonance frequencies and quality factors of a 

400x90x22.3 μm
3
 microcantilever 

 

1
st
 Torsional Mode 1

st
 Lateral Mode 

fair 

[kHz] 

fwater 

[kHz] 

Percent 

Change  
Qwater 

fair 

[kHz] 

fwater 

[kHz] 

Percent 

Change  
Qwater 

Theory with 

Thickness Effects 
1218.63 957.54 -21.42% 50.6 624.24 573 -8.21% 41.7 

Ribbon Theory 1366.66 1100.3 -19.49% 53.4 624.32 620 -0.69% 73.4 
Percent Change 

Between Ribbon 

Theory and 

Theory with 

Thickness Effect 

12.1% 14.9% 1.93% 5.5% 0.013% 8.20% 7.52% 76% 

Available 

Experimental Data 

[125] 

1218.79 950.88 -21.98% 44 636.68 596 -6.39% N/A 

Percent Change 

Between Theory 

with Thickness 

Effects and the 

Experiment 

-0.013% 0.7% 2.5% 15% -1.95% -3.86% -28.5% N/A 

Percent Change 

Between Ribbon 

Theory and 

the Experiment 

12.1% 15.7% 11.3% 21% -1.94% 4.03% 89.2% N/A 

 

1
st
 Transverse Mode 2

nd
 Transverse Mode 

fair 

[kHz] 

fwater 

[kHz] 

Percent 

Change  
Qwater 

fair 

[kHz] 

fwater 

[kHz] 

Percent 

Change 
Qwater 

Ribbon Theory 154.53 97.639 -36.82% 19.96 968.58 622.58 -35.72% 43.8 

Available 

Experimental Data 

[125] 

154.6 96.074 -37.86% 20 954.57 615.01 -35.57% 42 

Percent Change 

Between Ribbon 

Theory and 

the Experiment 

-0.045% 1.63% 2.75% -0.2% 1.47% 1.23% -0.42% 4.3% 
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This microcantilever geometry is used because of the available set of experimental data. 

In this table, the experimental data are obtained in the Center for MEMS and 

Microsystems Technologies at Georgia Institute of Technology in collaboration with the 

Microsensor Research Lab at Marquette University [125]. The ribbon theories for 

torsional, lateral, and transverse modes were proposed in Ref 88, 75, 62, respectively. 

The theory with thickness effects for torsional mode are presented in Chapter 2, which 

considers thickness effects on torsional constant, hydrodynamic function, polar moment 

of cross-section area. The theory with thickness effects for lateral mode was proposed in 

Ref 82 and 84. 

The simulated frequency spectra of this microcantilever vibrating torsionally, 

laterally, and transversely in air or water are shown in Figure 4-5. From Table 4-3 and 

Figure 4-5, it is seen that the resonance frequency of this microcantilever in air or water 

under 1
st
 torsional or 1

st
 lateral vibration mode is much higher than that under 1

st
 

transverse mode due to the higher stiffness in torsional or lateral mode. The quality factor 

of this microcantilever in air or water under 1
st
 torsional or 1

st
 lateral vibration mode is 

higher than that under 1
st
 transverse mode. Experimental data [125] also show that the 

percent drop from air to water of the resonance frequency of this microcantilever for the 

1
st
 torsional, 1

st
 lateral, 1

st
 transverse, and 2

nd
 transverse modes are 21.98%, 6.39%, 

37.86%, 35.57%, respectively. These indicate that both 1
st
 torsional and 1

st
 lateral modes 

have better performance than the two transverse modes, and the 2
nd

 transverse mode has 

better performance than the 1
st
 transverse mode for this microcantilever, as expected. 
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Furthermore, from Table 4-3, the discrepancies between calculated values by the 

ribbon theory and the theory proposed in Chapter 2 are large for this microcantilever 

operating in the 1
st
 torsional mode or 1

st
 lateral mode in water. For example, the 

discrepancies between the calculated values of resonance frequencies and quality factors 
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Figure 4-5:  Simulated frequency spectra of a 400x90x22.3 μm
3
 silicon 

microcantilever (G=45.4 GPa, E=110 GPa) vibrating torsionally, laterally, 

transversely in air or water. 
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in water for 1
st
 torsional mode and 1

st
 lateral mode are 14.9%, 8.2%, respectively. The 

discrepancies between calculated values by the theory proposed in Chapter 2 and 

experimental data are small for this microcantilever operating in the 1
st
 torsional mode or 

1
st
 lateral mode in water. For example, the discrepancies between the calculated values of 

the resonance frequencies in water for 1
st
 lateral and 1

st
 torsional mode are 0.7%, -3.86%, 

respectively. These indicate that the theory proposed in Chapter 2 of this dissertation for 

torsional mode and the theory proposed in Ref 82 and 84 for lateral mode have improved 

the prediction of the resonance frequencies and quality factors in water, whereas the 

ribbon theory overestimates the resonance frequency in water. Ignoring thickness effects 

could result in high error for the microcantilever with such high aspect ratio (h/b) as 

0.225 for both torsional and lateral modes, especially for the torsional mode. In contrast, 

the discrepancies between the calculated values by the ribbon theory and the 

experimental data are small for the two transverse modes in water, especially for the 1st 

transverse mode. It confirms that the thickness effect on transverse mode could be 

ignored in viscous liquids such as water, even for such high aspect ratio (h/b) as 0.224 for 

this microcantilever. 

Thickness effects on the torsional constant, hydrodynamic function, and polar 

moment of cross-section area of this microcantilever under 1
st
 torsional mode in water are 

compared in Table 4-4. In this table, the changes of the resonance frequency in the third 

column and the quality factor in the sixth column are the differences of the relevant 

calculated values between the other cases and the case considering all the thickness 

effects. The percentages in the fourth and senventh columns are weights of the 

charateristics change induced by one specific thickness effect. For example, the change of 
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the resonance frequency in water between the case only considering the thickness effect 

of the torsional constant and the case considering all three thickness effects is 85.308 kHz. 

The change of the resonance frequency is 142.778 kHz between the ribbon case and the 

case considering all three thickness effects. The ratio between these two changes of 

resonance frequency is the weight of the thickness effect of torsional constant on the 

resonance frequency and is given by 59.7%. 

From Table 4-4, it is seen that for this 400x90x22.3 μm
3
 microcantilever under 1

st
 

torsional mode in water, ignoring the thickness effect on the torsional constant or the 

hydrodynamic function increases the calculated values of both the resonance frequency 

and the quality factor. Ignoring the thickness effect on the polar moment of the cross-

section area increases the calculated values of the resonance frequency, but decreases the 

calculated values of the quality factor. The thickness effect on the torsional constant is 

dominant when evaluating the resonance frequency since the weights of the thickness 

Table 4-4:  Comparison of the thickness effects on torsional constant (K), 

Hydrodynamic function (Гrect,tors), and polar moment of cross-section area (Jp) of 

a 400x90x22.3 μm
3
 microcantilever under the 1

st
 torsional mode in water 

 
fwater 

[kHz] 
dfwater 

[kHz] 
Percent 

[%] Qwater dQwater Percent 

[%] 
Consider all three 

thickness effects 
957.542 N/A N/A 50.6 N/A N/A 

Ignore thickness 

effect on K 
1042.85 85.308 59.7 52.8 2.2 78.6 

Ignore thickness 

effect on Гrect,tors 
990.80 33.258 23.3 52.6 2.0 71.4 

Ignore thickness 

effect on Jp 
975.21 17.668 12.4 49.2 -1.4 -50 

Sum of the 3 rows 

above 
N/A 136.234 95.4 N/A 2.8 100 

Ribbon Theory 

(ignore all three 

thickness effects) 

1100.32 142.778 100 53.4 2.8 100 
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effects of the torsional constant, hydrodynamic function, polar moment of cross-section 

area for calculated values of resonance frequencies are 59.7%, 23.3%, 12.4%, 

respectively. The thickness effects on both the torsional constant and hydrodynamic 

function are dominant when evaluating the quality factor since the weights of the 

thickness effects of the torsional constant, hydrodynamic function, polar moment of 

cross-section area are 78.6%, 71.4%, -50%, respectively. It also indicates that the 

thickness effects could be approximated as the superposition of each effect when 

evaluating the resonance frequency and quality factor for this microcantilever. 
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5. TORSIONALLY VIBRATING MICROCANTILEVERS AS CHEMICAL 

SENSORS IN VISCOUS LIQUIDS 

5.1 Sensitivity 

5.1.1 Definitions and Derivation 

The sensitivity is the ratio of the magnitude of the output signal to the magnitude 

of the input quantity to be measured. For a dynamic mode MEMS-based sensor, the mass 

sensitivity is the ratio of the magnitude of the resonance frequency shift to the magnitude 

of the mass change and is given as 

 
,
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  (5.1) 

fr,i is the resonance frequency associated with the i-th vibration mode. The resonance 

frequency and mass are associated with both the microcantilever and the film (sensing 

layer). It is assumed that the mass inertia and rotational inertia of the film are negligible 

compared to those of the microcantilever. Based on Eq. (2.18a), Eq. (2.19) and Eq. (2.42), 

the i-th torsional resonance frequency is rewritten as 
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The resonance frequency shift is obtained using the chain rule and is given as 
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The terms on the right side of Eq. (5.3) are associated with the resonance frequency shift 

due to the variation of the rotational inertia, stiffness, damping ratio and hydrodynamic 

inertial torque per unit length, respectively. The variations of the stiffness, damping ratio, 
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and hydrodynamic inertial torque per unit length are generally negligible so that the 

resonance frequency shift is essentially due to the rotational inertia variation. Since the 

variations of mass and rotational inertia are only associated with the film, the sensing 

element, the sensitivity and frequency shift are rewritten as 

 ,

, ,
r i

M i

f

f

M
S 




 (5.4) 

 , ,

,

2,tors(

( )
,

2 )

r i f p f

r i

p

J
f

f

J g








    (5.5) 

where Mf and Jp,f are the mass and the polar moment of the cross-section area of the film, 

respectively. The film is assumed to be deposited on the top of the microcantilever 

surface and divided into two identical parts, as shown in Figure 5-1. Although such film 

may not be practical due to the difficulty to deposit, it is proposed as the general case 

because the second moment of area of the center part is negligible; as a result, replacing 

the center part with a reasonal gap would increase the sensitivity. The mass and the polar 

moment of the cross-section area of this film are given as 

 

Figure 5-1:  Geometry of the film (in yellow) and the microcantilever. 
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 ( ) ,f f fbM d h L   (5.6) 
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where ρf , d, and hf  are the density, gap in width direction, and thickness of the film, 

respectively. It is assumed that the analyte sorption only changes the density of the film; 

it does not change the shape and size of the film. So the variations of mass and rotational 

inertia are obtained as 

 ( ) ,f f fb d hM L     (5.8) 

 , ,( ) ( ).f p f p f fJ J     (5.9) 

Substituting Eqs. (5.5)-(5.9) into Eq. (5.4), the sensitivity is rewritten as 
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Eq. (5.10) indicates that the larger the thickness or the gap of the film, the higher the 

sensitivity. While improving the sensitivity by increasing the thickness of the film is also 

applicable for the microcantilevers operating in transverse, lateral or longitudinal mode, 

improving the sensitivity by increasing the gap is only applicable for the torsionally 

vibrating microcantilevers. Assuming the thickness of the film is much less than the 

thickness of the microcantilever and there is no gap in the film, the sensitivity expression 

is reduced to 
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Eq. (5.11) is used to calculate the mass sensitivity in this dissertation. It always 

underestimates the mass sensitivity a little bit. The mass sensitivity could be improved by 
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adding a gap in the film. For example, if the aspect ratio (h/b) is 0.1, adding a gap of half 

width (d/b=0.5) will improve the sensitivity by around 70%. 

5.1.2 Trends in the Mass Sensitivity as a Function of Microcantilever Geometry 

For the case of film without gap (d=0), the mass sensitivities of torsionally 

vibrating microcantilevers obtained from the ribbon theory [88] and the theory proposed 

in Chapter 2 are shown and compared in Figure 5-2 as a function of h
0.5

/(b
2
L

1.5
). From 

Figure 5-2, it is seen that the mass sensitivity in torsional mode is approximately 

dependent on the parameter h
0.5

/(b
2
L

1.5
) for all investigated microcantilever geometries. It 

is also shown in Figure 5-2 that, as the aspect ratio (h/b) decreases, the values of mass 

sensitivities calculated using the theory in Chapter 2 approach those calculated from the 

ribbon theory. The results also indicate that the difference in the values of mass 

sensitivities obtained from these two theories could be greater than 20% for 

microcantilevers with h/b>0.16. This also means that the error in the calculated mass 

sensitivity for the 1
st
 torsional mode could be also greater than 20% for microcantilevers 

with h/b>0.16 in water if the thickness effects are ignored. 
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Figure 5-2:  Simulated mass sensitivities of silicon microcantilevers vibrating in 

the first torsional mode in water as a function of h
0.5

/(b
2
L

1.5
) for widths of 45, 60, 

75, and 90 μm, lengths of 200, 400, 600, 800, 1000 μm, and thicknesses of 12 μm 

(o), 6 μm (□), 3 μm (◊), 1.5 μm (×). 
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5.1.3 Effects of the Liquid Medium’s Viscosity on the Mass Sensitivity 

For the case of film without gap (d=0), the mass sensitivities of two specific 

microcantilever geometries (200x60x6.7 μm
3
 and 1000x90x10.9 μm

3
) in aqueous 

glycerol solutions are investigated. The mass sensitivity calculated using the ribbon 

theory [88] and the theory proposed in Chapter 2 are shown and compared in Figure 5-3. 

When the concentration of the aqueous glycerol solution is below 60%, from 

Figure 5-3, it is seen that the mass sensitivity decreases approximately linearly as the 

concentration, hence the viscosity of the aqueous glycerol solution increases. It is also 

shown that the difference between the calculated values of the mass sensitivities obtained 

from the ribbon theory [88] and the theory proposed in Chapter 2 is nearly constant and 

large. For example, this difference is around 0.15 Hz/pg and the relative errors are greater 

than 12% for the 200x60x6.7 μm
3 

microcantilever. This indicates that the error could be 

greater than 12% when evaluating the mass sensitivity for microcantilevers whose aspect 

ratio is greater than 0.11 for the 1
st
 torsional mode in aqueous glycerol solutions with any 

glycerol concentrations. 
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Figure 5-3:  Mass sensitivities of the microcantilevers 200x60x6.7 μm
3
 (top) & 

1000x90x10.9 μm
3
 (bottom) in aqueous glycerol solutions. 
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5.2 Limit of Detection 

5.2.1 Definitions and Derivation 

The limit of detection (LOD) is a measure of the minimum change of the input 

quantity to which the sensor can respond. For dynamic mode MEMS-based sensors, the 

mass limit of detection associated with the i-th mode is defined as three times ratio of 

device frequency noise to the mass sensitivity and is given as 

 
noi

,

,

se,
.

3
M i

M i

i
LOD

S

f
  (5.12) 

The device frequency noise (Δfnoise,i) is proportional to the phase noise (Δθn) and the ratio 

of resonance frequency (fr,i) to the quality factor (Qi) [71] and is given as 
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Substituting Eq. (5.13) into Eq. (5.12), the mass limit of detection is rewritten as  
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The phase noise varies with the different sensor systems. In general, the normalized mass 

limit of detection is defined as the ratio of the mass limit of detection to the phase noise 

and is given as 
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It indicates that the normalized mass limit of detection is proportional to the resonance 

frequency and inversely proportional to both the quality factor and the mass sensitivity. 
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5.2.2 Trends in the Normalized Mass Limit of Detection as a Function of 

Microcantilever Geometry 

For the case of film without gap (d=0), the normalized mass limit of detection of 

torsionally vibrating microcantilevers obtained from the ribbon theory [88] and the theory 

proposed in Chapter 2 are shown and compared in Figure 5-4 as a function of bL/h
0.5

. 

From Figure 5-4, it is seen that the normalized mass limit of detection in 1
st
 torsional 

mode is approximately dependent on the parameter bL/h
0.5

 for all investigated 

microcantilever geometries. It is also shown in Figure 5-4 that, as the aspect ratio (h/b) 

decreases, the normalized mass limits of detection calculated by the theory in Chapter 2 

approach those calculated by ribbon theory. The results also indicate that the difference in 

the values of normalized mass limit of detection obtained from these two theories could 

be greater than 7% for microcantilevers with h/b>0.16. This also means that the error in 

the calculated normalized mass limit of detection for the 1
st
 torsional mode could be also 

greater than 7% for microcantilevers with h/b>0.16 in water if the thickness effects are 

ignored. 
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Figure 5-4:  Simulated normalized mass limits of detection of silicon 

microcantilevers vibrating in the first torsional mode in water as a function of 

bL/h
0.5

 for widths of 45, 60, 75, and 90 μm, lengths of 200, 400, 600, 800, 1000 μm, 

and thicknesses of 12 μm (o), 6 μm (□), 3 μm (◊), 1.5 μm (×). 
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5.2.3 Effects of the Liquid Medium’s Viscosity on the Normalized Mass Limit of 

Detection 

For the case of film without gap (d=0), the normalized mass limits of detection of 

two specific microcantilever geometries (200x60x6.7 μm
3
 and 1000x90x10.9 μm

3
) in 

aqueous glycerol solutions are investigated. The normalized mass limits of detection 

calculated from the the ribbon theory [88] and the theory proposed in Chapter 2 are 

shown and compared in Figure 5-5. 

When the concentration of the aqueous glycerol solution is below 40%, from 

Figure 5-5, it is seen that the normalized mass limit of detection increases approximately 

linearly as the concentration, hence the viscosity of the aqueous glycerol solution 

increases. It is also shown that the difference between the calculated values of the 

normalized mass limit of detection obtained from the ribbon theory [88] and the theory 

proposed in Chapter 2 is very small. This indicates that the thickness effects can be 

ignored when evaluating the normalized mass limit of detection of the microcantilever, 

even whose aspect ratio is greater than 0.11, for the 1
st
 torsional mode in aqueous 

glycerol solutions with the glycerol concentration below 70%. 



86 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80

Theory w/o Thickness Effects

Theory w/ Thickness Effects

N
o

rm
al

iz
ed

 M
as

s 
L

im
it

 o
f 

D
et

ec
ti

o
n

  
(u

g
)

Percent of Aqueous Glycerol  (%)
 

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80

Theory w/o Thickness Effects

Theory w/ Thickness Effects

N
o

rm
al

iz
ed

 M
as

s 
L

im
it

 o
f 

D
et

ec
ti

o
n

  
(u

g
)

Percent of Aqueous Glycerol  (%)
 

Figure 5-5:  Normalized Mass Limits of detection of the microcantilevers 

200x60x6.7 μm
3
 (top) & 1000x90x10.9 μm

3
 (bottom) in aqueous glycerol solutions. 
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5.3 Designs and Characteristics Calculations of Rectangular Microcantilever 

Dimensions  

For chemical sensing applications, the design/seclection of the microcantilever 

dimensions is very important. If the i-th torsional resonance frequency (fr,i) of the 

microcantilever is given, the following procedures are proposed to calculate the 

dimension and characteristics of the microcantilever. 

(1). For the combination of each Reynolds number (Re) and each aspect ratio (h/b) 

investigated in this dissertation, calculate the width (b) and thickness (h) of the 

microcantilever using the following two equations, 
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Eq. (5.16) is written from the definition of the Reynolds number described by Eq. (2.1). 

(2). Calculate the length (L) of the microcantilever using the following equation, 
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Eqs. (5.19a-c) are written from Eq. (2.41), (2.6), and (2.7), respectively. 
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(3). Calculate the quality factor, an important parameter in determining the 

sensing charateristics of the device. 

(4). Compare and choose the best reasonable dimension, which induces high 

quality factor. 

By following the above procedures, microcantilevers operating in the first 

torsional mode in water are designed for given resonance frequencies; the results of the 

coomputations are listed in Table 5-1. In this table, the subscript N stands for results 

using the numerical calculated values of the hydrodynamic function. The subscript A 

stands for results using values of the hydrodynamic function obtained from the analytical 

expression as described by Eqs. (3.17a-b), which are given in terms of both the Reynolds 

number and the aspect ratio. The subscript S stands for results using the analytical 

expression of the hydrodynamic function as described by Eqs. (3.7a-f), which are given 

only in terms of the Reynolds number [88]. 
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From Table 5-1, it is seen that the lengths obtained by applying the analytical 

expression of the hydrodynamic function in terms of both Reynolds number and aspect 

ratio are very close to those obtained by applying the numerical results of the 

hydrodynamic function. For some combinations of Reynolds number and aspect ratio, the 

length obtained is not much larger than the width or even less than the width, which 

invalidates the assumption of L>>b and should not be chosen even when the resuting 

quality factor is high. The error on the predicted length or quality factor is determined by 

the Reynolds number and aspect ratio (h/b) but not dependent on the resonance frequency. 

Table 5-1:  Dimension and characteristics of designed microcantilevers operating 

in the 1
st
 torsional mode in water 

fwater [MHz] 0.25 0.75 1.25 1.25 1.25 1.25 1.25 1.25 1.25 

Re 1000 1000 1000 5623 5623 5623 5623 5623 10000 

h/b 0.05 0.05 0.05 0.01 0.02 0.05 0.1 0.2 0.2 

h [μm] 2.523 1.457 1.128 0.535 1.070 2.676 5.351 10.703 14.273 

b [μm] 50.46 29.13 22.57 53.51 53.51 53.51 53.51 53.51 71.36 

LN [μm] 275.97 91.99 55.19 5.95 16.15 57.43 141.15 322.63 323.58 

LA [μm] 279.41 93.14 55.88 6.06 16.45 58.39 142.68 320.96 322.63 

LS [μm] 287.93 95.98 57.59 6.05 16.56 60.05 151.11 358.99 360.64 

(LA-LN)/LN [%] 1.25 1.25 1.25 1.86 1.90 1.66 1.08 -0.52 -0.29 

(LS-LN)/LN [%] 4.33 4.33 4.33 1.59 2.54 4.56 7.06 11.27 11.45 

QN [μm] 8.47 8.47 8.47 14.37 15.76 18.58 23.11 29.26 40.55 

QA [μm] 8.53 8.53 8.53 15.52 16.53 19.36 23.64 31.21 41.50 

QS [μm] 7.28 7.28 7.28 13.07 13.95 16.58 20.96 29.73 39.59 

(QA-QN)/QN [%] 0.69 0.69 0.69 8.05 4.84 4.18 2.29 6.68 2.35 

(QS-QN)/QN [%] -14.06 -14.06 -14.06 -9.01 -11.51 -10.78 -9.29 1.62 -2.36 
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When h/b≥0.05, the relative error on predicted length and quality factor obtained from 

the ribbon theory could be larger than 10% and 14%, respectively. Thus it is better to take 

the thickness effects into account in calculating the length and quality factor when the 

aspect ratio (h/b) is equal or greater than 0.05. For any given working resonance 

frequency, some good designs could be found by using the numerical values of the 

hydrodynamic function at the investigated Reynolds numbers and aspect ratios. For 

example, for a resonant frequency of 1.25 MHz, the best design is shown in the last 

column of Table 5-1. 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

6.1 Summary 

The primary objective of this study was to theoretically investigate torsionally 

vibrating resonant rectangular microcantilevers for high performance liquid-phase 

chemical sensor applications and note the improvement in liquids when the 

microcantilever is excited in torsional mode compared to transverse mode. 

Microcantilevers operating in the transverse mode have applications in both gas and 

liquid phases. However, in liquid phase, this mode of operation does not have good 

performance because of the larger fluidic resistance inertial and damping forces. In order 

to improve the characteristics of transversely vibrating microcantilevers, the 

microcantilevers could be made to operate in the torsional or lateral mode to achieve 

higher resonance frequency and quality factor, hence higher sensitivity. The lateral mode 

microcantilevers were widely investigated in the literature [71-86]. The focus in this 

study is the torsional mode microcantilevers. 

Solving for the characteristics of the torsionally vibrating microcantilevers in 

viscous liquids is a fluid-structure interaction problem. This original complicated 

problem was divided into two sub-problems: a structure vibration problem with the 

external resistance inertial and damping torques from the liquid, and a liquid dynamic 

problem to obtain the resistance inertial and damping torques per unit length by solving 

the Navier-Stokes equations in the liquid domain.  

 The equation of motion was first established and solved for the rotational 

deflection of a microcantilever vibrating torsionally in a viscous liquid. Then the 
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characteristics such as the frequency spectrum, resonance frequency, quality factor, mass 

sensitivity and normalized mass limit of detection of a microcantilever vibrating 

torsionally were obtained in analytical forms in terms of the excitation frequency and the 

hydrodynamic function, which is the normalized hydrodynamic torques per unit length. 

The hydrodynamic function was obtained by solving Navier-Stokes equations for 

incompressible Newtonian liquids. The values of the hydrodynamic function for 

rectangular microcantilevers at 19 Reynolds numbers and 11 aspect ratios (h/b) were 

obtained using numerical simulations in COMSOL. Three methods were used to extract 

the magnitude, phase, real part and imaginary part of the hydrodynamic function in order 

to confirm the numerical results were convergent and accurate. An analytical expression 

of the hydrodynamic function was obtained for rectangular microcantilevers vibrating 

torsionally in viscous liquids by fitting the numerical results.  

By using the expressions for the hydrodynamic function (both the real and 

imaginary parts), the characteristics of torsionally vibrating microcantilevers in viscous 

liquids were calculated. The resonance frequencies and quality factors of a 400x90x22.3 

μm
3
 microcantilever vibrating torsionally in water were calculated and compared to 

available experimental results [125] and to the results for microcantilevers vibrating 

transversely or laterally. The resonance frequencies, quality factors, mass sensitivity, and 

normalized mass limit of detection of torsionally vibrating rectangular microcantilevers 

in viscous liquids such as water and aqueous glycerol solutions were evaluated. The 

dependencies of the characteristics on the microcantilever geometry and the material 

properties of the liquid were investigated. In addition, the rectangular microcantilever 

dimension design procedure was proposed for a given desired resonance frequency. 
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In summary, the main contributions of this study are as follows: 

(1). the hydrodynamic function in terms of both the Reynolds number and the 

aspect ratio (h/b) for torsionally vibrating microcantilevers in viscous liquids was 

obtained by numerical simulations. The numerical values of the hydrodynamic function 

at the investigated Reynolds numbers and aspect ratios were provided and an analytical 

expression of the hydrodynamic function was proposed by fitting the numerical data.  

(2). the general expressions for the resonance frequency and quality factor of 

torsionally vibrating microcantilevers in viscous liquids were derived and presented. 

(3). the characteristics (resonance frequency, quality factor, mass sensitivity, 

normalized mass limit of detection) of torsionally vibrating microcantilevers in viscous 

liquids were calculated and the trends or dependence of the characteristics were 

investigated as a function of the microcantilever geometry and the material properties 

(viscosity) of the liquid.  

(4). a procedure to design/select the dimension of torsionally vibrating rectangular 

microcantilever in viscous liquid was presented. 

6.2 Conclusions 

It was found that the thickness effects on the torsional constant, the hydrodynamic 

function, polar moment of cross-section area are significant when evaluating the 

characteristics of torsionally vibrating microcantilevers with h/b≥0.11, especially 

h/b≥0.16, in viscous liquids. The thickness effects could be approximated as the 

superposition of each effect when evaluating the resonance frequency and quality factor. 

For example, for the 400x90x22.3 μm
3
 microcantilever under first torsional mode in 

water, ignoring the thickness effect on the torsional constant or the hydrodynamic 
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function increases the calculated values of both the resonance frequency and the quality 

factor. Ignoring the thickness effect on the polar moment of the cross-section area 

increases the calculated values of the resonance frequency, but decreases the calculated 

values of the quality factor. The thickness effect on the torsional constant is dominant 

when evaluating the resonance frequency. The thickness effects on both the torsional 

constant and hydrodynamic function are dominant when evaluating the quality factor. 

This indicates that, in general, all three thickness effects have to be considered when 

evaluating the characteristics of a torsionally vibrating microcantilever in a viscous liquid. 

Furthermore, the characteristics (resonance frequency, quality factor, mass 

sensitivity, normalized mass limit of detection) of microcantilevers vibrating under the 

first torsional mode in water and aqueous glycerol solutions were evaluated by using both 

the ribbon theory [88] ignoring thickness effects, and the theory developed in this 

dissertation considering all three thickness effects. The characteristics obtained from the 

theory considering thickness effects was found to approach that obtained from the ribbon 

theory as the aspect ratio (h/b) decreases. As the viscosity of the liquid medium increases 

for aqueous glycerol solutions with glycerol concentrations below 40%, the resonance 

frequency, quality factor, mass sensitivity were found to decrease approximately linearly, 

whereas the normalized  mass limit of detection was found to increase approximately 

linearly. For the investigated microcantilever geometries, the mass sensitivity in torsional 

mode was found to be approximately dependent on the parameter h
0.5

/(b
2
L

1.5
)  and the 

normalized mass limit of detection in torsional mode was found to be approximately 

dependent on the parameter bL/h
0.5

. The mass sensitivity was found to be improved by 

adding/increasing a gap in the film, whose layout is shown in Figure 5-1. However, it is 
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noted that depositing such film with a gap may not be practical, as it may require the use 

of additional mask(s). 

In addition, the first resonance frequency of a microcantilever operating 

torsionally, laterally, or transversely in water was found to shift to a lower value 

compared to that in air, as expected. However, the predicted resonance frequency shifts 

were found to be different for these three vibration modes. For example, the first lateral 

resonance frequencies only drop by a value of up to 10% while the first transverse and 

first torsional resonance frequencies drop by as much as 50% and 32%, respectively. The 

first resonance frequency of laterally or torsionally vibrating microcantilevers in water 

was found to be much higher than that of transversely vibrating microcantilevers with the 

same geometries. For liquid-phase chemical sensor applications, it is more advantageous 

to operate in the first tosional or first lateral mode because the sensitivity of a 

microcantilever as a chemical sensor is proportional to its resonance frequency. For the 

same geometry, the quality factor of microcantilevers vibrating in the first torsional or 

first lateral mode was found to be much higher than that of microcantilevers vibrating in 

the first transverse mode. The quality factor was found to increase as the length of the 

microcantilever decreases or as the thickness of the microcantilever increases for all three 

modes. However, as the width of the microcantilever increases, the quality factor was 

found to increase for the transverse or lateral mode, whereas it remains almost constant 

for the torsional mode. 

Finally, The resonance frequency is found to be dependent on h/(bL) and the 

quality factor is found to be dependent on h/L
0.5

 for microcantilevers vibrating under the 

first torsional mode  in viscous liquids. In contrast, for microcantilevers vibrating under 
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the first lateral mode, the resonance frequency is dependent on b/L
2
 and the quality factor 

is dependent on hb
0.5

/L [82-84]. Such different trends can be used to optimize device 

geometry and maximize frequency stability in chemical sensing applications. 

6.3 Future Work 

The work done in this dissertation can easily be expanded upon and improved. In 

this study, the microcantilever is assumed to be perfectly clamped on one end and the 

support effect was not considered. Basically, ignoring the support effect overestimates 

the stiffness of the system and thus overestimates the resonance frequency. For 

torsionally vibrating microcantilevers, the shorter the microcantilever, the higher the 

resonance frequency, quality factor, mass sensitivity and the lower the limit of detection. 

But if the microcantilever is too short, the support effect will not be negligible. The 

support effect of torsionally vibrating microcantilevers in viscous liquids could be 

modeled by a cantilever with a support spring or beam. The hydrodynamic function for 

torsional mode proposed in Chapter 3 could be used in this model to evaluate the 

hydrodynamic resistance torque per unit length acted on the microcantilever from the 

liquid. 

In this study, only microcantilevers in viscous liquids were investigated and the 

sensing layer film was assumed to have negligible mass and stiffness. Actually, both the 

mass and the stiffness of the film change as the analyte is sorbed. A model to simulate the 

viscoelastic film is needed to extend the study in this dissertation and predict the 

characteristics of the system more accurately. Furthermore, in the range of the small 

thickness of the film compared to the thickness of the microcantilever, the thicker the 
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film, the higher the mass sensitivity. So the thickness of the film is another parameter that 

should be optimized.  

  In this study, only microcantilevers with uniform rectangular cross-section were 

investigated. Although microcantilevers with some other shapes such as T-shape 

(hammerhead) beams [54,90-91,98-100], U-shaped beams [54], V-shaped beams [53-54] 

have also been investigated and described in the literature, most of the published work 

focused on the transverse or lateral mode. The work done in this dissertation could be 

extended to model microcantilevers with some other shapes such as T-shape and the 

trampoline-shape micro-structures [101-104]. Especially for the T-shape (hammerhead) 

microcantilevers, the hydrodynamic function proposed in Chapter 3 could be directly 

used to evaluate the liquid resistance torque per unit length. 

Comparison of the different dynamic modes is also important to optimize the 

microcantilever geometry in a liquid medium. Transverse mode microcantilever-based 

sensors have found many (bio)chemical applications, especially in air. Lateral and 

torsional mode microcantilever-based sensors have much better performance in liquid-

phase sensing applications. Beside these three modes, the microcantilevers operating in 

longitudinal mode [95-96] or coupled mode [97] could be also valuable and should be 

investigated. 

 

 



98 

 

BIBLIOGRAPHY 

[1] K. Iniewski, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies, 

New York: CRC Press, Taylor & Francis Group, 2012. 

[2] A. M. K. Dagamseh, T. S. J. Lammerink, M. L. Kolster, C. M. Bruinink, R. J. 

Wiegerink, and G. J. M. Krijnen, “Dipole-source localization using biomimetic 

flow-sensor arrays positioned as lateral line system,” Sensors and Actuators A: 

Physical, 162, pp. 355-360, 2010. 

[3] K. A. A. Makinwa, and J. H. Huijsing, “A smart wind sensor using thermal 

sigma-delta modulation techniques,” Sensors and Actuators A: Physical, 97-98, 

pp. 15-20, 2002. 

[4] F. Kohl, R. Fashing, F. Keplinger, R. Chabicovsky, A. Jachimowicz, and G. 

Urban, “Development of miniaturized semiconductor flow sensors,” 

Measurement, 33, pp. 109-119, 2003. 

[5] P. Furjes, G. Legradi, Cs. Ducso, A. Aszodi, and I. Barsony, “Thermal 

characterization of a direction dependent flow sensor,” Sensors and Actuators A: 

Physical, pp. 417-423, 2004. 

[6] J. Laconte, J. –P. Raskin, and D. Flandre, Micromachined Thin-Film Sensors for 

SOI-CMOS Co-integration, Dordrecht, The Netherlands: Springer Science, pp. 

186, 2006. 

[7] L. Moreno-Hagelsieb, P. E. Lobert, R. Pampin, D.  Bourgeois, J. Remacle, D. 

Flandre, “Sensitive DNA electrical detection based on interdigitated Al/Al2O3 

microelectrodes,” Sensors and Actuators B: Chemical, 98, pp. 269-274, 2004. 

[8] N. Andre, S. Druart, P. Gerard, R. Pampin, L. Moreno-Haglesieb, T. Kezai,  L. A. 

Francis, D. Flandre, and J. –P. Raskin, “Miniaturized wireless sensing system for 

real-time breath activity recording,” IEEE Sensors Journal, 10 pp. 178-184, 2010. 

[9] B. Calhoun, D. Daly, N. Verma, D. Finchelstein, D. Wentzloff, A. Wang, S. –H. 

Cho, and A. Chandrakasan, “ Design considerations for ultra-low energy wireless 

microsensor nodes,” IEEE Transactions on Computers, 54(6), pp. 727-740, 2005. 

[10] M. Hempstead, N. Tripathi, P. Mauro, G. –Y. Wei, and D. Brooks, “An ultra low 

power system architecture for sensor network applications,” in  Proceedings of 

the 32nd International Symposium on Computer Architecture ISCA 2005, June 4-

8, 2005, pp. 208-219. 

[11] T. Hui Teo, G. K. Lim, D. Sutomo, K. H. Tan, P. K. Gopalakrishnan, and R. 

Singh, “Ultra low-power sensor node for wireless health monitoring system,” in  



99 

 

Proceedings of the IEEE International Symposium on Circuits and Systems  

ISCAS 2007, May 27-30, 2007, pp. 2363-2366, 2007. 

[12] S. Beeby, M. Tudor, and N. White, “Energy harvesting vibration sources for 

microsystems applications,” Measurement Science and Technology, 17(12), 

R175-R195, 2006. 

[13] T. Sterken, P. Fiorini, K. Baert, R. Puers and G. Borghs, “An electret-based 

electrostatic u-generator,” in  Proceedings of the 12
th

 International Conference on 

Transducers, Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 1291-

1294, 2003. 

[14] P. Glynne-Jones, M. Tudor, S. Beeby, and N. White, “An electromagnetic, 

vibration-powered generator for intelligent sensor systems, Sensors and Actuators 

A: Physical, 110, pp. 344-349, 2004. 

[15] S. Roundy, P. K.  Wright, and J. Rabaey, “A study of low level vibrations as a 

power source for wireless sensor nodes,” Computer Communications, 26, pp. 

1131-1144, 2003. 

[16] A. J. du Plessis, M. J. Huigsloot, and F. D. Discenzo, “Resonant packaged 

piezoelectric power harvester for machinery health monitoring,” Proceedings of 

SPIE, 5762(1), pp224-235, 2005. 

[17] S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, and S. W. Mundell, 

“Power management for energy harvesting wireless sensors,” Proceedings of 

SPIE, 5763(1), pp267-275, 2005. 

[18] T. Tsurumi, H, Kakemoto, and S. Wada, “Dielectric, elastic and piezoelectric 

losses of PZT ceramics in the resonance state,” in Proceedings of the 13
th

 IEEE 

International Symposium on Application of Ferroelectrics ISAF 2002, pp. 375-

378, 2002. 

[19] U. Dibbern, “A substrate for thin-film gas sensors in microelectronic technology,” 

Sensors and Actuators B: Chemical, 2(1), pp. 63-70, 1990. 

[20] J. W. Gardner, A. Pike, N. F. De Rooij, M. Koudelka-Hep, P. A. Clerc, A. 

Hierlemann,  and W. Gopel, “Integrated array sensor for detecting organic 

solvents,”  Sensors and Actuators B: Chemical, 26(1-3), pp. 135-139, 1995. 

[21] D. Briand, A. Krauss, B. van der Schoot, U. Weimar, N. Barsan, W. Gopel, and N. 

F. de Rooij, “Design and fabrication of high-temperature micro-hotplates for 

drop-coated gas sensors,” Sensors and Actuators B: Chemical, 68(1-3), pp. 223-

233, 2000. 

[22] H. Campanella, Acoustic Wave and Electromechanical Resonators: Concept to 

Key Applications: Boston, Artech House, 2010. 



100 

 

[23] F. R. Blom, et al, “Dependence of the Quality Factor of Micromachined silicon 

Beam Resonators on Pressure and Geometry,” Journal of Vacuum Science and 

Technology B, vol. 10, pp. 19-26, 1992. 

[24] R. A. Mangiarotty, “Acoustic Radiation Damping of Vibrating Structures,” 

Journal of the Acoustical Society of America, vol. 35, pp. 369-377, 1963. 

[25] H. Hosaka, K. Itao, and S. Kuroda, “Damping Characteristics of Beam-Shaped 

Micro-Oscillators,” Sensors and Actuators A: Physical, vol. 49, pp. 87-95, 1995.  

[26] E. Sanin, “MEMS Resonant Sensors: An Overview,” B.S. Thesis, University of 

Toronto, March 2007. 

[27] A.M. Madni and L.A. Wan, “Microelectromechanical Systems (MEMS): An 

Overview of Current State-of-the-Art,” in Proceedings of the IEEE Aerospace 

Conference, pp. 421-427, 1998. 

[28] J.M. Lippmann, “Design and Fabrication of MEMS Resonant Strain Sensor in 

SOI,” M.S. thesis, University of California at Berkley, Berkley, CA, USA, 2004. 

[29] D.W. Carr, and H.G. Craighead, “Fabrication of Nanoelectromechanical Systems 

in Single Crystal Silicon Using Silicon on Insulator Substrates and Electron Beam 

Lithography,” Journal of Vacuum Science & Technology B: Microelectronics and 

Nanometer Structures, vol. 15, iss. 6, pp. 2760-2763, 1997. 

[30] C.T.-C. Nguyen, “Micromechanical Signal Processors,” Ph.D. Dissertation, 

University of California at Berkley, Berkley, CA, USA, 1994. 

[31] B. Ilic, and H.G. Craighead, “Attogram Detection Using Nanoelectro-mechanical 

Oscillators,” Journal of Applied Physics, vol. 95, no. 7, pp. 3694-3703, April 

2004. 

[32] Z. Hao, R. Abdolvand, and F. Ayazi, “A High-Q Length-Extensional Bulk-Mode 

Mass Sensor with Annexed Sensing Platforms,” presented at 19th IEEE 

International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 

2006. 

[33] S.X.P. Su, H.S. Yang, and A.M. Agogino, “A Resonant Accelerometer with Two-

Stage Microleverage Mechanisms Fabricated by SOI-MEMS Technology,” IEEE 

Sensors Journal, vol. 5, no. 6, pp. 1214-1223, December 2005. 

[34] Y.M. Tseytlin, “High resonant mass sensor evaluation: An effective method,” 

Review of Scientific Instruments, vol. 76, no. 11, pp. 115101.1-115101.6, 2005. 

[35] Y. Lee, G. Lim, and W. Moon, “A self-excited micro cantilever biosensor 

actuated by PZT using the mass micro balancing technique,” Sensors and 

Actuators A, vol. 130-131, pp. 105-110, 2006. 



101 

 

[36] I.B. Bahadur, J. Mills, and Y. Sun, “Design of MEMS-Based Resonant Force 

Sensor for Compliant, Passive Microgripping,” in Proceedings of the IEEE 

International Conference on Mechatronics & Automation Niagara Falls, Canada, 

pp. 77-82, 2005. 

[37] A. Qiu, S. Wang, and B. Zhou, “A Micromachined Resonant Gyroscope,” 

presented at Fifth International Symposium on Instrumentation and Control 

Technology, 2003. 

[38] J.R. Westra, C.J.M Verhoeven, and A.H.M van Roermund, “Resonance-Mode 

Selection and Crosstalk Elimination Using Resonator-Synchronised Relaxation 

Oscillators,” in Proceedings of the 24th European Solid-State Circuits Conference, 

pp. 88-91, 1998. 

[39] K.E. Wojciechowski, B.E. Boser, and A.P. Pisano, “A MEMS Resonant Strain 

Sensor Operated in Air,” presented at 17th IEEE International Conference on 

Micro Electro Mechanical Systems, 2004. 

[40] R. Liu, and B. Paden, “MEMS Resonators That Are Robust to Process-Induced 

Feature Width Variation,” Journal of Microelectromechanical Systems, vol. 11, 

no. 5, October 2002. 

[41] L. He, Y.-P. Xu, and A. Qiu, “Folded Silicon Resonant Accelerometer with 

Temperature Compensation,” in Proceedings of IEEE Sensors, pp. 512-515, 2004. 

[42] N.V. Lavrik, and P.G. Datskos, “Femtogram Mass Detection Using 

Photothermally Actuated Nanomechanical Resonators,” Applied Physics Letters, 

vol. 82, no. 16, pp. 2697-2699, April 2003. 

[43] G. Zhou, and P. Dowd, “Tilted Folded-Beam Suspension for Extending the Stable 

Travel Range of Comb-Drive Actuators,” Journal of Micromechanics and 

Microengineering, vol. 13, pp. 178-183, 2003. 

[44] C. Vancura, Y. Li, J. Lichtenberg, K.-U. Kirstein, A. Hierlemann, and F. Josse, 

“Liquid-Phase Chemical and Biochemical Detection Using Fully Integrated 

Magnetically Actuated Complementary Metal Oxide Semiconductor Resonant 

Cantilever Sensor Systems,” Analytical Chemistry, vol. 79, pp. 1646-1654, 2007. 

[45] X. Xu and A. Raman, “Comparative dynamics of magnetically, acoustically, and 

Brownian motion driven microcantilevers in liquids,” Journal of Applied Physics, 

vol. 102, 034303, pp. 1-8, 2007. 

[46] W.A. Johnson, and L.K. Warne, “Electrophysics of Micromechanical Comb 

Actuators,” Journal of Microelectromechanical Systems, vol. 4, no.1, pp. 49-59, 

March 1995. 



102 

 

[47] A.A. Seshia, W. Low, S.A. Bhave, R.T. Howe, and S. Montague, 

“Micromechanical Pierce Oscillator for Resonant Sensing Applications,” 

Nanotech, vol. 1, pp. 162-165, 2002. 

[48] C.H. Nguyen, S.J. Pietrzko, “FE Analysis of a PZT-Actuated Adaptive Beam with 

Vibration Damping Using a Parallel R-L Shunt Circuit,” Finite Elements in 

Analysis and Design, vol. 42, is. 14, pp. 1231-1239, October 2006. 

[49] T.A. Roessig, R.T. Howe, and A.P. Pisano, “Surface-Micromachined 1MHz 

Oscillator with Low-Noise Pierce Configuration,” in Solid State Sensor and 

Actuator Workshop, Hilton Head, 1998. 

[50] M. Wenzel,  “Polymer-Coated and Polymer-Based Microcantilever Chemical 

Sensors: Analysis and Sensor Signal Processing,” Ph.D. Dissertation, Marquette 

University, Milwaukee, WI, USA, August 2009. 

[51] W.-H. Chu, Technical Report No. 2, DTMB, Contract Nobs-86396(X), Southwest 

Research Institute, San Antonio, Texas, 1963. 

[52] U. S. Lindholm, D. D. Kana, W.-H. Chu, and H. N. Abramson, “Elastic Vibration 

Characteristics of Cantilever Plates in Water,” Journal of Ship Research, pp. 11-

22, 1965. 

[53] C. P. Green, H. Lioe, J. P. Cleveland, R. Proksch, P. Mulvaney, and J. E. Sader, 

“Normal and torsional spring constants of atomic force microscope cantilevers,” 

Review of Scientific Instruments, vol. 75, pp. 1988-1996, 06/00/ 2004. 

[54] S. Basak, A. Raman, and S. V. Garimella, “Hydrodynamic loading of 

microcantilevers vibrating in viscous fluids,” Journal of Applied Physics, vol. 99, 

114906, pp. 1-10, 06/01/ 2006. 

[55] C. A. Van Eysden and J. E. Sader, “Small amplitude oscillations of a flexible thin 

blade in a viscous fluid: Exact analytical solution,” Physics of Fluids, vol. 18, 

123102, pp. 1-11, 12/00/ 2006. 

[56] C. A. Van Eysden and J. E. Sader, “Resonant frequency of a rectangular 

cantilever beam immersed in a fluid,” Journal of Applied Physics, vol. 100, 

114916, pp. 1-8, 2006. 

[57] C. A. Van Eysden and J. E. Sader, “Frequency response of cantilever beams 

immersed in viscous fluids with applications to the atomic force microscope: 

Arbitrary mode order,” Journal of Applied Physics, vol. 101, 044908, pp. 1-11, 

2007. 

[58] C. A. Van Eysden and J. E. Sader, “Compressible viscous flows generated by 

oscillating flexible cylinders,” Physics of Fluids, vol. 21, 013104, pp. 1-12, 2009. 



103 

 

[59] C. A. Van Eysden and J. E. Sader, “Frequency response of cantilever beams 

immersed in compressible fluids with applications to the atomic force 

microscope,” Journal of Applied Physics, vol. 106, 094904, pp. 1-8, 2009. 

[60] B. N. Johnson and R. Mutharasan, “Persistence of bending and torsional modes in 

piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous 

liquids – 1 to 10
3
 cP”, Journal of Applied Physics, vol. 109, 066105, pp. 1-3, 2011. 

[61] E. O. Tuck, “Calculation of unsteady flows due to small motions of cylinders in a 

viscous fluid,” Journal of Engineering Mathematics, vol. 3, p. 29, 1969. 

[62] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids 

with applications to the atomic force microscope,” Journal of Applied Physics, 

vol. 84, pp. 64-76, 1998. 

[63] J. W. M. Chon, P. Mulvaney, and J. E. Sader, “Experimental validation of 

theoretical models for the frequency response of atomic force microscope 

cantilever beams immersed in fluids,” Journal of Applied Physics, vol. 87, pp. 

3978-3988, 04/15/ 2000. 

[64] Z. J. Davis, G. Abadal, O. Kuhn, O. Hansen, F. Grey, and A. Boisen, “Fabrication 

and characterization of nanoresonating devices for mass detection,” Journal of 

Vacuum Science & Technology B, vol. 18, no. 2, pp. 612-616, 2000. 

[65] D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, 

“Complementary Metal Oxide Semiconductor Cantilever Arrays on a Single 

Chip:  Mass-Sensitive Detection of Volatile Organic Compounds,” Analytical 

Chemistry, vol. 74, pp. 3084-3095, 2002/07/01 2002. 

[66] L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive 

detection of plastic explosives with self-assembled monolayer-coated 

microcantilevers,” Applied Physics Letters, vol. 83, no. 7, pp. 1471, 2003. 

[67] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, and J.-P. Aime, 

“Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous 

fluids,” Journal of Applied Physics, vol. 97, 074907, pp. 1-6, 2005. 

[68] J. Verd, A. Uranga, J. Teva, G. Abadal, F. Torres, N. Barniol, F. Perez-Murano, 

and J. Esteve, “CMOS cantilever-based oscillator for attograms mass sensing,” in  

Proceedings of the IEEE International Symposium on Circuits and Systems  

ISCAS 2007, May 27-30, 2007, pp. 3319-3322, 2007. 

[69] J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, and R. Maeda, “High quality 

factor silicon cantilever driven by PZT actuator for resonant based mass detection,” 

in Design, Test, Integration and Packaging of MEMS/MOEMS. Symposium on, pp. 

60-65, 2008. 



104 

 

[70] M. Aureli, M. E. Basaran, and M. Porfiri, “Nonlinear finite amplitude vibrations 

of sharp-edged beams in viscous fluids,” Journal of Sound and Vibration, vol. 

331, pp. 1624-1654, 3/26/ 2012. 

[71] I. Dufour; S.M. Heinrich; F. Josse, “Strong-axis bending mode vibrations for 

resonant microcantilever (bio)chemical sensors in gas or liquid phase,” Frequency 

Control Symposium and Exposition, Proceedings of the 2004 IEEE International, 

pp. 193-199, 23-27 August 2004. 

[72] Xiaoyuan Xia; Ping Zhou; Xinxin Li, “Effect of Resonance-mode Order on Mass-

sensing Resolution of Microcantilever Sensors,” IEEE Sensors Conference, Lecce, 

Italy, pp. 577-580, 2008. 

[73] D. R. Brumley, M. Willcox, and J. E. Sader, “Oscillation of cylinders of 

rectangular cross section immersed in fluid,” Physics of Fluids, vol. 22, 052001, 

pp. 1-15, 05/00/ 2010. 

[74] D. R. Brumley, M. Willcox, and J. E. Sader, “Erratum: Oscillation of cylinders of 

rectangular cross section immersed in fluid'' [Phys. Fluids [bold 22], 052001 

(2010)],” Physics of Fluids, vol. 22, pp. 099902-1, 09/00/ 2010. 

[75] Stokes, G., “On the Effects of the Internal Friction of Fluids on the Motion of 

Pendulums,” Transactions of the Cambridge Philosophical Society, vol. 9, pp. 8-

106, 1851. 

[76] Russell Cox, “Theoretical Analysis of Dynamically Operating Polymer-Coated 

Microcantilever Chemical Sensors in a Viscous Liquid Medium,” Master Thesis, 

Marquette University, August 2007. 

[77] L. A. Beardslee, A. M. Addous, S. Heinrich, F. Josse, I. Dufour, and O. Brand, 

“Thermal Excitation and Piezoresistive Detection of Cantilever In-Plane 

Resonance Modes for Sensing Applications,” Microelectromechanical Systems, 

Journal of, vol. 19, pp. 1015-1017, 2010. 

[78] S. M. Heinrich, R. Maharjan, L. Beardslee, O. Brand, I. Dufour, and F. Josse, “An 

analytical model for in-plane flexural vibrations of thin cantilever-based sensors 

in viscous fluids: applications to chemical sensing in liquids,” Proceedings, 

International Workshop on Nanomechanical Cantilever Sensors, Banff, Canada, 

pp. 2, 2010. 

[79] S. M. Heinrich, R. Maharjan, I. Dufour, F. Josse, L. Beardslee, and O. Brand, “An 

analytical model of a thermally excited microcantilever vibrating laterally in a 

viscous fluid,” Proceedings IEEE Sensors 2010 Conference, Waikoloa, Hawaii, 

pp. 1399-1404., 2010. 

[80] R. Cox, F. Josse, S. Heinrich, I. Dufour, and O. Brand, “Resonant 

microcantilevers vibrating laterally in viscous liquid media,” in Frequency 

Control Symposium (FCS), 2010 IEEE International, 2010, pp. 85-90. 



105 

 

[81] R. Cox, J. Zhang, F. Josse, S. M. Heinrich, I. Dufour, L. A. Beardslee, et al., 

“Damping and mass sensitivity of laterally vibrating resonant microcantilevers in 

viscous liquid media,” in Frequency Control and the European Frequency and 

Time Forum (FCS), 2011 Joint Conference of the IEEE International, 2011, pp. 

1-6. 

[82] R. Cox, “Theoretical analysis of laterally vibrating microcantilever sensors in a 

viscous liquid medium,” Ph.D. Dissertation, Marquette University, Milwaukee, 

WI, USA, May 2011. 

[83] Y. Tao, X. Li, T. Xu, H. Yu, P. Xu, B. Xiong, and C. Wei, “Resonant cantilever 

sensors operated in a high-Q in-plane mode for real-time bio/chemical detection 

in liquids,” Sensors and Actuators B: Chemical, vol. 157, pp. 606-614, 2011. 

[84] R. Cox, F. Josse, S. M. Heinrich, O. Brand, and I. Dufour, “Characteristics of 

laterally vibrating resonant microcantilevers in viscous liquid media,” Journal of 

Applied Physics, vol. 111, 014907, pp. 1-14, 2012. 

[85] L.B. Sharos; A. Raman; S. Crittenden; and R. Reifenberger, “Enhanced mass 

sensing using torsional and lateral resonances in microcantilevers,” Applied 

Physics Letters, vol. 84, no. 23, pp. 4638-4640, 2004. 

[86] B. N. Johnson, H. Sharma, and R. Mutharasan, “Torsional and Lateral Resonant 

Modes of Cantilevers as Biosensors: Alternatives to Bending Modes”, Analytical 

Chemistry, 85, pp. 1760-1766, 2013. 

[87] G. G. Stokes, “On the Effect of the Rotations of the Cylinders or Spheres round 

their own Axes in increasing the Logarithmic Decrement of the Arc of Vibration,” 

in Mathematical and Physical Papers, Cambridge, United Kingdom: Cambridge 

University Press, pp. 207-214, 1886. 

[88] C. P. Green and J. E. Sader, “Torsional frequency response of cantilever beams 

immersed in viscous fluids with applications to the atomic force microscope,” 

Journal of Applied Physics, vol. 92, pp. 6262-6274, 11/15/ 2002. 

[89] X. Hui, J. Vitard, S. Haliyo, and S. Regnier, “Enhanced Sensitivity of Mass 

Detection Using the First Torsional Mode of Microcantilevers,” in Mechatronics 

and Automation, 2007. ICMA 2007. International Conference on, 2007, pp. 39-44. 

[90] Nic Mullin; Cvetelin Vasilev; Jaimey D. Tucker; etc., “Torsional tapping atomic 

force microscopy using T-shaped cantilevers,” Applied Physics Letters, 94, 

173109, 2009. 

[91] M.G. Reitsma; R.S. Gates; R.F. Cook, “Torsional spring constant measurement of 

a T-shaped atomic force microscope cantilever,” Proceedings of the SEM Annual 

Conference, Albuquerque, New Mexico, USA, 2009. 



106 

 

[92] T. Cai, F. Josse, I. Dufour, S. Heinrich, N. Nigro, and O. Brand, “Resonant 

characteristics of rectangular microcantilevers vibrating torsionally in viscous 

liquid media,” in Frequency Control Symposium (FCS), 2012 IEEE International, 

2012, pp. 1-6. 

[93] M. Aureli, C. Pagano, and M. Porfiri, “Nonlinear finite amplitude torsional 

vibrations of cantilevers in viscous fluids,” Journal of Applied Physics, vol. 111, 

124915, pp. 1-16, 2012. 

[94] P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman et al, 

“Nanoscale torsional optomechanics”, Applied Physics Letters, 102, 053102, 2013. 

[95] W. Y. Shih; Q. Zhu; and W.-H. Shih, “Length and thickness dependence of 

longitudinal flexural resonance frequency shifts of a piezoelectric microcantilever 

sensor due to Young’s modulus change,” Journal of Applied Physics, vol. 104, 

074503, pp. 1-5, 2008. 

[96] G. Iosilevskii, “Longitudinal Waves in a Submerged Cylindrical Rod,” Journal of 

Applied Mechanics, 78, 024502, 2011. 

[97] Y. Song and B. Bhushan, “Coupling of cantilever lateral bending and torsion in 

torsional resonance and lateral excitation modes of atomic force microscopy,” 

Journal of Applied Physics, vol. 99, 094911, pp. 1-12, 2006. 

[98] S.-D. Kwon, “A T-shaped piezoelectric cantilever for fluid energy harvesting,” 

Applied Physics Letters, vol. 97, 164102, pp. 1-3, 2010. 

[99] J. E. Kim and Y. Y. Kim, “Analysis of Piezoelectric Energy Harvesters of a 

Moderate Aspect Ratio With a Distributed Tip Mass,” Journal of Vibration and 

Acoustics, vol. 133, 041010-16, 2011. 

[100] J. Zhang, “Theoretical Analysis of Laterally Vibrating Hammerhead 

Microcantilevers for Liquid-Phase Sensing Applications,” Ph.D. Dissertation, 

Marquette University, Milwaukee, WI, May, 2013. 

[101] A. Manut and M. I. Syono, “Effects of Mechanical Geometries on Resonance 

Sensitivity of MEMS Out-of-Plane Accelerometer,” in Semiconductor Electronics, 

2006. ICSE '06. IEEE International Conference on, 2006, pp. 25-28. 

[102] C. Riesch, E. K. Reichel, A. Jachimowicz, J. Schalko, B. Jakoby, and F. 

Keplinger, “A micromachined suspended plate viscosity sensor featuring in-plane 

vibrations and integrated piezoresistive readout,” in Solid-State Sensors, 

Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. 

International, 2009, pp. 1178-1181. 

[103] P. S. Waggoner, C. P. Tan, L. Bellan, and H. G. Craighead, “High-Q, in-plane 

modes of nanomechanical resonators operated in air,” Journal of Applied Physics, 

vol. 105, 094315, pp. 1-6, 05/01/ 2009. 



107 

 

[104] K. Park, J. Shim, V. Solovyeva, E. Corbin, S. Banerjee, and R. Bashir, 

“Hydrodynamic loading and viscous damping of patterned perforations on 

microfabricated resonant structures,” Applied Physics Letters, vol. 100, 154107, 

pp. 1-5, 04/09/ 2012. 

[105] Amir Rahafrooz and Siavash Pourkamali, “Rotational Mode Disk Resonators for 

High-Q Operation in Liquid,” Proc. IEEE Sensors Conference, (2010). 

[106] Amir Rahafrooz and Siavash Pourkamali, “Characterization of Rotational Mode 

Disk Resonator Quality Factors in Liquid,” IFCS/EFTF Joint Conference, May 

2011, San Francisco, CA, pp. 198. 

[107] Jae Hyeong Seo and Oliver Brand, “High Q-Factor In-Plane-Mode Resonant 

Microsensor Platform for Gaseous/Liquid Environment,” JMEMS, 17(2), 483-493, 

(2008).  

[108] S. Timoshenko and J. N. Goodier, Theory of Elasticity, by S. Timoshenko and J. N. 

Goodier, 2nd Edition: McGraw-Hill book Company, 1951. 

[109] I. S. Sokolnikoff, Mathematical theory of elasticity: McGraw-Hill, 1956. 

[110] L. D. Landau and E. M. Lifshitz, Theory of elasticity: London, Reading, Mass.,: 

Pergamon Press; Addison-Wesley Pub. Co., 1959. 

[111] M. Itskov, Tensor algebra and Tensor Analysis for Engineers: Springer, New 

York, 2007. 

[112] Y. L. Luke, The Special Functions and Their Approximations: Academic, New 

York, 1969. 

[113] W. F. Hughes, An Introduction to Viscous Flow: McGraw-Hill, New York, 1979. 

[114] G. K. Batchelor, Introduction to Fluid Dynamics: New York: Cambridge 

University Press, 1977. 

[115] L. Rosenhead, Laminar Boundary Layers: Clarendon, Oxford, 1963. 

[116] W. C. Young, R. J. Roark, and R. G. Budynas, Roark's formulas for stress and 

strain, 7th ed. New York: McGraw-Hill, 2002. 

[117] C. R. Weast, ed., Handbook of Chemisttry and Physics, Ohio, 54
th

 edition, 1973. 

[118] C. R. Weast, ed., Handbook of Chemistry and Physics, Ohio, 65
th

 edition, 1984. 

[119] COMSOL 4.1 documentations. COMSOL, Inc. Los Angeles, CA 90024: 

COMSOL, Inc., 2011. 



108 

 

[120] C.-C. Liang, C.-C. Liao, Y.-S. Tai, and W.-H. Lai, “The free vibration analysis of 

submerged cantilever plates,” Ocean Engineering, vol. 28, pp. 1225-1245, 9// 

2001. 

[121] M. U. Demirci and C. T. C. Nguyen, “Mechanically Corner-Coupled Square 

Microresonator Array for Reduced Series Motional Resistance,” Journal of 

Microelectromechanical Systems, vol. 15, pp. 1419-1436, 2006. 

[122] V. Agache, M. Cochet, R. Blanc, F. Baleras, and P. Caillat, “High Q factor plate 

resonators for ultrasensitive mass sensing applications,” in Solid-State Sensors, 

Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. 

International, 2009, pp. 1630-1633. 

[123] C.-C. Ma and K.-C. Chuang, “A Point-Wise Fiber Bragg Grating Sensor to 

Measure the Vibration of a Cantilever Plate Subjected to Impact Loadings,” 

Sensors Journal, IEEE, vol. 11, pp. 2113-2121, 2011. 

[124] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s Modulus of 

Silicon?” Journal of Microelectromechanical System, vol. 19, no. 2, pp. 229-238, 

2010. 

[125] The experimental data are provided by Dr. Oliver Brand from the Center for 

MEMS and Microsystems Technologies at Georgia Institute of Technology in 

collaboration with the Microsensor Research Lab at Marquette University. 

 

 

 



109 

 

APPENDIX A JAVA PROGRAM USED TO GENERATE COMSOL 

MODELS AND COMPUTE NORMALIZED TORQUE PER UNIT LENGTH 

/* 

 * Torsional_Rect_Fluid_2D.java  

 */ 

 

import com.comsol.model.*;  

import com.comsol.model.util.*;  

import java.io.IOException;    

import java.io.BufferedReader;  

import java.io.File; 

import java.io.FileReader;  

 

 

public class Torsional_Rect_Fluid_2D {  

  static String[] vWidth, vAspectRatio, vNumNode, vPara, vReynolds, vGeoRatio;  

  static int[]    vnStEdW, vnStEdAR, vnStEdCase, vnStEdRe;  

  static String[] vstOutBC = {"Pressure", "Pres sureNoViscousStress"};  

  static Model    model = ModelUtil.create("Model"); // Global Definitions and Results  

  static String   stPath;  

 

 

  public static void main(String[] args) {  

  /* Function: COMSOL Modeling, Calculation and Postprocessing  

     Called by: None 

     Call:      read_parameters(path)  

        pre0_parameter(iWi, jAr, kRe, iCase)  

                pre1_view(s_Width, s_GeoRatio)  

                pre2_geometry()  

                pre3_selection()  

                pre4_material()  

                pre5_physics(iCase)  

                pre6_mesh()  

                pre7_solution(iWi, jAr, kRe, iCase)  

                post_processing(iWi, jAr, kRe, iCase)  

                export_each_case(iWi, jAr, kRe, iCase)  

  */ 

    int iFirst = 1;  

  

    try { 

        read_parameters("./Torsional_Rect_Fluid_2D.ini");  

    } 

    catch (IOException e) {  

        System.out.println( e.getMessage() );  

    } 

 

    pre0_parameter(vnStEdW[0], vnStEdAR[0], vnStEdRe[0], vnStEdCase[0]);  

    pre1_view(vWidth[vnStEdW[0]], vGeoRatio[vnStEdRe [0]]);  

 pre2_geometry();  

 pre3_selection();  

 pre4_material();  

 pre5_physics(vnStEdCase[0]);  

 pre6_mesh();  
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 pre7_solution(vnStEdW[0], vnStEdAR[0], vnStEdRe[0], vnStEdCase[0]);  

 post_processing(vnStEdW[0], vnStEdAR[0], vnStEdRe[0], vnStEdCase[0]);  

     

   for (int iWi = vnStEdW[0]; iWi < vnStEdW[1]; iWi++) {  

     for (int j  = vnStEdAR[0]; j  < vnStEdAR[1]; j++) {  

      for (int i = vnStEdCase[0]; i < vnStEdCase[1]; i++) {  

//  i=1:  Case 1 Exact Velocity History at Inner Boundary, Coarse Mesh  

//  i=2:  Case 2 Exact Velocity History at Inner Boundary,  Fine  Mesh  

//  i=3:  Case 3 Approximated Velocity History at Inner Boundary, Coarse Mesh  

//  i=4:  Case 4 Approximated Velocity History at Inner Boundary,  Fine  Mesh  

       for (int k = vnStEdRe[0]; k < vnStEdRe[1 ]; k++) { 

        if ( iFirst==1) {  

         iFirst=0; 

        } else { 

         pre1_view(vWidth[iWi], vGeoRatio[k]);  

         export_each_case(iWi, j , k, i) ;  

        } 

       } 

     } 

    } 

     //t export_each_group(i, j , k);  

   } 

  } 

 

 

  static void read_parameters(String path) throws IOException {  

  /* Function: Read parameters from the ini file  

     Called by: main()  

     Call:      conver_data(s,n)  

  */ 

    FileReader fr = new FileReader(path);  

    BufferedReader textReader = new BufferedReader(fr);  

     

    String[] textArray = textReader.readLine().split("%");  

    String textPath = textArray[0].replaceAll(" *$","").replaceAll("^ *","");  

    if (textPath.equals(".")) {  

     stPath = new java.io.File(".").getCanonicalPath() + "/";  

    } else { 

     stPath = textPath + "/";  

    } 

     

    textArray = textReader.readLine().split("%");  

    vWidth = textArray[0].replaceAll(" ","").split(",");  

 

    textArray = textReader.readLine().split("%");  

    vAspectRatio = textArray[0].replaceAll(" ","").split(",");  

 

    textArray = textReader.readLine().split("%");  

    vNumNode = textArray[0].replaceAll(" ","").split(",");  

 

    textArray = textReader.readLine().split("%");  

    vPara = textArray[0].replaceAll(" ","").split(",");  

 

    textArray = textReader.readLine().sp lit("%");  

    vReynolds = textArray[0].replaceAll(" ","").split(",");  
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    textArray = textReader.readLine().split("%");  

    vGeoRatio = textArray[0].replaceAll(" ","").split(",");  

 

    textArray = textReader.readLine().split("%");  

    textArray = textArray[0].replaceAll(" ","").split(",");  

    vnStEdW = convert_data(textArray, vWidth.length);  

     

    textArray = textReader.readLine().split("%");  

    textArray = textArray[0].replaceAll(" ","").split(",");  

    vnStEdAR = convert_data(textArray, vAspectRatio .length);  

     

    textArray = textReader.readLine().split("%");  

    textArray = textArray[0].replaceAll(" ","").split(",");  

    vnStEdCase = convert_data(textArray, 5);  

    if (vnStEdCase[0]==0) vnStEdCase[0] = 1;  

 

    textArray = textReader.readLine().split("%");  

    textArray = textArray[0].replaceAll(" ","").split(",");  

    vnStEdRe = convert_data(textArray, vReynolds.length);  

 

    textReader.close( );  

  } 

 

     

  static int[] convert_data(String[] s, int n) {  

  /* Function: Read parameters from the in i file  

     Called by: read_parameters(path)  

     Call:      None 

  */ 

    int[] vn = new int [s.length];  

    for (int i=0; i<s.length; i++) {  

        vn[i] = Integer.parseInt(s[i]);  

    }  

    if (vn[0] < 0) vn[0] = 0;  

    if (vn[1] < 0) vn[1] = n;  

    if (vn[1] > n) vn[1] = n;  

    return vn;  

  } 

 

 

  static void pre0_parameter(int iWi, int jAr, int kRe, int iCase) {  

  /* Function:  0.  Nodes, Parameters and variables,  Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    if (iCase > 2) iCase = iCase - 2; 

    model.modelPath(stPath);  

    model.modelNode().create("mod1");       // Model and Definitions  

    model.geom().create("geom1", 2);        // Geometry and Materials  

    model.mesh().create("mesh1", "geom1");  

    model.physics().create("spf", "CreepingFlow", "geom1");  

    model.study().create("std1");  

    model.study("std1").feature().create("time", "Transient");  

 

    model.param().set("us_geo_w_c", vWidth[iWi] + " [um]", "Cantilever Width");  
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    model.param().set("us_geo_t_c",  

Double.parseDouble(vWidth[iWi])*Double.parseDouble(vAspectRatio[jAr]) + " [um]", 

"Cantilever Thickness");  

    model.param().set("us_geo_w_f", 

Double.parseDouble(vWidth[iWi])*Double.parseDouble(vGeoRatio[kRe]), "Fluid Width");  

    model.param().set("us_geo_t_f", "us_geo_w_f", "Fluid Thickness");  

    model.param().set("us_geo_w_rec", "(us_geo_w_f -us_geo_w_c)/2", "Fluid Width of the 

rectangles at the corners");  

    model.param().set("us_geo_t_rec", "(us_geo_t_f -us_geo_t_c)/2", "Fluid Thickness of 

the rectangles at the corners");  

    model.param().set("us_mat_f_rho", "1E3 [kg/m^3]", "Density of the fluid");  

    model.param().set("us_mat_f_eta", "1E-3 [Pa*s]", "Dynamic Viscosity of the fluid");  

    model.param().set("us_Re", vReynolds[kRe], "Reynolds Number");  

    model.param().set("us_omega_ex", 

"4*us_mat_f_eta*us_Re/us_mat_f_rho/us_geo_w_c^2", "Beam Exciting Angular 

Frequency");  

    model.param().set("us_freq_ex", "us_omega_ex/2/pi", "Beam Exciting Frequency");  

    model.param().set("us_u_amp", "0.2[um]", "Beam Displacement Amplitude");  

    model.param().set("us_v_amp", "us_omega_ex*us_u_amp", "Beam Velocity 

Amplitude"); 

    model.param().set("us_mesh_hc_num",   Double.parseDouble(vPara[0])*iCase, 

"Number of Elements along each horizontal center line");  

    model.param().set("us_mesh_hc_ratio", vPara[1], "Ratio of Element sizes along each 

horizontal center line");  

    model.param().set("us_mesh_hs_num",   Double.parseDouble(vPara[2])*iCase, 

"Number of Elements along each horizontal side line");  

    model.param().set("us_mesh_hs_ratio", vPara[3], "Ratio of Element sizes along each 

horizontal side line");  

    model.param().set("us_mesh_vc_num",   Double.parseDouble(vNumNode[jAr])*iCase, 

"Number of Elements along each vertical center line");  

    model.param().set("us_mesh_vc_ratio", vPara[4], "Ratio of Element sizes along each 

vertical center line");  

    model.param().set("us_mesh_vs_num",   Double.parseDouble(vPara[5])*iCase, 

"Number of Elements along each vertical side line");  

    model.param().set("us_mesh_vs_ratio", vPara[6], "Ratio of Element sizes along each 

vertical side line");  

    model.param().set("us_t0", "0 [us]", "Start Time");  

    model.param().set("us_num_period",    vPara[7], "Number of the periods");  

    model.param().set("us_num_interval",  Double.par seDouble(vPara[8])*iCase, "Number 

of the intervals in each period");  

    model.param().set("us_tf", "us_num_period/us_freq_ex", "Stop Time");  

    model.param().set("us_ts", "1/us_freq_ex/us_num_interval", "Time Step");  

 

    model.variable().create("var1");  

    model.variable("var1").set("uv_v1_tors_beam", " -

us_v_amp*cos(us_omega_ex*t)*2*y/sqrt(us_geo_w_c^2+us_geo_t_c^2)", "History of 

beam velocity in lateral direction");  

 model.variable("var1").set("uv_v2_tors_beam", 

"us_v_amp*cos(us_omega_ex*t)*2*x/sqrt(us_geo_w_c^2+us_geo_t_c^2)", "History of 

beam velocity in transverse direction");  

    model.variable("var1").set("uv_v_tors_beam", 

"us_v_amp*cos(us_omega_ex*t)*2*x/us_geo_w_c", "History of beam velocity in 

transverse direction, ignore velocity in lateral dir ection");  

 

    model.view().create("view2", "geom1");  

    model.view("view2").name("View 2 - Center");  
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    model.view("view2").set("locked", "on");  

    model.view("view2").set("showlabels", "off");  

 

    model.view().create("view3", "geom1");  

    model.view("view3").name("View 3 - All"); 

    model.view("view3").set("locked", "on");  

    model.view("view3").set("showlabels", "off");  

  } 

 

 

  static void pre1_view(String s_Width, String s_GeoRatio) {  

  /* Function:  1.  views, Pre-Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    double sMax = Double.parseDouble(s_Width) * 2;  

    model.view("view2").axis().set("xmin", -sMax);  

    model.view("view2").axis().set("xmax",  sMax);  

    model.view("view2").axis().set("ymin", -sMax);  

    model.view("view2").axis().set("ymax",  sMax);  

 

    sMax = sMax * Double.parseDouble(s_GeoRatio) / 4;  

    model.view("view3").axis().set("xmin", -sMax);  

    model.view("view3").axis().set("xmax",  sMax);  

    model.view("view3").axis().set("ymin", -sMax);  

    model.view("view3").axis().set("ymax",  sMax);  

  } 

 

 

  static void pre2_geometry() {  

  /* Function:  2.  Geometry, Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.geom("geom1").lengthUnit(" \u00b5m");  

    model.geom("geom1").feature().create("r1", "Rectangle");  

    model.geom("geom1").feature("r1").setIndex("size", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r1").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r1").setIndex("pos", " -us_geo_w_f/2", 0);  

    model.geom("geom1").feature("r1").setIndex("pos", "us_geo_t_c/2", 1);  

 

    model.geom("geom1").feature().create("r2", "Rectangle");  

    model.geom("geom1").feature("r2").setIndex("size", "us_geo_w_c", 0);  

    model.geom("geom1").feature(" r2").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r2").setIndex("pos", " -us_geo_w_c/2", 0);  

    model.geom("geom1").feature("r2").setIndex("pos", "us_geo_t_c/2", 1);  

 

    model.geom("geom1").feature().create("r3", "Rectangle");  

    model.geom("geom1").feature("r3").setIndex("size", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r3").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r3").setIndex("pos", "us_geo_w_c/2", 0);  

    model.geom("geom1").feature("r3").setIndex("pos", "us_geo_t_c/2", 1);  

 

    model.geom("geom1").feature().create("r4", "Rectangle");  

    model.geom("geom1").feature("r4").setIndex("size", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r4").setIndex("size", "us_geo_t_c", 1);  
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    model.geom("geom1").feature("r4").setIndex("pos", " -us_geo_w_f/2", 0);  

    model.geom("geom1").feature("r4").setIndex("pos", " -us_geo_t_c/2", 1);  

 

    model.geom("geom1").feature().create("r5", "Rectangle");  

    model.geom("geom1").feature("r5").setIndex("siz e", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r5").setIndex("size", "us_geo_t_c", 1);  

    model.geom("geom1").feature("r5").setIndex("pos", "us_geo_w_c/2", 0);  

    model.geom("geom1").feature("r5").setIndex("pos", " -us_geo_t_c/2", 1);  

 

    model.geom("geom1").feature().create("r6", "Rectangle");  

    model.geom("geom1").feature("r6").setIndex("size", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r6").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r6").setIndex("pos", "-us_geo_w_f/2", 0);  

    model.geom("geom1").feature("r6").setIndex("pos", " -us_geo_t_f/2", 1);  

 

    model.geom("geom1").feature().create("r7", "Rectangle");  

    model.geom("geom1").feature("r7").setIndex("size", "us_geo_w_c", 0);  

    model.geom("geom1").feature("r7").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r7").setIndex("pos", " -us_geo_w_c/2", 0);  

    model.geom("geom1").feature("r7").setIndex("pos", " -us_geo_t_f/2", 1);  

 

    model.geom("geom1").feature().create("r8", "Rectang le");  

    model.geom("geom1").feature("r8").setIndex("size", "us_geo_w_rec", 0);  

    model.geom("geom1").feature("r8").setIndex("size", "us_geo_t_rec", 1);  

    model.geom("geom1").feature("r8").setIndex("pos", "us_geo_w_c/2", 0);  

    model.geom("geom1").feature("r8").setIndex("pos", " -us_geo_t_f/2", 1);  

 

    model.geom("geom1").run();  

  } 

 

 

  static void pre3_selection() {  

  /* Function:  3.  Geometry Selections, Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.select ion().create("sel1");  

    model.selection("sel1").geom(1);  

    model.selection("sel1").name("Selection 1B - Inner Interface");  

    model.selection("sel1").set(new int[]{10, 11, 13, 17});  

 

    model.selection().create("sel2");  

    model.selection("sel2").geom(1); 

    model.selection("sel2").name("Selection 2B - Outer Boundary");  

    model.selection("sel2").set(new int[]{1, 2, 3, 5, 7, 9, 14, 16, 21, 22, 23, 24});  

 

    model.selection().create("sel3");  

    model.selection("sel3").geom(1);  

    model.selection("sel3").name("Selection 3B - Horizontal Left Lines");  

    model.selection("sel3").set(new int[]{2, 4, 6, 7});  

 

    model.selection().create("sel4");  

    model.selection("sel4").name("Selection 4B - Horizontal Center Lines");  

    model.selection("sel4").geom(1); 

    model.selection("sel4").set(new int[]{9, 11, 13, 14});  
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    model.selection().create("sel5");  

    model.selection("sel5").name("Selection 5B - Horizontal Right Lines");  

    model.selection("sel5").geom(1);  

    model.selection("sel5").set(new int[]{16, 18, 20, 21});  

     

    model.selection().create("sel6");  

    model.selection("sel6").name("Selection 6B - Vertical Top Lines");  

    model.selection("sel6").geom(1);  

    model.selection("sel6").set(new int[]{5, 12, 19, 24});  

     

    model.selection().create("sel7");  

    model.selection("sel7").name("Selection 7B - Vertical Center Lines");  

    model.selection("sel7").geom(1);  

    model.selection("sel7").set(new int[]{3, 10, 17, 23});  

     

    model.selection().create("sel8");  

    model.selection("sel8").name("Selection 8B - Vertical Bottom Lines");  

    model.selection("sel8").geom(1);  

    model.selection("sel8").set(new int[]{1, 8, 15, 22});  

  } 

 

 

  static void pre4_material() {  

  /* Function:  4.  Material, Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.material().create("mat1");  

    model.material("mat1").name("Water");  

    model.material("mat1").materialModel("def").set("density", new 

String[]{"us_mat_f_rho"});  

    model.material("mat1").materialModel("def" ).set("dynamicviscosity", new 

String[]{"us_mat_f_eta"});  

  } 

 

 

  static void pre5_physics(int iCase) {  

  /* Function:  5.  Boundary Conditions and Loads, Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.physics("spf").prop("CompressibilityProperty").set("Compressibility", 1, 

"Incompressible");  

    model.physics("spf").feature().create("wall2", "Wall", 1);  

    model.physics("spf").feature("wall2").name("Inner Interface");  

    model.physics("spf").feature("wall2").selec tion().named("sel1");  

    model.physics("spf").feature("wall2").set("BoundaryCondition", 1, "MovingWall");  

    if (iCase < 3) {  

     model.physics("spf").feature("wall2").set("uwall", new 

String[]{"uv_v1_tors_beam", "uv_v2_tors_beam", "0"});  

    } else { 

     model.physics("spf").feature("wall2").set("uwall", new String[]{"0", 

"uv_v_tors_beam", "0"});  

    } 

 

    model.physics("spf").feature().create("out1", "Outlet", 1);  
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 model.physics("spf").feature("out1").name("Outer Boundary");  

    model.physics("spf"). feature("out1").selection().named("sel2");  

  } 

 

 

  static void pre6_mesh() {  

  /* Function:  6.  Meshes, Pre-Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.mesh("mesh1").feature().create("map1", "Map");  

    model.mesh("mesh1").feature("map1").selection().geom("geom1");  

 

    model.mesh("mesh1").feature("map1").feature().create("dis1", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis1").selection().named("sel3");  

    model.mesh("mesh1").feature("map1" ).feature("dis1").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis1").set("elemcount", 

"us_mesh_hs_num");  

    model.mesh("mesh1").feature("map1").feature("dis1").set("elemratio", 

"us_mesh_hs_ratio");  

 

    model.mesh("mesh1"). feature("map1").feature().create("dis2", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis2").selection().named("sel4");  

    model.mesh("mesh1").feature("map1").feature("dis2").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis2").set("elemcount", 

"us_mesh_hc_num");  

    model.mesh("mesh1").feature("map1").feature("dis2").set("elemratio", 

"us_mesh_hc_ratio");  

    model.mesh("mesh1").feature("map1").feature("dis2").set("symmetric", "on");  

 

    model.mesh("mesh1").feature("map1").feature().create("dis3", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis3").selection().named("sel5");  

    model.mesh("mesh1").feature("map1").feature("dis3").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis3").set("elemcount", 

"us_mesh_hs_num");  

    model.mesh("mesh1").feature("map1").feature("dis3").set("elemratio", 

"us_mesh_hs_ratio");  

    model.mesh("mesh1").feature("map1").feature("dis3").set("reverse", "on");  

 

    model.mesh("mesh1").feature("map1").feature().create("dis4", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis4").selection().named("sel6");  

    model.mesh("mesh1").feature("map1").feature("dis4").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis4").set("elemcount", 

"us_mesh_vs_num");  

    model.mesh("mesh1").feature("map1").feature("dis4").set("elemratio", 

"us_mesh_vs_ratio");  

 

    model.mesh("mesh1").feature("map1").feature().create("dis5", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis5").selection().named("sel7");  

    model.mesh("mesh1").feature("map1").feature("dis5").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis5").set("elemcount", 

"us_mesh_vc_num");  

    model.mesh("mesh1").feature("map1").feature("dis5").set("elemratio", 

"us_mesh_vc_ratio");  

    model.mesh("mesh1").feature("map1").feature("dis5").set("symmetric", "on");  
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    model.mesh("mesh1").feature("map1").feature().create("dis6", "Distribution");  

    model.mesh("mesh1").feature("map1").feature("dis6").selection().named("sel8");  

    model.mesh("mesh1").feature("map1").feature("dis6").set("type", "predefined");  

    model.mesh("mesh1").feature("map1").feature("dis6").set("elemcount", 

"us_mesh_vs_num");  

    model.mesh("mesh1").feature("map1").feature("dis6").set("elemratio", 

"us_mesh_vs_ratio");  

    model.mesh("mesh1").feature("map1").feature("dis6").set("reverse", "on");  

 

    model.mesh("mesh1").run();  

} 

 

 

  static void pre7_solution(int iWi, int jAr, int kRe, int  iCase) { 

  /* Function:  7.  Solution Settings, Pre -Processing of Comsol Model  

     Called by: main()  

     Call:      None 

  */ 

    model.study("std1").feature("time").set("tlist", "range(us_t0,us_ts,us_tf)");  

 

   String stSolution = "sol_W" + iWi + "_Ar" + jAr + "_Case" + iCase + "_Re" + kRe;  

    model.sol().create(stSolution);  

    model.sol(stSolution).study("std1");  

    model.sol(stSolution).feature().create("st1", "StudyStep");  

    model.sol(stSolution).feature("st1").set("study", "std1");  

    model.sol(stSolution).feature("st1").set("studystep", "time");  

    model.sol(stSolution).feature().create("v1", "Variables");  

    model.sol(stSolution).feature().create("t1", "Time");  

    model.sol(stSolution).feature("t1").set("tlist", "range(us_t0,us_ts,us_tf)");  

    model.sol(stSolution).feature("t1").set("plot", "off");  

    model.sol(stSolution).feature("t1").set("plotfreq", "tout");  

    model.sol(stSolution).feature("t1").set("probesel", "all");  

    model.sol(stSolution).feature("t1").set("probes", new String[] {}); 

    model.sol(stSolution).feature("t1").set("probefreq", "tsteps");  

    model.sol(stSolution).feature("t1").set("estrat", "exclude");  

    model.sol(stSolution).feature("t1").set("maxorder", 2);  

    model.sol(stSolution).feature("t1").set("control" , "t ime"); 

    model.sol(stSolution).feature("t1").feature().create("fc1", "FullyCoupled");  

    model.sol(stSolution).feature("t1").feature("fc1").set("jtech", "once");  

    model.sol(stSolution).feature("t1").feature("fc1").set("maxiter", 5);  

    model.sol(stSolution).feature("t1").feature().create("d1", "Direct");  

    model.sol(stSolution).feature("t1").feature("d1").set("linsolver", "pardiso");  

    model.sol(stSolution).feature("t1").feature("fc1").set("linsolver", "d1");  

    model.sol(stSolution).feature("t1").feature("fc1").set("jtech", "once");  

    model.sol(stSolution).feature("t1").feature("fc1").set("maxiter", 5);  

    model.sol(stSolution).feature("t1").feature().remove("fcDef");  

    model.sol(stSolution).attach("std1");  

    model.sol(stSolution).runAll( ); 

  } 

 

 

 

  static void post_processing(int iWi, int jAr, int kRe, int iCase) {  

  /* Function:  Post -Processing of Comsol Model  

     Called by: main()  

     Call:      None 
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  */ 

   String stFpre = "Torsional_Rect_Fluid_2D -W" + iWi + "=" + vWidth[iWi] + "_Ar" 

+ jAr + "=" + vAspectRatio[jAr] + "_Case" + iCase + "_Re" + kRe + "=" + vReynolds[kRe] 

+ "-"; 

 

    model.result().create("pg1", "PlotGroup2D");  

    model.result("pg1").feature().create("surf1", "Surface");  

    model.result("pg1").feature("surf1").set("expr", "p"); 

    model.result("pg1").feature("surf1").set("unit", "kPa");  

    model.result("pg1").feature().create("str1", "Streamline");  

    model.result("pg1").feature().create("arws1", "ArrowSurface");  

    model.result("pg1").set("window", "graphics");  

    model.result("pg1").set("windowtitle", "Graphics");  

    model.result("pg1").set("view", "view3");  

    model.result("pg1").run();  

 

    model.result("pg1").set("view", "view2");  

    model.result().export() .create("anim1", "Animation");  

    model.result().export("anim1").set("giffilename", stPath + stFpre + ".gif");  

 

    model.result().table().create("tbl1", "Table");  

    model.result().table("tbl1").name("Table 1 - Normalized Torque per unit length");  

    model.result().table("tbl1").comments("Line Integrat ion 1 (x*spf.T_stressy - 

y*spf.T_stressx)/(pi*us_geo_w_c*us_v_amp*us_mat_f_eta*us_Re)");  

 

    model.result().numerical().create("gev1", "EvalGlobal");  

    model.result().numerical("gev1").set("expr", "t*us_num_interval*us_freq_ex");  

    model.result().numerical("gev1").set("table", "tbl1");  

    model.result().numerical("gev1").setResult();  

    model.result().table("tbl1").removeColumn(0);  

 

    model.result().numerical().create("int1", "IntLine");  

    model.result().numerical("int1").selection().named("sel1" ); 

    model.result().numerical("int1").set("expr", "(x*spf.T_stressy - 

y*spf.T_stressx)/(pi*us_geo_w_c*us_v_amp*us_mat_f_eta*us_Re)");  

    model.result().numerical("int1").set("table", "tbl1");  

    model.result().numerical("int1").appendResult();  

    model.result().table("tbl1").save(stPath + stFpre + "Normalized Torque per Unit 

Length.txt");  

 

    model.result().create("pg2", "PlotGroup1D");  

    model.result("pg2").set("window", "window1");  

    model.result("pg2").set("windowtitle", "Normalized Velocity an d Torque per Unit 

Length"); 

    model.result("pg2").set("titleactive", "on");  

    model.result("pg2").set("title", "Normalized Velocity and Torque per Unit Length");  

    model.result("pg2").set("ylabelactive", "on");  

    model.result("pg2").set("ylabel", " Normalized Velocity and Torque per Unit Length");  

 

    model.result("pg2").feature().create("glob1", "Global");  

    model.result("pg2").feature("glob1").set("xdata", "expr");  

    model.result("pg2").feature("glob1").set("xdataexpr", "t");  

    model.result("pg2").feature("glob1").set("xdataunit", " \u00b5s");  

    model.result("pg2").feature("glob1").set("legendmethod", "manual");  

    model.result("pg2").feature("glob1").setIndex("expr", "cos(us_omega_ex*t)", 0);  

    model.result("pg2").feature("glob1").setInd ex("legends", "cos(us_omega_ex*t)", 0);  
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    model.result("pg2").feature().create("tblp1", "Table");  

    model.result("pg2").feature("tblp1").set("xaxisdata", "1");  

    model.result("pg2").feature("tblp1").set("legend", "on");  

    model.result("pg2").feature("tblp1").set("legendmethod", "manual");  

    model.result("pg2").feature("tblp1").setIndex("legends", "Line Integral 

(spf.sr/2/pi/us_v_amp/us_Re)", 0);  

 

    model.result("pg2").run();  

     

    model.result().create("pg3", "PlotGroup1D");  

    model.result("pg3").feature().create("lngr1", "LineGraph");  

    model.result("pg3").feature("lngr1").selection().named("sel2");  

    model.result("pg3").feature("lngr1").set("expr", "spf.U/us_v_amp");  

    model.result("pg3").run();  

 

    model.result().export() .create("plot1", "pg3", "lngr1", "Plot");  

    model.result().export("plot1").set("filename",  stPath + stFpre + "Speed Ratio at Outer 

Boundary.txt");  

    model.result().export("plot1").run();  

 

  } 

 

 

  static void export_each_case(int iWi, int jAr, int kRe, int iCas e) { 

  /* Function:  Export Comsl Results for Each Case  

     Called by: main()  

     Call:      None 

  */ 

   String stFpre = "Torsional_Rect_Fluid_2D -W" + iWi + "=" + vWidth[iWi] + "_Ar" 

+ jAr + "=" + vAspectRatio[jAr] + "_Case" + iCase + "_Re" + kRe + "=" + vReynolds[kRe] 

+ "-"; 

   String stSolution = "sol_W" + iWi + "_Ar" + jAr + "_Case" + iCase + "_Re" + kRe;  

   if ( iCase > 2) iCase = iCase - 2; 

 

    model.param().set("us_geo_w_c", vWidth[iWi] + " [um]", "Cantilever Raduis");  

    model.param().set("us_geo_t_c", 

Double.parseDouble(vWidth[iWi])*Double.parseDouble(vAspectRatio[jAr]) + " [um]", 

"Cantilever Thickness");  

    model.param().set("us_geo_w_f", 

Double.parseDouble(vWidth[iWi])*Double.parseDouble(vGeoRatio[kRe]), "Fluid Width");  

    model.param().set("us_Re", vReynolds[kRe], "Reynolds Number");  

    model.param().set("us_mesh_hc_num",   Double.parseDouble(vPara[0])*iCase, 

"Number of Elements along each horizontal center line");  

    model.param().set("us_mesh_hs_num",   Double.parseDouble(vPara[2])*iCase,  

"Number of Elements along each horizontal side line");  

    model.param().set("us_mesh_vc_num",   Double.parseDouble(vNumNode[jAr])*iCase, 

"Number of Elements along each vertical center line");  

    model.param().set("us_mesh_vs_num",   Double.parseDouble(v Para[5])*iCase, 

"Number of Elements along each vertical side line");  

    model.param().set("us_num_interval",  Double.parseDouble(vPara[8])*iCase, "Number 

of the intervals in each period");  

    model.mesh("mesh1").run();  

 

    model.sol().create(stSolution) ; 

    model.sol(stSolution).study("std1");  
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    model.sol(stSolution).feature().create("st1", "StudyStep");  

    model.sol(stSolution).feature("st1").set("study", "std1");  

    model.sol(stSolution).feature("st1").set("studystep", "time");  

    model.sol(stSolution).feature().create("v1", "Variables");  

    model.sol(stSolution).feature().create("t1", "Time");  

    model.sol(stSolution).feature("t1").set("tlist", "range(us_t0,us_ts,us_tf)");  

    model.sol(stSolution).feature("t1").set("plot", "off");  

    model.sol(stSolution).feature("t1").set("plotfreq", "tout");  

    model.sol(stSolution).feature("t1").set("probesel", "all");  

    model.sol(stSolution).feature("t1").set("probes", new String[]{});  

    model.sol(stSolution).feature("t1").set("probefreq", "tsteps");  

    model.sol(stSolution).feature("t1").set("estrat", "exclude");  

    model.sol(stSolution).feature("t1").set("maxorder", 2);  

    model.sol(stSolution).feature("t1").set("control" , "time");  

    model.sol(stSolution).feature("t1").feature().create("fc1", "F ullyCoupled");  

    model.sol(stSolution).feature("t1").feature("fc1").set("jtech", "once");  

    model.sol(stSolution).feature("t1").feature("fc1").set("maxiter", 5);  

    model.sol(stSolution).feature("t1").feature().create("d1", "Direct");  

    model.sol(stSolution).feature("t1").feature("d1").set("linsolver", "pardiso");  

    model.sol(stSolution).feature("t1").feature("fc1").set("linsolver", "d1");  

    model.sol(stSolution).feature("t1").feature("fc1").set("jtech", "once");  

    model.sol(stSolution).feature("t1").feature("fc1").set("maxiter", 5);  

    model.sol(stSolution).feature("t1").feature().remove("fcDef");  

    model.sol(stSolution).attach("std1");  

    model.sol(stSolution).runAll();  

 

    model.result().dataset("dset1").set("solution", stSolution);  

 model.result("pg1").set("window", "graphics");  

    model.result("pg1").set("windowtitle", "Graphics");  

    model.result("pg1").set("view", "view3");  

    model.result("pg1").run();  

 

    model.result("pg1").set("view", "view2");  

    model.result().export("anim1").set("giffilename", stPath + stFpre + ".gif");  

 

    model.result().numerical("gev1").setResult();  

    model.result().table("tbl1").removeColumn(0);  

    model.result().numerical("int1").selection().named("sel1");  

    model.result().numerical("int1").appendResult(); 

    model.result().table("tbl1").save(stPath + stFpre + "Normalized Torque per Unit 

Length.txt");  

 

    model.result("pg3").feature("lngr1").selection().named("sel2");  

    model.result().export("plot1").set("filename",  stPath + stFpre + "Speed R atio at Outer 

Boundary.txt");  

    model.result().export("plot1").run();  

 

  } 

 

} 
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APPENDIX B MATLAB PROGRAM USED TO EXTRACT THE 

MAGNITUDE, PHASE, REAL AND IMAGINARY PARTS OF THE 

HYDRODYNAMIC FUNCTION 

function HDF_Plots() 
%% Extract Hydrodynamic Function from COMSOL Numerical Results 
%% Called by: postprocess.m 
%% Call: getHDF_Ribbon(), getHDF_tors_rect_comsol(), plotEachCase(), 
%%       plotEachAR(), plotHDF() 

  
% Names used to identify results files 
sPath = 'Rectangular_Torsional_2D.zip\'; % Path of the root folder of 

result files 
sAnalysis = 'Torsional_Rect_Fluid_2D-W1=20'; % Initial part of the 

result filename 
mVar = {'Normalized Torque per Unit Length' 'Speed Ratio at Outer 

Boundary'}; 

  
% Parameters: Aspect Ratio h/b, Reynolds number Re, ... 
vAspectRatio = [0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1]; 
vReynolds = [1 1.778 3.162 5.623 10 17.78 31.62 56.23 100 177.8 

316.2 ... 
               562.3 1000 1778 3162 5623 10000 17780 31620]; 
vInterval = [60 120]; % vInterval = [60 120 60 120]; % Number of 

intervals in each period of the response 
nCase = length(vInterval); % Number of Cases per h/b per Re 
nPeriod = 3; % Number of period of the response 

  
mHDF_Sader = getHDF_Ribbon('Torsional Rectangular', vReynolds'); 
m5HDF = zeros(length(vAspectRatio), nCase, length(vReynolds), 5, 8); 
for i = 0:length(vAspectRatio)-1 
    for j = 1:nCase 
        nLast = (nPeriod-1)*vInterval(j) + 1; 
        for k = 0:length(vReynolds)-1 
            disp(['  AspectRatio' num2str(i) ' = ' 

num2str(vAspectRatio(i+1)) ... 
                  '    CaseNo. ' num2str(j) ... 
                  '    Reynolds#' num2str(k) ' = ' 

num2str(vReynolds(k+1))]); 
            sfname = ['Ar' num2str(i) '=' num2str(vAspectRatio(i+1)) ... 
                      '\'  sAnalysis '_Ar' num2str(i) '=' 

num2str(vAspectRatio(i+1)) ... 
                      '_Case' num2str(j) '_Re' num2str(k) '=' 

num2str(vReynolds(k+1)) '-']; 
            mTorque = dlmread([sPath sfname mVar{1} '.txt'], '', 5, 0); 
            mTorque(:,1) = (0:vInterval(j)*nPeriod)'; 
            mSpeed = dlmread([sPath sfname mVar{2} '.txt'], '', 

1729*120+8, 0); 
            m5HDF(i+1,j,k+1,:,:) = getHDF_tors_rect_comsol(vInterval(j), 

mTorque(nLast:end,2)); 
            mHDF = shiftdim(m5HDF(i+1,j,k+1,:,:),3); 
            figure(1); % Torque per unit length, Speeds on the outer 

boundaries 
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            plotEachRe(nLast, mVar, vAspectRatio(i+1), j, ... 
                         vReynolds(k+1), mTorque, mHDF, mSpeed); 
            set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
            print('-dtiff', ['Results\Ar' num2str(i) '=' 

num2str(vAspectRatio(i+1)) ... 
                  '\EachRe-Ar' num2str(i) '=' 

num2str(vAspectRatio(i+1)) ... 
                  '_Case' num2str(j) '_Re' num2str(k) '=' 

num2str(vReynolds(k+1)) '.tif']); 
       end 
       m3HDF= shiftdim(m5HDF(i+1,j,:,:,:),2); 
       figure(2); % Magnitude, Phase, Real, Imag of Hydrodynamic 

Functions for each case 
       plotEachCase(vAspectRatio(i+1), j, vReynolds, m3HDF, vReynolds, 

mHDF_Sader); 
       set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
       print('-dtiff', ['Results\EachCase-Ar' num2str(i) '=' 

num2str(vAspectRatio(i+1)) '_Case' num2str(j) '.tif']); 
    end 
    m3HDF= shiftdim(m5HDF(i+1,:,:,:,4),1); 
    figure(3); % Magnitude, Phase, Real, Imag of Hydrodynamic Functions 

for each aspect ratio. 
    plotEachAR(nCase, vAspectRatio(i+1), vReynolds, m3HDF, vReynolds, 

mHDF_Sader); 
    set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
    print('-dtiff', ['Results\EachAr-Ar' num2str(i) '=' 

num2str(vAspectRatio(i+1)) '.tif']); 
end 
m3HDF = squeeze(m5HDF(:,2,:,:,4)) 
mHDF1Mag  = m3HDF(:,:,1);  mHDF2Phase = m3HDF(:,:,2); 
mHDF3Real = m3HDF(:,:,3);  mHDF4Imag  = m3HDF(:,:,4);  mHDF5Err = 

m3HDF(:,:,5); 
save('postprocess11_mHDF.mat', 'vAspectRatio', 'vReynolds', 

'mHDF_Sader', ... 
     'mHDF1Mag', 'mHDF2Phase', 'mHDF3Real', 'mHDF4Imag', 'mHDF5Err'); 
save('postprocess12_m3HDF_m5HDF.mat', 'vAspectRatio', 'vReynolds', 

'm3HDF', 'm5HDF'); 

  
figure(4); % Hydrodynamic Functions 2D 
plotHDF(vAspectRatio, vReynolds, m3HDF, vReynolds, mHDF_Sader); 
set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
print('-dtiff', ['Results\All Hydrodynamic Functions - 2D.tif']); 

  
figure(5);  % Hydrodynamic Functions 3D Mesh 
mColor = 10*ones(length(vAspectRatio), length(vReynolds)); 
subplot(2,2,1); mesh(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,1)), -mColor); 
hold on; mesh(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,1)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Magnitude, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,2); mesh(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,3)), -mColor); 
hold on; mesh(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,3)'), ones(length(vAspectRatio),1)), mColor); 
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xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Real, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,3); mesh(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,2)), -mColor); 
hold on; mesh(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,2)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Phase, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,4); mesh(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,4)), -mColor); 
hold on; mesh(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,4)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Imaginary, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
print('-dtiff', ['Results\All Hydrodynamic Functions - 3D - Mesh.tif']); 

  
figure(6);  % Hydrodynamic Functions 3D Surf 
subplot(2,2,1); surf(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,1)), -mColor); 
hold on; surf(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,1)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Magnitude, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,2); surf(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,3)), -mColor); 
hold on; surf(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,3)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Real, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,3); surf(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,2)), -mColor); 
hold on; surf(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,2)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Phase, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
subplot(2,2,4); surf(log10(vReynolds), log10(vAspectRatio), 

log10(m3HDF(:,:,4)), -mColor); 
hold on; surf(log10(vReynolds), log10(vAspectRatio), 

kron(log10(mHDF_Sader(:,4)'), ones(length(vAspectRatio),1)), mColor); 
xlabel('log(Re)'); ylabel('log(h/b)'); zlabel('Imaginary, Hydrodynamic 

Function [log scale]'); 
legend('h/b\neq0', 'h/b=0 (Sader)', 'Location', 'Best'); 
set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
print('-dtiff', ['Results\All Hydrodynamic Functions - 3D - Surf.tif']); 

  
 

function m_HDF = getHDF_Ribbon(str_Method, v_Reynolds) 
%% Calculate Hydrodynamic Function for Microcantilevers with negligible 

thickness 
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%% str_Method  string variable, Name or Type of Expressions or Methods 
%% v_Reynolds  vector variable, Reynolds Number 
%% Called by: getHDF_Thick(), Freq_Q_Torsional(), HDF_Plots() 
%% m_HDF       matrix variable, Hydrodynamic Function (Magnitude, Phase, 

Real part and Imaginary Part) 
%%             at different Reynolds Numbers 
switch str_Method 
    case 'Transverse Circular' % [L. Rosenhead, Laminar Boundary Layers 

(Clarendon, Oxford, 1963)] 
        vt = sqrt(1j*v_Reynolds); 
        vGamma_circ = 1 + 4*1j*besselk(1, -1j*vt) ./ vt ./ besselk(0, -

1j*vt); 
        vreal = real(vGamma_circ); 
        vimag = imag(vGamma_circ); 

  
    case 'Transverse Rectangular' % [Sader 1998 JAP] 
        vt = sqrt(1j*v_Reynolds); 
        vGamma_circ = 1 + 4*1j*besselk(1, -1j*vt) ./ vt ./ besselk(0, -

1j*vt); 
        vtau = log10(v_Reynolds); 
        mtau = [vtau vtau.^2 vtau.^3 vtau.^4 vtau.^5 vtau.^6]; 
        vPara_r1 = [-0.48274; 0.46842; -0.12886; 0.044055; -0.0035117; 

0.00069085]; 
        vPara_r2 = [-0.56964; 0.48690; -0.13444; 0.045155; -0.0035862; 

0.00069085]; 
        vPara_i1 = [-0.029256; 0.016294; -0.00010961; 0.000064577; -

0.000044510; 0]; 
        vPara_i2 = [-0.59702; 0.55182; -0.18357; 0.079156; -0.014369;  

0.0028361]; 
        vOmega_r = ( 0.91324  + mtau * vPara_r1) ./ (1 + mtau * 

vPara_r2); 
        vOmega_i = (-0.024134 + mtau * vPara_i1) ./ (1 + mtau * 

vPara_i2); 
        vGamma_rect = vGamma_circ .* ( vOmega_r + 1j*vOmega_i); 
        vreal = real(vGamma_rect); 
        vimag = imag(vGamma_rect); 

  
    case 'Torsional Rectangular' % [Green+Sader 2002 JAP] 
        mtau = ones(length(v_Reynolds),7);    vtau = log10(v_Reynolds); 
        for i=1:6 
            mtau(:,i+1)=mtau(:,i) .* vtau; 
        end 
        v1 = mtau * [4.17950 -0.25269 2.88308 -0.08680 0.33837 0.03318 

0.01884]'; 
        v2 = mtau * [1       -2.27659 2.10179 -0.11365 0.34989 0.03779 

0.01884]'; 
        vreal = (5*v_Reynolds - 15*log(v_Reynolds) + 8)/80 ./ 

(v_Reynolds + 1) .* v1 ./ v2; 
        v1 = mtau * [0.82494 -0.67701 0.41150 -0.16748 0.04897 -0.01107 

0.00148]'; 
        v2 = mtau * [1       -0.72962 0.40663 -0.16517 0.04907 -0.01110 

0.00148]'; 
        vimag = 0.41 ./ sqrt(v_Reynolds) + 1 ./ v_Reynolds .* v1 ./ v2; 
end 
vmag = sqrt(vreal .* vreal + vimag .* vimag); 
vphase = atan(vimag ./ vreal) * 180 / pi; 
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m_HDF = [vmag vphase vreal vimag]; 

  

  
function m_HDF = getHDF_tors_rect_comsol(n_Interval, v_Var) 
%% Extract Hydrodynamic Function for Torsionally Vibrating Rectangular 

Microcantilevers 
%% from COMSOL Numerical Results 
%% n_Interval    integer variable, Number of intervals in each period 
%% v_Var         vector variable, Normalized Torque per unit length 
%% Called by: HDF_Plots() 
%% m_HDF         matrix variable, Hydrodynamic Function (Magnitude, 

Phase, Real, Imaginary, Error) 
%%               for 8 different methods to retrieve the information 
m_HDF = zeros(5,8); [sMax, nMax] = max(v_Var); [sMin, nMin] = 

min(v_Var); 

  
% Compare Last two Zeros 
[sTemp nZero] = min(abs(v_Var(1:nMin))); % Zero before Last Zero 
if nZero == 1 
    nZero = nZero - v_Var(1)/( v_Var(2) - v_Var(1) ); 
else 
    vZero = v_Var(nZero-1:nZero+1)'; 
    if vZero(1) * vZero(2) > 0 
        nZero = nZero - vZero(2)/( vZero(3) - vZero(2) ); 
    else 
        nZero = nZero - 1 - vZero(1)/( vZero(2) - vZero(1) ); 
    end 
end 
sPhase = pi/2 - (n_Interval/4+1-nZero)/n_Interval*2*pi; 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,7) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
[sTemp nZero] = min(abs(v_Var(nMin:nMax))); % Last Zero 
vZero = v_Var(nMin+nZero-2:nMin+nZero)'; 
if vZero(1) * vZero(2) > 0 
    nZero = (nMin + nZero - 1) - vZero(2)/( vZero(3) - vZero(2) ); 
else 
    nZero = (nMin + nZero - 2) - vZero(1)/( vZero(2) - vZero(1) ); 
end 
sPhase = pi/2 - (n_Interval*3/4+1-nZero)/n_Interval*2*pi; 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,8) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
sPhase = (m_HDF(2,7) + m_HDF(2,8))*pi/360; % Average 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,2) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
% Compare Last Maximum and Minimum 
if v_Var(nMax+1) > v_Var(nMax-1)  % Maximum 
    nMax = nMax + v_Var(nMax)/( v_Var(nMax) + v_Var(nMax+1) ); 
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else 
    nMax = nMax - v_Var(nMax)/( v_Var(nMax) + v_Var(nMax-1) ); 
end 
sPhase = pi/2 - (n_Interval+1-nMax)/n_Interval*2*pi;   
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,5) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
if v_Var(nMin+1) < v_Var(nMin-1)  % Minimum 
    nMin = nMin + v_Var(nMin)/( v_Var(nMin) + v_Var(nMin+1) ); 
else 
    nMin = nMin - v_Var(nMin)/( v_Var(nMin) + v_Var(nMin-1) ); 
end 
sPhase = pi/2 - (n_Interval/2+1-nMin)/n_Interval*2*pi; 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,6) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
sPhase = pi/2 - (n_Interval*3/2+2-nMax-nMin)/n_Interval*pi; % Average 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,1) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
% Integral Method 
vCos = cos([1:n_Interval]'/n_Interval*2*pi); 
sPhase = pi/2 - acos(v_Var(2:end)'*vCos*2/sMax/n_Interval); 
vNT = sMax*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,3) = [sMax sPhase*180/pi sMax*cos(sPhase) sMax*sin(sPhase) 

sError]'; 

  
% Least Square Method (LSM) 
vCos = cos([0:n_Interval]'/n_Interval*2*pi); s1 = dot(v_Var, 

vCos)/dot(vCos, vCos); 
vSin = sin([0:n_Interval]'/n_Interval*2*pi); s2 = dot(v_Var, 

vSin)/dot(vSin, vSin); 
sMag = sqrt(s1*s1 + s2*s2);                  sPhase = pi/2 - atan(-

s2/s1); 
vNT = sMag*cos([0:n_Interval]'/n_Interval*2*pi + pi/2 - sPhase); 
sError = sqrt(dot(vNT-v_Var, vNT-v_Var))/(n_Interval+1); 
m_HDF(:,4) = [sMag sPhase*180/pi sMag*cos(sPhase) sMag*sin(sPhase) 

sError]'; 
m_HDF 

 

 
function plotEachRe(n_Last, m_Var, s_AspectRatio, s_Case, s_Reynolds, 

m_Torque, m_HDF, m_Speed) 
%% Called by: HDF_Plots() 
%% Call: plotTorque() 
subplot(2,2,1); 
plotTorque(0, m_Var{1}, s_AspectRatio, s_Case, s_Reynolds, m_Torque, 

m_HDF); 
subplot(2,2,2); 
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plot(m_Speed(:,1),m_Speed(:,2)*100);   title([m_Var{2} ' (%)']); 
xlabel('Arc Length (\mum)'); ylabel([m_Var{2} ' (%)']); grid on; 
subplot(2,2,3); 
plotTorque(1, m_Var{1}, s_AspectRatio, s_Case, s_Reynolds, 

m_Torque(n_Last:end,:), m_HDF); 
subplot(2,2,4); 
bar(m_HDF(5,:), 'group'); title('Root Mean Square Error'); 
xlabel('Max&Min Zeros  Integral    LSM     Max      Min     Zero1     

Zero2'); 

  

  
function plotTorque(n_Type, v_Var, s_AspectRatio, s_Case, s_Reynolds, 

m_Torque, m_HDF) 
%% Called by: plotEachRe() 
if n_Type==0 
    vTitle = ['(AspectRatio=' num2str(s_AspectRatio)]; 
    vTitle = [vTitle '  CaseNo=' num2str(s_Case)]; 
    vTitle = [vTitle '  Re=' num2str(s_Reynolds) ')']; 
    mTitle = {v_Var, vTitle}; 
    plot(m_Torque(:,1), m_Torque(:,2), 'b.'); 
else 
    mPara = {'Mag=', '  Phase=', '  Real=', '  Img='}; 
    mTitle = {'Max&Min: ' 'Zeros: ' 'Integral: ' 'LSM: '}; 
    for j=1:4 
        for i=1:4 
            mTitle{j} = [mTitle{j} mPara{i} num2str(m_HDF(i,j))]; 
        end 
    end 
    sPhase = 2*pi*(m_Torque(:,1) - m_Torque(1,1)) / (m_Torque(end,1) - 

m_Torque(1,1)); 
    plot(m_Torque(:,1), m_HDF(1,4)*cos(sPhase), 'k', m_Torque(:,1), 

m_Torque(:,2), 'b.'); 
end 
title(mTitle);    xlabel('Time Step'); ylabel(v_Var);    grid on; 

  

  
function plotEachCase(s_AspectRatio, s_Case, v_Reynolds, m_HDF, v_Re_ex, 

m_HDF_Sader) 
%% Called by: HDF_Plots() 
vLegend1 = ['h/b=' num2str(s_AspectRatio) ' Case' num2str(s_Case) ' 

Max&Min']; 
vLegend2 = ['h/b=' num2str(s_AspectRatio) ' Case' num2str(s_Case) ' 

Zeros']; 
vLegend3 = ['h/b=' num2str(s_AspectRatio) ' Case' num2str(s_Case) ' 

Integral']; 
vLegend4 = ['h/b=' num2str(s_AspectRatio) ' Case' num2str(s_Case) ' 

LSM']; 

  
subplot(2,2,1); 
loglog(v_Re_ex, m_HDF_Sader(:,1), 'k-', v_Reynolds, m_HDF(:,1,1), 

'rv', ... 
         v_Reynolds, m_HDF(:,1,2), 'rx', v_Reynolds, m_HDF(:,1,3), 

'bo', ... 
         v_Reynolds, m_HDF(:,1,4), 'b+'); 
title('Magnitude of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Magnitude'); 
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legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 

  
subplot(2,2,2); 
loglog(v_Re_ex, m_HDF_Sader(:,3), 'k-', v_Reynolds, m_HDF(:,3,1), 

'rv', ... 
         v_Reynolds, m_HDF(:,3,2), 'rx', v_Reynolds, m_HDF(:,3,3), 

'bo', ... 
         v_Reynolds, m_HDF(:,3,4), 'b+'); 
title('Real Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Real Part'); 
legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 

  
subplot(2,2,3); 
semilogx(v_Re_ex, m_HDF_Sader(:,2), 'k-', v_Reynolds, m_HDF(:,2,1), 

'rv', ... 
           v_Reynolds, m_HDF(:,2,2), 'rx', v_Reynolds, m_HDF(:,2,3), 

'bo', ... 
           v_Reynolds, m_HDF(:,2,4), 'b+'); 
title('Phase of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Phase (Degree)'); 
legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 

  
subplot(2,2,4); 
loglog(v_Re_ex, m_HDF_Sader(:,4), 'k-', v_Reynolds, m_HDF(:,4,1), 

'rv', ... 
         v_Reynolds, m_HDF(:,4,2), 'rx', v_Reynolds, m_HDF(:,4,3), 

'bo', ... 
         v_Reynolds, m_HDF(:,4,4), 'b+'); 
title('Imaginary Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Imaginary Part'); 
legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 

  

  
function plotEachAR(n_Case, s_AspectRatio, v_Reynolds, m_HDF, v_Re_ex, 

m_HDF_Sader) 
%% Called by: HDF_Plots() 
%% n_Case=2 or 4 
vLegend1 = ['h/b=' num2str(s_AspectRatio) ' Case1 LSM']; 
vLegend2 = ['h/b=' num2str(s_AspectRatio) ' Case2 LSM']; 
vLegend3 = ['h/b=' num2str(s_AspectRatio) ' Case3 LSM']; 
vLegend4 = ['h/b=' num2str(s_AspectRatio) ' Case4 LSM']; 

  
subplot(2,2,1); 
if (n_Case==4) 
    loglog(v_Re_ex, m_HDF_Sader(:,1), 'k-', v_Reynolds, m_HDF(1,:,1), 

'bv', ... 
        v_Reynolds, m_HDF(2,:,1), 'bx',  v_Reynolds, m_HDF(3,:,1), 

'ro', ... 
        v_Reynolds, m_HDF(4,:,1), 'r+'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 
else 
    loglog(v_Re_ex, m_HDF_Sader(:,1), 'k-', v_Reynolds, m_HDF(1,:,1), 

'rv', ... 
        v_Reynolds, m_HDF(2,:,1), 'bx'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2); 
end     
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title('Magnitude of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Magnitude'); 

  
subplot(2,2,2); 
if (n_Case==4) 
    loglog(v_Re_ex, m_HDF_Sader(:,3), 'k-', v_Reynolds, m_HDF(1,:,3), 

'bv', ... 
        v_Reynolds, m_HDF(2,:,3), 'bx',  v_Reynolds, m_HDF(3,:,3), 

'ro', ... 
        v_Reynolds, m_HDF(4,:,3), 'r+'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 
else 
    loglog(v_Re_ex, m_HDF_Sader(:,3), 'k-', v_Reynolds, m_HDF(1,:,3), 

'rv', ... 
        v_Reynolds, m_HDF(2,:,3), 'bx'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2); 
end 
title('Real Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Real Part'); 

  
subplot(2,2,3); 
if (n_Case==4) 
    semilogx(v_Re_ex, m_HDF_Sader(:,2), 'k-', v_Reynolds, m_HDF(1,:,2), 

'bv', ... 
        v_Reynolds, m_HDF(2,:,2), 'bx',  v_Reynolds, m_HDF(3,:,2), 

'ro', ... 
        v_Reynolds, m_HDF(4,:,2), 'r+'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 
else 
    semilogx(v_Re_ex, m_HDF_Sader(:,2), 'k-', v_Reynolds, m_HDF(1,:,2), 

'rv', ... 
        v_Reynolds, m_HDF(2,:,2), 'bx'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2); 
end 
title('Phase of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Phase (Degree)'); 

  
subplot(2,2,4); 
if (n_Case==4) 
    loglog(v_Re_ex, m_HDF_Sader(:,4), 'k-', v_Reynolds, m_HDF(1,:,4), 

'bv', ... 
        v_Reynolds, m_HDF(2,:,4), 'bx',  v_Reynolds, m_HDF(3,:,4), 

'ro', ... 
        v_Reynolds, m_HDF(4,:,4), 'r+'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2, vLegend3, vLegend4); 
else 
    loglog(v_Re_ex, m_HDF_Sader(:,4), 'k-', v_Reynolds, m_HDF(1,:,4), 

'rv', ... 
        v_Reynolds, m_HDF(2,:,4), 'bx'); 
    legend('h/b=0 (Sader)', vLegend1, vLegend2); 
end 
title('Imaginary Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Imaginary Part'); 

  

  
function plotHDF(v_AspectRatio, v_Reynolds, m_HDF, v_Re_ex, m_HDF_Sader) 
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%% Called by: HDF_Plots() 
%% Call: plotLegend() 
subplot(2,2,1); 
loglog(v_Re_ex, m_HDF_Sader(:,1), 'k-', v_Reynolds, m_HDF(:,:,1)); 
title('Magnitude of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Magnitude'); 
plotLegend('h/b=', v_AspectRatio); 

  
subplot(2,2,2); 
loglog(v_Re_ex, m_HDF_Sader(:,3), 'k-', v_Reynolds, m_HDF(:,:,3)); 
title('Real Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Real Part'); 
plotLegend('h/b=', v_AspectRatio); 

  
subplot(2,2,3); 
semilogx(v_Re_ex, m_HDF_Sader(:,2), 'k-', v_Reynolds, m_HDF(:,:,2)); 
title('Phase of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Phase (Degree)'); 
plotLegend('h/b=', v_AspectRatio); 

  
subplot(2,2,4); 
loglog(v_Re_ex, m_HDF_Sader(:,4), 'k-', v_Reynolds, m_HDF(:,:,4)); 
title('Imaginary Part of Hydrodynamic Function'); %grid on; 
xlabel('Re'); ylabel('Imaginary Part'); 
plotLegend('h/b=', v_AspectRatio); 

  

  
function plotLegend(v_Text, v_AspectRatio) 
%% Called by: plotHDF() 
switch length(v_AspectRatio) 
    case 1 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))]); 
    case 2 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))]); 
    case 3 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))]); 
    case 4 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))]); 
    case 5 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))]); 
    case 6 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
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              [v_Text num2str(v_AspectRatio(6))]); 
    case 7 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))]); 
    case 8 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))], ... 
              [v_Text num2str(v_AspectRatio(8))]); 
    case 9 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))], ... 
              [v_Text num2str(v_AspectRatio(8))], ... 
              [v_Text num2str(v_AspectRatio(9))]); 
    case 10 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))], ... 
              [v_Text num2str(v_AspectRatio(8))], ... 
              [v_Text num2str(v_AspectRatio(9))], ... 
              [v_Text num2str(v_AspectRatio(10))]); 
    case 11 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))], ... 
              [v_Text num2str(v_AspectRatio(8))], ... 
              [v_Text num2str(v_AspectRatio(9))], ... 
              [v_Text num2str(v_AspectRatio(10))], ... 
              [v_Text num2str(v_AspectRatio(11))]); 
    otherwise 
        legend('h/b=0 (Sader)', [v_Text num2str(v_AspectRatio(1))], ... 
              [v_Text num2str(v_AspectRatio(2))], ... 
              [v_Text num2str(v_AspectRatio(3))], ... 
              [v_Text num2str(v_AspectRatio(4))], ... 
              [v_Text num2str(v_AspectRatio(5))], ... 
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              [v_Text num2str(v_AspectRatio(6))], ... 
              [v_Text num2str(v_AspectRatio(7))], ... 
              [v_Text num2str(v_AspectRatio(8))], ... 
              [v_Text num2str(v_AspectRatio(9))], ... 
              [v_Text num2str(v_AspectRatio(10))], ... 
              [v_Text num2str(v_AspectRatio(11))], ... 
              [v_Text num2str(v_AspectRatio(12))]); 
end 
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APPENDIX C NUMERICAL RESULTS FROM COMSOL AND MATLAB 

Table C-1:  Magnitude of the hydrodynamic function of a torsionally vibrating 

microcantilever found as a function of Reynolds number and aspect ratio (h/b)  

h / b  
Re  

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 

1 1.1715 1.1750 1.1795 1.1892 1.2047 1.2474 1.3201 1.4672 1.6204 1.9446 2.8650 

1.778 0.7333 0.7357 0.7385 0.7449 0.7548 0.7815 0.8267 0.9183 1.0145 1.2206 1.8374 

3.162 0.4802 0.4817 0.4837 0.4875 0.4939 0.5110 0.5401 0.5989 0.6606 0.7953 1.2220 

5.623 0.3315 0.3325 0.3335 0.3360 0.3402 0.3519 0.3712 0.4097 0.4502 0.5396 0.8445 

10 0.2419 0.2430 0.2428 0.2447 0.2474 0.2553 0.2686 0.2945 0.3217 0.3818 0.6041 

17.78 0.1853 0.1859 0.1864 0.1884 0.1904 0.1952 0.2055 0.2227 0.2421 0.2822 0.4459 

31.62 0.1501 0.1501 0.1510 0.1508 0.1534 0.1564 0.1643 0.1775 0.1893 0.2158 0.3388 

56.23 0.1259 0.1261 0.1261 0.1270 0.1283 0.1319 0.1374 0.1469 0.1553 0.1730 0.2658 

100 0.1089 0.1092 0.1094 0.1099 0.1109 0.1143 0.1187 0.1256 0.1311 0.1425 0.2146 

177.8 0.0972 0.0976 0.0976 0.0980 0.0989 0.1018 0.1062 0.1116 0.1148 0.1211 0.1782 

316.2 0.0887 0.0883 0.0888 0.0894 0.0905 0.0930 0.0972 0.1008 0.1028 0.1059 0.1519 

562.3 0.0821 0.0820 0.0824 0.0831 0.0845 0.0870 0.0901 0.0932 0.0949 0.0955 0.1333 

1000 0.0775 0.0775 0.0778 0.0785 0.0797 0.0827 0.0848 0.0880 0.0883 0.0878 0.1191 

1778 0.0738 0.0737 0.0742 0.0750 0.0761 0.0789 0.0819 0.0838 0.0841 0.0817 0.1095 

3162 0.0710 0.0716 0.0718 0.0725 0.0736 0.0762 0.0784 0.0808 0.0802 0.0774 0.1022 

5623 0.0693 0.0692 0.0697 0.0709 0.0719 0.0743 0.0771 0.0787 0.0778 0.0745 0.0971 

10000 0.0678 0.0681 0.0686 0.0694 0.0705 0.0733 0.0760 0.0776 0.0770 0.0722 0.0930 

17780 0.0668 0.0669 0.0677 0.0684 0.0694 0.0726 0.0746 0.0759 0.0753 0.0705 0.0896 

31620 0.0659 0.0663 0.0668 0.0676 0.0688 0.0714 0.0741 0.0755 0.0738 0.0693 0.0874 
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Table C-2:  Phase of the hydrodynamic function of a torsionally vibrating 

microcantilever found as a function of Reynolds number and aspect ratio (h/b)  

h / b  
Re  

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 

1 73.446 73.459 73.456 73.464 73.425 73.469 73.524 73.651 73.745 73.514 70.810 

1.778 67.630 67.643 67.650 67.599 67.687 67.735 67.876 68.177 68.437 68.493 65.901 

3.162 60.845 60.867 60.873 60.921 60.970 61.084 61.327 61.847 62.363 62.967 60.765 

5.623 53.470 53.503 53.528 53.601 53.676 53.762 54.171 54.950 55.772 57.022 55.452 

10 45.928 45.899 46.101 46.165 46.266 46.459 46.855 47.860 48.999 50.983 50.427 

17.78 38.937 38.969 39.006 39.025 39.035 39.336 39.700 40.918 42.279 45.008 45.610 

31.62 32.406 32.484 32.491 32.517 32.578 32.754 33.255 34.482 36.033 39.302 40.868 

56.23 26.760 26.775 26.940 26.831 26.793 26.854 27.178 28.585 30.360 33.968 36.341 

100 21.832 21.905 21.861 21.877 21.813 21.784 21.990 23.331 25.069 28.967 32.017 

177.8 17.789 17.924 17.767 17.688 17.548 17.428 17.971 19.053 20.539 24.262 28.268 

316.2 14.395 14.378 14.207 14.212 14.108 13.810 14.314 15.025 16.450 20.060 23.666 

562.3 11.438 11.582 11.450 11.241 11.287 11.164 11.056 11.840 13.509 16.873 20.539 

1000 9.1078 9.2187 9.0571 9.0810 8.7230 8.7501 9.0709 9.4912 11.407 13.657 17.189 

1778 7.3602 7.7177 7.2134 7.0920 7.1145 6.7003 6.9052 7.3758 8.3030 11.282 13.472 

3162 6.0364 5.7342 6.0482 5.5089 5.5981 5.4995 6.0809 6.0862 7.2833 8.8285 11.177 

5623 4.8634 4.8489 4.9457 4.2591 4.1283 4.1072 4.0817 4.5158 5.5149 6.3905 8.7003 

10000 3.6137 3.4838 3.4489 3.6213 3.3491 3.1181 3.2958 3.2859 4.1201 5.1145 6.5911 

17780 2.8749 2.8618 3.0242 2.6605 2.5993 2.6592 2.7601 3.1622 4.0697 4.6986 5.3963 

31620 2.4091 2.1405 2.1526 1.9450 2.0109 2.0086 1.8001 1.9517 2.4977 2.9956 4.5383 
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Table C-3:  Real part of the hydrodynamic function of a torsionally vibrating 

microcantilever found as a function of Reynolds number and aspect ratio (h/b)  

h / b  
Re  

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 

1 0.3338 0.3345 0.3359 0.3385 0.3437 0.3549 0.3744 0.4130 0.4536 0.5519 0.9417 

1.778 0.2791 0.2798 0.2808 0.2839 0.2866 0.2961 0.3113 0.3414 0.3729 0.4475 0.7503 

3.162 0.2339 0.2345 0.2355 0.2369 0.2397 0.2471 0.2591 0.2826 0.3064 0.3615 0.5968 

5.623 0.1973 0.1977 0.1983 0.1994 0.2015 0.2080 0.2173 0.2353 0.2532 0.2937 0.4789 

10 0.1682 0.1691 0.1684 0.1695 0.1710 0.1758 0.1837 0.1976 0.2111 0.2404 0.3848 

17.78 0.1441 0.1445 0.1448 0.1464 0.1479 0.1510 0.1581 0.1683 0.1791 0.1995 0.3119 

31.62 0.1267 0.1266 0.1274 0.1271 0.1293 0.1315 0.1374 0.1463 0.1531 0.1670 0.2562 

56.23 0.1124 0.1126 0.1124 0.1133 0.1145 0.1177 0.1222 0.1290 0.1340 0.1435 0.2141 

100 0.1011 0.1013 0.1015 0.1020 0.1030 0.1061 0.1100 0.1153 0.1187 0.1247 0.1819 

177.8 0.0925 0.0928 0.0929 0.0934 0.0943 0.0971 0.1010 0.1055 0.1075 0.1104 0.1569 

316.2 0.0859 0.0856 0.0861 0.0867 0.0878 0.0903 0.0942 0.0974 0.0986 0.0995 0.1391 

562.3 0.0804 0.0803 0.0808 0.0815 0.0828 0.0854 0.0884 0.0912 0.0923 0.0914 0.1249 

1000 0.0766 0.0765 0.0768 0.0775 0.0787 0.0817 0.0837 0.0868 0.0865 0.0853 0.1138 

1778 0.0731 0.0731 0.0736 0.0744 0.0755 0.0783 0.0813 0.0831 0.0833 0.0801 0.1064 

3162 0.0706 0.0713 0.0714 0.0721 0.0732 0.0759 0.0780 0.0803 0.0796 0.0765 0.1003 

5623 0.0691 0.0690 0.0695 0.0707 0.0718 0.0741 0.0769 0.0785 0.0775 0.0741 0.0960 

10000 0.0676 0.0680 0.0685 0.0693 0.0704 0.0732 0.0759 0.0774 0.0768 0.0719 0.0924 

17780 0.0667 0.0668 0.0676 0.0683 0.0693 0.0725 0.0745 0.0757 0.0751 0.0702 0.0892 

31620 0.0658 0.0663 0.0668 0.0675 0.0687 0.0714 0.0740 0.0754 0.0738 0.0692 0.0871 
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Table C-4:  Imaginary part of the hydrodynamic function of a torsionally 

vibrating microcantilever found as a function of Reynolds number and aspect 

ratio (h/b)  

h / b  
Re  

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 

1 1.1229 1.1264 1.1307 1.1401 1.1547 1.1959 1.2659 1.4078 1.5556 1.8647 2.7058 

1.778 0.6781 0.6804 0.6830 0.6887 0.6982 0.7232 0.7658 0.8525 0.9435 1.1356 1.6773 

3.162 0.4194 0.4208 0.4226 0.4260 0.4319 0.4473 0.4738 0.5281 0.5852 0.7084 1.0664 

5.623 0.2664 0.2673 0.2682 0.2704 0.2741 0.2839 0.3009 0.3354 0.3722 0.4527 0.6955 

10 0.1738 0.1745 0.1750 0.1765 0.1787 0.1850 0.1960 0.2184 0.2428 0.2966 0.4656 

17.78 0.1164 0.1169 0.1173 0.1186 0.1199 0.1237 0.1313 0.1459 0.1628 0.1996 0.3187 

31.62 0.0805 0.0806 0.0811 0.0810 0.0826 0.0846 0.0901 0.1005 0.1114 0.1367 0.2217 

56.23 0.0567 0.0568 0.0571 0.0573 0.0578 0.0596 0.0627 0.0703 0.0785 0.0966 0.1575 

100 0.0405 0.0407 0.0407 0.0410 0.0412 0.0424 0.0444 0.0497 0.0555 0.0690 0.1138 

177.8 0.0297 0.0300 0.0298 0.0298 0.0298 0.0305 0.0328 0.0364 0.0403 0.0498 0.0844 

316.2 0.0221 0.0219 0.0218 0.0220 0.0221 0.0222 0.0240 0.0261 0.0291 0.0363 0.0610 

562.3 0.0163 0.0165 0.0164 0.0162 0.0165 0.0169 0.0173 0.0191 0.0222 0.0277 0.0468 

1000 0.0123 0.0124 0.0122 0.0124 0.0121 0.0126 0.0134 0.0145 0.0175 0.0207 0.0352 

1778 0.0094 0.0099 0.0093 0.0093 0.0094 0.0092 0.0098 0.0108 0.0122 0.0160 0.0255 

3162 0.0075 0.0072 0.0076 0.0070 0.0072 0.0073 0.0083 0.0086 0.0102 0.0119 0.0198 

5623 0.0059 0.0059 0.0060 0.0053 0.0052 0.0053 0.0055 0.0062 0.0075 0.0083 0.0147 

10000 0.0043 0.0041 0.0041 0.0044 0.0041 0.0040 0.0044 0.0044 0.0055 0.0064 0.0107 

17780 0.0033 0.0033 0.0036 0.0032 0.0031 0.0034 0.0036 0.0042 0.0053 0.0058 0.0084 

31620 0.0028 0.0025 0.0025 0.0023 0.0024 0.0025 0.0023 0.0026 0.0032 0.0036 0.0069 
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APPENDIX D MATLAB PROGRAM USED TO CALCULATE 

FREQUENCY SPECTRUM, CHARATERISTICS, AND DESIGNED DIMENSION 

FOR TORSIONALLY VIBRATING RECTANULGAR MICROCANTILEVERS 

IN VISCOUS LIQUIDS 

function mPhi_fr_df_Q = Freq_Spectrum(str_Method, str_Structure, 

str_Fluid, s_L, s_b, s_h, s_df, v_f) 
%% str_Method     string variable, Name of Method/Theory for Torsional 

Mode 
%%                  Ribbon  Ignore Thickness Effect 
%%                  Thick0  Consider Thickness Effect on K, J and 

Hydrodynamic Function 
%%                  Thick1  Consider Thickness Effect on only J and 

Hydrodynamic Function 
%%                  Thick2  Consider Thickness Effect on only K and 

Hydrodynamic Function 
%%                  Thick3  Consider Thickness Effect on only K and J 
%% str_Structure  string variable, Material Name of the Structure 
%% str_Fluid      string variable, Material Name of the Fluid 
%% s_L            scaler variable, Length of the microcantilevers 
%% s_b            scaler variable, Width of the microcantilevers 
%% s_h            scaler variable, Thickness of the microcantilevers 
%% s_df           scaler variable, slightly larger than half of 3-dB 

bandwidth 
%% v_f            vector variable, Excitation Frequencies 
%% Called by: Characteristics() 
%% Call: getMatProp_Value(), getHDF_Thick() 
%% mPhi_fr_df_Q   matrix variable. 
%%                  1-4 rows are Normalized Deflectoin, Resonance 

Frequency, 
%%                               3-dB bandwidth, and Quality Factor, 

respectively. 
%%                  1-4 columns are for 2nd Transverse, 1st Transverse, 

1st Lateral, 1st Torsional modes. 
disp(['***  Freq_Spectrum: ' str_Structure ', ' str_Fluid ', ' 

str_Method '  ***']); 
[sE, sG, sRho, sRho_L, sEta, vPercent] = getMatProp_Value(str_Structure, 

str_Fluid); 
sAspectRatio = s_h / s_b;  % [.], Aspect Ratio (h/b) 
if strcmp(str_Method, 'Ribbon') | strcmp(str_Method, 'Thick1') 
    sK = s_b*s_h^3/3;      % [m^4], Geometric Function of the cross-

section, h/b=0 
else 
    vxn = [0 1/10  1/5  1/4 1/3  2/5  1/2  2/3    1]'; % h/b 
    vyn = [6 6.41 6.87 7.12 7.6 8.03 8.73 10.2 14.2]'; % k2 
    sk2 = interp1(vxn,vyn,sAspectRatio,'linear'); % Get the parameter 

by linear interpolation 
    sK  = 2*s_b*s_h^3/sk2; % [m^4], Geometric Function of the cross-

section, real h/b 
end 
if strcmp(str_Method, 'Ribbon') | strcmp(str_Method, 'Thick2') 
    sJ = s_b^3*s_h/12;     % [m^4], Polar moment of the area, h/b=0 
else 
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    sJ  = s_b*s_h*(s_b*s_b + s_h*s_h)/12; % [m^4], Polar moment of the 

area, real h/b 
end 
sBend = pi*sRho_L*s_b*s_b/4;           % [.], Intermediate term for 

Transverse and Lateral Modes 
sTors = pi*sRho_L*s_b^4/8;             % [.], Intermediate term for 

Torsional Mode 
vRe = sRho_L*2*pi*v_f*s_b*s_b/4/sEta; % [.], Reynolds number 
mfs = zeros(length(v_f),3);            % [dB], Frequency Spectrum 

  
% Prediction of E and G from resonance frequency in air/vacuum 
% E = 110 GPa;    G = 45.4 GPa 
sf_tran1_air = 154.6;   % [kHz] 
sE_tran1 = 48*pi^2*s_L^4*sRho*sf_tran1_air^2/1.8751^4/s_h^2/1E3; % 

109.8622 [GPa] 
sf_lat1_air  = 636.68;  % [kHz] 
sE_lat1 =  48*pi^2*s_L^4*sRho*sf_lat1_air^2/1.8751^4/s_b^2/1E3;  % 

114.3922 [GPa] 
sf_tran2_air = 954.57;  % [kHz] 
sE_tran2 = 48*pi^2*s_L^4*sRho*sf_tran2_air^2/4.6941^4/s_h^2/1E3; % 

106.6432 [GPa] 
sf_tors1_air = 1218.79; % [kHz] 
sG_tors1 = 16*s_L^2*sRho*sJ*sf_tors1_air^2/sK/1E3; % 45.3728 [GPa] 
sE_calc = (sE_tran1 + sE_tran2 + sE_lat1)/3; 

  
% Transverse and Lateral Modes 
sEI_T = sE*s_b*s_h^3/12;              % [N.m^2], Transverse Bending 

Rigidity 
sEI_L = sE*s_b^3*s_h/12;              % [N.m^2], Lateral Bending 

Rigidity 
vBetaL = [1.8751 4.6941 7.8548 10.9955 14.1372]'; 
syms x; 
vPhi1 = ( cos(vBetaL*x/s_L) - cosh(vBetaL*x/s_L) ) .* ( cos(vBetaL) + 

cosh(vBetaL) ); 
vPhi2 = ( sin(vBetaL*x/s_L) - sinh(vBetaL*x/s_L) ) .* ( sin(vBetaL) - 

sinh(vBetaL) ); 
vPhi = (vPhi1 + vPhi2) ./ ( sin(vBetaL) - sinh(vBetaL) ); 
vt01 = [0.000213321956162338; 8.52133529324053e-05; 5.09242756021669e-

05; ... 
        3.63785184845922e-05; 2.82941459435193e-05;]; % eval(int(vPhi, 

x, 0, s_L)); 
vt02 = [0.000371130872675644; 0.000192813260010481; 

0.000200311621486068; ... 
        0.000199985838593808; 0.000200000542916072;]; % 

eval(int(vPhi.*vPhi, x, 0, s_L)); 

  
% Transverse Mode 
mHDF_Best = getHDF_Thick('Transverse Rectangular Ribbon Sader', vRe, 

sAspectRatio); 
if strcmp(str_Fluid, 'Vacuum') 
    vg1 = 0; vg2=0; 
else 
    vg1 = pi * sEta .* vRe .* mHDF_Best(:,1,4); 
    vg2 = sBend*mHDF_Best(:,1,3); 
end 
vt1 = 2*pi*v_f .* vg1; 
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vt20 = 4*pi*pi*v_f.*v_f.*(sRho*s_b*s_h + vg2); 
for i=1:5 
    vt2 = sEI_T*vBetaL(i)^4/s_L^4 - vt20; 
    vt_i = sqrt(vt1 .* vt1 + vt2 .* vt2); 
    vy_i = vt01(i) / vt02(i) ./ vt_i; 
    mfs(:,1) = mfs(:,1) + vy_i; 
end 

  
% Lateral Mode 
if strcmp(str_Method, 'Ribbon') | strcmp(str_Method, 'Thick3') 
    mHDF_Best = getHDF_Thick('Lateral Rectangular Ribbon Stokes', vRe, 

sAspectRatio); 
else 
    mHDF_Best = getHDF_Thick('Lateral Rectangular Thickness Russell', 

vRe, sAspectRatio); 
end 
if strcmp(str_Fluid, 'Vacuum') 
    vg1 = 0; vg2=0; 
else 
    vg1 = pi * sEta .* vRe .* mHDF_Best(:,1,4); 
    vg2 = sBend*mHDF_Best(:,1,3); 
end 
vt1 = 2*pi*v_f .* vg1; 
vt20 = 4*pi*pi*v_f.*v_f.*(sRho*s_b*s_h + vg2); 
for i=1:5 
    vt2 = sEI_L*vBetaL(i)^4/s_L^4 - vt20; 
    vt_i = sqrt(vt1 .* vt1 + vt2 .* vt2); 
    vy_i = vt01(i) / vt02(i) ./ vt_i; 
    mfs(:,2) = mfs(:,2) + vy_i; 
end 
% Simple formula for Q at resonance [Heinrich 2010] 
sQ_Lateral = 0.7124*(sE*sRho^3)^0.25*s_h*sqrt(s_b/sEta/sRho_L)/s_L; 

  
% Torsional mode 
if strcmp(str_Method, 'Ribbon') | strcmp(str_Method, 'Thick3') 
    mHDF_Best = getHDF_Thick('Torsional Rectangular Ribbon Sader', vRe, 

sAspectRatio); 
else 
    mHDF_Best = getHDF_Thick('Torsional Rectangular Thickness Tao2', 

vRe, sAspectRatio); 
end 
if strcmp(str_Fluid, 'Vacuum') 
    vg1 = 0; vg2=0; 
else 
    vg1 = sTors*2*pi*v_f .* mHDF_Best(:,1,4); 
    vg2 = sTors*mHDF_Best(:,1,3); 
end 
vt1 = 2*pi*v_f .* vg1; 
vt20 = 4*pi*pi*v_f.*v_f.*(sRho*sJ + vg2); 
for i=1:5 
    sLambda_i = (2*i-1)*pi/2/s_L; 
    vt2 = sG*sK*sLambda_i*sLambda_i - vt20; 
    vt_i = sqrt(vt1 .* vt1 + vt2 .* vt2); 
    vy_i = 4*(-1)^(i+1)*sG*sK/sLambda_i/s_L^3 ./ vt_i; 
    mfs(:,3) = mfs(:,3) + vy_i; 
end 
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% Normalization 
mfs(:,1) = mfs(:,1)/mfs(1,1); 
mfs(:,2) = mfs(:,2)/mfs(1,2); 
mfs = 20*log10(abs(mfs)); % [dB] 
m_f_Tran_Lat_Tors = [v_f mfs]; 

  
% vPhi, [dB], Maximum Normalized Tip Rotation 
% vfr,  [Hz], Resonance Frequency 
[vPhi, vIndex] = max(mfs); 
[sPhi, sIndex] = max(mfs(2*vIndex(1):end,1)); 
mPhi_fr = [sPhi, vPhi; (sIndex+2*vIndex(1)-2)*(v_f(2)-v_f(1)), (vIndex-

1)*(v_f(2)-v_f(1))]; 
vIndex = [sIndex+2*vIndex(1)-1 vIndex]; 
tmfs = abs( [mfs(:,1) mfs] - kron(mPhi_fr(1,:)-3, 

ones(length(mfs(:,1)),1)) ); 
vdf = zeros(1,4); 
for i=1:4 
    [t1Phi, t1Index] = min(tmfs(vIndex(i)-s_df/(v_f(2)-

v_f(1)):vIndex(i),i)); 
    [t2Phi, t2Index] = min(tmfs(vIndex(i):vIndex(i)+s_df/(v_f(2)-

v_f(1)),i)); 
    tInfo = [i t1Index t2Index]; % only for test 
    vdf(i) = (t2Index - t1Index) * (v_f(2)-v_f(1)) + s_df; 
end 
vQ = mPhi_fr(2,:) ./ vdf; % 3-dB Bandwidth Quality Factor 
mPhi_fr_df_Q = [mPhi_fr; vdf; vQ]; 
mPhi_fr(2,:) 
save(['postprocess21_FreqSpectrum_' str_Structure '_' str_Fluid '_' 

str_Method '.mat'], ... 
    'm_f_Tran_Lat_Tors', 'mPhi_fr_df_Q', 'vt01', 'vt02', 'sQ_Lateral'); 

  
figure(8); 
plot(v_f/1E6, mfs(:,1), 'r-', v_f/1E6, mfs(:,2), 'k-', ... 
     v_f/1E6, mfs(:,3), 'b-'); grid on; 
xlabel('Excitation Frequency (MHz)'); ylabel('Normalized Tip Rotation 

(dB)'); 
legend('Transverse Modes', 'Lateral Modes', 'Torsional Modes', 

'Location', 'Best'); 
set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
print('-dtiff', ['PostProcessF21_FreqSpectrum_' str_Structure '_' 

str_Fluid '_' str_Method '.tif']); 

  

  
function Characteristics_Torsional(str_Structure, str_Fluid, v_L, v_b, 

v_h, n_Iter, n_i, st_name) 
%% v_L      vector variable, Length of the microcantilevers 
%% v_b      vector variable, Width of the microcantilevers 
%% v_h      vector variable, Thickness of the microcantilevers 
%% n_Iter   scalar variable, Maximum Number of Iteration 
%% n_i      No. of different Length, Width, or Thickness 
%% st_name  Part of the file name of the saved figures 
%% Called by: Characteristics() 
%% Call: getHDF_Ribbon(), getHDF_Thick(), getHDF_tors_rect_Sader(), 

getMatProp_Value() 
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% sE     [Pa], Young's Modulus of Microcantilever 
% sG     [Pa], Shear Modulus of Microcantilever 
% vRho   [kg/m^3], Density of Microcantilever 
% vEta   [Ns/m^2]=[kg/s/m], Viscosity of Fluid 
% vRho_L [kg/m^3], Density of Fluid 
% vPercent [%], percent (w/w) of Aqueous Fluid 
[sE, sG, vRho, vRho_L, vEta, vPercent] = getMatProp_Value(str_Structure, 

str_Fluid); 

  
vAspectRatio = v_h ./ v_b; % [.], Aspect Ratio (h/b) 
vxn = [0 1/10  1/5  1/4 1/3  2/5  1/2  2/3    1]'; % h/b 
vyn = [6 6.41 6.87 7.12 7.6 8.03 8.73 10.2 14.2]'; % k2 
vk2 = interp1(vxn,vyn,vAspectRatio,'linear'); % Get the parameter by 

linear interpolation 
vK0 = v_b.*v_h.^3/3;       % [m^4], Geometric Function of the cross-

section, h/b=0 
vK  = 2*v_b.*v_h.^3./vk2;  % [m^4], Geometric Function of the cross-

section, real h/b 
vJ0 = v_b.^3.*v_h/12;                     % [m^4], Polar moment of the 

area, h/b=0 
vJ  = v_b.*v_h.*(v_b.*v_b + v_h.*v_h)/12; % [m^4], Polar moment of the 

area, real h/b 
vT0 = pi*vRho_L.*v_b.^4/8./vRho./vJ0;     % [.], Intermediate term 
vT  = pi*vRho_L.*v_b.^4/8./vRho./vJ;      % [.], Intermediate term 
vrJV = (v_b.*v_b + 3*v_h.*v_h) ./ v_L/12; % [.], Ratio of J to V of the 

coating layer (film) 

  
vfVac1  = sqrt(sG*vK0./vRho./vJ0)./v_L/4/1E6; % [MHz], Resonant 

Frequency in Vacuum, h/b=0 
vfVac1K = sqrt(sG*vK./vRho./vJ)./v_L/4/1E6;   % [MHz], Resonant 

Frequency in Vacuum, real h/b 
vfInvF1 = vfVac1K./sqrt(1 + 3*pi*vRho_L./vRho/32./vAspectRatio); % 

[MHz], Resonant Frequency in Inviscid Liquid 
mfVisF1s = zeros(length(vAspectRatio), n_Iter+1); 
mfVisF1s(:,1) = vfVac1K/1000;     mfVisF1c = mfVisF1s; 
for i=1:n_Iter 
    vRe_Sader = vRho_L*pi.*v_b.^2/2./vEta.*mfVisF1s(:,i)*1E6; 
    mHDF_Sader = getHDF_Ribbon('Torsional Rectangular', vRe_Sader); % 

[vmag vphase vreal vimg] 
    mfVisF1s(:,i+1) = vfVac1 ./ sqrt(1 + vT0 .* mHDF_Sader(:,3)); 
    vRe_Best = vRho_L*pi.*v_b.^2/2./vEta.*mfVisF1c(:,i)*1E6; 
    mHDF_Best1 = getHDF_Thick('Torsional Rectangular Thickness Tao2', 

vRe_Best, vAspectRatio); % mmag, mphase, mreal, mimg 
    mfVisF1c(:,i+1) = vfVac1K ./ sqrt(1 + vT .* 

diag(mHDF_Best1(:,:,3))); 
end 

  
vRe_Sader = vRho_L*pi.*v_b.^2/2./vEta.*mfVisF1s(:,end)*1E6; 
mHDF_Sader = getHDF_Ribbon('Torsional Rectangular', vRe_Sader); % [vmag 

vphase vreal vimg] 
vQ_Sader = (1 ./ vT0 + mHDF_Sader(:,3)) ./ mHDF_Sader(:,4); 
vSm_Sader = 1E-9*mfVisF1s(:,end)/2./vRho./vJ0./( 1 + 

vT0.*mHDF_Sader(:,3) ).*vrJV; 
vLODm_bar_Sader = 1.5*mfVisF1s(:,end)./vQ_Sader./vSm_Sader; 
vSc_bar_Sader = 1E6*mfVisF1s(:,end)/2./vRho./( 1 + 

vT0.*mHDF_Sader(:,3) ); 



142 

 

vLODc_bar_Sader = 1.5E6*mfVisF1s(:,end)./vQ_Sader./vSc_bar_Sader; 
vRe_Best = vRho_L*pi.*v_b.^2/2./vEta.*mfVisF1c(:,end)*1E6; 
mHDF_Best1 = getHDF_Thick('Torsional Rectangular Thickness Tao2', 

vRe_Best, vAspectRatio); % mmag, mphase, mreal, mimg 
vQ_Best = (1 ./ vT + diag(mHDF_Best1(:,:,3))) ./ 

diag(mHDF_Best1(:,:,4)); 
vSm_Best = 1E-9*mfVisF1c(:,end)/2./vRho./vJ./( 1 + 

vT.*mHDF_Best1(:,3) ).*vrJV; 
vLODm_bar_Best = 1.5*mfVisF1c(:,end)./vQ_Best./vSm_Best; 
vSc_bar_Best = 1E6*mfVisF1c(:,end)/2./vRho./( 1 + vT.*mHDF_Best1(:,3) ); 
vLODc_bar_Best = 1.5E6*mfVisF1c(:,end)./vQ_Best./vSc_bar_Best; 

  
% h: Thickness, b: Width, L: Length, h/b: Aspect Ratio, Re: Reynolds 

Number, 
% f: Resonance Frequency, Q: Quality Factor, S: Normalized Sensitivity, 

LOD: Limit of Detection 
% vac1:  First mode in Vacuum for Ribbon Case  (h/b->0) 
% vac1K: First mode in Vacuum for General Case (Finite h/b) 
% _c: Chemical,  _C: Chu,  _S: Sader,  _F: Our approach 
% 
% h[um], b[um], L[um], h/b, h/(bL)[/m], 
% f_vac1[MHz], fvac1K[MHz], f_C[MHz], f_S[MHz], f_F[MHz] 
% Re_S[1E3], Re_F[1E3], S_m_S[Hz/pg], S_m_F[Hz/pg], 
% h/sqrt(L), Q_S, Q_F, sqrt(L)/h, LOD_m_S[ug], LOD_m_F[ug] 
% S_cBar_S[Hz/(kg/m3)], S_cBar_F[Hz/(kg/m3)], LODc_S[kg/m3], 

LODc_F[kg/m3] 
mfr_Re_S_Q_LOD = [v_h*1E6 v_b*1E6 v_L*1E6 vAspectRatio v_h./v_b./v_L ... 
    vfVac1 vfVac1K vfInvF1 mfVisF1s(:,end) mfVisF1c(:,end) ... 
    vRe_Sader/1E3 vRe_Best/1E3 vSm_Sader vSm_Best ... 
    v_h./sqrt(v_L) vQ_Sader vQ_Best sqrt(v_L)./v_h vLODm_bar_Sader 

vLODm_bar_Best ... 
    vSc_bar_Sader vSc_bar_Best vLODc_bar_Sader vLODc_bar_Best]; 
mPercent_RhoL_Eta = [vPercent vRho_L vEta]; 
save(['postprocess22_Fr_Re_S_Q_LOD_' st_name, num2str(n_i) '.mat'], 

'mfr_Re_S_Q_LOD', ... 
      'vRho', 'mPercent_RhoL_Eta'); 
disp('      h/b   f_vac[MHz] f_F[MHz] Re_F[1E3]   Q_Best 

S_cBar_F[kHz/(kg/m3)] LOD_F[1000kg/m3]'); 
disp([vAspectRatio vfVac1K mfVisF1c(:,end) vRe_Best/1E3 vQ_Best 

vSc_bar_Best/1E3 vLODc_bar_Best/1E3]); 

  
% Plots 
scrsz = get(0,'ScreenSize'); figure('Position',scrsz); 
set(gcf, 'PaperPosition', [0.25 2.5 13.33 10.0]); 
switch st_name(1) 
    case 'A' % Fixed Cross-Section Area in Water 
        stTitle = [' (A=', num2str(v_h(1)*v_b(1)*1E12), '\mum^2)']; 
    case 'L' % Fixed Length in Water 
        stTitle = [' (L=', num2str(v_L(1)*1E6), '\mum)']; 
    case 'h' % Fixed Thickness in Water 
        stTitle = [' (h=', num2str(v_h(1)*1E6), '\mum)']; 
    case {'G', 'E'} % Specific Geometry in Aqueous Glycerol/Ethanol 
        stTitle = ''; 
    otherwise 
        stTitle = [' !!! Wrong Parameter in 

Characteristics_Torsional() !!!']; 



143 

 

end 

  
%test vx = vEta./vRho_L;  strXLabel = '\eta/\rho_l [m^2/s]'; 
vx = vPercent;      strXLabel = ['Percent of Aqueous ' str_Fluid]; 

  
subplot(2,2,1); 
switch st_name(1) 
    case {'G', 'E'} 
        plot(vx, 1E3*( vfInvF1 - vfInvF1(1) ), 'k', ... 
             vx, 1E3*( mfVisF1s(:,end) - mfVisF1s(1,end) ), 'b', ... 
             vx, 1E3*( mfVisF1c(:,end) - mfVisF1c(1,end) ), 'r-x'); 
        xlabel(strXLabel); ylabel('Shift in Resonance Frequency [kHz]'); 
    otherwise 
        plot(vAspectRatio./v_L, vfInvF1, 'k', vAspectRatio./v_L, 

mfVisF1s(:,end), 'b', ... 
             vAspectRatio./v_L, mfVisF1c(:,end), 'r-x'); 
        xlabel('h/(bL) [m^{-1}]'); ylabel('Resonant Frequency [MHz]'); 
end 
grid on; title(['Resonant Frequency' stTitle]); 
legend('Inviscid Liquid, by Chu', 'Viscous Liquid, by Sader', ... 
       'Viscous Liquid, by Fitting Expression', 'Location', 'Best'); 

  
subplot(2,2,2); 
switch st_name(1) 
    case {'G', 'E'} 
        plot(vx, vQ_Sader, 'b', vx, vQ_Best, 'r-x'); 
        xlabel(strXLabel); 
    otherwise 
        plot(v_h./sqrt(v_L), vQ_Sader, 'b', v_h./sqrt(v_L), vQ_Best, 

'r-x'); 
        xlabel('h/L^{0.5} [m^{0.5}]'); 
end 
grid on; title(['Quality Factor' stTitle]); 
ylabel('Quality Factor'); 
legend('Viscous Liquid, by Sader', 'Viscous Liquid, by Fitting 

Expression', 'Location', 'Best'); 

  
subplot(2,2,3); 
switch st_name(1) 
    case {'G', 'E'} 
        plot(vx, vSm_Sader, 'b', vx, vSm_Best, 'r-x'); 
        xlabel(strXLabel); 
    otherwise 
        plot(sqrt(v_h)./v_b./v_b./v_L./sqrt(v_L), vSm_Sader, 'b', ... 
             sqrt(v_h)./v_b./v_b./v_L./sqrt(v_L), vSm_Best, 'r-x'); 
        xlabel('h^{0.5}/(b^2L^{1.5}) [m^{-3}]'); 
end 
grid on; title(['Mass Sensitivity' stTitle]); 
ylabel('Mass Sensitivity [Hz/pg]'); 
legend('Viscous Liquid, by Sader', 'Viscous Liquid, by Fitting 

Expression', 'Location', 'Best'); 

  
subplot(2,2,4); 
switch st_name(1) 
    case {'G', 'E'} 
        plot(vx, vLODm_bar_Sader, 'b', vx, vLODm_bar_Best, 'r-x'); 
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        xlabel(strXLabel); 
    otherwise 
        plot(v_b.*v_L./sqrt(v_h), vLODm_bar_Sader, 'b', 

v_b.*v_L./sqrt(v_h), vLODm_bar_Best, 'r-x'); 
        xlabel('bL/h^{0.5} [m^{1.5}]'); 
end 
grid on; title(['Normalized Limit of Detection' stTitle]); 
ylabel('Normalized Limit of Detection [\mug]'); 
legend('Viscous Liquid, by Sader', 'Viscous Liquid, by Fitting 

Expression', 'Location', 'Best'); 

  
print('-dtiff', ['PostProcessF22_Fr_Q_S_LOD_' st_name, num2str(n_i) 

'.tif']); 

  

  
function mGeo_fr_Re_S_Q_LOD = Dimension_Torsional(v_fr, v_Re, v_AR, n_i, 

st_name) 
%% v_fr     vector varialbe, Resonance Frequency 
%% v_Re     vector variable, Reynolds Number 
%% v_AR     vector variable, Aspect Ratio (h/b) 
%% n_i      No. of different Resonance Frequencies, Reynolds numbers or 

Aspect Ratios 
%% st_name  Part of the file name of the saved figures 
%% Called by: Characteristics() 
%% Call: getHDF_Ribbon(), getHDF_Thick(), getHDF_tors_rect_Sader() 
%% mGeometry matrix variable, [vh, vb, vL_Sader, vL_Best] 
sG = 79.6E9;              % [Pa], Shear Modulus of Silicon 
sEta = 1E-3;              % [Ns/m^2]=[kg/s/m], Viscosity of Water 
sRho = 2330;              % [kg/m^3], Density of Silicon 
sRho_L = 1E3;             % [kg/m^3], Density of Water 
vb = sqrt(2*sEta/pi/sRho_L.*v_Re./v_fr); % [m], Width 
vh = vb .* v_AR;          % [m], Thickness 
vxn = [0 1/10  1/5  1/4 1/3  2/5  1/2  2/3    1]'; % h/b 
vyn = [6 6.41 6.87 7.12 7.6 8.03 8.73 10.2 14.2]'; % k2 
vk2 = interp1(vxn,vyn,v_AR,'linear'); % Get the parameter by linear 

interpolation 
vK0 = vb.*vh.^3/3;        % [m^4], Geometric Function of the cross-

section, h/b=0 
vK  = 2*vb.*vh.^3./vk2;   % [m^4], Geometric Function of the cross-

section, real h/b 
vJ0 = vb.^3.*vh/12;                 % [m^4], Polar moment of the area, 

h/b=0 
vJ  = vb.*vh.*(vb.*vb + vh.*vh)/12; % [m^4], Polar moment of the area, 

real h/b 
vT  = pi*sRho_L.*vb.^4/8; % [.], Intermediate term 

  
% Torsional: Our Numerical Results of Hydrodynamic Function 
mHDF_Num = getHDF_Thick('Torsional Rectangular Thickness Interpolation', 

v_Re, v_AR); % mmag, mphase, mreal, mimg 
vg1_tors = 2*pi*v_fr .* vT .* diag(mHDF_Num(:,:,4));  % [kg.m/s], 

g1_tors 
vg2_tors = vT .* diag(mHDF_Num(:,:,3));               % [kg.m], g2_tors 
vXi = vg1_tors/4/pi ./ v_fr ./ (sRho.*vJ + vg2_tors);  % [.], Damping 

Ratio 
vL_Num = sqrt(sG*vK.*(1-2*vXi.*vXi)./(sRho.*vJ + vg2_tors))/4 ./ v_fr; % 

[m], Length 
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vQ_Num = 0.5 ./ vXi;                                  % [.], Quality 

Factor 
vS_cbar_Num = v_fr/2 .* vJ ./ (sRho.*vJ + vg2_tors);   % [Hz/(kg/m^3)], 

Normalized Sensitivity 
vLODc_bar_Num = 1.5*v_fr ./ vQ_Num ./ vS_cbar_Num;     % [kg/m^3], 

Normalized Limit of Detection 

  
% Torsional: Our Analytical Expression of Hydrodynamic Function [Cai 

2013 Dissertation] 
mHDF_Best = getHDF_Thick('Torsional Rectangular Thickness Tao2', v_Re, 

v_AR); % mmag, mphase, mreal, mimg 
vg1_tors = 2*pi*v_fr .* vT .* diag(mHDF_Best(:,:,4)); % [kg.m/s], 

g1_tors 
vg2_tors = vT .* diag(mHDF_Best(:,:,3));              % [kg.m], g2_tors 
vXi = vg1_tors/4/pi ./ v_fr ./ (sRho.*vJ + vg2_tors);  % [.], Damping 

Ratio 
vL_Best = sqrt(sG*vK.*(1-2*vXi.*vXi)./(sRho.*vJ + vg2_tors))/4 ./ 

v_fr; % [m], Length 
vQ_Best = 0.5 ./ vXi;                                 % [.], Quality 

Factor 
vS_cbar_Best = v_fr/2 .* vJ ./ (sRho.*vJ + vg2_tors);  % [Hz/(kg/m^3)], 

Normalized Sensitivity 
vLODc_bar_Best = 1.5*v_fr ./ vQ_Best ./ vS_cbar_Best;  % [kg/m^3], 

Normalized Limit of Detection 

  
% Torsional: Sader's Hydrodynamic Function 
mHDF_Sader = getHDF_Ribbon('Torsional Rectangular', v_Re); % [vmag 

vphase vreal vimg] 
vg1_tors = 2*pi*v_fr .* vT .* mHDF_Sader(:,4);          % [kg.m/s], 

g1_tors 
vg2_tors = vT .* mHDF_Sader(:,3);                       % [kg.m], 

g2_tors 
vXi = vg1_tors/4/pi ./ v_fr ./ (sRho.*vJ0 + vg2_tors);   % [.], Damping 

Ratio 
vL_Sader = sqrt(sG*vK0.*(1-2*vXi.*vXi)./(sRho.*vJ0 + vg2_tors))/4 ./ 

v_fr; % [m], Length 
vQ_Sader = 0.5 ./ vXi;                                  % [.], Quality 

Factor 
vS_cbar_Sader = v_fr/2 .* vJ0 ./ (sRho.*vJ0 + vg2_tors); % 

[Hz/(kg/m^3)], Normalized Sensitivity 
vLODc_bar_Sader = 1.5*v_fr ./ vQ_Sader ./ vS_cbar_Sader; % [kg/m^3], 

Normalized Limit of Detection 

  
% h: Thickness, b: Width, L: Length, h/b: Aspect Ratio, Re: Reynolds 

Number, 
% fr: Resonance Frequency, Q: Quality Factor, S: Normalized Sensitivity, 

LOD: Limit of Detection 
% _c: Chemical,  _N: Numerical Data,  _B: Our approach,  _S: Sader 
%  %: Relative Error to the relevant results based on numerical data 
% fr[MHz], Re, h/b, h[um], b[um],  
% L_N[um], L_B[um], L_S[um], %L_B, %L_S, 
% Q_N, Q_B, Q_S, %Q_B, %Q_S, 
% S_cBar_N[Hz/(kg/m3)], S_cBar_B[Hz/(kg/m3)], 

S_cBar_S[Hz/(kg/m3)], %S_B, %S_S 
% LOD_N[1000kg/m3], LOD_B[1000kg/m3], LOD_S[1000kg/m3], %LOD_B, %LOD_S 
mGeo_fr_Re_S_Q_LOD = [v_fr/1E6 v_Re v_AR vh*1E6 vb*1E6 ... 
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    vL_Num*1E6 vL_Best*1E6 vL_Sader*1E6 (vL_Best-vL_Num)./vL_Num*100 

(vL_Sader-vL_Num)./vL_Num*100 ... 
    vQ_Num vQ_Best vQ_Sader (vQ_Best-vQ_Num)./vQ_Num*100 (vQ_Sader-

vQ_Num)./vQ_Num*100 ... 
    vS_cbar_Num vS_cbar_Best vS_cbar_Sader ... 
    (vS_cbar_Best-vS_cbar_Num)./vS_cbar_Num*100 (vS_cbar_Sader-

vS_cbar_Num)./vS_cbar_Num*100 ... 
    vLODc_bar_Num/1E3 vLODc_bar_Best/1E3 vLODc_bar_Sader/1E3 ... 
    (vLODc_bar_Best-vLODc_bar_Num)./vLODc_bar_Num*100 (vLODc_bar_Sader-

vLODc_bar_Num)./vLODc_bar_Num*100]; 
save(['postprocess23_Geo_Re_S_Q_LOD_' st_name, num2str(n_i) '.mat'], 

'mGeo_fr_Re_S_Q_LOD'); 
disp('    Re[1E3]    h[um]     b[um]    L_B[um]    Q_B  

S_cBar_B[kHz/(kg/m3)]  LOD_B[1000kg/m3]'); 
disp([v_Re/1E3 vh*1E6 vb*1E6 vL_Best*1E6 vQ_Best vS_cbar_Best/1E3 

vLODc_bar_Best/1E3]); 
 

 

function m3_HDF = getHDF_Thick(str_Method, v_Reynolds, v_AspectRatio) 
%% Calculate Hydrodynamic Function for Vibrating Microcantilevers in 

Fluids 
%% str_Method    string variable, Name or Type of Expressions or 

Methods 
%% v_Reynolds    vector variable, Reynolds Number 
%% v_AspectRatio vector variable, Aspect Ratio (h/b) 
%% Called by: Freq_Spectrum() 
%% Call:      getHDF_Ribbon() 
%% m3_HDF        3d matrix variable, Hydrodynamic Function (Magnitude, 

Phase, Real part and Imaginary Part) 
%%               at differnt Reynolds numbers and different Aspect 

Ratios 
m3_HDF = zeros(length(v_Reynolds), length(v_AspectRatio), 4); % [mMag, 

mPhase, mReal, mImag] 
switch str_Method 
    case 'Transverse Rectangular Ribbon Sader' % [Sader 1998 JAP] 
        mHDF_Ribbon = getHDF_Ribbon('Transverse Rectangular', 

v_Reynolds); 
        m3_HDF(:,:,3) = kron(mHDF_Ribbon(:,3), ones(1, 

length(v_AspectRatio))); % Real Part 
        m3_HDF(:,:,4) = kron(mHDF_Ribbon(:,4), ones(1, 

length(v_AspectRatio))); % Imaginary Part 

  
    case 'Lateral Rectangular Ribbon Stokes' % [Stokes 1851] 
        mt = kron(2*sqrt(2)/pi ./ sqrt(v_Reynolds), ones(1, 

length(v_AspectRatio))); 
        m3_HDF(:,:,3) = mt;    % Real Part 
        m3_HDF(:,:,4) = mt;    % Imaginary Part 

  
    case 'Lateral Rectangular Thickness Russell' % [Cox 2012 JAP] 
        mt = kron(2*sqrt(2)/pi ./ sqrt(v_Reynolds), ones(1, 

length(v_AspectRatio))); 
        % Real Part 
        mCR = 1.658 * kron(sqrt(v_Reynolds), v_AspectRatio'.^1.83) + ... 
              3.08  * kron(ones(length(v_Reynolds),1), 

v_AspectRatio'.^0.85) + 1; 
        m3_HDF(:,:,3) = mt .* mCR; 
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        % Imaginary Part 
        mCI = kron(1./sqrt(v_Reynolds), 2.56 - 1.321*v_AspectRatio') 

+ ... 
              3.108 * kron(ones(length(v_Reynolds),1), 

v_AspectRatio'.^0.85) + 1; 
        m3_HDF(:,:,4) = mt .* mCI; 

  
    case 'Torsional Rectangular Ribbon Sader' % [Green+Sader 2002 JAP] 
        mHDF_Ribbon = getHDF_Ribbon('Torsional Rectangular', 

v_Reynolds); 
        m3_HDF(:,:,3) = kron(mHDF_Ribbon(:,3), ones(1, 

length(v_AspectRatio))); % Real Part 
        m3_HDF(:,:,4) = kron(mHDF_Ribbon(:,4), ones(1, 

length(v_AspectRatio))); % Imaginary Part 

  
    case 'Torsional Rectangular Thickness Tao1' % [Cai 2012 IFCS] 
        % (a + b*x^(-m)) * (c + y^n),   x=Re=1-31620, y=h/b=0.01-0.2 
        % Real Part = (0.049369 + 0.23625 Re^(-0.42804)) * (1.2012 + 

(h/b)^0.88591) 
        % -6.19% ~ 3.85% 
        vHDF_AR = 1.2 + v_AspectRatio' .^ 0.89; 
        vHDF_Re = 0.05 + 0.24 .* v_Reynolds .^ (-0.43); 
        m3_HDF(:,:,3) = kron(vHDF_AR, vHDF_Re); 
        % (b*exp(-m*x*log(10)) + d*exp(-x*log(10)/2)) * (c + y^n), 

x=Re=1-31620, y=h/b=0.01-0.2 
        % Imag Part = (1.043 Re^(-1.0667) + 0.45389 Re^(-0.5)) * 

(0.75346 + (h/b)^1.0374) 
        % -22.1% ~ 6.12% 
        vHDF_AR = 0.75 + v_AspectRatio'; 
        vHDF_Re = v_Reynolds .^ (-1) + 0.45 ./ sqrt(v_Reynolds); 
        m3_HDF(:,:,4) = kron(vHDF_AR, vHDF_Re); 

     
    case 'Torsional Rectangular Thickness Tao2' % [Cai 2013 

Dissertation] 
        % (a*x^(-0.5) + b*x^(-0.25) + c) * (1 + d * y + e*y*y),   

x=Re=1-31620, y=h/b=0.01-0.2 
        % Real Part = (0.2123 Re^(-0.5) + 0.07362 Re^(-0.25) + 0.05693) 

* (1 + 1.138(h/b) - 0.8151(h/b)^2) 
        % -5.89% ~ 5.79% 
        vHDF_AR = 1 + 1.1*v_AspectRatio' - 

0.82*v_AspectRatio'.*v_AspectRatio'; 
        vHDF_Re = 0.21 .* v_Reynolds .^ (-0.5) + 0.075 .* v_Reynolds .^ 

(-0.25) + 0.057; 
        m3_HDF(:,:,3) = kron(vHDF_AR, vHDF_Re); 
        % (a*exp(-x*log(10)) + b*exp(-0.75*x*log(10)) + c*exp(-

x*log(10)/2) + d) * (1 + e*y + f*y*y), x=Re=1-31620, y=h/b=0.01-0.2 
        % Imag Part = (1.023 Re^(-1.5) - 0.2846 Re^(-1) + 0.3871 Re^(-

0.5) + 0.0001778) * (1 + 1.256(h/b)) 
        % -11.2% ~ 11.0% 
        vHDF_AR = 1 + 1.24*v_AspectRatio'; 
        vHDF_Re = 1.1*v_Reynolds.^(-1) - 0.29*v_Reynolds.^(-0.75) + 

0.39 ./ sqrt(v_Reynolds) + 0.00018; 
        m3_HDF(:,:,4) = kron(vHDF_AR, vHDF_Re); 

  
    case 'Torsional Rectangular Thickness Interpolation' % [Cai 2013 

Dissertation] 
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        % load saved variables 
        % vAspectRatio  Vector, Aspect Ratios 
        % vReynolds     Vector, Reynolds Numbers 
        % mHDF_Sader    Matrix, Hydrodynamic Function by Sader 
        %                       (Magnitude, Phase, Real part, Imaginary 

Part) 
        % mHDF1Mag      Matrix, Magnitude of Hydrodynamic Function 
        % mHDF2Phase    Matrix, Phase of Hydrodynamic Function 
        % mHDF3Real     Matrix, Real Part of Hydrodynamic Function 
        % mHDF4Imag     Matrix, Imaginary Part of Hydrodynamic Function 
        % mHDF5Err      Matrix, Error of Hydrodynamic Function 
        load postprocess11_mHDF.mat; 
        m3_HDF(:,:,3) = interp2(vReynolds, vAspectRatio, mHDF3Real, 

v_Reynolds, v_AspectRatio'); % Real Part 
        m3_HDF(:,:,4) = interp2(vReynolds, vAspectRatio, mHDF4Imag, 

v_Reynolds, v_AspectRatio'); % Imaginary Part 

  
    otherwise 
        disp(['!!!???!!! getHDF_Thick: Can Not find Method of ' 

str_Method]); 
end 
if abs(v_Reynolds(1)) < 1E-20 % here Re=0 means f=0, that is, static 

response (No fluid effect) 
    m3_HDF(1,:,3) = zeros(1,length(v_AspectRatio)); 
    m3_HDF(1,:,4) = zeros(1,length(v_AspectRatio)); 
end 
m3_HDF(:,:,1) = sqrt( m3_HDF(:,:,3).*m3_HDF(:,:,3) + 

m3_HDF(:,:,4).*m3_HDF(:,:,4) ); % Magnitude 
m3_HDF(:,:,2) = atan( m3_HDF(:,:,4)./m3_HDF(:,:,3) ); % Phase 

 

 
function [sE sG vRho vRho_L vEta vPercent] = 

getMatProp_Value(str_Structure, str_Fluid) 
%% Set Properties for the Cantilever and the Fluid 
%%   str_Structure  string variable, Material Name of the Structure 
%%   str_Fluid      string variable, Material Name of the Fluid 
%% Called by: Freq_Spectrum(), Characteristics_Torsional() 
%%   [sE, sG, vRho, vRho_L, vEta, vPercent]   vector/matrix variable 
%%                  Young's Mudulus, Shear Mudulus, Density of the 

Structure 
%%                  and Density, Dynamic Viscosity, percent (w/w) of 

the Fluid 
vPercent = 0; 
switch str_Structure 
    case 'SiliconE' % Experiments data from Dr. Brand  
        sE = 110E9;      % [Pa], Young's Modulus of Silicon 
        sG = 45.4E9;     % [Pa], Shear Modulus of Silicon 
        vRho = 2330;     % [kg/m^3], Density of Silicon 
    case 'SiliconB' 
        sE = 169E9;      % [Pa], Young's Modulus of Silicon 
        sG = 79.6E9;     % [Pa], Shear Modulus of Silicon 
        vRho = 2320;     % [kg/m^3], Density of Silicon 
    otherwise % Default Material of Structure: Silicon Standard 
        sE = 169E9;      % [Pa], Young's Modulus of Silicon 
        sG = 79.6E9;     % [Pa], Shear Modulus of Silicon 
        vRho = 2330;     % [kg/m^3], Density of Silicon 
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end 

  
% Water Properties for Aqueous Glycerol and Aqueous Ethanol 
sEta_Water = 1E-3;   % [Pa.s], Viscosity of water @ 20C (@ T=25C Eta = 

0.89E-3) 
sRho_Water = 997;    % [kg/m^3], Density of water 

  
switch str_Fluid 
    case 'Glycerol' % 37 points 
        % Percent (w/w) Aqueous Glycerol 
        vPercent = [0 0.5  1  2  3  4  5  6  7  8   9 10 12 14 16 18 20 

24 28 32 ... 
                    36 40 44 48 52 56 60 64 68 72  76 80 84 88 92 96 

100]'; 
        % Viscosity Ratio to Water 
        vrEta = [1     1.009 1.020 1.046 1.072 1.098 1.125 1.155 1.186 

1.218 ... 
                 1.253 1.288 1.362 1.442 1.530 1.627 1.734 1.984 2.274 

2.632 ... 
                 3.082 3.646 4.434 5.402 6.653 8.332 10.66 13.63 18.42 

27.57 ... 
                 40.49 59.78 84.17 147.2 383.7 778.9 1759.6]'; 
        % Density Ratio to Water 
        vrRho_L = [1      0.9994 1.0005 1.0028 1.0051 1.0074 1.0097 

1.0120 1.0144 1.0167 ... 
                   1.0191 1.0215 1.0262 1.0311 1.0360 1.0409 1.0459 

1.0561 1.0664 1.0770 ... 
                   1.0876 1.0984 1.1092 1.1200 1.1308 1.1419 1.1530 

1.1643 1.1755 1.1866 ... 
                   1.1976 1.2085 1.2192 1.2299 1.2404 1.2508 1.2611]'; 
        vRho = vRho * ones(length(vPercent), 1); % [kg/m^3], Density of 

Microcantilever 
        vEta   = sEta_Water * vrEta;             % [Pa.s], Viscosity of 

Fluid 
        vRho_L = sRho_Water * vrRho_L;           % [kg/m^3], Density of 

Fluid 
    case 'Water' 
        vRho_L = 1E3;    % [kg/m^3], Density of Water 
        vEta = 1E-3;     % [Pa.s]=[kg/s/m], Viscosity of Water 
    case 'AirB' % [Basak+Raman 2006 JAP] 
        vRho_L = 1.18;   % [kg/m^3], Density of Air 
        vEta = 1.86E-5;  % [Pa.s]=[kg/s/m], Viscosity of Air 
    otherwise % Default Material of Fluid: Air 
        vRho_L = 1.205;  % [kg/m^3], Density of Air 
        vEta = 1.827E-5; % [Pa.s]=[kg/s/m], Viscosity of Air 
end 
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