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ABSTRACT

DATABASE METHODS FOR COPY NUMBER VARIANT ANALYSIS

OF ONE HUNDRED DISEASE ASSOCIATED GENES

IN HUMAN CONGENITAL HEART DISEASE

Maureen E. Tuffnell

Marquette University, 2011

Human genetic variation occurs more commonly than was recognized after the completion
of the Human Genome Sequencing Project in 2003. Submicroscopic human DNA analysis has
revealed copy number variation (CNV) as the deletion or duplication of a genomic region
potentially affecting gene dosage. Advanced genetic research now includes the study of CNVs in
diseased subject groups compared to in house controls or online published datasets of control CNV
data. Research labs choose from different bioinformatic algorithms to make the copy number calls.
Solutions for further processing the copy number data into quantifiable form require collaboration
with data analysts and include the use of relational databases.

The aim of this thesis work was to develop a relational database solution for human copy
number variation in subjects with cardiac malformations. The multipurpose database served as a
central repository for the cohort demographic data as well as the entire experimental set of copy
number variant data. Quantification and frequency analyses of the CNVs were executed via SQL
queries. Database SQL queries generated raw data used for essential visualization tools including a
detailed subject profile and a one hundred gene CNV spectra.

The stated purpose of the study was to develop a descriptive analysis of genomic copy
number associations in a well phenotyped congenital heart disease (CHD) population over one
hundred disease associated genes. The relational database created to advance the research proved
valuable in its data storage and retrieval capacity. Results showing consistency with published
literature validated the accuracy of the query results generated for the CHD cohort.



i

ACKNOWLEDGEMENTS

Maureen E. Tuffnell

Thank you to my family for their support and understanding while I was pursuing my
Master of Science in Bioinformatics degree.

I would also like to thank Dr. Aoy Tomita-Mitchell and Donna Mahnke from The Medical
College of Wisconsin. This is their study on a set of subjects that is very important to them. I am
honored to have been a part of it.

From Marquette University, Dr. Craig Struble and Dr. Praveen Madiraju, thank you for
your wisdom and guidance and for sharing what you know so effectively.

Collaborative efforts from two of my fellow students, Sid Kiblawi and Karl Stamm added
value to the body of work done here. I am appreciative of their time and willingness to contribute.



ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Statement of Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Summary of Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Copy Number Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 CNV Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 CNV Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 CNV and Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 CNV Data Origination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 CNV Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Database Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Databases in Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Congenital Heart Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 CHD Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 CHD and CNVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 One Hundred Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Python Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Access Database Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Database Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Database Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Database Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Database Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.5 Database Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Association Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Association Analysis Background . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Association Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Association Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . 32



iii

4 EVALUATION AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Cohort Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Discovery Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Clinical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Syndromic vs Non-Syndromic CHD . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 CNV Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Platform and Algorithm review . . . . . . . . . . . . . . . . . . . . . . . 50

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

APPENDIX

A SQL QUERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Database Relationship Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C ARFF file example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



iv

LIST OF FIGURES

2.1 Trisomy 21 karyotype image clearly showing three copies of chromosome 21. Na-
tional Human Genome Research Institute (http://www.genome.gov/25520259) . . . 6

3.1 Copy Number Variant Analysis Flow Chart. Color blocks represent work developed
for this thesis. Gray blocks represent tasks performed by lab personnel at MCW. . 16

3.2 Entity Relationship Diagram for the CNV Database. Blue box=entity or table, Yel-
low bubble=attribute or field and red diamond=relationship or key reference. . . . . 22

3.3 Rule Visualization - Genes to Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Rule Visualization - Genes to Syndromes or Chromosomal Abnormality . . . . . . 36

4.1 CHD - Frequency of subjects with CNV . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 CHD minus chromosomal abnormality and syndromic subjects - Frequency of sub-

jects with CNV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 MFHS Control - Frequency of subjects with CNV . . . . . . . . . . . . . . . . . . 41
4.4 CHOP Control - Frequency of Subjects with CNV . . . . . . . . . . . . . . . . . . 41
4.5 Gene Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Distribution of CNVs in CHD Cohort. Type A represents Trisomy 21, Turners,

XXX, XYY, Trisomy 18, 13 and 9 or cytogenetically visible (>3mb). Type B in-
cludes subjects with a CNV over a syndromic-associated CHD gene as reported
by the CHD WIKI portal which includes 22q11.2 Deletion syndrome and Williams
syndrome. Type C are subjects with CNVs over genes recognized through CHD
WIKI as non-syndromic. Type D includes CNVs of an unknown category and Type
E are subjects with no CNVs in this study. An individual can only fit into one
category where D>A>B or C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Complex subject profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.1 Relationship Diagram for the CNV Database created in Microsoft Access (2007). . 70



v

LIST OF TABLES

2.1 Public Copy Number Variant Databases . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 BED file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Output of samplecount.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Output of printgainloss excludes.py . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 CNV ANALYSIS Database Table Definitions. . . . . . . . . . . . . . . . . . . . . 23

4.1 CHD Cohort by Phenotype n=44 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Enriched regions in CHD cohort - Gains . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Enriched regions in CHD cohort - Losses . . . . . . . . . . . . . . . . . . . . . . 42
4.4 CNV gains and losses per region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



1

CHAPTER 1

INTRODUCTION

Database methods are used to facilitate descriptive and quantitative analysis of copy

number variant data in human congenital heart disease. The research process undertaken between

human genotyping and presentation of results is poorly documented and rarely discussed in the

literature. This leaves individual research labs to develop their own solutions for this data analysis.

In this highly active field of research new methods of data analysis must keep up with the scope

and size of the data. A relational database provides the foundation for one or many studies. The

upfront time for development is easily paid back in the quick operations of complex queries. The

database developed for this study and the results of the analysis are described in this document.

1.1 Statement of Problem

The Mitchell genetics lab at The Medical College of Wisconsin (MCW) endeavors to find

genetic causes for congenital heart disease (CHD). Structural CHD affects 0.8% of all live births

and claims up to 6,000 lives per year [7, 29, 41, 49]. Children’s Hospital of Wisconsin doctors treat

many of these very young patients surgically and medically. In addition to the physical care

provided by the medical team, geneticists study the relationship between phenotype and genetic

risk factors. Both groups of specialists desire to improve intervention strategies and long-term

outcomes for their patients.

Researching such a complex disorder as CHD is multi-faceted and includes classic

Mendelian genetics, single nucleotide polymorphism (SNPs) analysis, DNA/RNA sequence

analysis and Copy Number Variant (CNV) analysis. Dr. Mitchell’s lab participates in this research

from the original consent of the subject through sample collection, DNA extraction and finally data

analysis. The sequencing of the human genome in 2001 gave genetic research labs such as Dr.

Mitchell’s advanced tools in their quest for answers to the genetic cause of complex diseases [43].

Advanced genetic research now includes the study of CNVs in diseased subject groups compared

to in house controls or online published datasets of control CNV data. The CNV data analysis is
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one part of the comprehensive genetics study ongoing in the Mitchell lab and is the focus of this

thesis.

Research in the genomic era is a collaboration of physical laboratory resources and high

throughput computer resources. Quality research depends not in small part on the masterful data

management and analysis of the lab data analyst. Data generated from the lab is processed through

various programs to provide the scientists with the end resulting data analysis that allows for

scientific conclusions to be drawn or discoveries to be made.

The data for this study was managed in the lab in an Access database. The database

allowed for complex and simple query execution usable by all members of the research lab. In the

Approach, Chapter 3, a complete description of the data flow is provided.

The goal of this research is to provide a descriptive and quantitative analysis of the copy

number variants associated with a diseased population (human congenital heart disease) compared

to a control population over a defined set of one hundred disease associated genes.

1.2 Summary of Results and Contributions

The desired goals of the research study were achieved through the collaborative efforts of

many people as well as the use of various programs and software applications. The relational

database that was developed for this study succeeded in filling its enabling role as a data repository

and method for data analysis. Results were generated for both medical genetists as clinical

representation and molecular biologists as discovery. Discovery results such as a CNV gain over

the gene RUNX1 on chromosome 21 for all trisomy subjects in the cohort appeared as expected. In

addition a CNV loss of the gene TBX1 for all DiGeorge subjects was readily reported by the SQL

queries. Also as expected the results show a higher frequency of copy number variants in the

diseased subset compared to the control subsets. Visual representation of a complete CNV profile

per subject represents potential for clinical applications. The CHD and the Control cohort

comprise a rich dataset of subject demographics which holds great value for this study and any

future studies. The number of queries contained in the database was suitable to complete a CNV

analysis on the current dataset. See Results Chapter 4.3 for further details.
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1.3 Organization of Thesis

This thesis is organized into chapters and subchapters with tables and figures throughout.

Chapter 2 contains background on copy number variants, relational databases, and congenital heart

disease. Chapter 3 describes the approach and methods used to accomplish the research goals via

the relational database. Chapter 4 details the results of the analysis and discusses the value of the

database process. The Discussion section in Chapter 5 reviews the importance of syndromic vs

non-syndromic CHD and other challenges in CNV research. Conclusions and Future Work are

discussed in Chapter 6. The Appendix ( A, B, and C) includes query examples, a database

relationship diagram and an example of the data mining file format. Writing convention: all

database queries are displayed in a different font with keywords highlighted in bold. Tables and

field names are written in all capital letters. When referring to data set and item set the words are

written as one word, dataset and itemset consistent with Bioinformatic literature.
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CHAPTER 2

BACKGROUND

The background section of the thesis is threefold. First, copy number variation is explored

by explaining its definition, presence in the genome, association with disease and data procurement

in Section 2.1. Second, databases are discussed, particularly relational databases and their use in

bioinformatics and copy number variant research in Section 2.2. Third, congenital heart disease is

discussed to provide background information for the disease cohort used in this analysis (see

Section 2.3).

2.1 Copy Number Variation

Copy number variation analysis has become an integral part of genomic studies and is an

active area of research. This section explores the definition of a copy number variant, its

association with diseases in general and with CHD, the online databases containing CNV data and

a discussion about chromosomal abnormalities and their CNV profile.

2.1.1 CNV Description

Human genetic variation occurs more commonly than was recognized after the completion

of the Human Genome Sequencing Project in 2003 [43]. Based on single nucleotide polymorphism

data, it was thought that individuals differed 1 in every 1000 base pairs. We now recognize that any

two individuals differ by approximately 1% [35]. CNVs play a role in this difference. Estimates of

CNV percentage in a human genome are as high as 12% [28].

Submicroscopic DNA analysis has revealed that some segments of the human genome

exist in a state of copy number other than two. Humans are diploid organisms meaning we have

two copies of each chromosome, one inherited from mother and one from father. In some areas of

the chromosome we may only acquire one copy or we could receive more than two, this structural

variation from normal is referred to as copy number variation (CNV). These segments, or CNVs,

are defined as the deletion or duplication of a genomic region >1kb in length [28].
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Variability in copy number leads to dosage imbalance of genomic regions perhaps

manifesting phenotypically. The extent to which CNVs play a role in human diversity is becoming

more well known as advances in technology accord genomic researchers increased resolution for

comparative studies. CNVs and phenotypic associations are discussed in section 2.1.3.

While some CNVs have been described as related to disease or syndromes many are

located over common areas of duplication or loss with no known physical manifestation. Indeed

there are ongoing efforts to characterize a set of CNVs as normal or what might be described as

found in healthy control samples. As of September 2011 the Database of Genomic Variants

contained 66,741 CNVs (http://projects.tcag.ca/variation). As CNVs become a routine part of

genetic research the difference between normal and disease associations will be better understood.

2.1.2 CNV Formation

CNV formation can be discussed in three parts, the physical genomic alterations that

occur, the known or suspected causes of the variation and the evolutionally significance of

structural variation.

Four methods of genetic rearrangements contributing to CNVs have been described as;

Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork

Stalling and Template Switching (FoSTeS) and L1-mediated retrotransposition [28, 56, 68].

Another possible method for genomic deletion described by Smith et al. involves the fragile poly

A tail at the end of an area of high Alu repeats (short interspersed element(SINE) approximately

300 bp long commonly found in introns, 3’ untranslated regions of genes and intergenic genomic

regions) which is susceptible to breakage and NAHR [5, 15]. Multiple mechanisms of CNV

formation have been described in fetal development however CNVs can also develop and

accumulate during a human lifetime.

While the mechanisms for structural variation are known, the cause is much harder to

pinpoint. CNVs may be inherited. An autism study reports that most of their detected CNVs were

inherited and could not be readily associated with disease therefore the focus of the research was

on the de novo discovery [38]. Sporadic CNV formation is often called de novo formation. De

novo CNV discovery and reporting is important in the genomic era.
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Figure 2.1: Trisomy 21 karyotype image clearly showing three copies of chromosome 21. National
Human Genome Research Institute (http://www.genome.gov/25520259)

CNVs are suspected of playing a role in human diversity and evolution. Genomic

rearrangements have an effect on Mendelian traits as well as disease processes and may have been

the primary force for primate chromosome evolution [57]. Researchers today are clearly interested

in the evolution of disease phenotypes. CNVs and phenotypic association studies are part of this

active area of research. Of primary importance is the genomic region of a CNV and its potential

disruption of gene expression. Similar to a single nucleotide polymorphism(SNP), if the CNV

occurs over a gene region it may disrupt the resulting protein generation and function altering a

human phenotype. Worthy et al. describe the damaging phenotypic effect of a protein loss caused

by a SNP (tryosine to cysteine conversion) discovered in the XIAP gene [67]. Similar disruption

of proteins can be caused by CNVs which also affect gene dosage.

2.1.3 CNV and Phenotypes

The goal of this study was to describe the CNV profile of CHD subjects with the intention

of drawing a coorelation between known disease associated genes, CNVs and the CHD

phenotypes. Scientists must discern whether the CNVs in their population of patients are

phenotypically associated with or causative of disease.

One of the first known examples of chromosomal CNV and association with disease is the

trisomy (3 copies) of chromosome 21 [36]. The chromosomal abnormality identified in 1959 for

trisomy21 is depicted in Figure 2.1. Trisomy 21 is viewable microscopically due to its size and is

useful in the diagnosis of Down Syndrome subjects.
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Submicroscopic CNV detection in the genome is a more recent genetic research tool.

Increased levels of detection have led to the discovery of associations between CNVs and diseases

such as Williams-Beuren syndrome, Gaucher disease, Hunter syndrome, Alzheimer disease, Crohn

disease and Autism [53, 68]. Despite known CNV phenotypic associations, CNV association with

mendelian disease is still a small percentage of approximately 2,000 diseases explained on a

molecular level and continues to be an active area of research [39].

An understanding of CNV effect on gene dosage furthers the discovery process. A good

example of interindividual variability in gene dosage comes from the field of pharmacogenetics.

The CYP2D6 gene localized on chromosome 22q13.1 encodes for an enzyme of the same name.

The CYP2D6 enzyme is a hepatic P450 enzyme responsible for the metabolism of approximately

20% of all drugs [32]. Increased gene dosage (copy number duplications) of CYP2D6 leads to

rapid metabolism of the drug debrisoquine. In order to make the rapidly metabolized drug

effective, a higher than normal dosage may be required for those affected subjects [30, 32].

Johansson et al. also described the resulting poor metabolism of the drug caused by a deletion of

the CYP2D6 gene [32]. Pharmacogenetics is a field primed to take advantage of the forthcoming

individual genetic and CNV data.

2.1.4 CNV Data Origination

If the genotype is the genetic constitution of an organism then genotyping is defined as the

use of molecular tools to detect DNA differences between an organism and a reference

organism [27]. Part one of CNV data origination involves the genotyping performed in the manner

available in the lab. Part two involves the raw data files generated from genotyping and the further

analysis conducted using those files.

Genotyping methods are complex and expensive. Current options include array-based

platforms such as a comparative genomic hybridization (CGH) array or single nucleotide

polymorphism (SNP) genotyping arrays and whole genome DNA sequencing or next-generation

sequencing. The quality of CNV data resulting from genotyping is often determined by the quality

of the DNA sample and the sophistication of the copy number algorithm. For further discussion on

the quality of CNV data see the Discussion Section, Chapter 5. The genotyping method used in

this study, Affymetrix SNP 6.0 Array, is described in the Genotyping Approach Section 3.2.
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2.1.5 CNV Databases

Copy number variant data and databases to house the data began appearing on the internet

in the early 2000s. Various databases contain CNV data from healthy individuals (CHOP) while

other databases attempt to document CNVs found in diseased individuals (Decipher). The goal of

the Toronto Database of Genomic Variants (DGV), as stated by Zhang et al., is to “catalogue all

submicroscopic structural variants >1kb in size identified in control individuals that have been

documented in peer reviewed literature in a format accessible to medical geneticists and molecular

biologists” [69]. Similar motivation exists for the additional databases listed in Table 2.1.

For this study the publicaly available data from the Children’s Hospital of Philadelphia

(CHOP) herein referred to as the CHOP data was selected [54]. This data was important as a

control cohort because the majority of the subjects were healthy children. They classified

non-unique CNVs as those observed in more than one unrelated individual. A dataset of

non-unique CNVs was available online and was downloaded for this study in January 2010

(http://cnv.chop.edu/) [54].

Prior to use of online data, care should be taken to ascertain the human genome build used

for the data, the size thresholds for CNV discovery and the methods used for data origination. For

example, the size of a CNV for the Sanger Institute map of common CNVs was > 500kb. Today,

accurate CNV size resolution has increased to as low as 100kb and no doubt will become more

precise in the future. Data processed on different systems may provide results that are not

comparable. However, good bioinformatic resources, tools and personnel, may overcome the

disparities in datasets. The data chosen from CHOP was processed on an Illumnia system. While

there was some variation in the results the data was similar enough to allow for relative

comparisons. However, an in house control set of data analyzed with the same protocol on the

same Affymetrix system was also chosen for comparison due its similar processing.

2.2 Database

This section will discuss databases, specifically the relational database. Section 2.2.1

defines a database and describes some of its main characteristics. Section 2.2.2 discusses in more
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Table 2.1: Public Copy Number Variant Databases
Database Name Description
Database of Genomic Variants (DGV) A curated catalogue of large-scale variation in the

human genome (Toronto Database) [69]
DECIPHER Database of Chromosomal Imbalance and Pheno-

type in Humans using Ensembl Resources (Sanger
Institute)

Copy Number Variation Project Bioinformatic tools to view, download or analyze
CNVs found in 270 healthy individuals [48]

CHOP Database 2026 healthy individuals [54]

detail the design of a relational database. Section 2.2.3 explains data retrieval and analysis via SQL

queries. Databases used in the field of Bioinformatics are discussed in Section 2.2.4.

2.2.1 Database Defined

A database is a collection of related data. More, a database represents something in the

real world, the data has some inherent meaning and the database is used for a specific purpose. A

database enables the storage, retrieval and analysis of data. When the database is stored on a

network server it can become multi-user by setting the proper record locking flags in the program.

Databases are optimized for speed and efficiency via indexing and reducing redundant data.

Indexes are auxiliary files stored in the main memory buffers of the computer allowing for quick

processing of queries.

A database can be as simple as a flat file of names and address to as complex as

Amazon.com’s vast offerings of consumer goods. Database classification is dependent on the data

model. Data model examples include: flat file, object-oriented, XML, and relational. For

additional information on differing database types the reader is directed to The Fundamentals of

Database Systems [18].

The progression from megabyte to gigabyte to terabyte sized datasets used in scientific

research has researchers scrambling for modern methods of data storage and retrieval. The oft used

method of storing data in flat files and folders viewed in Microsoft Excel or Word is unmanageable

for datasets in the genomic era. Solutions that are both practical and efficient as well as usable by

the members of the research team are sought. A relational database provides such a solution. The
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database background in this thesis will focus on the relational database as that was the model

implemented in this scientific setting.

2.2.2 Relational Database

E.F. Codd, a computer scientist in the IBM Research Laboratory in the 1970’s and 1980’s,

was aware of a growing problem with data models of the era. As a dataset changed or grew the

consequent application changes were becoming unmanageable. Also, he noticed that user

interaction with the models required a computer sophistication that most people and even mid level

professional people did not have. If database use was to have a future, it would have to be more

accessible and more flexible. Codd’s 1970 paper entitled, ”A Relational Model of Data for Large

Shared Data Banks” is considered the seminal paper describing the relational model of

databases [14]. He described relation in mathematical terms, “Given S1, S2, ...Sn, R is a relation

on these N sets if it is a set of N-tuples each of which has its first element from S1, its second

element from S2 and so on” [14]. Basically, a row of data contains parts of data from different sets

and can be called a relation.

The mathematical relation can be interpreted by users as a relationship between columns

in tables. The concept of data independence sealed the success of the model. This meant the user

did not need to interact with the data structure, tree or paths. The relational database made the

under workings of the data structure transparent to the user who only needed to focus on the

relationships between the data.

A practical description of a relational database is a collection of data stored in tables.

Tables contain fields and rows. Fields describe the specific attributes such as, ID, first name, last

name, address. Rows represent a collection of related data such as a patient record. The

distinguishing factor that defines a relational database is the concept of a key and it’s relation to a

key in another table. Keys provide the linkage from one table to another thus defining the relation.

For example the primary key in a patient table may be the patient id. A table with appointment data

may then point to the id key in the patient table thus creating the relation. These relations are

necessary for the structured query language (SQL) to operate on the data and pull information from

multiple tables at once.
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Database design was enhanced by Chen in the 1970s by a proposed and now widely

adopted modeling system called The Entity-Relationship Model [12]. The design proposed a

diagram of the data structure using a top-down approach organizing the data in boxes (entities)

associated with attributes and relationships [12]. An ER diagram (Figure 3.2 )was created in the

database design phase of the CNV analysis and described in Approach section 3.4.1.

2.2.3 SQL

If relational databases were going to become widely used then the language used to access

the database must follow the same philosophy as that of Codd in his design of the database. The

language should be based on English rather than machine. It should be accessible to professionals

other than computer scientists and it should be data structure independent. Donald Chamberlin and

Raymond Boyce, scientists at IBM, developed SEQUEL: A Structured English Query Language to

meet these requirements [11].

SQL was based on the relational model which the authors describe as the “simplest

possible general-purpose data structure, and which provides a maximum degree of data

independence” [11]. The language is based on relational algebra and predicate calculus using set

theory operations [13, 47]. With this language it is possible to have sets of sets of sets using

set-theoretic data structure. The complicity of the calculus is transparent to the operator using

natural english to define domains, fields and relationships. SQL uses the terms table, row and

column in place of relation, tuple and attribute respectively.

Displayed below is the basic structure of a query.

SELECT fields

FROM tables

WHERE criteria

Once a database has been created and contains accurate data it is ready for query

operations. Queries can be simple lists of data contained in a field. For example, list all the people

who live in Milwaukee. Queries can also be very complex involving calculations, aggregations,

grouping and sorting. A complex query example would be count people living in Milwaukee who

have purchased a new mobile phone in the past six months with a price greater than $200.00,
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grouping by type of phone. Nested queries become even more complicated but more powerful

when you apply operations on multiple table results.

Today SQL is the most widely used computer language for querying relational databases

and may be credited with the success of relational databases [47]. The most current International

Organization for Standardization (ISO) for SQL is ISO/IEC 9075-1-14:2008 (http://www.iso.org).

See section 3.4.4 for examples of SQL queries used in this study.

2.2.4 Databases in Bioinformatics

Databases are commonly used in bioinformatic research. Microarray, gene expression,

nucleotide and protein sequence data all take advantage of the nature of the databases for storage

and retrieval. Chapter three in underdstanding Bioinformatics is devoted to databases in

bioinformatics, explaining their use, types and providing a breakdown of the biologic databases

available online [70].

This study used no less than six publicly available databases: OMIM, PubMed, Santa Cruz

(UCSC), CHOP, DGV, and CHDWiki (see Table 2.1 for a description of CHOP and DGV).

PubMed is a searchable database of biological literature maintained by the National Center for

Biotechnology Information (NCBI). The database currently contains over 20 million citations [50].

PubMed was routinely used for research during the course of this study. In addition to the literature

database, NCBI also hosts the Online Mendelian Inheritance in Man (OMIM) catalog of human

genes and genetic disorders. OMIM is a database that focuses on the relationship between

phenotype and genotype [1]. OMIM was used in this study to search for genes related to

congenital heart disease and cardiac malformation.

The UCSC Genome Bioinformatics Site contains tools such as the Genome Browser,

ENCODE and Blat [33]. The Genome Browser was often used to verify genomic locations of

genes. CHD WIKI is an online portal for genomic information specific to CHD [4]. The website

lists syndromic and non-syndromic genes implicated in human CHD [4]. The genes on the CHD

WIKI site were included in this analysis (see Section 3.1).
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2.3 Congenital Heart Disease

A congenital heart disease definition written by Mitchell et al. [40] in the 1970s continues

to be adopted by others such as Hoffman and Kaplan [29]. The definition,“a gross structural

abnormality of the heart or intrathoracic great vessels that is actually or potentially of functional

significance,” represents a broad group of physical heart malformations. Congenital means the

heart disease exists from birth. It does not mean that it was discovered at birth as there are adults

with undiagnosed congenital heart malformations. The daunting CHD statistics discussed in

section 1.1 provide a clear impetus for CHD research. Section 2.3.1 offers a background on CHD

while Section 2.3.2 reviews CHD and CNVs.

2.3.1 CHD Background

Structural congenital heart disease (CHD) is the most common severe form of birth

defects, affecting 0.8% of live births [29]. The exact causes of congenital cardiac malformations

are largely unknown. The critical period in human heart development is in the fifth through eight

week of embryonic life [10, 44]. Anomalies in heart development may occur during this time

affecting blood flow and heart function which may or may not be apparent at birth. One example of

a major congenital heart malformation is Hypoplastic Left Heart Syndrome (HLHS). HLHS is

described as under-development, hypoplasia, of the left atrium, mitral valve, left ventricle and

aortic valve [24, 44]. Another CHD example is transposition of the great arteries (TGA). TGA is a

defect of the partition of the common outflow tract into the aorta and pulmonary arteries and

accounts for 5% to 7% of all CHD cases [42]. CHD is highly polymorphic, the phenotypes for this

study alone represented 44 different types of CHD as shown in Table 4.1.

Muncke et al. discuss the high expression of a gene, PROSIT240, as a possible cause of

TGA. It is estimated that 18% of CHD cases are due to chromosomal causes or genetic structural

abnormalities including trisomies such as Trisomy 21, 13 and 18 as well as deletion

syndromes [45]. Congenital cardiac malformations may be associated with disorders in which

causal genes have already been discovered such as in Holt-Oram, Alagille, and Noonan

syndromes [45]. Environmental factors with a reported association with fetal and CHD

development include: maternal phenylketonuria, low levels of folic acid, pregestational diabetes,
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rubella or other febrile illness exposure and exposure to organic solvents [31]. Jenkins et al.

cautioned that the studies on environmental risk are preliminary and may report contradictory

results [31]. CHD is considered a complex disease with possible multiple causal interactions

between a genomic profile and environmental risk factors.

2.3.2 CHD and CNVs

A number of studies report a relationship between CNVs and CHD. Greenway et al.

describes the genetics of a Tetralogy of Fallot population where congenital heart malformations are

common [23]. One distinguishing genetic characteristic of TOF subjects is a duplication over the

chromosomal region 1q21.1 [23]. Three of the seven genes described in this duplication were

included in the Mitchell lab study, CHD1L, FMO5 and PRKAB2.

Trisomy21 and 22q11.2 Deletion syndrome are two syndromes defined by a large

chromosomal abnormality that also have a high percentage of CHD in their population. The extra

copy of chromosome 21 may severely affect normal human development. Trisomy21 subjects

carry a 30-40% chance for developing heart malformations [http://omim.org/entry/190685] [1]. An

even higher percentage, 75%, of subjects with 22q11.2 Deletion syndrome are at risk for

developing heart malformations [62]. Known genetic characteristics of these disorders and other

disorders associated with heart malformations justify the inclusion of CNV research in genetic

studies of CHD.
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CHAPTER 3

APPROACH

The aim of this thesis work was to develop a relational database solution for human copy

number variant data in subjects with cardiac malformations. Many studies discuss in detail the

algorithm used to perform genotyping and then proceed to the description of the results. What is

left out of the discussion is the method by which the results were obtained. The lack of well known

analyses methods leaves each lab to design their own method of CNV analysis. For genetic

researchers this is a task that they may not be trained to perform outside of Excel spreadsheets.

This thesis provides a complete description of the database methods post genotyping. A visual

representation of the approach is provided in Figure 3.1.

The genetic data used in this study originates from blood or tissue samples from subjects

with congenital heart disease. Genomic DNA was extracted from the subjects’s sample in the

Mitchell lab by lab scientists. The subject’s families have given full consent for their DNA data to

be used in genetic studies conducted by the Mitchell lab at The Children’s Research

Institute/Medical College of Wisconsin in adherence to a Medical College of Wisconsin

Institutional Review Board approved protocol.

The in silico part of the analysis used the computers and networks available at the Medical

College of Wisconsin and Marquette University. The study used Medical College of Wisconsin

Mitchell lab datasets as well as a publicly available CNV dataset from Children’s Hospital of

Philadelphia (CHOP) [54].

The approach used to analyze the CNV dataset evolved as the questions asked became

more diverse. Initial questions were simply: 1) How many CNVs were found in each of the one

hundred genes? and 2) How many subjects in our CHD and CONTROL sets have CNVs over the

one hundred genes?

These two questions were answered with python scripts run on the entire dataset (see

Section 3.3). Questions then progressed to a more detailed level.

1) How many subjects have CNVs in our gene regions of interest sorted by subject

diagnosis?
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Subject Sample MS Excel file

Affymetrix SNP 6.0 array CEL file

Genotyping Console (GTC)

Copy
Number
Analysis

Segment Summary Report

Custom Region Report

BED file

MS Access Database

SQL
queries

Export to Visualization
and Statistical Analysis

Figure 3.1: Copy Number Variant Analysis Flow Chart. Color blocks represent work developed for
this thesis. Gray blocks represent tasks performed by lab personnel at MCW.

2) What is the frequency of the CNVs found by diagnosis for the CHD patients compared

to the frequency of CNVs in the control population?

3) How many patients have CNVs on more than one chromosome in the genomic regions

of interest?

4) What is the percentage of subjects with a chromosomal abnormality vs no chromosomal

abnormality containing CNVs?
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It became apparent that in order to answer the more detailed questions currently and in the

future a relational database should be created. Therefore, the remainder of the analysis was

conducted via the Access database described in this document. Access was chosen for the practical

reason that the lab scientists had been trained in the software. Previous training reduced the

learning curve so that rapid use of the database could take place.

The relational database served as a repository for the post-genotyping data files. The data

files were imported into the MS Access (2007) database for an efficient and secure means of

accessing and storing the CNV data. SQL queries (see section 3.4.4) result in data reports which

can be used for further data manipulation such as creating charts in MS Excel, visualization using

the R Statistical Computing package or running an association analysis in data mining applications.

Quantitative analysis was accomplished using python scripts and SQL queries to pull data

from the three datasets described in Section 4.1.1. Detailed diagnosis and demographic data were

collected and entered for each subject in the database. CNV query operations were often grouped

by demographic categories such as diagnosis, syndrome or gender.

Analysis via the database produced two types of results. First, a clinically relevant set of

information was pulled from the data in a manner useful to clinicians or medical geneticists.

Secondly, CNV frequency was elaborated providing utility to molecular biologists and research

geneticists. Therefore, the result section and parts of the approach will be discussed with respect to

the potential use of the results.

The approach section first describes the custom region file creation containing the one

hundred genes (see Section 3.1). Section 3.2 details the genotyping performed at MCW. The

python scripts used in the intial stage of the analysis and for the CHOP data are descibed in

Section 3.3. The custom relational database is described in Sections 3.4- 3.4.5. Finally, an

association analysis was performed on a subset of the data which is described in Section 3.5.

3.1 One Hundred Genes

The one hundred gene list was compiled in the Mitchell lab from previously published

literature containing disease associated genes and the online CHD WIKI website

(http://www.chearted.eu, searched 01/04/2011 and updated 07/28/2011) [4, 50]. The list of one
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Table 3.1: BED file format.
Chromosome(chr) Chr Start Chr End Region Name
chr21 35081967 35343465 RUNX1
chr22 18124225 18151112 TBX1
chr22 20443946 20551970 MAPK1
chr22 19601713 19637890 CRKL
chr20 10566331 10602694 JAG1
chr12 111340918 111432100 PTPN11

hundred genes was intended to be representative of the majority of genes known to be associated

with CHD. Online databases such as PubMed and OMIM were searched for literature linking

genes and CHD or syndromes with a high penetrance of CHD. Many of the genes included in the

list have well known CHD associations such as GATA4 [63] and NKX2-5 [51]. Initially, 176 genes

were included. The original 176 genes were trimmed to 100 for quality control purposes.

Duplicate regions and those with a low quality literature reference were eliminated from the study.

Once the annotated list was complete a BED file needed to be created. A general

description of a BED file is a tab delimited file with rows containing descriptions of data used for

searching larger datasets and extracting data. The specific use for our application is the genomic

BED file defined by the University of California Santa Cruz (UCSC) genomic website as the data

lines displayed in an annotation track (http://genome.ucsc.edu/FAQ/FAQformat). The file is tab

delimited and contains three required fields, chrom, chromStart, chromEnd. One of the nine

optional fields, Name, was also included in the BED file. The structure of the BED file is displayed

in Table 3.1. The tab delimited text file was exported from MS Excel (2007) and saved with a .bed

extension. Applications such as Genotyping Console import files in this format for analysis.

The complete list of genes along with CNV counts is displayed in Table 4.4.

3.2 Genotyping

Genotyping at The Medical College of Wisconsin was performed on the Genome-Wide

Human SNP Array 6.0 (Affymetrix, Santa Clara, CA) for both the CHD and the local control

cohort (MFHS). The CHOP control cohort was genotyped on the Illumina Infinium Human

Hap610K BeadChip (Illumina, San Diego, CA) [54]. The Affymetrix process is described in the

next paragraphs.
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Genomic DNA was placed on an Affymetrix gene chip. The chip was processed through

the standard protocol for Affymetrix SNP 6.0 array. The result was an image file (DAT) of the

fluorescence and a data file (CEL) representing the fluorescent intensities. Additional details for

these methods were previously described by Tomita-Mitchell et al. [62]. The Affymetrix resulting

intensity files (CEL) were imported into Genotyping Console version 3.0.2 (GTC v3.0.2) software.

The Copy Number analysis used the Birdseed v2 algorithm to estimate signal intensity for each

SNP from the CEL file. Next, the Birdseed v2 algorithm determined copy number states and made

genotype calls. Briefly, Birdseed v2, an evolution of the RLMM genotyping algorithm, is a

supervised learning algorithm based on a linear model and uses Mahalanobis distance for

classificaiton [46].

Parameters in the algorithm process were set to recognize regions larger than 25kb

comprised of at least 25 contiguous markers. These parameters were intended to reduce the

number of false positive CNV detections. The array detects regions of homozygous deletion,

hemizygous deletion, or amplification. CNV detection resulting from these analyses were

confirmed using a TAQMAN assay (Applied Biosystems), karyotype or Fluorescence In Situ

Hybridization (FISH) analysis.

The intensity data file (CEL) was imported into Genotyping Console (GTC). The custom

region file (BED) was also loaded. The copy number analysis was executed on all the data files in

sets sized appropriately for optimal computing operations. Resulting data files included the

segment summary report and the custom region report. The segment summary report listed sample

information and all segments with their copy number state discovered for each sample. The custom

region report listed those segments that fell in any of the regions defined in the custom BED file.

At this point all the data necessary to conduct a CNV analysis was available.

3.3 Python Scripts

Dr. Craig Struble, Marquette University, wrote multiple python scripts in the initial stages

of the analysis. Scripting provided an efficient way to process many files at one time. The results

gave the scientists an overview of their data including CNV counts per region and sample counts
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Table 3.2: Output of samplecount.py
SYNDROME GAINS LOSSES EITHER
DILV 5 0 5
AS 5 4 9

Table 3.3: Output of printgainloss excludes.py
Gene name Chromosome Gain total Loss total Both total
TBX1 22 3 0 0

with CNVs. The results from these scripts were used for statistical analyses which is reported in

Chapter 4. Each script is described below.

samplecount.py

This python script used the custom region report data. This data was generated by

Genotyping Console via the custom BED file analysis on the original CEL files. The script counted

samples that have a copy number variant (loss or gain) over the defined regions. The quality

control check excluded subjects with greater than 250 total CNVs. The result was a count of CHD

subjects (grouped by diagnosis) and control subjects with CNVs. See Table 3.2 for an example of

the script output.

printgainloss excludes.py

This script also used the custom region report data. Copy number gains and losses were

counted and grouped by regions. See Table 3.3 for an example of the script output.

cnv chop analyze.py

Written to process the CHOP data, this script’s output provided frequency of CNVs per

region in the one hundred gene list. Additionally, a python script was written by Dr. Struble to

quantify the number of subjects with CNVs.

3.4 Access Database Creation

The multipurpose Access database (Microsoft Office 2007) served as a central repository

for the cohort demographic data as well as the entire experimental set of copy number variant data.

Data from the Genotyping Console (GTC) analysis were imported as text files into the custom

region report table and the region table. Excel files containing cohort demographic data were
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imported into a subject table. Additional tables were employed to remove those samples or regions

which failed the quality control measures.

All operations were performed on three main tables: sample, custom region report and

gene region tables. SQL operations aggregated CNVs per region and by subject in each cohort.

Using descriptive fields such as syndrome and multi-level diagnosis allowed for further

breakdowns of aggregate data and insights into specific subject groups (ie syndromic vs

non-syndromic) that may exhibit increased CNV frequency. Application of various filters on the

data, such as CNV size, provided increasing scrutiny as more knowledge was gained about the

genomic profile of the cohorts. SQL query results were exported to Microsoft Excel (2007) files

and an external R program (version 2.7.2 2008) for spectra and frequency table creation [60].

This database creation section is divided into subsections that further describe each aspect

of the database. Sections 3.4.1 shows the database design figure. Specifics about the raw data

loaded into the database are discussed in Section 3.4.2. Section 3.4.3 provides table details.

Section 3.4.4 includes three query examples and discusses data filters. Finally, section 3.4.5

discusses database maintenance.

3.4.1 Database Design

An Entity Relationship Diagram shows the relationship between all entities and attributes

in a database [12]. The graphical representation created for the CNV database proved helpful in the

design stage of database creation. Entities became tables, attributes corresponded to fields in the

tables and the relationships defined the referential key assignment between the tables. Figure 3.2

depicts the design for the CNV analysis database. For space reasons not all fields are shown as

attributes on this diagram. Diagram B.1 lists all fields per table.

3.4.2 Database Data

The entire dataset consisted of all data related to this study; custom region report data,

demographic sample data and region data. All files were previously stored as comma or tab

delimited files. Using the database as a central repository for the data improved upon the separate

folder, text file method of data storage.
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Figure 3.2: Entity Relationship Diagram for the CNV Database. Blue box=entity or table, Yellow
bubble=attribute or field and red diamond=relationship or key reference.

The DX SAMPLE table was populated with the CHD and MFHS control datasets via the

Access import feature. The data was imported from text files. The complete subject dataset

contained 1971 subjects. After quality control evaluations, 1838 were used in the analysis. The

2026 subjects in the CHOP dataset were stored outside of the database and analyzed via the python

scripts described in Section 3.3.

The CRR table was populated by importing many text files. The first file imported used the

text file column headers to create the Access column headers (field descriptions). Subsequent text

files contained only text, no column headers. There were approximately a half million records in

the CRR table at the time of analysis.

The REGION table data was imported from a text file that was created in Excel. This was

the same file used as the BED file in the GTC analysis. Additional fields were added as needed and

are described in Section 3.4.3.



23

Table 3.4: CNV ANALYSIS Database Table Definitions.
Main Tables Description
CRR custom region report data, 21 fields
DX SAMPLE sample ID and associated demographic data
REGION region name, start and stop location, chromosome and bed file flag
Quality Control Tables Description
EXCLUDES sample ID of subjects excluded from the study
REGION INCLUDES region names for 100 genes
CHR chromosome ordering table

3.4.3 Database Tables

The access database was a collection of tables and rows containing data specific to this

study. There were three main tables representing the bulk of the important data needed to conduct

the CNV analysis. This section will describe those tables which will be referenced throughout the

document. CRR, REGION, and DX SAMPLE were the three main tables supported by three

accessory tables shown in Table 3.4. The database relationship diagram (Figure B.1 in the

Appendix) shows the relationships between the tables and lists all the fields in each table.

Custom Region Report Table

The Custom Region Report (CRR) table contained the custom region reports generated by

Genotyping Console. The data showed the segments found for all samples over each region in the

one hundred gene list. All results were included whether a segment was found or not. This allowed

the scientists to revisit the data verifying positive or negative results. The reports were loaded into

the database in different sets, e.g. a control set, an HLHS set, etc. However, once loaded they

become one set of data. Sorting of the data was accomplished by selecting various fields in query

operations.

An important field to note in the CRR table is the EXCLUDEDCNV field. This field was

used as a Y/N flag to mark any CNV that was not confirmed via another method in the lab. These

data were then excluded from the results. There were only four unconfirmed CNVs however the

ability to flag them was important to the researchers.
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Diagnosis Sample Table

The DX SAMPLE table was perhaps the most important table of the database. It

contained all the demographic information associated with each sample in the study. The

demographic data was gathered via study consents and chart reviews by the clinicians associated

with this study. This table provided the basis for much of the sorting and grouping of subjects. For

example, the CNV frequencies by phenotype were calculated by grouping the DX COLLAPSED

field. Querying the CNV counts grouped by phenotype made it possible to compare the frequency

of CNVs found in the Hypoplastic Left Heart Syndrome (HLHS) cohort versus the Aortic Stenosis

cohort or the Tetralogy of Fallot (TOF) cohort versus a control cohort. This type of analysis

provided enriched phenotype results.

A visualization of the frequency of subjects with CNVs based on their chromosomal

category was desired (see Figure 4.6). To accomplish the CHD subdivisions a field called

CATEGORY was added to the DX SAMPLE table. Categories A-F were assigned to the subjects

with CNVs as described in Section 4.3.1. CNV frequencies were calculated by category to create

the piechart. Another valuable field was the CHD CONTROL flag which separates samples by

CHD and control cohorts.

The invaluable demographic table may be used for all iterations of CNV research.

Researchers are bound to come up with different questions of their data as new information

becomes available. The database flexibility allows for new questions to be handled quickly. Can

we look at just females? Can we remove those whose age is greater than 80 in the control

population? Can we remove the data from the patients with chromosomal abnormalities and see

what the results look like? All these questions can be answered and reported quickly. This table

may also be copied and imported into a new database for use in subsequent studies.

Region Table

The REGION table contained all the data associated with each of the regions analyzed in

Genotyping Console. Each row in the table contained: gene name, start and stop location,

chromosome, PMID (PubMed ID number) and BED file flag. BED file flag was used to distinguish

between differing lists of genes that may have been used in different analyses contained within the
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same database. For example, the current CNV study discussed in this paper used the CHDKS BED

file flag which stands for CHD known syndromes. A future BED file flag could be OMIM which

would be used for an analysis run on all disease causing genes found in OMIM.

The region table grew to hold additional information per region. For example, each region

had a PMID field which contained a number used to find the literature source relating the gene to

the heart. Two fields provided information about gene relations to common CNVs,

%CNV OVERLAP with the Toronto Database (DGV) and %frequency found in the CHOP

database.

Quality Control Tables

The EXCLUDES table and the REGION INCLUDES table were created for the purpose

of data filtering.

The EXCLUDES table simply listed the sample ID’s of the subjects not included in the

study. Every query removed these samples from the results via the statement below.

AND SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES)

The REGION INCLUDES table was used to further define just those one hundred genes

for the study, leaving out those genes that failed quality control or were not included. It simply

listed the gene names. All queries joined the two region tables together by using the statement

below.

REGION . REGION=REGION INCLUDES . REGION

One additional table, CHR, sorted the gene regions by chromosome. Access ordered numbers by

listing all the ones first then the twos and so on, e.g. 1, 12, 13. However, chromosomes ordered in

this manner: 1,2,3...21,22, X, Y. Therefore, the CHR table listed the chromosomes in order and

assigned them a sequential ID number for use in the ORDERBY command in SQL. Using the

region linear start position and the CHRID field, copy number results were generated from the

beginning of the genome to the end in chromosome order.
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3.4.4 Database Queries

The SQL query language was the language used to retrieve data from the CNV database

(see Section 2.2.3 for a description of SQL). Over 200 queries were created during the course of

the analysis. The queries were organized by the type of output. Query output fell into just a few

categories; list, count, or frequency. A naming convention was created that assigned a prefix of

LIST or COUNT or FREQ to each query. Additional prefix categories included COMPLEX

and GENDER . See the examples below.

Listing 3.1: List subjects with diagnosis HLHS.

SELECT DX SAMPLE . SAMPLEID

FROM DX SAMPLE

WHERE DX COLLAPSED=”HLHS” AND DX SAMPLE . SAMPLEID

NOT IN (SELECT ∗ FROM EXCLUDES)

Three data filters were implemented in the queries to obtain the desired output:

1) sample excludes list discussed in section 3.4.3

2) region includes list discussed in section 3.4.2 and

3) segment size filter discussed below.

The third method of filtering this data was by CNV segment size. The size filter was

accomplished using the SQL code below and shown in the next query example. The code finds a

loss or gain, then subtracts the end position from the start position to get the segment size. Only

those CNVs ≥ 100kb for losses and ≥ 200kb for gains were included in the study. Filtering by size

may reduce false positive CNV counts.

Listing 3.2: Size Filter

( ( CRR. LOSS GAIN=”LOSS” AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s

>=100000) ) OR (CRR. LOSS GAIN=”GAIN” AND (CRR. E n d L i n e a r P o s i t i o n−CRR.

S t a r t L i n e a r P o s >=200000) ) )

The next query counted all subjects with HLHS that have a CNV over the one hundred

gene regions using the above size filter.
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Listing 3.3: Count all subjects with a CNV and diagnosis of HLHS.

SELECT A . [ DX COLLAPSED] , COUNT(A. SAMPLEID) AS SAMPLES WITHCNV

FROM (SELECT DISTINCT (DX SAMPLE . SAMPLEID) , DX SAMPLE . [ DX COLLAPSED] FROM

DX SAMPLE, CRR, REGION INCLUDES WHERE DX SAMPLE .CHD CONTROL=”CHD” AND

DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES) AND DX SAMPLE . SAMPLEID=

CRR. SAMPLEID AND (CRR. REGION=REGION INCLUDES . REGION AND CRR. BEDFILEFLAG=”

CHDKS” ) AND DX SAMPLE . DX COLLAPSED=”HLHS” AND ( ( CRR. LOSS GAIN=”LOSS” AND (

CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ) OR (CRR. LOSS GAIN=”

GAIN” AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=200000) ) ) AS A

GROUP BY A . [ DX COLLAPSED ] ;

A number of queries have been created that prompt the user for input. Within the query the

field was entered in the form Field=[type input]. For example, DX SAMPLE.SAMPLEID=[TYPE

SAMPLEID] was used to request the subject’s ID prior to processing. Queries have been created

for user input of gender, sample ID, syndrome and diagnosis.

For additional queries used in this analysis see Appendix A.

3.4.5 Database Maintenance

The database functioned as a engine to produce results for the CNV study. It also provided

answers to daily questions in the lab that related to the samples in the CHD population. Both

efforts required query generation over a period of two years. Queries needed to be updated

throughout the iterations of the analysis as the sample population increased or additional filters

were put in place. There were a core set of queries for the main analysis and a group of single use

queries. It was the responsibility of the data analyst to verify proper operations of the queries. In

addition, regular backups of the database were performed. The database was copied to begin

creating a new database with the same sample populations using different genomic segment data.

3.5 Association Analysis

In collaboration with Sid Kiblawi, a fellow graduate student in Bioinformatics at

Marquette University and The Medical College of Wisconsin, an association analysis was

performed on a subset of the CHD cohort. This Approach section includes an association analysis
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background (see Section 3.5.1), the association analysis methods used in this study (see

Section 3.5.2) and the results of the association analysis (see Section 3.5.3).

3.5.1 Association Analysis Background

Association analyses are useful for discovering interesting relationships hidden in large

datasets. Associations and correlations within the dataset may be uncovered by mining for items

that occur frequently together. Threshold of frequency is determined by the data miner and the

metrics chosen as part of the data mining algorithm. Association analyses generate ‘rules’ which

are used to represent relationships within the dataset. The rules take the form of: X→Y. The rule

suggests a strong relationship between the itemset X and the itemset Y. Rules are usually read in

the following manner: if itemset X is present then itemset Y is also likely to be present.

Both the algorithm used and the metrics applied during the algorithm’s operations

determine the accuracy and impact of the association rules generated. Association rules only imply

a strong co-occurrence between the antecedent and the consequent of the rule. Causality requires

knowledge of the cause and effect of the specific attributes of the data. Therefore, the rules formed

are a guide from which to focus additional research.

Apriori algorithm

A seminal algorithm used for mining association rules is the apriori algorithm, first

developed by R. Agrawal and R. Srikant [6]. The apriori algorithm’s key principle is if an item set

is frequent, then all of its subsets must also be frequent. Conversely, if an item set is infrequent

then all of its supersets are also infrequent. The algorithm uses support based pruning to remove

item sets that do not meet the minimum threshold of support. More details on apriori may be found

in Agrawal’s publication and textbook resources [6, 26, 58].

Conviction

Support based pruning uses the support count to determine how often a rule is found in a

given dataset (see Figure 3.1). For example, if the support metric is set to 2% the itemset in X

appears with the itemset in Y 2% of the time. The support count is usually combined with either
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confidence, interest or conviction during a data mining task. Confidence determines how

frequently items in Y appear in transactions that contain X (see Figure 3.2).

Conviction is a metric available in data mining which uses both support and confidence

(see Figure 3.3). Brin et al. describe conviction as “a measure of implication because it is

directional, it is maximal for perfect implications, and it properly takes into account both P(A) and

P(B)” [9]. Basically, the quality of the conviction metric produces rules that have a higher level of

implication than confidence. A strong implication between X and Y or between a gene region and

a diagnosis was the goal for the CHD association analysis. Therefore, conviction was the most

appropriate metric for this study.

Mr. Brin’s interest in data mining conceivably led to the co-founding of his new company,

Google, Inc. in 1998, just one year after publishing his conviction paper.

Support, Confidence and Conviction

Support [26, 58]

s(X → Y ) =
(X ∪ Y )

N
(3.1)

Confidence [26, 58]

conf(X → Y ) =
(X ∪ Y )

(X)
(3.2)

Conviction [9]

conv(X → Y ) =
1− supp(Y )

1− conf(X → Y )
(3.3)

WEKA

The analysis was performed in a software program entitled Waikato Environment for

Knowledge Analysis (WEKA) [25]. WEKA was created as a single source for state of the art

techniques in machine learning. Briefly, the software includes data mining techniques such as

regression, classification, clustering, association rule mining and attribute selection. The user may

select from differing algorithms and set specific metric thresholds. Association rule mining was

selected for this study.
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3.5.2 Association Analysis Methods

The goal of the association analysis using the CHD data was to create a list of likely

correlations between CNVs and diagnosis in the form:

REGION=CNV, REGION=CNV→ Diagnosis=(CHD Diagnosis). There were multiple

steps in the data mining analysis. Each step is described in detail below.

Obtain Data

This analysis was performed on a subset of the complete CHD dataset. Approximately 3/4

(720 samples) of the dataset were available at the time of this analysis.

A SQL query was written to gather the sample ID, diagnosis, region and CNV loss or gain

for all samples not in the exclude list and for all regions in the region include list. See the query

below.

Listing 3.4: Data mining query all samples with a CNV over 100 genes.

SELECT CRR. SAMPLEID , DX SAMPLE .DX, CRR. REGION , CRR. LOSS GAIN

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE ( ( ( CRR. SAMPLEID) =[DX SAMPLE ] . [ SAMPLEID ] ) AND CRR. REGION=REGION INCLUDES .

REGION AND ( ( CRR. BEDFILEFLAG) =”CHDKS” ) AND ( ( DX SAMPLE . SAMPLEID) Not In (

SELECT ∗ FROM EXCLUDES) ) AND (CRR. LOSS GAIN=” Loss ” OR CRR. LOSS GAIN=” Gain ” )

and ( ( DX SAMPLE .CHD CONTROL) =”CHD” ) )

GROUP BY CRR. SAMPLEID , DX SAMPLE .DX, CRR. REGION , CRR. LOSS GAIN ;

Pre-Process Data

The resulting query data was exported to Microsoft Excel (2007) and converted to a

comma separated file (CSV). The use of a pivot table placed the data fields in the locations that

were necessary for this analysis. Once the pivot table was created the sample ID’s were removed.

This analysis was based strictly on diagnosis and not individual samples.

Additional preprocessing involved converting the common CSV file to WEKA’s own

Attribute Relation File Format (ARFF) [25]. The format is displayed as an example in Appendix C

and described in detail by Witten and Frank [66]. A program called csv2arff
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(http://slavnik.fe.uni-lj.si/markot/csv2arff/csv2arff.php?do=home) converted the CSV file to the

ARFF file.

Analyze Data, WEKA

Briefly, the process of running the association analysis includes: load data file, select

algorithm, enter metric values, and run analysis program. In detail, the proper ARFF file was

loaded in WEKA and the WEKA association analysis was performed using the Apriori algorithm

with selected parameters. In order to account for the rules that had a low support count but a high

confidence, the support metric was set at 2 (which yields 2/178 = .011). Therefore, rules were

generated from itemsets that occurred at least twice in the dataset. This limited the amount of

outliers in the results. The conviction metric was left at the default of 0.9. All parameter values

included: lowerBoundMinSupport = .011, numRules = 10,000, Delta = .05,

upperBoundMinSupport = 1.0, and minMetric(conviction) = .9.

Post-Process Data

WEKA generated a result set of 21,058 rules. Not all were in the format necessary for the

analysis. Post-processing of rules was necessary to filter the rules into the format described above.

In order to do this, a python script was written which searched all the rules generated and output

only rules that were in the correct format. See the script below.

# ! / u s r / b i n / py t ho n

import s t r i n g , s y s

f o r l i n e in open ( ” c o n v i c t i o n r e s u l t s . t x t ” ) :

i f ”==> DX” in l i n e :

p r i n t l i n e

The resulting 794 rules were examined visually for unique rules. Many were duplicates or

provided overlapping information. The rules were removed from the list using the criteria below.

Example Rule 1) GeneA = True→ Diagnosis = A

Example Rule 2) GeneA = True, GeneB= True→ Diagnosis=A
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These two rules have the same consequent but differing antecedents. If both rules had the

same support and conviction results, rule 1 would be removed and rule 2 would be retained

because rule 2 contained additional information (another gene). The final list of 11 rules are shown

in the Association Analysis Results Section 3.5.3.

3.5.3 Association Analysis Results

The list of eleven rules is displayed below. Of the eleven rules, nine of them correlate with

the results of enriched gene regions described in Tables 4.2 and 4.3. Only rules 4 and 6 (regions

TBX3 and MYH11) do not share results with the larger study. See Figure 3.3 for a visual

representation of the rules. Figure 3.4 shows a modification of the rules which is discussed in the

Association Analysis Results Conclusion.

1 . ELN=TRUE FKBP6=TRUE GTF2IRD1=TRUE 2 −−> DX=A o r t i c S t e n o s i s 2

con f : ( 1 ) l i f t : ( 1 6 . 1 8 ) l e v : ( 0 . 0 1 ) < conv : ( 1 . 8 8 ) >

2 . RUNX1=TRUE 66 −−> DX=AVC 38

con f : ( 0 . 5 8 ) l i f t : ( 2 . 4 4 ) l e v : ( 0 . 1 3 ) < conv : ( 1 . 7 4 ) >

3 . ATRX=TRUE BCOR=TRUE ZIC3=TRUE FLNA=TRUE GPC3=TRUE MID1=TRUE 8 −−> DX=CoA 4

con f : ( 0 . 5 ) l i f t : ( 1 4 . 8 3 ) l e v : ( 0 . 0 2 ) < conv : ( 1 . 5 5 ) >

4 . RUNX1=TRUE TBX3=TRUE 2 −−> DX=AVC 2

con f : ( 1 ) l i f t : ( 4 . 2 4 ) l e v : ( 0 . 0 1 ) < conv : ( 1 . 5 3 ) >

5 . FLNA=TRUE 27 −−> DX=HLHS 10

con f : ( 0 . 3 7 ) l i f t : ( 3 . 6 6 ) l e v : ( 0 . 0 4 ) < conv : ( 1 . 3 5 ) >

6 . MYH11=TRUE 4 −−> DX=HLHS 2

con f : ( 0 . 5 ) l i f t : ( 4 . 9 4 ) l e v : ( 0 . 0 1 ) < conv : ( 1 . 2 ) >

7 . TBX1=TRUE 32 −−> DX=TA 8

con f : ( 0 . 2 5 ) l i f t : ( 3 . 7 1 ) l e v : ( 0 . 0 3 ) < conv : ( 1 . 1 9 ) >

8 . CRKL=TRUE TBX1=TRUE 29 −−> DX=TA 7

con f : ( 0 . 2 4 ) l i f t : ( 3 . 5 8 ) l e v : ( 0 . 0 3 ) < conv : ( 1 . 1 8 ) >
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9 . CHD1L=TRUE FMO5=TRUE PRKAB2=TRUE 5 −−> DX=A o r t i c S t e n o s i s 2

con f : ( 0 . 4 ) l i f t : ( 6 . 4 7 ) l e v : ( 0 . 0 1 ) < conv : ( 1 . 1 7 ) >

1 0 . CRKL=TRUE TBX1=TRUE 29 −−> DX=PA−VSD 5

con f : ( 0 . 1 7 ) l i f t : ( 6 . 1 4 ) l e v : ( 0 . 0 2 ) < conv : ( 1 . 1 3 ) >

1 1 . CRKL=TRUE 43 −−> DX=TA 8

con f : ( 0 . 1 9 ) l i f t : ( 2 . 7 6 ) l e v : ( 0 . 0 3 ) < conv : ( 1 . 1 1 ) >

Under the umbrella of CHD are phenotypically diverse diagnoses based on the type of

cardiac malformation. The dataset included 22 different diagnoses. Of the 22, six appeared in the

final 11 rules, Aortic Stenosis (AS), Atrioventricular Canal (AVC), Coarctation of the Aorta

(CoA), Hypoplastic Left Heart Syndrome (HLHS), Tricuspid Atresia (TA) and Pulmonary Atresia

with Ventricular Septal Defect (PA-VSD). Aortic Stenosis (AS) was chosen to illustrate the

relationship between the genetic region and diagnosis. Aortic Stenosis appeared twice in the rule

set and is the focus of the next two sections.

Tetrology of Fallot and Aortic Stenosis

Rule 9. CHD1L=TRUE FMO5=TRUE PRKAB2=TRUE 5→ DX=AS 2

The subjects with this rule were diagnosed with Aortic Stenosis and have CNVs over

genes associated with Tetrology of Fallot. In 1976 Dr. Desmond Duff et al. described the first

known reported case of congenital Tetralogy of Fallot and Aortic Stenosis [16]. Tetralogy of Fallot

subjects have severe heart malformations which may include a malpositioned aorta, ventricular

septal defect, pulmonary stenosis, aortic stenosis and right ventricular hypertrophy [23].

Greenway et al. also discusses possible genetic causes for Tetralogy of Fallot including

Copy Number Variation, in this case duplication, over the genetic region 1q21.1 [23]. The three

genes in Rule 9 (CHD1L, FMO5 and PRKAB2) are included in the group of seven duplicated

genes. While the specific genetic causes of these two CHD conditions are not fully understood, the

presence of a duplication over a region of genes that are indicated in cardiac malformation is

compelling information for further genetic studies.
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Genes in Rule

ELN, FKBP6, GTF2IRD1

CHD1L, FMO5, PRKAB2

RUNX1

RUNX1, TBX3

ATRX, BCOR, ZIC3, FLNA, GPC3, MID1

FLNA

MYH11

TBX1

CRKL

CRKL, TBX1

Diagnosis

AS

AVC

CoA

HLHS

TA

PAVSD

Figure 3.3: Rule Visualization - Genes to Diagnosis

Williams-Beuren Syndrome and Aortic Stenosis

Rule 1. ELN=TRUE FKBP6=TRUE GTF2IRD1=TRUE 2→DX=AS 2

The subject with this rule was diagnosed with AS and has CNV’s over genes associated

with Williams-Beuren syndrome. Williams-Beuren syndrome is a developmental disorder that

encompasses both mental and physical abnormalities. The physical phenotypes include growth

retardation, a dysmorphic face, and heart abnormalities such as AS [59]. The genetic cause of this

syndrome is a well known hemizygous deletion of contiguous genes on chromosome 7q11.23 [52].

A number of the genes have known protein coding functions, including ELN listed in Rule 1.

Tassabehji discusses the deletion of the ELN (elastin) gene as a possible cause of the heart defect,

AS [59].

Similar to Rule 9, Rule 1 reported genes associated with a syndrome that included the

aortic stenosis phenotype. The study of these two syndromes related to AS show that AS can be

part of a greater congenital disorder and share the CNV profile of subjects with that disorder.
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Of the 11 subjects with AS, 18% had the genetic profile of the first rule and 18% had the

genetic profile of the second rule. The genes associated with TOF appeared five times in the

dataset with two of those being the AS subjects(40% confidence and a higher support count than

the Williams-Beuren genes, 5 vs 2). The genes associated with Williams-Beuren syndrome

appeared twice in the dataset, both times with an AS subject (100% confidence but lower support).

Results - Conclusion

It is important to note that the rules reported consisted mainly of those regions known to be

associated with syndromes or chromosomal abnormalities to the possible occlusion of rules that

may be more discovery oriented. Future association analyses may consider excluding the

syndromic or chromosomal abnormality subjects. In fact, if Figure 3.3 is modified by replacing

diagnoses with the corresponding syndromes or chromosomal abnormalities it becomes clear the

rules generated were dominated by the syndromic and chromosomal abnormality subjects (see

Figure 3.4).

In addition this study performed on a subset of subjects would be enhanced with a larger

dataset as well as a control dataset. Future work would involve a complete study of each gene

region and the related diagnosis that appears in the final rule set. As the Mitchell lab acquires more

data, continued processing of the each dataset through the data mining protocol will enhance their

knowledge of the CNV profile in their cardiac population.
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Genes in Rule

ELN, FKBP6, GTF2IRD1

CHD1L, FMO5, PRKAB2

RUNX1

RUNX1, TBX3

ATRX, BCOR, ZIC3, FLNA, GPC3, MID1

FLNA

MYH11

TBX1

CRKL

CRKL, TBX1

Syndrome or CA

Williams Syndrome

Tetrology of Fallot

Trisomy21

Turner Syndrome

Non-Syndromic or Unknown

22q11.2 Deletion Syndrome

Figure 3.4: Rule Visualization - Genes to Syndromes or Chromosomal Abnormality
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CHAPTER 4

EVALUATION AND RESULTS

Evaluation of this research can be described by showing the proper operations of a well

designed relational database. The evaluation of the database in the context of the CNV results will

show the effectiveness of the relational database. Clinical tools as well as discovery results will be

reported here. First a detailed description of cohort data is provided in Section 4.1.1. Evaluation

metrics are discussed in Section 4.2. Next gene region enrichment and phenotype enrichment are

discussed and displayed in Sections 4.3. The chromosomal abnormality pie chart is displayed as

Figure 4.6. Finally a clinically relevant subject profile is introduced in Section 4.7.

4.1 Data

4.1.1 Cohort Description

Three cohorts of subjects were analyzed for this study and are described in this section.

Each sample was evaluated for inclusion in the study via quality control(qc) metrics such as mapd

qc, segment qc, tissue qc, consent qc, gender qc or duplicate sample.

CHD Cohort

The CHD cohort initially comprised 1021 subjects obtained through the Congenital Heart

Disease Tissue Bank and the Wisconsin Pediatric Cardiac Registry. All subjects were genotyped

on the Affymetrix platform as described previously in Section 3.2. After exclusion and quality

control criteria were reviewed, 958 subjects remained. The subjects were then subdivided by

cardiac phenotype in accordance with the European Paediatric Cardiac Code (EPCC 2011) [20].

See Table 4.1 for a detailed listing of the phenotypes and the frequency in the dataset.

MFHS Control

Control samples processed in the same manner (Affymetrix) as the CHD cohort were

important for accurate comparison of data. This control set was from a local subject group from
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Table 4.1: CHD Cohort by Phenotype n=44
EPCC Description No. in Cohort Freq. in Cohort (%) Freq. w/CNV(%)
Aorto-pulmonary window + Patent Ductus Arteriosus (PDA) 5 0.52 0
AVSD + TOF (AVSD + TOF) 7 0.73 50*

Arrhythmias (Congenital Heart Block, Long QT, WPW) 7 0.73 –
Aortic Stenosis (Valvar) 31 3.24 10*

Atrial Septal Defect Secundum (ASD-SEC) 47 4.91 2.33
Atrial Septal Defect Sinus Venosus (ASD-SV) 13 1.36 7.69
A-V Canal Complete (AVC Complete) 48 5.01 0
A-V Canal Intermediate (AVC Intermediate) 7 0.73 0
A-V Canal Partial (AVC Partial) 17 1.77 13.33*

A-V Canal Unbalanced + AVSD with ventricular imbalance 14 1.46 7.69
Cardiomyopathy (DILATED) 13 1.36 –
Cardiomyopathy (HYPERTROPHIC) 4 0.42 –
Chest Wall 4 0.42 –
Coarctation of the Aorta (CoA) 66 6.89 3.28
Coronary Arteries (COR ART) 10 1.04 –
Double Inlet Left Ventricle (DILV) 19 1.98 5.26
Double Outlet Right Ventricle (DORV) 41 4.28 2.50
Ebstein’s Anomaly (EBSTEINS) 9 0.94 11.11
Hypoplastic Left Heart Syndrome (HLHS) 140 14.61 2.9
Interrupted Aortic Arch (IAA) 11 1.15 0
L-TGA 7 0.73 –
Dilated Ascending Aorta (MARFAN) 8 0.84 –
Mitral Valve Stenosis (MS, subvalvar, parachute) 6 0.63 0
Other, Cardiac 18 1.88 6.25
Other, Non-Cardiopulmonary 5 0.52 –
Other, Pulmonary 8 0.84 0
Pulmonary Atresia (PA)
IVS - 18 1.88 0
VSD - 34 3.55 4.17
Partial Anomalous Pulmonary Venous Return (PAPVR) 12 1.25 –
Pulmonary Stenosis (Valvar) 9 0.94 –
Shone’s 8 0.84 –
Subaortic stenosis 12 1.25 18.18*

Subravalvar aortic stenosis (subravalvar AS) 4 0.42 0
Total Anomalous Venous Connection (TAPVC; infra-, intra-,
supracardiac, mixed)

15 1.57 –

Tetrology of Fallot (TOF) 73 7.62 8.77*

Transposition of Great Arteries (TGA)
IVS - 21 2.19 0
VSD - 21 2.19 4.76
Tricuspid Atresia (TRI-AT) 29 3.03 6.9
Truncus Arteriosus (TA) 29 3.03 11.76*

Vascular ring and PA sling 14 1.46 0
VSD inlet 4 0.42 0
Ventricular Septal Defect (VSD multiple + muscular) 10 1.04 –
Ventricular Septal Defect (VSD perimembranous) 73 7.62 5.26
Ventricular Septal Defect (VSD subarterial) 7 0.73 0

the Milwaukee Family Heart Study(MFHS). Subjects with the indication of coronary angiography

were included, excluding those with valvular disease or other cardiac structural problems. The

original cohort was 950 reduced to 880 via quality control checks.
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CHOP Control

The Children’s Hospital of Philadelphia (CHOP) created and made public a genomic

database of common CNVs found in a cohort of 2026 healthy children [54]. Although this dataset

contains data analyzed on a different platform (Illumina HumanHap 550 BeadChip) the value was

in the subject demographics, healthy children.

The DNA from whole blood was taken from healthy subjects seen in a primary care setting

at CHOP. Data was processed using hg18/March 2006/build 36.1 genomic coordinates. The

MySQL.db file was downloaded from http://cnv.chop.edu/ in January 2010. This data was

processed in the Mitchell lab via python scripts written by Dr. Craig Struble, Marquette University,

previously described in Section 3.3. The script’s output provided frequency of CNVs per region in

the one hundred gene list. Additionally, a python script was written by Dr. Struble to quantify the

number of subjects with CNVs. The results of these scripts were included in two figures in this

document, see the Gene Spectra (Figure 4.5) and Frequency by phenotype table 4.1.

4.2 Evaluation Metrics

Two sets of statistical evaluations were performed for this study. Both evaluations

compared the difference between frequencies in the CHD cohort and MFHS and between CHD

and CHOP. The first evaluation compared the number of subjects with CNVs in total and in each

phenotype group. The second evaluation compared the CNV frequencies over individual regions.

Results show significant (p ≤ 0.05) CNV enrichment for the entire CHD group, six phenotypes in

the CHD group and 21 regions.

A Barnard exact test for difference between frequencies was performed [2]. The Barnard

test is appropriate for comparing smaller datasets with a larger cohort as is the case with this study

when breaking the CHD cohort into phenotypic subsets (control cohort N≈2000 versus

sub-phenotype group N<40). Under the null hypothesis that the frequencies are equal, a

significant frequency result occurs when data shows a group or region exceeding the result

generated through chance.
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4.3 Results

The results section is divided into two broad categories describing the type of efforts and

results generated, Discovery Resources and Clinical Tools. First, a summary of the results is

included in this section.

The CHD cohort, excluding major syndromes, resulted in a frequency of CNV at 4.3%.

Phenotypes showing the most significant (p ≤ 0.05) enrichment of large CNVs include Aortic

Stenosis (valvar), A-V Canal Partial, AVSD with TOF, Subaortic Stenosis, Tetrology of Fallot and

Truncus Arteriosis.

Gene regions showing significant enrichment (p ≤ 0.05) are displayed in Table 4.2, gains

and Table 4.3, losses.

4.3.1 Discovery Resources

CNV discovery resources were provided via the following: 1) CNV frequency by cohort

2) CNV frequency by phenotype 3) CNV frequency by region and cohort and 4) CNV frequency

by chromosomal abnormality. With each result the resolution of evaluation increased.

Frequency by Cohort

The CHD population had a higher frequency of CNVs over the cardiac genes fthan the

control population. This is displayed graphically in multiple ways: via gene regions, by

chromosome and by phenotype. Here, frequency is displayed as a pie chart showing the percentage

of each cohort with CNVs compared to those members of the same cohort without CNVs. See

Figures 4.1, 4.2, 4.3, and 4.4.
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17.9%

82.1%

Figure 4.1: CHD - Frequency of subjects with
CNV

4.3%
95.7%

Figure 4.2: CHD minus chromosomal abnormal-
ity and syndromic subjects - Frequency of sub-
jects with CNV

1.6%98.4%

Figure 4.3: MFHS Control - Frequency of sub-
jects with CNV

1.9%98.1%

Figure 4.4: CHOP Control - Frequency of Sub-
jects with CNV

Frequency by phenotype

Frequency of subjects with a CNV grouped by phenotype made up a large part of the

study. In addition, for each phenotype, queries were run only for those subjects with chromosomal

abnormalities or syndromic disorders such as Trisomy 21, Trisomy 18, Williams, XXX, 22q11.2

Deletion syndrome and Turner syndrome. The results listed all phenotypes in the CHD cohort and

their associated CNV frequencies. By subtracting the syndromic and chromosomal abnormality

results from the phenotype frequency figures, significant results were obtained when compared to

the control groups. Significant enrichment of CNVs in the subject groups with the following

phenotypes were reported: Aortic Stenosis, Coarction of the Aorta, Ebstein’s Anomaly, Tetralogy

of Fallot, Truncus Arterious and Ventricular Septal Defect.

See Table 4.1 for the frequency by phenotype results. Freq. w/CNV(%) 0=no CNVs in

subjects minus the CA and syndromic subjects, – means no CNVs and * means significant

frequency when compared to control frequency (at p≤ 0.05 using the Barnard test).

Frequency by Region Spectra

In order to view the genomic CNV profile of all three datasets together an explorative

graphic, called a gene spectra, was created showing all genes, in chromosome order, with losses or

gains in all cohorts (see Figure 4.5). The database queries generated the frequency data for the
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Figure 4.5: Gene Spectra

graphic. Results were exported to MS Excel (2007) and the R Statistical Computing package

(version 2.7.2 2008) for completion of the image [60].

Specific regions contained significant enrichment of CNVs in the CHD cohort compared

to the control cohorts. See Table 4.2 for a list of gene regions enriched for gains and Table 4.3 for a

list of gene regions enriched for losses.

Table 4.2: Enriched regions in CHD cohort -
Gains

Chr Region
chr1 PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5
chr11 HRAS
chr18 GATA6
chr21 RUNX1

Table 4.3: Enriched regions in CHD cohort -
Losses

Chr Region
chr7 FKBP6, ELN, GTF2IRD1
chr8 GATA4
chr22 TBX1, CRKL
chrX BCOR, ATRX, GPC3, ZIC3, FLNA, MID1

Chromosomal Abnormalities

Within the CHD population were a set of subjects with a chromosomal abnormality such

as: Trisomy 21, 18 and XXX. Well known syndromes associated with cardiac malformations

include 22q11.2 deletion syndrome, Williams and Turner syndrome. These abnormalities contain
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CNV gains or losses due to the genomic characteristics of the disease and become part of the

quantitative results in the CNV analysis. Thus the chromosomal abnormality and syndromic

subjects inflate the CNV counts. In order to differentiate results between subjects based on the

presence of a syndrome or chromosomal abnormality the subjects were divided into subsets A, B,

C, D and E described in Figure 4.6.

The CATEGORY column was added to the DX SAMPLE table in the database so that

each CHD subject could be assigned a letter (A, B, C, D, or E). The SQL queries generated counts

of subjects with CNVs grouped by this chromosomal category. The piechart provided a visual

representation of all subjects based on these category assignments.

While the CNVs of Groups A and B are a part of the subject profile and relevant clinical

information, they are more commonly known and predictable based on the syndrome and previous

research. It is the gene regions in subject groups C and D, or the more unknown categories, that

prove interesting and relevant for discovery research. Increased scrutiny was placed on the

non-syndromic or unknown CNVs because of their potential to be causal genes in sporadic cases

of CHD.
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A - Cytogenetically visible 9%
B - Syndromic related CNVs 6%
C - Non-syndromic related CNVs 1%
D - Unknown 1%
E - No CNVs 83%

Figure 4.6: Distribution of CNVs in CHD Cohort. Type A represents Trisomy 21, Turners, XXX,
XYY, Trisomy 18, 13 and 9 or cytogenetically visible (>3mb). Type B includes subjects with a
CNV over a syndromic-associated CHD gene as reported by the CHD WIKI portal which includes
22q11.2 Deletion syndrome and Williams syndrome. Type C are subjects with CNVs over genes
recognized through CHD WIKI as non-syndromic. Type D includes CNVs of an unknown category
and Type E are subjects with no CNVs in this study. An individual can only fit into one category
where D>A>B or C.

Count Gains/Losses by Region

Table 4.4 lists the counts of gains and losses over the one hundred gene regions for the

CHD cohort.

Table 4.4: CNV gains and losses per region.

GENE GAINS-CHD LOSSES-CHD TOTALS-CHD
NRAS 0
CSDE1 0
NOTCH2 0
PRKAB2 4 2 6
FMO5 4 2 6
CHD1L 4 2 6
BCL9 3 2 5
ACP6 3 2 5
GJA5 3 2 5
LBR 0
LEFTY1 0
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Table 4.4: (continued)

GENE GAINS-CHD LOSSES-CHD TOTALS-CHD
LEFTY2 0
ASXL2 0
KIF3C 0
RAB10 0
SOS1 0
CFC1 (CRYPTIC) 0
ZEB2, ZFHX1B, SIP1 0
CRELD1 0
RAF1 0
TMEM40 0
TGFBR2 0
ACVR2B 0
TDGF1 0
NPHP3 1 1
FOXL2 1 1
WHSC1 0
EVC2 (-) 0
EVC (+) 0
PDGFRA 0
PPM1K 0
PITX2 0
TERT 1 1
SEMA5A 2 2
ISL1 0
HAND1 0
SH3PXD2B 0
NKX2-5 0
NSD1 2 2
FOXC1 1 1
VEGF/VEGFA 0
TFAP2B 0
GJA1 0
HEY2 0
CITED2 0
MAP3K7IP2 0
HOXA1 1 1
TBX20 1 1
FKBP6 3 3 6
ELN 3 3
GTF2IRD1 3 3
BRAF 0
SOX7 1 2 3
GATA4 1 3 4
NKX2-6 0
WHSC1L1 0
CHD7 0
ZFPM2/FOG2 0
FOXH1 0
ROR2 0
NOTCH1 1 1
EHMT1 1 1
NODAL 0
ANKRD1 0
SHOC2 0
HRAS 3 3
CBL 0
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Table 4.4: (continued)

GENE GAINS-CHD LOSSES-CHD TOTALS-CHD
MGP 0
KRAS 0
COL2A1 0
MLL2 0
PTPN11 0
TBX5 0
TBX3 0
MED13L, PROSIT240, THRAP2 0
MYH6 0
ACTC1 0
FBN1 0
ALDH1a2 0
MAP2K1/MEK1 0
STRA6 0
MYH11 2 1 3
RAI1 0
NF1 0
GATA6 3 3
MAP2K2/MEK2 0
GDF1 1 1
JAG1 0
SLC2A10 0
SALL4 1 1
RUNX1 81 81
TBX1 2 42 44
CRKL 4 40 44
MAPK1 2 1 3
MID1 2 10 12
BCOR 1 9 10
ATRX 1 9 10
GPC3 1 9 10
ZIC3 1 9 10
FLNA 1 9 10

4.3.2 Clinical Tools

Visualization of the data pulled from cells in spreadsheets and relational databases proved

valuable to research scientists and clinicians as a quick method of evaluation. Query results

ordered in rows and columns do not capture the complete picture of a subject in a graphical

manner. Therefore, by using a combination of Access, R and HTML (Hyper Text Markup

Language version 5.0) we were able to create a complete subject profile.

The Mitchell lab scientists desired a one page visual representation of each subject’s

demographic and CNV data. An R script (R Statistical Computing package, version 2.7.2 2008)

was written by Karl Stamm, Medical College of Wisconsin, to process and display the data [60].

Briefly, the script ran a query on the Access database and retrieved the data, it created a graphical
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representation of the CNVs per chromosome and produced textual representation of all data related

to each subject. The result was a one page HTML file per subject (see Figure 4.7). In addition all

subjects were combined into one large PDF file as a reference book. Listed below are the fields

from the two tables used in the report.

DX SAMPLE table: sampleid, age, race, gender, syndrome, dx, epcc term, epcc

description, sts term, sts code

CRR table: chromosome, loss or gain, region, start position, end position, cytoband

position, %freq found in CHOP controls, and PMID.
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Figure 4.7: Complex subject profile.
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CHAPTER 5

DISCUSSION

The discussion section includes a more in depth review of the syndromic vs

non-syndromic CHD challenges in research, Section 5.1. Current literature in the genotyping field,

including platforms and the various algorithms used today is reviewed in Section 5.2.1. Finally, the

validity of the database based on the study results is discussed in the Conclusion, Chapter 6.

5.1 Syndromic vs Non-Syndromic CHD

The preceding data and results in this thesis clearly show a difference in CNV results

between the syndromic and non-syndromic CHD subjects. Syndromic CHD was so kindly defined

in an email by Jeroen Breckpot (CHD WIKI) to the author dated January 4, 2011 as “Syndromic

CHD are defined as congenital heart defects which are associated with a second major

malformation (e.g. renal defects, cleft palate, brain malformations), with developmental delay or

mental handicap, and/or the presence of dysmorphism. Dysmorphism was defined as the presence

of at least 3 minor physical anomalies (e.g. dysplastic ears, hypertelorism, low nasal bridge,

syndactyly of the toes).” Indeed, with the presence of the additional phenotypes it is no surprise

that the syndromic CNV profile reflects a higher percentage than that of sporadic or non-syndromic

subjects. In fact, a recent paper by Breckpot [8] discussed the difference between the two group’s

CNV profile.

The Breckpot et al. review collated data from other well known studies like Greenway et

al. and Thienpont et al. [23, 61]. Results of the Breckpot study showed the non-syndromic CNV

frequency at approximately 3.6% vs 19% for the syndromic subjects which is consistent with the

results of the studies listed above [8]. A study of neonates with birth defects claim CNV discovery

in 17.1% of subjects identified with clinically significant chromosomal abnormalities [37]. These

figures are also consistent with our findings at 4.3% and 17.95% for non-syndromic and syndromic

respectively. The Breckpot paper and its algorithm for CNV detection in syndromic vs

non-syndromic stands as confirmation of the methods employed in this study. The database
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queries, using the ability to group by syndrome or by CNV category, proved accurate and

consistent with other published studies.

5.2 CNV Research Challenges

Challenges in CNV research include genotyping platforms and algorithms, lab processing

challenges and post analysis data management.

5.2.1 Platform and Algorithm review

The question should be asked of a CNV study, are the results valid? The flow of

information from DNA extraction through analysis is complicated and leaves room for both human

and computational error. The bioinformatics end of the analysis begins with the CEL file and

concludes with data visualization and quantificaiton. Fortunately, a number of papers discuss

different genotyping methods and evaluate their effectivness [17, 22].

Grayson et al. compared three commercial software packages (Partek Genomics Suite,

Affymetrix Genotyping Console 2.0 and Birdsuite) that analyzed copy number data from an

Affymetrix 6.0 SNP Array platform [22]. Interestingly, Grayson et al. concluded that all algorithms

called copy number of two similarly. However, when the copy number was different from two the

results varied. Despite the variance between algorithms, they were able to conclude that the

Birdsuite algorithm agreed with copy number calls of qPCR up to 94% of the time. At the time of

the Mitchell lab CNV Analysis, Genotyping Console v3.0.2 used the Birdsuite algorithm [34].

Algorithms use various data mining techniques, classification or clustering via HMM or

other models, to make the genotyping calls. Affymetrix has used Birdsuite, Canary and BLRMM

in versions of its software. While Affymetrix and Illumnia products remain at the top when it

comes to publishing copy number data there are other freely available software tools for this type

of CNV analysis. Two examples of freely available CNV algorithms include PennCNV and

CNVTools. PennCNV is a perl program designed to use Illumina and Affymetrix CEL files [65].

PennCNV was preferred by Eckel-Passow et at. for analyses that perform statistical tests on copy

number data partially due to its complete package eliminating the need for further processing of

copy number calls [17]. CNVTools is an R program using association assessed via a likelihood
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ratio test [3]. CONAN is another CNV analysis tool, perhaps the most similar to that of this

thesis [19]. Written in Java and available as an online Oracle database, the package includes an

association analysis (between CNVs and phenotypes) similar to the one performed for this

study [19]. In addition, all algorithms were implemented in PL/SQL which is a form of SQL for

Java based applications.

A review of the algorithms and software available in this field suggests a cornucopia of

options from python scripts, perl and java programs, to Oracle and Access databases. With

appropriate bioinformatic resources, methods described in Barnes and Wang are suitable and

would provide an additional layer of significance to a quantitative study [3, 65]. Differences in the

copy number results has even made some authors suggest mulitple methods should always be a

part of an analysis and only CNVs discovered via more than one method should be reported.

Confirmation of accurate methods can be found in results supported by additional confirmatory

studies like FISH and TaqMan CN assays (Applied Biosystems).

CCL3L1 Controversy

CNV research methodology is changing at a rapid pace. The research is evolving from just

barely understanding that the genome contained such level of variability to determining pathways

of structural development that may be affected by gene copy number. The knowledge gained about

copy number states is also changing as the technology and methods used to discover and report the

regions improves. Advanced technology includes whole genome sequencing or next generation

sequencing and algorithms like BRLMM which is an improvement of RLMM. Among the

challenges to this type of genomic research are the low copy repeat areas and repetitive sequence

areas of the chromosomes.

The following paragraphs describe a 2005 disease association claim that may have been

false due to the inaccuracy of copy number algorithms over repetitive areas of the genome.

An area of chemokine genes clustered on chromosome 17q12 represents an area of

repetitive sequences and pseudogenes. This example highlights a controversy aired in published

papers about the region. First, in 2005, Gonzalez et al. published these findings; CCL3L1 (OMIM

601395) is a chemokine of the immune system that may be related to HIV-1 susceptibility [21]. It

may exist in a copy number state from 0-10 with 0 copies causing increased susceptibility and 10
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copies reducing susceptibility to HIV infection [21]. Four years later Urban et al. claimed the

opposite by stating, “In summary, we find the absence of any significant effect of CCL3L1 copy

number variation on HIV-1 infection, viral load, or disease progression” [64]. They conclude that

the Gonzalez results were inaccurate due to copy number estimates that are susceptible to the

quality and concentration of the DNA samples.

Also in 2009, Shrestha et al. published an interesting letter to Nature Medicine discussing

the controversy surrounding the copy number/disease association originally published by Gonzalez

in 2005 [55]. The authors state that the gene family for CCL3L1 and others like it may be difficult

for current techniques to accurately call the copy number when it is greater than two. Specifically,

algorithms may have trouble differentiating individual genes when they are very similar, for

example, between members of the CCL3L1 gene family. CCL3l3 may be counted as CCL3L1

thereby inflating the copy number count. In addition, the alternative methods for quantifying

CCL3L1 between the different papers may have led to the controversy.

CNV literature prior to 2009 often cites the Gonzalez paper. Careful review of very recent

literature and methods employed are important in this developing field of genomic research.

Appropriate and accurate genotyping is crucial for these types of studies.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Quantitative bioinformatic analysis using a relational database enhanced scientific research

in this study. The results characterized the CNVs in a CHD population over a specific set of genes

reporting a frequency similar to other published studies. Very few papers discuss the methods used

for analysis post-genotyping. Some discuss the analysis as part of their overall genotyping

package, like the PennCNV program [65]. This thesis represents a workable solution to the

formation of a database for CNV analysis in the research lab.

The relational database took the analysis from the level of script writing by a computer

programmer to query writing and operations by more than one lab member. The accessibility of

the database is one of its more powerful assets. In the genomic era of large datasets traditionally

trained bench scientists can benefit from a database that allows them to be a part of the data

analysis. Combining the scientist’s clear understanding of the data with their increased abilities to

manipulate the data makes for a more productive research team.

There are new gene-disease associations being discovered in rapid order in both animal

and human models. The database setup allows for additional gene regions and custom region

reports to be added as Genotyping Console analyses are completed. Additional quantitative studies

on newly discovered gene regions can be performed with the existing set of patient demographic

data and SQL queries.

While comprehensive in nature, this study was limited by the one hundred cardiac genes

and the CNV segments of a certain size. The original data (CEL file data) contained many smaller

segments found throughout a subject’s genome. Opportunities for mining this dataset continue as

new genes related to cardiac malformation are discovered and areas of the developmental pathway

become important to the researchers.
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APPENDIX A
SQL QUERIES

Queries are displayed in the boxed area. The description is written just below the box. The
following criteria used for most queries will be called the size, excludes and 100 gene list filters.
Details of those filters are: include only regions in the 100 gene list, exclude samples on the sample
exclude list, and apply a size filter, ≥ 100kb for losses and ≥ 200kb for gains.

Listing A.1: LISTSAMPLES REGION ONLYLOSSGAIN CONTROL

SELECT CRR. SAMPLEID , CRR. REGION , CRR. LOSS GAIN

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE ( ( ( CRR. SAMPLEID) =[DX SAMPLE ] . [ SAMPLEID ] ) AND ( ( CRR. REGION=REGION INCLUDES .

REGION AND ( ( CRR. BEDFILEFLAG) =”CHDKS” ) ) OR (CRR. REGION=”SH3PXD2B” ) ) AND ( (

DX SAMPLE . SAMPLEID) Not In (SELECT ∗ FROM EXCLUDES) ) AND ( ( CRR. LOSS GAIN=”

Loss ” AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ) OR (CRR.

LOSS GAIN=” Gain ” AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=200000) )

) and ( ( DX SAMPLE .CHD CONTROL) =”CONTROL” ) )

GROUP BY CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN ;

This query lists all the samples in the control population that have a CNV. Size, excludes and 100
gene list filters applied. Output includes sampleid, region and loss or gain.

Listing A.2: COMPLEX LISTSAMPLES WITHCNV >1 CHD

SELECT CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.CHR,

CRR . [ S t a r t L i n e a r P o s ] , CRR . [ E n d L i n e a r P o s i t i o n ] , CRR . [ Segment s i z e ( kb ) ] ,

CRR . [ # marke r s in r e g i o n ] , DX SAMPLE .SYNDROME

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE ( ( ( CRR. SAMPLEID) =[DX SAMPLE ] . [ SAMPLEID ] ) AND CRR. REGION=REGION INCLUDES .

REGION AND ( ( CRR. BEDFILEFLAG) =”CHDKS” ) AND ( ( DX SAMPLE . SAMPLEID) Not In (

SELECT ∗ FROM EXCLUDES) ) AND ( ( CRR. LOSS GAIN=”LOSS” AND (CRR.

E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ) OR (CRR. LOSS GAIN=”GAIN”

AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=200000) ) ) and ( (

DX SAMPLE .CHD CONTROL) =”CHD” ) ) AND CRR. SAMPLEID IN

(SELECT A. SAMPLEID

FROM (



65

SELECT CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.CHR,

CRR . [ S t a r t L i n e a r P o s ] , CRR . [ E n d L i n e a r P o s i t i o n ] , CRR . [ Segment s i z e ( kb ) ] ,

CRR . [ # marke r s in r e g i o n ] , DX SAMPLE .SYNDROME

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE ( ( ( CRR. SAMPLEID) =[DX SAMPLE ] . [ SAMPLEID ] ) AND CRR. REGION=REGION INCLUDES .

REGION AND ( ( CRR. BEDFILEFLAG) =”CHDKS” ) AND ( ( DX SAMPLE . SAMPLEID) Not In (

SELECT ∗ FROM EXCLUDES) ) AND ( ( CRR. LOSS GAIN=”LOSS” AND (CRR.

E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ) OR (CRR. LOSS GAIN=”GAIN”

AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=200000) ) ) and ( (

DX SAMPLE .CHD CONTROL) =”CHD” ) )

GROUP BY CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.

CHR, CRR . [ S t a r t L i n e a r P o s ] , CRR . [ E n d L i n e a r P o s i t i o n ] , CRR . [ Segment s i z e (

kb ) ] , CRR . [ # marke r s in r e g i o n ] , DX SAMPLE .SYNDROME

) A

GROUP BY A. SAMPLEID

HAVING COUNT(A. SAMPLEID) >1)

GROUP BY CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.

CHR, CRR . [ S t a r t L i n e a r P o s ] , CRR . [ E n d L i n e a r P o s i t i o n ] , CRR . [ Segment s i z e (

kb ) ] , CRR . [ # marke r s in r e g i o n ] , DX SAMPLE .SYNDROME;

This query lists all CHD samples with more than one CNV over the 100 gene list. It involves 3
nested queries.

1) The first nested query selects all CHD samples with CNVs using the size, excludes and
100 gene list filters.

2) The second nested query uses the result list from the first query and counts the number
of CNVs per sample and lists the samples that have a count > 1.

3) The third or top level query selects all the fields we want to see in the output,
SAMPLEID, DX COLLAPSED, REGION, LOSS OR GAIN, CHR, START AND STOP
POSITIONS, SEGMENT SIZE, NUMBER OF MARKERS IN REGION AND SYNDROME
from the list of SAMPLEIDs in the second query.
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Listing A.3: COUNT CHD CONTROL TOTAL MINUSEXCLUDES

SELECT A.CHDCT AS CHDSAMPLE TOTAL, B .CONTROLCT AS CONROLSAMPLE TOTAL, (A.CHDCT+B

.CONTROLCT) AS TOTALSAMPLES

FROM (SELECT COUNT(DX SAMPLE . SAMPLEID) AS CHDCT FROM DX SAMPLE WHERE CHD CONTROL

=”CHD” AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES) ) AS A, (

SELECT COUNT(DX SAMPLE . SAMPLEID) AS CONTROLCT FROM DX SAMPLE WHERE

CHD CONTROL=”CONTROL” AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES)

) AS B ;

This query involves two nested queries. Query A counts the CHD population minus the
sample excludes. Query B counts the control population minus sample excludes. The top level
query displays the results of the counts and adds the two figures together for a total population.

Listing A.4: COUNTSAMPLES BY DX COLLAPSED

SELECT count (SAMPLEID) AS [ ’SAMPLE COUNT’ ] , [DX COLLAPSED]

FROM DX SAMPLE

WHERE SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES)

GROUP BY [DX COLLAPSED ] ;

This query counts all the samples within each phenotype (or dx collapsed). Excludes filter applied.

Listing A.5: COUNTSAMPLES BYDXCOLLAPSED GAIN CHD INCLUDES

SELECT A . [ DX COLLAPSED] , COUNT(A. SAMPLEID) AS SAMPLES WITHGAIN

FROM (SELECT DISTINCT (DX SAMPLE . SAMPLEID) , DX SAMPLE . [ DX COLLAPSED] FROM

DX SAMPLE, CRR, REGION INCLUDES WHERE DX SAMPLE .CHD CONTROL=”CHD” AND

DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES) AND DX SAMPLE . SAMPLEID=

CRR. SAMPLEID AND (CRR. REGION=REGION INCLUDES . REGION AND CRR. BEDFILEFLAG=”

CHDKS” ) AND CRR. LOSS GAIN=” Gain ” AND (CRR. E n d L i n e a r P o s i t i o n−CRR.

S t a r t L i n e a r P o s >=200000) ORDER BY DX SAMPLE . [ DX COLLAPSED ] ) AS A

GROUP BY A . [ DX COLLAPSED ] ;

This query was used to provide data for the frequency by phenotype table. The result is a list of

phenotypes and a count representing the number of samples with a gain CNV over the 100 gene

regions. The nested query lists all distinct samples with a gain. The outer query counts the list and

groups by phenotype (DX COLLAPSED). Size, excludes and 100 gene filters applied.
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Listing A.6: COUNTSAMPLES BYDXCOLLAPSED LOSS CHD INCLUDES TRISOMY21

SELECT A . [ DX COLLAPSED] , COUNT(A. SAMPLEID) AS SAMPLES WITHLOSS

FROM (SELECT DISTINCT (DX SAMPLE . SAMPLEID) , DX SAMPLE . [ DX COLLAPSED] FROM

DX SAMPLE, CRR, REGION INCLUDES WHERE DX SAMPLE .CHD CONTROL=”CHD” AND

DX SAMPLE .SYNDROME=”TRISOMY21” AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM

EXCLUDES) AND DX SAMPLE . SAMPLEID=CRR. SAMPLEID AND (CRR. REGION=

REGION INCLUDES . REGION AND CRR. BEDFILEFLAG=”CHDKS” ) AND (CRR. LOSS GAIN=” Loss

” AND CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ORDER BY

DX SAMPLE . [ DX COLLAPSED ] ) AS A

GROUP BY A . [ DX COLLAPSED ] ;

This query was used to provide data for the frequency by phenotype table. The result is a list of
phenotypes and a count representing the number of samples with a loss CNV over the 100 gene
regions. Trisomy21 designation for syndrome applied. The nested query lists all distinct samples
with a gain. The outer query counts the list and groups by phenotype (DX COLLAPSED). The
resulting counts were incorporated into the table as a means of subtracting this large population of
samples with a chromosomal abnormality and viewing the resulting frequency of losses by
phenotype without trisomy 21. (n=80) Size, excludes and 100 gene filters applied.

Listing A.7: FREQ BYREGION GAIN CHD BYCHR SIZE INCLUDES

SELECT A. REGION , A. CTGAIN AS [COUNT] , ROUND( (A. CTGAIN / B . CT∗100) , 2 ) AS FREQUENCY,

A.CHR, A. REGION START

FROM (SELECT CRR. REGION AS REGION , COUNT(CRR. LOSS GAIN ) AS CTGAIN , CHR. CHRID ,

REGION . REGION START , CHR.CHR FROM CRR, DX SAMPLE, REGION , CHR,

REGION INCLUDES WHERE (CRR. LOSS GAIN=”GAIN” AND (CRR. E n d L i n e a r P o s i t i o n−CRR

. S t a r t L i n e a r P o s >=200000) ) And CRR. SAMPLEID=DX SAMPLE . SAMPLEID AND REGION .

REGION=REGION INCLUDES . REGION AND CRR. REGION=REGION . REGION AND CRR.

BEDFILEFLAG=”CHDKS” AND REGION . BEDFILEFLAG=”CHDKS” AND DX SAMPLE .CHD CONTROL

=”CHD” AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES) AND CHR.CHR=

REGION .CHR GROUP BY CRR. REGION , CHR. CHRID , REGION . REGION START , CHR.CHR) AS

A, (SELECT COUNT( ∗ ) AS CT FROM DX SAMPLE WHERE DX SAMPLE .CHD CONTROL=”CHD”

AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM EXCLUDES) ) AS B

ORDER BY A. CHRID , A. REGION START ;

Two nested queries, A and B. A finds all gain CNVs per region. B counts the number of CHD
samples. The outer query calculates the frequency of the CNVs per region over the sample count
figure. Output includes the region, count, frequency, chromosome and region start, sorting by
chromosome. Size, excludes and 100 gene list filters applied.
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Listing A.8: FREQ BYREGION LOSS ENTERDX COLLAPSED BYCHR SIZE INCLUDES

SELECT A. REGION , A. CTLOSS AS COUNTLOSS, ROUND( (A. CTLOSS / B . CT∗100) , 2 ) AS

FREQUENCY, A.CHR, A. REGION START

FROM (SELECT CRR. REGION AS REGION , COUNT(CRR. LOSS GAIN ) AS CTLOSS , CHR. CHRID ,

REGION . REGION START , CHR.CHR FROM CRR, DX SAMPLE, REGION , CHR,

REGION INCLUDES WHERE (CRR. LOSS GAIN=”LOSS” AND (CRR. E n d L i n e a r P o s i t i o n−CRR

. S t a r t L i n e a r P o s >=100000) ) And CRR. SAMPLEID=DX SAMPLE . SAMPLEID AND REGION .

REGION=REGION INCLUDES . REGION AND CRR. REGION=REGION . REGION AND CRR.

BEDFILEFLAG=”CHDKS” AND REGION . BEDFILEFLAG=”CHDKS” AND DX SAMPLE .

DX COLLAPSED=[TYPE DX COLLAPSED] AND DX SAMPLE . SAMPLEID NOT IN (SELECT ∗ FROM

EXCLUDES) AND CHR.CHR=REGION .CHR GROUP BY CRR. REGION , CHR. CHRID , REGION .

REGION START , CHR.CHR) AS A, (SELECT COUNT( ∗ ) AS CT FROM DX SAMPLE WHERE

DX SAMPLE . DX COLLAPSED=[TYPE DX COLLAPSED] AND DX SAMPLE . SAMPLEID NOT IN (

SELECT ∗ FROM EXCLUDES) ) AS B

ORDER BY A. CHRID , A. REGION START ;

Example of a user prompt query. DX COLLAPSED=[type DX COLLAPSED]. Two nested
queries, A and B. A finds all gain CNVs per region. B counts the number of CHD samples. The
outer query calculates the frequency of the CNVs per region over the sample count figure. Output
includes the region, count, frequency, chromosome and region start, sorting by chromosome for
only the DX entered. Size, excludes and 100 gene list filters applied.

Listing A.9: LISTSAMPLES BYDX COLLAPSED REGION ONLYLOSSGAIN CVNOVERLAP CHD

SELECT CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.%

CNV Overlap

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE ( ( ( CRR. SAMPLEID) =[DX SAMPLE ] . [ SAMPLEID ] ) AND CRR. REGION=REGION INCLUDES .

REGION AND ( ( CRR. BEDFILEFLAG) =”CHDKS” ) AND ( ( DX SAMPLE . SAMPLEID) Not In (

SELECT ∗ FROM EXCLUDES) ) AND ( ( CRR. LOSS GAIN=” Loss ” AND (CRR.

E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=100000) ) OR (CRR. LOSS GAIN=” Gain ”

AND (CRR. E n d L i n e a r P o s i t i o n−CRR. S t a r t L i n e a r P o s >=200000) ) ) and ( ( DX SAMPLE

. CHD CONTROL) =”CHD” ) )

GROUP BY CRR. SAMPLEID , DX SAMPLE . DX COLLAPSED, CRR. REGION , CRR. LOSS GAIN , CRR.%

CNV Overlap ;
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The query provides a list of all subjects grouped by Diagnosis, providing the region, CNV loss or
gain designation and the percentage of overlap with common CNVs. Size, excludes and 100 gene
list filters applied.

Listing A.10: LISTSAMPLES WITH22Q

SELECT SAMPLEID , DX COLLAPSED

FROM DX SAMPLE

WHERE SYNDROME=” 22Q”

ORDER BY DX COLLAPSED ;

Lists all samples with 22Q.

Listing A.11: LISTSAMPLEDATA ENTERSAMPLEID

SELECT ∗

FROM CRR, DX SAMPLE, REGION INCLUDES

WHERE DX SAMPLE . SAMPLEID=CRR. SAMPLEID AND DX SAMPLE . SAMPLEID=[TYPE SAMPLEID] AND

CRR. LOSS GAIN=TRUE AND CRR. REGION=REGION INCLUDES . REGION ;

User prompt to enter sampleid then lists all CNV data associated with that sample (* means select
all fields). One hundred gene list filter applied.
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APPENDIX B

Database Relationship Diagram

Relationships  for  20110818CNVDatabase
Tuesday,  October  18,  2011

REGION

DX_SAMPLECRR

CHR

EXCLUDES

REGION_INCLUDES

REGION_8WIKIGENES

ID
CHR
REGION_START
REGION_STOP
REGION
BEDFILEFLAG
CHDKS_DUPLICATE
%FREQ_CHOP_LOSS
%FREQ_CHOP_GAIN
PMID

ID
SAMPLEID
AGE
GENDER
RACE
SYNDROME
CHD_CONTROL
DB_DX_7-­14-­11
DX
ADDITIONAL_DX(MIKE7-­15-­11)
DX_COLLAPSED
OR_DX
EPCC_TERM_2011
EPCC_CODE_2011
STS_TERM_2011
STS_CODE_2011
DATE_LOADED
CNV_CATEGORY

REGION
SAMPLEID
%  overlap  of  region  by  segment  (length)
%  overlap  of  region  by  segment  (markers)
%  overlap  of  segment  by  region  (length)
%  overlap  of  segment  by  region  (markers)
#  markers  in  region
LOSS_GAIN
Segment  size  (kb)
Segment  size  (markers)
Avg_DistBetweenMarkers  (kb)
%CNV_Overlap
CHR
Cytoband_Start_Pos
Cytoband_End_Pos
Start_Linear_Pos
End_Linear_Position
Region  start
Region  end
ID
Date_loaded
BEDFILEFLAG
EXCLUDECNV

CHRID
CHR

SAMPLEID

ID
REGION

ID
REGION

Figure B.1: Relationship Diagram for the CNV Database created in Microsoft Access (2007).
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APPENDIX C

ARFF file example

@ r e l a t i o n CNV A n a l y s i s . a r f f f i l e

@ a t t r i b u t e S u b j e c t I D { 1 , 2 , 3 , 4 , 5 }

@ a t t r i b u t e GATA4 { ? , TRUE }

@ a t t r i b u t e SOX7 { ? , TRUE }

@ a t t r i b u t e MYH6 { ? , TRUE }

@ a t t r i b u t e ATRX { ? , TRUE }

@ a t t r i b u t e BCOR { ? , TRUE }

@ a t t r i b u t e TFAP2B { ? , TRUE }

@ a t t r i b u t e CHD7 { ? , TRUE }

@ a t t r i b u t e COL2A1 { ? , TRUE }

@ a t t r i b u t e HRAS { ? , TRUE }

@ a t t r i b u t e SEMA5A { ? , TRUE }

@ a t t r i b u t e MAPK1 { ? , TRUE }

@ a t t r i b u t e RUNX1 { ? , TRUE }

@ a t t r i b u t e D i a g n o s i s { AVC , ASD−SV , VSD }

@data

1 , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ,TRUE, AVC

2 , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ASD−SV

3 , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , TRUE, AVC

4 ,TRUE , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ASD−SV

5 , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , TRUE, VSD
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