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ABSTRACT

ONE-DIMENSIONAL STRAIN INITIATED BY RAPID COMPACTION OF A
HETEROGENOUS GRANULAR MIXTURE CONSISTING OF Cu, Fe, SiO2, C,

MoS2, AND Sn

Cullen A. Braun, B.S.

Marquette University, 2011

The dynamic compaction of metal powders is of great interest to the
metallurgical and military communities. The compaction of a heterogeneous
granular mixture consisting of copper, iron, silica, graphite, molybdenum-disulfide,
and tin predominately used in aviation break-pad creation is presented. The initial
density of the material was on average 2.756 g

cm3 . The research also required
developing a working projectile velocity measurement system and a proper target
assembly for pressure measurements. Manganin gages were used to record the shock
wave transit time and the pressure of the transmitted waveform into the powder
mixture. An impedance matching technique was utilized to determine the particle
velocity at the powder-impact plate interface and the shock velocity was determined
from the measured data. The shock velocity and particle velocity were plotted to
develop a linear equation of state, Us = SUp + C0. The linear equation of state was
determined to have a Hugoniot slope of S = 0.3949± 1.2869 and a bulk sound speed
of C0 = 0.552± .188(m/s). The equation of state was then employed in bulk
one-dimensional computer simulations to compare to the waveform obtained from
the pressure measurement system. The post-impact samples were investigated using
a scanning electron microscope and electron dispersive spectroscopy to compare the
microstructure of the dynamically compacted samples to the commercially
manufactured pressed and sintered sample. The bulk scale simulations proved to
recreate the pressure waveform from the pressure measurement system. It was also
found that the dynamically compressed samples had minimal evidence of sintered
grains, but had significant lateral fractures resulting from release.
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CHAPTER 1

Introduction

1.1 Motivation

The work contained in this thesis consists of the measurement systems of a

single-stage gas gun and the compaction of heterogeneous granular materials both of

interest to the shock physics and manufacturing groups in Marquette University’s

Department of Mechanical Engineering. The research aims to improve the velocity

measurement system presented by Thomas J. Downs (M.S. 2006) upon building the

gas gun and the work completed by Jeffrey Midday (Summer 2009). A system for

acquiring stress traces through a target consisting of granular materials will be

developed. The target must include circuitry for a time-of arrival detector and two

manganin stress gages, in addition to holding vacuum on the barrel end. The

gas-gun configuration with the updated measurement systems will allow the

acquisition of several parameters essential for shock physics experiments, including

projectile velocity, time-of-arrival at projectile-target interface, peak stress, transit

time through the target, and stress through the powder.

The heterogeneous granular mixture of interest in this study is a formulation

present in aviation break-pads for use as a friction material. This formulation is

composed of 42% copper, 19% iron, 18% graphite, 17% silicon-dioxide, 3%

molybdenum-disulfide, and 1% tin. The resulting microstructure from dynamic

loading is of great interest, especially in regards to possible sintering of the granular

constituents. The dynamic compaction of the proposed granular mixture in

conjunction with the developed measurement systems will provide the basis of the

research. Flyer-plate experiments will be conducted on the granular mixture to

develop the shock velocity-particle velocity, (Us − Up), empirical equation of state,

which describes the shock response of materials in the absence of phase

transitions [6]. In addition, from the (Us − Up) equation of state, the

Pressure-Density, (P − ρ), shock relationship will be developed and compared to the
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solid Hugoniot relationship utilizing a mixture theory, and the experimental data.

Another objective will be to perform scanning-electron-microscopy (SEM) and

optical microscopy on the compacted samples for comparison to statically pressed

and sintered mixtures as is commonly conducted in industry. Special consideration

will be given to the welding of individual grains and the effect that initial projectile

velocity and pressure have on the post-impact microstructure.

1.2 Background

In the 1970’s research pertaining to the rapid-solidification of metal powders

and the shock waves produced became a topic of great interest to the metallurgical

and shock physics communities [7]. The interest stems from the ability to create

localized temperatures and pressures of microsecond duration required for

metallurgical bonding of individual particles while allowing the initial

microstructure of the bulk powder to remain intact [8] [7]. The introduction of

favorable physical, chemical and physiochemical changes to the initial powder may

eliminate the lengthy sintering and static loading processes of industrial powder

metallurgy applications [8]. Many parameters have been considered in the research

of developing a reproducible procedure for compacting powders, including: initial

flyer plate/explosive velocity, the initial specific volume of the powder to be

compacted, the particle grain size, the initial temperature, the duration of the shock

pressure, and the adiabatic compressive energy and thermal energy [of the

compacted powder at pressure] [2]. In addition, the previously mentioned

parameters have been extensively evaluated in the creation of experimental and

numerical models along with the development of more precise equations of state.

The development of models and equations of state are of the utmost importance to

the shock physics community, as they reduce the need to perform countless gas-gun

experiments. The following review will outline the pillars of new and old regarding

the experimental procedure with a focus on the use of manganin gauges for

acquiring stress signals, numerical models and equations of state, the use of

hydrocodes and computer simulation to model the behavior of compacted powders,

and experimental and numerical results. The primary focus of the research to be

conducted is on the shock compaction of a copper, iron, graphite, sand, tin, and
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molybdenum-disulfide powder mixture; the journal articles discussed in this review

focus on compaction of the components above in particular copper, which

constitutes 42% of the heterogeneous mixture. In additional, it is important to note

that a majority of the articles in this area of shock physics research is devoted to

the study of porous foams, which for the most part are created by statically loading

and sintering the metal powders prior to the dynamic impact. However, an

argument will be made that the equations of state and governing equations of the

porous foam can be applied to the rapid compaction of granular-powder mixtures.

1.3 Observed Experimental Apparatuses

The experimental apparatus for performing dynamic loading experiments

must display repeatable behavior, be easily controllable, and safe. Light-gas gun

experiments have been the standard in performing rapid-compaction experiments

due to the gun’s ability to adhere to the standards mentioned above. Another

experimental method applied consists of a high-explosive assembly, but with

increased safety concerns in operation and explosive material storage, the light gas

model becomes a more suitable and comparable alternative. The light-gas guns are

typically built in a one-stage or two-stage configurations which allow for maximum

projectile velocities of 1-2 km/s and up to 8 km/s respectively [7]. All projectile

velocities presented in the reviewed research ranged from 69 m/s to 1000 m/s. The

light gas gun assembly will also contain fixtures for a velocity measurement system

and a target-gauge system to measure the projectile velocity impact and propagated

stresses, respectively. A generic system schematic of the assembly can be seen in

Figure 1.1 below less the velocity measurement system [7].
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Figure 1.1: Schematic of Gas Gun Impact-Target Assembly.

Note the back plate, cover plate, and container materials do not need to be those
specified in the figure.

Meyers describes that every shock propagation event must measure the

following specific variables: [6].

1. Wave or particle arrival time: In these detectors, the arrival of a signal (wave

or moving object) triggers an external measurement source

2. Discrete particle displacement versus time

3. Continuous particle displacement over time

4. Stress versus time: Piezoelectric and Piezoresistive Gage Assemblies

The techniques listed above are able to capture all the data pertinent to an

impact test, and aid in the construction of equation of states and the baseline to

determine accuracy of numerical models. It is important to note that the gun barrel

should be evacuated when implementing these techniques [9] [10] [11]. The

evacuated barrel will accomplish three pivotal tasks: the vacuum seal will pull all

the components together, prevent ionizing and conducting of the air which could

lead to circuit shorting , and the compressed gas in the barrel, as the projectile

travels, could destroy any non-rigid components (i.e. velocity system) [6]. The

following paragraphs will discuss the implementation of these techniques, except for

the continuous particle displacement over time. The laser interferometer and

VISAR devices used to capture the continuous particle displacement over time data
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will not be utilized in the author’s research and therefore not discussed. The

particle velocity (displacement over time) will be numerically calculated using an

impedance matching technique, which will be discussed shortly. The other three

mechanisms mentioned by Meyer’s are sufficient for acquiring the data necessary to

conduct the author’s research.

The wave or particle arrival time is essential for the successful triggering of

the stress measurement systems. The most common triggering mechanism in the

analyzed research is a pin mechanism (circuit) placed at the projectile-target

interface [9] [10] [11]. Depending on the conductivity of the flyer plate either a break

introducing an open circuit or a short circuit trigger could be created. In the case of

Boade and Lynse using a short circuit, the scope was triggered 0.4 microseconds and

0.5 microseconds prior to impact [9] [10]. This short time duration will also

maximize the amount of available memory in the measurement source or

oscilloscope. As will be discussed in the stress measurement section, this will also

prevent premature heating of the gauges due to the time duration of applied current

and voltage.

The discrete particle displacement versus time is used to determine the

projectile velocity. The general technique is to locate a series of pins a known

distance apart on the gas-gun barrel and measure the time required to pass each

pin. A circuit is developed so the passing projectile induces a voltage when contact

is made with the pin and displays the voltage on an oscilloscope. Similar to the

wave/particle arrival time a short circuit, break circuit, make circuit, or inverting

circuit could be incorporated to determine the particle displacement. A sample

oscilloscope trace for any inverting circuit can be seen in Figure 1.2 below. Boade

utilized three charged shorting pins located 19 mm from the target assembly and a

known distance part [9]. Vandersall also used three shorting pins placed 12.7 mm

apart and 6.35 mm from the target surface [8].
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Figure 1.2: Oscilloscope Trace of Inverting Circuit for Determining Particle Dis-
placement vs. Time.

The Distance between pins is known and from the max or half-voltage of the Pin
Peaks the time between Pins can be determined [6]

Much of the early stress measurement devices for porous materials utilized

the X-quart gauges. The quartz gauges provided accurate stress measurements for

stresses less than 2.5GPa [7]. However, a more versatile stress gauge referred to as a

manganin gauge consisting of a 84 wt% Cu, 12 wt% Mn, and 4 wt% Ni alloy was

available, although not the standard for early impact testing [6]. The manganin

gauges can successfully measure stresses up to 30 GPa [6]. Both gauge assembly’s

are constructed using the same principles and mechanisms with the goal of obtaining

a record of stress as a function of time, but with contrasting working materials .

The construction of the target utilizes a ”sandwich” technique with the gauge

placed between two insulating materials with an epoxy adhesive (see Figure 1.3).

The type of insulating material varied greatly in the discussed research with

no real explanation for their given choice in comparison to another non-conducting

material. Also, many of the early experiments did not utilize an insulating material

and simply potted the gauge with C-7 epoxy of thickness less than 0.001cm [12] [3] .

Vandersall choose a 25 micrometer FEP Teflon Insulator potted with 2-4 micrometer

epoxy [8]. Lynse, Borg, and Rosenberg used PMMA plates of varying thickness ;

Rosenberg also attached a 19 micrometer Mylar sheet when using copper back

plates [13] [5] [1]. Linde argued that a buffer shim must be placed over the gauge to

prevent erroneous measurements, but with little explanation given. Aluminum, C-7
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Figure 1.3: “Sandwich” Target using PMMA Insulators [1]

epoxy, and Mylar sheets were analyzed by Linde [11]. Linde concluded that a 0.025

mm Mylar shim was of sufficient thickness to be used as an insulator. Linde also

noted that the use of mylar shim will reduce the recorded pressure by more than

10% when compared to gauges with no shim present. In addition, 0.3 mm C-7 epoxy

coating was the minimum thickness to eliminate the contact between the porous

surface and the gauge [11]. The following 0.08, 0.25, 0.48, 0.75, and 3.2mm thick

aluminum shims were also tried on the gauge assemblies and Linde concluded that

the 0.25 mm shim was sufficient to provide reliable stress readings [12]. In addition,

to prevent localized stretching of the manganin gauge, a buffering shim must be

present otherwise the change in resistance associated with a particular strain would

alter the gauge response to pressure [12]. Rosenberg emphasizes the need of an

insulating sheet of Mylar when using metallic surfaces for the front and back plate

of the gauge [1]. A 70/30 mixture of resin to hardener for the epoxy mixture was

also proposed by Rosenberg [1] . The requirement of an embedded gauge and a

protective insulating material was also suggested by Meyers, who included that the

manganin gauges must also be properly calibrated using a balancing technique [6].

The material behavior of the quartz gauges is described as piezoelectric while

in contrast the manganin gauges are piezeoresistive. This implies that when stressed

the quartz gauges generate an electrical charge (i.e change in current). Manganin
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gauges on the other hand will exhibit a change in electrical resistivity with pressure.

The advantage of the piezoelectric gauges over the piezeoresistive gauges is the

piezoelectric gauges do not require an external power supply; however both will

require an oscilloscope. The piezoresistive gages will require a pulsed power supply

to provide the current required during the test. The voltage change due to the

change in gauge resistance is then captured by the oscilloscope. Most manganin

gauges have a resistance of approximately 50 ohms. Meyers suggests the importance

of triggering the pulse-power supply milliseconds prior to the shock wave arrival to

prevent the gauge from prematurely burning due to” resistive heating.” [6] The

piezoelectric gauges will not be discussed in more detail due their absence in the

authors conducted research.

An additional component that did not receive discussion from Meyers was

the projectile construction. The research reviewed all assumed a planar impact so

by nature it was assumed that all the projectiles had a flat face. Linde mentions

that the projectile flyer plates were machined flat and square to the impact axis to

within 0.002 mm [11]. An additional assumption confirmed by Linde was all

projectiles were full density (non-porous) [11]. Linde also mentions that the flyer

plate should have the same composition as the driver or target plate to make

numerical calculations simpler (The importance of this aspect will be discussed in

the equation of state section) [11] . All of the projectiles discussed contained a

metal flyer plate of aluminum, brass, or copper. However, the sabot or flyer plate

housing consisted of Styrofoam, polyethylene foam, or aluminum. Also Lynse,

Boade, and Vandersall had schematic drawings that incorporated an o-ring into the

projectile assembly to seal downstream gas from escaping into the evacuated barrel.

Also, when quartz gauges were used the projectiles contained an epoxy potting on

their interior to affix the gauge to the projectile. Vandersall notes that the impact

experiment should be “designed such that the planar-parallel shock wave propagates

through the powder thickness without attenuation from loading or peripheral

surfaces.” So, the flyer plate should be of adequate length to prevent numerous wave

transmissions and reflections in the target material.

The final pivotal aspect of the experimental apparatus is the preparation of

the porous or granular samples. Vandersall created the Mo + 2 Si sample powders
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using a slow moving V-blender for duration of 8-12 hours [8]. Linde and Boade both

sintered their copper powders into a porous foam. The foam described by Linde

consisted of 5 or 10 micron powders sintered at 1700 F for copper and 1600F for

iron followed by being surface grounded, cleaned in an ultrasonic cleaner, and baked

in a vacuum oven for 16 hours [11]. In the majority of the experiments the

researcher used spectroscopy to analyze the initial microstructure of the porous

foam. The graphite used by Linde required no specific fabrication upon receipt from

commercial supplier [11]. Boade also created samples by placing 10-100 micron

copper powders into a rubber sack before being submerged in a hydrostatic press to

1.4 kbar. All the porous foams discussed were made in quantities large enough that

a lathe equipped with a vacuum chuck was used to partition the samples. As Lynse

discusses, the turning process removes individual powder grains rather than cutting

through the grains so the surface contains the same regularities as the sample as a

whole [13]. It is also important to note that all the porous foams were put on a fine

abrasive cloth to get planarity less than 0.005 mm. There was also no direct

mention of the reason for the particular sample thicknesses. The range seemed to

include 0.5-2.00mm and there was no correlation between projectile velocity and

sample size, as initially suspected [9].

From the above discussion on rapid compaction of powder and porous foams

the following conclusions can be drawn. A light-gas gun allows a compaction

mechanism with the most control and highest safety factor. The projectiles should

contain an o-ring to prevent gas from escaping downstream from the gas source. In

addition the projectile should contain a light weight sabot/housing and a full

density flyer plate of common material with the impact/driver plate. The flyer plate

should also be of ample thickness to prevent any stress attenuation from arriving at

the gauges in a comparable time frame to the initial stress wave. A series of flyer

plate finishing steps should be used to insure that the flyer plate is flat and square

for a planar impact. Also, a projectile or wave arrival circuit should be employed at

the impact interface to trigger the oscilloscope 0.5 microseconds before impact.

Also, a velocity pin measurement system containing three or more pins should be

located several inches upstream from the impact interface. The velocity pin system

should be displayed on the oscilloscope with an appropriate circuitry of low voltage
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(2V or less). A ”sandwich” gauge system should be utilized to guarantee accurate

stress readings. The ”sandwich” should contain an aluminum (appropriate metal)

shim (0.25mm), a Mylar or Teflon sheet (<0.25 micrometers), or 0.3 mm of epoxy

as an encapsulating material. Since powder samples are being considered, one would

advise not to use only an epoxy shim due to possible distortion of the stress results

from powder-gauge interaction. The “sandwich” should be potted with C-7 epoxy

to protect the gauge and keep the gauge fixed between the two insulating sheets.

Caution should be taken that a conductive material is not placed in contact with

the gauge.

1.4 Equations of State

Developing an accurate and simplistic model for equation of states of porous

materials is essential to effectively applying the discovered phenomena. As discussed

in the introduction, numerous parameters must be considered when constructing an

equation of state including both physical and thermal properties. However, an

equation of state should not be so robust and inclusive that the underlying physics

of the problem is lost and any analytical calculation becomes too tedious. In

addition, a too simplistic model will not capture the essential physical behavior

experimentally observed [14]. The best method for determining an appropriate

equation of state still remains trial and error [14].

This section will discuss several methods for determining an equation of state

for shock waves through a porous material and computational methods used to

represent the compaction process. The Rankine-Hugoniot equations, in mass,

momentum, and energy, will be presented in addition to the equation of state

required to solve the system of equations. Methods will also be presented, such as

those by Hermann, Carroll and Holt, and Boade that describe the compaction

process of a porous material as two distinct processes: collapse of pores, and

compression of compacted material [15] [16] [3]. Dijiken, also considered a two part

equation of state based on the possiblity that the post-compacted sample could have

a specific volume greater than the initial pre-compacted sample and the intutive

behavior that the post-compacted sample has a lower specific volume than the

pre-compacted sample [2]. Meyers relayed an equation of state for the Hugoniots of
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powders based on the Mie-Grüneisen equation with parameters of both the solid

and porous materials considered [6].

1.4.1 Rankine-Hugoniot Equations

Ferreira and Meyers included a schematic illustrating the multiple stage

process of shock consolidation [17]. The process begins with an initial porous

material impacted with a shock wave leading to void collapse and densification of

the material, followed by the melting of the particle boundaries, the deformation

and phase transformation of the particles, and lastly the kinetic energy imparting a

residual velocity of the compact. The research articles reviewed were mixed between

those focusing on a single aspect of the shock consolidation process and those

striving to develop a working model for the process as a whole. Regardless, the

ultimate goal of an equation of state in porous materials is to develop and accurate

model that specifically describes the Hugoniot relationships of the compact. The

Hugoniot is a locus of the potential end states a material can possess undergoing

shock loading. The Hugoniot of a material must ultimately be determined

experimentally, most commonly by finding the shock speed and particle velocity

relationship, but the equation of state will reduce the need for experimentally

determining the material behavior for each potential porosity. The

Rankine-Hugoniot relationships describe the conditions necessary to “jump” or

eliminate the discontinuity that exists from the compression induced shock wave in

the material. Below are the mass, momentum, and energy conservation equations

for the Rankine-Hugoniot which apply to any steady shock-wave, comparing specific

volume V , the pressure P , the particle speed Up, the shock speed Us, and the

internal energy E. Also below is the linear-empirical relationship between the shock

speed and the particle speed, where S is the Hugoniot Slope and C0 is the bulk

sound speed in the material at zero pressure [6].



12

ρ0Us = ρ(Us − Up) Mass (1.1)

P − P0 = ρ0UsUp Momentum (1.2)

PUp =
1

2
ρ0UsUp

2 + ρ0U s(E − E0) Energy (1.3)

Us = UpS + C0 Equation of State (1.4)

From the equations above it becomes clear that with the equation of state

only two of the variables must be known to completely describe the state of the

system. The equation of state is experimentally determined using flyer-plate

experiments for conditions that will not produce phase transitions. Also, the linear

relationship suggests that as the fyler plate velocity increases, the velocity of the

resultant shock wave also increases. The articles reviewed work to develop the

relationships for the above variables describing an impact experiment with a porous

sample. The critical concern that must be addressed lies with the pressure required

to compact the initial porous material to a completely compacted solid. For many

researchers a “snowplow” method was formulated that suggested the compaction

occurred at zero stress [15]. The problem with this method is the powder Hugoniot

curves in P − V space indicate that more energy is absorbed in the compaction of a

porous material then a solid material due to the reduction in initial volume from the

voids in the material collapsing under loading. This is why porous and granular

materials are great shock absorbers. However, it is visibly apparent in Figure 1.4

that as the porous material is compacted the Hugoniot of the porous material

approaches that of the solid material.



13

2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Density (g/cc)

P
re

ss
u

re
(G

P
a)

Solid Hugoniot (Fully Dense)
Porous Hugoniot

Figure 1.4: Pressure-Density Plot of Hugoniots for a Solid and Porous Material

In addition, the Rankine-Hugoniot equations above provide the basis for

implementing the impedance matching technique. The impedance matching

technique allows one to calculate the pressure between two interfaces. In order to

calculate the pressure, the Hugoniot relationships must be rearranged into the

Pressure-Particle Velocity relationship depicted below.

P = ρ0(C0Up + SU2
p ) (1.5)

The equation above only depicts the stationary aspect or target of the

experiment. The other component, the flyer or projectile, can be described in

P − Up space below, where V is the velocity of the projectile.

P = ρ0(−C0(Up − V ) + S(Up − V )2) (1.6)

From the two equations below, it is clear that with the knowledge of the

Us − Up equation of state, the density of the material, and the projectile velocity,

the pressure between any two interfaces can be determined. An example of an

interaction between a Copper and an Aluminum projectile is depicted in Figure 1.5

below.
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Figure 1.5: Impedance Match for 500 m/s Aluminum Flyer Plate Impacting Copper

Further, by reflecting the curves one can determine the pressure at interfaces

of a target consisting of numerous materials with only the parameters discussed in

the previous paragraph. This technique provides a simple calculation to determine

the pressure of an impact experiment.

1.4.2 Equation of State Presented by Meyers

Meyers discusses an equation of state based on the Hugoniot relationships

and the Mie-Grüneisen equation that relates both the solid and powder states. The

conservation of mass, momentum, and energy are applied to both the powder and

the solid including the standard pressure-volume relationship for solid materials.

The resulting equations are substituted into the Hugoniot based on the Mie-

Grüneisen equation (Equation 2.6) yielding the Pressure and Volume relationship

for the powder in Equation 1.8 below [6]:

P = PH +
γ

V
(E − EH) (1.7)

P =
[2V − γ(V0 − V )]C2(V0 − V )

[2V − γ(V00 − V )][V0 − S(V0 − V )]2
(1.8)

From the above equation, the Rankine-Hugoniot relationships can be

employed to determine the values of the other parameters Up, E, and Us. Gourdin

argues that this equation is simply a relationship between the pressure of an

individual powder particle, the specific volume compression of that particle, and the
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specific volume of the porous volume as a whole, when the required relationship is

between the average pressure in the porous body as a function of the specific volume

of the distended body [7].

1.4.3 Dijken Equation of State

Dijken develops an equation of state similar to that Meyers discussed above

with two initial porosity conditions based on the anomalous behavior that the final

specific volume may be greater than the initial specific volume. One would assume

that when a powder is compacted it would reach a state of greater density but

experimentally that has not always been the case [18]. Dijken makes the following

assumptions in his model [2]:

1. The compaction of a powder at zero pressure quasi-statically from V00 to the

solid specific volume does not require any energy

2. The material is completely compacted behind the shock wave (no voids

present)

3. The increase in internal energy is equally distributed inside the compacted

material (Pressure and temperature fields are uniform)

4. There are no volume or energy changes due to deformation of phase

transformations.

The first case Dijken considered was when the final specific volume was less

than the initial specific volume. The final states of this scenario are calculated from

compacting the solid material from a volume V0 to V2 along the Rayleigh Line and

then heating the material at constant volume to pressure P1. Equation 1.8 above

results for this scenario and the Rankine-Hugoniot relationships can be used to

determine the additional parameters. For the case when the final specific volume is

greater than the initial specific volume, Dijken considered a system of

thermodynamic processes. The final states of the powder will be calculated by

heating at zero pressure from 0 to 4 followed by heating at constant volume from P4

to P3, as seen in Figure 1.6 The resulting pressure of the compacted powder will be

given by
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P3 =
2Γ(V3)

[Γ(V3)(V00 − V3)− 2V3]

∫ T4

T3

Cp(T ), dT (1.9)

Figure 1.6: Copper Hugoniot and Equienergy Curves with P-V Points Labeled
(From Dijken [2]

The parameters in Equation 1.9 can be chosen based in the case of V00 and

V3, with T4 and Cp(t) calculated utilizing several equations and estimations. The

values of Us and Up can then be calculated based on P3 for powders at varying

intital temperatures.

1.4.4 Herrmann P − α Model and Proposed Modifications

The Herrmann P − α model considers the compaction of the powder in both

the elastic and plastic region. Herrmann’s goal was to separate the volume change

from void collapse from that due to the compression of the material [15]. Herrmann

assumes that the voids do not reopen during the time of interest and the shear

strength is negligible. Herrmann’s model considers only pressure as a function of

specific volume and specific internal energy. The specific volume is then related to a

dimensionless porosity term which is the ratio of the specific volume of the porous

material and the specific volume of the corresponding solid material at the same

pressure and temperature. Thus the equation of state of the solid material can be

represented as
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P = f(υs, E) (1.10)

and the porous material can be given by

P = f(
υp
α
,E) (1.11)

where α = υ
υs

is the dimensionless porosity term.

Herrmann then assumes the elastic and plastic ranges will have several

expected properties to “ensure that the equation of state will be smooth and

continuous at the point where the material becomes a solid.” [15] The expected

properties determine the coefficients of the polynomial of the plastic region

(Equation 1.12), which can be greatly simplified if the polynomial is assumed to be

quadratic.

α = α0 + α1P + α2P
2 (1.12)

Gourdin suggests that the Herrmann model has two pivotal advantages over

other models. First, the Herrmann Model ensures that the porous equation of state

will be consistent with the fully densified powder, and second, the factors attributed

to the powder’s large change in volume with the pressure are isolated [7].

Carroll and Holt proposed a modification to the Herrmann model in order to

create a more accurate model at low pressures where the density differs from unity

(or complete compaction) [16]. They assumed that a porous material was

statistically homogeneous and isotropic so the material can be modeled as a

homogeneous, isotropic solid material. In addition it was assumed that the

volumetric response of the material is determined by the thermo-mechanical

response of the matrix (solid) material, including the initial porosity. The volume

average of the pressure in the matrix, Pm is given by

Pm = αP (1.13)

Herrmann suggested the two pressures were the same but Carroll and Holt

argue that considering the transmitted force across a plane section of the porous
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material will prove the pressures are not equal [16]. In other words, the Herrmann

model would be valid only if the pressure in the matrix was uniform. The final

requirement for the Carroll/Holt modification is the specific energies of the porous

material and solid material are assumed to be the same. Combining the

assumptions above with the definition of porosity from Herrmann the modified

P − α model becomes

P = α−1f(
υp
α
,E) (1.14)

Boade described a combination of the Mie-Grüneisen equation of state and

the P − α model [9]. Porous Hugoniot data along with the equations below were

used to define a curve at a pressure P2 and the solid specific volume.

P2 =
PH(VS0 − VS − 2

G
)− P1(V0 − V2)

V1 − V2 − 2
G

(1.15)

where PH is the P − V Hugoniot for the solid material and G is the ratio of

the Grüneisen parameter and specific volume at zero stress.

Boade discovered that the P − α coefficients of the polynomial did not agree

with the experimental data. An exponential form of the α2 coefficient was proposed

below, where â = 0.254kbar−1 described the experimental data.

α2 = 1 + (α1 − 1) exp[−â(P1 − P2)] (1.16)

An additional Boade experiment was referenced that suggested the previous

equation also described porous iron and graphite [3].

1.4.5 Numerical Methods

Numerous other models have been developed analyzing a portion of the

densification process represented by Ferreira and Meyers. Meyers and Ferreira

considered a model based on the energy used in void collapse, melting, and

deformation to determine the pressure for shock compaction [17]. The Mie

Grüneisen equation of state was then used to obtain the relationship between shock

pressure and energy as a function of distention. Gourdin developed a model that

determined the disposition of energy at the powder particle surfaces during
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compaction. This model was based on the net energy deposited at the powder

particle surfaces, the rise time of the shock wave, and the diameter of the powder

particles [19]. From these parameters the temperature or thermal modification can

be determined assuming melting is neglected. Vijoen developed a model based on

the definition of enthalpy and the aid of Wu and Jing who considered an isobaric

compression from the porous Hugoniot to a Zero Kelvin Isotherm [18]. This model

also used the Mie-Grüneisen equation of state to determine the pressure of the solid

Hugoniot. Viojen method was noted to be valid whether the porous system

compacted “normally” or anomalously. Linde used a system of equations to

represent the porous Hugoniot over several segments of the curve [11]. However,

little discussion was given in the development of these equations other than a (Q

method) based on an artificial viscosity and the use of a finite difference equation.

The P − λ model developed by Grady is based on the P − α model, but assumes

that the pore collapse is initiated at sites with in the mixture and then engulfs the

entire sample until compaction is complete rather than the uniform crush of pores

throughout the sample [20]. In addition, the model assumes that the material exists

in either an unequilibrated state or a pressure equilibrated state. The lambda term

specifics the mass fraction of the mixture that has been compacted and exists in the

pressure equilibrated state.

Numerical and computation methods emerged in shock physics research in

the 1990’s. The ability to accurately acquire pivotal physical, thermal, and

Hugoniot properties both numerically and visually from a computer simulation

eliminates the repetition of performing gas-gun experiments for countless conditions.

In addition, the equations of states discussed above are readily available to be used

in numerical computations and simulations. Finite element and difference methods

along with direct numeric simulation have been the means to studying individual

particles during shock compression. The two formulations of the equations of state

for the finite difference and element methods are the Lagrangian and Eulerian

(CTH) [21]. Both consist of a problem domain usually consisting of collection of

polygons (quadrilaterals) in two dimensions known as a mesh, where each polygon

edge is connected at a node. A Lagrangian formulation attaches the material

directly to the mesh and allows the mesh to flow with the material as it deforms.



20

On the other hand, an Eulerian formulation applies a mesh that is fixed in space

and the time step is unaffected by the material deformation. According to Benson,

from the previously stated comparison; the Eulerian formulation is preferred over

the Lagrangian [22]. A troublesome area exists when trying to obtain real-life

particle distribution and porosity in two-dimensional space. Benson developed a

pseudo-gravity method to numerically locate individual particles in the domain [22].

The particle is dropped into the box in the direction of gravity until the particle

contacts another particle. The particle then slides along the surface of the contact

particle until it contacts an additional particle, all acting as if under the influence of

gravity. Benson used this procedure for rectangular and circular particles however

irregular shaped particles could be used with increased difficulty due to the number

of contact points.

The Mie Grüneisen equation of state and the P − α model appeared to be

the least cumbersome and sufficiently address the concerns of modeling porous

materials. The two methods are able to be coupled as was discussed by Boade to

develop the appropriate Hugoniot relationships. As was quickly found in conducting

the literature review, countless articles have cited Herrmann’s P-alpha model and

used the Mie- Grneisen equation of state which suggest their applicability and

regard in the shock physics community. The P-alpha model perhaps offers the most

favorable approach to modeling the compaction process by isolating the elastic and

plastic regions. Both of these methods will also play a pivotal role in the use of

numerical or computational methods of determining equations of state.

Experimental results are still essential and the shock speed and particle velocity at

minimum must be determined before an equation of state can be applied. Also of

great importance for this research, Dijken noted the following in order to obtain a

“crack-free well-sintered material”: high flyer-plate velocity, highly porous material,

grain size should not be too small so the surface grains become hotter which favors

sintering, initial temperature should be higher than room temperature which results

in a higher temperature behind the shock leading to better sintering behavior, the

batches should be large and thick so the material may remain for a longer time at

high pressure and temperature, and a strong and heavy container material should

applied to absorb the adiabatic compressive energy [23].
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1.5 Experimental Results

The results and discussion below represent a brief overview of the major

conclusions drawn from the articles pertaining to physical phenomena and equation

of state use. Methods used to develop results need to be consistent and accurate.

Numerous articles agreed that the transit time of the shock wave propagating

through the powder must be calculated from the half max-value of the oscilloscope

trace. No reasons were given for this method, but one can assume it is an average

value based on the rise time record. If a “sandwich” target is used the transit time

through insulator thickness must be deducted, using the impedance matching

technique in order to determine the transit time through the powder only. The

shock speed can then be determined from the definition of velocity [5]:

Us =
displacement

∆time
(1.17)

Vandersall in his compaction of a Mo+2Si powder noted several interesting

observations [8]. The rise time at lower-stress magnitudes will be higher due to the

“dissipative process responsible for powder densification” which leads to increased

wave dispersion. At pressures greater than 6 GPa the data strays from the Hugoniot

due to melting of the silica powder which occurs at 5GPa. Vandersall used the

P − α model and determined the crush up strength to be 3.1 GPa, which continues

up the Hugoniot until 6 GPa. The conclusion was drawn that the P − α model was

the best fit from 0-4 GPa, the solid Hugoniot from 4-6 GPa, and at pressures above

6 GPa the powder melting will lead to large deviations from results. Vandersall also

states in his Us − Up curve that several data points at low particle velocities have

higher shock velocities than the Hugoniot due to the assumption that the crush up

strength is zero and as the particle velocity increases the shock wave speed decreases

from the Hugoniot due to the melting of the silicon during compaction. The

crush-up strength experience will also impact the ability of the powder mixture to

react. A crush strength greater than the melt strength of the powders will inhibit

shock induced chemical reactions while crush strengths lower than the melt strength

favor the initiation of shock induced chemical reactions due to “plastic deformation

and dispersion” during the crush-up process [8].
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The verification of the experimentally obtained stress profile can be verified

by comparing the peak pressure with the predicted Hugoniot pressure and by

applying the fourth-power law developed by Grady [24]. The fourth-power law is a

relationship between the peak stress and the strain rate within the shock wave. The

particular peak stress and strain rated components can be visually seen in the

Figure 1.7 below.

Figure 1.7: A steady structured shock wave with finite rise time

Grady states the fourth-power law is a common relation for a wide range of

materials and shock amplitudes. The fourth-power law alters based on the materials

used for compaction. The power law relationship for several materials is listed

below:

1. ε̇ ∝ σ Granular and Powder Materials

2. ε̇ ∝ σ2 Laminated Composites

3. ε̇ ∝ σ4 Metals

Grady notes that the fourth-power law is limited in the upper and lower

limits of a pressure range. Also, component impedance differences will contribute to

systematic behaviors that will not align with the fourth-power law.

In the compression of porous copper, Boade discovered a distinct three wave

behavior in the stress record [9]. Boade suggested the three wave structure behaved
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by the first wave compressing the powder at a low level with little to no deformation

followed by a wave that overcomes the bonds between grains to push the grains into

new positions with a new specific volume, and lastly a large amplitude wave causes

large plastic deformation and flow regardless of grain shape or bonding. A linear

relationship between transit time and sample thickness was noted along with

pressure independence to sample thickness. Boade also noticed that the porous

copper will not regain its initial specific volume, but will however follow the release

wave similar to the solid material, thus remaining at a specific volume close to a

fully densified material after compaction. The Hugoniot of the porous copper agreed

with the Mie-Grüneisen equation of state and the solid Hugoniot with complete

compaction occurring at 21 kbar. Boade also conducted an additional experiment

on copper two years later using 10, 30, 50, and 100 micrometer powders [3]. Boade

concluded that at 15 kbar the density of the compact was 98% of that of a copper

solid and that the particle size had no distinct effect on the shock loading.

Linde performed experiments on porous copper and porous iron three years

after the experiments of Boade [12]. None of the copper sample compacted by Linde

experienced the three wave structure described by Boade. Precursor waves followed

by a large amplitude wave were witnessed. Linde also observed that the specific

volumes of the compacted porous materials were greater than the specific volumes

of the solid material by 10% for iron and 6% for copper. There also existed

considerable scatter in the copper Hugoniot data and post shot volumes which were

attributed to oil existing in the specimens. Experiments performed with clean

specimens resulted in data that agreed with the theoretical predictions. Also for

oil-present iron specimens the final specific volumes were 2-5% greater than the

initially solid material due to the wave release paths. Linde also discovered that the

release paths for copper and iron were similar regardless if full compaction occurred.

Both Linde and Boade created their copper powders from a sintering process; Linde

using 5 to 10 micrometer powders while Boade purchased his from a manufacturer.

The Mie Grüneisen equation of state predicted the specimen behavior above 20 kbar

for clean copper and iron sample. Several years prior, Linde also performed gas gun

experiments on graphite [11]. The final specific volume of the compacted graphite

was closer to that of the initial density rather than the solid density. The
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compaction of the graphite also did not depend on the orientation of the specimen.

However it should be noted that a minimal number of trials were conducted on the

graphite specimens.

Borg produced several experimental and numerical compactions of porous

silica powder [25]. In the experimental results it was noted that at higher densities

more complete compaction of the powder was observed. Also, the slope of the

Us − Up curve decreased as the densities of the powder decreased. Borg compared

the compaction of the porous silica using the Mie-Grüneisen equation of state, the

P − α model, the P − λ model, and the snow plow method. The Mie-Grüneisen

equation of state reproduced the experimental data the most accurate but required

knowledge of the porous Hugoniot. All compaction models under predicted the

release paths but reproduced the features of the experimental data better at higher

projectile velocities. The P − λ and snow plow method yielded similar results from

which one can conclude that the presence of air does not affect the outcome since

the P − λ model considers air and the “snowplow” method does not. A conclusion

was drawn that the P − α model had the most success since it includes the internal

strength of the porous material as it is compacted. It was noted in an earlier

simulation of the silica powder that the P − α and Mie-Grüneisen equation of state

did not produce adequate results as the porosity increases.

1.6 Conclusions

The present direction and status of shock physics research has leapt forward

greatly but has not abandoned the pillars of the past. Improvements in

computational power have substantially advanced the ability to simulate rapid

compaction of porous granular materials. Complex particle geometries and

numerous variations of physical parameters such as porosity, particle size,

temperature, and projectile velocity have broadened the landscape of analysis to

what factors influence shock compaction. The Hugoniot relationships,

Mie-Grüneisen equation of state, and the P − α model continue to embody the most

intuitive and accurate means to convey shock wave interactions. Cold-welding of

powder particles has been proven to be successful and acquire favorable

characteristics of the compacted material. The awesome speed of compaction and
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the frictional and deformational forces at the particle interfaces are able to bond

particles to produce high hardness materials that eliminate the sintering process.

With the continual development of new materials and powder mixtures, shock

loading provides an additional means to analyze the usefulness of the powders and

potential physical phenomena not realized in static applications.
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CHAPTER 2

Experimental Apparatus

2.1 Apparatus Overview

The experimental apparatus for this research consists of a gas-gun,

quasi-static compaction, and scanning-electron and optical microscopy systems.

Each system will yield valuable insights into the response of the powder to various

loading conditions. The gas-gun system allows for dynamic-loading through impact

between a stationary target and a projectile traveling between 190-275 m/s. The

dynamic loading using the gas-gun and flyer plate experiments will produce the

samples to analyze using microscopy in addition to obtaining the shock speed and

particle velocity required to develop the linear equation of state. The quasi-static

compaction system will provide a method of compaction differing significantly from

the dynamic by inducing a slow moving piston to crush the powder to a given load.

Lastly, the scanning-electron and optical microscopy will reveal the microstructure

of the powder as a result of the varying compaction methods. This will provide the

basis for determining if the dynamic loading conditions can create samples with an

improved microstructure to the statically pressed and sintered samples. The three

research methods discussed above will be discussed in more detail below.

2.2 Gas Gun Overview

The gas gun system at Marquette University consists of three parts: Single

Stage Gas Gun (SSGG), velocity measurement system, and stress measurement

system. The SSGG’s air delivery system, breech, and impact chamber were built by

Thomas J. Downs (M.S. 2006) and later improved by Jeff Midday and through the

present research [26]. The SSGG’s air delivery system produces pressurized air for

the breech to accelerate the projectile. The breech stores and releases the

pressurized air sending the projectile down the barrel. The impact chamber houses

the projectile-stationary target impact and provides a safety barrier for the gas gun
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operators.

2.2.1 Air Delivery System

The air delivery system consists of an air compressor, refrigerated air dryer,

filtration bank, and a gas booster, as shown in Figure 2.1. The air compressor

produces compressed air regulated to 100psi for the gas booster inlet and gas

booster driver through a tee at the air compressor outlet. The compressed air for

the gas booster inlet travels through the refrigerated air dryer where the dew point

is lowered to 37 degrees Fahrenheit. From the refrigerated air dryer the air enters

the filtration system which consists of three coalescing carbon bed filters in series.

The compressed air is in turn sent to a 2.25 liter cylinder which is emptied into the

gas booster inlet at each compression. The compressed air for the gas booster driver

is sent to a filter-regulator, where the pressure is regulated to 40 psi. At a 40 psi

driver pressure and 100 psi inlet pressure the gas booster is capable of producing

2600 psi at the outlet. A three-way valve was piped to the gas booster outlet to

allow operation of an additional gas-gun in parallel. All the piping in the

compressed air system from refrigerated air dryer to breech is rated for 5000 psi.

The air further compressed by the gas booster is then sent through the three-way

valve to the breach.

Figure 2.1: Marquette SSGG Air Delivery System
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2.2.2 Breach, Barrel, Vacuum System and Projectile

The breech is the storage vessel for the compressed air leaving the gas

booster. The breech is a three-piece aluminum cylinder with additional components,

including o-rings, pressure gage, safety relief valve, copper foil shear disk, and

vacuum port. O-rings are located at the middle aluminum piece interface, both

copper shim-aluminum piece interfaces and at the barrel-breech interface. The

projectile is located in the down stream section of the breech, with the rear of the

projectile abutting to the copper shear disk. The compressed air leaving the gas

booster builds up in the volume of the middle piece of the breach as the booster

runs. When the pressure in the breech is equivalent to the burst pressure of the

copper shear disk the projectile will be sent down the barrel. A pressure gauge is

mounted to the middle piece of the breech, along with a pressure relief valve which

will open if the pressure in the breech exceeds 1100 psi. The breech is also enclosed

by a 1/4 inch steel secondary containment box as a safety precaution to gas gun

operators in the unlikely event of a system rupture.

The barrel is a 36 inches long by 2 inch outside diameter and 1 inch inner

diameter column of drawn over mandrel steel with fixtures for connecting to the

breech, a vacuum port, and mounting the velocity measurement system and the

targets.

Figure 2.2: Marquette SSGG Breech and Barrel
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The vacuum ports contained on the breech and barrel evacuate all air

between the projectile o-rings and between the upstream projectile o-ring and the

target at the barrel end. Figure 2.3 presents the vacuum system which is powered

by a Hitachi 160VP CuteVac vacuum pump. The vacuum system is piped through

two ball valves which evacuate the air from the breech and barrel. A pressure gage

is placed between the two ball valves to insure there is no air entering the system.

Upon launching the projectile the upstream ball valve connected to the barrel is

closed to prevent pressurized air from entering the vacuum pump.

Figure 2.3: Marquette SSGG Vacuum Pump System

The projectiles are constructed of 1 inch nylon round with a 0.863 inch

diameter aluminum flyer plate, see Figure 2.4. The nylon round was turned on a

lathe to a diameter of 0.996 in. The aluminum flyer plates are 0.380 inches long to

provide a large distance relative to the thickness of the target, so as to not affect the

stress gages with reflected waves from the flyer plate. The flyer plate’s were snug-fit

mounted into the sabot via a 0.200 inch inset. Two o-rings were placed on the sabot

to create a seal between the high pressure gas from the breech and the evacuated

barrel. The o-rings also provide balance and rigidity to the projectiles with 0.025

inch compression so the flyer plate will be planar to the impact surface upon

reaching the velocity measurement system and target. The flyer plate also

undergoes a multiple step finishing process to ensure planarity through creation of a

mirror finish. A Photron APX RS CMOS high speed camera was used at the target
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barrel interface to insure the projectile was exiting the barrel properly with limited

gas escaping prior to impact. Two consecutive images from the high speed camera

at 10000 frames per second can be seen in Figures 2.5 through 2.7 The dimensions

listed above for the projectile minimized the volume of gas leaving the barrel prior

to impact to a negligible amount as viewed by the high-speed camera.

Figure 2.4: Projectile used in Marquette SSGG

Figure 2.5: Image from High Speed Camera of Target Assembly
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Figure 2.6: Image from High Speed Camera of Target Assembly 100 microseconds
before Impact

Figure 2.7: Image from High Speed Camera of Target Assembly and Projectile 1000
microseconds after Impact

2.2.3 Impact Chamber

The impact chamber houses the projectile-target collision along with the

velocity measurement and stress measurement components and wiring. The

construction of the impact chamber is 1/4 inch steel as used in the breech enclosure.

A manual-jack is also located at the barrel end to rest the target and prevent stress

on the breech system due to the weight of the barrel. There are also 1 foot square

acrylic viewing ports for use of the high-speed camera and the appropriate lighting.
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A catch-box is also placed at the barrel end to collect the target, projectile, and all

debris exiting the barrel. The box is filled with cotton shirts to aid as a dampener

for the weight of the target and associated metal components. The inside of the

impact chamber moments before a flyer-plate experiment can be seen in Figure 2.8.

Figure 2.8: Experimental Set-Up for Target and Velocity Pin System and Impact
Chamber
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2.3 Velocity Measurement System

The velocity measurement system is to used obtain the velocity of the

projectile prior to impact with a stationary target and provide camera and/or gage

trigger. The system consists of a circuitry block, digital voltage supply, a vacuum

sleeve with two o-rings, a vacuum lid with electrical connectors, and an oscilloscope.

The circuitry block depicted in Figures 2.9, 2.10, and 2.11 is affixed to the barrel

just upstream from the barrel end with a gasket and fasteners as seen in Figure 2.8.

The circuit utilizes a parallel circuit with four branches. Each node consists of an

isolated pair of parallel graphite rods (0.5mm pencil lead)or velocity pins,

perpendicular to the flight of the projectile. These rods serve as four made-pins

positioned in the barrel such that the flyer front face closes the circuit as it passes.

Each graphite rod in the pair is connected to a common copper buss. Through the

electrical connections on the vacuum lid, one copper buss will be grounded the other

will receive 1.5V. The 1.5 V and corresponding current will prevent the graphite

rods from distorting due to resistive heating. The electrical connections are then fed

into an oscilloscope. Therefore, the velocity measurement system circuit is initially

open. The velocity pins are spaced 19.89mm, 20.11 mm, and 19.92 mm apart.

When the projectile makes contact with the initial pair of velocity pins, the circuit

is complete and a rise of 1.5V will be seen on the oscilloscope for each velocity pin

pair. From the oscilloscope, the user is able to determine the elapsed time between

each circuit completion. The electrical connections are presented in Figure 2.12 and

the entire velocity measurement system can be viewed in Figure 2.13. Utilizing the

definition of velocity, Equation 2.1, the velocity of the projectile can be determined.

V =
distance

time
(2.1)
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Figure 2.9: Velocity Pin System Assembled

Figure 2.10: Velocity Pin Block, Vacuum Sleeve, and Acrylic Lid
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Figure 2.11: Bottom of Velocity Pin Block with Graphite Rods Visible and a Trigger
Mechanism

Figure 2.12: Electrical Diagram of Velocity Measurement Apparatus
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Figure 2.13: Velocity Measurement Apparatus including Oscilloscope, Variable
Voltage Supply , and Vacuum Pin Block

As discussed in the previous section the barrel is under vacuum. Therefore

the velocity measurement system is also under vacuum. The gasket between the

circuitry block and the barrel, in addition to the o-rings on the vacuum sleeve which

provides sealing between the vacuum lid and circuitry block, allow the barrel and its

fixtures to remain under vacuum.

Circuitry isolators are also used in two locations of the circuitry block. The

circuitry isolators are located between the steel block and the velocity pins and also

between the copper busses and the steel block. The circuitry isolators prevent

inadvertent grounding of the signal to the steel block and barrel. The material

chosen for the isolators was nylon due to its machinability.

For all experiments performed on the gas gun, the oscilloscope was set with

vertical divisions of 500mV/div and horizontal divisions of 50 microseconds/div. At

an average projectile velocity of 250m/s, approximately 240 microseconds will elapse

as the projectile passes from the first pair of velocity pins to the final pair. The

oscilloscope was also set to trigger on 1/3Vmax or 0.5V of the first rising pulse.

This was chosen since the time interval is of most importance rather than the

specific place in time when circuit completion occurs. Figure 2.14 shows a typical

velocity measurement trace corresponding to a projectile velocity of 243 m/s.
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Figure 2.14: Velocity Measurement Trace for Projectile Traveling at 253 m/s.

Note some time is negative based on the delay/pre-trigger set point of the oscilloscope

2.4 Stress Measurement System Overview

The Stress Measurement System is a multiple component system that is used

to measure the stress of the planar impact between an incoming projectile and the

stationary target. The Stress Measurement System yields valuable insight into the

pressure waves transmitted and reflected through the various materials of the

target, in addition to the time of arrival of the waves at a specific location in the

target. From the pressure data the Hugoniot states of the material, specifically the

heterogeneous mixture, can be determined, including the Shock Speed-Particle

Velocity relationship (Us − Up), and the Pressure-Density (P-ρ) relationship.

2.4.1 Stress Gage Targets

The Stress Gage Targets contain the gages, triggering mechanism, and

heterogeneous powder that will be used in the gas gun experiments. The target

depicted in Figure 2.15 utilizes a “sandwich” technique. The “sandwich” consists of

the following components in order from the barrel end: an aluminum driver plate,

Mylar shim, manganin gage, aluminum piston, heterogeneous powder, copper shim,
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Mylar shim,manganin gage, and aluminum back plate. The circular aluminum

driving plate and piston were 2” diameter and the back plate was a rectangular 4” x

6” aluminum block. The aluminum housing visible in Figure F.10 was 2” inner

diameter and 2.75” outer diameter with thicknesses varying from 0.165” to 0.200.”

The manganin gages are placed on a surface abutting to the material of interest to

obtain the stress waveform propagating through the material [27]. The manganin

gages were manufactured by Vishay Micro-Measurements with a grid resistance of

50 ohms. The manganin gages contain 84% copper, 12% manganese, and 4% nickel

resulting in a high electrical conductive material with favorable mechanical

properties and minimal change in resistance as a function of temperature [27]. Two

gages are used in the stress gage target, one glued to the aluminum piston and the

other glued to the aluminum back plate. The manganin gages from

Micro-Measurements were not encapsulated and therefore a thin layer of epoxy

under a Mylar sheet was applied over the gage and raked flat to protect the gage. In

addition, each manganin gage has two legs from which two 2-3 inch pieces of

22AWG stranded copper wire was soldered and then encapsulated with epoxy to

prevent damaged during construction and use. The copper shim was placed between

the powder gage interface to prevent individual grains from penetrating the Mylar

sheet and to amplify the signal to the back gage. The target will be fixed to the

barrel end and therefore must also be able to hold and perform under vacuum. As

result, the driver plate material with a polished mirror surface was blanked with a 2

inch die and hydraulic press to create the best available mate between the steel

barrel and target since no gasket or o-ring could be installed.
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Figure 2.15: Diagram of Material Components and Location in Stress Target

The target will operate as follows based on an incident projectile with an

aluminum flyer plate. The projectile will impact the 0.032” aluminum drive plate

creating a stress wave from the aluminum-aluminum interface. The wave is

transmitted through the driver plate to the gage and through the 0.032” aluminum

piston. At the aluminum-powder interface an impedance mismatch exists

transmitting and reflecting this initial stress wave. The transmitted wave will

propagate through the powder and will also be reflected back through the aluminum

piston to the front gage. The transmitted wave through the powder will reach the

0.004” copper shim interface and the impedance mismatch will again transmit and

reflect the incident stress wave. The transmitted stress wave through the copper

shim will reach the copper shim-aluminum back plate interface where the back

manganin gage is located. An impedance mismatch also exists at the

copper-aluminum interface sending the stress wave with adjusted amplitude through

the aluminum back plate, which at 1.00” is considered infinitely long.

It was found that a copper shim was necessary to protect the back gage from
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the powder. In experiment 21, where there was no shim, the back gage immediately

went to an open circuit on the oscilloscope. Under loading the mylar shim will

stretch and the granular particles can penetrate the mylar and disrupt the gage

response, which will prevented by the epoxy. A metallic material, such as copper,

above the mylar shim will also act as an amplifier of the stress wave based on the

impedance match of Mylar and a metal.

A 0.086” through-hole is also drilled through the target for placement of a

time-of-arrival detector. The time-of-arrival-detectors (TOADS) were purchased

from Dynasen Inc and are constructed with brass inner and outer conductors. The

TOADS are piezoelectric and therefore do not require any external power supply.

When the projectile impacts the pin a crystal and silver epoxy are crushed shorting

the inner and outer conductor [28]. The crushed pin produces a 70 volt, 0.4

microcoulomb pulse of 0.4- 0.5 microsecond duration for a 2kbar stress interaction.

The TOADS extend roughly 0.080-0.100” above the surface of the aluminum drive

plate [28]. The TOADS were also placed in heat shrink-fit to act as a circuit isolator

and glued and epoxied at the driver plate and back plate to fill the voids left by the

drill hole and therefore be able to hold vacuum.

2.4.2 Stress Data Acquisition System

The stress data acquisition system receives the signal from the target upon

impact and outputs a digital signal to an oscilloscope. The components required are

a piezoresistive pulse power supply, a variable resistance box, an oscilloscope, and

seven BNC cables of varying lengths and ports. The general diagram for the data

acquisition system can be seen in Figure 2.16 and in practice in Figure 2.17 . In

general, the breaking of the piezoelectric pin triggers the oscilloscope, which in turn

triggers the piezoresistive pulse power supply. The piezoresistive pulse power supply

is a Dynasen Inc, model CK2-50/0.050-300. The piezoresistive pulse power supply

then receives the signal from the stress targets and relays the information to the

oscilloscope for viewing. The oscilloscope used on the stress data acquisition system

is a Agilent Technologies DSO6054A. The oscilloscope is set to a time resolution of

5 microseconds/div and a voltage resolution of 50mV/div. The configuration of the

electrical wiring allows the oscilloscope to sample at 4GSa/s which will allow
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200,000 samples to be taken over the 50 microsecond experimental interval or an

effective sample frequency of 4000 samples/microsecond. The oscilloscope is set to

acquire a rising trigger from the breaking of the piezoelectric TOAD at 750mV with

a delay of 8 microseconds from the beginning of the display window. The trigger

sent from the oscilloscope to the piezoresistive pulse power supply is a 0-2.5V level

output into a 50 ohm connector with a rising edge delayed 17 nanoseconds from the

oscilloscopes trigger point [29]. The pulse power supply is designed to excite shock

pressure gages and produce usable electrical signals in the presence of pressure

waves [30]. The pulse power supply operates through essentially a Wheatstone

bridge resistor network that is completed by the manganin gage. [30]. The trigger

from the oscilloscope turns on a transistor from a timing circuit that allows a

capacitor to discharge into the resistor network [30]. The capacitor discharges a

quasi-rectangular pulse of 100 microseconds to allow for the experiment to

complete [30]. The pulse power supply will then output the resistor bridge output

voltage which is representative of the change in resistance of the gage. The Dynasen

power supply was set to operate in 50 ohm mode with a 75 ohm output. The 75

ohm output was used so a direct measurement of the unattenuated bridge output

voltage could be recorded while preserving the 20 nanosecond response time of the

bridge network [30]. As a result, a 75 ohm terminator must be placed at the

oscilloscope input to prevent wave reflection from the bridge output [30]. The

capacitor voltage for each gage channel was set to 50V with a settling point of 46V.

In earlier experiments, the gate was inputted into the oscilloscope to depict the

moment in time and space where the pulse power supply triggered, but increased

reliability of the system allowed for the removal of this information in favor of

increased sample rates. The timing and circuitry discussed above between the

piezoelectric pin and the oscilloscope and the oscilloscope and the pulse power

supply is of utmost important to not only acquire the signal in the proper event

window, but to also prevent the gages from burning due to the voltage and current

applied by the pulse power supply. If a power supply was connected to the gage

that ran continually the heat generated would have a detrimental effect on the gage

due to resistive heating, therefore a timed pulse is required to preserve the gage for

the duration of the experiments.
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Figure 2.16: Connection Diagram for Stress Measurement Apparatus
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Figure 2.17: Instrument Cart Containing Stress Measurement Apparatus Hardware

In order to receive the proper response of the gage to the pulse power

supply’s bridge network, the bridge must be balanced and calibrated around the

gage resistance. The bridge was balanced by placing the oscilloscope at high

resolution (10mV/div) and connecting the gage to the pulse power supply. The

balance procedure consists of adjusting the balance control and firing the pulse

power supply observing the output on the oscilloscope. The bridge will balance

around 000 to -001 on the digital display. When the output to the oscilloscope was

a flat pulse of 0V amplitude the bridge is balanced. This process was repeated for

both the left and right channels (ie. both gages). Once the bridge is balanced the

gage is removed from the network and replaced with the variable resistive box. The

variable voltage supply was then adjusted and fired in order to determine the

resistance of the gage. Once the variable resistive box is balanced in accordance

with the bridge, it is adjusted off balance to simulate the gage changing resistance

as a result of loading.

Thirty-six data points were then taken about the actual resistance of the

gage to create a profile of resistance and voltage. The change of resistance of the
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gage was then calculated for each trial using

%R =
R−R0

R0

(2.2)

The change in resistance and corresponding voltage was then plotted, see

Figure 2.18. A second order polynomial was fit to the plot due to the parabolic

nature of the plot and for simplicity in solving for the roots of the fit. The

calibration curve allows for the waveform on the oscilloscope to be related to

pressure based on the change of resistance for a given voltage. The resulting change

in resistance can be related to pressure using the experimental manganin gauge

calibration polynomials developed by Sandia National Laboratory 2.3 and

Rosenberg 2.4 below [31] [32].
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Figure 2.18: Sample Calibration Curve for Pulse Power Supply about 51.3 ohms

P (GPa) = 5.5027(
∆R

R0

)− 0.2063(
∆R

R0

)2 + 0.0061(
∆R

R0

)3 (2.3)

P (GPa) = 0.572 + 29.59(
∆R

R0

) + 95.20(
∆R

R0

)2 − 312.74(
∆R

R0

)3 + 331.77(
∆R

R0

)4 (2.4)

The above equations are applied to each data point of pressure and time, in

order to convert the waveform on the oscilloscope from Voltage-Time space to
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Pressure-Time space.

2.5 Static Compaction Experiments

The Static Compaction Experiments were conducted using a 810 Material

Test System manufactured by the MTS Systems Corporation with a MTS 442

Controller and 413 Master Control Panel. The experiments are used to analyze the

powders response to quasi-static loading. The MTS can operate in both a stroke

and load control mode. The load control mode was chosen due to unfamiliarity with

the load associated with a given displacement. The apparatus depicted in Figure

2.19 was created to perform the static compaction tests, consisting of a mounting

flange, compaction cylinder, compaction piston, platen, and associated fasteners.

The diameter of the platen was 2.997” and the diameter of the piston was 1.440”

yielding a ratio of 2.08:1. The compaction cylinder was filled with approximately 12

grams of powder for each trial. The load was manually varied from 0-20 kips based

on the controller range. The available ranges were 0-2kips, 0-4kips, 0-10kips, and

0-20kips. The stroke measurement system was set to a range of 0-.25 inches. Each

range is comprised of a 0-10Volt output, which can be translated to load or stroke

using the manufactures calibration data of voltage and corresponding percent load

or stroke. Therefore for each trial, the load and stroke voltages were recorded for

ten points along the load range. From the voltages the pressures and densities

observed by the powder were recorded and plotted in pressure-density space.
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Figure 2.19: MTS Set-Up for Static Compaction Experiments

Figure 2.20: Schematic of Static Compaction Apparatus with Flanges for Mounting
to MTS

2.6 Heterogeneous Powder Creation Process

The heterogeneous powder consisting of 42% copper, 19% iron, 18%

graphite, 17% silicon-dioxide, 3% molybdenum-disulfide, and 1% tin was created

using a simple mixing process. The key characteristics of each constituent including

grain size and apparent density can be seen in Table 2.1 The mixtures were created
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to obtain 200g of total sample. A Sargent Welch Scientific Weighted Scale Model

S3223 was used to measure the mass of each constituent of the powder mixture.

Each component was then added to a Thumbler Rock Polisher to be mixed. For

each 46.3 grams of powder two drops of corn oil was added to the mixture or roughly

nine drops per 200g. The density of corn oil is 0.92 g/cm3. The corn oil acted as a

binder to prevent the individual powder grains of a common material to coalesce or

diffuse after mixing and allow for a heterogeneous mixture. After five minutes of

mixing the procedure was complete and the mixture was emptied into a common

container. The resulting mixture had the following properties and distributions:

Table 2.1: Heterogenous Mixture Constituent Properties

Constituent Percent Volume Apparent Density Particle Size Distribution Solid Density
(%) (g/cc) (µ m) (g/cc)

Copper 42.5 2.55 25<x<100 8.924
Iron 18.72 3.12 50<x<150 7.87

Graphite 18.3 0.51 200<x<400 2.16
Silica 17.4 1.30 300<x<500 2.197
MoS2 2.8 1.20 x<100 4.79
Tin 0.3 3.94 x<125 7.31

The density of the mixture was determined using a graduated cylinder and a

weighted scale to utilize the definition of density.

ρ =
Mass

V olume
(2.5)

Both the poured density and tapped density was determined. The poured

density and tapped density were experimentally determined to be 2.423 g/cc and

2.691 g/cc respectively. This is in comparison to the theoretical density of 2.030

g/cc. The theoretical density was determined, using Equation 2.6, by summing the

product of the manufacturer’s apparent density and volume fraction for all of the

constituents in the mixture. In addition, using the solid density of each component,

the solid mixture will have a theoretical density of 6.240 g/cc.

TheoreticalDensity, ρ =
n∑
i

ρi ∗ φi (2.6)

where ρi and φi are the apparent density and volume fraction,respectively of
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constituent i.

Microscopy was also performed on the pre-impact powder using a Lintron

No. 0536 Upright Optical Light Microscope equipped with Scope Image Advanced

to stream live video of the sample and acquire images at 50X-100X magnification.

The sample was poured onto a glass wafer and smoothed to a level plane using an

additional glass wafer. The microscopy allowed a method to capture each

constituent in the sample in order to visualize the morphology/geometry of each

grain. The grain geometry will provide a means of comparison to the post-impact

specimen in addition to supplying geometry for entry into two-dimensional

computer code. The bulk sample was also analyzed while varying the focal length to

focus on different sample depths. Focusing on different depths depicted how the

grains will orientate themselves in the powder and the porosity in a given plane. A

sample image from this process is displayed in Figure 2.21.

Figure 2.21: Heterogeneous Powder Viewed through Upright Microscope at 100X

Note MoS2 and Tin are not visible.

2.7 Optical Microscopy of Post-Impact Powder Specimens

The post-impact and statically pressed and sintered specimen’s grain

structure was imaged using an Olympus PME3 Inverted Light Metallurgical
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Microscope with a Spot Insight Digital Camera to photograph the sample. Spot

Basic software was used to stream live video and capture the image for analysis.

The cross-section of the samples was analyzed from the center of the impact

location due to the expected stronger bonds than at the sample peripheral. The

samples were molded in Lecoset100 Resin Polymer and Resin Monomer. The mold

was then polished beginning with rough sandpaper of 80, 240, and 320 grit. The

mold was then further polished using 400 and 600 grit sandpaper on a rotating table

before polishing on a 1.0 µm table with A2O3 powder to create a defect free surface.

The microscope lenses allowed for magnification of 25X, 50X, 100X, 200X, and

500X. The samples were also swabbed with Ammonia Hydroxide for etching. The

Olympus microscope was then used to view the sample’s grain boundaries and

acquire several images.

The porosity of the specimens was determined using the image manipulation

software GIMP (GNU Image Manipulation Program) and the imaging software

SimplePCI. The pores were defined in the optical images and turned black in GIMP.

All the constituents not considered pores were colored white. The resulting black

and white image was imported into SimplePCI. SimplePCI was used to identify the

black (pores) as a region of interest and calculate the fraction of black to white in

the image or the porosity of the image.

In addition, a JEOL JSM35 Scanning Electric Microscope (SEM) and a

Trancor Northern Energy Dispersive Spectroscopy (EDS) were used to gain

additional knowledge of the compaction of the powder specimen. A Technics

Hummer 1 Sputter Coater was used to coat the specimens with gold-palladium prior

to using the SEM and EDS system. Images were taken using the SEM at varying

magnification from 500X to 1000X. EDS was then performed to identify each

constituent and aspects of the sample that were unexpected or unidentifiable.
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CHAPTER 3

Experimental Validation

3.1 Experimental Validation Overview

Before the results could be fully analyzed the velocity pin system and stress

measurement system had to be functioning appropriately. The velocity pin data was

reduced for each experiment and compared to the work conducted by Downs [26].

The projectile velocities were compared based on the shear disk used in the

experiment. The stress measurement system data was also reduced and analyzed

using an impedance matching technique, the fourth-power law, and wavelength

comparison. The impedance matching technique will yield knowledge when

comparing the peak stress of the front gage, while applying the fourth-power law

will conclude if the pressure waveform is consistent with the materials used.

3.2 Velocity Pin System

The use of two different methods to measure the velocity of a projectile in

the Marquette SSGG will improve the understanding of the gas-gun’s behavior and

the accuracy of the measurements. Downs utilized a laser and optical measurement

system at two known locations in the gun barrel. The passing projectile disrupts the

laser beam to the optical collector and relays a voltage decrease to the oscilloscope.

The two disruptions at each sensor location results in the time difference required to

calculated velocity. The velocity measurement system used in the present research

as discussed in Section 2.3 consisted of four graphite “make pins” in series, a known

distance apart, wired in a parallel circuit. The passing projectile would complete

the circuit inducing a voltage spike on the oscilloscope from which the time

difference could be obtained. The moment in time the voltage spike occurred was

taken to be the first notable rise in voltage. A percentage of the voltage peak was

not taken into consideration due to the limited functionality of the oscilloscope

measurement cursors. Shear disk thicknesses ranging from 0.004” to 0.008” were
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used in characterizing both velocity measurement systems by providing different

pressures to propel the projectile. The tables below depicts the average of all

variables collected in the trial experiments at each shear disk.

Table 3.1: Velocities Achieved in Downs Research (Average)

Note Burst Pressure Uncertainty is up to ± 100 psi

Shim Size Burst Projectile Diameter Velocity
(in) Pressure (psi) Mass (g) (in) (m/s)

0.004 360 14.392 0.994 201.98± 3.34
0.005 450 14.421 0.994 213.30± 3.34
0.006 560 14.375 0.993 233.08± 3.34
0.007 680 14.438 0.994 256.08± 3.34
0.008 710 14.396 0.994 266.27± 3.34

Table 3.2: Velocities Achieved in Present Research (Average)

Note Burst Pressure Uncertainty is up to ± 100 psi

Shim Size Burst Projectile Diameter Velocity
(in) Pressure (psi) Mass (g) (in) (m/s)

0.004 400 21.994 0.997 206.68± 2.15
0.005 500 21.494 0.996 216.39± 2.35
0.006 600 22.078 0.997 241.63± 2.93
0.007 750 21.917 0.996 257.32± 3.10
0.008 800 22.335 0.997 271.14± 3.68

Apparent from the tables above is the method in the current research

resulted in more massive projectiles experiencing higher velocities across the entire

shear disk range. The current velocity measurement system with the adapted

projectile achieved velocities on average that were 1.95% higher with a projectile

mass increase of 52.5%. It is important to note that the averages are not based on

the same number of trials since the goal of the current research was to consider the

stress measurement system and the heterogeneous mixture. However, the 0.007”

shim contained a similar number of trials and therefore may be used to characterize

the system as a whole. The 0.007” shim produced velocities that on average were

0.48% higher than an increased projectile mass of 51.8%. The current method also
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improved on the repeatability of the velocity measurement with a standard

deviation of 4.63 m/s compared to 5.50 m/s in the research of Downs. A possible

reason for the increase in projectile speed is the current research utilized a larger

diameter projectile, coupled with o-rings, a partially bored center and an evacuated

barrel. This allows for an improved seal between the high pressure gas behind the

o-rings and the evacuated air downstream in the barrel, in addition to the adjusted

pressure differential from an atmospheric barrel and a barrel at 29.5 inHg. The poor

sealing mechanism may have also contributed to errors in the time measurement in

the Downs experiments as the air passing the projectile disrupted the laser reading

before the projectile reached the laser location. The previously discussed

phenomena was encountered in this research as poor sealing in early trials prevented

the oscilloscope from triggering due to shifting of the projectile resulting in no

contact with the graphite rods or the high pressure air breaking the graphite before

the projectile arrived. Also, an important note is the uncertainties in the velocity

measurements, though similar, are not the result of the same systematic errors. The

greatest source of error attributed to the work of Downs was in measuring the

distance between the two laser-sensor assemblies, while the greatest source of error

in the current research was the time measurement of the oscilloscope. In the current

research a microscope was used to precisely measure the graphite location to

0.005mm while the oscilloscope could only measure time accurately to 1

microsecond. Down’s, on the other hand, was able to accurately measure time to 0.3

microseconds. The time measurement system could be vastly improved by utilizing

a similar scope as used by Down’s and acquiring the data in an ASCII file. The

resulting uncertainty in the time measurement would be 10.5 nanoseconds or 1.5%

of the current oscilloscope uncertainty.

3.3 Stress Measurement System

The ability to have a stress wave that agrees with current models will allow

the data to be reduced further into development of an experimentally measured

equation of state. The experimental equation of state to be developed will provide

the missing link to solving the Rankine-Hugoniot Equations (Equations 1.1-1.4).

However, to create this equation of state for the heterogeneous mixture, the stress
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measurement system must be producing reliable data. In order to compare the

stress waveforms to current models, the data was reduced according to the

description in Section 2.4.2, resulting in pressure and time data for each experiment.

The cumulative experiment summary can be seen in Table C.1. The goal of the

stress measurement system was to correctly acquire the waveforms for the gages

embedded before and after the heterogeneous mixture. This goal was accomplished

in trials 22-26, and therefore the analysis of these trials will form the crux of the

research. However, a brief analysis of the first two experiments (10 and 12) to

successfully acquire a stress waveform on a single gage target will be discussed. A

few of the variables to be discussed in the following sections and chapters can be

observed in the Figure 3.1 below:

Figure 3.1: Sample Two-Gage Pressure Trace with Key Features of Trace Defined
for Experiment 26 (Projectile Traveling at 263 m/s

3.3.1 Aluminum-Aluminum ”Sandwich” Single Gage Target Experiment

Experiments 10 and 12 consisted of a target composed of a single gage

epoxyed between two pieces of aluminum sheet metal with a mylar sheet

encapsulating the gage leads. The system was triggered by a piezoelectric pin above

the upstream aluminum surface. The resulting waveforms of these two experiments
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can be seen in Figure 3.2 below.

Figure 3.2: Aluminum Projectile Impacting Target consisting of Single Manganin
Gage Embedded between Aluminum Sheet Metal

For projectile velocities of 259 m/s for the thin back plate and 253 m/s for

the thick back plate the impedance matching technique was applied to calculate the

peak pressure between each material of the target. Therefore, the impedance match

will consist of the interaction between the aluminum projectile and aluminum front

plate interface (1), the front plate and mylar sheet interface (2), and the mylar sheet

and aluminum back plate interface (3) as depicted in Figure 3.3. Therefore the gage

should read the Hugoniot pressure at state (3) of the impedance match.

The peak pressures acquired in these experiments utilizing both the Sandia

and Rosenberg methods and the calculated Hugoniot pressure can be seen in Table

3.3. The Hugoniot Pressures were calculated by solving Equation 1.5 for the particle

velocity at the intersection of the Hugoniot curves of interest. For the Aluminum

components a Hugoniot slope of S = 1.3507 and bulk sound speed C0 = 5311.2 and

for the mylar sheet a Hugoniot slope of S = 1.5954 and bulk sound speed

C0 = 2222.7 were used in the calculations [33] [4].
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Figure 3.3: Impedance Match of Aluminum Projectile Impacting Target consisting
of Aluminum and Mylar

Table 3.3: Velocities Achieved in Present Research

Experiment Experimental Theoretical Hugoniot Theoretical Hugoniot
# Pressure Pressure State 1 Pressure State 3

(GPa) Al-Al (GPa) Al-Mylar (GPa)

10 1.727±0.262 1.920 1.264
12 1.682±0.292 1.860 1.220

As seen in Table 3.3, the experimental data is roughly 10% below the

Hugoniot pressure at the aluminum-aluminum interface, and 37% above the

Hugoniot pressure at the mylar-aluminum interface. As mentioned in the

introduction, Linde suggested the inclusion of mylar would reduce the peak stress

by 10% or more when compared to experiments without the mylar shim [11].

Though experiments were not considered with the absence of the mylar shim, this

phenomena is consistent with the current results if the Hugoniot pressure is equal to

the experimental pressure without the mylar shim. However, these results indicate

that the mylar has little effect on achieving the maximum pressure between the

aluminum and aluminum interface. The impedance matching technique does not

include parameters such as the strength of the metal and therefore represents a

hydrodynamic treatment that will theoretically over predict the pressure in an

interaction. In addition, these two experiments prove the “sandwich” target

configuration can acquire pressures within 10% of the calculated values. No
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additional experiments were performed with these specific targets as the goal was to

simply acquire the stress signal and have the peak pressure be consistent with

calculated values.

3.4 Impedance Matching Technique Applied to Two-Gage Target

The impedance matching technique was applied to experiments 22-26 using

the same method as depicted in Figure 3.3. Only the front gage results were

analyzed due to the inability to predict the back gage response without knowledge

of the powder equation of state. The results from the impedance match are

presented in Table 3.4 below:

Table 3.4: Comparison of Experimental Results and Impedance Matching Technique
for Front Gage on the Two-Gage Target

Experiment Experimental Peak Experimental Peak Hugoniot Hugoniot
Pressure Sandia, Pressure Rosenberg, Pressure Pressure

# State 1(GPa) State 1 (GPa) State 1 (GPa) State 3-Mylar(GPa)

22 0.987±0.144 0.962 1.479 0.946
23 1.279±0.140 1.275 1.791 1.164
24 1.388±0.138 1.395 1.909 1.248
25 0.893±0.148 0.865 2.025 1.371
26 1.627±0.134 1.653 1.960 1.285

A similar result was encountered as experienced in the aluminum single-gage

experiments. The experimental pressure was located between the calculated

pressure at the aluminum-aluminum interface and the mylar-aluminum interface

with the exception of experiment 25. The average deviation between the

experimental pressure using the Sandia approximation and the aluminum Hugoniot

pressure was 30.8% and 29% for the mylar Hugoniot pressure. However, the

absolute value of the percent difference yielded values of 59.8% and 21.5%. However,

the difference between the experimental pressure and aluminum Hugoniot pressure

for experiment 26 was 17.8%. This value yields an agreement comparable to those

in the single gage experiments. The encapsulating mylar sheet can contribute the

decrease in peak pressure achieved by the stress measurement system. The decrease

in pressure from the mylar shim is in agreement with the 10% or more proposed by

Linde [11]. The inability to achieve uniform planarity of the target plate due to the
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press fit and the necessity to hold vacuum on the target plate could have induced

further flexure to the target plate causing a dampening effect to the incident wave

as the target plate is forced to the planarity of the projectile.

The results in Table 3.4 indicate the Sandia and Rosenberg calculations

differed by less than 3.3%. Based on the shims used in experiments 10 and 12 , the

pressures recorded will resemble the upper tier of pressures capable for the

Marquette SSGG in the recorded velocity range. For projectile velocities in the

range 199 m/s to 270 m/s the calculated pressure will be in the range 1.48GPa to

2.05 GPa. Plotting the Sandia and Rosenberg curves together yields a maximum

difference of roughly 4.6% over the expected pressure range. The largest percent

difference arises at the discontinuity at 1.5GPa in the Rosenberg approximation.

Therefore, for simplicity the Sandia approximation was used for the remainder of

the calculations, as to avoid the piecewise function and work with a continuous

function. More analysis needs to be conducted at pressures about 1.5GPa as there

exists a discontinuity in the Rosenberg approximation at this pressure, the

fourth-power law predicts limitations in the lower pressure regions, and Rosenberg’s

manganin gage hysteresis experiments for release waves (to be discussed further in

Chapter 4) resulted in no observable hysteresis in pressures less than 1.45 GPa and

small hysteresis appeared at 1.65GPa [31]. The conclusion that each method will

produce comparable results when reduced further can be drawn from the fact that

each approximation, Sandia or Rosenberg, results in an over-prediction for certain

pressures.

3.5 Swegle-Grady Power Law Analysis on Two-Gage Powder Target

The successful acquisition of the two-gage waveforms allows for the structure

of the waveform to be validated using the power law proposed by Swegle and

Grady [24].

σ ∝ ε̇n (3.1)

The waveform structure can be seen in the traces in Appendix B. Recall the

gages are sandwiched between two pieces of aluminum sheet metal and therefore the
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power law will determine the stress-strain rate relationship in the aluminum. Swegle

and Grady concluded that fully consolidated materials, like aluminum bar stock,

exhibit an n=4, fourth-order power law. As can be seen in Equation 3.1, solving the

power law requires determining the peak pressure and strain rate of the waveform.

The peak pressures are the maximum pressure (Hugoniot pressure) attained in the

initial rise of the waveform. The strain rate was calculated using three different

methods. For each method the rise time was calculated by determining that the

waveform had a linear rise time between the 90% and 40% of the peak pressure.

This linear relationship was then extrapolated to the maximum pressure and the

zero pressure state. The rise time was then defined as the difference between the

maximum pressure and the zero pressure, along the linear rise time line. The peak

pressure and strain rate were then plotted in log-log space. A power-law fit was

then applied to the data to obtain the power-law relationship described by Swegle

and Grady.

In the first method, the theoretical density, ρ1 = 1
V1

, after compaction was

calculated using the P-V relationship below.

P =
C2

0(V0 − V1)

[V0 − S(V0 − V1)]2
(3.2)

The strain rate in turn was calculated using the following equation for

change in density.

ε̇ =
1− ρ0

ρ1

∆t
(3.3)

The complete results from determining the values of the 90% and 40% of the

peak pressure and their respective rise times can be seen in Table C.2 and Table C.3.

The key results from applying the first method can be seen in Tables 3.5 and 3.6
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Table 3.5: Experimental Data for Determining Fourth Power Law by Applying the
Theoretical Method to Front Gage

Experiment Experimental Pressure Initial Density Hugoniot Density Strain Rate
# (GPa) (g/cc) (g/cc) (s−1)

22 0.987±0.144 2.700 2.734 2.951E+04± 5.63E+02
23 1.279±0.140 2.700 2.746 3.650E+04±4.82E+02
24 1.388±0.138 2.700 2.747 4.234E+04±5.25E+02
25 0.893±0.148 2.700 2.731 1.878E+04±4.06E+02
26 1.627±0.134 2.700 2.755 6.571E+04±8.66E+02

Table 3.6: Experimental Data for Determining Fourth Power Law by Applying the
Theoretical Method to Back Gage

Experiment Experimental Pressure Initial Density Hugoniot Density Strain Rate
# (GPa) (m/s) (m/s) (s−1)

22 0.925±0.129 2.700 2.732 1.373E+04±2.69E+02
23 1.218±0.142 2.700 2.744 2.299E+04±3.06E+02
24 1.332±0.136 2.700 2.745 3.864E+04±5.02E+02
25 1.276±0.167 2.700 2.743 2.604E+04±3.36E+02
26 1.130±0.146 2.700 2.740 2.525E+04±4.15E+02

The second method assumed the experimentally observed pressure was most

accurate. By utilizing the impedance matching technique the particle velocity was

determined based on the experimentally determined pressure at each interface. The

impedance matching technique can be seen in Figure 3.4 below, where state (2)

represents the experimentally determined pressure for the front gage, and state (3)

represents the pressure of the back gage.

The strain rate was then calculated using the following relationship between

particle velocity, shock velocity, and rise time.

ε̇ =

Up

Us

∆t
=

Up

1.3507∗Up+5311.2

∆t
(3.4)
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Figure 3.4: Impedance Match of Aluminum Projectile Impacting Target with Gage
Pressure States Indicated

The shock velocity and particle velocity relationship for the aluminum sheet

was determined based on data from the LASL Shock Hugoniot Data that

represented particle velocities near those experienced in this research. The results

for this pressure method can be seen in the two tables below.

Table 3.7: Experimental Data for Determining Fourth Power Law by Applying the
Pressure Method to Front Gage

Experiment Experimental Pressure Particle Velocity Shock Velocity Strain Rate
# (GPa) (m/s) (m/s) (s−1)

22 0.987±0.144 68 5402 2.984E+04± 3.31E+03
23 1.279±0.140 87 5429 3.537E+04±3.33E+03
24 1.388±0.138 94 5439 4.287E+04±3.68E+03
25 0.893±0.148 61 5394 1.878E+04±2.71E+03
26 1.627±0.134 40 5460 6.652E+04±4.70E+03
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Table 3.8: Experimental Data for Determining Fourth Power Law by Applying the
Pressure Method to Back Gage

Experiment Experimental Pressure Particle Velocity Shock Velocity Strain Rate
# (GPa) (m/s) (m/s) (s−1)

22 0.925±0.129 63 5397 1.860E+04±1.71E+03
23 1.218±0.142 88 5430 3.096E+04±2.24E+03
24 1.332±0.136 90 5433 5.203E+04±3.54E+03
25 1.276±0.167 87 5394 3.531E+04±3.13E+03
26 1.130±0.146 79 5418 3.404E+04±2.84E+03

The third method assumed the projectile velocity was the most accurate

method to acquire the particle velocity in the aluminum, rather than the

experimentally observed pressure. By using the impedance matching technique

discussed above, state (1) in Figure 3.4 represents the theoretical pressure state that

the given projectile speed should reach. The particle velocity was then acquired

from the x-axis and the strain rate was calculated using Equation 3.4 above. This

method was not applied to the back gage, since the impedance matching technique

cannot be utilized to determine the pressure and particle velocity at the back gage

without knowledge of an equation of state for the powder.

Table 3.9: Experimental Data for Determining Fourth Power Law by Applying the
Projectile Method to the Front Gage

Experiment Experimental Pressure Particle Velocity Shock Velocity Strain Rate
# (GPa) (m/s) (m/s) (s−1)

22 0.987±0.144 100 5446 4.377E+04±9.36E+02
23 1.279±0.140 120 5474 4.841E+04±7.66E+02
24 1.388±0.138 128 5484 5.764E+04±1.04E+03
25 0.893±0.148 135 5494 4.078E+04±1.00E+03
26 1.627±0.134 131 5489 7.890E+04±2.15E+03

The results were calculated from each gage and method and plotted on a

log-log plot. The pressures that were less than 1 GPa were not included as to

prevent negative values incurring from taking the logarithm. A power law fit was

then performed to each data group. The results can be seen graphically in the

following three Figures:3.5, 3.6, 3.7
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The results for the front gage deviated minimally from the predicted power

law fit, in comparison to the back gage. This result was expected due to the wave

that encounters the back gage must interact with numerous materials, pass through

a porous media, and be subject to numerous wave interactions. The previous

description also describes the expected result of the front gage power-law being

greater than the back gage power-law. The results for each trace was less than the

fourth-power law fit expected and coincide more closely with the second-power law,

n=2, of steady structured waves in laminated composites [24]. This result suggests

that the mylar encapsulating sheet acts as a dampening or attenuating medium that

lengthens the rise time. Grady-Swegle describe a polycarbonate and aluminum

composite that experiences the second-power law, which describes the behavior

observed in the present research. In addition, Grady also mentions that the rise

time will increase as the thickness of the laminating layer (mylar) increases [34].

This increase in rise time will reduce the strain-rate and in turn lower the exponent

of the power law. Therefore, if the flyer plate experiments were repeated with a

laminating layer thicker than the 0.004” mylar shim used in the present research,
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the exponent n, should approach n=2 from n=2.684 as the laminating layer

thickness increases. The projectile velocity method for the front gage produced a

power-law value less than the pressure method. This was expected since the shock

velocity in the projectile measure exceeds that of the pressure measurement. The

expectation also was that the Hugoniot method would produce an upper bound for

the power-law based on the results of the impedance match of the two aluminum

target experiments. This expectation failed due to the use of the experimentally

observed pressure rather than the calculated pressure. The experimentally observed

pressure provides more insight into the actual working of the system. One can

conclude from the power-law analysis that the target system effectively represents

the steady wave structure in accordance to the Grady-Swegle research and that the

mylar sheet cannot be neglected due to its effect on the rise time and maximum

state of the stress wave.

3.6 Wavelength Analysis

Lastly, the wavelength of the pressure wave must be analyzed to determine if

the wave conforms to the thickness of the materials used. By knowing the expected

wave speed in aluminum, the transit time in the aluminum cover plate can be

determined and compared to the experimental results obtained here. In so doing,

the experimental results can be validated against the accepted wave speed of

aluminum. The target configuration used in the two gage experiments had an

aluminum front-plate thickness of 0.032 inches, which should be equal to the

wavelength of the pressure wave through the material. The wave period can be seen

in Figure 3.1. The wavelength can be calculated by assuming the wave travels at a

constant velocity, i.e. the shock velocity. Therefore, utilizing the equation below

representing the period of the wavelength and the shock velocity through the front

plate, the wavelength can be calculated using:

λ = Usτ = (1.3507 ∗ Up + 5311.2)τ (3.5)

where λ is the wavelength, Us is the shock speed, Up is the particle velocity,

and τ is the period of waveform. The parameters for Hugoniot slope, S, and bulk
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sound speed , C0, were taken from the LASL Shock Hugoniot Data [4].

The shock velocity was calculated using the particle velocity at the flyer plate

and front plate interface. The period of the shock wave was determined by analyzing

the plot to determine a region where the maximum pressure occurs based on the

first and last occurrences of the peak pressure. The results indicate that the average

deviation from the expected wavelength is within 1.6% with a maximum deviation

of 4.2%. The maximum deviation becomes 1.7% and average deviation of 0.96%

when the uncertainty of the front plate thickness and experimental wavelength is

taken into account. This is representative of two of the five experimental trials (24

and 26), since the uncertainty covers the deviation in the other experiments. This

percent difference is acceptable when considering the digitization of the oscilloscope

trace due to the sampling rate. Also, the accepted shock wave velocity is based on

experimental data taken at different flyer-plate velocities then those experienced in

the present research. This difference could also skew the data slightly. The results

of the wavelength analysis are summarized in Table 3.10 below.

Table 3.10: Experimental Data for Determining Fourth Power Law by Applying the
Projectile Method to the Front Gage

Experiment Front Plate Thickness Period τ Shock Velocity Experimental Wavelength
# (mm) (µ sec) (m/s) (mm)

22 0.8128±0.0127 0.150 5446 0.8169±0.008
23 0.8128±0.0127 0.149 5474 0.8128±0.008
24 0.8128±0.0127 0.142 5484 0.7785±0.008
25 0.8128±0.0127 0.147 5494 0.8090±0.008
26 0.8128±0.0127 0.144 5489 0.7904±0.008
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CHAPTER 4

Data Analysis

4.1 Development of Linear Equation of State Us − Up

The waveform traces from Figures D.1 to D.5 allow the equation of state for

the heterogeneous powder to be determined. The equation of state will provide the

means, as discussed previously, to relate the mass, momentum, and energy

equations and determine relationships in other variable space such as P − V . The

Us − Up relationship will be represented by a linear fit to compare to tabulated

values available in literature. A linear relationship will describe most materials not

experiencing a phase transition [6]. In order to determine the Us − Up relationship

several methods will be employed to find the shock velocity, particle velocity, and

release pressure. The Table C.4 depicts the target measurements and the key

parameters acquired from the gage traces.

The release pressure is a result of the constant pressure wave through the

aluminum front plates interacting with the lower impedance powder [5]. This

interaction will result in lowering the incident pressure wave to some release

pressure. The work of Rosenberg describes a hysteresis effect in the gage response

during the transition from the shock state to a release state. The hysteresis of the

gage is induced by strain-hardening resulting in an inability of the gage to behave

elastically after being subject to a shock stress. Therefore, the measured change in

resistance of the release state will represent an overestimate due to the hysteresis.

Rosenberg states the hysteresis in the gage response upon full loading to be about

10% of the peak pressure state. Thus, the release pressure can be corrected using

the formula below relating the peak pressure, experimental pressure, and release

pressure:

Pr =
∑

(PE)− 0.1Ps (4.1)

As stated previously, Rosenberg makes reference to no observable hysteresis
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in peak pressure ranges from 0-1.45GPa, with minimal hysteresis at 1.65 GPa. The

discussion in the previous chapter mentioned the discrepancy between the calculated

peak pressure and the experimental peak pressure. The calculated peak pressure is

greater than 1.45 GPa for all trials, while the experimental pressure is less than 1.65

GPa for all trials. Therefore, two series of peak pressures will be considered: one

that takes into consideration the calculated value, where hysteresis would be valid,

and the other where hysteresis would be invalid in the experimental data.

The particle velocity is calculated based on the impedance matching

technique. The release pressure was defined as the pressure at the aluminum front

plate and the powder interfaces. The experimental release pressure as defined in

Figure 3.1 and as PE in Equation 4.1 was determined by summing the steady state

pressure region after the peak pressure. The initial estimates for the particle

velocity were the bulk sound speed of the powder would be 400 m/s. This velocity

was used to predict a place in time where the release pressure would occur by

adding the time required to translate the aluminum back piston to the powder and

the time required for the pressure wave at the impedance mismatch surface to

reflect back to the gage. The time after the peak pressure where the release pressure

began was determined to be 1.61 microseconds. The impedance match described

can be seen in Figure 4.1 below.

Figure 4.1: Impedance Match Depicting Powder and Aluminum Flyer Plate and
Front Plate
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State 2 represents the release pressure at the initial aluminum-powder

interface induced by the flyer-plate experiment. The particle velocity is then

determined by reading off the particle velocity on the x-axis for the given release

pressure of state (2).

The shock velocity was calculated utilizing the definition of velocity coupled

with the transit time between the two gage waveforms and the material of the

target constituents used. The definition of velocity required taking the powder

thickness divided by the transit time. The transit time was taken as the time

difference between the front gage reaching 50% of the peak value and the back gage

reaching 20% of the back gage peak value. This relationship can be seen with the

formula below:

Us =
tp
∆t

(4.2)

Many references utilized a 50% peak value indicator for the wave arrival time

for both gages. However in some situations, the shallow, slow rise-time from the

powder densification makes it difficult to justify the 50% peak value as an indicator

of the time of arrival of the wave. Thus, a first detectable rise in the gage is used as

an indicator for the time of arrival. As a compromise, the 20% rise time appeared to

be the best back gage indicator based on the data plots. This 20% location was

above the noise from the compacting material and therefore on the shallow rising

pressure wave plateau. The transit time was then adjusted for the gage being

embedded in between materials outside the powder location. The resulting equation

for the shock speed is presented in equation 4.3

Us =
tp

∆tgage −∆taluminum −∆tmylar −∆tcopper
(4.3)

The first method investigated was based on the Hugoniot pressure,

Impedance match, while neglecting the effect of the mylar insulator. Therefore, the

particle velocity was determined by applying the method depicted in Figure 4.1. The

shock velocity on the other hand was determined by dividing the powder thickness

by the transit time. The transit time based on the assumptions requires deducting

the time required for the pressure wave at the incident aluminum-aluminum
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interface to be transmitted to the powder, and the transit time of the transmitted

pressure wave to pass through the copper shim before reaching the back gage. The

transmitted pressure wave through the copper shim was determined using an

impedance matching technique at the peak pressure of the back gage. The equation

of state for the copper shim was determined based on the low particle velocity

experiments tabulated in the LASL Shock Hugoniot Data [4]. The equation then

utilized to determine the shock speed of this method is depicted below.

Us =
tp

∆tgage −∆taluminum −∆tcopper
(4.4)

Us =
tp

∆tgage − t1
1.3507∗U1+5311.2

− t3
1.5042∗U3+3950.6

(4.5)

The particle velocities are those depicted in Figure 4.2 with State 1

representing the Al-Al interface and State 3 representing the powder-copper

interface. The resulting values for Us and Up are presented in Table 4.1 below and

the a graphical representation in Figure 4.3 with the linear equation of state

superimposed.

Table 4.1: Shock and Particle Velocities Acquired Using Hugoniot Pressure Data
and Neglecting Presence of Mylar

Raw Data Gage Hysteresis
Experiment Particle Velocity Shock Velocity Particle Velocity Shock Velocity

# (m/s) (m/s) (m/s) (m/s)

22 186±25 522±16 193±25 522±16
23 208±22 641±18 217±22 641±18
24 226±23 738±21 236±23 738±21
25 237±22 561±16 243±22 561±16
26 239±23 537±15 251±23 537±15
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Figure 4.2: Impedance Match Depicting Powder and Aluminum Flyer Plate and
Front Plate for Calculated and Experimental Pressures
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Figure 4.3: Us − Up Plot for Data Based on Hugoniot Pressure and Neglecting
Presence of Mylar

The second method assumed the experimental pressure was correct and the

effect of the mylar sheet was negligible. This new interaction can be seen in the

impedance match Figure 4.2 below . The particle velocity is then calculated based

on the release pressure depicted by state (2A). The shock speed is calculated using

Equation 4.5 with an adjustment made for the particle velocity through the

aluminum sheet.

The results from the second method are displayed in the Table 4.2 and

Figure 4.4 below:
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Table 4.2: Shock and Particle Velocities Acquired Using Experimental Pressure
Data and Neglecting Presence of Mylar

Raw Data Gage Hysteresis
Experiment Particle Velocity Shock Velocity Particle Velocity Shock Velocity

# (m/s) (m/s) (m/s) (m/s)

22 121 522 128 522
23 142 641 150 641
24 159 739 168 739
25 88 561 94 561
26 197 537 208 537
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Figure 4.4: Us − Up Plot for Data Based on Experimental Pressure and Neglecting
Presence of Mylar

The third method will take into account the effects of the mylar sheet, with

the particle velocity determined from the Hugoniot due to the projectile velocity.

Therefore, the impedance match technique will be described by Figures 4.5 and 4.6

below. The particle velocity is then described as the interaction at state (4).
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Figure 4.5: Impedance Matching Technique for Front Gage with Inclusion of Mylar

Figure 4.6: Impedance Matching Technique for Back Gage with Inclusion of Mylar
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The inclusion of the mylar will also now effect the transit time through the

back gage. The new equation for the shock speed through the powder will be

represented by the equation below based on Equation 4.3:

Us =
tp

∆tgage − t1
1.3507∗U1+5311.2

− t3
1.5042∗U3+3950.6

− t4
1.5954∗U4+2222.7

(4.6)

The equation of state for the mylar sheet was determined based on the

tabulated data from flyer plate experiments conducted by Boeing [33]. The particle

velocity of the materials through the copper shim and mylar sheet were determined

by reflecting the Hugoniot curves from the aluminum mylar interface to the copper

powder interface. This interaction can be seen in Figure 4.5 above with the

aluminum-mylar interface represented by (1) and the copper-powder interface

represented by (3). The application of this method yielded the tabulated and

graphical results displayed below:

Table 4.3: Shock and Particle Velocities Acquired Using Hugoniot Pressure Data
and Including Presence of Mylar

Raw Data Gage Hysteresis
Experiment Particle Velocity Shock Velocity Particle Velocity Shock Velocity

# (m/s) (m/s) (m/s) (m/s)

22 105 529 112 529
23 114 650 123 650
24 127 750 137 750
25 133 567 139 568
26 138 543 150 543
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Figure 4.7: Us − Up Plot for Data Based on Hugoniot Pressure and Inclusion of
Mylar

The final method considered utilized a similar technique, but based on the

particle velocity of the experimental peak pressure rather than the calculated

Hugoniot pressure. This method will result in the same particle velocity of the

powder calculated in Method 2 (see Figure 4.2 State (1)). However, the shock

velocity in Equation 4.5 needs to be adjusted to account for this new particle

velocity through the aluminum sheet do to the experimental pressure. The particle

velocities determined for copper and Mylar from the Impedance Match in Method 3

are still accurate for this method. The results of this method are depicted in Table

4.4 and Figure 4.8 below:
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Table 4.4: Shock and Particle Velocities Acquired Using Experimental Pressure
Data and Including Presence of Mylar

Raw Data Gage Hysteresis
Experiment Particle Velocity Shock Velocity Particle Velocity Shock Velocity

# (m/s) (m/s) (m/s) (m/s)

22 121 529 128 529
23 142 650 150 650
24 159 750 168 750
25 88 568 94 568
26 197 543 208 543
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Figure 4.8: Us−Up Plot for Data Based on Experimental Pressure and Inclusion of
Mylar

From the plots and table above it is clear that regardless whether the

hysteresis release pressure was considered or not, the Us − Up equations of state

based on the calculations and experiential pressure were very similar. Comparing

the equations of state based on the experimental pressure for the mylar and no
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mylar considerations for both release pressure regimes yielded a percent difference in

Hugoniot slope of 2.1% and bulk sound speed of 0.4%. These results were expected

as the particle velocities for the two methods were identical and the inclusion of

mylar scaled the shock velocities slightly greater. The Hugoniot calculations of

mylar yielded a difference of 65% for the Hugoniot slope and 5.1% for the bulk

sound speed over the pressure regimes, and the calculations neglecting mylar yielded

a Hugoniot slope and bulk sound speed percent difference or 9.6% and 3.9%

respectively. In addition, from Table 4.5, the uncertainty boundaries in each

Hugoniot slope calculation, include the slopes of the remaining calculation methods.

Therefore, the calculation methods of the Hugoniot slopes do not have a significant

statistical impact inside of the uncertainty of the slopes. The uncertainties in the

bulk sound speed, C0, however, are significant. The uncertainties in C0 for the

Experimental Methods (1 and 3) were much smaller than the uncertainties for C0 in

the Hugoniot Pressure Calculation Methods. Thus, Methods 1 and 3 can be

considered more statistically accurate, which is encouraging since the results are

based entirely on experimental data. The inclusion of points on the Us − Up plot at

higher particle velocities could improve the uncertainties in S and C0 since the

current research contained a wide range of shock velocities over a narrow range of

particle velocities. The conclusion can be drawn, neglecting the mylar calculations,

that there is little effect due to hysteresis on the equation of state. Also, the

inclusion of mylar in determining the particle velocity from the Hugoniot

calculations has proved troublesome as in the previous sections in correlation with

the experimental results. The inclusion of Mylar in the equation of state

determination will be considered in the computer simulations as providing an upper

bound based on the resulting highest bulk sound speed.
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Table 4.5: Hugoniot Slope and Bulk Sound Speed for Each Us, Up Calculation
Method

Method Hugoniot Slope (S) Bulk Sound Speed, C0 (km/s)

1 Hysteresis 0.5757± 2.2902 0.473± 0.504
No Hysteresis 0.6313± 2.1930 0.456± 0.501

2 Hysteresis 0.3851± 1.2545 0.546± 0.183
No Hysteresis 0.3773± 1.1940 0.543± 0.185

3 Hysteresis 0.3098± 3.8937 0.570± 0.484
No Hysteresis 0.5117± 3.6149 0.540± 0.480

4 Hysteresis 0.3949± 1.2869 0.552± 0.188
No Hysteresis 0.3869± 1.2248 0.550± 0.189

The determined equations of state were also compared to the tabulated

values for the constituents available in open literature. Table 4.6 below lists the

Hugoniot slopes and bulk sound speeds for the various constituents in the

heterogeneous mixture with similar densities to those used in the present mixture.

Figure 4.9 depicts the tabulated data and equations of state for all the constituents

on a single plot.

Table 4.6: Hugoniot Slope and Bulk Sound Speed for Heterogeneous Mixture and
Tabulated Data for Constituents

Material Hugoniot Slope (S) Bulk Sound Speed, C0 (km/s)

Heterogeneous Mixture 0.5757 0.47519
2.7564 g/cc

Unpressed Copper Powder 1.4083 0.33077
3.007 g/cc

Pressed Copper Powder 2.1142 0.37905
6.49 g/cc

Pressed Graphite 1.9838 0.93459
1.626 g/cc

Silica Powder 0.40439 1.071
0.77 g/cc

Sintered Iron Powder 1.4814 0.36753
3.368 g/cc
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For simplicity, the Hugoniot calculation with no mylar will be used as the

baseline for equation of state for the present research. Copper, which has the

highest density of any constituent and represents the largest fraction of powder in

the heterogeneous mixture, will therefore dominate the developed equation of state.

The copper used in the flyer plate experiments and the mixture as a whole had a

density less than the copper data in Figure 4.9. The less dense mixture would

increase the amount of energy required in compaction to full density resulting in

shock speeds less than those at higher densities. This intuition is represented in the

comparison as the less dense heterogeneous mixture data is well below that of the

denser copper and iron components. Based on the slopes of the equations of state

the inclusion of silica could have contributed to the heterogeneous mixture having a

Hugoniot slope less than those of iron, copper, and graphite.
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Figure 4.9: Experimental Data and Hugoniot Slope for Heterogeneous Mixture and
Data of Various Constituents Available in Research of Boade, Borg, and LASL [3] [4]
[5]
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As stated earlier, this figure also contributes to uncertainties in the present

research. The inability of the gas gun used in the flyer plate experiments to produce

a vast range of projectile velocities only provides data with particle velocities in a

small region of the tabulated Us − Up space. Data available at a higher projectile

velocity would provide a more accurate method in both determining the equation of

state and in comparing the results to data readily available in literature on the

compaction of porous copper, graphite, silica, and iron [3] [4] [5]. This would yield

more insight into the behavior of the powder over greater pressure ranges.

4.2 One-Dimensional Bulk Simulations

The implementation of computer simulations provides an additional means

to analyze the effectiveness or accuracy of the experimental apparatus and gain

additional insight into the phenomena experienced. Ideally the computer simulation

should closely follow the experimental pressure- time waveform; matching the key

features of the waveform such as peak pressure, release pressure, and transit time.

The KO computer program utilized to run the simulations employs partial

differential equations and the corresponding finite difference equations [35]. In

addition, the program is implemented in time-dependent and one-dimension space.

The program requires several fundamental equations to describe the shock wave

interactions including [35]:

1. Equation of Motion

2. Conservation of Mass

3. First Law of Thermodynamics

4. Velocity Strains

5. Stress Deviators

6. Pressure Equation of State

7. Total Stresses

8. Artificial Viscosity



81

9. Von Mises Yield Condition

In order to properly solve the fundamental equations numerous properties of

the experiment must be identified in the computer programs input file. The

properties of the Flyer Plate and Target included in the input file are listed below:

1. Material Thicknesses

2. Material Density

3. Projectile Velocity

4. Hugoniot Linear Equation of State (S and C0)

5. λ Grüneisen Parameter

6. Dynamic Yield Strength

7. Shear Strength

8. CV Constant Volume Specific Heat

The values for the constituents other than the heterogeneous powder were

taken from tabulated literature data. However, values for the heterogeneous powder

such as Dynamic Yield Strength and Shear Strength could not be readily

determined. Therefore, a mixture theory was applied to the heterogenous powder

taking into account the values obtained in literature for the individual constituents

(i.e. copper, iron, graphite, etc.). The mixture theory was presented in Transport

Phenomena for estimating thermal conductivities of a mixture but will be applied in

various forms to develop strength values for the heterogeneous powder [36]. The

equations for the mixture theory are displayed below:

keff
k0

=

∑N
i=0 αi(

ki
k0

)φi∑N
i=0 αiφi

(4.7)

αi =
1

3

N∑
i=0

[1 + (
ki
k0

− 1)gj]
−1 (4.8)

where gj = 1
3

when the granular materials are assumed to be spheres, φ is the

volume fraction and k is the parameter of interest.
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Once the input file has been formatted correctly the KO computer program

was ran with Digital Visual Fortran 6.0. The computer program produces a data file

complete with numerous variables including pressure, particle, velocity, and density

with respect to time. The data file was uploaded into Matlab. A program was

developed in Matlab to develop figures in varying variable space. For the purpose of

the current research the Matlab program was manipulated to output a plot of

pressure vs. time to compare with the experimental waveforms. The location tracer

was set at the location of the gages embedded in the target. The simulation will

allow the gage location to move with the target due to the induced impact velocity

of the projectile. Therefore, the gage response does not require a time correction, as

would be the case if the gage was fixed to one eulerian position. The resulting

waveforms for Experiment 26 can be seen in Figures 4.10 and 4.11 with the

remaining simulations for Experiments 22-25 included in the Appendix D.
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Figure 4.10: Front Gage Simulation and Experiment Pressure Trace for Experiment
25 over 14 Microseconds Shot Velocity 271 m/s and Powder Density 2.747 g/cc.
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Figure 4.11: Back Gage Simulation and Experiment Pressure Trace for Experiment
26 over 14 Microseconds Shot Velocity 263 m/s and Powder Density 2.724 g/cc.

In the previous section, eight potential linear equations of state were

developed from experimental data and various target assumptions. The computer

simulations were run for the upper and lower bounds of the bulk sound speed (C0)

for the equation of states. This method will entail that the remaining equations of

state would result in simulation that are located between the two bounded

simulations. The two equations of state that form the upper and lower bound are

listed below, where Equation 4.9 was developed using Method 1 with hysteresis

considered and Equation 4.10 was derived from Method 3 with no hysteresis

considered:

Us = 0.631UP + 0.456 (4.9)

Us = 0.310UP + 0.570 (4.10)

In addition, the simulations were run considering varying strengths of the

materials used in the flyer plate experiments. The simulations were also performed

with and without the inclusion of the Mylar encapsulating sheet. Experiment 26

was used as the baseline for the computer simulations. Therefore, once the
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simulations were deemed appropriate for Experiment 26, the same parameters were

applied to Experiments 22-25. The goal of the simulation analysis was to provide

the parameters required to produce the simulation that most closely resembled that

of the experimental data.

The simulations proved to qualitatively map the waveform of the

experimental pressure-time traces. The input file that achieved the simulations

depicted in Figures 4.10 and 4.11 and Appendix D can be seen in Table C.5 in

Appendix C. The inclusion of the Mylar encapsulating shim, Higher Strength

Aluminum Front Plates, and the equation of state in Equation 4.9 best represented

the experimental data. The plot in Figures 4.10 and 4.11 depict the differences

between the High and Low Strength Aluminum. The low strength aluminum more

closely maps the release pressure while the high strength aluminum more closely

maps the peak pressure. In addition, at 4 microseconds the low strength aluminum

goes into tension, which is not observed in the experimental data or high strength

aluminum simulation. The powder cannot support a tensile wave The high strength

aluminum was chosen to represent the data as a whole due to the ability to capture

the peak pressure and the overshoot in the release pressure. Based on the equation

of state in Figure 4.3 the data point for Experiment 26 is below the linear fit.

Therefore, the equation of state will over predict waveform behavior for the

particular experimental conditions. All the simulations except Experiment 24 under

predict the transit time between the two gages. This underestimation of transit

time is consistent with the KO simulations on silica powder [25]. The

overestimation observed in Experiment 24 was expected due to the location of the

data point in Figure 4.3. The experimental shock velocity for Experiment 24 was

over 150 m/s greater than the equation of state for the given particle velocity. Also,

all the simulations underestimated the peak pressure of the back gage by roughly

33%. This underestimation is expected based on similarities between the KO

simulation and the impedance matching technique, including the hydrostatic

pressure. The impedance matching technique describing the entire experiment

interaction severely under-predicts the back gage pressure by 87 %. The KO

simulation and impedance matching technique do not take into account the granular

material interactions or the shock waves that propagate in radial directions. Based
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on the voids present in the granular mixture, the shock wave will form an irregular

or (non-steady) front. The locations in the granular mixture where several particles

are in contact will transmit the shock wave at higher shock velocities and pressures

than the locations that contain a significant number of voids (Energy is absorbed in

void collapse). In addition, there exists impedance mismatches as the shock wave

transmits through the various constituents in the mixture. Therefore, for multiple

experiments at a similar sample porosity, the pressure observed by the gage will

differ based on the particular path the shock wave travels (though material or

through void). On the contrary, the KO simulation is mainly hydrodynamic

(considers material strength) but does not consider the porous behavior of the

material and therefore would produce an over estimate of the actual pressure

through the material. A more robust simulation (Two- Dimensional) would be

required to resolve the back gage pressure. The KO simulation also does not predict

the initial rise time of the front gage waveform. The simulation rise time occurs

roughly 0.25 microseconds prior to the experimental data. The method used to

create the experimental targets is most likely cause for the discrepancy. Due to the

inability to press the front plate flush resulted in 0.015 inch deviation on the front

plate surface. This deviation could result in 0.1 microsecond differential in rise time

but may also act as a damper for the incoming shock wave as the front plate is

pressed to zero deflection. This dampening effect will further increase the time

required for the incident shock wave to reach the front gage.

The simulations were also able to correctly predict the shape of the

experimental waveform. At approximately 6.5 microseconds all the simulations

displayed a second compression state which is apparent on the experimental traces.

However, the second compression state in the simulation data is roughly 2GPa

below the experimental data. In addition the simulation of the back gage correctly

predicts the peaks and valleys apparent in the experimental data. These peaks and

valleys are seen at the 6, 7, and 8 microsecond locations on the experimental data.

The simulation data however displays a delay in the location of these peaks and

valleys by roughly 1 microsecond. The front gage simulations resulted in a release

pressure that occurred roughly 0.6 microseconds before the experimental release

pressure. This could be a result of the uncertainties discussed in the front plate
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creation in the previous paragraph in addition to the gage in the experimental data.

The simulation did not include the presence of the gage. The effect the presence of

the gage has in determining the results will be discussed later in this paper.

4.3 Static Compaction Results

The static compaction of the heterogeneous powder was able to subject the

material to pressures up to 0.038 GPa and final density of 4.6 g/cc. The elastic

loading of the powder followed a similar path to that described by Herrmann [15]

The static compaction plot in pressure-density space for the powder exposed to

several load control ranges can be seen in Figure 4.12 below. The estimated average

rate of compaction was 0.008 in/min at 4 Kip load control and 0.015 in/min at 20

Kip load control. The difference in compaction rates is due to the duration of the

applied load remaining constant.
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Figure 4.12: Static Compaction of Heterogeneous Powder over Varying Load Con-
trol Ranges

The deviation in the loading paths is likely a result of different constituent

volume percentages. All off the samples statically compacted formed a “puck”

shaped compact when removed from the container. However, it was noticed under

the static loading that the graphite particles had diffused toward the outside of the

container. When the “puck” was removed from the container the graphite area did
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not remain in contact with the predominately copper interior and broke apart.

4.4 P-α Model Development and Discussion

The P-α model was applied to the experimental data in the present research

and tabulated research to develop a relationship for the heterogeneous powder in

pressure-density space under dynamic loading. The pressure in the elastic regime

was assumed to be zero. This implies that under any stress the heterogeneous

powder will plastically deform. The Third-order formulation for the P-α model was

applied to the data. This eliminated the need to acquire the slope of the curve at the

point where the elastic and plastic regions meet. The P-α model will thus adhere to

the relationship in Equation 4.11 below with the coefficients defined in Table 4.7.

α = α0 + α1P + α2P
2 (4.11)

Table 4.7: Coefficients for Third Order P-α Model

Coefficient Variable Coefficient Formula

α0 αp

α1
−2(αp−1)

Ps

α2
(αp−1)

P 2
s

α3 0

The pressure Ps, when the powder becomes compacted to solid density, was

determined utilizing the mixture theory based on data available in literature. The

research of Linde analyzed the compaction of porous iron and graphite while the

research of Boade included the compaction of porous copper [11] [12] [9]. The

research of Borg presented the compaction of the porous silica [5]. There was no

tabulated data in literature pertaining to the compaction of porous Tin and MoS2

which was relatively unimportant due to their 3.1% by volume contribution to the

mixture. Ps was determined from the literature mentioned above by acquiring the

data point in P − ρ space that was closest to the solid Hugoniot. It is important to
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note that none of the research discussed above occurred at the same apparent

density as each of the constituents in the present research. Therefore, the P − α

model was determined twice for the unadjusted data from literature and also for the

Ps adjusted based on the porosity difference between the literature and the present

research. The value of αp is the ratio of the density as a solid compact to that of the

uncompacted powder. The results of the P − α Model can bee seen in Figure 4.13

The equation of state developed in Section 3.1 was also plotted in

pressure-density space and compared to the theoretically determined solid curve.

The lower bound equation of state obtained from using the Hugoniot Pressure with

no mylar or hysteresis was used to represent the powder mixture. The solid curve

was developed using the mixture theory discussed in the previous chapter. The

resulting curves can be seen in Figure 4.13.

The P − α model was also developed for porous copper based on the density

of the heterogeneous mixture. Ps was taken to be the dynamic yield strength (σyd)

from the flat-end projectile tests conducted by Whiffen [37]. The dynamic yield

stress of copper was determined to be 0.2 GPa. This model will provide a lower

bound of the heterogeneous mixture based on the constituent with the greatest

volume fraction.

The results depicted in the plot were determined based on the experimental

pressure and the final state density was derived from the strain. The strain is a

function of the experimentally determined shock speed and particle velocity, which

can easily be related to density. The strain equation was developed based on the

Conservation of Mass Equation.

ε =
Up
Us

= 1− ρ0

ρ
(4.12)

The plots in Figure 4.13 indicate that the experimental data straddle the

porous Hugoniot and the P − α Model adjusted for porosity. As expected with all

the experiments subjecting the powder to pressures over 0.2 GPa, the copper had

yielded and was above the P − α for copper only. Also, the P − α Model based on

the unadjusted Ps was an over prediction due to the higher density constituents

used. The experimental data also seems to be at the same relative pressure of those
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indicated by the work of Linde for porous iron. The work of Whiffen indicated that

the dynamic yield strength of iron was roughly 0.675 GPa. Therefore, one can

assume that the iron powder in the experiments of the present research did not

yield. Higher pressure experiments will be required to see if the experimental data

continues to follow the porous Hugoniot and P − α Model adjusted for porosity.

Also, further experiments will indicate if the experimental data behaves such that

the iron particles begin yielding at pressures above 0.675 GPa. This would be

represented by large increases in pressure as the heterogenous powder density

approaches that of the solid Hugoniot.
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4.5 Morphological Comparison of Statically and Dynamically
Compacted Samples

The morphology of the statically pressed and sintered powder compacts will

be compared to the dynamically compacted samples produced in the present

research. The samples will be compared using optical microscopy and scanning

electron microscopy, in addition to determining the porosity of the compacts. As

has been seen in the previous discussion, the dynamically compacted samples were

subjected to pressures of 0.203 to 0.501 GPa for durations of 2.6 to 3.6

microseconds. The pressed and sintered compacts experienced pressures of

0.275GPa at temperatures of 900C (1652F) for 1.5 hours [38]. The images will yield

valuable qualitative insight into how the individual constituents arrange themselves

and bond when subjected to the varying load conditions. For simplicity, due to the

number of images, the images can be seen in Appendix I. The visible constituents

have been labeled in Figures 4.15,4.16, and 4.19.

The optical images in Figures 4.15-4.18 indicate the bulk orientation of the

powder constituents upon loading. From the images it is clear that regardless of the

loading mechanism, the graphite particles have coalesced and have aligned in a

linear manner perpendicular to the direction of the shock wave or press. As seen in

Figure 4.14, the graphite particles initially have no preferred alignment. In addition,

the silica particles have an apparent lateral fracture in both the statically pressed

and sintered and dynamically loaded samples. This lateral fracture is in the

direction of the shockwave or press. Also, the copper constituents have yielded and

have surrounded the nearby constituents. This is apparent in all the images

especially with the copper’s enclosing of the iron and silica particles. The yielding is

expected since the pressures subjected to the powders was greater than the

0.213GPa dynamic yield strength of copper. However, based on the porosity of the

dynamically compacted samples the yielding or flow of the copper particles was not

great enough to fill the present voids and further pressure would be required to fill

the remaining voids and yield the stronger constituents, especially iron.
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Figure 4.14: Optical Image of Powder Before Compaction.

Iron

Copper

Tin

Graphite

Figure 4.15: Dynamically Compacted Powder at 0.203GPa. Optical Image Corre-
sponding to Working Area in SEM Image. Direction of Shock Wave is From the Left
to Right
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Figure 4.16: Optical Image of Dynamically Compacted Powder at 0.203GPa. Di-
rection of Shock Wave is From the Left to Right

Figure 4.17: Optical Image of Dynamically Compacted Powder at 0.501GPa. Di-
rection of Shock Wave is From the Left to Right
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Figure 4.18: Optical Image of Statically Pressed and Sintered Powder Compact
Magnification 100X. (Pressed from the Left to Right)

The SEM Images clearly indicate the dynamically compacted samples have

not achieved high density states. In Figure 4.19, the copper particles appear to have

at one time been compacted to the adjacent particles, as seen by the “puzzle” type

morphology. The higher pressure dynamically compacted samples appear to have a

similar “puzzle” behavior with much less of a void space present. This may indicate

that the release waves in the low pressure dynamic loading cause the particles to be

displaced significantly relative to the other pressure regimes. A higher-level

computer simulation would need to be employed to determine if release wave was

present in the powder. There is no evidence of the “puzzle” behavior in the pressed

and sintered samples, as the copper appears to be uniformly bonded to the adjacent

copper particles and enclosing the adjacent iron particles. It also appears in

comparing the pressed and sintered SEM image to the image in Figure 4.20 that

localized sintering has occurred. The experiment in Figure 4.20 was different to the

others in that the recovered samples were much larger, as much as five times the

thickness, due to the absence of stress gages. This may indicate that the powder

experienced high temperatures for a longer duration.
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Iron

Tin

Copper

Figure 4.19: Scanning Electron Microscope Image of Dynamically Compacted Pow-
der at 0.203GPa. Direction of Shock Wave is From the Left to Right

Figure 4.20: Scanning Electron Microscope Image of Dynamically Compacted Pow-
der at 0.34-0.433GPa. Direction of Shock Wave is From the Left to Right
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Figure 4.21: Scanning Electron Microscope Image of Dynamically Compacted Pow-
der at 0.501GPa. Direction of Shock Wave is From the Left to Right

Figure 4.22: Scanning Electron Microscope Image of Statically Pressed and Sintered
Powder Compact (Pressed from the Left to Right)
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The porosity of the samples was determined using the SimplePCI imaging

software. A total of six images at magnification of 100X were taken of the

dynamically compacted samples over the radial direction of the cross section for the

samples compacted at 0.203 GPa and 0.501 GPa. Ten images at 100X were taken of

the pressed and sintered powder compacts due to the large size of the samples. The

images were manipulated using the GNU Image Manipulation Program (GIMP).

The color of the pores was selected and turned black, while the remaining

constituents were set to white for detection in SimplePCI. The result of this

procedure can be seen in Figure H.2. The images were then imported into

SimplePCI and prepared to measure the area of the image, region of interest (ROI)

or pores, and the resulting pore fraction. The “separate” feature was used to filter

the image so the majority of the pores were clearly defined. The resulting porosity

of each compaction method can be seen in Figures 4.23-4.25 below. The results can

be seen in tabular form in Table 4.8.
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Compacted Powder at 0.501 GPa)
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Table 4.8: Porosity using Image Manipulation of Powder Compacts Under Various
Loading Conditions

Compaction Average Porosity Resulting Density Standard Deviation
Method (%) (g/cc) (%)

Dynamic-0.203GPa 28.1 4.487 4.7
Dynamic-0.501GPa 23.3 4.789 9.4

Pressed-Sintered 25.9 4.622 10.4

Figures 4.23-4.25 and Table 4.8 indicate that as the compaction pressure

increased the porosity decreased. This correlation was expected through intuition.

However, by observing the images in Appendix I, it was expected that the pressed

and sintered compacts would result in lower porosity than the dynamic compaction.

This expectation was observed when the high porosity data point (50%) in Figure

4.25 and the low porosity data point (8.4%) in Figure 4.24 were removed. This

resulting in porosity for the dynamic compaction at 0.501GPa and Pressed and

Sintered Method of 26.2% and 23.2% respectively. These results are more in line

with what was expected upon initial inspection. Therefore, increasing the pressure

by 250% will only reduce the porosity by 1.9%. This is a large amount of pressure

increase for very little gain in further compaction. Once again, this could be a result

of a release wave in tension traveling through the powder increasing the porosity

and breaking apart constituents bonded together.

The comparison of the final densities achieved by consulting the

experimental data from the flyer-plate experiments and the image analysis yielded

comparable results. The experimental data as seen in Figure 4.13 resulted in a final

density of 4.479 g/cc at 0.201GPa and a final density of 4.753 g/cc at 0.501GPa.

These densities are close to those listed in Table 4.8. The resulting percent

differences in the density determination for compaction at 0.203GPa and 0.501GPa

was 0.18% and 0.76% respectively. The experimental density was determined based

on the incident pressure wave traveling through the powder, while the density

determined through imaging was determined by examining the sample after all

pressure waves had subsided. This result indicates that there may not have been a

release wave in tension traveling through the powder disrupting the compacted
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sample, since the density upon initial compaction and post-experiment were nearly

identical. However, it is important to note that substantial error may exist in the

imaging method which can not be quantified in addition to the error in the

experimental method which was roughly 12% utilizing the error analysis methods

discussed in Appendix A.
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CHAPTER 5

Conclusions

The work presented in this thesis aimed to accomplish three important tasks

of shock physics research: developing a working data acquisition system, deriving

equation of state in US-Up Space, and comparing morphologies of static and dynamic

compaction methods. Each task was completed and the results were consistent with

published literature. The work presented, especially that pertaining to the

construction of Manganin Gage Targets, will progress the shock physics research at

Marquette University. It will also combine new research endeavors between the

shock physics group and manufacturing groups in the area of granular materials.

The data acquisition system was able to consistently and accurately obtain

both projectile velocity and stress waveforms. The modifications of the projectile

allowed for projectile velocities that were greater and more repeatable than those

presented in the research of Downs while using more massive projectiles. The

inclusion of the Mylar shim in the stress gage targets, though needed to encapsulate

the Manganin gages, proved to reduce the peak amplitude between aluminum

interfaces in addition to increasing the incident rise times. These can be seen in the

comparison of the experimental data to the impedance matching technique where

the experimental peak pressure adhered to the 10% or more reduction in peak

pressure mentioned by Linde [11]. In addition, the inclusion of the Mylar shim

yielded a Power-Law Analysis that was consistent with materials in laminate

composites with an exponent of roughly 2.5. The Power-Law of the back gage was

also less than the front gage as expected to the distortion of the stress wave

traveling through the granular mixture.

The experimental data in Us-Up space was fit with a linear equation of state

as is common practice in the shock physics community. The equation of state was

developed for several scenarios based on various impedance matching techniques,

Manganin gage hysteresis, and the presence of the Mylar shim. It was determined
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that the calculation method based on the experimental pressure (Methods 1 and 3)

provided the most statistically accurate values for the Hugoniot slope and bulk

sound speed. The resulting equation of state compared favorably with experimental

data available in literature based on the initial density and particle velocity. The

initial density was less than those available in literature and therefore the

experimental data in the present research resided below the data tabulated in

literature. The one-dimensional KO computer simulations also clearly resembled the

stress waveform for the data acquisition system and qualitatively support the

equation of state developed here. The KO simulations over predicted the peak

pressure and underestimated the rise-time which is consistent with literature and

expected based on the observed response of the Mylar shim. The experimental data

also straddled the porous Hugoniot and P − α model adjusted for porosity and was

above the P − α model for granular copper as was expected.

The dynamic compaction of the granular powder produced samples that were

of higher porosity than the statically pressed and sintered samples. However, the

arrangement of the individual constituents in the dynamic compaction closely

resembled those of the statically compacted. Based on the inability of most copper

particles to bond together, the use of this method for manufacturing processes

requires more development. The images also suggested that release waves in tension

may have been present in the powder sample causing the sample to break apart as

indicated by the “puzzle” type orientation of the particles. A higher level computer

simulation would be required to determine if this is the case.

Lastly, further experiments were deemed necessary to completely

characterize the results in the present research. These experiments will need to be

conducted on a gas gun capable of producing projectile velocities up to 1 km/s.

5.1 Future Work

The Marquette University SSGG could utilize several improvements to

improve safety and functionality. There can also be changes made to the velocity

and stress measurement system to improve the results and repeatability of the

devices. Also, further simulations and experiments can be implemented to better

characterize the pressure traces, analyze the phenomena observed, and study the
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response of the heterogeneous powder to loading. Lastly, many unexpected

problems existed in conducting the research which will provide pivotal insight to

future research. The following sections will touch on considerations for each of the

areas of improvement mentioned above.

5.1.1 Marquette University SSGG

There exist several area to improve safety for the operators of the SSGG.

The operators of the SSGG must currently remain several feet from the pressurized

vessels and the speeding projectile. To improve safety it is recommended to

purchase a variable control valve to replace the needle valve for the gas booster

inlet. This will allow for operation of the gas gun outside of the room during the

launching of the projectile. In addition an automated pressure gauge would be

useful if the control valve is implemented to know the continuous pressure in the

breech. Two camera’s feeding live data of the velocity and stress measurement

systems could be considered to observe any premature triggering of the system due

to noise. Consideration should also be given to construction of a breech and barrel

capable of launching 2 inch projectiles. The use of 2 inch projectiles will expand the

working area of the target and lengthen the time required for shock waves in the

radial direction to reach the Manganin gage. This will result in more accurate

measurements of the pressure at the gage. In addition, the larger breech will result

in higher projectile velocities which would aid immensely in developing the Us − Up
linear equation state with velocities in the range of data available in literature. The

present research was capable of projectile velocities in a range of 70 m/s where a

range of 500 - 1000 m/s would be ideal. At higher projectile velocity’s it is predicted

that the equation of state in Us-Up will exhibit more linearity. Also, it is anticipated

that greater compaction of the powder sample will occur and quite possibly reduce

to the porosity to states less than the statically pressed and sintered compacts. A

vacuum chamber at the barrel end would eliminate the need of having to hold

vacuum on the barrel end. This would improve the ability to pull vacuum

immensely in addition to reducing the time and labor required to machine a target.

If the vacuum chamber is not feasible, several o-rings should be added to the SSGG

to aid in pulling vacuum. O-rings should be located at the barrel end and the
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vacuum holder. Also a bolting system should be implemented to create an improved

seal on the vacuum pin system and the target at the barrel end. A sturdier jack in

the Target chamber with a wider platform would be helpful for relieving stress on

the barrel and the weight of the anvil, along with areas to rest the cables entering

the chamber.

5.1.2 Velocity and Stress Measurement Systems

The velocity and stress measurement systems could be greatly improved with

the changes stated in the SSGG section above. Removing the requirement of holding

vacuum on the target would greatly improve the overall functionality of the target

and the labor necessary to manufacture one. With no vacuum a target cylinder

could be developed to allow the front plate to slip in the cylinder. This would result

in easier compacting of the powder using the MTS with improved planarity of the

front plate. In addition, a wider cylinder capable of resting the entire Manganin

Gage without forcing the gage to span several crevices would be preferable. Also,

thought should be given to developing a target that could be compressed from the

back. This could also result in improved planarity and location of the gage on the

front plate. Also, the purchase of encapsulated manganin gages would eliminate the

need for a mylar insulator (Vishay Micro Measurements Part Number:

LM-SS-210FD-050/SP60). As seen in the data analysis the mylar insulated greatly

effects the shape of the pressure waveform. The velocity pin system will need new

graphite guides machined due to the damage they incur during an experiment.

Also, a current two-channel oscilloscope with storage capabilities would greatly

improve the accuracy in the projectile velocity measurements in addition to the

immense functions available on current oscilloscopes. A digital voltage supply with

multiple channels would be useful for running the velocity measurement system in

addition to running several of the suggestions in the SSGG section. Also,

experiments should be considered while altering the oscilloscope settings. The

oscilloscope contains several measurement methods such as averaging and RMS

which could produce cleaner waveforms. However, the potential tradeoff would be a

reduction in the number of data points captured by the oscilloscope. It would also

be interesting to analyze different projectile configurations. Boring a larger hole in



104

the back of the projectile would lighten the projectile and intuition would suggest

faster projectile velocity. An analysis of projectile configurations could increase the

range of the SSGG with the current experimental apparatus.

5.1.3 Further Research Considerations

Further insight into the behavior of the heterogeneous powder could be

gained by changing parameters in the experiments. It would be interesting to

develop equations of state for the heterogeneous powder at varying powder

densities. Experiments at powder densities of 3.75 g/cc and 4.5 g/cc could introduce

new phenomena to the powder response to dynamic loading. In addition, the fully

compacted and sintered compact at 6.21 g/cc should be subjected to dynamic

loading. Also, the duration of the sintering process could be considered when

analyzing the dynamic compaction of the powder and if the sintering time has a

measurable effect on the resulting sample. The microstructure analysis of each

post-experiment compact could indicate new constituent orientation and bonding.

Also, further high-level 2D simulations should be performed on the pressure

waveforms. A two-dimensional simulations will conclude if a second Hugoniot state

was reached on the front gage trace. In addition, the effect of the small sample area

could be analyzed to determine which aspect of the target is contributing to the

shape of the waveforms. Also, additional equations of state such as the P − α model

could be developed to compare with the experimental data to further characterize

the powder behavior to loading at varying density and pressure. It would be

interesting to also analyze the temperature produced in the powder during shock

loading and what effect alterations in the projectile velocity and target

configuration have on the temperature observed.

Lastly, further research should be conducted in the 1.5GPa pressure range.

From conducting the research it appears there is some anomalous behavior that

exists in this pressure range, which is most likely a result of the boundary between

elastic and plastic regimes. An improved method would be useful to analyze shock

experiments at 1.5 GPa due to the breakdown of the fourth-power law and

hysteresis in the manganin gages.
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5.1.4 Lessons Learned during Present Research

There were many lessons learned while performing the present research that

contributed greatly to the outcome of this research. The lessons learned are

connected to the behavior of the equipment used in addition to the fragility and

sensitivity of the components.

The behavior of the piezoelectric pin proved to result in troublesome results

when trying to set the oscilloscope delay and trigger location. The first

consideration is to insure the pin is completely isolated from its environment other

than at the connection to the pigtail and above the surface of the target. If

precaution is not taken the pin can easily be shorted. Also, the requirement of the

target to hold vacuum on the barrel resulted in initially unexpected behavior of the

pin. The coupling of a low vacuum level in the barrel with an un-vented barrel

created pressures capable of causing the pin to trigger the scope before the

projectile reached the pin. Also, not evacuating the barrel could cause the air to

ionize and become conductive causing the pin to short prematurely [6]. One of the

seven target assemblies considered was aimed at using the triggering of the

oscilloscope from the pin and a single gage on the target back plate to determine the

transit time through the powder. The earlier triggering of the pin however prevent

reliable determination of the triggering point by as much as 40 microseconds.

In addition, the wiring for an individual line in the research building is not

rated for the loads drawn by the experimental equipment. It is therefore essential to

make sure the equipment is isolated on serval different circuits to prevent fuses from

being blown. The introduction of UPS greatly improved this behavior but did not

eliminate it completely.

Also, there are numerous connections between varying components of each

system. For example, there are seven connections between the oscilloscope and

manganin gage. As, a result noise in the cables is almost certain to occur.

Therefore, as with the piezoelectric pin it is essential to isolate the components from

each other with large noise sinks and aluminum foil insulation. It is also of

importance to make sure all connections are sound especially the soldering of the

leads onto the manganin gage. Epoxy should be liberally applied to make sure this
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connection is well isolated and secure. Also, the gages are extremely fragile and

should not be placed on any surface capable of being deformed.

Lastly, countless triggering methods were tried to trigger the velocity and

stress measurement systems. It was found that the two measurement systems can

not be located on the same oscilloscope due to the resolution of the oscilloscope and

the inability to control the time elapsed between the completion of the velocity pin

circuit to impact with the target. In addition, with the size of the flyer plates used

any rigid component placed in the path of the projectile will deform the surface of

the projectile. A copper break wire was implemented as an effort to trigger the

oscilloscope however extensive damage occurred to the flyer plate in addition to not

properly triggering the oscilloscope. The piezoelectric pin also caused significant

damage to the flyer plate however the oscilloscope for stress measurement could be

properly triggered with the pin. A larger flyer plate could reduce the effect the pin

has on distorting the surface of the flyer plate.
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APPENDIX A

Error Analysis

A brief discussion of the error analysis calculations employed to the

experimental results will be described in this section. The error analysis will be

applied to the experimental results in experiments 22-26. The basis of the error

analysis was developed in part by the text of J.R. Taylor describing uncertainties in

physical measurements and most importantly the propagation of error through

numerical calculations [57]. It is important to note that many of the uncertainties

based on the Hugoniot data represents a lower bound to the error obtained in the

experimental research, since it was assumed there was not error in the calculation

data. This is especially true in the calculation of the particle velocity which was

taken by reading the P − Up Hugoniot at an experimental pressure. Since, a

majority of the calculations involved equations with numerous variables, a

methodology was developed based on statistics and the Taylor series of error. The

resulting error in an equation can be determined by:

δf = ±

[(
δx1

δf

δx1

)2

+

(
δx2

δf

δx2

)2

+ ...+

(
δxn

δf

δxn

)2] 1
2

(A.1)

where δxn is the uncertainty in a particular variable.

A.1 Density Uncertainty

The density was determined from an untraditional method due to the

construction process of the target. The lack of planarity required an average to be

taken for the height measurements of the cylinder used to contain the powder. The

volume of the powder in the cylinder was calculated using

V = π
D2

4
(hcylinder − hstep − hpiston) (A.2)

where D is the diameter of the cylinder, hcylinder is the height of the cylinder,
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hstep is the distance from the top of the cylinder to the piston, and hpiston is the

height of the piston.

The height of the cylinder was determined by acquiring 4 measurements of

the cylinder height over the surface of the cylinder using a Browne & Sharpe Reflex

343 DMM . The height of the step on the other hand was found by taking 15

measurements over the surface of the piston with the Browne & Sharpe Reflex 343

DMM . The piston thickness and diameter was determined by using a dial caliper.

Therefore, a measurement error of 1/2 the resolution of the device was used

to describe the piston thickness and diameter and a standard error (σ) was used to

describe the uncertainty of hcylinder and hstep using the standard deviation (s)

s =

√∑N
i=1(xi − x̄)

N − 1
(A.3)

σ =
s√
N

(A.4)

Therefore, the uncertainty in the volume can be calculated using the formula

based on Equation A.1 below:

δV = ±

[(
δD

δV

δD

)2

+

(
δhcylinder

δV

δhcylinder

)2

+

(
δhstep

δV

δhstep

)2

+

(
δhpiston

δV

δhpiston

)2] 1
2

(A.5)

The density which is defined as mass over volume can then be calculated

using Equation A.1 with the volume uncertainty defined above and mass

uncertainty defined as 1/2 the resolution of the measurement device.

δρ = ±

[(
δV

δρ

δV

)2

+

(
δm

δρ

δm

)2] 1
2

(A.6)

The density uncertainty’s were on average 2.3% of the density measurement.

This was considered excellent considering the number steps required to determine

the powder density, but was greatly assisted by the high precision equipment used.
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A.2 Projectile Velocity Uncertainty

The uncertainty in the projectile velocity (v) was determined using a similar

method outline by Downs [26]. However, the measurement methods differed in the

two projectile velocity calculations. The projectile velocity was defined as distance

(d) over time (t).

The distance between the velocity pin sets was determined using a

microscope from which the distance uncertainty was said to be 1/2 the resolution of

the device. The time uncertainty on the other hand was determined using the

manufactures calculations presented in the manual [58]. The time uncertainty is

governed by the equation:

δt = 0.01%PulseWidth+ 0.2%ofFullScale+ 200ps (A.7)

The resulting uncertainty in the projectile velocity can be determined by

adapting Equation 4.12 below:

δv = ±

[(
δd
δv

δd

)2

+

(
δt
δv

δt

)2] 1
2

(A.8)

The uncertainty for the velocity through the each of the three time locations

was averaged to determine the uncertainty in the total projectile velocity. As was

discussed previously, the projectile velocity uncertainty’s were very similar to those

calculated by Downs differing by no more than 1 m/s [26]. On average the projectile

velocity uncertainty composed only 1.2% of the projectile velocity measurement

A.3 Pressure Uncertainty

The uncertainty in pressure measurements as seen in Equation 4.5 is only a

function of the percent change in resistance however the resistance change was

determined from the calibration plot in Figure 2.18 which is also function of

Voltage. The fit used to represent the calibration data was not representative of all

the calibration data (not all data points were on the curve), however the calibration

data’a variation from the fit was less than 0.03%. Figure 2.18. Therefore, the

contribution in error of the calibration curve needs to be determined based on the
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error attributed to vertical deviation from the curve (Voltage) and horizontal

deviation from the curve (Percent Change in Resistance). The error in the

measurement of Voltage and Percent Change of Resistance must first be determined.

The error in the Voltage measurement was determined from the

manufactures manual to be: [29]

δV = ±2.0%FullScale (A.9)

The error in the percent change in resistance was determined from the

propagation of error and Equation A.1. The error in a particular resistance

measurement was defined by the owners manual which is dependent on the

resistance decade used [59]. The error in the percent change in resistance is define

below:

δ
∆R

R0

= ±

[(
δ∆R

δ∆R
R0

δ∆

)2

+

(
δR0

δ∆R
R0

δR0

)2] 1
2

(A.10)

where ∆R is defined as R−R0 for some measured R.

Now that the measurement uncertainties have been obtained the data must

be compared to the calibration fit to determine the potential deviation between the

data and the fit. To obtain this deviation for the percent change in resistance the

quadratic formula was used to determine the percent change in resistance for a given

voltage based on the calibration second order fit. The percent change in resistance

from the data was then compared to the simulation for the quadratic formula using:

error =
√

(data− fit)2 (A.11)

The standard deviation was then applied to the error in all the data points

from Equation A.11 and it was determined that the deviation between the data and

the fit for the percent change in resistance was large enough that it had to be

included in the measurement uncertainty. Therefore, the deviation error and

measurement error were summed to get the total uncertainty in the percent change

in resistance.

A similar method was used to find the deviation in the vertical direction
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from the calibration fit based on the uncertainty in the Voltage measurement. The

second order calibration fit was then adjusted to incorporate the uncertainty in the

Voltage measurement. The quadratic formula was then applied to get the resulting

percent change in resistance. The deviation between the data and fit was then

determined using Equation A.11. This deviation will represent the uncertainty in

percent change in resistance due to the uncertainty in the Voltage. Therefore the

total uncertainty in percent change in resistance will be the sum of the uncertainty

contributed to the Voltage in the vertical axis and the percent change in resistance

in the horizonal axis.

The uncertainty in the pressure can then be determined by applying

Equation A.1 to Equation 4.5 using the uncertainty in percent change in resistance

calculated above.

δP = ±

[(
δ

∆R

R0

δP
∆R
R0

)2] 1
2

(A.12)

The percent uncertainty in the pressure measurements were on average

12.2% which is very similar to the 10.7% uncertainty depicted in the pressure

measurements in the research of Fraser [60]. However, it is noted that Manganin

gages were used in the research of Fraser but the data analysis procedure was not

described.

A.4 Particle Velocity Uncertainty

The particle velocity was determined from the Impedance Matching

Technique. Therefore, Equation 1.6 was used to determine the particle velocity

which will result in particle velocity being a function of density, Hugoniot slope,

bulk sound speed, pressure, and projectile velocity. Since the density, Hugoniot

slope and bulk sound speed were not experimentally determined and obtained from

the LASL data they will be considered constants. Therefore, the particle velocity

will be assumed to be a function of pressure and projectile velocity only. The

quadratic formula will then be applied to Equation 1.6 to solve for the particle

velocity Up. The resulting equation for particle velocity will be:
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Up =
2Sρv +

√
(2Sρv)2 − 4sρ(Sρv2 − ρC0v − P )

2Sρ
(A.13)

The uncertainty in the particle velocity can then be calculated using

Equation 4.12.

δUp = ±

[(
δv
δUp
v

)2

+

(
δP

δUp
P

)2] 1
2

(A.14)

The average percent particle velocity uncertainty was 10.6 % compared to

the 12.3 % tabulated by Fraser [60]. This was expected to be lower since the current

research did not experimentally determine the particle velocity while the research

discussed by Fraser implemented a VISAR system for continuous particle

displacement versus time.

A.5 Shock Velocity Uncertainty

Equation 4.5 was used to determine the shock velocity of a flyer plate

experiment. The shock velocity is a function of the thickness of the powder, the

transit time, and the particle velocity’s through the various media of the target.

The particle velocity’s uncertainty was determined from the method outline in the

previous uncertainty section on particle velocity. The uncertainty in the powder

thickness is determined in a similar manner to that of the powder volume. The

powder thickness is defined as

PowderThickness(d) = hcylinder − hstep − hpiston (A.15)

Therefore, the uncertainty in the powder thickness is simply the sum of the

uncertainty of each of the components: hcylinder, hstep, hpiston.

The uncertainty in the time measurement was obtained from the oscilloscope

manual [29]. This uncertainty is described by the formula below:

δt = ±2(15ppm) (A.16)

The oscilloscope was set to 5 mircoseconds/division therefore the uncertainty

in the time measurement will be 1.5 nanoseconds.
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The uncertainty in the shock velocity can then be calculated using Equation

A.1.

δUs = ±

[(
δd
δUs
d

)2

+

(
δt
δUs
t

)2

+

(
δUp1

δUs
Up1

)2

+

(
δUp2

δUs
Up2

)2] 1
2

(A.17)

The average percent shock velocity uncertainty was determined to be 2.9 %

compared to the 6.4% determined stated in the research of Fraser [60]. This

discrepancy could be due to the target configuration and the inability in the current

research to experimentally determine the particle velocity through the copper shim

and mylar encapsulating sheet.

A.6 Conclusion

From the uncertainty calculations detailed above, the uncertainty’s in the

remaining results can be determined. These uncertainties include those obtained for

the fourth-power law analysis, the wavelength, and other shock velocity calculation

methods. There are areas for improvement in the uncertainty’s of the experimental

quantities which can be obtained by implementing suggestions in the Future Work

section of this thesis. However, the results of the uncertainty calculations were

encouraging for those that were directly comparable to data available in open

literature.
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APPENDIX B

Experimental Procedures

The following experimental procedures offer set-up and maintenance

guidelines for operation of the Marquette University Single Stage Gas Gun. The

experimental procedures will be broken into pre-experiment procedures and post

experiment procedures. The pre-experiment procedures will outline the steps

required to prepare the SSGG for a flyer plate experiment, while the

post-experiment will offer guidelines for the proper maintenance of the SSGG. For

brevity not all the procedures were included, however a more detailed instruction in

stress gage target instruction can be found in Appendix F. Detailed descriptions of

the velocity measurement system set-up, projectile construction, powder creation,

polishing method, and microscopy procedures can be found in the present research

file. The procedures below are only meant to be guidelines for operation of the

SSGG and the owners manual of individual equipment must be consulted for greater

equipment understanding and operation.

The assumptions have been made that the experimental apparatus has been

completely unassembled prior to beginning an experiment.

1. Preparation of the Breech

(a) Apply vacuum grease to the o-rings on the upstream and downstream

side of the breech

(b) Apply vacuum grease to the inlet of the barrel

(c) Apply vacuum grease to both o-rings of the sabot

2. Load the Projectile

(a) Insert the projectile from the upstream side of the removable breech

housing
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(b) Make sure the projectile is flush with the end of the breech housing.

Note: If the projectile does not fit properly, a rubber mallet may have to

be used. Be mindful that the o-rings do not get damaged during loading.

3. Attach Copper Shear Disk

(a) Cut a Shear disk of copper shim stock in a hexagonal shape to fit

between the breech bolt hole pattern

(b) Attach the shim to the breech using electrical tape (electrical tape

performs better than masking/duct tape when contacted with vacuum

grease)

4. Assemble the Breech and Gun barrel using the 3/8-24 UNF bolts and clamps

(a) Assemble such that vacuum inlet ports are pointing upwards (toward

ceiling)

(b) Apply pressure with the gun barrel and rotate slightly against the breech

while tightening the bolts to insure that the breech o-rings seat properly.

(c) Place the Velocity Measurement System Bolt Block in it’s channel under

the barrel

(d) Place a level on the barrel and raise the manual jack until the barrel is

level

i. Make sure the bolt holes in the block are spaced evenly on each side

of the barrel (This is required for fitting the Velocity Measurement

System to the barrel)

(e) Tighten the bolts until they are snug

5. Test the Breech and Barrel Vacuum system

(a) Attach the vacuum tubing to their appropriate location on the breech

and barrel.
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(b) The tubing exiting the downstream ball valve should be attached to the

barrel

(c) The tubing exiting the upstream ball valve should be attached to the

breech

(d) Close the upstream ball valve and turn on the vacuum pump for 3-5

minutes. The vacuum gauge should reach 30 inHg.

i. If the vacuum level does not remain near 30 inHg. Cycle the pump

2-3 times followed by 3-5 minutes of continuous operation.

ii. If the vacuum holds, open the upstream ball valve on move to step

7.

iii. Otherwise, disassemble and reassemble the breech system and

repeat vacuum trial.

6. Assemble Velocity Measurement System

(a) Apply vacuum grease to the velocity pin holder on the barrel

(b) Apply vacuum grease to both sides of the red-rubber gasket

(c) Place the red-rubber gasket onto the barrel while applying pressure and

rotating slightly to get a snug connection

(d) Apply vacuum grease to the bottom of the velocity pin system

(e) Fit the Velocity Pin System to the barrel using the bolt holes as a guide

( Be mindful not to break the graphite)

(f) Shine a flash light down the barrel end to make sure no graphite rods are

broken and they are at an appropriate depth to contact the flyer plate.

(g) Apply vacuum grease in a circular pattern around the top of the velocity

pin block

(h) Apply vacuum grease to both o-rings on the Vacuum Sleeve
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(i) Place the Vacuum Sleeve over the velocity pin; applying pressure and

rotating to create a proper seal

(j) Bolt the velocity pin block to the bolt block. Tighten by hand until the

bolts are snug. Do not over tighten as any skewing in planarity will

prevent vacuum from being held on the barrel

(k) Apply vacuum grease to the Acrylic Lid

(l) Fix the copper wire from the velocity pin block to the leads on the

Acrylic Lid

(m) Place the Acrylic Lid on the Vacuum Sleeve. Apply pressure and rotate

slightly to insure a proper seal is made

7. Test Vacuum on Velocity Measurement System

(a) Apply vacuum grease to the end of the barrel

(b) Place red rubber gasket material (with vacuum grease on the surface) to

the end of the barrel.

(c) Use a piece of metal (angle iron) to apply pressure to the gasket.

(d) Turn on the Vacuum Pump

(e) While the Vacuum Pump is running apply pressure and rotate the

Acrylic Lid and Vacuum Sleeve.

(f) Cycle the Vacuum Pump 2-3 times

(g) The vacuum gage should read 30 inHg. (If the vacuum level is

decreasing substantially repeat appropriate steps above

(h) If the vacuum level is decreasing at 5 inHg per 10min. This is adequate

to perform the experiment

8. Set-Up the Velocity Data Acquisition System
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(a) Attach banana plug/ alligator clip assemblies to the Acrylic Lid,

Oscilloscope, and Digital Voltage Supply

i. 1 banana plug must run from the Digital Voltage Supply (+) to

Acrylic Lid Terminal

ii. 1 banana plug must fun from Digital Voltage Supply (-) to

Oscilloscope Ground

iii. 1 banana plug must run from Oscilloscope (+) to remaining Acrylic

Lid Terminal

(b) Plug the Oscilloscope into the UPS (Noise, Surge, and Battery Terminal)

(c) Plug the Digital Voltage Supply into the UPS (Batter and Surge

Terminal)

(d) Turn on the Oscilloscope

i. Enable Channel 1

ii. Select 50 microseconds/div

iii. Select 0.500 mV/div

iv. Choose to Trigger off Channel 1

v. Select Rising Trigger

vi. Set Trigger Voltage to 0.500 mV

vii. Make sure Trigger is set to Normal

viii. Select Single (Scope will now be waiting for 0.500 mV)

ix. Scale Vertical Axis near the bottom of the viewing window

x. Set Delay to 230 microseconds

9. Test Velocity Pin System

(a) Turn on Digital Voltage Supply and Set Voltage to 0.500 mV

(b) Remove Cable from Acrylic Lid and make contact with the other

Alligator Clip (Terminal). This will be completing the circuit
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(c) Scope should trigger and a square wave at 1.5V should be seen over the

entire viewing window

(d) Repeat Several Times to insure proper functionality

(e) If trace does not appear, check connections and Oscilloscope settings and

Repeat Testing Procedure

10. Set-Up Stress Measurement System

(a) Plug Agilent DSO6054A Oscilloscope into UPS (Noise, Surge, and

Battery Terminal)

(b) Plug Dynasen Pulse Power Supply into UPS (Batter and Surge

Terminal)

(c) Discharge Capacitor on Pulse Power Supply and verify the voltage

returns to 46-50 V

(d) Connect the Dynasen and Oscilloscope as represented in Dynasen

Manual in conjunction with the Stress Gage

(e) Follow Balancing procedure for both Manganin Gages as represented in

Dynasen Manual

(f) Connect the Dynasen and Oscilloscope as represented in Dynasen

Manual in conjunction with the Variable Resistor Decade Box

(g) Follow Procedure to Calibrate Pulse Power Supply as represented in

Dynasen Manual

(h) Record Voltage and Resistance in Lab Notebook (Most calibration data

should surround the gage resistance) The gage resistance can easily be

determined by adjusting the variable resistance supply and firing until

the scope is once again balanced.

(i) Set-Up Oscilloscope for Stress Measurement (see Figure 2.16)

i. Power Channel 1 and Channel 3



126

ii. Set Horizontal increment to 5 microseconds/ div

iii. Set Vertical increment to 50 mV/ div

iv. Set Trigger to External

v. Set Trigger to Rising Slope

vi. Set Trigger to 0.750 mV

vii. Set Delay depending on piezoelectric pin distance from impact

surface

viii. Make sure channel impedance is set to 50 ohms.

ix. Set Vertical Position near center of the screen, but allow enough

space so pulse does not get clipped.

x. Connect Oscilloscope Trigger Output to the Trigger of the Dynasen

Pulse Power Supply

xi. Arm Oscilloscope (Single) and Dynasen to wait for a Trigger

xii. Connect the BNC gage cables to the Manganin Gages

xiii. Trigger the Oscilloscope through the External Trigger with a 3V

Battery. Check to make sure the scope triggered and the gage

traces are balanced

(j) Disconnect BNC cables from gages

(k) Reapply Vacuum Grease to Barrel End

(l) Apply Vacuum Grease to the surface of the stress target

(m) Fit the Stress Target to the barrel end (Be careful not to break the

piezoelectric pin by making contact with the barrel) Apply pressure and

rotate slightly

(n) Feed the BNC piezoelectric pigtail through the anvil and connect to the

Pin.

(o) Connect the other end to the Oscilloscope External Trigger
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(p) Snug the Anvil up to the Target (Make sure the Piezoelectric Pin is in

the center of the Anvil Circuit Isolator. Use Shims as necessary to insure

pin is centered in Isolator.

(q) Turn on Vacuum Pump and let run for 3-5 minutes

(r) Cycle Vacuum Pump 2-3 times and check that vacuum level is 0-30 inHg

(Adjust components as necessary)

(s) Back Anvil off Target and Use Multimeter to insure there is continuity

between the BNC pigtail and the piezoelectric pin

(t) Snug Anvil against Target

(u) Close Door to Target Chamber: Be sure not to crimp the cords and

induce personal injury due to weight of the chamber door

11. Pressurize and Ready Gas Gun for Experiment

(a) Make sure all occupants have ear and eye protections and no persons are

located in the adjacent rooms.

(b) If any problems attributed to the air delivery system arise, depressurize

the breech immediately and close the upstream needle valve on the

filtration system

(c) Make sure the compressor and air dryer are connected to separate

circuits

(d) Check the three-way-ball valve is oriented for use in the 1” SSGG

(e) Make sure the air supply needle valve of the gas booster is closed

(f) Close the upstream needle valve to the filtration system

(g) Turn on Air compressor

(h) Turn on Air Dryer

(i) Allow the pressure in the compressor tank to reach 100 psi
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(j) Turn off Compressor

(k) Open needle-valves on filtration system (Air should now enter the

adjacent tubing and gas booster driver cylinder)

(l) Slightly open the air supply needle valve on the gas booster.

(m) Allow the breech to pressurize to 75% of the pressure required to burst

the copper shim as noted in thesis of Downs [26] and close air supply

needle valve

(n) Repressurize the Air compressor to 100 psi and turn off.

(o) Arm the Velocity Measurement System and the Stress Measurement

System

(p) Turn on the Vacuum Pump for several minutes and insure the vacuum

level is near 30 inHg.

(q) Close upstream ball valve on vacuum pump system to prevent high

pressure air from entering the pump.

(r) Turn off the Air Dryer

(s) Open the air supply needle valve until the copper shim ruptures and the

sabot is sent down the barrel.

(t) Close the air supply needle valve
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Post-Experiment Procedures

1. Close upstream needle valve on filtration system to prevent compressor from

draining down barrel end

2. Turn off the Dynasen Pulse Power Supply

3. Save the Stress Gage Data on the DSO6054A Oscilloscope using the

instructions below (indicated in owner’s manual)

(a) Insert USB drive to Front Panel of Oscilloscope

(b) Select Save-Recall Softkey on the Front panel of Oscilloscope

(c) Choose ”Settings”

i. Choose ”Length”

ii. Turn ”Cursor” knob until maximum number of data points is

selected (200,000 for 5 microsecond/div)

(d) Return to Save-Recall Menu

i. Choose Save ”ASCII XY data”

ii. Select ”Push to Save”

iii. Choose ”8 bit BMP”

iv. Select ”Push to Save”

(e) Before Turning off Oscilloscope upload data into available computer to

insure the data has been saved correctly

4. Record Velocity Measurement Data

(a) Select ”Measure” from the panel Softkeys

(b) Choose ”Time”

(c) Use front panel cursor knob to transverse the trace

(d) Record the time location of each voltage spike relative to 0 microseconds
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(e) Take Several Pictures of Oscilloscope Trace

(f) Perform calculation to insure velocity is in expected range before turning

off oscilloscope

5. Discharge Air from valve on bottom of compressor tank (This will remove all

moisture from the tank)

6. Remove Air Compressor and Air Dryer extension cords and place on shelf to

prevent injury from tripping

7. Open Door to Target Chamber: Be sure not to crimp the cords and induce

personal injury due to weight of the chamber door

8. Disconnect Stress Gage wires from BNC connector adapters

9. Disconnect Alligator Clips from Vacuum Lid

10. Disconnect Pigtail to Piezoelectric Pin: Check if any damage was caused to

the pigtail assembly (brass connector)

11. Remove all wires and cables from Target Chamber

12. Remove Velocity Pin System from the Target Chamber by loosening mounting

bolts

(a) Place on wooden blocks

(b) Loosen Nuts on Acrylic Lid to release wires (Remove Lid)

(c) Remove Vacuum Sleeve

(d) Loosen Bolts from Copper Busses: Remove Copper Busses

(e) Use Mechanical Pencil with 0.0197” Drill bit to remove graphite from

graphite guides

(f) Clean all Velocity Pin System Components, removing all vacuum grease,

powder, and graphite pieces.
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13. Remove red-rubber gasket from velocity pin holder: Remove all vacuum grease

and particulate

14. Remove all vacuum grease from velocity pin holder and barrel end

15. Remove the Stress Target from the chamber for post-experiment examination

16. Vacuum up all particulate in the vacuum chamber: Sabot pieces and

particulate

17. Open the door to the breech chamber

18. Disconnect the Vacuum tubing from the Breach and Barrel and slide outside

of the vacuum chamber

19. Remove the 3/8-24 UNF Bolts and clamps from the Breech Assembly

20. Remove the barrel from the breech and remove the breech plate, placing the

breech plate on a clean surface

21. Clean the breech plate and breech inlet surfaces removing all vacuum grease,

particulate, and tape adhesive. Remove, clean , and install the breech

assembly o-rings

22. Clean barrel using pushrod and toweling. The barrel is clean when the

toweling exiting the barrel contains no residue

23. Clean-up the lab as necessary for the next experiment

24. Double-Check all lab electronics are turned off

25. Open the upstream ball valve of the vacuum system

26. Make sure the compressor tank is empty (0 PSI) and close the valve under the

tank

27. Drain the Filter-Regulator to the Gas Booster of all liquid and particulate as

needed

28. Check the compressed air and vacuum system to insure all valves are in there

proper orientation
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APPENDIX C

Tabulated Data
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APPENDIX D

Oscilloscope Traces of Two-Gage Target Experiments
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Figure D.1: Pressure Trace for Experiment 22 over 14 Microseconds

Shot Velocity 198 m/s and Powder Density 2.886 g/cc.
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Figure D.2: Pressure Trace for Experiment 23 over 14 Microseconds

Shot Velocity 241 m/s and Powder Density 2.712 g/cc.
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Figure D.3: Pressure Trace for Experiment 24 over 14 Microseconds

Shot Velocity 256 m/s and Powder Density 2.713 g/cc.



139

0 2 4 6 8 10 12 14
−1

0

1

2

3

4

5

Time (µsec)

P
re

ss
u

re
(G

P
a)

Front Gage Trace
Back Gage Trace

Figure D.4: Pressure Trace for Experiment 25 over 14 Microseconds

Shot Velocity 271 m/s and Powder Density 2.747 g/cc.
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Figure D.5: Pressure Trace for Experiment 26 over 14 Microseconds

Shot Velocity 263 m/s and Powder Density 2.724 g/cc.
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APPENDIX E

Bulk One-Dimensional Simulations
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Figure E.1: Front Gage Simulation and Experiment Pressure Trace for Experiment
22 over 14 Microseconds. Shot Velocity 198 m/s and Powder Density 2.886 g/cc.
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Figure E.2: Back Gage Simulation and Experiment Pressure Trace for Experiment
22 over 14 Microseconds. Shot Velocity 198 m/s and Powder Density 2.886 g/cc.
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Figure E.3: Front Gage Simulation and Experiment Pressure Trace for Experiment
23 over 14 Microseconds. Shot Velocity 240 m/s and Powder Density 2.712 g/cc.
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Figure E.4: Back Gage Simulation and Experiment Pressure Trace for Experiment
23 over 14 Microseconds. Shot Velocity 240 m/s and Powder Density 2.712 g/cc.
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Figure E.5: Front Gage Simulation and Experiment Pressure Trace for Experiment
24 over 14 Microseconds. Shot Velocity 256 m/s and Powder Density 2.713 g/cc.

0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

Time (µsec)

P
re

ss
u

re
(G

P
a)

KO Simulation High Strength Aluminum
Experiment 24 Data: Back Gage

Figure E.6: Back Gage Simulation and Experiment Pressure Trace for Experiment
24 over 14 Microseconds. Shot Velocity 256 m/s and Powder Density 2.713 g/cc.
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Figure E.7: Front Gage Simulation and Experiment Pressure Trace for Experiment
25 over 14 Microseconds. Shot Velocity 271 m/s and Powder Density 2.747 g/cc.
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Figure E.8: Back Gage Simulation and Experiment Pressure Trace for Experiment
25 over 14 Microseconds. Shot Velocity 271 m/s and Powder Density 2.747 g/cc.
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APPENDIX F

Stress Measurement Apparatus

The Construction of the Stress Gage Target can be followed through the

process outlined in the Figures below:

The gage is fixed to the center of the aluminum back plate with 3MM CA8

Instant Adhesive, making sure the metallic side of the gage is facing up. The tab of

the gage faces the side opposite the two exterior bolt holes. Wire leads are cut from

22 AWG insulated, braided copper wire. The two leads should measure 2-3 inches in

length with 0.5 inches of stripped wire on each side. The copper braids should then

be twisted together and soldered into a smooth single conductor. The wire leads are

then soldered to the gage. There should be no wire exposed to the aluminum

back-plate (i.e. the wire insulation should be in contact with the manganin gage).

Also, make sure the lead wires are attached such that the powder cylinder can fit in

its bolt hole pattern Hysol 0151 Epoxy is used to cover the wire and gage

connection (Again, make sure the epoxy is located such that the powder cylinder

can fit in its bolt hole pattern. A ”quarter-size” section of epoxy is then placed on

top of the gage, and covered with a mylar sheet. A popsicle stick is then used to

evenly spread the epoxy and remove all air pockets between the mylar sheet and

aluminum back plate. The results of these steps are depicted in Figure F.1
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Figure F.1: Completion of Step 1 in Two Gage Target Construction

The copper buffer sheet is then fixed to the result of Figure F.1 and a chisel

is used to indent the location of the bolt holes. A drill press is then used bring the

holes to full diameter and to remove all epoxy.

Figure F.2: Gage System with Copper Buffer and Bolt Holes

The next step is to press fit the cylinder and aluminum piston back plate

flush to one end of the container. This operation was completed on a ENERPAC

Hydraulic Press. The pieces are seen in Figure F.2 and fit in Figure F.3
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Figure F.3: Powder Container and Aluminum Back Piston

Figure F.4: Powder Container and Aluminum Back Piston Press Fit

Powder is then poured into the powder container and all powder on the

upper surface of the container is carefully removed.

The powder cylinder is then bolted to the aluminum back plate in the

orientation depicted in Figure F.3 (Piston toward the floor). The piston is then

pressed to the appropriate density on the MTS. A flange and piston of appropriate

thickness have been developed to attach the target to the MTS. Use the MTS

calibration sheet to determine the stroke length required to compress the target to
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Figure F.5: Powder Container Filled with Powder

the appropriate density. The aluminum front gage leg-rest is then bolted to the

aluminum back plate. The leg-rest is required to support the legs of the gage.

Check the Resistance of the gage to insure the gage is intact.

Figure F.6: Aluminum Back Piston Pressed to Appropriate Density and Aluminum
Gage Leg-Rest

Note: An exacto knife can be used to remove the copper around the powder

cylinder, however this is not recommended due to damage that can be incurred to

the gage during removal. In Figure F.10, the copper shim remained unaltered
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throughout the target assembly process to prevent any unintentional damage to the

gage.

The target is then placed on a Browne & Sharpe Reflex 343 DMM to check

the planarity of the pressed piston. Fifteen data points were chosen to cover the

surface area of the piston with the deviation from the top of the cylinder recorded.

A milling machine was then used to channel the leg rest to the appropriate

width and depth so the gage can rest properly on aluminum back plate and leg-rest.

The milling machine may also be needed to expand the inner diameter of the

cylinder containing the powder to allow the front aluminum plate to slip on. If the

fit is not loose the front gage will break when the front aluminum plate is pushed

on. The gage is then affixed to the aluminum back piston with Instant Adhesive.

Figure F.7: Front Gage Applied to Target System
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The front gage leads are soldered to the gage using the same method as

discussed previously. Epoxy is once again applied used to cover the gage and wire

lead connections. Make sure epoxy is covering the gage up to the surface of the

front plate. This will ensure the gage will remain intact and survive the experiment.

A section of epoxy (the size of a nickel (United States coin)) is then placed on top of

the gage, and covered with a mylar sheet. The mylar sheet should be 2” in diameter

with a 0.25”-0.5” tab to encapsulate the gage up to the lead wires connection. A

popsicle stick is then used to evenly spread the epoxy and remove all air pockets

between the mylar sheet and aluminum back plate. In addition, paper towel is

required to clean the inner surface of the cylinder to insure no epoxy is on the

cylinder edges or on the surface of the Mylar sheet that would obstruct the

placement of the front plate.

Figure F.8: Front Gage Applied with Leads Soldered and Mylar Encapsulating
Sheet
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The aluminum front plate with a mirror finish is then gently affixed to the

gage assembly with Instant Adhesive. Check the Resistance of the gage to insure

the gage is intact.

Figure F.9: Aluminum Front Plate Fixed to Gage Assembly

A #44 drill bit is then used to drill the through hole for the piezoelectric pin.

The through hole will remove all epoxy and debris between the front plate and the

back plate. Use a high drill speed to complete with task. Then 2” of heat shrink fit

is cut to insulate the piezoelectric pin, allowing for roughly 0.025” to 0.050”

exposure on the projectile interface side and 0.50” on the connection side. The pin

is then fit through the hole and epoxied on the back side to keep the pin rigid and

allow vacuum to hold. Instant Adhesive is also used as a void filler on the front plate

for the piezoelectric pin to prevent vacuum from disturbing the powder and system.

Figure F.10: Aluminum Front Plate Fixed to Gage Assembly

The target is brought back to the Browne & Sharpe Reflex 343 DMM where

the distance of the piezoelectric pin above the front plate surface is more accurately
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determined. For the current SSGG, the distance of the pin above the front plate

surface is on average 0.090”. However, with improvements in the vacuum system

and gage manufacturing, this distance could be reduced to 0.010”-0.020” to increase

the available resolution of the oscilloscope. The distance is recorded and will be

used for oscilloscope triggering purposes.
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APPENDIX G

Marquette University Single Stage Light Gas Gun
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APPENDIX H

Compacted Powder Images

Figure H.1: Dynamically Compacted Powder at 0.203 GPa with 100X Magnification
for Use in Porosity Determination)

Figure H.2: Porosity of Image in Figure H.1
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Figure H.3: Cross Section of Dynamically Compacted Powder at 0.34-0.433GPa.

Figure H.4: Dynamically Compacted Powder at 0.34-0.433GPa Upon Removal from
Gas Gun Target (Removed Cross Section for Imaging)
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Figure H.5: Optical Image of Statically Pressed and Sintered Powder Compact
Magnification 50X. (Pressed from the Left to Right)

Figure H.6: Optical Image of Statically Pressed and Sintered Powder Compact at
Lower Magnification. (Pressed from the Left to Right)
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APPENDIX I

Experimental Apparatus Material List

The list below is an accumulation of the necessary components to build and

operate each experimental apparatus. The main components for the Marquette

University Single Stage Light Gas Gun including air delivery system and breech can

be found in the thesis of Tom Downs [26]. A section will be devoted to additions to

the Single Stage Light Gas Gun from the research of Downs.

Velocity Measurement System

Component Manufacturer
System Block: 5”x0.75”x1” 1018 CR Bar Online Metals
Qty: 2 Acrylic Mounting Plate: 1”x1”x4” Midland Plastics
Nylon Channel Tee: 1”x0.5”x2.75” Midland Plastics
Qty:(4) 3/32”x1” Allen Bolts Menards
Graphite Guides: 3/16” Nylon Rod Online Metals
Qty: 2 Copper Buses: 1/4” x1/2” x 2.75” Speedy Metals
0.5mm Graphite (Pencil Lead) Office Depot
Vacuum Sleeve: 3.25” OD 2.85” ID 4” L Steel Metals Express
Variable Voltage Supply: 6216A Hewlett Packard
Vacuum Sleeve O-Rings: Dash Number 150 McMaster Carr
Acrylic Lid 3/8” Midland Plastics
24 AWG Insulated Copper Wire (Copper Buss to Lid) Radio Shack
Lid Fasteners Menards
Qty: 4 8-32 x 2” Bolts
Qty: 4 8-32 Washers
Qty: 24 8-32 Nuts
Qty: 4 Alligator Clips Radio Shack
1/8” Red Rubber Gasket McMaster Carr
Qty: 4 Banana Plug Assemblies (Pomona) 4ft Newark
Oscilloscope: 2 Channel 54600A Hewlett Packard
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Stress Gage Targets

Component Manufacturer
Base: Aluminum 6061 4”x6”x1” Speedy Metals
Cylinder: Aluminum 6061 2.75” D Speedy Metals
Front Plates: 12” SQ Al 6061 0.32” Sheet Metal McMaster Carr
Vacuum Plate: 12” SQ Al 6061 0.32” Sheet Metal Mirror Finish McMaster Carr
Stress Gages: 50 ohm Manganin Gages LM-SS-210FD-050 Vishay- MM
Qty:4 10-32 Countersunk Bolts Menards
0.004” Copper Shim CU-4 6” x100” Lyon Industries
Mylar Transparency Paper Apollo
Hysol 0151 Epoxy Resin- Hardener Loctite
Piezoelectric Pins: CA-1135+2” Dynasen Inc.
22 AWG Copper Stranded Wire Radio Shack
Heat Shrink Fit Tubing 0.061” ID McMaster Carr
3A8 Instant Adhesive Scotch Weld 3MM
Anvil: Aluminum 6061 3.25” x4” x7” Speedy Metals
Nylon Insulator: 1” Round Midland Plastics

Stress Data Acquisition System

Component Manufacturer
4 Channel Oscilloscope: DSO6054A Agilent Technologies
Piezoresistive Pulse Power Supply: CK2-50/0.050-300 Dynasen Inc.
Qty: 2 75 ohm BNC Terminator Newark
Qty: 2 3283 F-F BNC Adapters Pomona
Qty: 2 B-24 Banana Plug Assembly Pomona
Qty: 2 50 ohm BNC Assembly 2249-C-96 Pomona
Qty: 2 75 ohm BNC Assembly 2249-E-24 Pomona
Qty: 2 50 ohm BNC Assembly 2249-C-36 Pomona
Qty:2 BNC to F-Banana Plug Adapters 1270 Pomona
Piezoelectric Pin BNC Assembly CA-1148-1 Dynasen Inc.
Decade Resistor Box: HARS-X04-0.01 IET Labs
Uninterruptible Power Supply- Smart 1000LCD TripLite
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Projectiles

Component Manufacturer
Sabot: 1” Nylon Round Stock Midland Plastics
Flyer Plate: 1” Aluminum Round Stock Metals Express
Sabot O-Rings Qty:2 Dash Number 117 McMaster Carr

Vacuum System

Component Manufacturer
160VP CuteVac Direct Drive Rotary Oil Vacuum Pump Hitachi
5ft 1” ID Plastic Tubing Grainger
1” Hose Barb to 1” Male NPT Menards
1” Coupling Nut Menards
1” Male NPT to 1/2” Female NPT Reducer Menards
1/2” Nipple Menards
1/2” Galvanized Female NPT Tee Menards
1/2” Ball Valve NPT R850 150WSP/600WOG Mueller Industries
Qty: 4 1” Hose Clamps Menards
1/2” Male NPT to 1/4” Male NPT Galvanized Reducer Menards
1/4” Female NPT Galvanized Tee Menards
1/4” Galvanized Nipple Menards
1/4” Ball Valve Female NPT 5044F 150WSP/600WOG Red/White Valve
1/2” Male NPT to 1/4” Female NPT Reducer Menards
Qty: 4 1/2” Hose Clamps Menards
Qty: 2 1/4” Male NPT to 1/4” Hose Barb Menards
16ft 1/4” ID Plastic Tubing Menards
Qty 2: 1/4” Female NPT Air-Line Quick Connect Menards
0-30 in Hg Pressure Gauge Wika
Breech Side Vacuum Fittings Menards
1/4” Male NPT to 1/4” Hose Barb
Qty: 2 1/4” Male NPT to 1/4” Hose Barb
Qty: 21/4” Female NPT to 1/8” Female NPT Reducer
Qty: 2 1/8” Nipple
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Alterations to Gas Gun Developed by Downs

Component Manufacturer
Barrel: 1” ID 2” OD 36” Length DOM Steel Aladdin Steel
1/2” Three Way Valve- Booster to 1” Gun, 1/2” Gun, Part: SS-83XS8 Swagelok
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