
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Real-Time Transport of Internet Telephony Service
Utilizing Embedded Resource-Constrained
Systems
Kyle Persohn
Marquette University

Recommended Citation
Persohn, Kyle, "Real-Time Transport of Internet Telephony Service Utilizing Embedded Resource-Constrained Systems" (2012).
Master's Theses (2009 -). Paper 162.
http://epublications.marquette.edu/theses_open/162

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

REAL-TIME TRANSPORT OF INTERNET TELEPHONY SERVICE

UTILIZING EMBEDDED RESOURCE-CONSTRAINED SYSTEMS

by

Kyle Persohn

A Thesis Submitted to the Faculty of the

Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

August 2012

ABSTRACT

REAL-TIME TRANSPORT OF INTERNET TELEPHONY SERVICE

UTILIZING EMBEDDED RESOURCE-CONSTRAINED SYSTEMS

Kyle Persohn

Marquette University, 2012

This thesis presents a real-time framework for resource-constrained devices

that improves the listening quality of Voice over Internet Protocol calls transported

over congested networks. Many VoIP standards and implementations exist, but

gaps in the design space encourage further exploration that previous work fails to

address. We describe an experimental hardware platform that expands upon a

previous design to accommodate technical research and educational needs.

Our framework, based on the Real-Time Transport Protocol, integrates

closely with existing software constructs available in the Embedded Xinu operating

system. We offer features derived from RTP by means of a kernel device that

alleviates an application from directly interacting with the underlying protocol. An

example application based on Xinu’s RTP implementation demonstrates measurable

robustness to packet loss and delay variation (jitter)—adverse conditions affecting

networks used for VoIP, such as the Internet.

Results show that Xinu RTP improves PESQ MOS over the previous design

limited to UDP transport. Typically, we observe a 17% to 25% increase in MOS for

lost packets and near perfect scores for delay variations within the device’s sliding

window. Moreover, these improvements are possible with minimal computational

overhead.

i

ACKNOWLEDGMENTS

Kyle Persohn

I offer many thanks to several people who made this work possible:

• Dennis Brylow, my thesis adviser and academic idol, for providing this

research opportunity and encouraging aspiration to standards of excellence;

• Mike Johnson and Richard Povinelli, my committee members, for making

cross-department research possible and promoting student-driven research in

their thought provoking courses;

• Mike Ziwisky and Adam Mallen, my fellow graduate colleagues, for numerous

intellectually stimulating discussions and fostering the most entertaining work

environment;

• Matt Bajzek, Victor Blas, Jason Cowdy, and the entire Systems Laboratory

community for their contributions to the Embedded Xinu Project;

• Jim and Carol Persohn, my parents, for supporting my education and

extracurriculars that gave me the tools for success; and

• Ashley Milner, my significant other, for motivation and sharing my attention

with the demands of academic research.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER 1 Introduction . 1

1.1 Thesis Statement . 1

1.2 Problem Synopsis . 1

1.3 Contributions . 2

1.4 Organization of Thesis . 3

CHAPTER 2 Background . 4

2.1 Internet Telephony . 4

2.1.1 Comparison with the PSTN 5

2.1.2 Interoperating with the PSTN 7

2.2 Embedded Systems . 8

2.2.1 Peripherals . 8

2.2.2 Software . 10

2.3 Digital Signal Processing . 11

2.3.1 Sampling Theory . 12

2.3.2 Voice Data Compression . 13

2.3.3 Analog Reconstruction . 14

2.4 Computer Networks . 15

2.4.1 Layered Architecture . 15

2.4.2 Transport Protocols . 17

2.4.3 Real-Time Transport Protocol 18

2.4.4 Telephony Protocols . 20

CHAPTER 3 Related Work . 21

3.1 Embedded Systems Education . 21

3.2 Embedded VoIP . 23

3.3 A Prototype Design . 25

3.4 Existing RTP Implementations . 27

CHAPTER 4 The XinuPhone . 30

4.1 Theory of Operation . 30

4.2 Goals and Requirements . 32

4.3 Hardware Design . 33

4.3.1 Microprocessor Selection . 34

4.3.2 Pre-Amplification Stage . 35

4.3.3 Anti-Aliasing Filter . 37

4.3.4 Output Amplifier . 38

4.3.5 Serial Transceiver . 39

iii

4.4 Firmware Design . 40

4.4.1 Device Configuration . 40

4.4.2 Run-time Operations . 44

4.4.3 Task Prioritization . 47

CHAPTER 5 A Kernel-based Approach to RTP 52

5.1 Design Approach . 52

5.1.1 Integration into Embedded Xinu 53

5.1.2 Basic Mode . 55

5.1.3 Sequence Mode . 56

5.2 Implementation of Enhanced Features 58

5.2.1 Additions to Support Ordered Queuing 59

5.2.2 The Need for Multiple Threads 61

5.2.3 Packet Queue . 63

5.2.4 Other Enhancements . 65

5.3 Sample Application . 67

CHAPTER 6 Experimental Analysis 70

6.1 Correctness Verification . 70

6.2 Metrics and Measurements . 72

6.2.1 Mean Opinion Scores . 73

6.2.2 Perceptual Evaluation of Speech Quality 74

6.2.3 Determining Test Parameters 76

6.3 Experimental Setup . 77

6.4 Test Results . 80

6.4.1 Control . 81

6.4.2 Dropped Packets . 82

6.4.3 Tuning the RTP Device . 83

6.4.4 Packet Delay Variation . 84

6.5 Summary of Findings . 86

CHAPTER 7 Conclusion . 87

7.1 Contributions . 87

7.2 Future Work . 89

7.3 Summary . 90

BIBLIOGRAPHY . 92

APPENDIX A Audio File Transport Test Application 97

iv

LIST OF TABLES

6.1 RTP Test Suite . 71

6.2 Mean Opinion Score Interpretations . 73

6.3 Audio File Data Set . 76

6.4 Control Experiment . 81

6.5 Emulated Packet Loss . 82

6.6 RTP Packet Timeout Adjustment . 83

6.7 Emulated Delay Variability . 85

v

LIST OF FIGURES

2.1 Zero-Order Hold Signal Reconstruction Model 14

2.2 Communication System Abstraction Layers 16

4.1 XinuPhone System Block Diagram . 31

4.2 A Simple Op-Amp-based Pre-Amplification Stage 36

4.3 Sallen-Key Active Low-Pass Anti-Aliasing Filter 37

4.4 Output Amplifier for Driving Speakers/Headphones 39

4.5 Charge-Pump Serial Level Converter . 40

4.6 Timer Register and Clock Scalar Configuration 42

4.7 Code for Initializing DAC Peripheral . 43

4.8 ADC Interrupt Service Routine . 45

4.9 Repeated Segment of main Routine . 47

4.10 Serial Data Flow Between DSC and Router 48

4.11 Verifying Software Run-Time Behavior with a Logic Analyzer 50

5.1 Thread Relationship for Handling Incoming Packets 59

6.1 Network Topology for PESQ Testing . 77

1

CHAPTER 1

Introduction

1.1 Thesis Statement

Simple primitives available to a lightweight embedded operating system can be used

to construct a real-time framework, which improves the quality of voice

communications transmitted over an unreliable packet-based network.

1.2 Problem Synopsis

Internet telephony networks are rapidly replacing legacy systems connected to the

Public Switched Telephone Network (PSTN). Voice over Internet Protocol (VoIP)

technology utilizes packet-based networks, the Internet for example, which have

several advantages over the circuit-switched PSTN. Nevertheless, traditional

packet-based networks tend to be unreliable mechanisms for transporting deadline

sensitive data such as voice communications. Consequently, it is necessary to have

additional protocols that are robust enough to provide reliable data transport while

maintaining minimal overhead to ensure timely and efficient processing.

Furthermore, an end-user VoIP communications device is often realized as an

2

embedded system. Such devices must implement reliable communications with

limited processing, memory, and energy resources. While proprietary commercial

solutions for VoIP communications exist, the community lacks inexpensive,

open-source tools specifically targeted towards embedded platforms. Additionally,

the resources currently available lack both the simplicity necessary to serve as a

pedagogical tool and the versatility necessary to promote novel research in the field.

1.3 Contributions

The work presented in this thesis is summarized by two distinct contributions:

First, we describe an open-source hardware/software platform, referred to as

the XinuPhone, which is suitable for interactive VoIP education as well as the

development of emerging voice communications enhancements. The XinuPhone

improves upon a previous embedded VoIP implementation by utilizing

interrupt-driven software routines, adding robust digital signal processing (DSP)

hardware, and transitioning from an outdated development kit to readily available

discrete components. This new implementation demonstrates it is possible to offer

an open and flexible platform at a cost that is highly competitive with restrictive,

proprietary commercial offerings [1].

Second, we implement a lightweight version of the Real-Time Transport

3

Protocol (RTP) using basic software constructs provided by the Embedded Xinu

operating system (OS). Xinu RTP uniquely combines application layer functionality

into a reusable kernel device. Furthermore, we demonstrate that Xinu RTP

improves the quality of voice data transmitted under capricious network conditions.

1.4 Organization of Thesis

The remainder of this thesis is organized into the following chapters:

• Chapter 2 reviews background related to embedded systems, Internet

telephony, digital signal processing, and computer networks.

• Chapter 3 summarizes previous work related to VoIP systems, educational

initiatives, network protocols as well as the problems left to be addressed.

• Chapter 4 describes the XinuPhone Internet telephony platform including

hardware designs, software routines, and improvements to the reference design.

• Chapter 5 highlights the advantages of implementing RTP as a device in the

Xinu OS along with the sacrifices that accompany an embedded realization.

• Chapter 6 analyzes the performance of the XinuPhone and Xinu RTP using

industry inspired evaluation techniques.

• Chapter 7 presents noteworthy conclusions and suggestions for extensions to

this work.

4

CHAPTER 2

Background

The broad topic of Internet telephony is built upon key concepts from a variety of

engineering and computer science disciplines. Embedded systems are critical to the

delivery of VoIP communications because end-users rely on specialty

resource-constrained devices to interface speech signals with VoIP networks.

Although users can also use softphone applications on personal computers,

embedded VoIP solutions emulate a user experience most similar to traditional

telephony. Next, the digital signal processing field is important since the analog

speech signals are digitized before transmission and then reconstructed on the

receiving end. Lastly, the backbone of VoIP relies on the same computer network

framework as the Internet; however, telephony requires additional protocols and

specifications beyond those that support the operation of the World Wide Web.

2.1 Internet Telephony

Internet telephony refers to the general concept of voice and message data that is

transported over the Internet. Although often used synonymously, VoIP is in fact a

subset of Internet telephony. While VoIP focuses on the vocal aspects of

5

communication, Internet Telephony may also refer to Internet delivery of other

services such as fax and the Short Message Service (SMS), which is popular on

mobile phone handsets [2]. This work primarily focuses on the voice aspects of

Internet telephony; nevertheless, many of the advantages also apply to other

messaging mediums.

2.1.1 Comparison with the PSTN

Switching technology is a distinguishing difference between Internet telephony

networks and the PSTN. VoIP services use packet-based transport of telephony data

to efficiently multiplex many conversations within the same communication channel.

Each packet contains a small data payload in addition to meta information used to

distinguish different communications in a shared medium. Conversely, the PSTN

establishes virtual and physical dedicated point-to-point circuits between each

party. While circuit-switching requires less overhead, it does not scale well and does

not naturally integrate with the framework of the Internet [3].

The advantages of packet-based services mostly relate back to financial cost.

Service providers can handle more customers with fewer physical resources so the

service is more profitable. Furthermore, equipment costs for specialty phone circuits

are high relative to network appliances that are mass-produced for the

infrastructure empowering the Internet. By unifying data and voice networks, both

6

backbone service providers and institutions save money on equipment and

maintenance costs. Since VoIP is so tightly couped with the Internet, it is easy to

offer “unified communications” by integrating VoIP with other online services such

as email, customer relations databases, visual voicemail, and conferencing

applications. Finally, businesses with in-house VoIP deployments can leverage

open-source and commercial software suites to provide extra services like caller ID,

call forwarding and menu systems without monthly recurring charges from the

telecommunications companies [4].

Of course, there are also downsides to integrating voice and data services

into the same core technology. The PSTN provides natural redundancy for

communications when Internet failures occur. Moreover, VoIP services are sensitive

to local power failures, whereas the PSTN provides its own direct current source

from the central offices. Consequently, it is common practice to use an

uninterruptible power supply (UPS) with any customer-premises equipment (CPE).

The dynamic nature of VoIP also presents additional challenges for emergency

services. The Internet addresses used to route VoIP calls do not necessarily

correlate to geographical addresses; therefore, location-based 911 services require

that customers maintain their own records of emergency information. In the United

States, Enhanced 911 (E911) mandated by the Wireless Communications and

Public Safety Act of 1999 handles some of these concerns [5].

7

2.1.2 Interoperating with the PSTN

The transition from the PSTN to Internet telephony is a large-scale ongoing process

that, so far, spans over a decade. Naturally, interoperability between both networks

is necessary to facilitate communications between modernized and legacy

installations. Businesses deploy IP-enabled private branch exchange (PBX)

equipment and PSTN gateways to interface internal VoIP networks with external

POTS (plain old telephone service) lines and vice-versa. Likewise, residential

customers can purchase an analog telephone adapter (ATA) to use traditional phone

handsets with a growing number of Internet telephony service providers (ITSP).

Devices that bridge analog and digital telephony networks rely on a hybrid

device to demultiplex the communication channel used by POTS lines. A typical

subscriber line consists of a single pair of wires used to carry audio both transmitted

and received by the local party. A 2-to-4 wire hybrid interface translates the

multiplexed audio into separate transmit and receive channels. The telephone

hybrid was not pioneered by VoIP; in fact, hybrids have long been in use by analog

networks to interface two-wire customer lines with four-wire backhaul lines used by

the central office (CO) [6]. In VoIP systems, DSP hardware emulates the role of the

CO, but the hybrid performs the same function. Hybrids use balanced transformers

or operational amplifiers to isolate each audio channel; however, impedance

mismatches couple the two audio paths creating undesired echo effects.

8

Consequently, digital hybrids often employ additional DSP line echo cancellation

(LEC) routines to mitigate degradation in quality caused by the hybrid circuitry [7],

[8].

2.2 Embedded Systems

Embedded systems, for lack of a precise definition, are usually computers designed

to perform specific tasks [9]. While the amount of computing power available to

embedded systems is rapidly increasing they are often considered

resource-constrained systems relative to general-purpose desktop and server

computers. In addition to processor speeds, resource-constrained systems may also

be limited in memory and energy, as in the case of battery operated devices.

Embedded systems provide computing power for many everyday devices such as

entertainment systems, cooking appliances, network equipment, and navigation

systems. Additionally embedded devices are often crucial subcomponents of larger

systems, for example, vehicle safety, aircraft guidance and control, factory

automation, and medical imaging [10].

2.2.1 Peripherals

An embedded device interacts with its environment using various peripherals.

Communication peripherals such as serial peripheral interface (SPI),

9

inter-integrated circuit (I2C), RS-232, and universal serial bus (USB) allow different

embedded processors to share data with other closely located devices. Likewise,

network peripherals such as Ethernet, controller area network (CAN), local

interconnect network (LIN), and wireless radios allow cooperating embedded

systems to exchange information on a broader scale. Through analog to digital

(A/D) and digital to analog (D/A) converters, embedded devices interact with

analog signals and sensors. Similarly, general purpose input/output (GPIO) ports

enable simple digital interaction with push buttons, relays, stepper-motors, and

light emitting diodes (LEDs).

The user interface on an embedded system, if any, is usually limited in

comparison to the periphery found on a general purpose computer. Simple buttons,

switches, and keypads are common basic inputs. LCD character displays and

indicator lights may provide feedback to the operator. In lieu of elaborate user

interfaces, embedded systems leverage their communication and network

connectivity to receive configurations and commands from remote systems. Due to

the primitive nature of embedded system interfaces and interactions with external

events, debugging and troubleshooting are more complex tasks. Most devices offer a

Joint Action Test Group (JTAG), In-Circuit Serial Programming (ICSP), or similar

interface that allows another system to externally control and query an embedded

system during the development process.

10

2.2.2 Software

At the heart of any embedded system lies one or more microcontroller units (MCU)

or digital signal processors executing software code to control the hardware

peripherals. Application code running directly on the platform without the use of

an operating system is referred to as a bare metal application. Developers can still

leverage existing software libraries to interact with hardware peripherals and reduce

the amount of code needed to be written from scratch. Even without a full blown

OS, bare metal systems can manage the processor’s response to various events using

interrupts. The code executing on the XinuPhone serial audio interface described in

this thesis is an example of a bare metal application.

More complex embedded systems employ operating systems to provide

applications with a basic layer of support on top of the hardware. An embedded OS

typically provides common mechanisms for memory management, task scheduling,

inter-process communication, storage, device drivers, and networking [11]. Popular

embedded operating systems include µC/OS-II, Embedded Linux, TinyOS,

VxWorks, and Windows CE. The XinuPhone uses the Embedded Xinu operating

system to host the VoIP application code running on a Linksys WRT54GL router.

Embedded Xinu is a modernized RISC implementation of the classic Xinu

design pioneered by Dr. Douglas Comer in the 1980s [12]. Preemptive priority

11

scheduling in Embedded Xinu arbitrates between various tasks running on the

system. Embedded Xinu also provides inter-process communication via message

passing, semaphores, and a basic TCP/IP network stack. Even though Embedded

Xinu lacks the comprehensiveness of Embedded Linux, its basic software primitives

are sufficient for building an Internet telephony system.

2.3 Digital Signal Processing

The field of digital signal processing (DSP) concerns the representation of signals as

quantized discrete-time series. Many signals occur naturally in a continuous analog

form; therefore, DSP often involves converting to a digital representation,

manipulating the digital samples, and finally reconstructing an analog waveform.

With advanced computing power readily and cheaply available, the possibilities for

intermediate digital processing are far-reaching. Usually, these operations take the

form of filtering or coding. Filters manipulate the characteristics of a signal; coding

prepares signals for transmission by compressing the representation into a more

efficient form or adding additional error-checking information. Many embedded

systems contain specialized digital signal processor chips with architectures highly

optimized for matrix multiplication and other operations common to DSP [13].

12

2.3.1 Sampling Theory

Computers manipulate information represented by discrete values. Analog signals

must first be converted to a digital representation in order to transmit

continuous-time signals in packets. A hardware peripheral called an analog to

digital converter (ADC) is responsible or this process. On the time axis, periodic

measurements called samples provide a complete representation of the analog

waveform. The Shannon-Nyquist Sampling Theorem states that a signal must be

sampled at a minimum of twice its highest frequency in order to accurately

reconstruct it from the discrete samples [14]. For example, telephony systems

typically sample speech signals at 8 kHz because human speech ranges from about

300 Hz to 3.4 kHz. The highest frequency, 3.4 kHz, is less than half the sampling

rate, 4 kHz; therefore, the sampling theorem is satisfied [8], [15]. The low-pass filter

needed to reconstruct the analog signal cannot have an ideal vertical cut-off, hence

the extra headroom beyond the theoretically necessary 6.8 kHz sample rate.

Each sample represents an amplitude value, which, for DSP purposes, must

assume a discrete representation as well. Through a process called quantization, the

ADC assigns a discrete amplitude level to each sample. The bit-depth of the ADC

dictates the number of distinct levels. For instance, the XinuPhone uses a 12-bit

ADC, which distinguishes between 212 or 4096 quantization levels. Together, the

bit-depth and the sampling rate determine the bandwidth necessary for transmitting

13

the digitized signal. A system using the parameters described above requires

8, 000
samples

sec
× 12

bits

sample
= 96, 000 bps. (2.1)

In order to reduce the bandwidth requirements, telephony systems use various

compression schemes to decrease the number of bits representing each sampling

during transmission.

2.3.2 Voice Data Compression

Internet telephony systems compress and expand (compand) voice data samples

using a CODEC (coder-decoder). The CODEC exploits certain signal properties

allowing for a more compact representation using less bits per sample. In telephony,

the International Telecommunication Union (ITU) G.711 specification is the

de facto standard supported by nearly all VoIP systems. ITU G.711 maps signed

16-bit values to an unsigned 8-bit representation. This scheme works under the

assumption that compressing less frequently occurring amplitudes will not be

significantly noticeable to the listener. By applying this CODEC to speech the

samples in (2.1), we achieve a 33% reduction in transmission bandwidth. 64 kbps

serves as a nominal baseline for other CODECs to improve upon. The XinuPhone

uses the G.711 µ-law variant due to its widespread use in the United States.

Additional library support is available for these other popular VoIP CODECs:

14

G.711 A-law (used in Europe), G.726 Adaptive Differential Pulse Code Modulation

(ADPCM), and Speex [16], [17] [18].

2.3.3 Analog Reconstruction

The final step in the DSP chain involves reconstructing an analog waveform from

the digital sample sequence. In the XinuPhone, a hardware digital to analog

converter (DAC) performs this function using delta-sigma modulation. First the

DAC upsamples the incoming signal to relax the specifications on the analog

reconstruction filter. In reference to the zero-order hold model, this effectively

increases the granularity of the piecewise step function approximating the analog

amplitudes. In other words, the run of the stair-step pattern (Figure 2.1) is much

smaller so a less complex filter may be used to smooth the jagged edges into a

continuous analog signal [15]. Next, the delta-sigma modulator produces a bit

sequence representing the desired analog voltage [19]. Finally, the reconstruction

filter averages the bit stream generating the desired analog waveform.

Figure 2.1: Zero-Order Hold Signal Reconstruction Model

15

2.4 Computer Networks

Internet Protocol networks serve as the transport mechanism for VoIP

communications. These packet-based networks can efficiently multiplex numerous

users in the same channel and offer many additional features through a layered

system of headers and payloads. The work in this thesis is primarily focused on the

upper layers that concern how the data is transported and what application features

increase robustness to adverse network conditions.

2.4.1 Layered Architecture

Dividing a communication system into layers of abstraction allows designers to build

modular protocols targeted to specific goals. Each layer provides support to those

above it given certain assumptions so the higher levels do not need to reimplement

features lower in the stack. The Open Systems Interconnection (OSI) model and the

TCP/IP model are two common layered structures describing communication

networks. Depending on the literature, the layers of the TCP/IP model vary [20],

[21]. In this work, we refer to the TCP/IP model with five layers that correspond to

the lower portion of the OSI model as shown in Figure 2.2 [22]. Thus, common

numerical references such as layer 2 meaning the data-link/network interface layer

hold true. However, the discussion to follow does not require the specificity of the

OSI model, so we simply refer to the upper three OSI layers as the application layer.

16

OSI Model TCP/IP Model

7 Application

6 Presentation Application

5 Session

4 Transport Transport

3 Network Internet

2 Data Link Network Interface

1 Physical Hardware

Figure 2.2: Communication System Abstraction Layers

The lower layers of each model concern the hardware and addressing schemes

used to deliver network packets. The physical layer describes the hardware

connection to the transmission medium including bus contention resolution and

modulation. The distribution of traffic on a local network, also the link, is handled

by layer 2 frames with addressing information restricted to the immediate network.

Finally, the information in layer 3 connects nodes on one or more wide-area

networks [20], [23]. In this thesis, we assume the lowest three layers are sufficient

as-is for Internet telephony use and resolve any problems that may arise higher up

in the stack.

The upper layers deal with data transport and application-specific features.

Multiplexing, reliability, and flow control are examples of tasks handled by the

transport layer. Application layer protocols provide support for specific services

such as domain name addressing, dynamic routing, web, and email. In the latter

portion of this thesis, we analyze issues that arise in the transport layer. In response

17

to these problems, we propose a modular resolution implemented below the

application layer such that multiple user programs can share it.

2.4.2 Transport Protocols

Most high-level network traffic is carried by one of two transport protocols:

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). TCP is a

connection-oriented protocol that uses ports to distinguish between multiple

connections. Some advantages of TCP include error-free transmission, proper

ordering, resending of lost packets, and flow control. However, these features come

at the cost of the overhead to manage a sliding window system of acknowledgements

for each packet sent [23]. As a result, TCP is unsuitable for applications where

on-time delivery is critical, such as voice communications.

On the other hand, UDP is a lightweight best-effort protocol that sacrifices

the robustness of TCP for increased performance in time-sensitive applications. Like

TCP, UDP provides multiplexing functionality through the use of ports. UDP does

not, however, protect against packets that are delayed, reordered, or lost during

transmission [20]. Consequently, UDP is popular with streaming media applications

where dropping lost, late, or corrupted data is better than waiting for retransmitted

packets. These issues still impact the quality of VoIP communications, so additional

support above transport layer is necessary to ensure reliable transmission.

18

2.4.3 Real-Time Transport Protocol

The Real-Time Transport Protocl (RTP) adds support for streaming

communication such as audio, video, and sensor data [24]. Although technically an

application layer protocol, RTP offers transport style features as its name suggests.

RTP does not natively provide any multiplexing capability; thus, it relies on an

underlying transport protocol for this function. Many streaming applications run

RTP on top of UDP as a more efficient alternative to TCP.

An RTP header supplements additional information that the underlying

transport protocol may lack. For instance, sequence numbers allow the application

to sort out-of-order packets and timestamps enable silence and packet-loss

detection. Additionally, a payload type identifies the data encoding and special

identifiers make it possible to synchronize content from specific sources. Unlike

other protocols, RTP does not strictly mandate what the application must do with

this information. It is up to the receiver to utilize and interpret the RTP header in

the context of a particular application. In the spirit of flexibility, RTP also provides

header extension mechanisms to explore other out-of-band data that might assist

streaming applications [24].

Companion documents in the form of profiles and payload specifications

accompany the main RTP RFC. For example, RFC 3551 describes a profile for

19

audio, containing the payload type to codec mappings relevant to VoIP [25]. A

profile may also define the use of the marker control bit or add functionality of RTP

through its header extensions. Payload formats dictate the layout of a particular

encoding of data that follows the RTP header. Byte-ordering, channel arrangement,

and recommended sample/frame sizes are common attributes associated with each

format specification. The XinuPhone operates under the RTP Profile for Audio

Video Conferences with Minimal Control using, by default, the payload format for

Pulse Code Modulation (PCM) G.711 µ-law encoded audio sampled at 8 kHz in

20 ms blocks.

In addition to the protocol for RTP data, RFC 3550 also specifies the

Real-Time Transport Control Protocol (RTCP). This optional companion protocol

offers statistics and minimal channel control for quality of service (QoS) monitoring

and basic in-band identification. QoS statistics are useful in large streaming sessions

with many participants on links of varying reliability. Using RTCP feedback such as

jitter, round-trip delay, and lost octet counts the sender can monitor changing

network conditions and take corrective action, perhaps switching the CODEC.

RTCP also supports primitive messages, allowing participants to send basic

identifications and contact information. The XinuPhone, which makes simple

point-to-point calls, omits this conferencing targeted protocol in favor of

enhancements to the data stream.

20

RTP paired with UDP can provide reliable transport of streaming audio data

suitable for Internet telephony. However, RTP itself is not a comprehensive solution

for VoIP calls. RTP does not provide advanced call signaling features, format

negotiation, or native security. These features beyond the scope of RTP are handled

by other telephony-related protocols and profile extensions.

2.4.4 Telephony Protocols

Internet telephony relies on a bevy of other protocols in addition to the data

transport. Most importantly, calls require a signaling mechanism such as the

Session Initiation Protocol (SIP) or ITU H.323 [26], [27]. Signaling protocols handle

call setup/teardown, CODEC agreement, and Uniform Resource Identifiers (URI)

similar to POTS phone numbers. Often signaling protocols leverage a formal

rule-set such as the Session Description Protocol (SDP) to define the session

parameters [28]. Lastly, SRTP and ZRTP address security concerns by defining a

secure profile extension to RTP and an associated method for exchanging

cryptographic keys [29], [30].

21

CHAPTER 3

Related Work

The contributions described in this thesis draw from a diverse collection of previous

work. As an education platform, the XinuPhone receives influence from pedagogical

initiatives in the embedded systems area. Furthermore, research-oriented features of

the XinuPhone draw inspiration from existing academic and commercial embedded

telephony systems. Also, we discuss alternatives to our implementation of RTP

within Embedded Xinu. The following sections highlight positive aspects and

shortcomings of work related to our approach.

3.1 Embedded Systems Education

Embedded systems dominate the computer market. With respect to processor sales,

MCU and DSP chips outsell their general-purpose counterparts by several orders of

magnitude. Conversely, the focus of most undergraduate computer engineering and

computer science programs is on desktop and server programming [31]. Benson et

al. propose exposing students to embedded computing concepts earlier in their

education by offering summer programs at the high school level and weaving

additional curriculum into undergraduate introductory courses. Early exposure to

22

embedded computing encourages students to engage in systems courses for

upper-division electives ultimately preparing them to fill a void in industry for

systems engineers [32]. The course content surrounding the XinuPhone as described

in [1] assumes a modular structure, which aims to address the claims in [32].

A second set of observations comes from work at Carnegie Mellon, where the

opportunities for embedded systems education are plentiful. Koopman et al. find

that experience in traditional computing concepts do not necessarily translate into

the embedded domain. Students’ preconceived ideas that tend to waste memory,

CPU time, and network bandwidth must be unlearned before embedded software

designs become successful [33]. The XinuPhone content modules emphasize

hands-on assignments with resource-constrained hardware throughout various facets

of the undergraduate computing experience. Koopman’s group also finds that

realistic implementations exposing students to the quirks and limitations of

embedded systems promote increased knowledge retention. Accordingly, the

XinuPhone motivates students by interactively designing an Internet telephony

system, a realistic application that explains technology encountered in their

everyday lives.

Project Nexos is a joint effort by Marquette University (MU) and the

University of Buffalo (UB) promoting the use of experimental laboratory

assignments in undergraduate embedded systems courses. Nexos emphasizes

23

interactive learning with actual hardware, as opposed to simulations or software

emulators. Simple, yet functional feature subsets take precedence over

comprehensive production-grade software architectures. Consequently, the material

is fathomable in single-semester courses and still provides working hands-on

demonstrations. Curriculum associated with Project Nexos highlights time-oriented

and interrupt-driven motifs frequently encountered in embedded systems, which are

often overlooked in traditional courses [34]. The XinuPhone extends the Nexos

framework with an external serial peripheral exemplifying reactive programming

and strict awareness of time. As design decisions arise throughout this thesis, it is

the ideologies of Project Nexos that guide our implementation choices and justify

the various trade-offs encountered.

3.2 Embedded VoIP

Work specifically relating to an inexpensive embedded Internet telephony platforms

is unfortunately limited. However, work on embedded multi-media systems still

provide useful guidance relating to streaming content on resource-constrained

devices. For instance, Zhang et al. describe an RTP implementation in Embedded

Linux that interprets the RTP header in a similar fashion to our Xinu version [35].

Due to the nonspecific nature of the RTP RFC, we look to other published works,

such as Zhang’s, for ideas governing the reception of RTP packets. In a similar

24

light, Cuijuan et al. realize a VoIP gateway using an embedded digital signal

processor [36]. Based on the hardware specifications described in their paper, we

selected a platform with comparable resources based on overlapping needs, such as

G.711 CODEC operations. While these works each make significant contributions to

the field, they both lack publicly accessible hardware and software designs. The

descriptions of their implementations, restricted to publishing page limits, are

insufficient for reproducing their efforts or leveraging existing progress for future

work. In response to these frustrations, we have modeled our approach after popular

work by the Arduino Team [37]. As such, the work described in this thesis—both

hardware designs and software code—is available to the public [38] under open

licenses promoting reuse and future expansion.

The most closely related work is that of Rowetel’s $10 ATA Project [39].

Rowetel designs open hardware and software supporting telephony in developing

countries. Like the XinuPhone, the $10 ATA Project leverages the ubiquitous

Linksys WRT54G series for its embedded networking functionality. Both projects

employ a handful of discrete components as a serial sound interface for the router.

The two designs differ mostly in software: the $10 ATA is based on Asterisk [4]

whereas the XinuPhone communicates with other devices using a simplified, custom

application. The Asterisk suite provides a robust set of features suitable for

everyday communications. On the other hand, the Embedded Xinu VoIP

25

application demonstrates simple call functionality in a concise format more akin to

the goals of an experimental platform for undergraduate education and research

experimentation. Given the overlap in hardware design goals, both projects stand to

benefit from one another’s contributions.

3.3 A Prototype Design

The work described in this thesis is largely based upon a design prototype by Lund

as described in his master’s thesis [40]. Lund demonstrates that it is possible to

construct a functional, basic embedded telephony system by pairing off-the-shelf

components with the lightweight Xinu operating system. Furthermore, he

establishes a performance baseline against which our improved system may be

compared. The XinuPhone leverages Lund’s existing framework which includes

source code contributed to Embedded Xinu, the design concept of enhancing a

commercial router with hardware capable of audio processing, and several tools for

testing and troubleshooting.

While Lund’s implementation is a substantial stride forward in the

non-proprietary embedded VoIP design space, there are a number of areas amenable

to improvement. For one, the AppleTalk microphone Lund’s design relies on has

been discontinued making it increasingly difficult for others to reproduce his

platform. An improved design should include a basic pre-amplifier to enable

26

compatibility with readily available dynamic or electret microphone headsets.

Additionally, the DRAGON12 development platform has several pitfalls of its own.

For instance, the interrupt logic flaw Lund encountered prohibits proper

asynchronous serial communication between the 68HC12 and the Linksys router.

The DRAGON12 also contains many unnecessary components that effectively

double the production cost. Reproducing the DRAGON12’s functionality with

discrete components requires specialized skills and tools for surface mount devices

that are likely beyond that of the platform’s target audience. While the cost

analysis looks great on paper, several logistical factors prohibit a scalable realization

of Lund’s design. An improved design can address all of these issues with a better

substitute for the 68HC12 microcontroller that is not constrained to a development

board.

In his future work section, Lund lists a collection of suggested ways to extend

the current state of his embedded VoIP platform. This thesis expands upon Lund’s

suggestion to improve the transport robustness of UDP packets by implementing an

additional protocol. Specifically, we address this issue using the well-established

Real-Time Transport Protocol. Furthermore, we contribute insight into the impact

of design decisions on overall voice call quality.

27

3.4 Existing RTP Implementations

With the current RTP request for comments (RFC) in publication for nearly a

decade, several existing implementations are already well established. In this

section, we review the contributions of oRTP, LIVE555 Streaming Media, and GNU

ccRTP as well as the shortcomings that inspired a fresh look at RTP within

Embedded Xinu. These existing RTP libraries provide a robust set of features that

work well for the applications that depend on them; however, their complexity

makes them unsuitable for policy testing and educational use.

The oRTP library is most notably known for its use in the Linphone, a VoIP

software client (softphone) available for many desktop and mobile platforms [41].

Hewlett Packard also uses oRTP in their OpenCall Media Platform. Similarly,

LIVE555 Networks produces a set of streaming media libraries for real-time

transport of many audio and video content types. The ever popular VLC and

MPlayer media players both rely on LIVE555 for RTP support [42]. Lastly, GNU

ccRTP is a fully functional RTP stack published by the GNU Telephony project

that features many popular extensions for securing voice calls over the Internet. The

Twinkle Softphone and SFL Phone clients rely heavily upon the ccRTP library [43].

The RTP specification described in RFC 3550 leaves many of the

implementation design choices up to the application programmer. While the RFC

28

takes care to clearly define packet header structures, performance metric

calculations, and payload formats, there is little mandate for how any of this

information should be interpreted by the receiver. We draw upon the

afore-mentioned implementations for inspiration on how to leverage this information

to improve application performance. Packet reordering, delay variation

compensation, and scheduling are examples of such inspirations. As common

denominators to the status quo, these are areas of interest to test how design

choices may impact system performance.

Although it is derived from the same specification, Xinu RTP is quite

different from previous approaches. A significant distinguishing factor is how Xinu

RTP manifests as a kernel device driver as opposed to an application library

(discussed further in Chapter 5). Our implementation sacrifices many of the

production features found in other RTP stacks for a significantly simpler and more

manageable code base. This is necessary to best accommodate test hooks for

performance evaluation and to keep the code comprehensible for our pedagogical

mission.

Complications due to the nature of free and open-source licensing models

provide further motivation for implementing Xinu RTP from the ground up. The

GNU Telephony suite uses the GNU General Public License (GPL), which

mandates that the source code of subsequent works be openly available under the

29

same license. Similarly, both LIVE555 Streaming Media and oRTP are licensed

under the GNU Lesser General Public License (LGPL). The LGPL is more flexible

than the GPL in the sense that closed-source works can link the LGPL software

without distributing proprietary code. Nonetheless, derivative works that leverage

LGPL code must still release source under LGPL or GPL [44]. Assuming the

concepts portrayed in this thesis are more valuable than the code itself, the LGPL

and GPL are equally limiting. Embedded Xinu, and subsequently Xinu RTP, is

available under the Modified BSD License; therefore, proprietary code is able to

freely utilize these conceptual contributions without potential legal ramifications.

In summary, it is necessary to take a fresh look at RTP in order to meet the

educational and research goals of this platform while still making these contributes

as widely accessible as possible.

30

CHAPTER 4

The XinuPhone

Testing the interactions between real-time hardware and software components

requires an experimental platform that provides a sufficient amount of control over

the underlying components. In this chapter, we describe the XinuPhone–a tool for

evaluating the impact of design choices on the performance of an Internet telephony

system. We start with an overview of the high-level design and the specific

requirements influencing various facets of the implementation. Then, for each of the

hardware and software designs, we describe major components responsible for the

desired operation.

4.1 Theory of Operation

Recall that the goal of our device is to translate between analog speech signals and

digital packets that are transported by computer networks. The current hardware

platforms supported by Embedded Xinu excel at networking functionality, but lack

peripherals for interacting with analog signals. Consequently, our design requires

additional assistance from an external device designed for digital signal processing.

31

Figure 4.1 illustrates how these two devices work in unison to mimic the behavior of

an embedded IP telephone.

Figure 4.1: XinuPhone System Block Diagram

Transmitting audio begins by sampling speech signals captured by a

microphone after a low-pass filter ensures that sample aliasing does not occur [14].

In Figure 4.1, the Digital Signal Controller (DSC) is the external device responsible

for interfacing the embedded networking appliance with the analog world. An

RS-232 serial interface connects these two components using a pair of Universal

Asynchronous Receiver Transmitters (UARTs). The DSC also runs the software

CODEC responsible for compressing the digital samples into a format that does not

exceed the bandwidth provided by the serial link. As the samples transfer to the

router, Embedded Xinu exchanges packets of audio data with other nodes via a

computer network, such as the Internet.

Receiving audio works nearly the same way, but in reverse. Embedded Xinu

reconstructs incoming network packets into a serial data stream. Next, the CODEC

on the DSC expands incoming compressed samples. The DSC’s digital to analog

32

converter (DAC) reconstructs an analog waveform from the uncompressed samples.

Finally, an amplifier drives an output speaker generating an audible reproduction of

the original speech signal.

4.2 Goals and Requirements

The original XinuPhone was designed with the following requirements in mind:

• Consists of low-cost, readily available components,

• Relies only on open-source software, and

• Achieves comparable performance to desktop applications despite using

resource-constrained hardware.

As this platform evolved to include pedagogical goals we introduced

ideologies from Project Nexos into the design specification:

• Designs that are simple enough to be understood by upper-division

undergraduates, yet complex enough to apply theory that manifests in

“real-world” applications;

• Adaptable equipment that promotes student experimentation and re-use

throughout multiple courses;

• Mature components with long product life-cycles; and

33

• Support for freely available, Linux-compatible toolchains.

These specifications maximize the utility of the XinuPhone by helping ensure an

institution’s investment continues to see relevant and sufficient returns over time in

a fact-paced, constantly evolving technological society.

Our revised design addresses many of the logistical shortcomings of Lund’s

implementation by adding further constraints:

• Compatibility with standard off-the-shelf microphones,

• Interrupt-driven asynchronous serial communications,

• Robustness against sample aliasing and analog reconstruction artifacts,

• All components available in through-hole packages, and

• Independence from a development kit with extraneous parts.

The following discussion highlights aspects of the XinuPhone’s design that

ensure satisfaction of the goals and requirements outlined above.

4.3 Hardware Design

The hardware selections for this platform feature low cost, easy assembly, and great

versatility. The external audio interface simply consists of voltage regulators,

34

operational amplifiers, a serial level converter, and a digital signal controller; as well

as various resistors, capacitors, and interconnects. Together, these components

make up five distinct sub-systems: the embedded microprocessor, pre-amplification

stage, anti-aliasing filter, output amplifier, and a serial transceiver. All elements are

available in through-hole packages eliminating the need for the resources, skills, and

patience demanded by surface mounted devices.

4.3.1 Microprocessor Selection

Shortcomings of the Freescale 68HC12 microcontroller used in the prototype design

motivate the need for a different processor taking responsibility for the DSP related

tasks. With similar needs in terms of instruction speed and peripheral support, we

selected a similar class of embedded processor based on the successes reported in

[36]. Specifically, the Microchip dsPIC33FJ64GP802 powers the current revision of

the XinuPhone. Microchip’s freely available, cross-platform Integrated Development

Environment (IDE), MPLAB X, provides all of the necessary toolchain support for

coding, compiling, and real-time debugging. MPLAB X is based on the popular

NetBeans IDE, making it an ideal choice for educational usage.

Several features of the dsPIC make it an appropriate choice for this

application. For example, its Direct Memory Access (DMA) engine allows for data

transfer between RAM and many of the peripherals without having to interrupt the

35

main CPU. The XinuPhone leverages this feature to keep data flowing to the DAC

while the CPU is busy executing the software CODEC. Peripheral Pin Select (PPS)

is another feature on Microchip line of DSCs that benefits our design. PPS

dynamically remaps input/output (I/O) pins to serve different peripheral needs

based on a user-defined software configuration. This allows the same hardware to

handle different tasks and easily adapt to changing needs–both key benefits

supporting our versatility and longevity goals.

Readily available implementations of existing useful software algorithms are

even further justifications for selecting the Microchip dsPIC. For example,

Microchip publishes royalty-free distributions of audio CODECs including G.711

µ-law [16] currently used in the XinuPhone; as well as other popular choices:

G.726A [17] and Speex [18]. Furthermore, the dsPIC DSP libraries support generic

operations such as matrix multiplication and digital filtering. There are also built-in

routines for advanced audio processing like noise suppression and echo cancellation

[45]. These existing software building blocks make the dsPIC an ideal choice for an

experimental telephony platform.

4.3.2 Pre-Amplification Stage

A pre-amplification (pre-amp) stage is necessary in order to support generic

off-the-shelf microphone headsets. The pre-amp boosts single digit micro-scale

36

fluctuations in voltage up to line-level amplitudes for filtering and sampling. Lund’s

prototype does not contain a pre-amp stage; thus, it requires direct line-level input

from a specialized microphone. The XinuPhone’s pre-amp design (Figuere 4.2)

features a powered input that works with any standard electret or dynamic

microphone.

Figure 4.2: A Simple Op-Amp-based Pre-Amplification Stage

The pre-amp illustrated in Figure 4.2 employs a low-noise operational

amplifier in a non-inverting configuration to amplify the input signal [46]. The

remaining unutilized op-amp from the dual package is configured as a comparator–a

minimum (zero) component layout without any floating inputs. A potentiometer on

the non-inverting input gives the user control over the incoming signal level to

prevent clipping and distortion at the output. Moreover, capacitors used in the

signal path have N0G or X7R temperature coefficients in an effort to maintain

decent audio quality [47]. Lastly, the capacitor on the output AC couples the signal

37

destined for the next stage effectively isolating the DC bias required for a

single-supply op-amp.

4.3.3 Anti-Aliasing Filter

The addition of an anti-aliasing filter to the input signal is another improvement

over the previous design. Before a continuous-time signal can be properly sampled,

the high frequency components must be blocked; otherwise, the Shannon-Nyquist

theorem may not be satisfied [14]. The XinuPhone includes a filter designed to pass

the human vocal range and reject frequencies subject to aliasing at the industry

standard sampling rate, fs = 8 kHz. This design (Figure 4.3) applies the Sallen-Key

topology [48].

Figure 4.3: Sallen-Key Active Low-Pass Anti-Aliasing Filter

A filter cutoff frequency of fc = 3.4 kHz harnesses the upper spectrum of

human speech, yet provides ample room for roll-off before fs

2
. Equations 4.1 through

4.3 illustrate the computation of resistor values for the first stage of the 6th order

Butterworth active low-pass anti-aliasing filter with capacitors chosen as C = 2.2 nF.

38

Q =
1

2 cos (π
12

)
(4.1)

R1 =
2Q

2πfcC
= 22 kΩ (4.2)

R2 =
1

2πfc2QC
= 20.5 kΩ (4.3)

These calculations repeat for the remaining poles; cascading the stages

produces a composite filter. Note that the high Q stages are last in sequence in

order to reduce the risk of high gains saturating the filter hardware [49].

4.3.4 Output Amplifier

The dsPIC has a delta-sigma DAC on board for reconstructing the analog output

wave. This peripheral includes filters for reducing images produced by the

interpolation process as well as smoothing the modulated bit sequence into an

analog signal [19]. Combined, these hardware features provide a superior

reconstruction as compared to the basic first-order resistor-capacitor (RC) filter in

Lund’s design.

Output from the dsPIC is available as positive and negative halves of of the

39

composite signal on two separate pins. Consequently, the XinuPhone uses an

external summing amplifier for combining the output signals (Figure 4.4). A second

amplifier (LM386) protects the dsPIC from current overdraw when driving

headphones or an external speaker. Output volume level can be adjusted by

limiting the input to the LM386 with a potentiometer.

Figure 4.4: Output Amplifier for Driving Speakers/Headphones

4.3.5 Serial Transceiver

Integrated microelectronics typically interface with other chips using digital logic

signals represented by positive voltages in the 3 V to 5 V range. On the other hand,

RS-232 compliant serial devices handle up to ±25 V short-circuit to ground

voltages [9]. The XinuPhone features an on-board level converter for interfacing the

more sensitive dsPIC UART with other RS-232 devices (Figure 4.5). Therefore, the

XinuPhone audio processor can safely communicate with a modified networking

appliance or even a regular PC (for testing and troubleshooting).

40

Figure 4.5: Charge-Pump Serial Level Converter

4.4 Firmware Design

The Microchip dsPIC hosts a highly-customized firmware application for processing

speech and communicating with another serial device. We divide the code

describing this software into two main categories: configuration code that runs once

at power-on and run-time operations that repeat indefinitely. In this section, we

also discuss some the challenges that arise when scheduling multiple tasks with

strict timing deadlines that may lead to degraded performance if missed.

4.4.1 Device Configuration

Embedded processors usually boast a bevy of peripheral devices each with

numerous configurable options. The system designer must ensure any default values

are appropriately overridden with pertinent settings. The XinuPhone is no

41

exception, requiring careful consideration of how the timer, ADC, DAC, UART, and

DMA peripherals are customized during startup.

In any signal processing application, accurate timing is critical for proper

conversion between analog and digital representations. The XinuPhone timing

subsystem delivers multiple clock signals to various features of the DSC, which are

all derived from a single 16.384 MHz external high-speed crystal oscillator. The

dsPIC peripherals have the following requirements:

• 8,000 Hz timer interrupt for ADC

• 2.048 MHz clock to DAC (256x oversampling)

• 115,200 bps UART baud rate

Furthermore, the dsPIC imposes additional constraints on intermediate frequencies

in the clocking subsystem:

• High speed primary oscillators operate above 10 MHz.

• Phase-Locked Loop (PLL) input must be 0.8-8.0 MHz.

• PLL output before post-scalar must be 100-200 MHz.

• The device operating frequency must be 12.5-80 MHz.

Several configuration registers are responsible for controlling the clock scalars that

42

manipulate the dsPIC’s timing characteristics. Figure 4.6 shows a configuration

that meets the peripheral demands of the XinuPhone as well as the hardware

constraints of the DSC.

Crystal

 16.384 MHz

PLLPRE

 1/4

VCO

 155.684 MHz

PLLPOST

 1/2

APSTSCLR

 1

Fosc

 77.824 MHz
1/2

Fcy

 38.912 MIPS

PR3

 1/4864

Sample Rate

 8 kHz

DAC Clock

 2.048 MHz

PLLFBD

 38

DACFDIV

 1/76

Figure 4.6: Timer Register and Clock Scalar Configuration

The XinuPhone relies on DMA for shuffling data from DPSRAM

(dual-ported SRAM) to the DAC. During startup we associate DMA channel 0 with

the DAC by mapping appropriate buffer locations and interrupt triggers. The DMA

initialization also configures channel 0 for one-shot mode with automatic buffer

swapping disabled. At first, this configuration choice may seem counterintuitive for

an application that operates continuously with two buffers. However, it is necessary

to manually swap buffers and then re-initiate a transfer so the firmware can enforce

that the CODEC finishes processing a block of data before manipulating the buffer

addressing and sending data to the DAC. In testing, we found the built-in

continuous “ping-pong” mode (automatic double buffer swapping) allows a race

condition to occur.

Power-on initialization also configures the DSP peripherals. Many of these

options, such as the bit-depth and voltage references, are self-explanatory. Some of

43

1 void initDAC (void)
2 {
3 DAC1DFLT = 0x8000 ; // s e t d e f au l t va lue to the midpoint
4 DAC1STATbits .LOEN = 1 ; // enable l e f t channel output
5 DAC1STATbits .LITYPE = 1 ; // i n t e r r up t when l e f t ch FIFO i s empty
6 DAC1CONbits .DACFDIV = 75 ; // d iv id e ACLK (Fvco) by 76 (DACFDIV + 1)
7 DAC1CONbits .FORM = 1 ; // data format i s s igned i n t e g e r
8 IFS4b i t s .DAC1LIF = 0 ; // c l e a r i n t e r r up t f l a g
9 // IEC4bits .DAC1LIE = 0 ; // enable i n t e r r up t

10 DAC1CONbits .DACEN = 1 ; // enable DAC
11 } // end initDAC

Figure 4.7: Code for Initializing DAC Peripheral

the other non-obvious steps are for assigning the internal sampling trigger to

Timer3 (8 kHz sample rate) and format of the data representation to

ssss sddd dddd dddd (4.4)

where an ‘s ’ represents a sign bit and ‘d ’ a data bit. Figure 4.7 lists a code example

for the DAC initialization sequence. The default value register (DAC1DFLT) controls

what voltage the DAC should generate in the event of an underrun. Line 9 is

intentionally commented out—during normal operation DMA intercepts the

interrupt so a separate trigger for the CPU is undesired. Nonetheless, a CPU

interrupt can be useful for troubleshooting and benchmarking.

Lastly, the UART must be setup with a serial data format that agrees with

the other endpoint (usually an embedded router appliance). The XinuPhone

operates at 115,200 baud with 8 data bits, no parity, and 1 stop bit (8N1). The

choice for baud rate is primarily dictated by hardware limitations elsewhere in the

44

lab infrastructure. For example, the ADM202 RS-232 line drivers and serial port

annexes are limited to this maximum bandwidth. The baud rate is set by loading

the baud rate generator register (U1BRG) with a value given by

UxBRG =
Fcy

4 ∗ BAUD
− 1 (4.5)

where Fcy is the frequency of the instruction clock as shown in Figure 4.6.

Optionally, the UART can run in loopback mode where the transmitter is internally

connected back to the receiver. Again, this is useful for benchmarking, but should

be disabled for regular interoperation with a router.

4.4.2 Run-time Operations

Run-time operations execute repeatedly in an infinite while loop whenever the DSC

is powered on. In addition to code found in main, the firmware implements run-time

behaviors in the form of Interrupt Service Routines (ISRs). The XinuPhone

firmware is organized by how data moves between the various hardware peripherals.

Consequently, a single ISR may combine many of the following run-time tasks:

sampling, CODEC compression, CODEC expansion, serial transmit, serial receive,

and reconstruction. Working together, these software elements transform an

otherwise idle piece of hardware into a functional audio processor.

45

1 void a t t r i b u t e ((in t e r rupt , no auto psv)) ADC1Interrupt (void)
2 {
3 short adcsample , utxbyte ;
4
5 adcsample = ADC1BUF0 << 4 ; // convert from 12 to 16 b i t
6 ulaw compress (1 , &adcsample , &utxbyte) ; // G.711 compress ion
7
8 while (1 == U1STAbits .UTXBF)
9 ; // wait f o r open spot in UART TX FIFO

10 U1TXREG = utxbyte ; // wr i t e to UART
11
12 IFS0b i t s .AD1IF = 0 ; // c l e a r i n t e r r up t f l a g
13 }

Figure 4.8: ADC Interrupt Service Routine

Locally sampled data enters the system at a precise rate in relatively small

units (single samples). Therefore, it makes most sense to individually process each

sample and send it on its way as quickly as possible in order to minimize overall

delay. The ADC interrupt (Figure 4.8) is responsible for compressing samples with

the software CODEC and depositing them in the UART transmit buffer each time a

conversion completes. Lines 8-9 block the routine from proceeding if there is no

room in the UART’s transmit buffer. Theoretically, this condition should never

occur—data enters at a fixed 8 kbps and is capable of exiting at 115.2 kbps. Should

the system experience temporary timing issues, the 4 word UART FIFO also

protects against data loss.

Processing data received from the router is slightly more complicated. This

data arrives as packets (grouped samples) so naturally it makes most sense to

manipulate these chunks block-wise. The UART receive interrupt collects a packet

of data into an incoming buffer while inspecting each sample for control sequences.

46

When the system falls behind it is possible for the UART RX FIFO to contain

multiple samples, so for each interrupt trigger the ISR loops until the FIFO is

empty. This design choice allows the system to recover from missed soft deadlines

when certain events occur off schedule. After an entire packet arrives, the ISR sets a

global flag indicating data is ready for processing.

The main routine contains the infinite loop that runs whenever the CPU is

not busy servicing an interrupt. This code segment (Figure 4.9) continuously polls

the flag set the by UART indicating that a complete incoming packet has arrived.

Four buffers interact with the CODEC expansion process: two for incoming

(compressed) samples and two for outgoing (expanded) samples. This double

buffering technique allows the CODEC to process a block of samples while

peripherals are reading from or writing to the opposite buffer. Microchip refers to

these size two circular buffer pools as ping-pong buffers. Global toggle flags for each

peripheral (UART & DAC) keep track of which buffer is read or write active. The

output buffers that the CODEC writes to are allocated in a special region of RAM

that coexists on a separate bus for DMA transfers. When the CODEC finishes

expanding a packet, the main routine manually initiates a DMA transfer to the

DAC. At this point, not all samples have been reconstructed; however, the CPU can

continue to run the CODEC on the next batch of data using the opposite buffer.

47

1 while (1) // run i n d e f i n i t e l y
2 {
3 i f (expandFlag) // wait f o r f u l l packet
4 {
5 i f (! dacToggle) // s e t d e s t i n t i o n bu f f e r
6 dacptr = dacBufA ;
7 else
8 dacptr = dacBufB ;
9

10 ulaw expand (BUF SIZE , urxptr , dacptr) ; // decompress samples
11
12 while (DMA0CONbits .CHEN)
13 ; // wait f o r prev ious t r a n s f e r to complete
14
15 i f (! dacToggle) // r e c on f i g u r e DMA bu f f e r
16 DMA0STA = bu i l t i n dmao f f s e t (dacBufA) ;
17 else
18 DMA0STA = bu i l t i n dmao f f s e t (dacBufB) ;
19
20 DMA0CONbits .CHEN = 1 ; // enable DMA0
21 DMA0REQbits .FORCE = 1 ; // i n i t DMA t r a n s f e r
22 dacToggle ˆ= 1 ; // swap ping−pong bu f f e r s
23 expandFlag = 0 ; // c l e a r expansion f l a g
24 }
25 }

Figure 4.9: Repeated Segment of main Routine

4.4.3 Task Prioritization

As previously discussed, the XinuPhone continuously executes several tasks during

normal operation. These roles can be summarized as

• Starting ADC conversion at regular intervals (fs),

• Compressing and transmitting samples,

• Buffering data received by the serial port,

• Expanding incoming samples, and

• Updating the DAC.

48

In a real-time system, such as an IP telephone, various tasks must appear to run

simultaneously, albeit they actually execute individually in series. Correctly

establishing priorities such that these tasks correctly yield to one another in

accordance with timing deadlines is an important design consideration for this type

of application. In an audio device, missed deadlines often manifest as artifacts and

distortion, which may ultimately degrade the user’s perception of performance.

In the previous section, we alluded to characteristics of the data flow between

the router and the DSC that determine when and how many samples the CODEC

should process at once. Task priority assignment must be consistent with the data

flow and corresponding resource consumption. Figure 4.10 displays a snapshot of

data passing between the DSC and the router during typical operations.

Figure 4.10: Serial Data Flow Between DSC and Router

Data leaves the DSC (TX) as single spaced out samples so compression must be

prioritized to occur on schedule in the small gaps between serial bytes. Packets of

samples arriving from the router (RX) are already in compact blocks so the idle

49

time presents a more elastic window for performing block-wise expansion as a lower

priority task.

Unlike the router, which hosts Embedded Xinu, the DSC has no operating

system. The firmware application runs on bare-metal so there are no built-in

software constructs for scheduling or switching context. Scheduling is dependent on

priorities assigned to the hardware peripheral interrupt vectors and tasks that can

be offloaded from the CPU. Most importantly, the ADC must start conversions and

the DAC must update on a precise schedule. Tasks closely related to hardware

interacting with analog signals tend to have more strict deadlines with significant

influence on performance. The XinuPhone DSC is configured in such a way that

these operations do not rely on the CPU; therefore, they cannot be interrupted.

Internal timer triggers and DMA make this possible.

Of the tasks that do rely on interrupts, data flowing out of the DSC receives

highest priority. The packet-sized receive buffer allows more elasticity; consequently,

it yields to transmission. Finally, CODEC expansion assumes least priority. It is not

critical when the CPU performs this operation so long as it finishes an entire block

of data sometime before the next block arrives completely.

Complex timing interactions between external events, hardware, and

software present additional challenges when debugging and verifying correct

operation of embedded systems. Print statement, single-step, and breakpoint

50

troubleshooting tactics often do not adequately describe the system state. Luckily,

oscilloscopes and logic analyzers excel at capturing time sensitive data at normal

execution speed. Throughout the development process, it is useful to acquire state

changes of general purpose input/output (GPIO) pins to track software behavior.

Figure 4.11 illustrates an example where the ADC and UART routines are correctly

taking priority over the CODEC expansion process with ample overhead.

Figure 4.11: Verifying Software Run-Time Behavior with a Logic Analyzer

Each signal represents an ISR or software subroutine: UART RX (D0), fs Timer

(D1), G.711 µ-law CODEC expansion (D2), and ADC conversion complete (D3).

Statistics collected from the GPIO pins approximate the worst, average, and best

case execution times of each of the subroutines. This data is also useful for resource

budgeting if a particular task is frequently missing deadlines.

Recall from Figure 4.1 that we have two opposing information flows

competing for CPU resources: sampling audio to send out of the system and

reconstructing audio received from the remote host. The user expects this all to

51

occur transparently, but at a more granular level these processes take turns. Figure

4.11 shows each of the higher priority tasks taking precedence over the tasks with

more lenient deadlines. The lowest priority task, CODEC expansion, takes an

average 415.55 µs (including any preemptive tasks). In the illustrated scenario

where samples are processed in size 10 blocks, a deadline occurs every

10 ∗ Ts = 10 ∗ 1

fs
= 10 ∗ 1

8000
= 1.25 ms. (4.6)

Since the CPU is only loaded approximately 33%, there is sufficient overhead for the

system to reliably make its deadlines. Furthermore, this extra capacity indicates

that the same system could handle a more computationally intense CODEC for

additional bandwidth savings or the overall clock speed could be reduced to save

energy. On the other hand, if we were to observe any task with a duty cycle close to

100%, that is an indication the priority scheme or algorithm complexity needs

reconsideration because the system is likely missing deadlines.

52

CHAPTER 5

A Kernel-based Approach to RTP

The inability to cope with non-ideal network conditions is a major drawback to the

original embedded VoIP system. To its credit, this was beyond the design scope;

nevertheless, added support for interoperation on production networks is a natural

extension to the existing feature set. In this chapter, we propose a framework based

on the Real-Time Transport Protocol (RTP) that allows an embedded VoIP

application to maintain acceptable levels of quality while operating in disruptive

network conditions. As a kernel device, this implementation distinguishes itself from

its application library counterparts by leveraging existing support already provided

by the Embedded Xinu operating system. The following sections describe the

overall design, features above and beyond the RTP specification, and an example

application that uses Xinu RTP for testing VoIP listening quality.

5.1 Design Approach

RTP is different from some other protocols in that the RFC lacks specific directives

on how to interpret the mandated header information. This section tours Xinu

RTP’s main components that fill gaps left by the specification. Additionally, we

53

describe how it provides multiple operation modes to support either the

bare-minimum RFC requirements or extensions that we believe to be universally

applicable to simple real-time software suited for Embedded Xinu.

5.1.1 Integration into Embedded Xinu

RTP-based applications typically implement the protocol directly or rely on a

pre-existing library (see Chapter 3). The state information describing a real-time

stream tends to integrate with the application design so the creators of RTP

promote protocol libraries [50]. Within Embedded Xinu, we believe a kernel-based

approach is more logical. For a particular payload type, we can make certain

assumptions about the size and ordering of the data demanded by the application

and then offer that functionality by means of a kernel device. Furthermore, this

allows reuse of the existing Xinu device API, interprocess communication

framework, and synchronization primitives for enforcing real-time behavior.

Separating Xinu RTP from the application puts it in a unique position

between levels in the traditional layered network model. Xinu RTP sits above layer

4 as it relies on UDP for some transport features. However, as a modular

abstraction away from any specific application, Xinu RTP resides below layer 5 as a

framework reusable by user-space programs. The main disadvantage to this

approach is how the Xinu device API restricts an application’s access to information

54

inferred from the RTP metadata. We argue that this encapsulation trade-off is

reasonable because advanced multi-party applications obtain this information from

out-of-band means (such as SIP) and simple point to point conversations are

possible by omitting access (as demonstrated by our sample application).

Applications use Xinu RTP just like other high level protocols provided by

the network stack. First, a user-space application must call rtpAlloc to obtain an

RTP device from a pre-allocated device pool. Then, it may interact with the device

using Xinu’s standardized API:

• rtpOpen initializes the device’s control block, allocates underlying transport

devices, and spawns additional threads for processing incoming packets. Also,

the open function relays address/port information to UDP and configures the

RTP device for the specified operation mode and RTP profile.

• rtpClose tears down an existing RTP session by killing helper threads,

closing underlying devices, resetting the control block, and returning the

device back to the available pool.

• rtpRead copies up to the specified number of bytes of payload data into the

application’s buffer.

• rtpWrite fragments outgoing data according to an RTP profile. The helper

55

function rtpSend prepends the RTP header and relays the packet to Xinu’s

network stack.

• rtpControl allows the application to set the profile specification and toggle

basic flow control on/off.

Xinu RTP uses the same API to pass data to and from the underlying UDP device

as if it were the application itself so it is easy to integrate into existing applications.

5.1.2 Basic Mode

Xinu RTP implements the core features required by the RFC at the boundary

between the RTP device and the underlying network transport. Xinu RTP’s basic

mode satisfies these constraints without further modifications to the packet stream.

This mode serves as the baseline for any performance gain achieved by

enhancements that go beyond the RFC’s requirements. Essentially, this mode

manipulates RTP packet headers, maintains bookkeeping in the device control

block, and enforces the minimum constraints mandated by an RTP profile. For

outgoing packets, rtpSend handles these responsibilities, likewise, rtpRecv for

incoming packets.

The system call rtpSend combines payload data from the application with

an RTP header constructed from control information. An RTP header consists of

56

the protcol version, a payload type code, sequence number, timestamp, and a

unique identifier for the source (SSRC). Sequencing and timestamp values are

maintained within the device, freeing the application from this responsibility. Once

combined, this information becomes the new payload for a UDP packet.

A separate thread, rtpRecv, processes packets inbound from UDP. The

receive thread validates the header against a series of checks and ensures only

packets of the configured payload type enter the incoming packet queue. Therefore,

the application may safely assume packets read from this device belong to the

stream without further analysis. Xinu RTP does not handle packets with payload

padding or header extensions. This design elects to sacrifice interoperability with

other devices supporting these features in favor of minimizing the number of

dynamic memory allocations. In basic mode, rtpRecv queues packets in order of

arrival and immediately makes them available to the application calling rtpRead.

Most of the RTP header is effectively discarded and serves no purpose to minimally

comply with the RFC.

5.1.3 Sequence Mode

One might expect that a protocol designed around sequence numbers and

timestamps would enforce some kind of numeric organization and notion of elapsed

time. The RTP specification mandates no such behavior; nonetheless, Xinu RTP

57

leverages the existing RTP packet structure to offer enhanced features. In addition

to the header processing and profile compliance offered by basic mode, Xinu RTP’s

sequence mode provides additional guarantees:

• Duplicate packets do not add redundant data to the receiver’s byte stream.

• The receiver application reads bytes from the RTP device in the same order

the sender application wrote them.

• rtpRead returns padding bytes in place of any payload that does not arrive by

a specified deadline. As a corollary, the receiver application’s stream is

time-aligned with the sender’s although it may be missing data.

• Payload data that eventually arrives past its deadline does not corrupt the

output stream.

• In the event the receiver gets significantly out of synchronization with the

sender, the system is able to gracefully recover.

None of the enhanced features affect the behavior of the sender; the receiver handles

all of the intelligent packet processing.

Compensating for variations in network latency is one of the primary

motivations for using sequence mode. When the transit time is inconsistent, the

destination host likely receives packets in an order different from which they were

58

sent. The classic solution to this problem uses a “de-jitter” buffer on the receiver to

queue packets in order. As a packet arrives, simply insert it into the queue at the

proper location to maintain numeric order according to the sequence number. If

packets have infinite time to arrive, this solution is trivial. However, in a real-time

system the additional constraints imposed by getting sequential data to the

application on schedule add further complications.

Obviously, the system cannot pause to keep time from passing in order to

wait for delayed packets. However, it can introduce additional fixed delay up front

so there is elasticity to handle latency variations. Xinu RTP’s sequence mode

accommodates this flexibility by partially filling the de-jitter buffer before releasing

any samples to the application. This buffer serves two purposes: a staging area to

re-order packets and holding area to queue packets before the application is ready

for them. The latter is necessary because the application demands packets

periodically; however, due to packet delay variation, they tend to arrive

aperiodically.

5.2 Implementation of Enhanced Features

Xinu RTP implements the sequence mode guarantees using an intermediate thread

that arbitrates communications between the RTP receive thread and the

application. In this section, we explain how this scheme operates and motivate the

59

need for it by examining a failed approach. Lastly, we annotate how Xinu RTP

addresses other issues encountered that the RTP specification does not account for.

5.2.1 Additions to Support Ordered Queuing

In basic mode, the receive thread communicates directly with the application

thread. Sequence mode uses an additional thread between these two parties to

monitor the state of the packet queue. For simplicity, we refer to each thread by the

respective C function it executes: rtpRecv—a bridge between the network stack

and RTP, rtpWarden—the packet queue monitor, and rtpRead—called by the

application to request data (Figure 5.1).

rtpRecv

rtpWarden

rtpRead

Packet Queue

Kernel Threads Application Thread

Figure 5.1: Thread Relationship for Handling Incoming Packets

Decisions concerning packet reordering rely on state information about the

next expected sequence number. In other words, the packet that the system would

60

like to deliver to the application as soon as it becomes available. The RFC

recommends randomizing the initial sequence number for security, so the receiver

initializes its expectation to the sequence number identifying the first valid packet

belonging to a particular session. The expected sequence number increases

monotonically by one each time the application successfully retrieves a packet’s

payload or gives up on the data due to a missed deadline. The RTP control block

stores this state information, making it accessible to all three threads.

The receive thread makes blocking calls to udpRead; it waits on a semaphore

until a packet is available. Once signaled, rtpRecv performs the same validation

checks as in basic mode. Additionally, it checks the incoming packet’s sequence

number against slots currently allocated for expected packets. Any packet preceding

the current expected sequence is late and therefore discarded. Next, packets enter

the queue in a specific slot corresponding to sequence numbers instead of by order

of arrival. Finally, rtpRecv sends a message to alert the rtpWarden that new data is

available.

The rtpWarden monitors for a match between the expected sequence number

and the packet in the first queue position. Initially, the rtpWarden blocks until it

receives an inter-thread communication message indicating a match is possible.

Therefore, this thread does not proceed until a new packet arrives or the expected

sequence number changes. In either case, the new expectation could be satisfied,

61

but not necessarily, so the rtpWarden must check if the first queue position contains

valid data. If it does encounter the desired packet, it sends a message to rtpRead

(the application), which is waiting to dequeue the data. Otherwise the rtpWarden

resumes waiting for another message.

An application calls rtpRead when it wishes to obtain a block of bytes from

the RTP device. Since the rtpWarden sends a message when the correct packet is

ready, rtpRead simply waits for a message to arrive. Hopefully, the packet arrives

on schedule, rtpRead dequeues the packet and copies its payload to the application

buffer. Alternatively, a message does not arrive within the timeout period. In this

case, rtpRead substitutes padding data (zeros by default) in place of the missing

packet. Either way, rtpRead sends a message back to the rtpWarden indicating the

expected sequence has changed.

5.2.2 The Need for Multiple Threads

At first, it was not obvious a moderator thread between the network stack and the

application would be necessary. Indeed, it is possible for the receive thread to

communicate directly with the application as in basic mode. This implies the

receive thread must also monitor for the next desired packet’s arrival because each

call to rtpRead must return data (or padding). Consolidating roles into the receive

thread turned out to be a poor design choice because it cannot make blocking calls

62

to udpRead and still react to external changes to the expected sequence number. We

attempted to resolve that issue with a bidirectional messaging system between the

outer two threads where either could timeout (and unblock). The resulting system

was highly unpredictable. It did not seem possible to predict the state or outcome

given a packet series, a timeout threshold, and arrival times. The other

combinations of having each thread block or poll exhibit deadlock or fail to satisfy

the proposed guarantees.

The introduction of a third thread for monitoring the queue allows for an

elegant, asynchronous solution using Embedded Xinu’s built-in inter-thread

communication functions. First consider a normal scenario:

1. udpRead signals rtpRecv to queue the packet,

2. rtpRecv messages the rtpWarden that a new packet is in the queue,

3. the rtpWarden messages rtpRead (the application) to copy the available data,

and finally

4. rtpRead advances the expectation and sends a message back to the

rtpWarden to continue looking for the next packet.

Data propagates through the system consistently; each event has a deterministic

reaction. When data does not arrive in sequence, each half of the system continues

to operate independently: rtpRecv queues packets as long as there is room in the

63

buffer and rtpRead copies data to the application as soon as it becomes available.

Consequently, Xinu RTP can handle transient spikes or lulls in traffic, yet still

return to equilibrium when normal conditions resume.

5.2.3 Packet Queue

The queue for incoming packets is the core data structure enabling much of RTP’s

desired functionality. Xinu RTP implements a circular buffer using index offsets

relative to the expected sequence number. The buffer head always represents the

next expected sequence so the other threads have direct access to it for quick

retrieval. The placement of a packet with sequence Spacket is based on a virtual

sequence number, Svirtual, given by

Svirtual = ((Spacket − Sexpected) + 65536) mod 65536. (5.1)

We introduce the virtual sequence number representation to solve the issue

of comparing sequences that wrap around the max value. The RTP header allocates

two bytes to the sequence number so naturally they repeat after 65535. Comparing

“before” and “after” a certain value does not necessary correspond to “greater

than” and “less than” operations in the mathematical sense because of the circular

values. We avoid complicated boundary conditions by translating all of the sequence

64

numbers to a frame of reference relative to the expected sequence, which effectively

unwraps the sequence to a linear region. Using this virtual representation, the

comparisons are straightforward.

A fixed-size statically allocated array is a sensible choice for a buffer that is

managed by a resource-constrained system. As a result, the range of sequence

numbers the system can accept any given time is limited by this buffer size.

Effectively this creates a sliding window of packets past the expected sequence

number. This is similar to the mechanism TCP uses for packet acknowledgments

(ACKs) [23]. As the application retrieves data from the buffer, the expectation

increments and the head of the queue advances one position, sliding the window of

acceptable packets forward.

Before queuing a packet, rtpRecv checks whether the packet’s sequence is

within the sliding window. Packets outside the window are either too early or

already past deadline. With a system of circular sequence numbers, this distinction

is somewhat arbitrary. Xinu RTP operates under the assumptions that packets are

more likely to arrive late than early and early packets arrive relatively close to the

current sequence. We define on-time packets as those that fit within the sliding

window. In terms of the virtual sequence and the buffer size Nmax, these packets fall

within 0 and Nmax − 1. Xinu RTP considers packets early if the virtual sequence is

greater than or equal to Nmax but less than 2Nmax. Any other packet is considered

65

late and therefore gets dropped as the system has already moved on without it.

Note that without virtual sequence numbers these comparisons would not fall into a

consistent non-circular range there by greatly complicating the validation stage.

Once determined in range, rtpRecv inserts a packet with sequence number

Spacket at buffer index Ipacket determined by

Ipacket = (Ihead + Svirtual) modNmax. (5.2)

This method leaves gaps for packets that have not arrived yet so recording occurs

without the overhead of moving data around. Advancing to the next sequence is as

simple as incrementing the index of the buffer head, Ihead, modulo the buffer size.

Then, the process repeats when a new packet arrives.

5.2.4 Other Enhancements

Xinu RTP features more enhancements that, again while not mandated by the

RFC, offer significant utility to real-time applications. First, it offers duplicate

packet rejection. If the transport network replicates a packet in transit, the receiver

may experience time mis-alignment and an artifact when redundant bytes enter the

stream. The queuing system in rtpRecv detects duplicate packets when a buffer slot

66

required for insertion is already in use. Dropping the duplicate packet prevents it

from corrupting the stream.

Next, two fault detection mechanisms prevent Xinu RTP from experiencing

unrecoverable failure modes. An early packet, as defined above, indicates the system

may have fallen significantly behind. Instead of just dropping the packet, Xinu RTP

interprets this information as a signal to cut its losses and catch-up with the sender.

In this scenario, the expectation immediately advances to the early packet’s

sequence number in an effort to realign itself with the current timeline.

Another way Xinu RTP recovers from faults is by keeping track of successive

timeouts. If rtpRead consistently fails to find expected data in the buffer, that is a

good indication the receiver is out of synchronization with the sender. When

rtpRead exceeds a threshold of consecutive read failures, a reset condition occurs.

Then, the next packet arrival sets the expected sequence value and the buffer refills

so the device can continue on as normal. Although this scenario may result in an

undesirable artifacts from the application’s perspective, it is generally better than

the likely alternative that the connection is lost entirely.

Lastly, Xinu RTP provides a primitive flow control mechanism. Normally,

RTP does not handle flow control directly—the application generally assumes that

responsibility. We chose to integrate basic flow control into the driver for supporting

streams of pre-recorded data. Xinu RTP accepts a byte stream from an application

67

and regulates the period between sent packets according to the selected profile. This

feature is disabled by default, but can easily be enabled via the API control

function.

5.3 Sample Application

To demonstrate the use of Xinu RTP, we offer a sample application (Appendix A)

for sending audio files between two instances of Embedded Xinu. From the Xinu

shell, invoke the application with --help for a detailed list of options. In Chapter 6,

we use this application to transport VoIP data between routers to evaluate Xinu

RTP. But first, we discuss how to customize the device to suite the needs of a

particular application, in this case Internet telephony.

First, create a profile that matches the application’s payload type. The ITU

predefines several of these for audio/video use in RFC 3551 [25]. The dataset used

in our experiment contains 16-bit linear PCM WAV (little-endian) format audio.

Add the profile entry to the table in rtpControl.c. The sample entry contains

• L16LE, a name designating the profile;

• RTP PT P16LE 8K, a dynamic code for this undefined format;

• 20 milliseconds of audio per packet;

• 320 bytes per packet; and an

68

• 8000 hertz sample rate.

An appropriate profile specification allows the RTP device to correctly fragment the

stream into packets and properly code the packet headers.

Next, pick an appropriate buffer size for the application. A larger buffer is

more elastic in terms of delay variation, but requires a longer initial fixed latency to

allow compensation for fluctuations later on. During a phone call, human listeners

are very sensitive to delay variation (jitter) but are relatively tolerant of fixed

latencies. In fact, even the most particular listeners accept one-way latencies in the

range of 150 ms to 200 ms before perceiving a conversation as half-duplex, or

“walkie-talkie” like [51]. We exploit this phenomenon when configuring RTP to

maximize the device’s ability to reorder packets without disrupting the conversation.

A simple delay budget helps apply this knowledge to the RTP device.

Consider three main components of total latency:

• Processing Delay—overhead from the CODEC and network stack,

• Propagation Delay—time to travel through the transmission medium, and

• Queuing Delay—additional waiting time from buffering.

To ensure best performance, the sum of all three components must not exceed the

budget. At this scale, processing delay is negligible—the other two components

69

dominate. For regional calls across the Internet, let us allow 50 ms for one-way

transit. Therefore with a VoIP payload of 20 ms per packet, we can still queue an

average of 5 packets without disrupting the conversation. Xinu RTP generates the

fixed delay by filling the queue half-way, so a buffer size 10 best satisfies the

constraints. This parameter may be tuned as desired in the Embedded Xinu rtp.h

header file. Although Xinu RTP is relatively application agnostic, adjusting a few

parameters helps boost performance for a specific problem domain.

This chapter presented a lightweight real-time framework suitable for

resource-constrained systems as an integral part of the Embedded Xinu operating

system. Next we evaluate this framework using the example application that applies

RTP to Internet telephony.

70

CHAPTER 6

Experimental Analysis

The objective of this thesis is to demonstrate a measurable improvement in voice

quality using the proposed real-time framework relative to a transport mechanism

used in the reference embedded VoIP system [40]. Before analyzing the application,

we verify the functional correctness of Xinu RTP with a series of test cases. Then,

we benchmark the performance of the two systems by transporting a standard

collection of audio files through adverse network conditions and comparing the

received data with the original. The test parameters, data set, and algorithm for

analyzing results are all derived from industry standards published by the

International Telecommunications Union.

6.1 Correctness Verification

First, we demonstrate the proper operation of Xinu RTP’s underlying components

before analyzing its performance in the context of a VoIP system. For this task, we

use a suite of test cases, each focused on a specific feature or scenario (Table 6.1).

The sender deterministically constructs out-of-order sequences that stress boundary

71

Table 6.1: RTP Test Suite
Test Name Sent Expected

1 Normal 1,2,3,4,5 1,2,3,4,5

2 Reorder 1,4,3,5,2 1,2,3,4,5

3 Timeout 1,3,4,5,6 1,T,3,4,5,6

4 Drop Late 1,3,4,5,6,P,2 1,T,3,4,5,6

5 Buffer Fill 1,3,4,5,6,P,8,9,10,11,7 1,T,3,4,5,6,7,8,9,10,11

6 Overflow 1,2,3,4,5,. . . ,15 Drop Packets (No Flow Ctrl)

7 Duplicates 1,3,3,3,2 1,2,3

8 Late Wrap 1,2,0,65534,4,3 1,2,3,4

9 Early Reset 1,2,5,8,7,9 1,2,8,9

10 Early Wrap 65533,65534,0,4,3,5 65533,65534,4,5

P = Pause, T = Timeout

conditions in the receiver’s ability to reconstruct the original data stream. All tests

assume a packet queue of size 5 and pauses equal to an RTP timeout of 5000 ms.

The first test considers the system in its normal operation mode where

packets arrive in order and on schedule. In addition to handling anomalies, we wish

to ensure Xinu RTP does not harm perfectly good packet streams. The next three

tests show the system can handle lost and out-of-order packets by reordering the

input buffer, giving up on late packets, and dropping those which arrive

post-deadline. Test 5 exhausts the queuing functions by filling the circular input

buffer, flushing all packets, and then repeating the process once again. This shows

the modular arithmetic for wrapping the queue is correct. Next, we test overrun by

sending input to device faster than it can process data. The system gracefully drops

packets it is not able to accept without error and resumes normal operation when

the burst is over. Test 7 demonstrates Xinu RTP can recognize and reject duplicate

72

sequence numbers. Next, we test late arrivals on the boundary where sequence

numbers wrap beyond their maximum value. This check also audits the bounds of

the sliding window for dropped packets. Finally, we test the scenario where an early

packet triggers a reset condition for the device to catch-up from falling significantly

behind. The last two tests analyze this condition for regular and wrapped sequences.

This payload-agnostic collection of tests allows us to verify correct operation

of the Xinu RTP device independently of any specific application. As new features

are implemented this suite serves as a basis for regression testing to ensure problems

are not introduced by additional components [52].

6.2 Metrics and Measurements

Our testing procedure leverages metrics and evaluation tools internationally

recognized by industry leaders and regulatory agencies. Specifically, we directly use

the ITU’s Perceptual Evaluation of Speech Quality and Mean Opinion Score

standards. Additionally, we manipulate testing parameters based on influential

components identified in computational models designed to estimate performance

quality. In this section, we review the relevant aspects of these publications.

73

Table 6.2: Mean Opinion Score Interpretations
Score Quality (MOS) Listening Effort (MOSLE)

5 Excellent Complete relaxation possible; no effort required

4 Good Attention necessary; no appreciable effort required

3 Fair Moderate effort required

2 Poor Considerable effort required

1 Bad No meaning understood with any feasible effort

6.2.1 Mean Opinion Scores

A Mean Opinion Score (MOS) is a subjective measurement of voice quality

perceived by a human listener, as per the ITU-T P.800 recommendation [53].

Results are calculated from an arithmetic average of users rating the call quality in

a strictly controlled environment. Scores range from 1 (worst) to 5 (best), where

values above 4 are generally considered toll quality by service providers. Mean

Opinion Scores are costly and cumbersome to acquire. Consequently, several

companion recommendations describe alternate ways to estimate a MOS value

based on various objective measurements.

The ITU designates several modifiers to clarify the origin of a MOS figure.

One may become easily confused by the myriad of choices derived from combinations

of Listening Quality, Conversational Quality, and Talking Quality tests; Subjective,

Objective, and Estimated models; and Wide or Narrow bandwidths. Unless

otherwise noted, references to MOS in this document refer to narrowband (3.1 kHz)

MOS-LQO (Mean Opinion Score-Listening Quality Objective) [54].

74

6.2.2 Perceptual Evaluation of Speech Quality

The Perceptual Evaluation of Speech Quality (PESQ) assessment is an objective

measurement based on an analysis of audio recordings, as described in the ITU-T

P.862 recommendation [55]. PESQ works by comparing a known reference signal

with the result after this signal traverses the system under test, the degraded signal.

We use the reference implementation of the PESQ algorithm provided in P.862

Annex A for this comparison.

PESQ is known to accurately test a variety of factors such as speech input

levels, channel errors, environmental noise, variable delays (listening only), and time

warping. Conversely, PESQ is not well-suited for loudness loss, delays in

conversational tests, fixed delays, and talker echo. PESQ is appropriate for this

experiment because we wish to manipulate delay and packet loss for a one-way

transmission channel (non-conversational). In other words, we analyze the

transmission of audio from point A to point B in an isolated channel without

considering the interactions of audio returning from point B back to point A. Note

that PESQ is not explicitly validated for evaluating packet loss with

pulse-modulated audio. As the recommendation explains, PESQ tends to be more

sensitive than humans to front-end temporal clipping (we may hear as missing

words). Therefore, we interpret results from these tests with care by restricting

75

comparisons relative to other PESQ scores or treating MOS generalizations as

worst-case.

The raw scores PESQ generates do not directly correspond to MOS. In fact,

PESQ-MOS values range from -0.5 to 4.5 instead of 1 to 5. The function

y = 0.999 +
4.999− 0.999

1 + e−1.4945x+4.6607
(6.1)

maps a raw PESQ-MOS value x to the corresponding MOS-LQO value y [56]. Note

that as a result of this model the maximum MOS-LQO score for a perfect

reconstruction is approximately 4.549 instead of 5. Using this translation, we can

make comparisons between objective PESQ results and other subjective scores, such

as the benchmark for toll quality audio.

Speech data used in this experiment for PESQ evaluation is available with

the official algorithm release. These samples are the same audio segments used to

validate third-party compliance with the ITU-T recommendation. Test audio

contains pairs of sentences separated by silence spoken by male and female talkers.

As per ITU-T recommendation, speech bursts occur in 1 to 3 second durations and

represent 40% to 80% of the clip relative to silence intervals. Table 6.3 assigns each

of the specific files with a test number referred to through the results section.

76

Table 6.3: Audio File Data Set
Test # Sample Rate (Hz) Filename

0 8000 u af1s01.wav

1 8000 u af1s02.wav

2 8000 u af1s03.wav

3 8000 u am1s01.wav

4 8000 u am1s02.wav

5 8000 u am1s03.wav

6.2.3 Determining Test Parameters

Instead of using objective or subjective assessments to determine a MOS directly,

one can also estimate performance from characteristics of the underlying network.

The E-model is one such computational model based on a rating factor R, intended

for end-to-end transmission planning. The rating factor considers signal-to-noise

ratio, fixed and variable delays, and packet loss [57]. MOS values can be derived

from the rating factor; thus, these parameters are known to have an influence on

user perception.

Similarly, the ITU proposes a network model specifically for multimedia

transmission over IP networks [58]. Although this model is not specific to telephony

it identifies three common factors affecting performance: overall delay, packet delay

variation, and packet loss. Neither of these models are used directly in this

experiment; however, we use them as a guide for which network conditions we can

emulate to influence voice quality. By subjecting the proposed system to factors

77

Figure 6.1: Network Topology for PESQ Testing

known to be detrimental to user satisfaction, we achieve confidence that it is indeed

robust if it achieves higher scores than the status quo.

6.3 Experimental Setup

The testing environment consists of three routers connected via two Ethernet

networks (Figure 6.1). The sender, Mandragora, contains the reference audio files

locally in memory as part of its kernel image. Mandragora transmits a reference

audio file to Fenric, the receiver. Mandragora cannot communicate with Fenric

directly because they do not reside on the same network subnet. However, Poul is

able to route packets between Mandragora and Fenric because it contains interfaces

on both networks. Furthermore, Poul runs the Embedded Xinu Network Emulator,

NetEmu, which allows stochastic manipulation of network conditions [59]. As Poul

routes traffic from Mandragora to Fenric, NetEmu, drops and delays packets

according to statistical test parameters. Once Fenric receives a complete set of

degraded audio packets, it relays them to a workstation via Trivial File Transfer

78

Protocol (TFTP). Finally, the PESQ algorithm compares the reference file to the

degraded audio and assigns a MOS-LQO.

In addition to physically connecting the routers’ Ethernet interfaces as shown

in Figure 6.1, Embedded Xinu requires some software configuration to model the

illustrated scenario. First, bring up Ethernet interface ETH4 on Mandragora.

xsh@mandragora$ netup ETH4 172.16.6.112 255.255.255.0 0.0.0.0
ETH4 is 172.16.6.112 with netmask 255.255.255.0 (gateway: 0.0.0.0)

The default gateway is irrelevant because next we add a static route entry to

inform Mandragora it can access Fenric’s network via Poul.

xsh@mandragora$ route add 192.168.6.0 172.16.6.106 255.255.255.0 ETH4
xsh@mandragora$ route
Destination Gateway Mask Interface
172.16.6.0 * 255.255.255.0 ETH4
default 0.0.0.0 0.0.0.0 ETH4
192.168.6.0 172.16.6.106 255.255.255.0 ETH4

On Poul bring up two Ethernet interfaces so the routing daemon can forward

packets between two networks.

xsh@poul$ netup
ETH0 is 192.168.6.106 with netmask 255.255.255.0 (gateway: 192.168.6.50)
xsh@poul$ netup ETH4 172.16.6.106 255.255.255.0 0.0.0.0
ETH4 is 172.16.6.106 with netmask 255.255.255.0 (gateway: 0.0.0.0)

79

Fenric’s default network configuration is usable directly; however, it is

useful to add a static route back to Mandragora’s network. This is not necessary

for the PESQ experiment; nevertheless, it is handy for testing the network topology

with ICMP Echo Request/Reply packets.

xsh@fenric$ netup
ETH0 is 192.168.6.123 with netmask 255.255.255.0 (gateway: 192.168.6.50)
xsh@fenric$ route add 172.16.6.0 192.168.6.106 255.255.255.0 ETH0
xsh@fenric$ route
Destination Gateway Mask Interface
192.168.6.0 * 255.255.255.0 ETH0
default 192.168.6.50 0.0.0.0 ETH0
172.16.6.0 192.168.6.106 255.255.255.0 ETH0

If everything is configured correctly, Mandragora and Fenric should be able

to ping each other with the built-in Xinu shell command.

The endpoint routers communicate the test audio files using a custom test

application implemented as a shell command in Embedded Xinu (complete source

code listed in Appendix A). On the source router, invoke the command as the

sender (-s) with a test number corresponding to a reference file (Table 6.3). On the

destination router, invoke the command as the receiver (-r) using the same test

number. Common knowledge about the test number determines how many bytes

the receiver should expect and what filename to use for the resulting file. By

default, the receiver operates in a pass-through mode, where the RTP device does

not influence the packet sequence. This mode mimics the behavior of the previous

80

generation embedded VoIP implementation. Adding the --seq switch to the test

command enables the full-featured RTP device. The subsequent experiments

examine the complete dataset in each mode: the default sets a baseline, then the

enhanced mode demonstrates how much of an improvement Xinu RTP offers.

6.4 Test Results

This section presents the results from a collection of tests specific to VoIP

performance. Each experiment represents a different type of traffic characteristic on

an IP network. We observe how the legacy and proposed systems react to dropped

packets and delay variation. In a VoIP application, these conditions translate to lost

information, rearrangement of the audio waveform, and playback jitter. For

simplicity, we refer to the legacy system as UDP, in reference to the highest layer

protocol it relies on for data integrity. Likewise, the proposed system assumes the

RTP label for the same reason.

The network emulator is non-deterministic. It applies the same statistical

traffic shaping properties to each packet stream; however, specific segments of audio

may experience varying conditions from trial to trial. For this reason, we average

the MOS from multiple audio files to get a composite score for each traffic

condition. It is not uncommon for an individual trials to show degradation even

81

when the general trend suggestions improvement because silent and active regions

are not affected identically.

6.4.1 Control

Under ideal network conditions, the two operational modes should perform the

same. This first experiment verifies the testing environment is not introducing

errors from conditions other than those being examined.

Table 6.4: Control Experiment

Test #
PESQ-MOS MOS-LQO

UDP RTP UDP RTP

0 4.500 4.500 4.549 4.549

1 4.500 4.500 4.549 4.549

2 4.500 4.500 4.549 4.549

3 4.500 4.500 4.549 4.549

4 4.500 4.500 4.549 4.549

5 4.500 4.500 4.549 4.549

Average 4.500 4.500 4.549 4.549

Table 6.4 shows the two protocols behave identically with no emulated traffic

conditions active. Both operational modes achieve top scores confirming that

outside factors are not influencing the results. Recall that the maximum MOS-LQO

score is 4.549 despite the traditional subjective scale extending up to 5.000.

82

6.4.2 Dropped Packets

Sometimes packets get lost enroute to their destination. The network emulator

mimics this behavior by intentionally discarding a certain percentage of the packets

it forwards. Table 6.5 shows scores corresponding to a range of packet loss rates

from 1% to 10%.

Table 6.5: Emulated Packet Loss

Test #
1% 2% 3% 5% 10%

UDP RTP UDP RTP UDP RTP UDP RTP UDP RTP

0 4.261 4.520 3.439 3.990 2.888 3.561 3.851 2.544 1.984 2.789

1 3.262 3.899 4.211 4.334 3.157 3.954 2.056 2.724 2.096 2.779

2 3.170 4.096 3.490 3.561 3.895 3.779 2.937 2.981 2.390 2.576

3 4.272 4.392 4.365 3.835 3.393 3.068 3.056 3.013 3.118 2.772

4 2.855 4.165 2.547 3.762 2.125 3.985 3.271 3.012 2.362 2.578

5 3.866 4.515 4.414 4.230 3.504 3.914 2.020 3.640 2.110 2.904

Average 3.614 4.265 3.344 3.952 3.160 3.710 2.865 2.986 2.343 2.939

These results indicate that RTP typically provides a 17% to 25% increase in

MOS over UDP. When RTP detects a lost packet, it inserts a period of silence in

place of that information. Therefore, the overall output from RTP is better

time-aligned when considering subsections of the audio signal. The PESQ algorithm

rates signals with highly correlated utterances favorably so this observation is

consistent with the metric’s design.

RTP does a reasonable job maintaining scores near toll quality for minimal

amounts of packet loss. However, at loss rates above a few percent both protocols

experience a significant decrease in listening quality. This might suggest Xinu RTP

83

could further benefit from a packet loss concealment technique using a comfort noise

or repeating the last packet in place of inserting silence [51]. The results must be

interpreted with caution as PESQ is extra sensitive to clipping effects due to packet

loss. These scores tend to be lower than human subjects might rank. Still, RTP

shows noticeable improvement relative to UDP.

6.4.3 Tuning the RTP Device

Configuring Xinu RTP for a particular application is a balancing act between

competing parameters. We have already discussed the trade-off between the ability

to handle delay variation and exceeding a fixed delay budget. A related topic is how

long to wait for a particular packet before giving up and considering it lost. This

timeout depends on the packet queue size; if the timeout is too large the buffer may

overflow. Alternatively packets are more likely to be considered late if the timeout is

too small. This experiment considers various timeout settings for a packet queue

size 10 and a 2% packet loss rate (Table 6.6).

Table 6.6: RTP Packet Timeout Adjustment
Test # 40 ms 60 ms 80 ms 100ms 120 ms

0 2.948 3.684 3.990 4.041 3.917

1 3.954 4.365 4.334 4.005 3.753

2 3.693 4.184 3.561 3.809 4.080

3 3.669 3.816 3.835 3.617 3.383

4 3.779 4.458 3.762 3.529 3.905

5 4.035 3.814 4.230 3.572 3.357

Average 3.680 4.054 3.952 3.762 3.683

84

According to the results, a 60 ms timeout attains the highest MOS. However,

an 80 ms timeout is just slightly lower yet allows for additional delay variation. We

can also consider this parameter in terms of packets queued for a particular RTP

profile. Since each packet contains 20 ms of audio, the listed timeouts correspond to

allowing 2 to 6 packets accumulate in the buffer. An 80 ms timeout is a good fit for

this application because it allows 4 additional packets beyond the 5 originally

queued during call initiation. This still leaves one slot of headroom before filling the

buffer completely. We use an 80 ms timeout in these experiments unless otherwise

noted.

6.4.4 Packet Delay Variation

Packets traversing networks from source to destination may take different paths.

Also traffic saturation can vary greatly throughout the duration of a phone call.

Consequently, the total time it takes for individual packets to arrive at its

destination deviates to a significant degree. The network emulator can imitate this

phenomenon by intentionally increasing the transit time for a certain percentage of

packets. In this experiment, we observe the effect of packet delay variation on VoIP

traffic. The parameters in Table 6.7 are representative of an actual network carrying

VoIP calls amidst other data. The field study responsible for these figures comes

from Psytechnics, creators of the technology behind the PESQ algorithm [60].

85

Table 6.7: Emulated Delay Variability

Test #
25 ms 20% 50 ms 5% 75 ms 15% Overall

UDP RTP UDP RTP UDP RTP UDP RTP

0 1.801 4.549 2.612 4.549 1.545 2.964 1.986 4.020

1 1.891 4.549 2.267 4.549 1.636 2.560 1.931 3.886

2 1.940 4.452 3.566 4.549 1.737 2.380 2.414 3.794

3 2.205 4.549 2.145 4.549 2.124 1.985 2.158 3.694

4 2.209 4.549 2.921 4.549 1.714 2.600 2.281 3.899

5 2.156 4.549 2.590 4.549 2.130 2.551 2.292 3.883

Average 2.034 4.533 2.684 4.549 1.814 2.507 2.177 3.836

RTP is especially good at correcting for packet delay variation within its

calibrated window. As Table 6.7 shows, RTP completely reassembled all but one of

the delayed packet streams for up to 50 ms delays. On the other hand, UDP

suffered significant quality loss for all trials. As the delay approaches the RTP

timeout setting, the device is less effective at reconstructing the original stream, but

still shows improvement over UDP. RTP is significantly better at handling delayed

packets compared to dropped packets because it can re-align the audio stream with

the original data, not just a placeholder.

In terms of the toll quality reference target, RTP maintains increased scores

coming up just shy of a 4.0 MOS overall. UDP achieves scores implying calls would

require considerable effort to interpret and may not be understandable at all. We

could further improve the performance of RTP by increasing the timeout and the

packet queue size; however, these changes are limited by the budget set by the

maximum delay a listener cannot distinguish.

86

6.5 Summary of Findings

Independent of any application, Xinu RTP correctly handles situations where

packets arrive out of order or do not arrive on schedule. Our test suite demonstrates

successful operation in both regular and more obscure scenarios. Furthermore, Xinu

RTP provides measurable improvement in voice communication quality as compared

to the legacy UDP-based system. RTP adds some robustness against dropped

packets, but is much more effective at reordering streams subject to packet delay

variation. For best performance, RTP must consider its timeout setting and packet

queue size in terms of the fixed delay acceptable to human perception.

87

CHAPTER 7

Conclusion

This thesis describes hardware and software enhancements to an embedded VoIP

platform focused on real-time operation. The remaining sections conclude this work

with a summary of the main contributions and suggestions for future expansion.

7.1 Contributions

The work this thesis describes spans three main categories: dependencies,

implementations, and original designs. Dependent works, while intertwined

throughout the XinuPhone, are contributions from third parties for whom we wish

to attribute proper credit (also referenced throughout this document). These

components primarily exist ‘as-is’ with little adaption from their original form. For

example, the Embedded Xinu operating system running on the router platform falls

into this category. Specifically, the device API and Lund’s VoIP application code

are major components leveraged in this work. Likewise, the dsPIC firmware makes

use of Microchip’s macros and platform support libraries as building blocks for the

XinuPhone application, such as the ITU G.711 CODEC.

88

Next, we consider original implementations based on the high-level designs of

others. Contributions in this category leverage concepts from existing solutions, but

with non-trivial adaptation to suit this application. The hardware designs for the

filters, amplifiers, and serial transceiver are good examples of this kind of

contribution. The original concepts are well-defined in textbooks and application

notes; nonetheless, the application specific implementation requires component

material selection, appropriate nominal values, and adjustments for single-rail power

supply. The core of the RTP device is also largely an implementation of the

requirements described in the RFC. The required fields and packet structure

directly follow the specification; however, the implementation details in Embedded

Xinu, including a number of simplifications, remain unique.

The last category encompasses contributions unique to this thesis. Although

inspired by ideas from various sources, these segments of work represent novel

contributions to the research community. For instance, the lightweight design and

implementations of software constructs that allow RTP to run efficiently on

resource-constrained hardware. Namely, the packet queuing mechanism and thread

model for asynchronous processing are not presented in other literature. Similarly,

the firmware for the XinuPhone’s audio processor is entirely homegrown. In

summary, this work combines many existing contributions with novel advancements

to deliver the proposed real-time telephony system.

89

7.2 Future Work

The XinuPhone looks to be a promising pedagogical tool for hands-on systems

design experience. Our Internet telephony platform combines software architecture,

signal processing, computer networking, and embedded systems curriculum into an

application relevant to students. An empirical evaluation of the XinuPhone’s

success in the classroom is a logical next step. Ideally, the use of this platform

should demonstrate a significant improvement in student interest, a better

understanding of hardware/software co-design, and an increased awareness of

challenges arising from resource limitations. Evaluating educational curriculum can

be especially challenging because a baseline or control group may be difficult to

establish. Nonetheless, we believe a learning outcome analysis would be a

worthwhile endeavour.

In terms of technical research, an open and flexible platform reveals

opportunities for advancement in the Internet telephony field. One of the obvious

drawbacks to the current system is the static configuration parameters that must be

selected at compile time with a specific application in mind. While this design is

ideal for systems with limited resources, embedded devices are rapidly seeing

increases in speed, memory, and energy efficiency that all enable more possibilities

for dynamic designs. Others have already proposed means for obtaining feedback

about the performance of the transmission channel [61], [62]. Perhaps an adaptive

90

system could apply this knowledge about the channel characteristics to make more

informed decisions about how many packets to queue and how long to wait for late

arrivals. Dynamic adaptation would remove the application programmer’s need to

customize the RTP device, therefore, eliminating the need to compile custom

kernels for different applications.

At present, this platform still lacks an elegant mechanism to associate with

peer devices and initiate phone calls. The user must configure the address and port

information for the channel manually rather than through a directory scheme.

Although SIP and H.232 provide means for call signaling, full implementations of

these protocols are likely overkill for an experimental lab environment. Instead, we

envision a lightweight discovery protocol that would allow the XinuPhone to

rendez-vous with other systems on the same network. This extension would better

fit in with Embedded Xinu’s paradigm and make for an excellent networking lab

assignment.

7.3 Summary

Voice over Internet Protocol networks are here to stay. Over the next several years

we will continue to see Internet telephony replace legacy systems to leverage many

advantages of converged data/voice networks. Despite the field being relatively

mature, the lack of research and standardization concerning protocol behaviors

91

leaves unanswered questions about how to best implement these systems. This

thesis proposes an experimental telephony platform for exploring the design space

left open by these questions.

The XinuPhone’s new hardware design is more robust, scalable, and

logistically easier to implement. These features make the platform ideal for

university research and classroom environments alike. Software improvements show

demonstrable performance increase over the previous generation when the transport

network causes packet loss and delay variation. Moreover, we can provide these

enhancements for a reasonable monetary cost and with minimal computing

overhead.

92

BIBLIOGRAPHY

[1] K. Persohn and D. Brylow, “Interactive Real-Time Embedded Systems Education
Infused with Applied Internet Telephony,” in Computer Software and
Applications Conference (COMPSAC), 2011 IEEE 35th Annual, July 2011,
pp. 199 – 204.

[2] D. Minoli and E. Minoli, Delivering Voice over IP Networks, 2nd ed. Wiley
Publishing, 2002.

[3] B. Douskalis, Putting VoIP to Work. Prentice Hall, 2002.

[4] L. Madson, J. V. Meggelen, and R. Bryant, Asterisk: The Definitive Guide,
3rd ed. O’Reilly Media, 2011.

[5] U. S. Congress, “Wireless Communications and Public Safety Act of 1999,”
October 1999.

[6] P. D. van der Puije, Telecommunication Circuit Design. John Wiley and Sons,
2002.

[7] B. Wildrow and S. D. Stearns, Adaptive Signal Processing. Prentice Hall, 1985.

[8] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall, 2002.

[9] T. Noergaard, Embedded Systems Architecture. Newnes, 2005.

[10] J. Catsoulis, Designing Embedded Hardware, 2nd ed. O’Reilly Media, 2005.

[11] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating Systems Concepts, 8th ed.
John Wiley & Sons, 2009.

[12] D. E. Comer, Operating System Design: The XINU Approach. Prentice Hall,
1984.

[13] Microchip, “dsPIC DSC DSP Library,” Microchip Technology Inc., Datasheet
DSO1033B-28, 2006.

[14] J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach. Prentice Hall, 1988.

[15] A. Ambardar, Digital Signal Processing: A Modern Introduction. Thomson
Learning, 2007.

[16] “Pulse Code Modulation (PCM) of Voice Frequencies,” International
Telecommunications Union, Recommendation G.711, November 1988.

[17] “Adaptive Differential Pulse Code Modulation (ADPCM),” International
Telecommunications Union, Recommendation G.726, December 1990.

93

[18] J.-M. Valin, “The Speex Codec Manual,” Valin/Xiph.org Foundation, Tech. Rep.
1.2 Beta 2, May 2007.

[19] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters.
IEEE Press, 2005.

[20] D. E. Comer, Computer Networks and Internets, 5th ed. Prentice Hall, 2008.

[21] M. A. Dye, Network Fundamentals, CCNA Exploration Companion Guide,
2nd ed. Cisco Press, 2008.

[22] B. A. Forouzan, Data Communications and Networking, 3rd ed. McGraw-Hill,
2003.

[23] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach,
4th ed. Morgan Kaufmann, 2007.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” Internet Engineering Task Force, RFC
3550, July 2003.

[25] ——, “RTP Profile for Audio and Video Conferences with Minimal Control,” The
Internet Society, RFC 3551, July 2003.

[26] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” Internet
Engineering Task Force, RFC 3261, June 2002.

[27] “Packet-based multimedia communications systems,” International
Telecommunications Union, Recommendation H.232, December 2009.

[28] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,”
The Internet Society, RFC 4566, July 2006.

[29] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The Secure
Real-time Transport Protocol (SRTP),” The Internet Society, RFC 3711,
March 2004.

[30] P. Zimmermann, A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement
for Unicast Secure RTP,” Internet Engineering Task Force, RFC 6189, April
2011.

[31] J. Ganssle, “Embedded Y2K,” Embedded Systems Programming, vol. 3, no. 17,
pp. 97 – 99, 1999.

[32] B. Benson, A. Arfaee, C. Kim, R. Kastner, and R. K. Gupta, “Integrating
embedded computing systems into high school and early undergraduate
education,” Education, IEEE Transactions on, vol. PP, no. 99, pp. 1–6,
September 2010.

[33] P. Koopman, H. Choset, R. Gandhi, B. Krogh, D. Marculescu, P. Narasimhan,
J. M. Paul, R. Rajkumar, D. Siewiorek, A. Smailagic, P. Steenkiste, D. E.
Thomas, and C. Wang, “Undergraduate embedded system education at

94

Carnegie Mellon,” ACM Transactions on Embedded Computing Systems,
vol. 4, no. 3, pp. 500–528, August 2005.

[34] D. Brylow and B. Ramamurthy, “Nexos: A next generation embedded systems
laboratory,” SIGBED Review, vol. 6, no. 1, January 2009.

[35] R. Zhang, J. Liu, Y. Gao, and J. Qiao, “A realized embedded streaming media
system,” in Wireless, Mobile and Multimedia Networks, 2006 IET
International Conference on, November 2006, pp. 1–4.

[36] G. Cuijuan, M. Changyun, W. Zhigang, and L. Jie, “Design and implementation
of simplified mgcp stack based on dsp,” in Future Networks, 2010. ICFN ’10.
Second International Conference on, January 2010, pp. 381 –384.

[37] “Arduino,” http://www.aruino.cc, 2011.

[38] Marquette University Systems Lab, “Embedded Xinu Wiki,”
http://xinu.mscs.mu.edu/, 2011.

[39] D. Rowe, “Rowetel: A phone call should be a human right, not a privlege,”
http://www.rowetel.com/, 2011.

[40] Z. D. Lund, “A VoIP Implementation on an Embedded Platform,” Master’s
thesis, Marquette University, 2010.

[41] S. Morlat, “oRTP, a Real-time Transport Protocol (RTP,RFC3550) library,”
http://www.linphone.org/eng/documentation/dev/ortp.html, 2012.

[42] LIVE555 Networks, Inc., “LIVE555 Streaming Media,”
http://www.live555.com/liveMedia/, 2012.

[43] GNU Telephony, “GNU ccRTP,” http://www.gnu.org/software/ccrtp/, 2006.

[44] Free Software Foundation, Inc., “Various licenses and comments about them,”
http://www.gnu.org/licenses/license-list.html, 2012.

[45] Microchip, “dsPIC33FJ64GP802: High-Performance, 16-bit Digitial Signal
Controllers,” Microchip Technology Inc., Datasheet DS70292F, 2011.

[46] National, “Low Power Quad Operational Amplifiers,” National Semiconductor
Corporation, Datasheet DS009299, 2004.

[47] D. Self, Small Signal Audio Design. Focal Press, 2010.

[48] R. Schaumann and M. E. V. Valkenburg, Design of Analog Filters. Oxford
University Press, 2001.

[49] B. Lathi, Linear Systems and Signals, 2nd ed. Oxford University Press, 2005.

[50] H. Schulzrinne, “Some Frequently Asked Questions about RTP,”
http://www.cs.columbia.edu/∼hgs/rtp/, January 2008.

[51] T. Braun, M. Diaz, J. E. Gabeiras, and T. Staub, End-to-End Quality of Service
Over Heterogeneous Networks. Springer-Verlag, 2008.

95

[52] G. J. Myers, The Art of Software Testing. John Wiley & Sons, 1979.

[53] “Methods for subjective determination of transmission quality,” International
Telecommunications Union, Recommendation P.800, August 1996.

[54] “Mean Opinion Score (MOS) terminology,” International Telecommunications
Union, Recommendation P.800.1, July 2006.

[55] “Perceptual evaluation of speech quality (PESQ): An objective method for
end-to-end speech quality assessment of narrow-band telephone networks and
speech codecs,” International Telecommunications Union, Recommendation
P.862, February 2001.

[56] “Mapping function for transforming P.862 raw result scores to MOS-LQO,”
International Telecommunications Union, Recommendation P.862.1, November
2003.

[57] “The E-model: a computational model for use in transmission planning,”
International Telecommunications Union, Recommendation G.107, December
2011.

[58] “Network model for evaluating multimedia tranmission performance over Internet
Protocol,” International Telecommunications Union, Recommendation G.1050,
March 2011.

[59] D. Brylow and K. Thurow, “Hands-on networking labs with embedded routers,”
in SIGCSE 2011: Proceedings of the 42nd SIGCSE technical symposium on
Computer science education, 2011.

[60] A. Rix, “End-to-end speech quality assessment of networks using PESQ (P.862),”
Psytechnics Limited, Workshop ITU-T SG12, October 2011.

[61] T. Friedman, R. Canceres, and A. Clark, “RTP Control Protocol Extended
Reports (RTCP XR),” The Internet Society, RFC 3611, November 2003.

[62] L. Carvalho, E. Mota, R. Aguiar, A. F. Lima, J. N. de Souza, and A. Barreto,
“An E-model implementation for speech quality evaluation in VoIP systems,”
in 10th IEEE Symposium on Computers and Communication (ISCC), June
2005, pp. 933 – 938.

[63] P. Single, “Optimum hybrid design,” National Semiconductor, Application Note
397, July 1985.

[64] A. R. Hambley, Electronics, 2nd ed. Prentice Hall, 2000.

[65] R. C. Hsu and W.-C. Liu, “Project based learning as a pedagogical tool for
embedded system education,” in Information Technology: Research and
Education, 2005. ITRE 2005. 3rd International Conference on, June 2005, pp.
362–366.

[66] W. Stapleton, “Microcomputer fundamentals for embedded systems education,”
in Frontiers in Education Conference, 36th Annual, October 2006, pp. 6–10.

96

[67] M. Mitchell, “Using PWM Timer B as a DAC,” Texas Instruments, Application
Report SLAA116, December 2000.

[68] MCF532x/7x Embedded VoIP Solution, Freescale Semiconductor, 2007.

[69] SPA3102 Phone Adapter with Router, Cisco Systems, Inc., 2008.

[70] B. Carter, “A Single-Supply Op-Amp Circuit Collection,” Texas Instruments,
Application Report SLOA058, November 2000.

97

APPENDIX A

Audio File Transport Test Application

1 /∗∗
2 ∗ @f i l e x s h t e s t . c
3 ∗ @provides x s h t e s t .
4 ∗
5 ∗ $Id : x s h t e s t . c 2610 2012−03−24 21 : 04 : 35Z kpersohn $
6 ∗/
7 /∗ Embedded Xinu , Copyright (C) 2009 . Al l r i g h t s r e s e rved . ∗/
8
9 #include <s tdde f . h>

10 #include <s t d l i b . h>
11 #include <s t d i o . h>
12 #include <dev i c e . h>
13 #include <network . h>
14 #include <e the r . h>
15 #include <rtp . h>
16 #include <t f t p . h>
17 #include <s h e l l . h>
18
19 extern int b ina ry da t a u a f 1 s 0 1 wav s t a r t ;
20 extern int b ina ry da t a u a f 1 s 0 2 wav s t a r t ;
21 extern int b ina ry da t a u a f 1 s 0 3 wav s t a r t ;
22 extern int b inary data u am1s01 wav star t ;
23 extern int b inary data u am1s02 wav star t ;
24 extern int b inary data u am1s03 wav star t ;
25
26 struct r tpTe s tF i l e rtpTestTab [] =
27 {
28 {0 , ” u a f1 s01 . wav” , 128044 , & b ina ry da t a u a f 1 s 0 1 wav s t a r t } ,
29 {1 , ” u a f1 s02 . wav” , 128044 , & b ina ry da t a u a f 1 s 0 2 wav s t a r t } ,
30 {2 , ” u a f1 s03 . wav” , 128044 , & b ina ry da t a u a f 1 s 0 3 wav s t a r t } ,
31 {3 , ”u am1s01 . wav” , 128044 , & b inary data u am1s01 wav star t } ,
32 {4 , ”u am1s02 . wav” , 128044 , & b inary data u am1s02 wav star t } ,
33 {5 , ”u am1s03 . wav” , 128044 , & b inary data u am1s03 wav star t }
34 } ;
35
36 stat ic void l i s tR tpTe s t s (void) ;
37 stat ic thread t e s t r e c v (ushort , void ∗ , uint , t i d t yp) ;
38
39 /∗∗
40 ∗ She l l command (t e s t) prov ide s a mechanism f o r t e s t i n g Xinu f e a t u r e s .

The
41 ∗ ac t i on and output v a r i e s depending on the f e a tu r e cu r r en t l y being t e s t ed .
42 ∗ This i s not meant to s e rve as a permanent s h e l l command f o r a p a r t i c u l a r
43 ∗ ac t i on .
44 ∗ @param nargs number o f arguments

98

45 ∗ @param args array o f arguments
46 ∗ @return non−zero value on e r r o r
47 ∗/
48 she l lcmd x sh t e s t (int nargs , char ∗ args [])
49 {
50 ushort dev = 0 ;
51 ushort t e s t = 0 ;
52 struct netaddr rhos t ;
53 struct netaddr ∗ l o c a l h o s t = NULL;
54 struct netaddr ∗ remotehost = NULL;
55 struct n e t i f ∗ i n t e r f a c e = NULL;
56 uchar ∗data = NULL;
57 uchar rtpmode = 0 ;
58 uchar mode = 0 ;
59 u int rxbytes = 0 ;
60 int count = 0 ;
61 int i = 0 ;
62 message msg = 0 ;
63 t i d t yp t i d ;
64
65 rtpmode = RTP MODE BASIC;
66
67 i f (nargs < 2 | | (nargs == 2 && strncmp (args [1] , ”−−help ” , 6) == 0))
68 {
69 p r i n t f (”\nUsage :\n”) ;
70 p r i n t f (”\ t%s − l \n” , args [0]) ;
71 p r i n t f (”\ t%s [−−seq] −r <t e s t >\n” , args [0]) ;
72 p r i n t f (”\ t%s −s <t e s t > <dst ip>\n” , args [0]) ;
73 p r i n t f (” Desc r ip t i on :\n”) ;
74 p r i n t f (”\ tSends and r e c e i v e s audio f i l e s us ing RTP.\n”) ;
75 p r i n t f (”Parameters :\n”) ;
76 p r i n t f (”\ t−l \ t \ t L i s t a v a i l a b l e t e s t f i l e s \n”) ;
77 p r i n t f (”\ t−r \ t \ tRece ive data from any host \n”) ;
78 p r i n t f (”\ t−s \ t \ tSend data to s p e c i f i e d remote host \n”) ;
79 p r i n t f (”\ t−−seq \ tOpt iona l l y re−order incoming packet sequence \n”) ;
80 p r i n t f (”\ t<dst ip>\tIP address o f remote host \n”) ;
81 p r i n t f (”\ t<t e s t >\t \ tIndex o f t e s t f i l e (s ee − l)\n”) ;
82 return SHELL OK;
83 }
84 else
85 {
86 for (i = 1 ; i < nargs ; i++)
87 {
88 i f (strncmp (args [i] , ”− l ” , 2) == 0)
89 {
90 l i s tR tpTe s t s () ;
91 return SHELL OK;
92 }
93 else i f (strncmp (args [i] , ”−r ” , 2) == 0)
94 {
95 i f (i + 1 < nargs)
96 {
97 mode = RTP TEST MODE RECV;
98 t e s t = a t o i (args [i + 1]) ;

99

99 i += 1 ;
100 }
101 else
102 {
103 f p r i n t f (s tde r r , ”Miss ing parameter .\n”) ;
104 return SHELL ERROR;
105 }
106 }
107 else i f (strncmp (args [i] , ”−s ” , 2) == 0)
108 {
109 i f (i + 1 < nargs)
110 {
111 mode = RTP TEST MODE SEND;
112 t e s t = a t o i (args [i + 1]) ;
113 // FIXME: Assuming 192 . 168 . 6 . 1 23 f o r t h e s i s t e s t i n g
114 // remotehost = &rhos t ;
115 // dot2ipv4 (args [i + 2] , remotehost) ;
116 dot2ipv4 (RTP TEST IP ADDR, &rhos t) ;
117 // i += 2 ;
118 i += 1 ;
119 }
120 else
121 {
122 f p r i n t f (s tde r r , ”Miss ing parameter .\n”) ;
123 return SHELL ERROR;
124 }
125 }
126 else i f (strncmp (args [i] , ”−−seq ” , 5) == 0)
127 {
128 rtpmode = RTP MODE SEQ;
129 }
130 else
131 {
132 f p r i n t f (s tde r r , ”Unrecognized parameter . ”) ;
133 f p r i n t f (s tde r r , ”Try %s −−help \n” , args [0]) ;
134 return SHELL ERROR;
135 }
136 }
137 }
138
139 /∗ Val idate t e s t case ∗/
140 i f (t e s t >= RTP TEST TAB SIZE)
141 {
142 f p r i n t f (s tde r r , ” I nva l i d t e s t case .\n”) ;
143 return SHELL ERROR;
144 }
145
146 /∗ Pick the f i r s t a c t i v e l o c a l i n t e r f a c e ∗/
147 i = 0 ;
148 while ((i < NETHER) &&
149 (NULL == (i n t e r f a c e = netLookup ((e ther tab [i] . dev)−>num))))
150 i++; /∗ Keep look ing ∗/
151
152 /∗ Lookup IP address o f l o c a l i n t e r f a c e ∗/

100

153 i f (NULL == i n t e r f a c e)
154 {
155 f p r i n t f (s tde r r , ”No network i n t e r f a c e found .\n”) ;
156 return SYSERR;
157 }
158 l o c a l h o s t = &(i n t e r f a c e−>ip) ;
159
160 /∗ Al l o ca t e RTP dev i ce ∗/
161 i f ((ushort)SYSERR == (dev = rtpAl l o c ()))
162 {
163 f p r i n t f (s tde r r , ” Fa i l ed to a l l o c a t e RTP dev i ce .\n”) ;
164 return SHELL ERROR;
165 }
166
167 /∗ Open RTP dev i ce ∗/
168 i f (SYSERR == open (dev , l o c a l ho s t , &rhost , RTP TEST PORT,
169 // i f (SYSERR == open (dev , l o c a l ho s t , remotehost , RTP TEST PORT,
170 RTP TEST PORT, RTP PT L16LE 8K , rtpmode))
171 {
172 f p r i n t f (s tde r r , ” Fa i l ed to open RTP dev i ce .\n”) ;
173 return SHELL ERROR;
174 }
175
176 switch (mode)
177 {
178 case RTP TEST MODE RECV:
179
180 /∗ Al l o ca t e space f o r incoming f i l e ∗/
181 i f (NULL == (data = (uchar ∗) mal loc (rtpTestTab [t e s t] . s i z e)))
182 {
183 f p r i n t f (s tde r r , ” Fa i l ed to a l l o c a t e r e c e i v e bu f f e r .\n”) ;
184 c l o s e (dev) ;
185 return SHELL ERROR;
186 }
187
188 /∗ Spawn he lpe r thread to r e c e i v e data ∗/
189 t i d = c r ea t e (t e s t r e cv , SHELL CMDSTK, SHELL CMDPRIO, ” t e s t r e c v ” ,
190 4 , dev , data , rtpTestTab [t e s t] . s i z e , g e t t i d ()) ;
191 i f (SYSERR == t id)
192 {
193 f p r i n t f (s tde r r , ” Fa i l ed to c r e a t e r e c e i v e r thread .\n”) ;
194 f r e e (data) ;
195 c l o s e (dev) ;
196 return SHELL ERROR;
197 }
198
199 /∗ Redi rec t std in , stdout , s t d e r r to parent (t h i s) thread ∗/
200 thrtab [t i d] . f d e s c [0] = thrtab [g e t t i d ()] . f d e s c [0] ;
201 thrtab [t i d] . f d e s c [1] = thrtab [g e t t i d ()] . f d e s c [1] ;
202 thrtab [t i d] . f d e s c [2] = thrtab [g e t t i d ()] . f d e s c [2] ;
203
204 /∗ Launch thread ∗/
205 r e c v c l r () ;
206 ready (t id , RESCHED NO) ;

101

207
208 /∗ Po l l he lpe r thread f o r p rog r e s s updates ∗/
209 while ((msg != TIMEOUT) && (msg != t i d))
210 {
211 rxbytes = msg ;
212 p r i n t f (”RX Bytes : %d\ r ” , rxbytes) ;
213 msg = recvt ime (RTP TEST TIMEOUT) ;
214 }
215
216 /∗ Was the he lpe r thread stood up? ∗/
217 i f (TIMEOUT == msg)
218 k i l l (t i d) ;
219
220 /∗ TFTP re c e i v ed f i l e to d e f au l t s e r v e r ∗/
221 t f tpPut (data , rxbytes , rtpTestTab [t e s t] . f i l e , TFTP SERVER) ;
222 p r i n t f (”Saved %d bytes to TFTP se rv e r .\n” , rxbytes) ;
223
224 f r e e (data) ;
225 break ;
226 case RTP TEST MODE SEND:
227
228 /∗ Enable f low con t r o l ∗/
229 con t r o l (dev , RTP CTRL FLOW CTRL, TRUE, NULL) ;
230
231 /∗ Send ∗/
232 count = wr i t e (dev , rtpTestTab [t e s t] . addr , rtpTestTab [t e s t] . s i z e) ;
233
234 i f (SYSERR == count)
235 {
236 f p r i n t f (s tde r r , ”RTP wr i t e f a i l e d .\n”) ;
237 c l o s e (dev) ;
238 return SHELL ERROR;
239 }
240
241 p r i n t f (”Sent t e s t f i l e %s s u c c e s s f u l l y .\n” ,
242 rtpTestTab [t e s t] . f i l e) ;
243
244 break ;
245 default :
246 f p r i n t f (s tde r r , ”Unknown mode .\n”) ;
247 c l o s e (dev) ;
248 return SHELL ERROR;
249 }
250
251 c l o s e (dev) ;
252
253 return SHELL OK;
254 }
255
256 stat ic void l i s tR tpTe s t s (void)
257 {
258 int i = 0 ;
259
260 p r i n t f (”\n”) ;

102

261 p r i n t f (”\ t+===+==================+==========+============+\n”) ;
262 p r i n t f (”\ t | I | Filename | S i z e | Address | \n”) ;
263 p r i n t f (”\ t+===+==================+==========+============+\n”) ;
264 for (i = 0 ; i < RTP TEST TAB SIZE ; i++)
265 {
266 p r i n t f (”\ t | %d ” , rtpTestTab [i] . index) ;
267 p r i n t f (” | %16s ” , rtpTestTab [i] . f i l e) ;
268 p r i n t f (” | %8d ” , rtpTestTab [i] . s i z e) ;
269 p r i n t f (” | 0x%08x ” , rtpTestTab [i] . addr) ;
270 p r i n t f (” | \n”) ;
271 }
272 p r i n t f (”\ t+===+==================+==========+============+\n”) ;
273 p r i n t f (”\n”) ;
274 }
275
276 stat ic thread t e s t r e c v (ushort dev , void ∗buf , u int len , t i d t yp parent) {
277 int count = 0 ;
278 u int rxbytes = 0 ;
279
280 while (rxbytes < l en)
281 {
282 /∗ Read from RTP dev i ce ∗/
283 count = read (dev , buf , l en − rxbytes) ;
284
285 i f (SYSERR == count)
286 {
287 f p r i n t f (s tde r r , ”RTP read f a i l e d .\n”) ;
288 f r e e (buf) ;
289 c l o s e (dev) ;
290 return SYSERR;
291 }
292
293 /∗ Advance po in t e r ∗/
294 buf += count ;
295
296 /∗ Keep track o f bytes read ∗/
297 rxbytes += count ;
298
299 /∗ Report p rog r e s s back to parent ∗/
300 // kp r i n t f (” Sending %d bytes to t i d %d .\ r \n” , rxbytes , parent) ;
301 send (parent , rxbytes) ;
302 }
303
304 return OK;
305 }

	Marquette University
	e-Publications@Marquette
	Real-Time Transport of Internet Telephony Service Utilizing Embedded Resource-Constrained Systems
	Kyle Persohn
	Recommended Citation

	tmp.1347284761.pdf.pQxnr

