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ABSTRACT 
 

CORRELATION OF DIFFUSION TENSOR IMAGING  
INDICES WITH HISTOLOGICAL PARAMETERS IN 
RAT CERVICAL SPINAL CORD GRAY MATTER 

FOLLOWING DISTAL CONTUSION 
SPINAL CORD INJURY 

 
 

Robin E. Mottackel, B.E. 

Marquette University, 2010 
 

The purpose of this study was to delineate the diffusion tensor imaging (DTI) 
parameters across the cervical spinal cord gray matter (GM) in a distal (T8) rat contusion 
spinal cord injury (SCI) model. DTI data were obtained from ex vivo rat spinal cords and 
registered to corresponding histological slices in samples from the acute through chronic 
stages of SCI including uninjured control, 2 weeks post injury, 15 weeks post injury and 
25 weeks post injury groups (n = 5 in all groups). After imaging, samples were 
dehydrated, blocked in paraffin, sliced axially and stained with eriochrome cyanine R 
stain and H&E counter-stain. A corresponding sample was post fixed with osmium 
tetroxide and stained with toluidine blue. Histology images of the eriochrome cyanine R 
stained and H&E counter-stained slices were captured at 4x and then segmented into 
white matter (WM) and GM and dorsal and ventral GM using a custom cluster analysis. 
Using whole cord templates, DTI images for each animal were then registered to the 
corresponding histology images. The WM and the GM regions of interest (ROI) 
histological templates were then used to map DTI indices, including fractional anisotropy 
(FA), longitudinal apparent diffusion coefficient (lADC) and transverse apparent 
diffusion coefficient (tADC) across the GM. The average values for each index were also 
calculated in predefined gray matter ROIs. Histology images of the above mentioned 
ROIs were captured at 40x resolution using the toluidine blue stained slices for the 
control and post injury groups (n=4). Motoneuron size in the ventral GM was calculated 
for each of the control and post injury groups. It was observed that the FA and lADC 
values in the dorsal GM ROI were significantly higher than that in the ventral GM ROI in 
controls, fifteen weeks post injury and twenty five weeks post injury groups (P < 0.05). 
The overall GM FA value at twenty five weeks was significantly higher than the FA 
value at two weeks post injury (P < 0.05) and the FA value in controls (P < 0.05). Group 
analysis of the size of the motor neurons showed a 9% increase in the motoneuron size at 
two weeks (P < 0.01) and 42% increase at twenty five weeks (P < 0.01) post injury as 
compared to controls. The motor neurons also showed a significant increase in size at 
twenty five weeks post injury (P < 0.01) as compared to the motor neuron size at two 
weeks post injury. These results indicate changes in gray matter structure rostral to a 
contusion injury that can be detected and monitored using DTI.
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Chapter 1: 

Introduction 
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 The phenomenon of diffusion was first elucidated by Robert Brown in 1827 and 

Albert Einstein in 1905 in their seminal findings (Brown 1828; Einstein 1905). The aim 

of this thesis, in its most basic form, was to utilize precise and non-invasive imaging 

techniques to gauge, quantify and analyze diffusion behavior in living tissue. This would 

ultimately lead to clarity in the understanding of tissue diffusion properties in health as 

well as sickness. In order to achieve the aforementioned aim, this thesis uses diffusion 

weighted imaging (DWI) and diffusion tensor imaging (DTI) which are robust, non-

invasive imaging techniques based fundamentally on the phenomenon of diffusion. In 

order to understand the principles of DWI and DTI, a firm understanding of the concept 

of diffusion is a prerequisite. To better visualize diffusion, consider the example of a 

glass of water. To the naked eye, the water in the glass appears stationary. However, at a 

microscopic level, every molecule is in random motion. This random motion is 

manifested to the naked eye when we place a drop of ink in the glass of water. The two 

liquids merge together to form a homogeneous distribution of murky liquid, never to 

return to its initial state spontaneously. Since diffusion basically constitutes motion of 

water molecules, it can be used as a probe to investigate the physical properties, integrity, 

shape, permeability and three dimensional arrangements of barriers to molecular 

displacement. Based on this, DWI and its successor DTI can be used to understand the 

diffusion properties in a biological system (Moseley, Kucharczyk et al. 1990; Moseley, 

Kucharczyk et al. 1991; Beaulieu 2002).  

 DWI and DTI fundamentally have their roots in Magnetic resonance imaging 

(MRI), a medical imaging modality that has gained wide spread use as a flexible and 

robust imaging technique to gain insight into the human body.  This is due to the many 
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advantages MRI has over other imaging modalities, namely its non-invasive nature and 

the absence of any adverse effects. For example, positron emission tomography (PET) 

and computed tomography (CT) are excellent imaging modalities in their own right but 

both suffer from the harmful effects of ionizing radiation. The signal acquired in MRI is 

affected by a myriad of physical, chemical and biological properties, resulting in 

excellent contrast mechanisms that provide an exceptional understanding of bio-systems 

and help in diagnosis and prognosis of disease. 

 Although MRI is an excellent imaging modality, it displays shortcomings when 

used to image the spinal cord. Traditional MRI sequences, based on proton density 

weighted by longitudinal and transverse relaxation times, fail to provide adequate 

sensitivity to the structure of the spinal cord following spinal cord injury (SCI). It has 

been shown that gross morphological or MR imaging abnormalities of the spinal cord can 

be absent during the immediate phase following SCI with the exception of patients 

suffering from severe compressive or lacerative injuries (Aoyama, Hida et al. 2007). This 

calls for an imaging technique which is more sensitive to the underlying spinal cord 

microstructure than traditional MRI.   

 Diffusion weighted imaging (DWI) overcomes this shortcoming of MRI. DWI is 

an MRI technique that measures the attenuation of the MR signal due to incoherent 

motion of unbound water molecules(Basser and Jones 2002). The diffusion of water 

molecules is appealing because water molecules are abundant in living tissue and are 

harmless. This, coupled along with the ability of diffusing water molecules to probe 

surrounding tissue microstructure is the main motivation and principle behind DWI. 

Indeed, diffusion DWI and DTI have shown significant sensitivity to structural changes 
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within the human spinal cord following acute spinal trauma and chronic spinal cord 

injury (Sagiuchi, Tachibana et al. 2002; Ellingson, Ulmer et al. 2006). 

 This thesis is motivated by a strong appreciation of the advantages of DWI and 

DTI mentioned above and a firm understanding of the current status of research in SCI 

using DWI and DTI. DTI has been used extensively to study specific axonal tracts in the 

spinal cord white matter following spinal cord injury (Kim, Loy et al. ; Ellingson, Ulmer 

et al. 2006; Kozlowski, Raj et al. 2008; Zhang, Jones et al. 2009); however, there is a lack 

of clarity with regards to diffusion parameters in the spinal cord gray matter following 

spinal cord injury. To date there have been no studies correlating spinal cord gray matter 

cytoarchitecture to the DTI indices following spinal cord injury. Also, a firm 

understanding of the correlation between DTI characteristics in the cervical spinal cord 

gray matter and the underlying gray matter neuronal structure is yet to be established. In 

addition to this, most DTI studies done until now have used one of the following methods 

to select ROIs. They are either based on user selected ROI's or on segmentation based on 

atlas templates since segmentation techniques are not robust enough to segment white 

matter and gray matter in the DTI indices automatically because of the relatively low 

resolution of spinal cord imaging. Segmentation based on manual user-selected ROIs 

could suffer from human error and does not include the entire region, but rather 

incorporates a sample area in the region of interest. Along with this, segmentation based 

on generic atlas templates suffer from error in registration due to inter-subject variability. 

 Based on this background, this research tries to address the limitations and fill 

gaps in the current state of research in SCI using DTI. This thesis tries to further the 

understanding of diffusion in the spinal cord gray matter in health and injury using DTI. 
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Firstly, this thesis develops an automatic technique to segment ROIs in the gray matter of 

the rat spinal cord in DTI contrast images. Secondly, this technique is applied to quantify 

and characterize the spatio-temporal diffusion characteristics of the rat cervical spinal 

cord gray matter. Finally, these diffusion characteristics are correlated with underlying 

gray matter neuronal structure using histology.  

 This thesis is organized as follows. Chapter 1 provides the appropriate framework 

for this research and lists the fundamental issues that inspired this thesis. Chapter 2 

discusses the basics of MRI, DWI and DTI. This is followed by a review of the normal 

gross anatomy and physiology of the spinal cord. The pathology, mechanism and time 

course of inflammatory response in the spinal cord following spinal cord injury is also 

discussed in this chapter. This is followed by a review of the spinal cord diffusion 

characteristics using DTI in health and injury as reported by previous studies. This 

chapter finally winds up explaining the mathematical principles behind the image 

processing techniques used in this particular thesis. Chapter 3 presents the study 

correlating diffusion tensor imaging indices with histological parameters in rat cervical 

spinal cord gray matter following distal contusion spinal cord injury. 
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Chapter 2: 

Background 
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2.1 Magnetic Resonance Imaging 

 Magnetic resonance imaging (MRI) is one of the two major fields that constitute 

nuclear magnetic resonance (NMR), the other being magnetic resonance spectroscopy 

(MRS). MRS is widely used in the field of chemistry to analyze the composition of a 

wide range of compounds while MRI is widely used in the medical field as an imaging 

tool. This wide scale use of MRI as a clinical diagnosis tool led to the deletion of the term 

"nuclear" from NMR to prevent the idea that MRI is related to either radioactivity or 

nuclear medicine techniques.  

 Although MRI is a relatively new technique, the foundations for MRI were first 

laid in the 1940s.The physical phenomenon of NMR was first discovered independently 

by Bloch (Bloch, Hansen et al. 1946) and Purcell (Purcell, Torrey et al. 1946) in the year 

1946 for which they received the Noble Prize in Physics in 1952. The basis for the use of 

NMR to analyze chemicals was established by Proctor (Proctor and Yu 1950) and 

Dickinson (Dickinson 1950) in their pioneering work in 1950. Both independently found 

chemical shift effects in the NMR spectra. Damadian, in his original work, showed the 

possibility of using NMR for medical diagnosis by studying the differences in relaxation 

times between different tissues and between normal and cancerous tissues (Damadian 

1971). More recently the ground breaking work of Lauterbur (Lauterbur 1973) and 

Mansfield (Mansfield 1977) led to vast improvements in the field of MRI which led to 

them being awarded the Noble Prize in 2003. Lauterbur's work had profound effect on 

the development of MRI, as he proposed the use of a gradient of the main magnetic field 

to enforce a linear variation of the frequency of MR signals as a function of the spatial 



 

location of their source. Mansfield introduced the echo pla

basis for fast imaging speeds

been growing at a remarkable rate with respect to its use a medical imaging tool.

2.1.1 Principles of MRI 

 The fundamental physical property of spin

elementary particle, is the foundation for MRI. Nucleons have spin which can pair up 

when the orbital are being filled and cancel out. More or less every element in the 

periodic table has an isotope possessing a non zero nuclear spin. The nucleus with a non 

zero spin possesses a magnetic moment, analogous to that of the magnetic bar in which 

the magnetic field is oriented from the south to the north pole, as shown in 

the absence of an external magnetic field, the magnetic moments of the nuclear spins will 

have random orientation, so the net effect of these nuclear spins will be zero

Figure 2.2.  

Figure 2.1: Analogy of a rotating spin to the  magnetic field produced by a magnetic bar.

location of their source. Mansfield introduced the echo planar technique providing the 

for fast imaging speeds. Since these studies were published, the field of MRI has 

been growing at a remarkable rate with respect to its use a medical imaging tool.
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Figure 2.2: Random orientation of the magnetic moments of the n
absence of an external magnetic field.
 
 In order for a nucleus to be manipulated using an external magnetic field, it has to 

have a non-zero nuclear spin and has to be naturally present in abundance so that it can 

be detected using MRI. Some of the nuclei 

2.1. For clinical MRI, the hydrogen nuclei (

gives the strongest signal and is most abundant in the human body.

Nucleus 

Hydrogen 

Carbon 
Nitrogen 
Oxygen 
Fluorine 
Sodium 
Phosphorus 

Table 2.1: Nuclei of interest in MRI.

Random orientation of the magnetic moments of the nuclear spins in the 
absence of an external magnetic field. 

In order for a nucleus to be manipulated using an external magnetic field, it has to 

zero nuclear spin and has to be naturally present in abundance so that it can 

. Some of the nuclei that are of interest in MRI are listed in 

. For clinical MRI, the hydrogen nuclei (H1 ) is the most commonly used nuclei as it 

gives the strongest signal and is most abundant in the human body. 

Atomic number Gyromagnetic ratio 
(Mhz/Tesla) 

1 42.58 

13 10.71 
15 4.31 
17 5.77 
19 40.05 
23 11.26 

 31 17.23 
Nuclei of interest in MRI. 
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 When an external magnetic field (0B ) is applied, the nuclear spins align parallel 

or anti-parallel to the external magnetic field (Figure 2.3A). The parallel state of the 

nuclear spin is the low energy state while the anti-parallel state of the nuclear spin is the 

high energy state. There is a slight excess of the parallel nuclei compared to the anti-

parallel nuclei leading to a net magnetization (M) in the direction of the external         

field 0B  at the equilibrium stage (Figure 2.3B). The parallel and the anti parallel nuclei 

also precess around the fixed axis of the external magnetic field 0B  (Figure 2.3B) with a 

frequency called the Larmor frequency which is defined by equation (2-1). 

     0Bwo λ=          (2-1) 

In this equation, ow  is the frequency of the precession, 0B  is the magnetic field strength 

and λ  is gyromagnetic ratio which is a property of the different nuclei. For         

hydrogen (H1  ), λ is approximately 42.58MHz/T. 

 

 

 



 

A    

Figure 2.3: A) Nuclear spins aligned parallel and anti parallel to the external magnetic 
field 0B . B) Nuclei in both the parallel and the anti parallel states precessing around the 

axis of the external magnetic 

of the external field 0B . 

 
 To measure the magnetic resonance (MR) signal, the spins in equilibrium state 

must be excited by a radio frequency (RF) pulse. The RF pu

that its frequency is equal to the Larmor frequency. This RF pulse is then applied along 

the transverse (X-Y) plane. The RF pulse is also called the 

applied the energy is absorbed by 

and anti-parallel states is disturbed and the phase of the spins is aligned. Due to 

realignment of spins, the longitudinal magnetization 

from the z-direction. This angle of flip is determined by the strength of the 

its duration. A 90 degree RF pulse is mostly used in MR signal measurement which tips 

the vector M into the X-Y 

(2-2) 

    

         B                                                                                                                             

Nuclear spins aligned parallel and anti parallel to the external magnetic 
. B) Nuclei in both the parallel and the anti parallel states precessing around the 

axis of the external magnetic field 0B leading to a net magnetization (M) in the direction 

To measure the magnetic resonance (MR) signal, the spins in equilibrium state 

must be excited by a radio frequency (RF) pulse. The RF pulse is tuned in such a way 

that its frequency is equal to the Larmor frequency. This RF pulse is then applied along 

Y) plane. The RF pulse is also called the 1B  field. When the 

he energy is absorbed by H1  nuclei, after which the distribution of the parallel 

parallel states is disturbed and the phase of the spins is aligned. Due to 

the longitudinal magnetization M is flipped down a certain angle 

direction. This angle of flip is determined by the strength of the 

its duration. A 90 degree RF pulse is mostly used in MR signal measurement which tips 

Y plane (Figure 2.4). The flip angle is defined by the equation 
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characterizes the vector component of the magnetization in transverse plane based on the 

loss of phase coherence among spins due to the interactions between spins is called the 

spin-spin relaxation time 2T . The time constant that characterizes the vector component 

of the magnetization in transverse plane based on the effect of the inhomogeneity of 0B  

on the phase of nuclear spins is called as 2T
�
 relaxation time. The relation between the 

gradual increase in MZ and 1T  is given by equation (2-3). 

     )1()( 1T

t

z eMtM
−

−=                                            (2-3) 

1T  is the time taken for MZ to grow from 0 to approximately 63% of M following a 90 

degree pulse (Figure 2.5). The relation between the gradual decay in MXY and 2T  is given 

by the equation (2-4). 
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T2 is the time it takes for the transverse magnetization xyM  to decay to 37% of its original 

magnitude (Figure 2.6). 

 



 

Figure 2.5: T1 recovery curve showing the increase in M

Figure 2.6: T2 decay curve showing the decrease in 

Along with the concentration of the magnetization spins, these time constants are 

essential imaging parameters in MR imaging. The contrast between different tissues in 

MRI image is achieved based on the different relaxation times of different tissues. When 

a RF receiver coil is placed in the vicinity of the rotating magnetization spins, according 

recovery curve showing the increase in MZ over time. 

decay curve showing the decrease in MX-Y  over time. 

Along with the concentration of the magnetization spins, these time constants are 

essential imaging parameters in MR imaging. The contrast between different tissues in 

image is achieved based on the different relaxation times of different tissues. When 

a RF receiver coil is placed in the vicinity of the rotating magnetization spins, according 
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to the Maxwell's equation, an alternating current is induced in the receiver c

free induction decay (FID). This is the MR signal 

Figure 2.7: Free induction decay in the RF receiver coil due to the rotating magnetization 
spins in the X-Y plane. 
 
 In the FID signal described above, there 

necessary to form the MR image. In order to incorporate spatial information, gradient 

coils need to be used to produce the spatial encoding gradients. Based on this, the main 

components of the MRI system are the main mag

field, the RF coil to emit the radiofrequency signal which is used to excite the nuclear 

spins, the gradient coils to produce the spatial encoding gradients and a RF receiver coil 

to amplify and measure the MR signal. The same RF coil can be used to tra

pulse and receive the MR signal . The time sequence of the magnetic fields applied 

during an MRI scan can be described by a pulse sequence diagram. A spin echo pulse 

design is shown in Figure 
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In the FID signal described above, there is no spatial information,

the MR image. In order to incorporate spatial information, gradient 

coils need to be used to produce the spatial encoding gradients. Based on this, the main 

components of the MRI system are the main magnet that produces the homogenous 

field, the RF coil to emit the radiofrequency signal which is used to excite the nuclear 

spins, the gradient coils to produce the spatial encoding gradients and a RF receiver coil 

to amplify and measure the MR signal. The same RF coil can be used to tra

the MR signal . The time sequence of the magnetic fields applied 

during an MRI scan can be described by a pulse sequence diagram. A spin echo pulse 

Figure 2.8. 

15 

to the Maxwell's equation, an alternating current is induced in the receiver coil, called as 

Figure 2.7). 

 

: Free induction decay in the RF receiver coil due to the rotating magnetization 

, which is 

the MR image. In order to incorporate spatial information, gradient 

coils need to be used to produce the spatial encoding gradients. Based on this, the main 

net that produces the homogenous 0B  

field, the RF coil to emit the radiofrequency signal which is used to excite the nuclear 

spins, the gradient coils to produce the spatial encoding gradients and a RF receiver coil 

to amplify and measure the MR signal. The same RF coil can be used to transmit the RF 

the MR signal . The time sequence of the magnetic fields applied 

during an MRI scan can be described by a pulse sequence diagram. A spin echo pulse 



 

Figure 2.8: Spin echo pulse design. Here G
phase encoding gradient and G
PE = phase encoding,  FE = frequency encoding, n
nFE = number of readout steps, TE = echo
By choosing different scan parameters like echo time (TE) and repetition time (TR), 

different image contrast can be formed based on the relaxation properties 

direct result, different tissues or pathological 

2.2 Diffusion Weighted Magnetic Resonance Imaging (DWI)

 DWI is a magnetic resonance technique that measures and quantifies the 

attenuation of the MR signal due to diffusion of water molecules.

behind DWI is that a signal can be obtained that measures 

tissue. In a uniform system 

dominated by molecular motion caused by

created by small concentration gradients that are distributed randomly in an isotropic 

Spin echo pulse design. Here Gz is the slice selection gradient, G
phase encoding gradient and Gx is the frequency encoding gradient. SS = slice selection, 
PE = phase encoding,  FE = frequency encoding, nPE = number of phase encoding steps, 

steps, TE = echo time and TR = repetition time. 
By choosing different scan parameters like echo time (TE) and repetition time (TR), 

different image contrast can be formed based on the relaxation properties 

different tissues or pathological changes can be highlighted.

2.2 Diffusion Weighted Magnetic Resonance Imaging (DWI)  

DWI is a magnetic resonance technique that measures and quantifies the 

attenuation of the MR signal due to diffusion of water molecules. The basic principle 

that a signal can be obtained that measures diffusion of water molecules in 

tissue. In a uniform system with no concentration gradients, the flux of water is 

motion caused by thermal agitation. This leads to flux patterns 

small concentration gradients that are distributed randomly in an isotropic 
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By choosing different scan parameters like echo time (TE) and repetition time (TR), 

different image contrast can be formed based on the relaxation properties of tissues. As a 

changes can be highlighted. 

DWI is a magnetic resonance technique that measures and quantifies the 
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small concentration gradients that are distributed randomly in an isotropic 
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medium. These flux patterns can be characterized by the diffusion coefficient D which 

relates the concentration gradient to the rate of transfer of water molecules through a unit 

area. The flux of water in one direction is related to the diffusion coefficient by the 

equation shown in (2-5). 

       �� �  �� �	
��                                                                 (2-5) 

Here �� is the flux, D is the diffusion coefficient, C is the concentration of water and x is 

the length coordinate. The displacement of water molecules follows a Gaussian 

distribution. Einstein's equation (2-6) relates the mean displacement to the diffusion 

coefficient in one dimension,
��. 

        
�� �  √2��                                                             (2-6) 

Another factor influencing the diffusion coefficient of water molecules is kinematic 

velocity and temperature, as given by the Einstein-Stokes equation (2-7). 

      � �  ��
�����                                                                    (2-7) 

Here R is the universal gas constant, T is the abolute temperature, N is Avogadros's 

number, v is the kinetic viscosity and r is the radius of the water molecule. Based on this, 

the diffusion coefficient of  water is dependent on diffusion time, temperature and the 

local viscosity caused by water-protein electrical interactions, diffusion barriers and 

permeability. 

 The main principle behind DWI is attenuation of the MR signal due to diffusion 

of water molecules. In order to quantify this attenuation, DWI tags hydrogen atoms in 



18 
 

water molecules within certain tissue volume using diffusion sensitizing magnetic field 

gradients and then the resulting attenuation of the MR signal is measured after a time 

delay ∆. The typical RF pulses, spin dynamics and diffusion sensitizing gradients 

involved in a one dimensional spin echo DWI experiment are shown if Figure 2.9. The 

water molecules are first tagged using a dephasing gradient and then untagged using a 

rephasing gradient. During the diffusion time (∆) between the tagging and the untagging, 

water diffuses in and out of the targeted volume causing a phase disruption in the spins as 

compared to the water molecules present originally at that location.  

 

 

 

 



 

Figure 2.9: One dimensional spin echo showing one diffusion sensitizing gradient. The 
dephasing gradient tags the phase nuclear spins. The nuclear spins of the water molecules 
that undergo diffusion (marked by bl
preserved when the rephasing gradient untags  all the nuclear spins. This results in loss of 
MR signal. 
 
This results in destructive phase interference and overall MR signal attenuation. The 

apparent diffusion coefficient is then calculate

attenuation after the application of diffusion sensitizing gradients as given by equation   

(2-8). 

    

 

One dimensional spin echo showing one diffusion sensitizing gradient. The 
dephasing gradient tags the phase nuclear spins. The nuclear spins of the water molecules 
that undergo diffusion (marked by black arrows) show further phase disruption which is 

erved when the rephasing gradient untags  all the nuclear spins. This results in loss of 

This results in destructive phase interference and overall MR signal attenuation. The 

apparent diffusion coefficient is then calculated by quantifying the amount of signal 

attenuation after the application of diffusion sensitizing gradients as given by equation   
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One dimensional spin echo showing one diffusion sensitizing gradient. The 
dephasing gradient tags the phase nuclear spins. The nuclear spins of the water molecules 

) show further phase disruption which is 
erved when the rephasing gradient untags  all the nuclear spins. This results in loss of 

This results in destructive phase interference and overall MR signal attenuation. The 

amount of signal 

attenuation after the application of diffusion sensitizing gradients as given by equation   

                        (2-8) 



20 
 

Here, �0 is the image magnitude before diffusion weighting, � is the image magnitude 

after diffusion weighting, � is the apparent diffusion coefficient and b is the amount of 

diffusion weighting which is given by equation (2-9). 

    � �  ���� ���  ∆ � "
#$ % &'

#( � ".&*

� +                               (2-9) 

Here, G and , are the amplitude and the slew rate of the magnetic field gradients 

respectively, � is the gradient duration, 

 

is the diffusion time and � is the gyromagnetic 

ratio for the nuclei. 

 

2.3 Diffusion Tensor Imaging (DTI) 

 The diffusion tensor is a matrix that describes the diffusion of water in a medium 

with respect to a well-defined global coordinate system. The diffusion characteristics of 

an anisotropic medium is well characterized by the diffusion tensor. To construct the 

diffusion tensor, diffusion weighted images are measured in multiple directions. Three 

imaging gradients are used to apply the diffusion gradients in specific combinations to 

measure the one dimensional apparent diffusion coefficient in specific directions. These 

DWI measurements are used to estimate the 3 x 3 diffusion tensor field using regression. 

This tensor describes the preferred magnitude and orientation of the self diffusion of 

water. The diffusion tensor contains nine elements of which six are unique values as the 

tensor is symmetric. As a result, Dxy = Dyx, Dxz = Dzx and Dyz = Dzy. DWI data must 

therefore be obtained in a minimum of six sensitizing directions to determine the tensor 

values. In order to obtain a better estimate of the diffusion tensor, more diffusion 

sensitizing directions can be used. The diffusion tensor (D) is given in equation (2-10). 



 

    

 Once the diffusion tensor is created it is used to find the preferred 

magnitude and direction by calculating the eigenvalues and the eigenvectors of the 

tensor. The eigenvalues and the eigenvectors can be used to define the geometry of a 

diffusion ellipsoid which can be then used to visualize the diffusion tensor (

The eigenvalues are used to define the magnitude of the axes of the ellipsoid and the 

eigenvectors are used to determine the orientation of each axis of the ellipsoid. The 

diffusion characteristics of each voxel 

Figure 2.10: The eigenvalues  and the eigenvectors of the diffusion ellipsoid.

 The eigenvalues are also used to create DTI stains or indices. Examples of the 

DTI indices include longitudinal apparent diffusion coefficient (lADC), transverse 
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Once the diffusion tensor is created it is used to find the preferred 

magnitude and direction by calculating the eigenvalues and the eigenvectors of the 

tensor. The eigenvalues and the eigenvectors can be used to define the geometry of a 

diffusion ellipsoid which can be then used to visualize the diffusion tensor (

The eigenvalues are used to define the magnitude of the axes of the ellipsoid and the 

eigenvectors are used to determine the orientation of each axis of the ellipsoid. The 

diffusion characteristics of each voxel are described by one ellipsoid. 

The eigenvalues  and the eigenvectors of the diffusion ellipsoid.

The eigenvalues are also used to create DTI stains or indices. Examples of the 

DTI indices include longitudinal apparent diffusion coefficient (lADC), transverse 
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                                                    (2-10) 

Once the diffusion tensor is created it is used to find the preferred diffusion 

magnitude and direction by calculating the eigenvalues and the eigenvectors of the 

tensor. The eigenvalues and the eigenvectors can be used to define the geometry of a 

diffusion ellipsoid which can be then used to visualize the diffusion tensor (Figure 2.10). 

The eigenvalues are used to define the magnitude of the axes of the ellipsoid and the 

eigenvectors are used to determine the orientation of each axis of the ellipsoid. The 

 

The eigenvalues  and the eigenvectors of the diffusion ellipsoid. 

The eigenvalues are also used to create DTI stains or indices. Examples of the 

DTI indices include longitudinal apparent diffusion coefficient (lADC), transverse 
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apparent diffusion coefficient (tADC), fractional anisotropy (FA), and mean diffusivity 

(MD). lADC reflects the diffusion parallel to axonal orientation and is given by equation 

(2-11). 

           lADC = 1λ                                                             (2-11) 

Here 1λ  is the largest eigenvalue and represents the magnitude of the long axis of the 

diffusion ellipsoid. tADC  reflects diffusion in the transverse plane and is given by 

equation (2-12). 

       tADC = 
2

32 λλ +
                                                        (2-12) 

Mean diffusivity is defined as the average of all the three eigenvalues and defines the 

total diffusion in a given voxel. It is define as shown in equation (2-13). 

      MD = 
3

321 λλλ ++
                                                     (2-13) 

FA indicates the degree of difference between isotropy and anisotropy and is given by the 

equation (2-14). 
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DTI indices are derived based purely on the eigenvalues and don't incorporate the 

directional information contained in the eigenvectors. Although this shortcoming can be 

overcome by using diffusion ellipsoids to visualize diffusion, this method is not widely 

used in practice. 
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2.4 Anatomy and physiology of the spinal cord 

2.4.1 Spinal cord anatomy 

 The spinal cord is the most caudal part of the central nervous system. It receives 

and processes sensory information from the skin, joints, and muscles of the limbs and 

trunk and controls movement of the limbs and the trunk. It is subdivided into cervical, 

thoracic, lumbar, and sacral regions. The spinal cord continues rostrally as the brain stem, 

which consists of the medulla, pons, and midbrain. The cross section of the spinal cord 

shows the presence of central gray matter, peripheral white matter and the central canal. 

The central canal is filled with cerebrospinal fluid. The gray matter contains neuronal cell 

bodies and synapses. The gray matter is divided into dorsal, ventral and lateral horns. The 

dorsal horn contains sensory relay neurons that receive input from the periphery, while 

the ventral horn contains motor nuclei that innervate specific muscles. The lateral horn 

contains visceral neurons. The white matter contains ascending and descending fiber 

tracts which are basically bundles of axons. The ascending tracts relay sensory 

information to the brain while the descending tracts relay motor instructions from the 

higher levels of the central nervous system. 

2.4.1.1 White matter anatomy 

 The white matter (Figure 2.11)is divided into three paired funiculi; namely the 

dorsal funiculi, lying between the dorsal horns, the lateral funiculi and the ventral 

funiculi.  Each funiculus has regions called fasciculi, which are nerve tracts. The ventral 

funiculus has both descending as well as ascending fasciculi.  The descending ventral 

fasciculi include the ventral cerebrospinal, vestibulospinal and the tectospinal fasciculi.  



 

The anterior cerebrospinal fasciculus con

in the motor area of the cerebral hemisphere of the same side and end by directly or 

indirectly branching around the motor cells in the anterior column. The vestibulospinal 

fasciculus is situated chiefly in

with equilibrium reflexes. The tectospinal fasciculus is situated partly in the ventral and 

partly in the lateral funiculus and is concerned with visual reflexes. The ascending ventral 

fasciculi include the ventral spinothalamic fasciculus and the ventral proper fasciculu

The ventral spinothalamic fasciculus is situated in the marginal part of the ventral 

funiculus. It ends in the thalamus and conducts certain touch impulses. 

Figure 2.11: Principal fasciculi of the spinal cord.
reticulospinal tract, VST = vestibulospinal tract, FG = fasciculus gracilis, FC = fasciculus 
cuneatus, CST = corticospinal tract, dSCT = dorasl spinocerebellar tract, STT =  
spinothalamic tract. 
 

  

The anterior cerebrospinal fasciculus consists of descending fibers which arise from cells 

in the motor area of the cerebral hemisphere of the same side and end by directly or 

branching around the motor cells in the anterior column. The vestibulospinal 

fasciculus is situated chiefly in the marginal part of the ventral funiculus and

reflexes. The tectospinal fasciculus is situated partly in the ventral and 

partly in the lateral funiculus and is concerned with visual reflexes. The ascending ventral 

fasciculi include the ventral spinothalamic fasciculus and the ventral proper fasciculu

The ventral spinothalamic fasciculus is situated in the marginal part of the ventral 

funiculus. It ends in the thalamus and conducts certain touch impulses.  

: Principal fasciculi of the spinal cord. RST = rubrospinal tract, ReST = 
spinal tract, VST = vestibulospinal tract, FG = fasciculus gracilis, FC = fasciculus 

cuneatus, CST = corticospinal tract, dSCT = dorasl spinocerebellar tract, STT =  
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 The lateral funiculus also has both descending as well as ascending fasciculi. The 

descending lateral fasciculi include the lateral cerebrospinal, rubrospinal and olivospinal 

fasciculi.  The lateral cerebrospinal fasciculus arises from cells in the motor area of the 

cerebral hemisphere of the opposite side. The rubrospinal fasciculus lies on the ventral 

part of the lateral cerebrospinal fasciculus and descends from the mid-brain of the 

opposite side. The olivospinal fasciculus rises in the vicinity of the inferior olivary 

nucleus in the medulla oblongata and is present only in the cervical region of the spinal 

cord. The ascending lateral fasciculi include the dorsal spinocerebellar, ventral 

spinocerebellar, lateral spinothalamic, spinotectal, Lissauer and lateral proper fasciculi. 

The dorsal spinocerebellar fasciculus is situated at the periphery of the dorsal part of the 

lateral funiculus. The ventral spinocerebellar fasciculus is located at the periphery of the 

lateral funiculus in front of the dorsal spinocerebellar fasciculus. It begins about the level 

of the third pair of lumbar nerves and can be followed into the medulla oblongata and 

pons where it crosses over the superior peduncle and then passes backward along its 

medial border to reach the vermis of the cerebellum. The lateral spinothalamic fasciculus 

consists of axons of cells in the dorsal column and the intermediate gray matter which 

cross in the anterior commissure to the opposite lateral funiculus where they ascend and 

terminate in the ventro-lateral region of the thalamus. It conducts impulses of pain and 

temperature. The spinotectal fasciculus begins in the dorsal column and terminates in the 

superior colliculi. The fasciculus of Lissauer consists mainly of fine non-medullated 

fibers derived mostly from the dorsal roots. These non-medullated fibers play an 

important role in the reflexes associated with pain impulses.  
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 The dorsal funiculus shows the presence of fasciculus gracilis and the fasciculus 

cuneatus. The fasciculus gracilis lies next to the posterior median septum. It consists of 

long thin fibers which originate in the posterior nerve roots and ascend to the medulla 

oblongata where they terminate in the nucleus gracilis. The fasciculus cuneatus lies 

between the fasciculus gracilis and the posterior column.  It consists of larger fibers 

which originate in the posterior nerve roots. Some of these fibers ascend for only a short 

distance in the tract and come into close relationship with the cells of the dorsal nucleus 

in the gray matter while others ascend to the medulla oblongata where they terminate in 

the gracile and cuneate nuclei (Gray 1918). 

2.4.1.2 Gray matter anatomy 

 The morphology of the spinal cord gray matter is heterogeneous in nature. 

However, the gray matter shows the presence of intrinsic organization based on which it 

can be divided into laminae. Rexed first described these laminae in cats (Rexed 1954). 

Based on this work, the concept of laminae have been used to describe cytoarchitecture in 

the mouse (Sidman, Angevine et al. 1971), rat (Paxinos 2004) and humans (Paxinos and 

Mai 2004). In rats, as well as in humans, there are ten laminae organized in layers going 

beginning at the dorsal horns and ending in the ventral horns. The structure and the size 

of the laminae vary based upon the spinal cord segment. This variation in the cervical 

spinal cord gray matter segments is shown in Figure 2.12.  



 

Figure 2.12: Rexed's laminlaminae in the rat C1 to C8 cervical segments. 
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 Lamina I is the most dorsal of the Rexed's laminae. It is a thin layer that covers 

the dorsal margin of the dorsal horn and bends laterally around its apex to also cover 

about half the lateral side of the head of the dorsal horn. Lamina I shows the presence of 

many myelinated nerve fibers which gives it a reticulated look. The neurons present in 

Lamia I are basically of four morphological types: fusiform, multipolar, flattened and 

pyramidal. The fusiform cell type is characterized by a spindle shaped cell body oriented 

in a longitudinal direction with two primary dendrites arising from the rostral and caudal 

poles. The mulitpolar cell has an ovoid shaped cell body from which several primary 

dendrites arise. The flattened neurons have a disc shaped cell body and have sparsely 

branched dendritic trees. The pyramidal neurons are triangular in shape and their 

dendrites typically arise from each corner of the cell body.  

 Lamina II lies ventral to the lamina I. Lamina II shows the presence of dense 

neurons. Lamina II follows the shape of lamina I in transverse sections, bending around 

the apex so that lamia I forms its lateral and dorsal borders. Lamina II is thicker than 

lamina I and does not have uniform thickness, with thickness being maximum medially in 

rodents. The two main cell types commonly found in lamina II are the stalked and the 

islet cells. The stalked cells are found mostly in the outer layer of lamina II. The stalked 

cells have a round or oval shaped soma with ventrally directed dendrites that stream out 

at oblique angles to form a cone shape. The islet cells are found throughout the lamina II 

in rats. The islet cells have very long dendritic  trees extending along the rostrocaudal 

axis of the spinal cord. 

 Lamina III lies across the dorsal horn parallel with laminae I and II.  Its border 

bends around the apex of the dorsal horn. It is bordered by the lamina II laterally and the 
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white matter medially. Lamina III is thicker than lamina I and II. Lamina III shows the 

presence of myelinated fibers which distinguishes it from lamina II. Lamina III shows the 

presence of rounded, slightly elongated or spindle shaped cells. The cells in lamina III are 

of similar size and density as compared to lamina II.  

 Lamina IV stretches straight across the base of the head of the dorsal horn and 

shows the presence of a medial bend in rats. Lamina IV is thicker than laminae I-III and 

is bordered by laminae I-III laterally and white mater medially. Lamina IV shows the 

presence of lower cellular density and larger cell size as compared to laminae I-III.  

 Lamina V is located at the neck of the dorsal horn. It shows the presence of thick 

nerve fibers. It shows the presence of triangular, star shaped and spindle shaped cells. 

The size of the cells are heterogeneous. Large cells are found in the lateral zone while 

small and medium sized cells are found in the medial zone. 

 Lamina VI is the deepest layer of the dorsal horn and is present only in certain 

regions of the spinal cord. It is prominent in regions of limb enlargements. It has a 

slightly curved ventral surface and is thickest in the medial portion. Lamina VI shows the 

presence of small, elongated, spindle shaped or triangular shaped cells along with large 

star shaped cells. A major function of cells in lamina VI is acting as interneurons 

involved in reflex pathways. 

 Lamina VII is commonly known as the intermediate gray matter and occupies a 

large area in the center of the gray matter. It extends medially to border lamina X and 

laterally to the later funiculus of the white matter. At the limb enlargements, the size of 

the lamina VII increases and reaches ventrally to the ventral border of the gray matter. 
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Lamina VII has a homogeneous appearance although it sometimes shows the presence of 

a few large star shaped cells resembling large motoneurons. Lamina VII also shows the 

presence of triangular, multipolar and fusiform shaped cells. The cells in lamina VII are 

interneurons that connect to the motoneurons in lamina IX. 

 Lamina VIII shows a variance in size and shape at different levels of the spinal 

cord. At the cervical and the lumbar enlargements, it is present in the medial base of the 

ventral horn. Everywhere else it extends across the whole base of the ventral horn. Some 

cells in the this lamina are very large and are almost appear similar to motoneurons. 

Lamina VIII is heterogeneous and also consists of spindle shaped cells. 

 Lamina IX is located at the base of the ventral horn. It shows the presence of 

motoneurons of the spinal cord. There are two prominent types of motoneurons. The 

alpha motoneurons are the largest of all cells in the spinal cord and are usually star-

shaped. The gamma motoneurons are the smaller motoneurons present in lamina IX and 

account for 30% of the total number of neurons present in lamina IX. These cells present 

in lamina IX are organized into a series of longitudinal motor columns. 

 Lamina X is located around the central canal of the gray matter. To the dorsal side 

of the lamina X lies the lamina IV and to the ventral side lies the ventral white 

commissure. Lamina X is densely packed and consists of small triangular, spindle and 

star shaped cells. 
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2.4.2 Cells in the central nervous system (CNS) 

 Nerve cells and glial cells are the two types of cells in the CNS. Glial cells far 

outnumber neurons in the CNS. Glial cells support neurons and give structure and form. 

They also provide electrical insulation to neuronal groups and synapses. Glial cells are 

divided into microglia and macroglia. Microglia are phagocytes that are mobilized after 

injury, infection, or disease (Kandel, Schwartz et al. 2000). They arise from macrophages 

outside the nervous system and are physiologically and embryologically unrelated to the 

other cell types of the nervous system. Oligodendrocytes, Schwann cells, and astrocytes 

are the three types of macroglia (Fleming, Norenberg et al. 2006). Oligodendrocytes and 

Schwann cells are relatively small in size. Oligodendrocytes are found in the CNS while 

Schwann cells are found in the peripheral nervous system. Each of these cells tightly 

wind their membranous processes around the axon in a spiral way and thus form a myelin 

sheath around the axon. This helps in electrical insulation. Each oligodendrocyte 

envelops an average of fifteen axonal internodes. Astrocytes are the most numerous of 

glial cells. They are star shaped and have long processes which terminate in end-feet. 

Protoplasmic astrocytes are found in the gray matter and have many short branched 

processes. Astrocytes have important functions like providing nutrients to the cells on 

which they form end feet. They also form an end foot on the CNS blood vessels and 

cause their endothelial cells to form tight junctions thus creating the protective blood-

brain barrier. Astrocytes are highly permeable to potassium ions. As a result they help to 

maintain the right potassium ion concentration in the extracellular space between 

neurons. This is important considering that repetitive firing of the nerve cells may create 

an excess of extracellular potassium that could interfere with signaling between cells in 
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the vicinity. Astrocytes also help regulate synaptic activities by removing 

neurotransmitters from synaptic zones after their release (Kandel, Schwartz et al. 2000). 

The neuron consists of three parts: the dendrites, the cell body and the axons. The cell 

body is the part of the neuron that contains the nucleus and surrounding cytoplasm. Most 

nerve cells have a spherical, large nucleus with a prominent nucleolus. The chromatin is 

finely dispersed. The cell body contains a highly developed rough endoplasmic 

reticulum. In appropriately stained neurons, the rough endoplasmic reticulum and the free 

ribosomes appear as basophilic granular substance called as Nissl bodies. The number of 

Nissl bodies varies according to neuronal type and functional state. They are particularly 

abundant in motor neurons which are the largest nerve cells in the spinal cord gray 

matter. The alpha motoneurons are the largest and are between 30 - 50 micrometers in 

diameter whereas the smaller gamma motoneurons are around 20 micrometers in 

diameter.  

2.5 Phases of spinal cord injury (SCI) 

 The pathophysiology of SCI is biphasic, consisting of a primary and secondary 

phase of injury. A number of pathophysiological inflammatory processes are triggered by 

the primary mechanical injury leading to the prolonged secondary injury phase. The 

primary phase includes the immediate response whereas the secondary phase includes the 

primary acute, secondary acute, intermediate and chronic responses.  

2.5.1 Immediate response 

 The immediate response spans the initial two hours post injury and represents the 

primary phase of injury in the biphasic SCI model (Norenberg, Smith et al. 2004). It 
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includes the traumatic mechanical disruption of spinal tissue through tears, shearing 

stress and compression (Shi and Pryor 2002). Vascular changes such as vasodilation and 

hemorrhage also occur (Tator and Koyanagi 1997). This results in an increase in the 

apparent diffusion coefficient. The immediate response is dominated by the results of the 

injurious event itself and causes spinal shock and instant loss of function at and below the 

level of injury (Ditunno, Little et al. 2004). The pathological changes in this immediate 

stage include a generalized swelling of the spinal cord accompanied by hemorrhaging in 

the central gray matter. The direct mechanical disruption of cell membranes and ischemia 

resulting from vascular disruption results in necrotic death of the cells in the gray matter. 

Interruption of the vasculature leads to hemorrhage in the white matter surrounding the 

injury site (Kakulas 2004). Also, hemorrhage and swelling combine to produce spinal 

cord ischemia that may extend for many spinal segments both rostral and caudal to the 

injury. This results in a significant decrease in the apparent diffusion coefficient 

(Sagiuchi, Tachibana et al. 2002). Pathophysiological processes like activation of 

microglial cells begin immediately following injury due to the upregulation of 

proinflammatory cytokines like TNF-α and IL-β (Pineau and Lacroix 2007). Levels of 

glutamate, which is an excitatory neurotransmitter, could also reach excitotoxic levels at 

the onset of injury (Wrathall, Teng et al. 1996). 

2.5.2 Primary acute response 

 The primary acute response of SCI lasts between two to forty eight hours 

following injury. This phase marks the dominance of the secondary inflammatory 

response and is characterized by hemorrhage, increasing edema, and inflammation. The 

disruption of the microvasculature, global hypotension, and increased interstitial pressure 
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cause a prolonged hypoperfusion seen after injury (Tator and Koyanagi 1997). Ionic 

homeostasis and excitotoxicity contribute to the propagation of cellular injury by necrotic 

and apoptotic cell death of both neurons and glia. For example, loss of regulation of 

Ca++ ion concentration results in cell death (Farber 1990). Excitotoxicity is a result of 

the excessive activation of glutamate receptors leading to the influx of Na+ and Ca++ 

through the NMDA and Kainate receptors (Park, Velumian et al. 2004). Reactive oxygen 

species contribute to radical mediated injury. Lipid peroxidation is one of the main 

hallmarks of radical mediated injury and is a long lasting free radical reaction which 

causes membrane damage leading to cell lysis (Sakamoto, Ohnishi et al. 1991). There is 

also an increase in the permeability of the blood brain barrier. This rise in permeability 

initially occurs due to direct mechanical disruption of the endothelial cells and astroglial 

processes whereas later it is caused by inflammatory mediators known to have profound 

effects on vascular permeability (Schnell, Fearn et al. 1999). The primary acute response 

also includes infiltration of inflammatory cells and continuing activation of resident 

microglia at the site of injury. The inflammatory cells involved are microglia, T cells, 

neutrophils, and monocytes (Fleming, Norenberg et al. 2006). These cells upregulate 

inflammatory mediators like TNF-α and IL-β following SCI (Povlishock 1993). TNF-α 

and IL-β further the secondary injury as well as help in the removal of cellular debris and 

provide a suitable environment for regenerative growth (Fleming, Norenberg et al. 2006). 

Oligodendrocytes are highly sensitive to ischemic injury and undergo apoptosis following 

SCI due to the activation of the oligodendrocyte FAS receptors by activated microglia 

expressing FAS ligand (Casha, Yu et al. 2001). Axonal demyelination occurs due to the 

loss of oligodendrocytes, which peaks at around twenty four hours following injury in the 
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rat (Waxman 1989). Due to the loss of myelin, the fractional anisotropy decreases. Also, 

these inflammatory responses lead to an increase in the transverse component of the 

apparent diffusion coefficient (Ford, Hackney et al. 1994). This increase in the transverse 

diffusion is accompanied by a decrease in the longitudinal apparent coefficient. 

2.5.3 Secondary acute response 

 The secondary acute response of SCI lasts between two days to two weeks 

following injury. The phagocytic response is most defined in this period. Phagocytes such 

as activated microglia and macrophages help in removing cell debris from the site of 

injury. They also promote axon growth to some extent through the removal of growth-

inhibitory components. Along with the phagocytic response, astrocytes at the periphery 

of the lesion become hypertrophic and grow rapidly. Following this, the astrocytes 

express large cytoplasmic processes that interweave to form the gliotic scar which acts as 

a physical and chemical barrier to axonal regeneration. Reactive astrocytes express 

chondroitin sulfate proteoglycans which act as axonal growth-inhibiting molecules 

(Busch and Silver 2007). Astrocytes also play an important role in the regaining the 

homeostasis of ions and reestablishing the blood brain barrier which is important for 

alleviation of edema and controlling the infiltration of immune cells (Faulkner, Herrmann 

et al. 2004; Herrmann, Imura et al. 2008). The collagenous scar tissue affects the DTI 

eigenvectors and hence DTI tractography is sensitive to tissue scarring (Schwartz, Duda 

et al. 2005). Also, the influx of the microglia, the astrocytes and the macrophages leads to 

a decrease in extracellular volume which could lead to a decrease in the overall apparent 

diffusion coefficient. 
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2.5.4 Intermediate response 

 The intermediate response of SCI lasts between two weeks to six month following 

injury. Continued maturation of the astroglial scar and regenerative axonal maturation are 

the hallmarks of this response (Hill, Beattie et al. 2001). 

2.5.5 Chronic response 

 The chronic response of SCI begins around 6 months after injury and continues 

throughout the lifetime of the injured subject. This response is characterized by Wallerian 

degeneration, astroglial and mesenchymal scar formation, schwannosis and development 

of cysts and syrinx. Wallerian degeneration is the rapid degeneration and atrophy of the 

portions of the nerve fibers which are separated from their cells along with little or no 

alteration in the cells and the parts of the fibers connected to them. It is characterized by 

distorted and fragmented myelin sheaths with absent or dense axoplasm. Eventually an 

astroglial scar replaces the destroyed myelinated axon (Ehlers 2004). The process of 

Wallerian degeneration of injured or severed axons is ongoing and it may take years for 

severed axons and their cell bodies to be fully removed. The astroglial scar is made up of 

tautly interwoven astrocyte processes attached to one another by tight junctions and is 

surrounded by extracellular matrix (Smith, Berry et al. 2001). The mesenchymal scar is 

the result of tissue healing and consists of fibrous connective tissue and collagen. This 

scar tissue presents a profound impediment to axonal growth (Norenberg, Smith et al. 

2004). The chronic response also results in the formation of cysts which are cavities filled 

with extracellular fluid and commonly contain residual macrophages, small bands of 

connective tissue and blood vessels.  These cysts provide a hindrance to regeneration 
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(Povlishock 1993). The syrinx is similar to the aforementioned cysts; the only difference 

being it has a denser gliotic wall. The pressure on the syrinx causes an enlargement of the 

cavity which results in compression of the adjacent spinal cord tissue and aggravation of 

neurological deficits. Schwannosis is an abnormal intramedullary and extramedullary 

proliferation of Schwann cells with associated axons. These cells are mostly derived from 

nerve roots that enter the cord and are caused mostly by incisive injuries. Most of the 

axons involved are unmyelinated. Wallerian degeneration could lead to changes in 

diffusivity even at locations distant from the injury site. This leads to an increase in 

transverse diffusion coefficients. 

2.5.6 Morphological changes in gray matter 

 Axonal injury causes several changes in the cell body of the neuron. At acute 

stages the main changes in the morphology of the nucleus of the motor neurons includes 

shriveling of the nucleus and the presence of homogeneous eosinophilia of the cytoplasm. 

At chronic stages of injury the main changes in the morphology are the dissolution of the 

Nissl substance by a process known as chromatolysis, a decrease in the cytoplasmic 

basophilia, an increase in the volume of the soma and migration of the nucleus to the 

peripheral position in the soma. Chromatolysis is a precursor to the increase in protein 

synthesis by the neuron in order to restore the integrity of the axons after injury. 

2.5.7 Neuroprotection and regeneration 

 Microglia provide trophic support to neurons and glia by releasing 

neuroprotective cytokines and growth factors (Nimmerjahn, Kirchhoff et al. 2005). 

Astrocytes are also sources of growth factors like NGF, FGF-2, PDGF, CNTF, IGF and 
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neurotrophic compounds. B lymphocyte cells provide neurotrophic factors. 

Autoantibodies specific for myelin protein promote axon regeneration and improve 

recovery (Huang, McKerracher et al. 1999). Macrophages derived from infiltrating 

monocytes produce neuroprotective cytokines and growth factors like TGF-β1 which 

limits oligodendrocytes toxicity (Merrill et al, 1991). This is followed by vascularization 

which occurs through angiogenesis (Norenberg, Smith et al. 2004). 

2.6 Diffusion tensor imaging and its correlation to the injury response 

 It has been shown that gross morphological or MR imaging abnormalities of the 

spinal cord can be absent during the immediate phase with the exception of patients 

suffering from severe compressive or lacerative injuries (Aoyama, Hida et al. 2007). This 

calls for an imaging technique that is more sensitive to the underlying spinal cord 

microstructure than traditional imaging techniques. Diffusion tensor magnetic resonance 

imaging (DTI) has shown significant sensitivity to structural changes within the human 

spinal cord following acute spinal trauma and chronic spinal cord injury (Ellingson, 

Ulmer et al. 2006). Diffusion weighted imaging is a MRI technique that measures the 

attenuation of the MR signal due to incoherent motion or diffusion of unbound water 

molecules (Basser and Jones 2002). When a strong magnetic field gradient is present, the 

random motion of water molecules results in de-phasing of the MR signal which provides 

for the contrast in the DTI image (Le Bihan, Breton et al. 1986). 

2.6.1 Spinal cord diffusion characteristics in health and injury 

 In the spinal cord, the white matter is significantly more anisotropic than the gray 

matter (Moseley, Kucharczyk et al. 1991). This diffusion anisotropy in white matter is 
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largely attributed to membrane diffusion barriers associated with axonal structures like 

neurofilaments, microtubules, cell membrane and myelin sheath restricting water 

diffusion to a preferred direction parallel to axon orientation.  Transverse diffusion 

coefficients are reduced for axons with a smaller diameter, including axons both with and 

without myelin.  Longitudinal diffusion coefficients vary directly with decreased myelin 

sheath thickness and axon diameter. Longitudinal diffusion also depends on 

neurofiliament and microtubule density, varying inversely with neurofilament and 

microtubule density (Beaulieu 2002). 

 DTI provides a non invasive measure that is sensitive to the nature and geometry 

of the underlying tissue microstructure. Thus, it provides insight into injury mechanisms 

and time course of pathological changes in spinal cord microstructure following trauma. 

There is a strong correlation between the MRI metrics and histology. The longitudinal 

diffusivity in the white matter tracts correlates well with the integrity of axons in those 

tracts (Kim, Budde et al. 2006). The transverse diffusivity in the white matter tracts 

correlate with the amount of myelin (Song, Yoshino et al. 2005). At the site of injury the 

apparent diffusion coefficient decreases due to inactivation of sodium and potassium 

pumps as a result of ischemia (Lu, Ashwell et al. 2000; Stanisz, Webb et al. 2004). Due 

to hemorrhaging, transverse diffusion increases and longitudinal diffusion decreases, 

decreasing the diffusion anisotropy while apparent diffusion increases (Deo, Grill et al. 

2006). The extravasation of the inflammatory cells, the activation of microglia and 

hypertrophy of astrocytes results in a decrease of the extracellular water volume and the 

apparent diffusion coefficient. Cyst formation and atrophy during the chronic stage of 

injury also causes a decrease in extracellular volume that results in a decrease in 
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transverse diffusion coefficients in both the white matter and gray matter. Extracellular 

morphology also contributes to diffusion characteristics within the CNS. Higher axon 

density results in smaller transverse and longitudinal diffusion coefficients (Schwartz, 

Cooper et al. 2005). 

 The extensive use of DTI to study specific axonal tracts in the spinal cord white 

matter following spinal cord injury is in stark contrast to the lack of clarity with regards 

to diffusion parameters in the spinal cord gray matter. Diffusion characteristics in the 

spinal cord gray matter post injury have not been thoroughly explored. Although studies 

have been conducted to demonstrate significant changes in the overall spinal cord gray 

matter, to date there have been no studies correlating spinal cord gray matter 

cytoarchitecture to the DTI indices following spinal cord injury. Also, a firm 

understanding of the correlation between DTI characteristics in the cervical spinal cord 

gray matter and the underlying gray matter neuronal structure is yet to be established. 

Results from previous studies investigating the DTI characteristics in the white matter 

and the overall gray matter lend credence to the use of DTI for monitoring the status of 

the spinal cord gray matter post injury. However, more research is needed to fully 

understand the relation between the diffusion characteristics in the laminae of the gray 

matter post injury and the underlying morphological changes responsible for the changes 

in the diffusivity. 

2.7 Image processing principles 

 In this study we attempt to select regions of interest in the cervical spinal cord 

gray matter based on histology templates. In order to do so both the histology and the 



 

DTI images are pre-processed and post

techniques implemented both using

processing software. The principles behind the image processing techniques implemented 

in this study are explained in the following paragraphs.

2.7.1 Mathematical morphology

 Mathematical morphology is a

mathematical concepts from set theory. This techniques includes a wide range of 

operators used for the analysis of binary images in order to perform image enhancement, 

image segmentation, edge detection and noise removal. The image on which morphology 

is to be performed and the structuring element are the two inputs that these operators 

basically require. The structuring element is used as a probe to detect information in the 

image. The structuring element consists of a pattern of discrete points relative to some 

origin in the Cartesian coordinate system. 

structuring elements. The two fundamental operators in mathematical morphology are 

erosion and dilation. 
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Figure 2.12: Examples of structuring elements. A) Disk
B) Square structuring element. C) Horizontal line structuring element. D) Vertical line 
structuring element. E) Diagonal s
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Examples of structuring elements. A) Disk-shaped structuring element.     
B) Square structuring element. C) Horizontal line structuring element. D) Vertical line 
structuring element. E) Diagonal structuring element. 
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2.7.1.1 Erosion 

 Erosion is a morphological operator that shrinks the objects in an image by 

removing pixels from the boundaries of objects. The mathematical definition of erosion 

for binary images is as follows: The erosion of A by B, denoted by A � B 

A � B � / z12B34  5  A6  789 

The erosion of A by B is the set of all structuring element origin locations where the 

translated B has no overlap with the background of A. Here A is the image, 8 is the 

empty set and B is the structuring element. The manner and extent of erosion is 

controlled by the structuring element. 

2.7.1.2 Dilation 

Dilation is a morphological operation that grows or thickens objects in a binary image. 

The mathematical definition of dilation of binary images is as follows: The dilation of A 

by B, denoted by A O+  B 

A O%  B � ; z12B34<  5  A 78=  

Here A is the image, 8 is the empty set and B is the structuring element. The dilation of 

A by B is the set consisting of all structuring element origin locations where the reflected 

and translated B overlaps atleast some portion of A. The manner and extent of dilation is 

controlled by the structuring element. 
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2.7.1.3 Morphological opening 

The morphological opening of A by B denoted by A ◦ B is erosion of A by structuring 

element B followed by dilation of the result by B. The effect of the operator is to preserve 

foreground regions that have a similar shape to the structuring element, or that can 

completely contain the structuring element, while eliminating all other regions of 

foreground pixels. It also smoothes object contours, breaks thin connections and removes 

thin protrusions. 

2.7.1.4 Morphological closing 

The morphological closing of A by B denoted by A · B is dilation of A by structuring 

element B followed by the erosion of the result by B. The effect of the closing operator is 

to preserve background regions that have a similar shape to the structuring element, or 

that can completely contain the structuring element, while eliminating all other regions of 

background pixels. Morphological closing tends to smooth the contours of objects. It also 

joins narrow breaks, fills long thin gulfs and fills holes smaller than the structuring 

element. 

2.7.2 Image registration 

 Image registration is the process of estimating an optimal transformation between 

two images in order to geometrically align the two images. Given two images denoted by 

>? and >�, the mapping between images can be expressed as: 

 >� � @2A2 >?33 
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where T is the spatial transformation, and g is the intensity transformation function. For 

3D medical images, T can be a 3D spatial coordinate transformation, which maps three 

spatial coordinates, x, y and z, to new spatial coordinates BC, DC and EC. 

(BC; DC; EC3 �  T2x;  y;  z3 

while g maps the intensity of image I1 to corresponding intensity of image I2.Therefore g 

maps an image to an image while T maps between coordinates. The methods of 

registration in medical imaging can be classified as being landmark-based, surface-based 

or voxel-based (Jenkinson and Smith 2001). Landmark-based registration is based on the 

identification of corresponding landmarks on the two images. These landmarks can be 

either anatomical structures or external markers attached to the patient (Lemieux, Kitchen 

et al. 1994). Landmark-based registration methods achieve their target by minimizing the 

distance between corresponding points. This method is user-intensive as the accuracy of 

the method depends upon the accurate indication of the corresponding landmarks in the 

images by the user. In surface based registration, corresponding surfaces in the two 

images to be registered are delineated and a transformation is computed that minimizes 

the distance between the two surfaces. These segmentation methods are highly 

application and data dependent. Voxel-based (VSB) registration methods optimize a 

function, such as a correlation coefficient or an absolute sum of differences, measuring 

the similarity of all geometrically corresponding voxel pairs for some feature. The main 

advantage of VSB methods is that they are not limited by segmentation errors as in 

surface based methods because feature calculation is straightforward or even absent when 

only grey-values are used. This method of image registration is not as useful in 

registering images from different modalities as the corresponding voxel intensity values 
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are usually not related in different modalities. For intramodality registration, 

maximization of mutual information of voxel intensities within overlapping parts or in a 

region of interest (ROI) has been feasible. Overall, the main components involved in the 

process of image registration are the reference and the target images, feature detection 

and matching, the transformation model and the cost function. 

2.7.2.1 Variations in images 

 The reference and the target images may vary from each other due to the 

following three major causes. The images may vary due to differences in acquisition 

which leads to a spatial misalignment. The images may also vary due to variations in the 

image intensity due to lighting conditions. Finally, variations between the images are 

introduced due to inherent changes in the object being imaged due to object movement or 

growth. Variations can be introduced due to images captured at different times in 

multitemporal analysis or images captured using different sensors in multimodal imaging. 

Variations also exist between a real world image of an object and an image of the model 

of the object. The different components of the image registration process are based on the 

types of variation between the reference and the target image. 

2.7.2.2 Feature detection and matching 

 Significant and distinctive objects like region boundaries, curves and points are 

detected as features of the reference and the target image in order to match them. These 

region features are generally high contrast regions. They can be selected manually or 

automatically. For automatic feature detection, segmentation methods are used in order to 

extract the region boundaries. Also, the centroid of a closed boundary region can be used 
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to detect points in the image. The detected features in the reference and the target images 

are then matched using image intensity values in a certain defined neighborhood. 

2.7.2.3 Transformation model 

 Following feature matching, images are mapped to new coordinates using a 

transformation model. Rigid, affine and non rigid are the different transformation models 

of interest. Rigid transformation is used when there is no distortion among images. A 3-D 

rigid transformation is composed of three rotations and three translations whereas a 2-D 

rigid transformation is composed of a rotation and two translations. It is a linear operation 

and can be represented by a 4x4 matrix in the 3-D case. The affine transformation is used 

when there is gross distortion in the target image as compared to the reference image. The 

affine registration is normally used as a crude approximation to a fully non-rigid 

transformation. A 3-D affine transformation is composed of three rotations, three 

translation, three stretches and three shears whereas a 2-D affine transformation is 

composed of a rotation, two translations, two stretches and two shears. The affine 

registration is a linear operation and can be represented by a 4x4 matrix in the 3-D case. 

The non rigid transformation is used for inter subject registration and for correction of 

distortion. It is a non linear transformation. 

2.7.2.3 Cost function 

 Cost functions are used to determine the similarity between regions of interest in 

the reference and the target images. Intensity based methods and feature based methods 

are the two main types of cost functions. Intensity based methods use the intensity of 

pixels to quantify the difference between the registered and the target image. Sum of 
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squared differences, normalized correlation and mutual information are the different 

intensity based cost functions. Feature based methods compute cost as the distance 

between features in the registered and the target image. 
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Chapter 3:  

Correlation of diffusion tensor imaging indices with 

histological parameters in rat cervical spinal cord gray matter 

following distal contusion spinal cord injury 
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3.1 Introduction 

Diffusion tensor imaging (DTI) is continuing to emerge as a preferred technique 

for identifying structural changes in the spinal cord after trauma or with progressive 

disease; however, the vast majority of investigations have focused on diffusion properties 

that depend on white matter structure.  For example, DTI reflects differences in axon 

spacing and axon diameter in healthy spinal cord white matter (Schwartz, Cooper et al. 

2005).  In pathological situations, demyelination is associated with an increase in 

transverse (radial) diffusion (Song, Sun et al. 2002; Song, Sun et al. 2003; DeBoy, Zhang 

et al. 2007; Hofling, Kim et al. 2009) while a decrease in longitudinal (axial) diffusion 

reflects axonal loss (Song, Sun et al. 2003; DeBoy, Zhang et al. 2007; Kozlowski, Raj et 

al. 2008; Budde, Xie et al. 2009; Hofling, Kim et al. 2009). Thus, DTI parameters can be 

useful in identifying loss in white matter integrity, especially at the site of the injury.  

Less is known about changes in diffusion distant from the injury and the effects of injury 

on the diffusion properties of spinal cord gray matter are largely unexplored. 

Most investigations of spinal cord DTI have focused largely at the site of a lesion 

despite the liklihood that there are also changes in cellular structure substantial distances 

from the injury location.  Diffusion and diffusion anisotropy of the white matter at the 

site of injury differ from other regions of the spinal cord (Deo, Grill et al. 2006; Tu, Kim 

et al. 2010), reflecting corresponding histological changes near the injury (Budde, Kim et 

al. 2007; Kozlowski, Raj et al. 2008).  While some effort has been made to use DTI to 

track the propagation of changes in axon degeneration in white matter rostral and caudal 

to the injury (Narayana, Abbe et al. 1999; Deo, Grill et al. 2006) the extent of the spatial 
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changes has been limited largely to about 10 mm.  Since the loss of axons and subsequent 

changes in white matter tracts propagate throughout the cord, changes in DTI parameters 

might also be expected at sites distant from an injury site.  Evidence from DTI studies in 

humans has indicated that there are changes in diffusion in the spinal cord white matter 

even in regions remote from the injury (Ellingson, Ulmer et al. 2006; Ellingson, Ulmer et 

al. 2006; DeBoy, Zhang et al. 2007). Thus, changes in diffusion values are not 

concentrated at the lesion but are widespread through the spinal cord.  Both longitudinal 

and transverse diffusivity show a general decrease throughout the spinal cord in human 

subjects with chronic SCI (Ellingson, Ulmer et al. 2008). 

In addition to axonal loss and degeneration, SCI appears to affect the gray matter 

regions of the spinal cord.  Morphological changes have been observed in the neurons in 

the gray matter, at the injury site as well as regions caudal to the injury site.  These 

changes include an increase in the frequency of large motor neurons and  an increase in 

the thickness of the dendritic bundles (Bose, Parmer et al. 2005).  Changes in the 

dendritic structure of motoneurons caudal to the site of injury have also been observed 

following SCI in the rat (Kitzman 2005).  In addition, the soma size of sympathetic 

preganglionic neurons of the lubrosacral spinal cord decreases with the loss of synaptic 

connectivity after SCI (Krassioukov and Weaver 1996).  DTI parameters of intact rodent 

spinal cord gray matter have been characterized (Madi, Hasan et al. 2005; Ellingson, 

Kurpad et al. 2008; Kim, Haldar et al. 2009), although the effects of gray matter 

histological structure of the various lamina on DTI parameters has not been investigated.  

Further, while diffusivity of water is reduced in the gray matter in chronic SCI humans 
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rostral to the injury site (Ellingson, Ulmer et al. 2008), the histological features of spinal 

gray matter that underlie these diffusion changes are unknown. 

In the current study, we examined the ex vivo diffusion characteristics in the 

cervical spinal cord gray matter following a T8 contusion SCI in the rat and examined the 

corresponding histological features at 2, 15 and 25 weeks post injury.  We hypothesized 

that DTI would detect changes in the diffusion characteristics in the rat cervical spinal 

cord gray matter remote from the lesion during long-term recovery from traumatic SCI.  

We also hypothesized that DTI values in the rat cervical spinal cord gray matter would 

correlate to the size of the motoneurons of the cervical spinal cord gray matter in chronic 

SCI at T8.  

3.2 Materials And Methods: 

3.2.1 Animals 

 A total of twenty female Sprague-Dawley rats were used in this study.  The 

animals were divided into the following four groups: an uninjured control group (n = 5, 

age = 8 weeks), an injured group allowed to survive two weeks post spinal cord injury (n 

= 5, age = 10 weeks), an injured group allowed to survive fifteen weeks post spinal cord 

injury (n = 5, age = 23 weeks) and an injured group allowed to survive twenty five weeks 

post spinal cord injury (n = 5, age = 33 weeks). 

3.2.2 SCI model 

 A regulated, moderate contusion injury was induced in all the injured samples.  

Female Sprague-Dawley rats (200–250 g) were anesthetized with interperitoneal (IP) 
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Ketamine (75 mg/kg body weight) and Medetomidine IP (0.5 mg/kg body weight).  An 

incision was made over the mid-thoracic region, subperiosteal dissection performed and a 

laminectomy over three levels (T7–T9) was performed to expose the spinal cord and 

overlying dura under sterile conditions.  In order to induce a spinal contusion, an 

impactor (10 g) was dropped from a height of 25 mm directly onto the dura at the T8 

level.  This caused a moderate, incomplete spinal cord injury that is known to produce 

paraplegia or high-grade paresis.  After impact, the wound was closed in layers.  

Postoperatively, animals were placed on a warm blanket, placed on enrofloxacin (10 

mg/kg body weight, subcutaneous injection), and given lactated ringers subcutaneously 

(50 mL/kg body weight).  The uninjured control animals did not receive any surgical 

procedures. 

3.2.3 Ex vivo MRI 

 At the predesignated time post injury, an overdose of sodium pentobarbital (100 

mg/kg body weight) was used to euthanize the animals before performing ex vivo MRI.  

Once the thoracic cavity was opened, a perfusion catheter was inserted into the ascending 

aorta, the right atrium was incised, and 300 mL of warm phosphate-buffered saline (PBS) 

was perfused to clear blood from the vasculature.  Following this, fixation was achieved 

using 600 mL, 10% formalin (pH 7.4) at room temperature.  The spinal cord was then 

extracted, macroscopically assessed and post-fixed in 10% formalin for up to 2 weeks.  

After post-fixation, each spinal cord was cut at the medulla and embedded in agarose 

gelatin (20 g of purified agarose + 500 mL dH2O) within 2.5 cm diameter plastic, MR-

compatible test tubes.  In order to achieve proper alignment of each spinal cord, the 
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distance from the opening of the test tube to the medulla and the distance from the 

opening of the test tube to the lesion site were kept consistent across all the specimens.  

Temperature of the agarose gelatin was monitored continuously until the gelatin 

dissolved and liquefied.  Spinal cords were not placed into the gelatin mixture until the 

temperature of the mixture cooled to less than 45°C to decrease the probability of protein 

denaturation.  Spinal cords were removed from the agarose gelatin within twenty four 

hours of initial embedding.  A total of four spinal cords were analyzed in each of the 

control, two week post injury, fifteen week post injury and twenty five week post injury 

groups. 

 The cords in the test tubes were bundled together and placed into a 9.4 Tesla (T), 

horizontal bore MR spectrometer (9.4T Bruker BioSpec 94/30 USR In vivo Spectroscopy 

Imaging System; Bruker BioSpin).  A quadrature volume coil was used for 

radiofrequency excitation/reception.  A single T2-weighted image (b = 0 s/mm2) and six 

diffusion weighted images (DWIs) with non-collinear sensitizing directions were 

acquired at echo time/repetition time = 31.6 ms/14s, slice thickness of 2 mm with 1 mm 

interslice gap, field of view = 5.12 cm, NEX = 1, and an acquisition matrix of 512 x 512 

using a standard pulsed gradient spin-echo (PG-SE) DW sequence.  This produced DTI 

images with 100 µm in-plane resolution.  In addition, DWIs had δ = 3 ms, ∆ = 15 ms, and 

b-values ranging from 493.5–500.7s/mm2 (target b-value = 500s/mm2) depending on 

orientation of diffusion sensitizing gradients with respect to imaging gradients. 
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3.2.4 DTI Processing 

 In order to construct the diffusion tensor from the DWIs, the DWIs and the T2-

weighted images were first imported into AFNI (http://afni.nimh.nih.gov/afni).  The 

DWIs were coregistered with the T2-weighted images in AFNI using a Fourier 

transform- based, 6 degree of freedom, rigid-body registration algorithm to correct for 

eddy-current and susceptibility distortions.  These coregistered DWIs were then exported 

to Matlab (MathWorks, Inc, Natick, MA) using the AFNI Matlab Library functions.  The 

effective b-value, actual gradient directions calculated by the Bruker™ system and the 

image registration transformation matrix were also imported into Matlab to accurately 

construct the tensor. 

 Once the diffusion tensor was constructed it was used to calculate the DTI 

parameters.  The DTI parameters used in this study were the longitudinal apparent 

diffusion coefficient (lADC), transverse apparent diffusion coefficient (tADC), mean 

diffusivity (MD) and fractional anisotropy (FA).  lADC was defined as the largest 

eigenvalue, tADC was defined as the average of the two smallest eigenvalues, MD was 

the average of all three eigenvalues and fractional anisotropy was calculated as defined 

by Pierpaoli and Basser (Pierpaoli and Basser 1996).  All DTI parameters were calculated 

in Matlab and saved for further analysis. 
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3.2.5 Histological staining 

3.2.5.1 H & E staining for registration 

 In order to perform registration of DTI images to the corresponding histology, 

tissue sections with eriochrome cyanine R stain and H&E counter-stain were obtained.  

Following ex vivo imaging, samples from each subject in the control (n = 4) , two weeks 

post injury (n = 4), fifteen weeks post (n = 4) and twenty five weeks post injury (n = 4) 

groups were dehydrated, blocked in paraffin, sliced axially and stained with eriochrome 

cyanine R stain and H&E counter-stain.  Axial slices of the cervical spinal cord were 

digitally imaged at 4x magnification using a Nikon Eclipse E600 research microscope 

(Nikon Instruments, Inc, New York) and the images were captured with a Diagnostic 

Instruments CCD digital camera (Diagnostic Instruments, Inc, Sterling Heights, MI) 

using SPOT image acquisition software (Diagnostic Instruments, Inc, Sterling Heights, 

MI) (Figure 3.1). 

 

 



 

Figure 3.1: Cervical spinal cord axial slice stained with eriochrome cyanine R and 
counter-stained with H&E
these images produced an obvious color delineation between white matter and gray 
matter. 
 
3.2.5.2 Toluidine blue staining for structural changes

 Tissue samples adjoining the

postfixed in osmium tetroxide (OsO

identify evidence of ongoing changes in the cervical spinal cord gray matter for control (n 

= 4), two weeks post injury (n = 4)

toluidine blue histological processing was conducted off

Research Facility at the University of Iowa, using a similar protocol to Schwartz et al. 

(41).  The protocol consisted of washing the tissue in a phospate buffer, post

tissue for 1-2 hours in 1% OsO

rinse, and then dropping the processed tissue into 2.5% uranyl acetate for approximately 

20 minutes.  After dehydration, infiltration began with washes of ethanol followed by 

washes of EPON epoxy resin.  After complete immersion in EPON the tissue was cut into 

1 µm sections and stained with toluidine blue.  Slides were then coverslipped for light 

 

Cervical spinal cord axial slice stained with eriochrome cyanine R and 
ed with H&E captured at 4x magnification. Scale bar = 200 µm.  Note that 

these images produced an obvious color delineation between white matter and gray 

staining for structural changes 

Tissue samples adjoining the sections used for the eriochrome staining were 

smium tetroxide (OsO4) and toluidine blue histological staining 

evidence of ongoing changes in the cervical spinal cord gray matter for control (n 

= 4), two weeks post injury (n = 4) and twenty five weeks post injury (n = 4).  OsO

toluidine blue histological processing was conducted off-site, at the Central Microscopy 

Research Facility at the University of Iowa, using a similar protocol to Schwartz et al. 

isted of washing the tissue in a phospate buffer, post

2 hours in 1% OsO4 in buffer, washing the tissues in a buffer rinse and dH

rinse, and then dropping the processed tissue into 2.5% uranyl acetate for approximately 
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1 µm sections and stained with toluidine blue.  Slides were then coverslipped for light 
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Cervical spinal cord axial slice stained with eriochrome cyanine R and 
captured at 4x magnification. Scale bar = 200 µm.  Note that 
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.  After dehydration, infiltration began with washes of ethanol followed by 

washes of EPON epoxy resin.  After complete immersion in EPON the tissue was cut into 

1 µm sections and stained with toluidine blue.  Slides were then coverslipped for light 
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Figure 3.2: A) Cervical spinal cord axial slice 
Osmium tetroxide (OsO4) 
200 µm B).  Image of the Region of Interest (ROI) in the gray matter captured at 40x 
magnification. Scale bar = 50 µm.
 
 
 
 
3.2.6 Region of Interest Selection

 Histological templates were used to 

regions of interest (ROIs) in the DTI maps of a 

were constructed from a histological section of the spinal

cyanine R stain and H&E counter

spinal cord that best resembled the cord morphology of the histological image was used 

for analysis of each sample. The cervical segments selected in all the subjects were from 

copy.  Axial slices of the cervical spinal cord were digitally imaged 

magnification along with regions of interest in the gray matter which were digitally 

imaged at 40x magnification.  A Nikon Eclipse E600 research microscope equipped with 

ic Instruments CCD digital camera interfaced with SPOT image acquisition 

was used for capturing the images (Figure 3.2). 

   B 

Cervical spinal cord axial slice of an uninjured control rat 
) and toluidine blue captured at 4x magnification. Scale bar = 

200 µm B).  Image of the Region of Interest (ROI) in the gray matter captured at 40x 
magnification. Scale bar = 50 µm. 

3.2.6 Region of Interest Selection 

Histological templates were used to automatically select gray and white matter 

regions of interest (ROIs) in the DTI maps of a each specimen.  The histology templates 

were constructed from a histological section of the spinal cord stained with 

cyanine R stain and H&E counter-stain.  The axial slice of the DTI within the cervical 

spinal cord that best resembled the cord morphology of the histological image was used 

for analysis of each sample. The cervical segments selected in all the subjects were from 
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the C4 - C6 level except for two subjects in the two weeks post injury group for which 

they were selected from the C1-C2 level. Before mapping the histology templates onto 

the DTI maps, the DTI maps were registered to the histology templates using whole cord 

images obtained from both histology and DTI, as described in the following sections. 

3.2.6.1 Histology segmentation 

 To begin, the white matter, the gray matter and the entire spinal cord in the 

histology image were segmented using a custom cluster analysis algorithm written in 

Matlab.  In order to classify the regions into white matter, gray matter and the whole 

spinal cord, three sample ROIs were drawn manually in the RGB images.  These samples 

were selected randomly, one each from the white matter, the gray matter and the 

background.  The RGB image was then converted into the L*a*b* color space (Figure 

3.3a & 3.3b).  Mean values of the chromaticity layers a* and b* were calculated in each 

sample ROI, and then the mean values used to define markers for the regions containing 

the white matter, gray matter and background.  In order to classify the pixels into three 

regions, a Euclidean distance measure was calculated between each pixel and each region 

marker.  Using minimum distance as a classification factor, each pixel was then labeled 

as either white matter, gray matter or the background (Figure 3.3c). These pixel labels 

were then used to segment the RGB image into white matter, gray matter and 

background. 

 

 

 



 

A    
 
 

  
      C 

Figure 3.3: A) Chromaticity
the position of the color of the pixels between green and red. B) 
the L*a*b* color space.  The color bar represents the position of the color of the pixels 
between blue and yellow.
pixels classified as background, white matter (WM) and gray matter (GM).
 
 
 
 

            B 

Chromaticity layer a* of the L*a*b* color space. The color bar represents 
the position of the color of the pixels between green and red. B) Chromaticity layer

The color bar represents the position of the color of the pixels 
. C) Scatterplot of the segmented pixels in a*b* 

pixels classified as background, white matter (WM) and gray matter (GM).
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of the L*a*b* color space. The color bar represents 
Chromaticity layer b* of 

The color bar represents the position of the color of the pixels 
 space showing 

pixels classified as background, white matter (WM) and gray matter (GM). 
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3.2.6.2 Histology template formation 

 The segmented regions were then used to form histology templates of the white 

matter, the gray matter and the whole cord.  In order to form the whole cord template, 

image thresholding was first used to convert the RGB image containing the region 

segmented as background into a binary image, which was then inverted.  Gaps in the 

border of the binary template were closed using image dilation.  Once the gaps were 

closed, region filling was used to fill holes in the whole cord template.  This was 

followed by image erosion in order to make the whole cord template smooth.  The RGB 

images containing the region segmented as white matter and gray matter were used to 

form templates of the white matter and the gray matter respectively using the same 

process, except that the binary image was not inverted.  The center of mass of the whole 

cord template, which coincided approximately with the central canal, was then found and 

aligned with the center of the image frame.  The image frame was then zero padded to 

obtain a 1:1 aspect ratio and an image size that was an exact power of two while keeping 

the center of mass of the whole cord template aligned with the center of the image frame.  

The white matter template, the gray matter template and the L*a*b* histology image 

were then similarly aligned with the center of their respective image frames (Figure 3.4).   



 

Figure 3.4: Templates formed based on segmented regions. Columns represent 
regions of the cervical spinal cord. Rows show corresponding segmented images and 
templates formed based on the
 
 The L*a*b* histology image and the gray matter template were then used to form 

templates of the dorsal and ventral gray matter.  The upper 

image, containing the dorsal horn, was used to create the dorsal gray matter template 

while the lower half of the L*a*b* histology image, was used to create the ventral gray 

matter template.  The L*a*b* histology image was mode

their centers placed at the center of the image frame.  The number of ellipses was fixed at 

120 and they were equally spaced based upon the dorso

length of the whole cord. Pixel intensity was 

ellipse.  These intensity values were plotted as a function of the ellipse number and angle 

(theta) to form an angular intensity map. For the upper half of the L*a*b* histology 

Templates formed based on segmented regions. Columns represent 
cervical spinal cord. Rows show corresponding segmented images and 

templates formed based on the segmented images. 

The L*a*b* histology image and the gray matter template were then used to form 

templates of the dorsal and ventral gray matter.  The upper half of the L*a*b* histology 

image, containing the dorsal horn, was used to create the dorsal gray matter template 

while the lower half of the L*a*b* histology image, was used to create the ventral gray 

matter template.  The L*a*b* histology image was modeled as concentric ellipses with 

the center of the image frame.  The number of ellipses was fixed at 

120 and they were equally spaced based upon the dorso-ventral and the dextro

length of the whole cord. Pixel intensity was then sampled along the pixels lying on each 

ellipse.  These intensity values were plotted as a function of the ellipse number and angle 

(theta) to form an angular intensity map. For the upper half of the L*a*b* histology 
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Templates formed based on segmented regions. Columns represent the 
cervical spinal cord. Rows show corresponding segmented images and 

The L*a*b* histology image and the gray matter template were then used to form 

half of the L*a*b* histology 

image, containing the dorsal horn, was used to create the dorsal gray matter template 

while the lower half of the L*a*b* histology image, was used to create the ventral gray 

led as concentric ellipses with 

the center of the image frame.  The number of ellipses was fixed at 

ventral and the dextro-sinister 

then sampled along the pixels lying on each 

ellipse.  These intensity values were plotted as a function of the ellipse number and angle 

(theta) to form an angular intensity map. For the upper half of the L*a*b* histology 
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image, theta was calculated as the angle subtended at the center of the ellipse by the line 

joining a particular pixel lying on the ellipse and the pixel lying on the right end of the 

major axis of the ellipse.  For the lower half of the L*a*b* histology image, theta was 

calculated as the angle subtended at the center of the ellipse by the line joining a 

particular pixel lying on the ellipse and the pixel lying on the left end of the major axis of 

the ellipse.  Intensity analysis was then performed on the angular intensity map of the 

upper half of the L*a*b* histology image to obtain the angular and the elliptical bounds 

of the dorsal gray matter ROI.  The bounds were then used to create a template of the 

dorsal gray matter.  A similar analysis was performed on the angular intensity map of the 

lower half of L*a*b* histology image to obtain four angular and two elliptical bounds of 

the ventral gray matter ROIs.  The bounds were then used to create a template of the 

ventral gray matter (Figure 3.5).  These dorsal and ventral gray matter binary templates 

were in the same frame of reference as the white matter, gray matter and the whole cord 

template. 

 3.2.6.3 DTI segmentation and template formation 

 In order to identify the spinal cord in the DTI images, the MD image was used to 

separate the spinal cord from the agarose gelatin background.  The MD was used because 

of the high contrast present between the spinal cord and the agarose gelatin in this DTI 

index.  One single slice in the cervical section was selected from among the MD axial 

slices.  This MD slice was first cropped to select a particular sample. Edge detection 

using the Canny method was then performed on the cropped ROI.  The binary gradient 

mask created by edge detection was then dilated using image dilation in order to close 



63 
 

gaps in the outline of the whole cord. Once the gaps were closed, region filling was used 

to create the whole cord template.  This was followed by image erosion in order to make 

the whole cord template smooth.  This template was then used to segment the whole 

spinal cord in the FA, lADC and tADC images. 
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Figure 3.5: A) Angular intensity map and the dorsal template created from it. B) Angular 
intensity map and the ventral template created from it. Black dashed lines indicate the 
angular bounds while white dashed lines indicate elliptical bounds of the ROIs.
 

 

 

: A) Angular intensity map and the dorsal template created from it. B) Angular 
intensity map and the ventral template created from it. Black dashed lines indicate the 

while white dashed lines indicate elliptical bounds of the ROIs.
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: A) Angular intensity map and the dorsal template created from it. B) Angular 
intensity map and the ventral template created from it. Black dashed lines indicate the 

while white dashed lines indicate elliptical bounds of the ROIs. 
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3.2.6.4 Registration 

 Once the histology and the DTI whole cord templates were created, they were 

used to register the DTI images to the histology images. The DTI whole cord template 

was first coarsely registered to the histology whole cord template using Matlab which 

was followed by a fine registration using a robust cost function implemented in FSL 

(Analysis Group, FMRIB, Oxford, UK).  

 To perform the coarse registration in Matlab, the histology whole cord template 

and the DTI whole cord template were first aligned to have the same frame of reference.  

The center of mass of each template was first found and aligned to center of the image 

frame.  The center of mass coincided with the central canal in both the templates.  Both 

the image frames were then zero padded to obtain a 1:1 aspect ratio.  The angle of 

rotation of the DTI template image with respect to the histology template image was 

calculated using a Radon transformation (Figure 3.6). The scale factor in the x direction 

for scaling the DTI template image with respect to the histology template image was 

obtained from the ratio of the dextro-sinsiter length of the histology template to that of 

the DTI template.  The scale factor in the y direction for scaling the DTI template image 

with respect to the histology template image was obtained from the ratio of the dorso-

ventral length of the histology template to that of the DTI template.  The angle of rotation 

and the scale factors in the x and the y direction were then used to create a 2-D affine 

transformation structure which was used to perform spatial transformation on the DTI 

template image using bilinear interpolation.  In order to ensure the histology template 
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image and the DTI template image were in the same spatial coordinate system, the 

registered DTI template image was cropped and zero padded to achieve a 1:1 aspect ratio 

and the same image size as the histology template image while keeping the center of 

mass of the DTI template aligned to the center of the DTI template image frame.   

 To perform the fine registration, the histology template and the coarsely registered 

DTI template images were first converted into NIFTI data format using ImageJ and then 

read into FSL.  The FLIRT module of FSL was then used to perform a rigid three degrees 

of freedom affine registration on the two templates using least square cost function.  The 

reference histology template, the transformed DTI template and the registration 

parameters were then loaded back into Matlab for further analysis. 

 The same registration transformation then applied to the segmented FA, lADC 

and tADC images.  The histology gray matter template was used to form gray matter 

diffusion maps for each sample in each group.  The gray matter diffusion maps created 

from the C1 - C2 cervical slices of two of the subjects in the two weeks post injury group 

were excluded from creating the averaged visual diffusion maps but were included in the 

statistical analysis. This was because although they differed structurally from the slices 

obtained from the C4 -  C5 levels, morphologically they had similar Rexed laminae as 

compared to the C4 -  C5 cervical levels. The histology dorsal and ventral gray matter 

templates were used to segment the dorsal and the ventral gray matter ROIs in the DTI 

maps. 
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Figure 3.6: A) Radon transformation of the DTI whole cord tem
MD image showing the projection of the DTI template along the radi
angle theta. B) Projections of the template along  
θ = 151°. 
 

 

Radon transformation of the DTI whole cord template created from the 
MD image showing the projection of the DTI template along the radial line 
angle theta. B) Projections of the template along  X’ oriented at angles θ 
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3.2.7 Computing histological parameters 

 Once the ROIs were segmented, the toluidine blue stained histology images were 

used to calculate the size of the motoneurons in the ventral horns of the gray matter.  

Histological sections of the cervical spinal cord from the control group (n = 4), two 

weeks post injury (n = 4) and twenty five weeks post injury (n = 4) were used.  Axial 

images were first captured at 4x magnification.  These images were then used to 

determine the cytoarchitecture of the spinal cord based on Rexed laminae.  The location 

of the lamina IX in the gray matter, which contains motoneurons, was determined based 

on the Rexed laminae for the cervical spinal cord (Paxinos 2004).  These locations were 

then imaged at 40x magnification and the size of each motoneuron soma was measured 

manually.  Only those motoneurons that were sliced through the center of the nucleus 

were measured and used for the subsequent statistical analysis 

3.2.8 Statistical Analysis 

 All statistical analyses were carried out using SPSS Statistics 17 (SPSS Inc., 

Chicago, IL).  FA, lADC and tADC values in the dorsal and the ventral gray matter ROIs 

were averaged across subjects in each group and then analyzed using an independent t-

sample test.  FA, lADC and tADC values in the gray matter were averaged across 

subjects in a group and then analyzed across recovery time points using a one-way 

analysis of variance. Tukey's post hoc test was used to compare the means. Motoneuron 

sizes were analyzed across recovery time points using a two level nested analysis of 
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variance.  Recovery time was considered as the main group while subjects at each 

recovery time point was considered as a sub group. Games-Howell post hoc test was used 

to compare the means because of the unequal number of motoneurons sampled in each 

group. All tests were considered significant at P<0.05. 

3.3 Results 

3.3.1 Gray Matter Diffusivity Gradient 

Individual diffusion maps showed a gradient in the diffusion values of the cervical spinal 

cord gray matter in controls as well as across recovery time points. The average diffusion 

maps were created by averaging the individual diffusion maps. In order to account for the 

difference in size of the gray matter across samples in each recovery time group, only 

pixels that were common to all the segmented gray matter templates of the samples in 

each recovery time group were considered.  Note that this was performed only for 

visualization purposes. While considering the statistical significance of the changes in the 

diffusion values over time, the original gray matter template in each sample in each group 

was used. Average cervical spinal cord gray matter FA, lADC and tADC diffusion maps 

in control (n=5), two weeks post injury (n=3), fifteen weeks post injury (n=5) and twenty 

five weeks post injury (n=5) are shown in Figure 3.7. 

 



 

Figure 3.7: Ex vivo DTI images
from contusion SCI.  Columns represent cervical spinal cord gray matter at various 
recovery times and rows show corresponding fractional anisotropy (FA), longitudinal 
diffusion coefficient (lADC) and
 
 The diffusion maps showed an elevated fractional anisotropy in the dorsal horns 

as compared to the ventral horns in controls as well as at all recovery time points post 

injury.  At twenty five week

increase as compared to the FA values at two weeks and controls.  Longitudinal apparent 

diffusion coefficient maps in the cervical gray matter show elevated lADC values in the 

dorsal horns of the gray matter as compared to the ventral horns in controls as well as at 

all recovery time points post injury.  Transverse apparent diffusion coefficient maps in 

: Ex vivo DTI images of the cervical spinal cord gray matter during recovery 
from contusion SCI.  Columns represent cervical spinal cord gray matter at various 
recovery times and rows show corresponding fractional anisotropy (FA), longitudinal 
diffusion coefficient (lADC) and transverse diffusion coefficient (tADC) diffusion maps.

The diffusion maps showed an elevated fractional anisotropy in the dorsal horns 

as compared to the ventral horns in controls as well as at all recovery time points post 

injury.  At twenty five weeks post injury, FA values in the whole gray matter showed an 

increase as compared to the FA values at two weeks and controls.  Longitudinal apparent 

diffusion coefficient maps in the cervical gray matter show elevated lADC values in the 

gray matter as compared to the ventral horns in controls as well as at 

all recovery time points post injury.  Transverse apparent diffusion coefficient maps in 
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of the cervical spinal cord gray matter during recovery 
from contusion SCI.  Columns represent cervical spinal cord gray matter at various 
recovery times and rows show corresponding fractional anisotropy (FA), longitudinal 

transverse diffusion coefficient (tADC) diffusion maps. 

The diffusion maps showed an elevated fractional anisotropy in the dorsal horns 

as compared to the ventral horns in controls as well as at all recovery time points post 

s post injury, FA values in the whole gray matter showed an 

increase as compared to the FA values at two weeks and controls.  Longitudinal apparent 

diffusion coefficient maps in the cervical gray matter show elevated lADC values in the 

gray matter as compared to the ventral horns in controls as well as at 

all recovery time points post injury.  Transverse apparent diffusion coefficient maps in 
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the cervical gray matter showed elevated tADC values in the ventral horns of the gray 

matter as compared to the dorsal horns. 

 Analysis of the diffusion values in the dorsal and the ventral ROIs in the cervical 

gray matter in controls, fifteen weeks post injury and twenty five weeks post injury 

showed significant differences (Figure 3.8A).  FA values in the dorsal ROI were 

significantly higher than in the ventral ROI in controls, fifteen weeks post injury and 

twenty five weeks post injury groups (P < 0.05).  Similarly, lADC in the dorsal ROI was 

significantly higher than in the ventral ROI in controls, fifteen weeks post injury and 

twenty five weeks post injury groups (P < 0.05).  Transverse apparent diffusion 

coefficient (tADC) showed a trend of higher values in the ventral ROI than the dorsal 

ROI, although the difference was not significant (P = 0.497 between control dorsal and 

ventral ROIs, P = 0.365 between two weeks post injury dorsal and ventral horns, P = 

0.672 between fifteen weeks post injury dorsal and ventral horns, P = 0.849 between 

twenty five weeks post injury dorsal and ventral horns).  Figure 3.8B-C shows regions of 

interest in the dorsal and ventral horns of the cervical gray matter respectively. The dorsal 

horn cytoarchitecture consisted largely of Rexed laminae I, II and III.  Rexed laminae I 

and II showed the presence of thinly myelinated axons.  The ventral horn cytoarchitecture 

consisted of Rexed laminae VII, VIII and IX and large neurons of Rexed laminae IX 

were defined as motoneurons. 

 

 



 

 A 

                 B   

Figure 3.8: A) Ex vivo diffusion characteristics in dorsa
in the spinal cord gray matter. * = P < 0.05. Error bars = +1 SD. B) Rexed laminae I, II 
and III in the dorsal horn of the cervical spinal cord gray matter, WM = white matter. 
Scale bar = 50 µm.  C) Rexed lamina IX in the 
gray matter, * = motoneuron. 
 
 

          C 

A) Ex vivo diffusion characteristics in dorsal and ventral regions of interest 
in the spinal cord gray matter. * = P < 0.05. Error bars = +1 SD. B) Rexed laminae I, II 
and III in the dorsal horn of the cervical spinal cord gray matter, WM = white matter. 

.  C) Rexed lamina IX in the ventral horn of the cervical spi
neuron. Scale bar = 50 µm.  

72 

 

 

l and ventral regions of interest 
in the spinal cord gray matter. * = P < 0.05. Error bars = +1 SD. B) Rexed laminae I, II 
and III in the dorsal horn of the cervical spinal cord gray matter, WM = white matter. 

ventral horn of the cervical spinal cord 



 

3.3.2 Overall Gray Matter Diffusivity

 Group analysis of the diffusion values in the gray matter of the cervical spinal 

cord post injury showed significant changes 

values decreased at two weeks post injury as compared to controls.  At fifteen weeks post 

injury, FA values were comparable to control FA values followed by an increase at 

twenty five weeks post injury as compared to

weeks was significantly higher than the FA values at two week post injury (

the FA values in controls (

Figure 3.9: Ex vivo diffusion characteristics in the cervical spinal cord gray matter 
recovery time points two weeks, fifteen weeks and twenty five weeks post injury. * =  P 
< 0.05, compared to controls. ** = P < 0.05, compared to two weeks. Error bars = +1 SD.
 
 
 

Overall Gray Matter Diffusivity  

Group analysis of the diffusion values in the gray matter of the cervical spinal 

cord post injury showed significant changes (Figure 3.9).  Fraction anisotropy (FA) 

values decreased at two weeks post injury as compared to controls.  At fifteen weeks post 

injury, FA values were comparable to control FA values followed by an increase at 

twenty five weeks post injury as compared to controls.  The FA value at twenty five 

significantly higher than the FA values at two week post injury (

the FA values in controls (P < 0.05).  

Ex vivo diffusion characteristics in the cervical spinal cord gray matter 
recovery time points two weeks, fifteen weeks and twenty five weeks post injury. * =  P 
< 0.05, compared to controls. ** = P < 0.05, compared to two weeks. Error bars = +1 SD.
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Group analysis of the diffusion values in the gray matter of the cervical spinal 

).  Fraction anisotropy (FA) 

values decreased at two weeks post injury as compared to controls.  At fifteen weeks post 

injury, FA values were comparable to control FA values followed by an increase at 

value at twenty five 

significantly higher than the FA values at two week post injury (P < 0.05) and 

 

Ex vivo diffusion characteristics in the cervical spinal cord gray matter at 
recovery time points two weeks, fifteen weeks and twenty five weeks post injury. * =  P 
< 0.05, compared to controls. ** = P < 0.05, compared to two weeks. Error bars = +1 SD. 
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3.3.3 Motoneuron Size 

 In order to verify that the changes in the cervical gray matter diffusion values 

reflected an underlying change in the neuronal structure of the gray matter, motoneuron 

sizes in the lamina IX of the ventral horns were obtained from the control group (n=4), 

two weeks post injury group (n=4) and twenty-five weeks post injury group (n=4). Group 

analysis of the size of the motor neurons showed a significant increase in the motoneuron 

size at two weeks (P < 0.01) and twenty five weeks (P < 0.01) post injury as compared to 

controls.  The motoneurons also showed a significant increase in size at twenty five 

weeks post injury (P < 0.01) as compared to the motor neuron size at two weeks post 

injury (Figure 3.10A).  At two weeks post injury the size of the motor neurons increased 

approximately by 9% from the size of the motoneurons in controls; whereas at twenty 

five weeks post injury, the size of the motoneurons increased by approximately 42% 

compared to controls. At twenty five weeks post injury there was an increase in the 

variability of the size of the motoneurons as compared to the variability in the 

motoneuron size among the control and two weeks post injury groups.  Among the 

control and the two weeks post injury group, the two weeks post injury group had higher 

variability among the motoneuron sizes as seen in the histogram in Figure 3.10b. 

 



 

A 

B 

Figure 3.10: A) Motoneuron size in 
five weeks post injury groups.* = P < 0.01, compared to control. ** = P <
to two weeks post injury. B) Histogram showing the variance in the size of the motor 
neurons (µm2) among control, two weeks post injury and twenty five weeks post injury 
groups. 
 
 
 

 

A) Motoneuron size in µm2 in control, two weeks post injury and twenty 
five weeks post injury groups.* = P < 0.01, compared to control. ** = P <
to two weeks post injury. B) Histogram showing the variance in the size of the motor 

) among control, two weeks post injury and twenty five weeks post injury 
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in control, two weeks post injury and twenty 
five weeks post injury groups.* = P < 0.01, compared to control. ** = P < 0.01, compared 
to two weeks post injury. B) Histogram showing the variance in the size of the motor 

) among control, two weeks post injury and twenty five weeks post injury 
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3.4 Discussion 

3.4.1 Review of hypothesis and specific aims 

 The current study was motivated by the desire to quantify the diffusion properties 

using ex vivo DTI in the rat cervical spinal cord gray matter following a distal contusion 

spinal cord injury.  We hypothesized that ex vivo DTI can detect changes in the diffusion 

characteristics in the rat cervical spinal cord gray matter remote from the lesion during 

long-term recovery from traumatic SCI.  Further, we hypothesized that ex vivo diffusion 

characteristics in the dorsal horns of the rat cervical gray matter vary from the ex vivo 

diffusion characteristics in the ventral horns of the rat cervical gray matter and that DTI is 

sensitive to these variations.  In order to test these hypotheses we developed an algorithm 

to automatically segment dorsal and ventral ROIs in the rat cervical gray matter based on 

histology templates and then use these ROIs to quantify the changes in the ex-vivo rat 

cervical DTI indices, temporally as well as spatially after a distal (T8) contusion spinal 

cord injury.  Lastly, we hypothesized that ex vivo DTI values in the rat cervical spinal 

cord gray matter reflect the underlying microstructure of the spinal cord gray matter, 

specifically the structure of the neurons.  In order to test this hypothesis we measured the 

size of the motoneurons in the cervical spinal cord gray matter remote during long term 

recovery from traumatic SCI. 

3.4.2 Summary of results from the current study 

 To the best of our knowledge, the current investigation was the first to use ex vivo 

DTI to elucidate the spatial diffusion patterns in the rat cervical spinal cord gray matter 

following a distal contusion spinal cord injury.  This study was also novel in the way it 
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used a robust automatic segmentation algorithm to segment ROIs in the rat cervical 

spinal cord gray matter.  The segmentation technique, rather than being based on a 

histological atlas or user input, was based on the histology templates obtained from each 

specimen.   

 The diffusion parameters in the cervical spinal cord gray matter demonstrated a 

spatial variation.  Fractional anisotropy (FA) values in the dorsal horn were significantly 

higher than the FA values in ventral horn in all groups.  FA reflects underlying 

microstructural properties like myelin thickness, axon density and extracellular volume 

(Takahashi, Hackney et al. 2002; Mottershead, Schmierer et al. 2003; Gulani, Webb et al. 

2001).  Based on Rexed laminae, the ROI selected in the dorsal horns corresponded to 

laminae I, II and III.  The ROI selected in the ventral horns corresponded to laminae VII, 

VIII and IX.  Rexed laminae I, II and III showed the presence of thinly myelinated axons 

and high cellular density as compared to the Rexed laminae VII, VIII and IX.  Rexed 

laminae VII, VIII and IX contained neurons and cellular support structure and did not 

contain axons (Steiner and Turner 1972; McClung and Castro 1978; Paxinos 2004).  

Thus, the higher FA in the dorsal horn as compared to the ventral horn could be 

explained by the presence of thinly myelinated axons in the dorsal horn.  lADC values in 

the dorsal horn were significantly higher than the lADC values in all groups, except the 2 

weeks post injury.  Note that lADC reflects underlying microstructural properties such as 

myelin thickness, axon diameter along with neurofilament and microtubule density 

(Kinoshita, Ohnishi et al. 1999). The presence of thinly myelinated axons and the dense 

neurofilament and microtubules in the dorsal horn (Steiner and Turner 1972; McClung 
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and Castro 1978; Paxinos 2004) could explain the higher lADC values in the dorsal horn 

as compared to the ventral horns. 

 Diffusion parameters in the cervical spinal cord gray matter demonstrated changes 

over time post-injury.  These changes included a decrease in diffusivity in the gray matter 

at two weeks post injury followed by a gradual recovery at twenty five weeks post injury.  

This trend in diffusivity was reflected in both lADC and tADC values.  Our results 

support studies which report a similar decrease in the diffusivity values in the gray matter 

at the cervical level post SCI (Ellingson, Ulmer et al. 2006; Ellingson, Kurpad et al. 

2008). Ellingson et al. reported a significant decrease in lADC and tADC values at two 

weeks, fifteen weeks post injury and twenty five weeks post injury as compared to 

controls. They also reported a decrease in FA values from two weeks through fifteen 

weeks post injury followed by a significant increase in FA at twenty five weeks post 

injury.   

The observed decrease in the diffusion values in the cervical gray matter might be 

caused by a change in the ratio of intracellular to extracellular water volume due to 

cytotoxic edema (Haku, Miyasaka et al. 2006; Schwartz and Hackney 2003).  An 

increased interstitial pressure could also lead to a prolonged hypoperfusion seen after 

injury (Tator and Koyanagi 1997; Haku, Miyasaka et al. 2006).  This leads to an 

accumulation of water within the slow intracellular compartment further causing a 

decrease in the diffusion values at two weeks post injury  (Stanisz, Webb et al. 2004). 

Studies have shown that diffusion in white matter is reduced in a model of cytotoxic 

edema (Ebisu, Naruse et al. 1993). An increase in intracellular water leads to a reduction 

in tADC and lADC due to an increase in restricted diffusion (Stanisz and Henkelman 
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2001). Stanisz et al. provided a model to fit the diffusion parameters and have used that 

model to  predict the effects of axonal swelling on the diffusion characteristics  in white 

matter. They found that the water shift from the extracellular compartment into the highly 

restricted intracellular compartment was the major cause of decreased diffusion (Stanisz, 

Szafer et al. 1997; Stanisz, Henkelman et al. 2001).  At fifteen and twenty five weeks 

post injury, the decrease in the diffusion values can be explained by the increase in the 

cellular swelling due to chromatolysis.  This is supported by histological evidence which 

shows an increase in the size of the soma of motor neurons as well as the dissolution of 

Nissl substance both of which are indicators of chromatolysis (Paxinos 2004). 

 Fractional anisotropy values in the whole cervical spinal cord gray matter 

decreased at two weeks followed by an increase to control levels at fifteen weeks.  At 

twenty five weeks the FA values are significantly higher than controls and at two weeks 

post injury.  These results support previous studies which report a similar trend in the FA 

values over time post SCI (Ellingson, Kurpad et al. 2008).  To verify that the increase in 

FA values at twenty five weeks post injury reflected the chronic response following 

spinal cord injury, the size of the motoneurons in the ventral horns was measured.  The 

size of the motor neuron in lamina IX showed changes which could explain the observed 

trend in FA values.  At twenty five weeks, the size of the motoneurons increased 

significantly as compared to controls and two weeks.  As the motoneurons increase in 

size, the extracellular volume is likely decreased.  This could be the driving factor behind 

the decrease in diffusivity at twenty five weeks as compared to controls and two weeks 

post injury.  Another factor that could contribute to the changes in the anisotropy is 

changes in the structure of dendrites post spinal cord injury.  Studies have shown a 
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correlation between motoneuron soma size and dendritic features like dendritic length 

and branching (Ulfhake and Kellerth 1982; Kitzman 2005).  Overall, histological 

evidence supports the notion that axotomized motoneurons in the cervical spinal cord 

gray matter are undergoing morphological changes which are consistent with cell 

swelling and chromatolysis following a distal contusion injury at the T8 level (McIlwain 

and Hoke 1999; McIlwain and Hoke 2005). We see similar changes in motor neurons in 

the ventral horn although these motor neurons are not axotomized. These changes could 

lead to a change in the ratio of the extracellular volume to the intracellular volume which 

could explain the increase in FA at chronic stages. 

3.4.3 Clinical Implications 

 Performing DTI to map the diffusion characteristics in the gray matter may be 

beneficial as these diffusion properties can be correlated to the cytoarchitecture of the 

gray matter.  Based on Rexed laminae, evaluation of the diffusion values in specific 

laminae can be correlated to functional characteristics.  Changes in diffusion values in 

specific laminae over different recovery time points can then be used to predict functional 

recovery or deterioration. 

 Acquiring DTI at the lesion center during recovery from traumatic SCI can be 

difficult due to morphological changes in the spinal cord around the lesion center, and 

due to artifacts associated with metal surgical implants used to stabilize the injured spine.  

In order to overcome these difficulties, performing DTI on regions remote from the 

traumatic lesion could be beneficial in monitoring the state of the spinal cord during 
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recovery post SCI.  Based on this study, gray matter in regions remote from the traumatic 

lesion are found to be sensitive to injury. 

3.4.4 Study Limitations 

 In this current study, diffusion characteristics in the gray matter were only 

correlated to motor neuron sizes in the lamina IX of the cervical gray matter. Additional 

in depth quantitative analysis of the changes in the microstructural characteristics of the 

cellular structure in the gray matter is necessary in order determine the specific 

mechanisms behind the observed changes in the diffusion properties in the gray matter. 

Specifically, neuron density and changes in the neuronal structure in different laminae in 

the gray matter have to be established at different recovery time points post spinal cord 

injury. 

 The current study utilized DTI data obtained from the injured spinal cord gray 

matter in the secondary acute to the chronic stages of recovery. Primary acute (< 2 weeks 

post injury) were not explored in this study due to concerns with increased mortality. In 

order to determine the accurate temporal and spatial progression of changes in DTI 

values during primary acute stages, DTI needs to performed in specimens at recovery 

points less than two weeks. 

 In this current study, it was established that ex vivo DTI measurements in regions 

rostral to the injury site show changes which are specific and sensitive to the injury post a 

contusion spinal cord injury at the T8 level. However, in order to completely understand 

the mechanism of changes in diffusion characteristics in the gray matter throughout the 
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spinal cord gray matter, DTI values needs to be analyzed in the gray matter caudal to the 

injury site as well. 
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