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ABSTRACT
DEVELOPMENT OF A VELOCITY METRIC FOR

RIGID-BODY PLANAR MOTION

Luis E. Criales Escobar

Marquette University

Two motions of motion quality have been developed for planar motion.
They are the “best motion measure” and the “velocity metric”. The “best motion
measure identifies the best motion for a given displacement. The “velocity metric”
quantifies the discrepancy between two planar motions for the same rigid body.

The best motion measure compares the motion of each particle on the body
to an “ideal”, but usually unobtainable, motion. This ideal motion moves each
particle from its current position to its desired position on a straight-line path.
Although the ideal motion is not a valid rigid body motion, this does not preclude
its use as a reference standard in evaluating valid rigid body motions. It is shown
that the best motion measure can be reduced to the product of two components:
the average distance from a point in the plane to the body, and a term based on
configuration parameters.

The optimal instantaneous planar motion for general rigid bodies in
translation and rotation is characterized. This optimal motion is defined as the
geodesic motion of a frame located at the geometric center of the body. In other
words, the geometric center of the body will move in a straight-line path to its
desired position, while the body rotates about the axis perpendicular to the plane.
The optimal angular velocity is a function of the discrepancy between the current
configuration and the desired configuration.

A velocity measure used to evaluate how closely one motion is to another is
also defined. This second measure is shown to meet the mathematical
requirements of a metric. For a single particle, the velocity metric is the norm of
the difference in translational velocity. It is shown that for most cases, this metric
can be characterized as the average distance from a point in space to the body.
This point is the instantaneous center of the motion associated with the
discrepancy between the two motions.

Because the measures described above depend on body geometry, a method
to analytically evaluate any polygonal body based on polygonal decomposition
into simpler bodies is provided. Results for example planar positioning problems
are presented.
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NOMENCLATURE

θ - Angular discrepancy between two pose configurations of a rigid body.

q - Current location of particle q in the plane.

q′ - Target location of particle q in the plane.

rab - Location of particle b relative to a.

ω - Angular velocity of a body.

R(θ) - Rotation matrix for a given discrepancy between frames.

O - Center of rotation for a given configuration problem.

o - Instantaneous center of rotation for a given motion.

I - Identity matrix.

vq - Translational velocity vector of particle q.

∆vq - Difference in translational velocity vector at q.

viq - Ideal translational velocity vector for particle q.

vaCq - Translational velocity vector for particle q due to the geodesic motion

of the frame located at C.

vdq - Best motion measure for particle q.

vD - Best motion measure for a body.

τ - Time to complete motion.

[ω×] - Skew-symmetric matrix representing ωk̂×.

k - Scalar indicating relative magnitude of rotation with respect to

translation.

r̄ - Average distance from a location in the plane to a body.

t - Planar twist describing translational and angular velocity of a motion.

vmq - Velocity metric for particle q.

vM - Velocity metric for a body.



x

PCq - Transformation matrix from twist at C to translational velocity at q.

d(e1, e2) - Measure of “Distance” between two elements of a set.

HCC′ - Homogeneous transformation from frame C to C ′.

||x|| - L2 norm of vector x.

|x| - Absolute value of scalar x.
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1. INTRODUCTION

The ability to achieve accurate positioning is a vital characteristic of a

robot. It is currently difficult to characterize the accuracy of different

configurations due to the need to consider rotational and translational error

simultaneously. A measurable quality is often needed to properly evaluate the

distance between an obtained rigid body position and its target configuration.

This problem arises frequently in general mechanism design, robot calibration, and

motion planning.

The ability to adequately characterize the “distance” between

configurations is not the only relevant problem in these subject areas. There is

also the need to adequately compare all motions that will produce a change in this

distance. In other words, there is a need to identify the best available motion that

will take the body as close as possible to its desired configuration. Therefore, it

makes intuitive sense to develop a metric which characterizes the ability of a

velocity to be error-reducing. A fairly significant amount of work has been directed

towards the analysis of distance metrics, but very little emphasis has been placed

on metrics that characterize the ability of a velocity to reduce the distance

between two rigid body configurations.

It is important to understand why distance metrics are used and what some

of the shortcomings are that prevent or limit their use in practical applications.

The same is true of velocity metrics. This chapter reviews previously developed

distance and velocity metrics and provides an outline for this thesis.
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1.1 Distance Metrics

The need for distance metric functions for rigid body motion has been

recognized for more than 100 years [1]. A metric space must comply with three

mathematical requirements: positive definiteness, symmetry, and the triangle

inequality. A formal definition of the metric space and the three conditions that

must be satisfied is given in Chapter 4. However, it is important to note that these

three conditions are not overly constraining. A consequence of this is that an

indefinite number of distance metrics may be defined, but it is important to select

one that is physically intuitive. A physically meaningful metric is important since

it allows practical application. To comply with physical consistency, kinematic

distance metrics are preferred to be frame bi-invariant and scale invariant [2]. If

the metric results do not vary depending on where the frame of reference used to

describe the body is located in space, or where the body-based frame of reference

is located on the body itself, then the metric is said to be frame bi-invariant. In

other words, a metric which is frame bi-invariant is both world-frame invariant and

body-frame invariant. Furthermore, if the results obtained by applying the metric

to a configuration problem are independent of the units selected to represent

length, then the metric is said to be scale invariant.

Let us illustrate a physically inconsistent metric using a simple example.

Consider a metric function D1 defined as D1 = d+ θ, where d is the translational

distance for a single frame between both configurations and θ is the magnitude of

the orientational error between configurations. Such a metric is not scale-invariant

because d and θ have different units, implying that the results will be influenced

by the selection of units used to describe length and orientation. Furthermore, this

metric is not frame bi-invariant since the value of d will change depending on



3

where the body frame is located.

Another example of a metric is D2 =
√
d2 + (lθ)2. In this case, a scaling

factor l is introduced to account for the unit discrepancy between translation and

rotation. However, the choice of l is arbitrary. Therefore, this metric is not

scale-invariant.

Metrics that are independent of a body’s specific geometry considered the

bodies to be of infinite size. Most of the previous work in the development of

kinematic distance metrics was done without much regard for practical

applications. Therefore, to consider bodies of infinite size was not a limitation at

the time since metrics should be independent of body shape and size. Regardless,

it is important to understand how kinematic distance metrics have evolved in the

last century. To more adequately grasp this evolution, distance metrics can be

grouped into three categories based on the characteristics of the approach used by

the mathematicians and kinematicians who developed them. These three

categories are the following: projective mapping metrics, Lie-group algebra based

metrics, and geometry-specific Euclidean metrics.

1.1.1 Projective Mapping Metrics

Several distance metrics based on projective mappings to obtain

dimensionless coordinates for position have been developed. One of the first known

attempts to address the need for a positioning metric was made by Stéphanos [1]

in 1883. Stéphanos associated an elliptic metric with the special orthogonal group,

SO(3). SO(3) is also known as a the rotation group, and is best defined as the

collection of all spatial rigid body motions that result in an arbitrary point being

fixed in space. Based on Stéphanos’ work, several other researchers aimed to map
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displacements into special projective spaces. In particular, distance metrics have

been obtained by mapping displacements from the rotational (SO(3)), planar

(P (3)), and Euclidean (E(3)) groups into real projective spaces.

Blaschke [3] showed that the set of all motions that move a body’s particles

in parallel planes could be mapped as a three-dimensional projective space.

Furthermore, he associated this space with a quasi-elliptic metric. The group of

motions that move all of a body’s particles in parallel planes is also known as

P (3), the Planar group. As a side note, Blaschke himself coined the term

“kinematic mapping” to describe his approach. Around the same time, Study [4]

tried to map arbitrary spatial displacements into a real projective space. Study

referred to the set of all spatial displacements as E(3), the Euclidean group, and

the real projective space into which he mapped the displacements is known as the

Soma space. Around 70 years later, Ravani and Roth [5] reconfigured Study’s real

projective space into a dual projective space. They also identified an elliptic metric

that corresponds to this dual projective space, whereas is not clear whether Study

associated a metric to the Soma space. More recently, Eberharter and Ravani [6]

made use of Study’s quadric to define a new metric for rigid body displacements

based on an optimized local mapping of the quadric. Eberharter and Ravani used

stereographic projections to optimize the local mappings. A stereographic

projection is a mapping that projects a sphere into a hyperplane for every point on

the sphere except the projection point. The optimization of the local mappings is

done with respect to a given set of key positions, manually selected, as opposed to

defining and developing a global metric. By using this procedure [6], curve-design

algorithms can be used for motion design, with emphasis in smooth functions.
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1.1.2 Lie-Group Algebra Based Metrics

Other researchers [7] have addressed the development of rigid body distance

metrics using Lie groups. It has been shown that the special Euclidian group,

SE(3), is a Lie group. The special Euclidean group is the set of all matrices which

correspond to a homogenous transformation describing the configuration of a body

(position and orientation). In other words, any given spatial displacement is an

element of SE(3). Kuffner [8] tackled the relative weighting of translation and

rotation components of SE(3). He showed that unit quaternions [9] were

preferable to represent the rotational component of SE(3) elements. Larochelle

and Murray [10] presented two metrics based on two techniques for approximating

elements of SE(3) with elements of SO(4). In fact, they generalized their

approach so that elements of SE(n) can be approximated to elements of

SO(n+ 1). The proposed metrics are based on singular value and polar

decompositions (SVD and PD respectively). Both metrics are projection based,

using hyperdimensional rotations to approximate displacements. However, their

metrics are not scale-invariant. A characteristic length was chosen to normalize

the translational/rotational components.

1.1.3 Geometry-Specific Euclidean Metrics

Park showed that there is no general frame bi-invariant metric for spatial

rigid body motion [2]. He also identified the mathematical requirements for

world-frame invariance and the mathematical conditions for body-frame invariance

as described previously. More recently, Lin and Burdick [11] noted that

body-frame invariance is an overly conservative constraint that does not accurately

reflect the true nature of a finite rigid body for physical phenomena such as kinetic

energy. By allowing a rigid-body frame transformation, it is possible to obtain a

physically meaningful form of frame invariance. In other words, the same rigid
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body displacement is being considered, albeit described separately in different

body-frame coordinates [11]. Several kinematicians have proposed distance metrics

based on a predetermined finite body geometry. The application of such metrics is

limited to problems in which the same rigid body is evaluated for multiple

configurations.

Kazerounian and Rastegar [12] introduced a measure based on the

Euclidean distance for all particles on the body, while Martinez and Duffy [13]

proved that the measure satisfied the mathematical requirements of a metric. This

metric for a specified body B is

Davg =
1

V

∫
q∈B

dq dV, (1.1)

where V is the body volume, and dq = |pqq′| =
√
δ2
x + δ2

y + δ2
z is the distance

between two configurations for a single particle q on the body. It is clear that the

metric shown in (1.1) is frame-invariant, since no particular fixed body reference

frame is chosen and all body particles are considered. However, the exceptional

computational capacity requirement associated with performing this calculation

for the entire body volume is seen as a deterrent in its possible application.

A less computatationally intensive alternative suggested by Martinez and Duffy is

given by the metric based on calculating the maximum distance for any particle on

the body from proper positioning:

Dmax = max
q∈B

dq. (1.2)

Another variant proposed by Chirikjian and Zhou [14] is based on the

squared distance between the two configurations for each particle. By squaring the

distance, the square root is eliminated from the calculation in (1.1) and the
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integral is simplified significantly. However, this metric has its own limitations.

The first limitation is that it is not physically consistent with what is expected of a

distance metric. The units are length squared as opposed to length. The second

limitation has to do with the way in which different particles are weighted by the

metric. Particles which are closer to their proper positioning contribute less to the

metric than particles that are father away. This is a consequence of squaring the

values. Therefore, not all particles on the body are weighted equally.

1.2 Velocity Metrics

The main difference between developing a rigid body distance metric and a

rigid body velocity metric lies on the fact that an optimal or target velocity has

not yet been defined. Some previous work has been done trying to characterize the

best motion. One such area of prior work is trajectory planning [15]. However, this

work focuses on motion dynamics and the forces required to generate a motion, as

opposed to establishing the best motion from a geometric perspective. Another

area addresses motion planning [16], although this work is directed toward finding

a path from one position to another when obstacle avoidance is a vital issue. Due

to the lack of an accepted distance metric, however, little work has been done in

establishing a measure of a good instantaneous motion when many motions are

available.

1.2.1 Riemannian Metrics

In differential geometry and topology, a manifold is a mathematical space

that is modeled based on the Euclidean space and can be considered as an n-th

dimensional expansion of the Euclidean space. A manifold can be described as a

collection of “charts”, also referred to as an “atlas”. The terminology is derived

from the fact that the idea of a manifold is similar to being able to describe the
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world using a series of maps, that when placed together provide a complete

representation of the Earth. One particular example of a manifold is a

differentiable manifold, a manifold similar enough to the Euclidean space that

allows the user to use calculus [17]. Furthermore, it is possible to attach a tangent

space to every point of a differentiable manifold. A tangent space is a real vector

space which contains all vectors that pass through that particular point. A

tangent space is a generalization of the concept of a bound vector in the Euclidean

space. In this way, a notion of “distance” can be established within the manifold.

A common measure of this distance is the inner product. If the inner product of

every tangent space of a differentiable manifold is smooth across all “charts”, the

manifold is said to be Riemannian [18]. Furthermore, the inner product is known

as a Riemannian metric (by satisfying positive definiteness, symmetry, and the

triangle inequality).

In a similar manner to the way in which Lie-group theory has been used to

develop distance metrics, several kinematicians have used this theory in their

velocity-based research. By definition, Lie groups are differentiable manifolds so

Riemannian metrics are of special interest as well. Zefran, Kumar and Croke [7]

applied a functional based on velocity and its derivatives that measures the

smoothness of a trajectory, hoping to find a trajectory that would minimize this

functional. In fact, their proposed measure for trajectory smoothness is a

Riemannian metric on SE(3). However, this metric depends on the choice of the

body-fixed reference frame, making it not body-frame invariant.

Other previous work with Lie groups has considered the distance along the

path taken by a frame attached to a body, which can be expressed as

L =

∫ b

a

< Ẋ, Ẋ >1/2 dt, (1.3)
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where Ẋ is the instantaneous motion of the frame. If the world-frame invariant

metric described by Park is chosen [2], < Ẋ, Ẋ > = c2 ωTω + vTv, for which ω is

the angular velocity, v is the translational velocity, and c is a selected scalar with

units of length. A “characteristic length” is chosen for c since there is no general

natural length scale. The choice for c is based on engineering judgement and

practical application. This form of velocity metric has been used to evaluate

motions relative to a desired motion. However, the results depend on both the

choice of characteristic length c and the choice of body frame location.

1.2.2 Geodesic Motion and Application

From a kinematic perspective, an important quality of a good motion is that the

path taken corresponds to the minimum distance [2, 7]. The minimum distance

curve is referred to as a geodesic. For planar motion, the motion associated with a

geodesic curve given by (1.3) corresponds to a straight line path of the body frame

from its current location to a target location, with rotation about the axis

perpendicular to the plane of motion.

Recall that means of assessing the quality of a relative configuration of a

finite rigid body were presented in Section 1.1.3. The metric given by (1.1)

involved calculating the average distance of all body particles from their intended

locations, while (1.2) involved only determining the maximum distance of all body

particles from their intended locations. If the maximally displaced particle Dmax is

used as a reference to evaluate motion quality, many possible motions are viewed to

be equally acceptable. As a consequence, a binary measure is obtained, given by

vTq rqq′ < 0 (1.4)

where q is the particle of maximum distance, vq is the translational velocity at q,

and rqq′ is the current location of q relative to its desired location. Because the
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distance metric applies to a single particle, half of all motions are distance

reducing, while the other half are distance increasing. Even though this velocity

measure is both scale and frame invariant, it ensures only that the particle of

maximum displacement is instantaneously reduced by the motion.

Previous work has also addressed further restriction of the set of motions

that reduce rigid body distance, by looking at different particles on the body

[19, 20, 21].

‘

‘

‘

‘

Figure 1.1: Rotation Centers Yielding Error Reduction.

It has been shown that the particle of maximal displacement is always one

of the body vertices for polyhedral bodies. Therefore, applying the distance

reduction conditions to the vertices ensures that the metric is always reduced. For

the body of Fig. 1.1, these conditions are expressed as:

vTi rii′ < 0 ∀i ∈ {A,B,C,D}. The set of planar motions (the locus of all rotation

centers) that reduce the distance from proper positioning for all of the vertices can
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be seen in Fig. 1.1. However, a set of binary measures of motion quality does not

comply with the mathematical requirements of a metric. Therefore, a means of

identifying the best velocity and a means of evaluating the quality of motions

relative to a best velocity are unavailable. This thesis will focus on finding

appropriate answers to both of these issues.

1.3 Overview

This thesis will provide two important contributions. The first result

consists of identifying the best available rigid-body motion for a given planar

displacement by applying a measure based on velocity for all particles on a rigid

body. This measure will be known as the best motion measure. The second

contribution is a velocity metric that can be used to evaluate any two rigid-body

planar motions by again evaluating the particle velocity of all particles on the rigid

body. This metric will be known as the velocity metric.

To find the best available rigid-body motion, a velocity measure is defined

based on reducing the average Euclidean distance for all particles that constitute

the rigid body for planar displacements. In Chapter 2, the strategy used to

calculate the difference between a desired motion and an available rigid body

motion is identified. The procedure to calculate the measure is presented and

analytical solutions for simple geometries are presented. Optimal instantaneous

velocities for rigid bodies in planar motion are characterized based on the best

motion measure. Examples for simple geometries are also provided for better

understanding in this chapter.

In Chapter 3, the velocity metric for planar rigid-body motion is developed

based on the discrepancy between two motions. First, the strategy used to
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evaluate the motion discrepancy is described. Then, the procedure to calculate the

discrepancy between the two motions is presented. It is shown that the measure is

intuitive, physically consistent (scale and frame invariant), and meets the

mathematical requirements of a metric. Both the best motion measure and the

velocity metric depend on body geometry.

Analytical solutions for simple geometries are described in Chapter 2.

Chapter 4 presents an algorithm used to evaluate any polygonal body with

polygonal or circular holes. This algorithm consists of: 1) polygonal body

decomposition into right-triangles, and 2) the summation of measure values for

each element of the decomposition to calculate the measure for the whole body.

An example of the application of this algorithm is presented as well.

Finally, results are summarized and plans for future work in this area are

described in Chapter 5.
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2. BEST MOTION MEASURE FOR RIGID-BODY

PLANAR MOTION

In this chapter, a rigid body velocity measure is developed that is based on

the distance metric that considers the average Euclidean distance for all particles

on the body. There are two main reasons to develop this velocity measure. The

first is to better understand the nature of a velocity metric developed based on

average particle distance, and the second is to determine what constitutes the best

motion. The idea behind this measure is to be able to evaluate any motion relative

to an “ideal” velocity. For this measure, the “ideal” velocity does not correspond

to a valid rigid-body motion. In fact, the “ideal” velocity is associated with the

displacement metric: the straight-line distance between two locations of the same

particle. Recall that the final goal is to develop a velocity metric based solely on

valid rigid body motions.

The first step in developing the velocity measure is to accurately describe

possible body configurations without loss of generality. Then, the “ideal” velocity

for each particle is identified and mathematically characterized. Once this “ideal”

velocity has been determined, the velocity measure is defined as the discrepancy

between this “ideal” motion and an available rigid body motion.

It is shown that the geometry of the body influences the best motion

measure. The body geometry-dependent portion of the best motion measure is

characterized by the average distance of the body particles from a frame executing

a geodesic motion. A graphical representation of the variation of best motion

measure with respect to the location of the frame undergoing the geodesic motion
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is provided for three simple geometries: a rectangle, a right-triangle, and a circle.

The best available rigid-body planar motion is based on the calculation of the

optimal geodesic frame location and the optimal angular velocity of the body.

2.1 Characterization of Body Configurations

For the measure based on the Euclidean distance between configurations for

all particles that constitute the rigid body, given by (1.1), the selection of

coordinate frames is arbitrary. This is possible since the metric given by (1.1) is

scale- and frame-invariant. However, the way in which the reference frames are

selected will greatly influence the complexity of the calculations that must be

performed, so the choice of reference frames is relevant.

Figure 2.1: World-Frame Located at the Center of Rotation (CoR).

Consider the simple example illustrated in Figure 2.1. The figure illustrates

a body in its current configuration and its target configuration. Consider a

body-frame at particle C such that the body-frame’s axes are aligned with the
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body edges to simplify the calculations. C is the current location of the body

frame and C ′ is the desired frame location. The displacement of the body from its

target configuration can be described with a homogeneous transformation for the

frame at C as follows:

HCC′ =

 R(θ) rCC′

0 1

 , (2.1)

where R(θ) ∈ R2 is the rotation matrix that describes the rotational displacement

of the body from its target configuration for the planar case, and rCC′ is the

position vector indication the target location of body frame C ′ relative to the

current location of the frame at C. In fact, rCC′ can be calculated as:

rCC′ = rSC′ − rSC , (2.2)

where rSC is the position of particle C relative to an arbitrary world-frame S. As

mentioned previously, aligning the world-frame with the body-reference frame will

greatly simplify all calculations. In fact, the calculations are greatly simplified if

the world reference frame is located at O, the center of rotation (CoR) for the

given pose discrepancy. It is important to note that the CoR is located at infinity

if there is no discrepancy in orientation between the body’s current and desired

configurations. However, for pure translation, the best motion is simply the one

that takes the body in the straight-line path to their desired configuration. This

problem is trivial and will be addressed in more detail later. For the sake of

consistency, it is hereby assumed that θ 6= 0 and that O is located at some finite
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distance from C somewhere in the plane.

Using O as the location of the world frame, (2.2) is reduced to:

rCC′ = rOC′ − rOC

= (R(θ)− I)rOC , (2.3)

where I is the identity matrix, and rOC is the position of particle C with respect to

the world frame located at O.

The location rCO of the CoR relative to frame C for the displacement HCC′

needed to determine rOC is obtained by inverting the relationship between rCC′

and rOC contained in (2.3). The location is

rCO = −rOC

= −(R(θ)− I)−1rCC′

= − 1

2− 2cosθ
(R(θ)T − I)rCC′ . (2.4)

2.2 Definition of the “Ideal” Velocity for a Particle

Now that a suitable world reference frame has been identified, it is possible

to define and then describe the “ideal” velocity for a particle on the body. Recall

that a path, as given by (1.3), is best if it is the minimum distance path (or

geodesic) for the specified body frame. The geodesic for a given frame corresponds

to a straight line path of the body frame from one location to the other at

constant translational velocity, with concurrent rotation at constant angular

velocity about the Euler axis passing through the frame’s origin. Figure 2.2a.

illustrates the motion that would be induced on particle A if the body were to
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Figure 2.2: Particle Velocities for Geodesic Motions.

move along the geodesic associated with the frame located at particle C after a

finite period of time.

The ideal motion for each particle of a rigid body will be determined by the

ideal motion of each particle independently. In other words, the “ideal” velocity

for a set of particles that compose a rigid body is determined by analyzing the

shortest path toward proper positioning for each particle. The “ideal” velocities

for particles A, B, C, and D are illustrated in Fig. 2.2b. By assuming that the
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motion for each particle is achieved in the same time interval, the best motion for

each particle will then have a magnitude and a direction. The time interval can be

chosen arbitrarily, since only the relative magnitudes are important. Therefore, let

this finite time interval be τ .

It is easily observed that the “ideal” motion described above is only

achievable simultaneously for all particles when the configuration problem is one of

pure translation (θ = 0). In general, the “ideal” motion is not a valid rigid body

motion, since particles of a rigid body are not allowed to move independently.

However, the fact that the best motion is generally not an available rigid body

motion does not preclude its use as a convenient reference standard.

The actual velocity of a specific particle in a valid rigid body motion can be

compared to the “ideal” motion for that same particle. For example, Figure 2.2c

illustrates the velocity of particle A for the frame C geodesic, vaCA , relative to the

ideal particle motion of A, viA . The discrepancy between the two velocities at A is:

vdCA = vaCA − viA (2.5)

The velocity measure is determined by evaluating the average magnitude of this

discrepancy for all particles that constitute the rigid body, following the same idea

used for the distance metric in (1.1). The magnitude of the discrepancy for

particle A is given by the Euclidean norm:

vdCA = (vTdCAvdCA)1/2 (2.6)
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Then, for all particles q in the body:

vDqC =

∫
q∈B

(vTdCqvdCq)
1/2 dq (2.7)

The measure given by (2.7) is calculated in the next section.

2.3 Calculation of the Best Motion Measure

The two elements of (2.5) must be expanded separately in order to evaluate

the measure. The ideal velocity of particle A is given by the distance between A

and A′, divided by the time interval τ . Also, (2.3) can be used to simplify the

distance between A and A′:

viA = pAA′/τ = (rOA′ − rOA)/τ

= (R(θ)− I) rOA/τ. (2.8)

The velocity of A for a valid rigid body motion can be described using the

definition of geodesic for a specific frame. For the planar case, any motion of the

body can be described by the geodesic of a specific frame. This frame does not

necessarily have to be on the body. The proof that any planar motion can be

described by the geodesic of a properly selected frame can be found in Appendix

A. Using this concept, the velocity of A for the geodesic for frame C is given by

vaCA = viC + vCA

= viC + θ/τ k̂× rCA = viC + ωk̂× rCA

= (R(θ)− I) rOC/τ + [ω×]rCA , (2.9)
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where ω = θ/τ , the angular velocity of the body, and [ω×] is the 2× 2

skew-symmetric cross-product matrix associated with ω.

The velocity discrepancy at particle A between the ideal velocity and the

available velocity for the geodesic of frame C can be rewritten using (2.8) and

(2.9).

vdCA = viA − vaCA

= (R(θ)− I) rOA/τ − [(R(θ)− I) rOC/τ + [ω×]rCA]

= (R(θ)− I) rCA/τ − [ω×]rCA

= (D−W) rCA. (2.10)

where D = (R(θ)− I)/τ and W = [ω×]. The magnitude of the velocity

discrepancy vDCA for particle A, from (2.6), is

vdCA = [vTdCA vdCA ]1/2

= [((D−W) rCA)T (D−W) rCA]1/2

= [rTCA (D−W)T (D−W) rCA]1/2

=
1

τ

√
θ2 + 2(1− cos θ − θ sin θ)

√
x2
CA + y2

CA. (2.11)

The average velocity discrepancy for all particles on the body q ∈ B for the

geodesic of any frame located at z can be similarly expressed as:

vD =
1
τ

√
θ2 + 2(1− cos θ − θ sin θ)

A

∫
q∈B

√
x2
zq + y2

zq dA

=
1
τ

√
θ2 + 2(1− cos θ − θ sin θ)

A

∫
q∈B

√
rTzqrzq dA. (2.12)

The calculation above evaluates only complete geodesic motions for an arbitrary
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frame located at z. All such motions yield proper positioning in time t = τ . In

other words, not all planar motions are yet considered. Recall that when t = τ ,

each complete geodesic motion causes collocation of the body reference frame with

its proper position and proper orientation. It was shown that all motions yield a

collocation of a body connected frame at some time.

Next, those motions that yield collocation of a body connected frame at

time t = τ but allow variability in angular velocity are considered. The velocity of

a particle q for all such motions associated with the partial geodesic of frame z (at

a specified, but arbitrary, location in space) can be described by

vazq = (R(θ)− I) rOz/τ + k (ω × rzq), (2.13)

where k is a scalar indicating the relative magnitude of the rotational motion with

respect to the translational motion of the frame. The motion is a complete

geodesic of the frame at z if and only if k = 1.

Substituting (2.13) into (2.10) yields a means of evaluating all possible

planar motions (scaled such that only the specified frame achieves its proper

position at time t = τ),

vD =
1
τ

√
(kθ)2 + 2(1− cos θ − kθ sin θ)

A

∫
q∈B

√
rTzqrzq dA. (2.14)

The difficulty of calculating this measure of velocity quality is reduced to

calculating r̄, the average particle distance from a specified location in space. This

is explicit in

vD = β(θ, k, τ) r̄(B, rCz), (2.15)
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where

r̄(B, rCz) =
1

A

∫
q∈B

√
rTzqrzq dA, (2.16)

in which B is a description of the body location relative to C and rCz is the

location of the frame undergoing the complete or partial geodesic motion relative

to frame C. Also,

β(θ, k, τ) =
1

τ

√
(kθ)2 + 2(1− cos θ − kθ sin θ). (2.17)

It is important to note that β(θ, k) is independent of body geometry and

that r̄(B, rCz) does not depend on the body displacement from proper positioning.

It depends only on the body geometry and the relative location z of the particle

undergoing a straight-line translation with rotation about this point relative to the

point of reference C on the body. The instantaneous motion associated with the

straight-line translation of specific frame location z is determined by the

displacement from proper positioning. This motion can be described at the body

frame C using (2.14) with C at the particle of interest q.

The calculation of (2.16) is challenging, but not overly difficult. The

measure has reduced the problem from analyzing the average velocity discrepancy

associated with a geodesic (or partial geodesic) motion from a straight-line path

for each particle into the calculation of the average distance of body particles from

a single point in the plane — the location of the frame undergoing the geodesic (or

partial geodesic). The following sections provide a better insight on the measure

by evaluating (2.15) for simple geometries and identifying the best motion for a

given displacement.



23

2.4 Best Motion Measure Analysis

It has been shown that the the best motion measure is a function of the

geometry of the body. In fact, the body geometry-dependent portion of the

measure is characterized by the average distance of the body particles from the

frame executing the geodesic motion, r̄. Analytical expressions for the value of r̄ at

different locations in space have been obtained for simple geometries such as

rectangles, right-triangles, and circles. The analytical form of r̄ for each of them

can be found in Appendix B, C, and D, respectively. A graphical representation of

the variation in values of the best motion measure with respect to z (the location

of the frame undergoing the geodesic) is provided for an example rectangle, a

right-triangle, and a circle to provide a better understanding.

2.4.1 Variation of Best Motion Measure with Respect to z for a

Rectangle

It is possible to graphically represent the analytically obtained values of vD

for simple geometries to evaluate the quality of different motions. In each of the

examples considered, the CoR is located at (0,0) and the body must be rotated 90

degrees counter-clockwise about the CoR to achieve proper position/orientation.

The relative rotational magnitude k is set to 1, so that the motions considered in

each plot are the same. Summarizing, θ = π/2 and k = 1. For further simplicity

and without loss of generality, the elapsed time τ is constant and acts as a scaling

factor. With θ, k, and τ set, β is known as well.

Consider the 4× 2 rectangular body and configuration shown in Fig. 1.1.

As described previously, the orientational displacement is given by θ = π/2; the

translational displacement of the frame located at C is rCC′ = [−4, 4]T . Using

(2.15), the value of vD is calculated for each motion, represented by the location of
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the frame undergoing the geodesic motion. The value of r̄ for different locations in

space for a rectangle is provided in Appendix B.

Figure 2.3 illustrates how vD changes with respect to the location of the

frame undergoing the geodesic motion, z. As the shading changes from light to

dark, the magnitude of vD increases. The origin of the figure corresponds to the

location of the Center of Rotation for the original displacement. In this example,

the minimum value of vDk=1
is 1.366, and corresponds to z located at the

geometric center of the rectangle. Recall that vD indicates the average velocity

discrepancy for all body particles for this particular motion relative to the ideal

particle direct-path motion.
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Figure 2.3: Velocity Measure vD for a Rectangle with Respect to the
Location of z, k = 1.
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2.4.2 Variation of Best Motion Measure with Respect to z for a

Right-Triangle

Consider a right-triangle of width 4 and height 2. The orientational

displacement is given by θ = π/2 and complete geodesic motions are considered.

Therefore, k = 1. The translational displacement of the frame located at the right

angle, C, is rCC′ = [−4, 4]T . Using (2.15), the value of vD is calculated for each

motion, represented by the location of the frame undergoing the geodesic motion.

The analytical expression for r̄ for different locations in space for a right-triangle is

provided in Appendix C.

Figure 2.4 illustrates how vD changes with respect to the location of the

frame undergoing the geodesic motion, z. Just like the rectangle example, the

shading changes from light to dark to indicate and increase in magnitude for vD.

The origin of the figure corresponds to the location of the Center of Rotation for

the original displacement. In this example, the minimum value of vD corresponds

to z located at the geometric center of the right-triangle.

2.4.3 Variation of Best Motion Measure with Respect to z for a Circle

Consider a circle of radius 1. The orientational displacement is given by

θ = π/2 and complete geodesic motions are considered. Therefore, k = 1. The

translational displacement of the frame located at the center of the circle, C, is

rCC′ = [−4, 4]T . Using (2.15), the value of vD is calculated for each motion,

represented by the location of the frame undergoing the geodesic motion. The

analytical expression for r̄ for different locations in space for a circle is provided in

Appendix D.

Figure 2.5 illustrates how vD changes with respect to the location of the

frame undergoing the geodesic motion, z. Just like the previous examples, the
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Figure 2.4: Best Motion Measure vD for a Right-Triangle with Respect
to the Location of z, k = 1.

shading changes from light to dark to indicate and increase in magnitude for vD.

The origin of the figure also corresponds to the location of the Center of Rotation

for the original displacement. In this example, the minimum value of vD

corresponds to z located at the center of the circle.

2.5 Optimal Motion Analysis

In this section, the optimal planar rigid body motion is characterized based

on the measure developed. From (2.15), to minimize vD it is sufficient to minimize

the values of r̄ and β(θ, k). This is only true because the functions are decoupled

and positive; there are no common variables between them, meaning that they are

separable. The minimum value of r̄ corresponds to the optimal location of the

frame undergoing the geodesic motion. The minimum value of β(θ, k) corresponds

to the optimal rate of rotation that minimizes the measure. Each term will be
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Figure 2.5: Best Motion Measure vD for a Circle with Respect to the
Location of z, k = 1.

analyzed separately in the following two sections.

2.5.1 Optimal Geodesic Frame Location

Recall that r̄ is a function of the location z of the frame undergoing the

geodesic and the body geometry. As stated previously and shown in (2.16), r̄

indicates the average distance of all of the specified rigid body’s particles from the

location of the frame undergoing the geodesic (or partial geodesic) motion. The

expression for r̄ is very similar to the expression of the second moment of area for

the perpendicular axis to the plane, k̂, that passes through z, as widely studied in

mechanics of materials [22]:

Ik̂ =

∫
A

d2 dA, (2.18)
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where d is the distance from the frame located at z in consideration to the element

dA, or in our case, q. However, minimizing the average distance from z to the body

is analogous to minimizing the average of the square of the distance from z to the

body. Therefore, the location z of the frame that minimizes r̄ and the location z′

of the frame that minimizes Ik̂ are the same. It is known that Ik̂ is minimum at

the geometric center of the body, and the parallel axis theorem is a well-known

consequence of this result. It follows that the value of r̄ for a body is minimal

when z is at the body’s geometric center. The best instantaneous motion then

corresponds to a geodesic (or partial geodesic) of a frame at the geometric center.

2.5.2 Optimal Rate of Rotation

Here, the optimal rate of rotation for the body is considered. The influence

of the scalar k (which indicates the magnitude of the rotational motion relative to

the translational motion for a specific displacement) on motion quality is assessed.

Recall that the best motion for a frame follows a minimum distance path

[2, 7] which is referred to as the geodesic for that frame. The motion associated

with a geodesic curve corresponds to a straight line path of the body frame from

one location to the other (at constant velocity), with rotation about the axis

normal to the plane passing through the frame origin (at constant angular

velocity). Using the measure vD, the motion of all particles on a finite rigid body

are explicitly considered. As such, the motion of particles away from the frame

performing the geodesic (or partial geodesic) motion are considered.

The motions evaluated above need not be geodesic motions. As stated

previously, all motions considered carry a specified particle from its current

location to its desired location on a straight-line path. If the motion is executed for

a selected time τ the specified particle attains its desired location. Other particles
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also attain their desired location if the value of k = 1. Below the optimal value of

k is considered. Note that in the measure of velocity quality vD, (2.15), only the

first component β depends on either θ or k. This component is given by (2.17):

β =

√
(2− 2 cos θ − 2kθ sin θ + k2θ2)

τ

To minimize vD, the stationary point of dβ/dk is identified. This is given by:

1

τ

d(
√

2− 2 cos θ − 2kθ sin θ + k2θ2)

dk
= 0

1

τ

−2θ sin θ + 2kθ2

2
√

2− 2 cos θ − 2kθ sin θ + k2θ2
= 0

⇒ −2θ sin θ + 2kθ2 = 0

⇒ k =
sin θ

θ
(2.19)

Therefore, the relative magnitude of angular velocity to translational velocity is, in

general, less than 1 and as θ approaches 0, the best relative angular velocity

approaches 1. This makes sense intuitively. For a given rigid body displacement,

the best instantaneous motion to reduce particle displacement is to primarily

undergo rigid body translation. Then, as the body approaches its desired location,

the best instantaneous motion is one that equally emphasizes translation and

rotation. An example illustrating this is provided in the following section.

2.5.3 Optimal Motion Example

Consider the same rectangle configuration problem detailed in Section

2.4.1. Recall that k only appears in β(θ, k). Now, let us change the value of k to

graphically show how vD varies with respect to k. Figure 2.6 illustrates the value

of vD when k = 0. This corresponds to considering only pure translational

motions, since k = 0 corresponds to ω = 0. Larger values of vD are obtained when
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k = 0 (Fig. 2.6) versus k = 1 (Fig. 2.3), indicating that these motions are not as

good as those for k = 1. The value of vD is best for z located at the geometric

center, as expected. The corresponding minimum value is vDk=0
= 1.678.
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Figure 2.6: Best Motion Measure vD for a Rectangle with Respect to the
Location of z, k = 0.

Next consider, the case when k = −1. In this case the body is rotating in

the opposite direction relative to how the error in orientation is measured. In other

words, the body’s orientational error is increasing. Figure 2.7 shows the value of

vD relative to the location of the frame z undergoing the partial geodesic motion.

For this case, the minimum value of vD for z located at the geometric center is

vDk=−1
= 1.820. Therefore, it is concluded that this motion is worse than any of

the two motions described previously. This result makes intuitive sense, since it

can be justified that to translate a body to its proper position without any

rotation is a better motion than to translate the body while rotating it away from
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proper orientation (and thereby increasing the discrepancy in orientation).
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Figure 2.7: Best Motion Measure vD for a Rectangle with Respect to the
Location of z, k = −1.

For the configuration considered in this problem, the optimal value of k is

2
π
, given by (2.19). Figure 2.8 illustrates the values of vD when k = 2

π
. Again, the

best value is obtained when z is located at the geometric center. In this case,

vDk=2/π
= 1.187, which is significantly lower than that obtained when k = 1.

2.6 Instantaneous Center Representation for the Best

Motion Measure

Motions can also be described by determining the instantaneous center, the

point at where the instantaneous translational velocity is 0. This is an alternative

to describing the motion using the location of the frame z undergoing the geodesic
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Figure 2.8: Best Motion Measure vD for a Rectangle with Respect to the
Location of z, k = 2/π.

motion as a reference.

Let o be the location of the instantaneous center for a given velocity

corresponding to the geodesic motion that the frame located at z undergoes. By

definition,

vo =

 0

0

 (2.20)

Furthermore, the velocity at o and the velocity at z can be related using (2.9):

vz = vo + ω × roz

= [ω×](rOz − rOo) (2.21)
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However, from (2.8), vz can be rewritten as:

vz = (R(θ)− I) rOz/τ. (2.22)

Combining (2.21) and (2.22) results in:

[ω×](rOz − rOo) = (R(θ)− I) rOz/τ. (2.23)

Therefore, the location of the instantaneous center o for the velocity resulting from

the partial geodesic of the frame located at z relative to the center of rotation O is

then given by:

rOo = [I− 1

τ
[ω×]−1(R(θ)− I)] rOz. (2.24)

Figure 2.9 illustrates the quality of motions based on the location of the

instantaneous center. This figure may be used to compare results with the binary

measure provided by Fig. 1.1.

2.7 Finite Motion Example

Note that the motion which has been identified as “best” is instantaneous

and only applies to a unique planar displacement. Therefore, the motion considered

to be “best” will change as the body configuration changes. The best motion

measure is used to determine the best motion for this resulting configuration, and

the process is reiterated until the body reaches its target position and orientation.

To further illustrate this point, a simple example is developed next.

Consider the 4× 2 rectangular body and configuration shown in Fig. 2.10.

The initial orientational displacement is given by θ = π/2; the initial translational
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Figure 2.9: Best Motion Measure vD for a Rectangle with Respect to the
Location of o.

displacement of the frame located at C is rCC′ = [−4, 4]T . The time required to

complete the motion is τ = 10 seconds. Once the best motion is determined, it is

executed for 0.1 seconds. Then, the new configuration parameters are calculated.

The best motion for the new displacement is determined using the new

configuration parameters and setting τ to the time remaining to complete the task.

The result of this finite motion example is shown in Fig. 2.10.

Figure 2.10 shows the initial and final position of the body, as well as three

intermediate positions. These intermediate positions correspond to time intervals

of 2.5 seconds. Note that there is a greater emphasis on correcting the error in

translation in the initial stages of the motion, with larger orientational correction

towards the end. The geometry center of the body follows a straight-line path

from its initial position to its target position as expected. These results are

consistent with the mathematical analysis of the best motion measure presented in
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Figure 2.10: Finite Motion Example for a Rectangular Body.

Section 2.4.

2.8 Summary: Best Motion Measure

For a given displacement, the best velocity measure is given by the average

difference in translational velocity (at each particle) between an available and an

ideal motion. The calculation of the measure is body-specific and relates to r̄, the

average distance from the frame undergoing the straight-lie motion with rotation

about this frame.

The optimal location of this frame is the geometric center of the body. The

optimal angular velocity is body independent and the rate of rotation relative to

translation is given by k = sin θ/θ where θ is the orientational discrepancy between

configurations.
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3. VELOCITY METRIC FOR RIGID-BODY PLANAR

MOTION

As described in Chapter 1, the objective of this work is to obtain a measure

of velocity quality that satisfies the mathematical requirements of a metric. First,

it is shown that the measure described in Chapter 2 does not satisfy the metric

requirements for comparing one rigid body motion with another. Then, a new

measure is developed and shown to be a metric. A simple example related to a

common assembly problem is provided.

3.1 Limitations of the Best Motion Measure

The velocity measure vD defined by (2.14) evaluates planar rigid-body

motion relative to an ideal, yet physically impossible, motion for each particle on a

rigid body. Although vD evaluates the discrepancy between two motions, one of

the two motions is not an element of the set of planar rigid body motions. In other

words, since the “ideal” velocity established in Chapter 2 is not a valid rigid body

motion, it cannot be used to define a valid metric.

The mathematical requirements of a metric are formally described below.

Let e1, e2, and e3 be elements of a set X. X is a metric space if for any two

elements e1 and e2, there is an associated real number d(e1, e2) called the distance

from e1 to e2, such that [23]:

d(e1, e2) > 0 if e1 6= e2 ; d(e1, e1) = 0 (3.1)

d(e1, e2) = d(e2, e1) (3.2)

d(e1, e3) ≤ d(e1, e2) + d(e2, e3). (3.3)
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The mathematical definitions provided by (3.1), (3.2), and (3.3) are

commonly known as positive definiteness, symmetry, and triangle inequality

respectively, and will be referred to as such in the following sections. For this

particular problem, the metric space X is the set of all valid planar rigid-body

motions, and e1, e2, and e3 are elements of this set, planar twists.

It can be shown that with some simple modifications vD can be transformed

into a positive definite function. No simple modifications, however, can transform

vD into a function that will satisfy the principles of symmetry or triangle

inequality. Therefore, a new measure used to define a velocity metric is required.

The new velocity measure is based on the evaluation of a valid planar

rigid-body motion relative to another valid planar rigid-body motion. In this way,

a sense of distance can be established between two arbitrary motions. The best

motion measure defined in Chapter 2, vD, is useful for proper characterization of

the optimal motion for a given planar displacement. By choosing to evaluate all

valid planar-rigid body motions relative to the best motion identified using vD, it

is possible to measure the quality of a motion relative to what is considered to be

best.

The first step to establish the velocity metric is to develop a new measure

in a similar manner to the way in which the best motion measure was developed in

Chapter 2. Then, it will be shown that this new measure satisfies the

mathematical requirements of a metric.

3.2 Velocity Metric Derivation

The velocity metric is based on a new measure similar to the best motion

measure. The new measure is also based on the average velocity discrepancy due
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to particle motion. In this case, however, both motions are valid rigid-body

motions. This means that no “ideal”, yet physically impossible, motions are

considered. The first step is to define the valid rigid body motion that will be

evaluated and the valid rigid-body motion used as a reference for the evaluation.

Define two arbitrary motions, or planar twists, applied to the same body at

a frame C anywhere in the plane:

t1 =


vCx1

vCy1

ω1

 , t2 =


vCx2

vCy2

ω2


Let ∆vq be the difference in velocity for an arbitrary particle on the body, q. By

definition:

∆vq = vq2 − vq1 (3.4)

From the kinematic constraint for a rigid-body:

vq1 = vC1 + [ω1× ]rCq (3.5)

vq2 = vC2 + [ω2× ]rCq, (3.6)
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where [ωi×] is given by:

 0 ωi

−ωi 0

. Combining (3.4), (3.5), and (3.6):

∆vq = vq2 − vq1

= (vC2 + [ω2× ]rCq)− (vC1 + [ω1× ]rCq)

= (vC2 − vC1) + ([ω2× ]− [ω1× ])rCq)

= ∆vC + [∆ω×]rCq (3.7)

The difference in velocity can be rewritten in matrix form:

∆vq =

 1 0 −rCqy

0 1 rCqx




∆vCx

∆vCy

∆ω


= [I r×] ∆t

= PCq ∆t, (3.8)

where PCq = [I r×] is the 2× 3 transformation matrix from the difference between

the twists at C to the difference in translational velocity at q.

The velocity metric, vmq , is defined as the L2 norm of the vector described

by (3.7). In other words, the square root of the dot product of this vector upon

itself:

vmq = ||∆vq||

= [∆vTq ∆vq]
1/2 (3.9)
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Expanding,

vmq = [∆vTq ∆vq]
1/2

= [(∆vC + [∆ω×]rCq)
T (∆vC + [∆ω×]rCq)]

1/2

= [(∆vTC + rTCq[∆ω×]T )(∆vC + [∆ω×]rCq)]
1/2

= [∆vTC∆vC + ∆vTC [∆ω×]rCq + rTCq[∆ω×]T∆vC + . . .

rTCq[∆ω×]T [∆ω×]rCq]
1/2

= [∆vTC∆vC + 2∆vTC [∆ω×]rCq + rTCq[∆ω×]T [∆ω×]rCq]
1/2

(3.10)

Now, when all 3 elements of (3.10) are expanded separately:

∆vTC∆vC =

[
∆vCx ∆vCy

] ∆vCx

∆vCy


= ∆v2

Cx + ∆v2
Cy (3.11)

2∆vTC [∆ω×]rCq = 2

[
∆vCx ∆vCy

] 0 −∆ω

∆ω 0


 rCqx

rCqy


= 2∆ωrCqx∆vCy − 2∆ωrCqy∆vCx

= 2∆ω(rCqx∆vCy − rCqy∆vCx) (3.12)

rTCq[∆ω×]T [∆ω×]rCq =

[
rCqx rCqy

] 0 ∆ω2

∆ω2 0


 rCqx

rCqy


= ∆ω2(r2

Cqx
+ r2

Cqy
) (3.13)
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Combining and rearranging yields:

vmq = [∆v2
Cx + ∆v2

Cy + 2∆ω(rCqx∆vCy − rCqy∆vCx) + . . .

∆ω2(r2
Cqx

+ r2
Cqy

)]1/2

= [(∆v2
Cy + 2∆ωrCqx∆vCy + ∆ω2r2

Cqx
) + . . .

(∆v2
Cx − 2∆ωrCqy∆vCx + ∆ω2r2

Cqy
)]1/2

=
√

(∆ωrCqx + ∆vCy)
2 + (∆ωrCqy −∆vCx)

2. (3.14)

Note that the location of particle q relative to the frame C, rCq, must be

accounted for all particles on the body. The average velocity discrepancy for all

particles on the body q ∈ B can be expressed as:

vM =
1

A

∫
q∈B

vmq dA (3.15)

=
1

A

∫
q∈B

√
(∆ωrCqx + ∆vCy)

2 + (∆ωrCqy −∆vCx)
2 dA (3.16)

Another way to describe ∆vq is to determine the location of the

instantaneous center for the motion also described by (3.7). Let o be the location

in the plane where ∆vo = 0. The location of o relative to C is obtained from the

kinematic constraint:

∆vo = ∆vC + [∆ω×]rCo

⇒ rCo = −[∆ω×]−1∆vC (3.17)

Then the discrepancy in translational velocity at particle q of the body is
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expressed as:

∆vq = ∆vo + [∆ω×]roq

= [∆ω×]roq, (3.18)

Then, vmq becomes:

vmq = [∆vTq ∆vq]
1/2

= [([∆ω×]roq)
T ([∆ω×]roq)]

1/2

= [(rToq[∆ω×]T )([∆ω×]roq)]
1/2

= [rToq[∆ω×]T [∆ω×]roq]
1/2. (3.19)

Simplifying,

rToq[∆ω×]T [∆ω×]roq =

[
roqx roqy

] 0 ∆ω2

∆ω2 0


 roqx

roqy


= ∆ω2(r2

oqx
+ r2

oqy
). (3.20)

Therefore, the new velocity measure for a single particle can alternately be

expressed as:

vmq =
√

∆ω2(r2
oqx

+ r2
oqy

)

= |∆ω|
√

rToqroq. (3.21)

The location of o relative to q can be calculated easily by combining (3.7) and
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(3.18):

∆vC + [∆ω×]rCq = [∆ω×]roq

⇒ roq = rCq + [∆ω×]−1∆vC (3.22)

Similarly, the average velocity discrepancy for all particles on the body q ∈ B can

be expressed as:

vM =
|∆ω|
A

∫
q∈B

√
rToqroq dA (3.23)

Note that the instantaneous center is located at infinity when ∆ω = 0. In this

particular case, (3.23) will not yield the proper result. The original expression for

vM (3.16) indicates that when this is the case, the metric consists solely of the

difference in translational velocity. This result is consistent with what is expected

of a situation in which the angular velocity of two motions is identical.

The calculation of vM using (3.23) again reduced to calculating r̄, the

average particle distance from a specified location in space. This is explicit in

vM = γ(∆ω) r̄(B, roC), (3.24)

where

r̄(B, roC) =
1

A

∫
q∈B

√
rToqroq dA, (3.25)

and

γ(∆ω) = |∆ω|. (3.26)



44

Unlike vD, the elements of vM are not decoupled. Note that roq is a function of ∆ω

as well (3.22). The heaviest computational burden, the integration over the area of

the body, remains the same. The only significant difference between vD and vM is

the need to calculate the location of o. However, this calculation is trivial.

Therefore, there is no significant additional computational burden associated with

evaluating vM relative to vD. Furthermore, vM is a metric in the space of all valid

rigid-body planar motions, as shown next.

3.3 Satisfying the Mathematical Requirements of a Metric

It will now be shown that the velocity error measure given by (3.15)

satisfies the mathematical conditions of a metric. Let vMt1t2
be the measure for

two arbitrary motions t1 and t2. Similarly, vMt2t3
and vMt1t3

represent the

discrepancy between t2 and t3, and t1 and t3 respectively.

Recall from (3.15) that vM is given by:

vMt1t2
=

1

A

∫
q∈B

vmq12 dA, (3.27)

where vmq12 is the norm of the difference in translational velocity at q. From (3.8):

vmq12 = ||PCq ∆t12||

= ||PCq (t2 − t1)|| (3.28)

The L2 norm of a vector is always positive or 0, so it follows that vmq ≥ 0 for all q.

Recall from (3.8) that PCq is a transformation matrix, uniquely determined by the

location of q. Therefore, vmq12 is 0 for all q if ∆t12 is 0, which is equivalent to

having t1 = t2. Since vMt1t2
is the average of vmq12 for all q in the body, the
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measure can be either positive, or 0 when the two twists are identical. In

conclusion, the measure given by vM satisfies positive definiteness.

For the measure to satisfy symmetry, it is necessary that vMt1t2
= vMt2t1

.

To prove this identity, it is necessary to show that vmq12 = vmq21 for all q, since the

average of identical elements is identical. Also recall that ||x|| = || − x|| for all x.

Expanding terms:

vmq12 = ||PCq (t2 − t1)||

= || −PCq (t1 − t2)||

= ||PCq (t1 − t2)||

= vmq21 (3.29)

It follows that the measure given by vM satisfies symmetry.

To show that a metric satisfies the triangle inequality, it must be shown

that d(t1, t2) + d(t2, t3) ≥ d(t1, t3) for three arbitrary motions. It will be shown that

this statement holds for any arbitrary particle q in the body. Then, by adding this

result for all q ∈ B, the measure will satisfy the triangle inequality for the body.

Recall from (3.9) that, for an arbitrary q on the body, the measure is

defined as the squared root of the norm of the discrepancy in velocity:

vmq12 = ||∆vq12||. Note that

∆vq13 = vq3 − vq1 = (vq3 − vq2) + (vq2 − vq1) = ∆vq23 + ∆vq12 . Therefore, it must

be shown that ||∆vq12||+ ||∆vq23|| ≥ ||∆vq12 + ∆vq23||. However, this is a known

property of the L2 norm. Therefore, vM satisfies the triangle inequality. Since vM
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satisfies all three requires properties, it is concluded that vM is a metric.

The measure vM has been properly defined and it has been shown that it

satisfies the mathematical conditions of a metric. It is possible to use vM to

evaluate the quality several motions in a typical assembly problem, as shown next.

3.4 Example of Motion Evaluation

Consider the classic peg-in-the-hole assembly problem involving the 3× 2

rectangular body and configurations illustrated in Fig. 2. The orientational

displacement is: θ = −π/6 (ccw: +); the translational displacement of the frame

located at the geometric center G is: pGG′ = [4,−4]T . In this particular example,

the time selected to complete the assembly is τ = 4. The frame at which the twists

are defined is located at the geometric center.

G
f

t1

t2

y’

x

y

A

t3

G’ x’

A’

O X

Y

Figure 3.1: Rectangular Body Configuration Problem.

Recall that the best motion as identified using the best motion measure. It
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corresponds to direct translation of the geometric center from its current position

to its desired position while rotating about the axis perpendicular to the plane of

motion. The translational velocity corresponding to the best motion is given by:

v1 =
rGG′

τ
(3.30)

For the misalignment illustrated, the translational displacement of the geometric

center G is given by rGG′ = [4,−4]T . Hence,

v1 =

 1

−1

 . (3.31)

The body configuration determines the optimal rate of rotation kmin:

kmin = sin θ/θ =
sin (−π/6)

−π/6
= 0.955. (3.32)

It follows that the optimal angular velocity is:

ω1 =
kθ

τ
=

0.955(−π
6
)

4
= −0.125. (3.33)

Therefore, the planar twist t1 that describes the best motion for the frame f is:

t1 =

 v1

ω1

 =


1

−1

−0.125

 (3.34)

Note that in this particular example, the best motion is unavailable because

it would cause the body to penetrate into the chamfer. This situation may arise

depending on the magnitude of the angle of the chamfer. Regardless, this motion
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can still be used as a standard in determining the quality of other motions. The

second planar twist is chosen to be a physically available pure-translation motion.

This motion consists of pure translation of the body with particle A maintaining

contact with the chamfer. The direction is determined by the chamfer geometry.

Therefore, the second planar twist at frame f is given by:

t2 =

 v2

ω2

 =


1

−0.5

0

 (3.35)

The velocity metric vM can be used to provide a measure of the quality of

the planar motion represented by t2 relative to what is considered to be the best

rigid-body motion: t1. Note that:

∆vf = v2 − v1 =

 0

0.5

 (3.36)

[∆ω×] =

 0 0.125

−0.125 0

 (3.37)

The first step is to determine the location of o relative to f , as expressed in (3.17):

rfo = − [∆ω×]−1vf

= −

 0 −8

8 0


 0

0.5


=

 4

0

 (3.38)
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The metric vM can now be calculated using (3.24). The first function γ is easily

calculated from (3.26): γ = |∆ω| = 0.125. The average distance from o to the

particles on the body, r̄, can be calculated using the analytical form for a rectangle

described in Appendix B. It follows that for this particular example:

vM(t1, t2) = 1.112. (3.39)

For the same assembly/configuration problem, consider a third planar

motion t3. This planar twist is a reciprocal motion for this particular assembly

problem. It also maintains contact at A. The instantaneous center of a reciprocal

motion lies on the line normal to the chamfer through the point of contact A. The

best location for the instantaneous center along the normal line can be calculated

given the body and chamfer geometry. The angular velocity of t3 is equal to the

angular velocity of t1, which was calculated using the best motion measure. It

follows that the planar motion t3 is expressed as:

t3 =

 v3

ω3

 =


0.621

−0.329

−0.125

 (3.40)

The difference in translational velocity at frame f , ∆vf is given by:

∆vf = v3 − v1

=

 0.621

−0.239

−
 1

−1


=

 −0.379

0.761

 (3.41)
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Equation (3.21) can no longer be used to calculate vM for t1 and t3 since ∆ω = 0.

Therefore, (3.16) must be used instead:

vM(t1, t3) = ||∆vf ||

=
√

(−0.379)2 + (0.761)2

= 0.850 (3.42)

From (3.39) and (3.42), note that vM(t1, t3) < vM(t1, t2). Therefore, t3 is

closer to the best motion than t2. In this example where the best motion is not

available because of a physical boundary constraint, t3 is the better choice at that

particular instant in time. Note that this analysis is instantaneous, meaning that

is only valid for this exact moment in time. Once the configuration changes, the

discrepancy between motions changes as well.

3.5 Summary: Velocity Metric

For two planar motions t1 and t2 at a frame f , the velocity metric is given

by the integration of the difference in translational velocity for all particles on the

body. If the difference in angular velocity ∆ω is 0, the calculation of the metric is

simplified to calculating the difference in translational velocity at f between the

motions.

If ∆ω 6= 0, the metric is a function of the absolute value of the discrepancy in

angular velocity between the two motions, and the average distance from the

instantaneous center associated with the twist discrepancy to every particle on the

body, r̄. The location of this instantaneous center can alternately be viewed as the

location of a frame where the translational velocities associated with t1 and t2 are
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identical.

Note that for both the velocity metric and the best motion measure, the

calculation is reduced to determining the average distance from a location in the

plane to the particles on the body. Although analytical forms of r̄ are available for

simple geometries such as rectangles, right-triangles, and circles, an analytical form

for an arbitrary polygonal geometry is not available. The next chapter provides a

method to calculate r̄ for any polygonal body with polygonal and/or circular holes.
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4. CALCULATION OF r̄ FOR A POLYGONAL BODY

Recall that the best motion measure vD for a given displacement can be

written as the product of β(θ, k) and r̄(B, rzf ), while the velocity metric vM can be

written as the product of γ(∆ω) and r̄(B, rof ). The components identified as

β(θ, k) and γ(∆ω) are independent of body geometry. Therefore, only the average

distance from a location in the plane to the particles on the body, r̄, depends on

body geometry. An analytical form of r̄ for simple geometries (rectangles,

right-triangles and circles) was presented in Chapter 2. This chapter presents an

algorithm to calculate r̄ for a general polygonal body.

The value of r̄ for general polygonal bodies with holes can be calculated by

decomposing a polygon into separate simple sub-bodies, then adding (or

subtracting) the r̄ value calculated for each simple sub-body. This chapter presents

an algorithm used to calculate r̄ for any polygonal body with polygonal or circular

holes. The algorithm is divided into two parts. The first part consists of

decomposing the main body (with holes) into an equivalent group of simple

geometry bodies for which r̄ can be calculated analytically. The second part of the

algorithm computes the value of r̄ for: 1) the set of simple geometry bodies

obtained from the decomposition, and 2) the specified location from which average

body distance, r̄, is needed. Note that the decomposition needs to be run only

once for the body, while the r̄ calculation for a specific body can be efficiently

calculated in real time for any specified location of the point in the plane.
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4.1 Strategy Overview

The approach used to calculate r̄ for composite bodies is similar to the

approach used to calculate the mass moment of inertia of a polygonal body. The

value of r̄ can be calculated by adding simple bodies or subtracting simple bodies

(holes). The calculation for a composite body B made of N simple bodies and M

simple holes is given by

r̄(B,HCC′) =

∑
i=1:N r̄(Bi,HCiC′i

)Ai −
∑

j=1:M r̄(Bj,HCjC′j
)Aj∑

i=1:N Ai −
∑

j=1:M Aj
, (4.1)

where Ak is the area of a sub-body or sub-hole Bk, and HCkC
′
k

is the displacement

of sub-body or sub-hole Bk described by body frame Ck.

Figure 4.1: Decomposition of Example Polygon with a Hole.

The decomposition of an example polygonal body is shown in Fig. 4.1. The

body illustrated is composed of 4 sub-bodies and 1 void-body or hole. The average

distance r̄ is calculated for each body independently and then weight-averaged to



54

determine r̄ for the composite body, using (4.1). Figure 4.1a shows the polygonal

body’s position and orientation relative to a chosen frame. Figure 4.1b illustrates

the 5 simple-geometry sub-bodies into which the original body was decomposed.

Note that the decomposition of the polygonal body only needs to be performed

once. The calculation of r̄ for different locations relative to the body can be

performed as many times as necessary once the decomposition has been performed.

This section has provided only a conceptual description of how to calculate

the average distance from a point in the plane to an arbitrary polygonal body

using a body decomposition strategy. The next section details the algorithm used

to calculate r̄ for an arbitrary polygonal body using polygon triangulation.

4.2 Algorithm to Calculate r̄

As stated previously, the calculation of r̄ for a general polygonal body has

been separated into two tasks. The first task is to decompose an arbitrary

polygonal body with polygonal and circular holes into a group of sub-bodies for

which an analytical form of r̄ is available for each. The second task is to efficiently

calculate r̄ for each simple geometry using the corresponding analytical form, and

then calculate r̄ for the body using (4.1) for the original geometry. Each of these

two tasks is described in detail in the following two subsections. The functions

used to calculate necessary elements in each task are discussed in the next section.

4.2.1 Decomposition of an Arbitrary Polygonal Body

This subsection describes the first part of the algorithm used to calculate

the average distance from a point in the plane to a polygonal body with polygonal

and/or circular holes. This task consists of decomposing the body and each hole

into a set of right-triangles or circles, which are geometries for which an analytical
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form of r̄ is available. A general overview of the polygonal decomposition routine

is presented in Fig. 4.2.

Input: Body Geometry in DXF Format 

  

 Identify Main Body Polygon 

 Identify # of Polygonal Holes (P) 

 Identify # of Circular Holes (C) 

 Decompose main body into “t” right-triangles 

 Store Geometry & Positioning of each 

 Right-rtriangle in body array (BodyTri)  

 For i = 1:P 

Decompose polygonal hole into right-triangles 

Store geometry & positioning of each in single 

 polygonal hole array (HoleTri) 

 Increase total number of polygonal     

   holes counter (p=p+1) 

 For i = 1:C 

Store geometry & positioning of each in single 

 circular hole array (HoleCir) 

Output:  

 Main Body Array (5 x t) 

Polygonal Hole Array (5 x p) 

Circular Hole Array (3 x C) 

Figure 4.2: PolyDecomp.m Overview.

This routine initially prompts the user for a DXF geometry file. DXF files

provide all the necessary information concerning body geometry in ASCII format.

The information required from the DXF file consists of the vertices of each

polygonal sub-body given in counter-clockwise direction, and the radius and
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location of the center of each circle. MATLAB scripts that accomplish this are

available for public use in the MATLAB Central file-sharing website [24], but these

scripts extract more information from the DXF file than is necessary. Therefore,

one of the many available scripts, DXF.m [25], was modified to obtain only the

relevant information identified above. The modified function, ReadDxf.m, reads a

DXF geometry file and outputs two arrays containing polygonal body and circular

body data. The function can be found in Appendix E. The polygon and circule

data is then classified into three groups: the polygonal main body, the polygonal

holes and the circular holes. Since no analytical form is available for arbitrary

polygonal bodies, the next step is to decompose the main body and each of the

polygonal holes into right-triangles.

Polygonal bodies (or holes) are divided into right-triangles in two steps.

The first step is to divide each polygonal body (or hole) into triangles using a

process called triangulation. The second step consists of splitting each resulting

triangle into two right-triangles. The triangulation procedure is analyzed in detail

in Section 4.3. The decomposition of a triangle into two right-triangles and the

function used to obtain the necessary body geometry and configuration

information is explained in detail in Section 4.4.

To summarize, the polygonal decomposition routine reads a DXF geometry

file and outputs three arrays: 1) body geometry and configuration information for

right-triangular bodies, 2) body geometry and configuration information for

right-triangular holes, and 3) body geometry and configuration for circular holes.

The MATLAB script for the routine described above, PolyDecomp.m, can be

found in Appendix F.
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4.2.2 Computation of r̄ for a Decomposed Geometry

This subsection describes the second part of the algorithm used to calculate

the average distance from a point in the plane to a polygonal body with holes.

This task consists of calculating: 1) r̄ for each of the simple geometries into which

the original body geometry was decomposed, and 2) calculating r̄ of the original

body using (4.1). A general overview of the r̄ computation algorithm is given by

Fig. 4.3.

The r̄ computation routine uses the three data arrays obtained from the

polygonal decomposition routine as input. These arrays contain body geometry

and configuration information for right-triangular bodies, right-triangular holes

and circular holes. The location of the point in the plane for which the average

distance to the body will be calculated must also be provided. The average

distance r̄ for each body (or hole) is calculated using the analytical form provided

in Appendix B and C for a right-triangle and a circle respectively. The average

distance for the original body is calculated using the composite body

decomposition provided in (4.1).

The function ComputeRbar.m found in Appendix G is used to execute the

algorithm described above. The next section provides further insight on each of

the functions used in the polygonal decomposition routine.

4.3 Polygonal Right-Triangulation

Recall that the function ReadDxf.m outputs three arrays containing

geometry and configuration information for polygonal bodies, polygonal holes and

circles. A polygon is uniquely defined based on the location of each vertex given in

counter-clockwise order relative to a specified world-frame. In this section, the

triangulation algorithm for polygonal bodies and holes is provided. The output of
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Input: 

 Main Body Array - BodyTri (5 x t) 

Polygonal Hole Array - HoleTri (5 x p) 

Circular Hole Array - HoleCir (3 x C) 

Location of interest – Pt(x,y) 

 

RA = sum of r-bar*Area for all bodies 

 For i = 1:t 

Calculate r-bar & area for each triangular body  

RA = RA+ r-bar*Area(i) 

 For i = 1:p 

Calculate r-bar & area for each triangular hole  

RA = RA - r-bar*Area(i) 

 For i = 1:C 

Calculate r-bar & area for each circular hole  

RA = RA - r-bar*Area(i) 

r-bar for original body = RA/Total Area 

 

Output:  

 r-bar of the original polygonal body (with polygonal 

 and circular  holes 

Figure 4.3: ComputeRbar.m Overview.

the triangulation algorithm is then used to divide each triangle into right-triangles.

4.3.1 Algorithm Overview

The polygonal bodies and polygonal holes are each stored as an n× 2 array,

where each row identifies the x− and y− locations of each vertex sequentially in

counter-clockwise direction. The vertices are numbered in the order in which they

are provided, with the first vertex assigned 1 and the last-vertex being n for an
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n-vertex polygon. The sides or edges of the polygon are determined by the union

of consecutive vertices and are therefore labeled as such. In general, (i, i+ 1) is the

i-th edge associated with vertex i. Note that the last edge that “closes” the

polygon is given by (n, n+ 1), where n+ 1 corresponds to vertex 1.

The function used for polygonal triangulation, Triangulation.m, splits a

polygon into a set of triangles by dividing the original polygon (at least 4 vertices)

into two polygons of lesser order. The process is repeated with the resulting

polygons until only triangles remain. Then, the vertices that define each triangle

are stored in a 6× (n− 2) array, where (n− 2) is the number of triangles resulting

from decomposing a polygon with n vertices. Figure 4.4 provides a high-level

overview of this function. The algorithm used to divide a polygon into two

polygons of lesser order varies depending on the type of polygon (convex or

concave).

The function Triangulation.m that takes the initial polygon and outputs

the vertices of each triangle, the result of the decomposition process, can be found

in Appendix H. The function PolySplit.m used to separate a polygon into two

polygons of lesser order is analyzed in the next section.

4.3.2 Polygonal Decomposition into Two Polygons of Lesser Order

A polygon can be decomposed into two polygons of lesser order by drawing

a line segment that connects two non-adjacent vertices, as long as this line

segment is entirely contained in the original polygon. The function PolySplit.m

scans the vertices of a polygon looking for a pair of suitable vertices to perform

this division. The selection of the vertices to be connected is based on the type of

polygon. Polygons can be classified into two categories depending on the

characteristics of their internal angles: convex and concave polygons. The internal
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Input:  

 Polygonal Array (2 x n) 

 

Store input polygon in the 1st row of a Temp array 

Decompose into two polygons, Poly1 and Poly2,   

  based on polygon type (concave or convex)  

Store Poly1 and Poly2 into next 2 rows of Temp array 

 if next row of Temp is not empty 

  Read next row of Temp (Poly) 

  if # vertices > 3 

  Decompose Poly into two polygons, Poly1 and 

   Poly2,  based on polygon type (concave or  

   convex)  

 Store into next 2 rows of Temp 

if # vertices = 3 

 Store Poly in Triangle array 

if next row of temp is empty 

 Terminate algorithm 

 

Output:  

 Triangle array (6 x n-2) 

Figure 4.4: Triangulation.m Overview.

angle of a vertex is the angle defined by its two adjacent edges on the inner side of

the polygon. If all the internal angles in a polygon are less than 180◦, then the

polygon is convex. Concave polygons are then those that have at least one internal

angle greater than 180◦.

In a convex polygon, the line segment that joins a vertex with any

non-adjacent vertex is always entirely contained in the polygon. Therefore, it does
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not matter which two vertices are selected to split the polygon as long as the two

vertices are not consecutive. However, concave polygons are different. A convex

vertex in a concave polygon may not have a suitable non-adjacent vertex that can

be used to split the polygon, as shown in Fig. 4.5. No splitting line segment

between vertices exists that uses vertex 1 as one of its end points and is entirely

contained in the polygon. On the other hand, there is at least one vertex which

can be used along with a concave vertex to split the original polygon into two

polygons. Using the concave vertex guarantees that there will be at least one

non-adjacent vertex such that the line segment between them is entirely contained

within the polygon. The second vertex to be used is calculated by systematically

going through every non-adjacent vertex and checking to see if the line segment is

entirely contained within the polygon. In summary, a means to determine whether

the polygon under question is concave or convex, is required to decompose a

polygon into two polygons. If the polygon is concave, then the concave vertex

must be identified as well.

Although a polygon can be classified as convex or concave depending on the

measure of its internal angles, a different approach to properly classify polygons is

required. The internal angle cannot be measured accurately since it is impossible

to determine which is the internal angle by knowing just the two edges that form

the angle. However, we can take advantage of the fact that the vertices are given

in counter-clockwise order. Graham [26] described an algorithm to compute the

convex hull of a set of points in the plane, called the Graham scan. The algorithm

is based on the notion of whether a “right-turn” or a “left-turn” is necessary to go

from two consecutive vertices to the next. If the vertices are given in

counter-clockwise order and a right-turn is necessary, then the vertex is concave. If

a left-turn is necessary, then the vertex is convex. A graphical representation of a
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Figure 4.5: Concave Octagon Example.

left-handed turn, Fig. 4.6a, and a right-handed turn, Fig. 4.6b, for consecutive

vertices given in counter-clockwise order is shown.

To determine whether three consecutive vertices constitute a left-turn or a

right-turn, it is not required to compute the actual angle between the two edges.

This result can be achieved with simple arithmetic only. For three consecutive

vertices i− 1, i and i+ 1, determining the direction of the cross-product of the two

vectors defined by (i− 1, i) and (i− 1, i+ 1) is enough. This is characterized by

the sign of C, where C is given by:

C = (xi − xi−1)(yi+1 − yi−1)− (yi − yi−1)(xi+1 − xi−1). (4.2)

If the result is 0, then the points are collinear. If the result is positive, the three

vertices constitute a left-turn and vertex i is convex. If the result is negative, then

the three vertices constitute a right-turn and vertex i is concave. The function
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a. b.
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Figure 4.6: Left-handed Turn vs. Right-handed Turn.

ConcaveTest.m used to test for vertex convexity is found in Appendix I.

If a vertex is determined to be convex, then the next vertex is analyzed. If

the vertex is concave, then the polygon is concave and the function is terminated.

The process continues until a concave vertex has been found or all vertices have

been analyzed. The algorithm outlined in Fig. 4.7 is the basis of function

FindConcave.m used to determine if the polygon is concave or convex. If the

polygon is concave, then the function also identifies which is the concave vertex

based on the order in which the vertices were analyzed. If the polygon is convex,

the vertex labeled as 1 is used as one of the end points of the splitting line segment

used to decompose the polygon. The function can be found in Appendix J.

In general, convex polygons are preferred, since all line segments that

connect two non-adjacent vertices lie entirely inside the polygon. Therefore, if a

concave polygon must be decomposed, it is preferable to select the concave vertex
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Input:  

 Polygon Vertices Array (2 x n) 

 

For i=1:n 

 Evaluate if vertex “i” is convex or concave 

 

 If vertex i is concave 

  Set polygon concavity flag to 1 

  Set concave vertex to index “i” 

  Change flag to end loop 

 

 If vertex i is convex 

  Set polygon concavity flag to 0 

  Set concave vertex to 0, indicating that none  

   of the vertices is concave so far 

 

Output:  

 Polygon concavity flag (0 or 1) 

 Concave vertex (number between 0 and n) 

 

Figure 4.7: FindConcave.m Overview.

since it is always possible to find a non-adjacent vertex such that the line segment

between the two is entirely contained in the polygon. The function PolySplit.m

then scans all the vertices, searching for a suitable line segment that can be used

to divide the polygon into two polygons of lesser order. This is done by finding the

intersection point between a line segment and the edges of the polygon. A line

segment that satisfies the necessary conditions is one that never intersects any of



65

the edges of the polygon and is entirely contained within it. The two outputs of

this function are the two arrays containing the coordinates of each vertex that

define each new polygon. The algorithm is described in Fig. 4.8 and the function

can be found in Appendix K.

Input:  

 Polygon Vertices Array - Poly (2 x n) 

 

Determine if polygon is concave or convex 

If polygon is convex 

 Store vertices 1,2, and 3 into Poly1 

 Store vertices 3, 4, …, n, and 1 in Poly2 

 

If polygon is concave 

 Retrieve concave vertex “i” 

 Find vertex “j” such that line segment i-j is   

  entirely contained within Poly 

 if i < j 

  Store vertices i,i+1, … and j into Poly1 

  Store vertices j, j+1, …, n, 1, 2, …, i in Poly2 

 if j < i 

  Store vertices j,j+1, … and i into Poly1 

  Store vertices i, i+1, …, n, 1, 2, …, j in Poly2 

 

Output: 

 2 Polygon Vertices Arrays (Poly1 & Poly2) 

Figure 4.8: PolySplit.m Overview.
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4.3.3 Decomposition of Triangles into Right-Triangles

The polygon has now been decomposed into triangles. However, r̄ has been

previously calculated for a right-triangle, by placing a frame at the 90◦ angle and

aligning the axes of the frame with the width and the height of the triangle

(Appendix C). Therefore, it is necessary to decompose the triangles into

right-triangles for which r̄ has a known analytical solution. The process is outlined

next.

First, select one of the vertices of the triangle. Then calculate the

intersection of the perpendicular line from this vertex to the opposite side, the

height of the triangle. This will result in one of two possibilities: the triangle has

been divided into two right-triangles if the height is entirely contained within the

triangle (the base point lies between two vertices), or the height lies outside the

triangle (the base point lies outside the two vertices). Each case is shown in Fig.

4.9.

For the case described in Fig. 4.9a, r̄ for triangle ABC can be calculated

with (4.1):

r̄ABC =
r̄AHBAAHB + r̄AHCAAHC

AAHB + AAHC
. (4.3)

In the same way, r̄ for triangle DEF in Fig. 4.9b can be calculated by treating

triangle DHE as a body and triangle DHF as a hole:

r̄DEF =
r̄DHEADHE − r̄DHFADHF

ADHE − ADHF
. (4.4)

The function TriSplit.m described in Fig. 4.10 takes as input the three vertices of

the triangle that must be decomposed into two right-angle triangles. The code
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A D

a. b.

B C E F HH

Figure 4.9: Dividing a Triangle into Two Right-triangles.

selects the third vertex and draws the perpendicular from this point to the line

segment defined by the first and second vertex. The intersection of these two lines

is the location of H. Also, the routine identifies whether H lies inside or outside the

triangle by looking at the first and second vertices, as well as H, which must be

collinear. The outputs of the function are the location of the three vertices of the

two resulting right triangles, and a binary variable set to 1 if the two resulting

right-triangles must be added or -1 if they must be subtracted. Effectively, the

first vertex has been replaced by the new point H in the first right-triangle and the

second vertex has been replaced with H in the second right-triangle. The function

can be found in Appendix L.

Knowing the location of the vertices of a right-angle triangle is enough

information to calculate r̄ but the necessary parameters are not explicit. The

analytical form of r̄ for a right-triangle shown in Appendix C requires that the
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Input:  

Three Triangle Vertices 

P1(x1,y1) 

P2(x2,y2) 

P3(x3,y3) 

 

Find Eq. of line that passes through P1 and P2 (L12) 

Find Eq. of perpendicular line to L12 through P3 (L3) 

Find intersection of L12 and L3 - H(xh,yh). 

Store 1st Right Triangle: Tri1 = (x1,y1,xh,yh,x3,y3) 

Store 2nd Right Triangle: Tri2 = (x2,y2,xh,yh,x3,y3) 

 

Determine if H lies between P1 and P2 

if H lies between P1 and P2 

 set flag to 1 (add triangles) 

if H does not lie between P1 and P2 

 set flag to 0 (subtract triangles) 

 

Output: 

Tri1, Tri2, flag 

Figure 4.10: TriSplit.m Overview.

body-frame is located at the right-angle, with its axes aligned with the width and

the height of the right triangle. The function FixTri.m shown in Appendix M is

used to determine the orientational discrepancy between the world frame and the

body-frame located at the right-angle and whose axes are oriented along the

triangle’s sides, the width and the height of the triangle and the location of the

right-angle. These parameters are used to calculate r̄ using ComputeRbar.m as
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described previously.

The next section shows the results obtained after executing the polygonal

decomposition routine and the r̄ calculation routine for the complex body

geometry introduced at the beginning of this chapter.

4.4 Algorithm Results for an Example Complex Body

Consider the polygonal body with a hole described in Fig. 4.1. This

complex body-and-hole is decomposed into right-triangles using the polygonal

decomposition routine, PolyDecomp.m. The right-triangular sub-bodies and

sub-holes resulting from the decomposition procedure are shown in Fig. 4.11. The

average distance r̄ is calculated for a specific location of the frame of reference in

the plane using ComputeRbar.m. Figure 4.12 illustrates how r̄ varies with the

location of the frame of reference in the plane.

Figure 4.11: Result of Polygonal Decomposition Routine.
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Figure 4.12: Average Distance r̄ for a Composite Body with Respect to
the Location of z.

4.5 Summary

A means to calculate the average distance from a location in the plane to

an arbitrary polygonal body with polygonal and circular holes, r̄, was presented in

this chapter. The process was divided into two parts. The first part consists of

decomposing the original body into simple geometry bodies for which an analytical

form of r̄ is known for each. This decomposition needs to be performed only once.

Then, r̄ can be calculated in real time for any number of locations in the plane. A

detailed description of each of the subfunctions required to execute both tasks has

been presented as well.
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5. CONTRIBUTION AND FUTURE WORK

There is currently a need to mathematically characterize the accuracy of

different configurations. However, this is a complex issue due to the need to

consider rotational and translational error simultaneously. A measurable quality is

required to evaluate the distance between an obtained rigid body position and a

target configuration. This problem arises frequently in general mechanism design,

robot calibration, and motion planning and has been addressed in this paper.

There are two main contributions in this thesis. The first of these

contributions is the description of the parameters that correspond to the optimal

motion for a rigid body that must undergo a planar displacement. Using the best

instantaneous motion measure vD, it is possible to calculate the optimum value for

the body’s angular velocity and the location of the frame undergoing a partial or

complete geodesic motion. This expression can be used as long as the orientational

discrepancy between configurations is not equal to zero. When this is the case, the

best motion is pure translation of the body. The optimal instantaneous angular

velocity was found to be less than that associated with a complete geodesic and is

determined by the magnitude of the orientational displacement. The best

instantaneous motion corresponds to a partial geodesic motion of a frame located

at the body’s geometric center. The best motion measure vD does not satisfy the

mathematical requirements of a metric.

The development of a velocity metric is the other important result of this

paper. This metric, identified as vM , can be used to determine the quality of an

arbitrary motion relative to a specified motion. As was the case with the best
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motion measure, the metric can be simplified as the average distance from a

particular point in the plane to the body. This expression can be used when the

angular velocity of the two motions being analyzed is not equal. If the angular

velocity for the two motions is the same, an different form of vM can be used to

calculate the quality of one motion relative to the other.

Future work in this area will be directed towards evaluating the quality of

rigid body spatial motions. Several changes in the approach used to develop the

best motion measure and the velocity metric will be required. The first change has

to do with the way in which the motion is described. No longer can the Center of

Rotation solely be used to describe body configuration. In planar motion, a

motion could be described as rotation about a stationary point. In spatial motion,

a motion can only be characterized as translation along an axis and a rotation

about this axis, also known as a screw motion. Additionally, geodesic motions in

space must satisfy an additional set of mathematical requirements that did not

factor in planar motion. Also, the calculation of r̄ becomes more complex, as body

volumes must be considered instead of areas.
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APPENDIX A

CHARACTERIZATION OF ALL MOTIONS AS

GEODESICS

Any rigid-body motion which results in a body particle moving at a known

velocity (with known angular velocity as well) can be described in terms of the

geodesic (or partial-geodesic) motion for a frame located in the plane. This result

is a consequence of the kinematic constraint present in rigid body motion and can

be shown as follows.

Let vP be the translational velocity of particle P on a rigid body.

Associated with the translational velocity for this particle, the body rotates at

angular velocity ω. Let C be the location in the plane of the proposed frame that

will undergo a geodesic motion. The velocity vP can be expressed as follows:

vP = vC + vCP

= vC + ωk̂× rCP (A.1)

However, it has been shown that the velocity for a particle moving in a straight

line path is given by:

vC = rCC′/τ

= (R(θ)− I) rOC/τ (A.2)

Combining the last two results, it is possible to express the velocity of particle P
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in terms of the location of a frame undergoing a geodesic motion, C:

vP = (R(θ)− I) rOF/τ + ω × rFP

= (R(θ)− I) rOF/τ + ω × (rOP − rOF ) (A.3)

Now, solving for rOC :

rOC =

(
R(θ)− I

τ
− [ω×]

)−1

(vP − [ω×]rOP ) (A.4)

Using (A.4), rOC can be calculated for all possible planar pose discrepancies,

except when θ = 0. If the rotational discrepancy is 0, the first matrix of (A.4) is

the zero-matrix. It is impossible to calculate the inverse of such a matrix. θ = 0

corresponds to the pure translation problem, for which the best motion is pure

translation of the body.

In conclusion, it has been shown that any planar motion involving rotation

can be represented as the instantaneous motion associated with the geodesic of a

unique frame in the plane.



77

APPENDIX B

ANALYTICAL FORM OF r̄ FOR A RECTANGLE

The calculation for the average particle distance of a rectangle of dimension

l1 × l2 from a specified location in space (the rotation center) follows. Locate the

body frame C describing the rectangle at the vertex so that the x-axis is along

edge l1 and the y-axis is along edge l2. The average distance of the rectangle from

the rotation center is:

r̄ =
1

l1l2
×
[

1

3
ac
√
a2 + c2 +

1

6
a3 log (c+

√
a2 + c2)− 1

3
bc
√
b2 + c2 . . .

−1

6
b3 log (c+

√
b2 + c2)− 1

3
ad
√
a2 + d2 − 1

6
a3 log (d+

√
a2 + d2) . . .

+
1

3
bd
√
b2 + d2 +

1

6
b3 log (d+

√
b2 + d2)− 1

6
d3 log (a+

√
a2 + d2) . . .

+
1

6
c3 log (a+

√
a2 + c2)− 1

6
d3 log (b+

√
b2 + d2)− 1

6
c3 log (b+

√
b2 + c2)

]
,

(B.1)

where a = xOC , b = xOC + l1, c = yOC , d = yOC + l2, and (xOC , yOC) = rOC is the

location of the body frame relative to the rotation center.
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(a,c) (b,c)

(b,d)(a,d)

l2
l1

O X

Y

(a,c) (b,c)

Figure B.1: Location of the Rectangle Relative to the Rotation Center.
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APPENDIX C

ANALYTICAL FORM OF r̄ FOR A RIGHT-TRIANGLE

The calculation for the average particle distance of a right-triangle of

dimension l1 × l2 from a specified location in space (the rotation center) follows.

Locate the body frame C describing the rectangle at the right-angle vertex. The

frame is oriented so that the x-axis is along edge l1 and the y-axis along edge l2.

The average distance of the right-triangle from the rotation center is:

r̄ =
1

6u3
×
[
um2d3 log (md+ g + w) + 2acu

√
a2 + c2 − 2adu

√
a2 + d2 −muvc2 . . .

+g3 log

(
d+ dm2 +mg + wu

u

)
− g3 log

(
c+ cm2 +mg + vu

u

)
− 2gcvm2 . . .

−um2c3 log (mc+ g + v)−muvg2 +muwg2 + 2dguw − 2cguv . . .

+ud3 log (md+ g + w)− uc3 log (mc+ g + v) + uc3 log (a+
√
a2 + c2) . . .

+ua3 log (c+
√
a2 + c2)− ud3 log (a+

√
a2 + d2)− ua3 log (d+

√
a2 + d2) . . .

+2dguwm2 − 2acum2
√
a2 + c2 − 2adum2

√
a2 + d2 + uwd2m3 . . .

−um2a3 log (d+
√
a2 + d2)− um2d3 log (a+

√
a2 + d2) +muwd2 . . .

+um2c3 log (a+
√
a2 + c2) + um2a3 log (c+

√
a2 + c2)− uvc22m3

]
,

(C.1)

where:

u =
√

1 +m2 (C.2)

v =
√
c2 + c2m2 + 2mcg + g2 (C.3)

w =
√
d2 + d2m2 + 2mdg + g2 (C.4)
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and where a = xOC , b = xOC + l1, c = yOC , d = yOC + l2, (xOC , yOC) = rOC is the

location of the body frame relative to the rotation center, m = (b− a)/(c− d) is

the inverse slope of the hypotenuse, and g = a−md is the intersection of the

hypothenuse with the x-axis passing through the CoR. The equation of the

hypothenuse as seen from the CoR is x = my + g.

(a,c) (b,c)

(a,d)

l2
l1

O X

Y

(a,c) (b,c)

Figure C.1: Location of the Right-Triangle Relative to the Rotation
Center.
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APPENDIX D

ANALYTICAL FORM OF r̄ FOR A CIRCLE

The calculation for the average particle distance of a circle of radius r from

a specified location in space (the rotation center) follows. Locate the body frame

C describing the rectangle at the center of the circle. The distance from the center

of rotation to the center of the circle is L. The average distance of the circle from

the rotation center is:

r̄ =
1

45r2(L+ r)
×
[
13Kr4L2 − 2Kr2L4 + 6ErL5 + 34Er3L3 + 136Er5L

+85Er4L2 + 20Er2L4 − 8Kr6 − 3KL6 + 3EL6 + 68Er6

]
. . .

+
1

2
L2

[
(L− r)(F2 − F1) + (L+ r)(IncE2 − IncE1)

]
. . .

− 1

90(L+ r)r2

[ (
76L3r3 − 6L5r + 35L4r2 + 4r5L+ 40r4Ls + 2r6 − 3L6

)
×

(IncE2 − IncE1)−
(
37L4r2 − 38L2r4 + 3L6 − 2r6

)
(F2 − F1)

]
,

(D.1)

where:

K = EllipticK(p) (D.2)

E = EllipticE(p) (D.3)

F1 = EllipticF(cos 0, p) (D.4)

F2 = EllipticF(cos π, p) (D.5)

IncE1 = EllipticE(cos 0, p) (D.6)

IncE2 = EllipticE(cos π, p), (D.7)
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and p = 2
√

Lr
L+r2

.

The Elliptic Integral functions are defined as follows: Incomplete elliptic integral of

the first kind:

EllipticF(x, p) =

∫ x

0

dt√
(1− t2)(1− pt2)

(D.8)

Incomplete elliptic integral of the second kind:

EllipticE(x, p) =

∫ x

0

√
1− pt2√
1− t2

dt (D.9)

Complete elliptic integral of the first kind:

EllipticK(p) =

∫ 1

0

dt√
(1− t2)(1− pt2)

(D.10)

Complete elliptic integral of the second kind:

EllipticE(p) =

∫ 1

0

√
1− pt2√
1− t2

dt (D.11)
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APPENDIX E

READDXF.M

The following is the function ReadDxf.m used to import a geometry DXF

file into MATLAB. The function prompts the user to select a DXF file and outputs

two cell arrays. The first cell array contains all polygon data. The second cell

array contains all circle data. This function was generated by modifying a

previously developed script [25]. The Copyright disclaimer is observed:

Copyright (c) 2009, Sebastian TM

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
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SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

function [Poly,Cir] = ReadDxf()

%% Read file

clear all;

[filename, pathname] = uigetfile(’*.dxf’,’Open

File’,’Multiselect’,’off’);

% choose file to open

addpath(pathname); % add path to the matlab search path

fId = fopen(filename);

c ValAsoc = textscan(fId,’%d%s’,’Delimiter’,’n’);

fclose(fId);

% Code Group Matrix

m GrCode = c ValAsoc1;

% Associated value String Cell

c ValAsoc = c ValAsoc2;

%% Entities

m PosCero = find(m GrCode==0);

%Is searched by (0,SECTION),(2,ENTITIES)

indInSecEnt =

strmatch(’ENTITIES’,c ValAsoc(m PosCero(1:end-1)+1),’exact’);
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%(0,ENDSEC)

m indFinSecEnt =

strmatch(’ENDSEC’,c ValAsoc(m PosCero(indInSecEnt:end)),’exact’);

% Entities Position

m PosCero = m PosCero(indInSecEnt:indInSecEnt-1+m indFinSecEnt(1));

% Variable initiation

c Line = cell(1,2);

c Poly = cell(1,2);

c Cir = cell(1,2);

c Arc = cell(1,2);

c Poi = cell(1,2);

%

iLine = 1;

iPoly = 1;

iCir = 1;

iArc = 1;

iPoi = 1;

% Loop on the Entities

for iEnt = 1:length(m PosCero)-2

m GrCodeEnt = m GrCode(m PosCero(iEnt+1):m PosCero(iEnt+2)-1);

c ValAsocEnt = c ValAsoc(m PosCero(iEnt+1):m PosCero(iEnt+2)-1);

nomEnt = c ValAsocEnt1; %c ValAsocEntm PosCero(iEnt+1)

%In the entity’s name is assumed uppercase

switch nomEnt

case ’LINE’

% (Xi,Yi,Zi,Xj,Yj,Zj) start and end points

c LineiLine,1 =
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[str2double(f ValGrCode(10,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(20,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(30,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(11,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(21,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(31,m GrCodeEnt,c ValAsocEnt))];

% Layer

c Line(iLine,2) = f ValGrCode(8,m GrCodeEnt,c ValAsocEnt);

% Color

%if no exist is ByLayer (256)

%c LineiLine,3 = str2double(f ValGrCode(62,m GrCodeEnt,c ValAsocEnt));

% XData

%c Line(iLine,4) =

f XData(GroupCode,’XDataName’,m GrCodeEnt,c ValAsocEnt);

% Add properties

iLine = iLine+1;

case ’LWPOLYLINE’

% (X,Y) vertexs

%Is not take into account the budge (group code 42, arc in the

polyline).

m Coord = [str2double(f ValGrCode(10,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(20,m GrCodeEnt,c ValAsocEnt))];

c PolyiPoly,1 = m Coord;

% Layer

c Poly(iPoly,2) = f ValGrCode(8,m GrCodeEnt,c ValAsocEnt);

% Add properties

iPoly = iPoly+1;
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case ’CIRCLE’

% (X Center,Y Center,Radius)

c CiriCir,1 =

[str2double(f ValGrCode(10,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(20,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(40,m GrCodeEnt,c ValAsocEnt))];

% Layer

c Cir(iCir,2) = f ValGrCode(8,m GrCodeEnt,c ValAsocEnt);

% Add properties

%

iCir = iCir+1;

case ’ARC’

% (X Center,Y Center,Radius,Start angle,End angle)

c ArciArc,1 =

[str2double(f ValGrCode(10,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(20,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(40,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(50,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(51,m GrCodeEnt,c ValAsocEnt))];

% Layer

c Arc(iArc,2) = f ValGrCode(8,m GrCodeEnt,c ValAsocEnt);

% Add properties

iArc = iArc+1;

case ’POINT’

% (X,Y,Z) Position

c PoiiPoi,1 =

[str2double(f ValGrCode(10,m GrCodeEnt,c ValAsocEnt)),...
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str2double(f ValGrCode(20,m GrCodeEnt,c ValAsocEnt)),...

str2double(f ValGrCode(30,m GrCodeEnt,c ValAsocEnt))];

% Layer

c Poi(iPoi,2) = f ValGrCode(8,m GrCodeEnt,c ValAsocEnt);

% Add properties

iPoi = iPoi+1;

%case Add Entities

end

end

function c Val = f ValGrCode(grCode,m GrCode,c ValAsoc)

c Val = c ValAsoc(m GrCode==grCode);

end

function c XData = f XData(grCode,XDatNom,m GrCode,c ValAsoc)

m PosXData = find(m GrCode==1001);

if isempty(m PosXData)

indInXData =

m PosXData(strmatch(upper(XDatNom),c ValAsoc(m PosXData),’exact’));

m indFinXData = find(m GrCode(indInXData+2:end)==1002)+indInXData+1;

m IndXData = indInXData+2:m indFinXData(1)-1;

c XData =

f ValGrCode(grCode,m GrCode(m IndXData),c ValAsoc(m IndXData));

else

c XData = {[]};

end

end
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APPENDIX F

POLYDECOMP.M

The following is the routine PolyDecomp.m used to decompose an arbitrary

geometry (body and holes) into right-triangles and circles.

function [BodyTri, HoleTri, HoleCir] = PolyDecomp.m()

% Import geometry file w/. function ReadDxf.m

[PolyCell, CirCell ] = ReadDxf();

% Determine which is the external polygon (body)

numpoly = length(PolyCell(:,1));

for i = 1:numpoly

Temp = cell2mat(PolyCell(i,1));

order = length(Temp(:,1));

Sum = 0;

for j = 1:order

if (j == 1)

term = Temp(order,1)*Temp(j,2) - Temp(j,1)*Temp(order,2);

Sum = Sum + term;

else

term = Temp(j-1,1)*Temp(j,2) - Temp(j,1)*Temp(j-1,2);

Sum = Sum + term;

end

end

Area(i) = Sum/2;
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end

% ‘‘body" is the index of the polygon which is the body

% All the other polygons are holes

[MaxArea, body ] = max(Area);

% Initialize Output Matrices

BodyTri = []; HoleTri = []; HoleCir = [];

% Decompose each polygonal body into Right-triangles (body and holes)

for i=1:numpoly

Polygon = cell2mat(PolyCell(i,1));

% Use function Triangulation.m to split polygon into triangles

Tri = Triangulation(Polygon);

% Number of triangles

numtri = length(Tri(1,:));

for j = 1:numtri

% Divide triangle into two r-triangles w/. function

% TriSplit.m

% S = [1x2] matrix, s.t.

% S(i) = 1 --> Body, S(i) = -1 --> Hole

[Tri1,Tri2,S] = TriSplit(Tri(:,j));

% Store info in the following manner w/. function FixTri.m:

% RTri = [xh,yh,W,H,alpha]’;

RTri1 = FixTri(Tri1);

RTri2 = FixTri(Tri2);

% Store information as either body or hole
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if (i == body)

if (S(1) == 1)

BodyTri = [BodyTri RTri1];

else

HoleTri = [HoleTri RTri1];

end

if (S(2) == 1)

BodyTri = [BodyTri RTri2];

else

HoleTri = [HoleTri RTri2];

end

else

if (S(1) == -1)

BodyTri = [BodyTri RTri1];

else

HoleTri = [HoleTri RTri1];

end

if (S(2) == -1)

BodyTri = [BodyTri RTri2];

else

HoleTri = [HoleTri RTri2];

end

end

end

end

% Store information for circles (no modifications needed)
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numcir = length(CirCell(:,1));

for i=1:numcir

% Circle = [xc, yc, radius]’;

Circle = cell2mat(CirCell(i,1));

if (size(Circle) == 0)

% No Circles

else

HoleCir(:,i) = [Circle]’;

end

end
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APPENDIX G

COMPUTERBAR.M

The following is the function ComputeRbar.m, used to calculate r̄ for an

arbitrary body.

function rbar = ComputeRbar(BodyTri,HoleTri,HoleCir,P)

% Number of right-triangles as bodies

length1 = length(BodyTri(1,:));

% Calculate r-bar for each body

for i = 1:length1

BodyPtRef = [BodyTri(1,i), BodyTri(2,i)];

W = BodyTri(3,i);

H = BodyTri(4,i);

alpha = BodyTri(5,i);

rbar1(i) = IntTri(BodyPtRef,P,W,H,alpha);

Area1(i) = W*H/2;

rA1(i) = rbar1(i)*Area1(i);

end

% Number of right-triangles as holes

length2 = length(HoleTri(1,:));

% Calculate r-bar and area for each triangular hole

for i = 1:length2

BodyPtRef = [HoleTri(1,i), HoleTri(2,i)];
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yh = HoleTri(2,i);

W = HoleTri(3,i);

H = HoleTri(4,i);

alpha = BodyTri(5,i);

rbar2(i) = IntTri(BodyPtRef,P,W,H,alpha);

Area2(i) = W*H/2;

rA2(i) = rbar2(i)*Area2(i);

end

% Number of circles as holes

length3 = length(HoleCir(1,:));

% Calculate r-bar and area for each circular hole

for i = 1:length3

BodyPtRef = [HoleCir(1,i), HoleCir(2,i)];

r = BodyTri(3,i);

rbar3(i) = IntCir(BodyPtRef,P,r);

Area3(i) = pi*r*r;

rA3(i) = rbar3(i)*Area3(i);

end

% Computer r-bar for original geometry

rbar =

(sum(rA1)-sum(rA2)-sum(rA3))/(sum(Area1)-sum(Area2)-sum(Area3));
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APPENDIX H

TRIANGULATION.M

The following is the function Triangulation.m, used to decompose or split a

polygon into triangles. This function calls PolySplit.m to decompose a polygon

into two polygons. The process is repeated until all remaining polygons are

triangles. The input is a 2× n matrix containing the original polygon’s n vertices

and the output is a 6× n− 2 matrix where each column has the x− and y−

component information of the 3 vertices of a triangle and n− 2 is the total number

of triangles.

function Tri = Triangulation(Poly)

% Polygon Triangulation Routine

% Polygon order

n = length(Poly(1,:));

% Index is what row of the storage matrix is currently being analyzed

Index = 1;

% Global Storage Matrix:

% counter

a = 1;

% col = vertex index, from 1 to n

for col = 1:n

Stored(1,a) = Poly(1,col);

Stored(1,a+1) = Poly(2,col);
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a = a + 2;

end

% Size = Matrix storing number of vertices of the corresponding

polygons

Size(1) = n;

% START TRIANGULATION ROUTINE

% TriCount is how many triangles have been found

TriCount = 0;

% StCount is what row of the storage matrix the polygon data

% is being added to

StCount = 1;

% Continue decomposing polygons until all polygons are triangles

while (Index <= StCount)

% Create a matrix containing info on the polygon being decomposed

clear Work

a = 1;

for col = 1:Size(Index)

Work(1,col) = Stored(Index,a);

Work(2,col) = Stored(Index,a+1);

a = a+2;

end

% Check if the polygon under consideration has 4 or more vertices
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% If its not a triangle, it must be split

if (Size(Index) > 3)

% Find concave vertex and decompose into two polygons

vertex = FindConcave(Work);

if (vertex == 0)

% Convex Polygon, any vertex can be used. Use vertex 1

vertex = 1;

[Poly1,Poly2] = PolySplit(Work,vertex);

else

% Concave Polygon, use concave vertex

[Poly1,Poly2] = PolySplit(Work,vertex);

end

size1 = length(Poly1(1,:));

size2 = length(Poly2(1,:));

% Save Poly1 to Storage Matrix: Stored

a = 1;

for b = 1:size1

Stored(StCount+1,a) = Poly1(1,b);

Stored(StCount+1,a+1) = Poly1(2,b);

a = a + 2;

end

% Save Poly 2 to Storage Matrix: Stored

a = 1;
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for b = 1:size2

Stored(StCount+2,a) = Poly2(1,b);

Stored(StCount+2,a+1) = Poly2(2,b);

a = a + 2;

end

% Save the order of Poly1 and Poly2 to Size matrix.

Size(StCount+1) = size1;

Size(StCount+2) = size2;

% Two Polygons have been added to list, update counter.

StCount = StCount + 2;

else

% The "active" polygon is a triangle, store data into Triangle

matrix

% Add one to the Triangle Counter

TriCount = TriCount + 1;

for a = 1:6

Tri(a,TriCount) = Stored(Index,a);

end

end

% Move on to next polygon in list

Index = Index + 1;

end
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APPENDIX I

CONCAVETEST.M

The following is the function concavetest.m, used to determine if the vertex

of a polygon is concave or convex. If the vertex is convex, the output flag concave

is set to 0 (false). If the vertex is concave, then the output variable is set to 1

(true).

function concave = ConcaveTest(P)

% P is a 2x3 matrix, where each column of P is the location of a

vertex

% in the plane (x,y)

% Obtain vertices’ x- and y- components:

x1 = P(1,1);

y1 = P(2,1);

x2 = P(1,2);

y2 = P(2,2);

x3 = P(1,3);

y3 = P(2,3);

% Determine if vertex angle is concave (1) or convex (0) based on

% direction of cross product

% cross < 0 ==> RH-turn

% cross > 0 ==> LH-turn

cross = (x2-x1)*(y3-y1) - (y2-y1)*(x3-x1);



100

if (cross < 0)

concave = 0;

else

concave = 1;

end
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APPENDIX J

FINDCONCAVE.M

The following is the function FindConcave.m, used to determine which

vertex, if any, is concave. If there are no concave vertices meaning the polygon is

convex, the output flag vertex is set to 0 (false). If a concave vertex is found,

then the output variable is set to the corresponding vertex number according to

the numeration established based on clockwise order. This function uses the

function concavetest.m to evaluate each vertex.

function vertex = FindConcave(V)

% This function finds the concave vertex, if any for a n-gon.

% V is the 2× n matrix with the x- and y- components

% of each vertex.

n = length(V(1,:));

% Counter

b = 0;

% Vertex index

i = 0;

% Test vertex to see if its concave or convex

% Continue till a concave vertex has been found or all vertices have

been

% analyzed

while (b == 0 && i < n)
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% Look at next vertex

i = i + 1;

% Look at three contiguous vertices

P1 = [Rf(1,i), Rf(2,i)]’;

P2 = [Rf(1,i+1), Rf(2,i+1)]’;

P3 = [Rf(1,i+2), Rf(2,i+2)]’;

P = [P1 P2 P3];

% Test points for convexity

b = ConcaveTest1(P);

end

% Output Vertex Index

% Vertex index = 0 if polygon is convex

if (b == 0)

vertex = 0;

else

vertex = i;

end
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APPENDIX K

POLYSPLIT.M

The following is the function PolySplit.m, used to decompose or split a

polygon into two polygons of lesser order. This function calls both concavetest.m

and FindConcave.m to determine which vertex is used as one of the end-points of

the line segment used to split the polygon.

function [Poly1,Poly2] = PolySplit(P,i)

% Determine order of original polygon

n = length(P(1,:));

% Matrix that ensure there are no inconsistencies by making

% vertex 0 = n and vertex n+1 = 1

Pf = [P(:,n) P P(:,1)];

% Counter

a = 0;

% Other vertex used to split the polygon

j = 0;

while (a == 0 && j < n)

j = j + 1;

% Determine if vertices b and j are adjacent

diff = abs(i - j);

% Counters

c = 0;
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d = 0;

% if the edge is not adjacent to vertex, proceed

if (diff > 1)

X = P(1,i)-P(1,j);

Y = P(2,i)-P(2,j);

if (X == 0)

M = X/Y;

G = P(1,i) - M*P(2,i);

else

M = Y/X;

G = P(2,i) - M*P(1,i);

end

while (c == 0 && d < n)

d = d + 1;

xmin = min(Pf(1,d),Pf(1,d+1));

xmax = max(Pf(1,d),Pf(1,d+1));

ymin = min(Pf(2,d),Pf(2,d+1));

ymax = max(Pf(2,d),Pf(2,d+1));

dy = Pf(2,d+1) - Pf(2,d);

dx = Pf(1,d+1) - Pf(1,d);

if (X == 0)

if (dx == 0)

m = dx/dy;

g = Pf(1,i) - m*Pf(2,i);

elseif (dy == 0)
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intx = P(1,i);

inty = Pf(2,i);

else

m = dx/dy;

g = Pf(1,i) - m*Pf(2,i);

inty = -(M-m)/(G-g);

intx = inty*M + G;

end

else

if (dx == 0)

if (Y == 0)

intx = Pf(1,i);

inty = P(2,i);

else

M = X/Y;

G = P(1,i) - M*P(2,i);

m = dx/dy;

g = Pf(1,i) - m*Pf(2,i);

inty = -(M-m)/(G-g);

intx = inty*M + G;

end

else

m = dy/dx;

g = Pf(2,i) - m*Pf(1,i);

if (M == m)

else

intx = -(G-g)/(M-m);
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inty = intx*M + G;

end

end

end

if (M == m)

c = 1;

else

if (intx > xmin && intx < xmax)

if (inty > ymin && inty < ymax)

c = 1;

else

end

else

% Keep looking

end

end

end

if (c == 0)

% no intersecting edges were found, this points can be

used

% as the second end-point

a = 1;

else

% an intersecting edge was found, keep looking

a = 0;

end
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else

% do nothing, keep looking

end

end

%

----------------------------------------------------------------

% Store vertices of two resulting polygons

% counters

w = 0;

ww = 0;

if (j < i)

for z = 1:n

if (z < (i+1) && z > (j-1))

w = w + 1;

Poly1(1,w) = P(1,z);

Poly1(2,w) = P(2,z);

else

end

if (z > (i-1) || z < (j+1))

ww = ww + 1;

Poly2(1,ww) = P(1,z);

Poly2(2,ww) = P(2,z);

else

end

end
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else

for z = 1:n

if (z < (i+1) || z > (j-1))

w = w + 1;

Poly1(1,w) = P(1,z);

Poly1(2,w) = P(2,z);

else

end

if (z > (i-1) && z < (j+1))

ww = ww + 1;

Poly2(1,ww) = P(1,z);

Poly2(2,ww) = P(2,z);

else

end

end

end
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APPENDIX L

TRISPLIT.M

The following is the function TriSplit.m, used to decompose or split a

triangle into two right-triangles. The input is a 6× 1 matrix containing the

original triangle’s n vertices and the output is two matrices and a variables: two

6× 1 matrices with the location of vertices that make up each triangle and a flag

indicating whether the base of the height is inside or outside the triangle.

function [Tri1,Tri2,S] = TriSplit(Tri)

% Triangle vertices

x1 = Tri(1);

y1 = Tri(2);

x2 = Tri(3);

y2 = Tri(4);

x3 = Tri(5);

y3 = Tri(6);

% slopes

if (x1 == x2 || y1 == y2)

% Do Nothing

else

m12 = (y2-y1)/(x2-x1);

m3 = -1/m12;

end
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% y- intersects

if (x1 == x2 || y1 == y2)

% Do Nothing

else

b12 = y1 - m12*x1;

b3 = y3 - m3*x3;

end

% Base of the Height (H)

if (x1 == x2)

xh = x1;

yh = y3;

elseif (y1 == y2)

xh = x3;

yh = y1;

else

xh = -(b12 - b3)/(m12 - m3);

yh = m3*xh + b3;

end

% Point H

Tri1 = [x1, y1, xh, yh, x3, y3]’;

Tri2 = [x2, y2, xh, yh, x3, y3]’;

% Add or Subtract?

% S = 1: Add areas

% S = -1: Subtract areas

a = x2 - x1;
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b = y2 - y1;

c = xh - x1;

d = yh - y1;

d1h = sqrt((x1-xh)*(x1-xh) + (y1-yh)*(y1-yh));

d2h = sqrt((x2-xh)*(x2-xh) + (y2-yh)*(y2-yh));

d3h = sqrt((x3-xh)*(x3-xh) + (y3-yh)*(y3-yh));

A1h = d1h*d3h/2;

A2h = d2h*d3h/2;

if (x2 > x1)

a = x2 - x1;

c = xh - x1;

else

a = x1 - x2;

c = xh - x2;

end

if (y2 > y1)

b = y2 - y1;

d = yh - y1;

else

b = y1 - y2;

d = yh - y2;

end

if (y1 == y2)

if (a > c && c > 0)

S(1) = 1;
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S(2) = 1;

else

if (A1h > A2h)

S(1) = 1;

S(2) = -1;

else

S(1) = -1;

S(2) = 1;

end

end

else

if (b > d && d > 0)

S(1) = 1;

S(2) = 1;

else

if (A1h > A2h)

S(1) = 1;

S(2) = -1;

else

S(1) = -1;

S(2) = 1;

end

end

end
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APPENDIX M

FIXTRI.M

The function FixTri.m is used to calculate the width, the height and the

error in orientation between the world-frame and the body-frame attached to the

right-angle and oriented along the sides of the triangle. The input required is the

vertices of the right-triangle relative to the world-frame.

function [W,H,alpha] = FixTri(Tri)

% Tri = [P1, H, P3] (the right angle must be the second vertex)

% Outputs the angle (in rad) that a triangle must rotate to be

% integrated consistently, as well as the resulting width and height

x1 = Tri(1) - Tri(3);

y1 = Tri(2) - Tri(4);

x3 = Tri(5) - Tri(3);

y3 = Tri(6) - Tri(4);

if (x1 == 0)

if (y1 > 0)

theta1d = 90;

else

theta1d = 270;

end

elseif (x1 > 0)

if (y1 > 0)
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theta1d = atand(y1/x1);

else

theta1d = 360 + atand(y1/x1);

end

else

theta1d = 180 + atand(y1/x1);

end

if (x3 == 0)

if (y3 > 0)

theta3d = 90;

else

theta3d = 270;

end

elseif (x3 > 0)

if (y3 > 0)

theta3d = atand(y3/x3);

else

theta3d = 360 + atand(y3/x3);

end

else

theta3d = 180 + atand(y3/x3); end

% find the 90 degree angle

m = theta3d - theta1d;

if (y1 == 0)

if (x1 > 0)
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if (y3 > 0)

alpha = 0;

W = x1;

H = y3;

else

alpha = pi/2;

W = abs(y3);

H = x1;

end

else

if (y3 > 0)

alpha = -pi/2;

W = y3;

H = abs(x1);

else

alpha = pi;

W = abs(x1);

H = abs(y3);

end

end

elseif (y3 == 0)

if (x3 > 0)

if (y1 > 0)

alpha = 0;

W = x3;

H = y1;

else
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alpha = pi/2;

W = abs(y1);

H = x3;

end

else

if (y1 > 0)

alpha = -pi/2;

W = y1;

H = abs(x3);

else

alpha = pi;

W = abs(x3);

H = abs(y1);

end

end

else

if (m == 90)

alpha = theta1d*pi/180;

W = sqrt(x1*x1 + y1*y1);

H = sqrt(x3*x3 + y3*y3);

else

alpha = theta3d*pi/180;

W = sqrt(x3*x3 + y3*y3);

H = sqrt(x1*x1 + y1*y1);

end

end
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