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ABSTRACT 

AUTOMATED SELECTION OF THE OPTIMAL CARDIAC PHASE FOR SINGLE-

BEAT CORONARY CT ANGIOGRAPHY RECONSTRUCTION 

 

 

Daniel B. Stassi 

 

Marquette University, 2014 

 

 This thesis investigates an automated algorithm for selecting the optimal cardiac 

phase for CCTA reconstruction. Reconstructing a low-motion cardiac phase improves 

coronary artery visualization in coronary CT angiography (CCTA) exams. Currently, 

standard end-systole and/or mid-diastole default phases are prescribed or alternatively, 

quiescent phases are determined by the user. As manual selection may be time-

consuming and standard locations may be suboptimal due to patient variability, an 

automated method is investigated. 

An automated algorithm was developed to select the optimal phase based on 

quantitative image quality (IQ) metrics. For each reconstructed slice at each reconstructed 

phase, an image quality metric was calculated based on measures of circularity and edge 

strength of through-plane vessels. The image quality metric was aggregated across slices, 

while a metric of vessel-location consistency was used to ignore slices that did not 

contain through-plane vessels. A binary metric based on the edge strength of in-plane 

vessels was calculated to determine if IQ of in-plane vessels was acceptable. The 

algorithm performance was evaluated using two observer studies. Fourteen single-beat 

CCTA exams (Revolution CT, GE Healthcare) reconstructed at 2% intervals were 

evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three 

readers and the algorithm. Inter-reader (RR) and reader-algorithm (RA) agreement was 

calculated using the mean absolute difference (MAD) and concordance correlation 

coefficient (CCC). A reader-consensus best phase was determined and compared to the 

algorithm selected phase. In cases where the algorithm and consensus best phases 

differed by more than 2%, IQ was scored by three readers using a 5pt Likert scale. 

There was no significant difference between RR and RA agreement for either 

MAD or CCC metrics (p>0.2). The algorithm phase was within 2% of the consensus 

phase in 71% of cases. There was no significant difference (p>0.2) between the IQ of the 

algorithm phase (4.06±0.73) and the consensus phase (4.11±0.76). The proposed 

algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for 

CCTA exams. When reader and algorithm phases differed by >2%, IQ was statistically 

equivalent. 
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CHAPTER 

1 INTRODUCTION 

1.1 Statement of the Problem 

 In 2004, coronary artery disease (CAD) was the most expensive condition for 

hospitals to treat, costing over $44 billion for 1.2 million patients [1].  The gold-standard 

metric to determine the presence and severity of stenoses is x-ray angiography.  Non-

invasive Coronary Computed Tomography Angiography (CCTA) exams are often used to 

exclude significant coronary stenosis because of their high negative predictive value [2].  

Cardiac motion can blur the coronary arteries in the CCTA images, making it difficult for 

clinicians to perform an accurate diagnostic interpretation.  Modern CT systems have 

sufficient temporal resolution to reconstruct volumes at many time points during the 

cardiac cycle.  Ideally, reconstruction will occur during the phase of the cardiac cycle 

with the least motion.  This minimum motion phase varies from patient to patient [3].  

The best phase is also related to the patient’s heart rate [4].  Heart rate data is often used 

in prospective gating to limit the range of acquired phases and reduce dose to the patient.  

It is common to reconstruct many volumes from the acquired phases after prospective 

gating.  In current practice, multiple phases may be reviewed manually to select the 

volume with the best image quality.  This process requires additional computation time to 

reconstruct each volume.  As companies shift towards more time-consuming iterative 
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reconstruction techniques, minimizing the number of reconstructed phases is essential.  A 

manual best phase selection is also time-consuming for radiologists who must review 

multiple sets of images.  A fully automated algorithm that determines the best phase of 

the cardiac cycle for CCTA reconstruction is essential to solve this workflow problem.   

1.2 Objective of the Study 

The objective of this project was to develop an automated algorithm to 

retrospectively select the best cardiac phase for CCTA reconstruction and evaluate 

algorithm performance. Based on this goal, two specific aims were identified. 

1.2.1 Aim 1: Development of Best Phase Selection Algorithm 

Develop an automated algorithm that selects the best cardiac phase for CCTA 

reconstruction based on coronary image quality. 

1.2.2 Aim 2: Validation of Best Phase Selection Algorithm 

Validate the algorithm performance by comparing the algorithm output to 

observer-chosen best phases and image quality assessments. 
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2 BACKGROUND 

2.1 X-Ray Imaging 

X-rays are the basis for CT imaging.  An x-ray is an electromagnetic wave with a 

wavelength between 0.01nm and 10nm.  As an x-ray beam passes though matter, x-rays 

are absorbed or scattered based on the material’s attenuation coefficient, µ, according to 

the Lambert-Beer Law: 

     
    Eq. 1 

where Io is the original beam intensity, I is the final beam intensity, and x is the thickness 

of the material.  X-rays occur at different energy levels, and lower energy x-rays are more 

likely to be attenuated.  Therefore, µ is a function of the x-ray energy.  X-rays are a form 

of ionizing radiation.  This means that x-rays have sufficient energy to cause an electron 

to be ejected from an atom.  Ionizing radiation can damage DNA molecules which may 

lead to cancer.  Therefore, the radiation dose, or amount of ionizing radiation per unit 

mass, should be as low as possible.   

Projection radiography is a common two dimensional x-ray imaging technique.  

An x-ray beam is passed through the subject over the region of interest.  Before reaching 

the subject, low energy x-rays that are unlikely to pass through the subject are filtered to 

reduce patient dose.  X-rays outside the desired field of view are removed using 

collimators.  A scintillator converts the final x-ray beam to light, and the light intensity at 
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each spatial location is digitally recorded.  This forms an image where contrast is dictated 

by the attenuation coefficients and thicknesses of materials in the subject.  One limitation 

of projection radiography is the loss of depth information, as attenuation coefficients 

parallel to the direction of x-ray travel are integrated in the final image.  To overcome the 

limitation of projection imaging, CT scans are used to obtain three dimensional 

information. 

2.2 CT Reconstruction 

CT images are maps of the subject’s attenuation coefficient at different points in 

space, which can be calculated using x-ray projections.  X-ray projections are acquired at 

a multitude of angles, covering at least a 180⁰ rotation around the subject.  Projections are 

reconstructed into a CT image with either filtered backprojection or iterative 

reconstruction techniques.  In filtered backprojection, the projection measurements are 

spread equally along the path that each x-ray travelled through a process called 

backprojection.  The resulting image will be the actual object convolved with a blurring 

function of 1/r.  This blurring artifact can be removed by first convolving each projection 

with a deconvolution kernel that sharpens the 1/r blurring function.  Since convolution is 

time consuming, the projection data is often transformed into the frequency domain 

where the sharpening kernel is applied through multiplication.  An inverse Fourier 

Transform is performed on the filtered projection, followed by backprojection to 

reconstruct the image.  Iterative reconstruction starts with an initial guess of the final 

image and steps through a number of iterations to bring the image closer to an optimal 
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result.  Theoretically, the forward projection of the final image at each angle will exactly 

match the acquired projection data at that angle.  Using this reconstruction approach, the 

estimated image is updated iteratively to minimize the error between the measured data 

and the estimated data at each projection angle.  CT images typically have a matrix size 

of 512x512, which makes this process computationally expensive.  Using either 

technique, CT images can be reconstructed from a set of x-ray projections. 

2.3 Common CT Artifacts 

There are many common artifacts in CT images.  Beam hardening occurs because x-ray 

beams contain a spectrum of energy levels.  Low energy x-rays are attenuated after 

passing through thick sections of materials or through materials with high attenuation 

coefficient.  This forms a spectrum with a higher average energy than the beam that was 

incident on the object.  The high energy beam is less 

likely to be attenuated by tissue with a lower 

attenuation coefficient, causing cupping artifacts with 

low CT number.  Metal implants or other materials 

with high attenuation coefficients can cause streak 

artifacts due to beam hardening [5].  X-ray beams are 

often pre-hardened to reduce this effect.  Partial 

volume effects occur when a voxel in the final image 

contains more than one tissue type.  In this case, the 

Figure 1- Ring artifact caused by a 

miscalibrated detector (red).  As 

the gantry rotates, the data 

associated with the miscalibrated 

detector form a ring. 
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measured value is the average of each tissue type.  This is also called a blooming artifact 

because high-valued objects with dimensions smaller than the voxel size expand in the 

image to fill the entire voxel.  Partial volume artifacts occur most often when thick slices 

are acquired and can be minimized by reconstructing with thinner slices.  Ring artifacts 

are common in third-generation 

CT scanners where both the x-ray 

source and detectors are set on a 

rotating gantry.  This 

configuration causes each detector 

to contribute heavily to a circular 

region in the final CT image (Figure 1).  Therefore, if a detector is miscalibrated, a ring 

shaped artifact will be present.  Ring artifacts are reduced by monitoring detectors for 

miscalibration and applying algorithms to correct artifacts in the final image.  Motion 

artifacts occur when the subject moves during the scan, causing projections acquired at 

different times to contain inconsistent data.  As seen in Figure 2, motion artifacts are 

characterized by blurring at the edges of the moving object.  Motion artifacts from the 

lungs are reduced by requiring that the patient holds their breath.  This is not possible for 

cardiac motion, and the image must be taken during the period of lowest motion.  In order 

to obtain optimal image quality, steps must be taken to reduce the effects of each of these 

artifacts. 

Figure 2- Right coronary artery with (left) and without (right) 

motion artifact.   
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2.4 History of CT 

CT systems evolved significantly from the first clinical scanner in 1972 to 

become fast enough to image the entire heart in a single beat [5].  As scanners evolved, 

the motion and design of x-ray sources and detectors changed.  First generation CT 

scanners used a thin pencil beam of x-rays aimed at one or two detectors.  After each 

recording, the x-ray and detector were incrementally translated across the field of view 

and the measurement was repeated.  The x-ray source and detector were then rotated by 

1˚, and the process was repeated until 180˚ of data was obtained.  Second generation CT 

scanners improved data acquisition by sending a narrow fan beam of x-rays at a larger 

bank of detectors, allowing faster acquisition.  Fan beam reconstruction requires 

projections from 180˚ plus half of the fan-beam width.  Third generation scanners 

eliminate the translation step entirely.  The fan beam was widened to acquire the entire 

field of view without translation.  Both x-ray source and detectors were mounted on a 

rotating gantry, and data was obtained continuously as the gantry rotated.  This rotation-

only acquisition greatly reduced acquisition time.  Slip-ring systems were employed to 

eliminate any power and data cables that ran to the gantry.  Slip-ring technology allowed 

the gantry to rotate freely, without cables, while image data were transferred to the 

stationary data processing computer.  Some third generation CT systems contained many 

detector rows illuminated by a cone beam of x-rays.  Cone-beam CT allowed a volume of 

CT data to be obtained during each rotation.  Ring artifacts often occur in third generation 

CT systems when a detector is not properly calibrated.  Fourth generation CT systems 
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eliminate ring artifacts by using a stationary 360˚ ring of detectors.  The x-ray source is 

rotated as in a third-generation scanner, but detectors do not move.  With this geometry, 

each detector contributes equally to all spatial locations, eliminating ring artifacts.  Due 

to the increased cost of 360˚ detector banks and improvement in algorithms for correcting 

ring artifacts, third generation CT systems are most commonly used today. 

 The time period over which an image is acquired is called temporal resolution.  

The temporal resolution of third-generation CT systems are limited by gantry rotation 

time.  Temporal resolution improves with gantry rotation speed because a wider range of 

projection angles can be acquired over a smaller period of time.  CT gantries are heavy, 

causing centrifugal forces up to 10G.  This mechanical limitation on temporal resolution 

led to the introduction of electron beam CT (EBCT).  In EBCT, rotation of the x-ray 

beam is controlled electronically rather than mechanically, eliminating gantry rotation.  

An electron beam is swept across an anode, which converts the electrons into a fan beam 

of x-rays.  This approach decreased temporal resolution to 30-50ms.  However, EBCT 

systems have decreased longitudinal resolution due to fewer detector rows and are highly 

specialized to cardiac applications.  These considerations limit the use of EBCT in CCTA 

examinations [6]. 

Three dimensional fields of view can be acquired in many ways with a third 

generation CT scanner.  Increasing the number of rows in the detector array increases the 

number of slices that can be acquired at one time, increasing temporal resolution.  The 

height of the x-ray cone beam also increases with increasing detector rows, which causes 

cone-beam artifacts due to undersampling in the longitudinal direction.  Modern CT 

scanners can have up to 320 detector rows and use specialized reconstruction algorithms 
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to reduce cone beam artifacts [7].  Initially, thicker sections of anatomy were analyzed in 

step and shoot mode.  In this mode, the x-ray source is rotated around the patient to 

acquire a slab of data.  Next, the patient is translated to position the next slab onto the 

detector array.  This process is repeated until the required anatomy is imaged and the 

reconstructed slabs of data are stitched together to form a full three dimensional volume.  

Helical acquisition eliminates the translation and stitching stages in step and shoot mode.  

The patient is slowly translated while the gantry rotates during the entire acquisition, 

therefore the source and detector move in a helical trajectory with respect to the subject. 

Specialized reconstruction algorithms are used to reconstruct a volume of images.  The 

speed of translation relative to the detector slab width is called the pitch. 

      
                              

                         
 Eq. 2 

A pitch of one acquires 360˚ of projection data at each slice while a pitch of two acquires 

only 180˚ of projection data at each slice.  Dual source configurations are often used with 

helical CT.  These systems contain an additional x-ray source and set of detectors in the 

gantry ring, doubling the amount of data taken per gantry rotation.  In a dual source 

helical acquisition, the pitch can be doubled, halving acquisition time.  The effects of 

pitch, dual sources, and increased detector rows are summarized in Figure 3. 
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(a)  (b)  

(c) (d)  

(e)  (f)  

 

Figure 3: Data acquired by detectors for different configurations are shown in blue/red (a/b) Increasing the 

detector rows or slice thickness by a factor of 4 causes a proportional decrease in the required number 

of rotations.  (c/d) A pitch of 1 (c) leaves no gaps in the acquired data, but takes twice as many 

rotations to complete as a pitch of 2 (d).  (e/f) With a second source and detector, shown in red, the 

pitch can be doubled while retaining the same longitudinal coverage. 

 

 

Some modern CT scanners have wide enough detectors to cover the entire heart without 

helical acquisition.  This allows a full volume of the heart to be acquired in 

approximately one half rotation of the gantry [7].  The improved temporal resolution 

offered by these techniques aids in reducing motion when imaging the heart. 

2.5 Cardiac Cycle 

The left and right atria and ventricles of the heart supply oxygenated blood to the 

entire body.  The atria serve as primers for the ventricles, increasing ventricular filling 
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[8].  The right ventricle pumps deoxygenated blood through the pulmonary artery to the 

lungs.  Oxygenated blood then passes through the left side of the heart where the left 

ventricle pumps it through the aorta, to the rest of the body.  The myocardium on the left 

side of the heart is much thicker than the right side because the left side must generate 

more pressure to pump blood to the entire body.  Atrio-ventricular (AV) valves separate 

the atria from the ventricles while semilunar valves separate the left and right ventricles 

from the aorta and the pulmonary artery, respectively.  There are three main coronary 

arteries that supply blood to the heart.  The right coronary artery (RCA) services the right 

ventricle and posterior left ventricle, running along the right AV groove.  The left 

coronary artery splits into the left anterior descending (LAD) and left circumflex (LCX) 

arteries.  The LAD supplies blood to the anterior left ventricle, travelling along its 

surface.  The LCX supplies the left lateral ventricle, running along the left AV groove 

[3].  Plaque buildup in these arteries is a common cause of CAD. Understanding the 

movement of these structures is essential to solve the challenges of imaging the heart. 

Motion of the heart during the cardiac cycle can be characterized by seven stages 

of atrial and ventricular systole and diastole.  Ventricular systole begins with a stage of 

isovolumic contraction where pressure in the ventricles builds up.  The semilunar valves 

will then open during ventricular ejection, which causes blood to flow out of the 

ventricles through the semilunar valves.  Most of the blood is expelled during the first 

third of ventricular ejection, which is called the period of rapid ejection.  A longer period 

of reduced or absent ejection follows [9].  Ventricular diastole begins with isovolumic 

relaxation.  In this stage, the ventricles relax, reducing pressure.  This causes the 

semilunar valves to close and the AV valves to open.  Once the AV valves open, there is 
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a period of rapid filling of the ventricles.  Diastasis, a period of reduced or absent 

ventricular filling, follows.  The cycle completes with a period of atrial contraction. A 

summary of these stages are shown below in Figure 4. 

 

 

 

 

Figure 4- The cardiac cycle is split into three stages of systole and four stages of diastole.  Systole consists 

of isovolumic contraction (IVC), maximum ventricular ejection (ME), and reduced ventricular ejection 

(RE).  Diastole consists of isovolumic relaxation (IVR), rapid ventricular filling (RF), diastasis (D), 

and atrial systole (AS).  The duration of each of these stages depends on heart rate. 

 

 
 

The duration of each cardiac stage changes nonlinearly with heart rate.  As heart rate 

increases from 50bpm to 90bpm, the duration of diastole will decrease by 11.2ms/bpm 

while the duration of systole will decrease by just 0.21ms/bpm [10].  Therefore, variation 

in patient heart rate reduces the periodicity of the cardiac cycle.  The relative durations of 

each cardiac stage also vary between patients [3].  These factors make it challenging to 

consistently locate a cardiac stage from the ECG signal. 
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2.6 Coronary Motion 

Coronary artery motion has a detrimental effect on the image quality of cardiac 

CT exams.  Many studies have investigated the movement of different sections of the 

coronary arteries during the cardiac cycle.  The RCA and LCX have higher average 

velocities due to their location on the AV groove [3].  There are typically two periods of 

low motion for all vessels: end-systole and mid-diastole [3], [11].  The period of low 

motion during mid-diastole occurs during diastasis, when the ventricles are slowly filling.  

The length of diastasis is highly dependent on heart rate [12].  The period of low motion 

during end-systole consists of the period of reduced ventricular ejection and isovolumic 

relaxation [10].  Since the duration of systole is less dependent on heart rate, the end-

systolic period of low motion is typically longer than diastasis for high heart rates.  

Motion causes artifacts in CT imaging.  Therefore, scans should be taken during 

quiescent stages of the cardiac cycle for the best image quality. 

2.7 Cardiac Gating 

Cardiac gating is used to reduce patient dose and improve temporal resolution of 

CT images of the heart.  An ECG is taken during acquisition to determine the stage of the 

cardiac cycle at all times during the scan.  Prospective cardiac gating is primarily used to 

reduce patient dose while retrospective cardiac gating improves image quality by 

improving temporal resolution.  
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2.7.1 Prospective Gating 

Prospective gating reduces dose by turning the x-ray tube current down or off 

during high motion stages of the cardiac cycle.  Early implementations of prospective 

gating reduced tube current by ~80% during periods of high motion.  More recent 

implementations turn the x-ray tube off entirely between heartbeats, reducing dose by up 

to 83% [13].  Prospective gating can be applied to both step and shoot and helical 

acquisitions, but greater dose reduction occurs in step and shoot mode [14].  Past ECG 

information must be used to predict periods of high motion.  Typically, tube current is 

turned on during end-systole and/or mid-diastole.  The exact timing of these cardiac 

states is predicted based on heart rate, ECG data, and a priori knowledge about the 

cardiac cycle.  Arrhythmias and heart rate variability can cause errors in these 

predictions.  Also, at heart rates >90 bpm, the timing of low motion cardiac states is 

extremely variable.  Because of these factors, prospective gating is paired with 

retrospective gating to acquire a volume with minimal motion artifacts. 

2.7.2 Retrospective Gating 

Retrospective gating trades off dose for image quality.  Additional projections are 

acquired for each slice, so that the volume can be reconstructed at different states of the 

cardiac cycle.  Consider a CT system with fan angle, φ, and rotation time τ operating in 

step and shoot mode.  Projections from each slab of data are acquired for the entire 
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cardiac cycle.  Only projections from 180+
 

 
φ˚ are required for reconstruction, producing 

a temporal resolution of  
 

 
 

 

   
   .  Reconstruction can occur from any contiguous set 

of projections over this time span.  The set of projections chosen for reconstruction is 

called the reconstruction window.  The center of a reconstruction window is often chosen 

based on a percentage of the R-R interval (Figure 5).  Each slab is reconstructed using the 

same window to produce a full cardiac volume.  Volumes can be reconstructed at 

multiple time points, often called phases, and compared either manually or automatically.  

Only the volume with the best image quality is used for patient assessment.  The same 

concept can be applied to helical acquisitions with reduced pitch.  For heart rates greater 

than 75bpm, the limited temporal resolution of the scanners may not be sufficient to 

image the heart without motion artifact [6].  Segmented adaptive scanning can be used to 

improve temporal resolution. 
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Figure 5- Cardiac scan with prospective and retrospective gating applied.  Prospective gating turns on the 

tube current only for low motion end-systolic and mid-diastolic periods (grey line).  Using 

retrospective gating, slices can be reconstructed from any contiguous set of projections (blue boxes).  

The center of the retrospective gating window is chosen as a percentage of the R-R interval. 

 

 

 

Segmented adaptive scanning uses data from multiple heartbeats to reconstruct 

each slab (step and shoot) or slice (helical).  Consider a step and shoot mode acquisition 

where projections are taken for n consecutive heartbeats in each slab.  Dose is increased 

by a factor of n.  Ideally, temporal resolution is reduced by a factor of n because more 

projection data is available.  However, if the gantry rotation is synchronized with heart 

rate, the same projection angles will be acquired during each reconstruction window.  

Therefore, the gantry rotation speed must be adjusted to ensure that each heartbeat 

acquires a different set of projection angles for each reconstruction window [6].  For 

helical acquisition, the pitch must be decreased to as low as 0.3 for segmented adaptive 
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scanning.  Because of the low pitch, it can be difficult to complete a full cardiac 

examination within a single breath hold.  Segmented adaptive scanning relies on accurate 

reconstruction windows. 

There are many ways to retrospectively select a reconstruction window for 

multiple heartbeats.  Ideally, the center of the reconstruction window, also called the 

phase, will occur during the same cardiac state for each heartbeat.  This can be 

challenging because of heart rate variability.  The center of the reconstruction window is 

typically chosen as either a percentage of the R-R interval or a fixed delay after the QRS 

complex.  The percentage-based approach assumes that the duration of each stage of the 

cardiac cycle is proportional to the R-R interval.  However, the length of diastasis tends 

to show a much higher variability with heart rate.  This can produce up to a 180ms error 

if heart rate variability is ±8 bpm [15].  Estimating cardiac state as a fixed delay from the 

QRS complex assumes that all stages of the cardiac cycle have constant duration besides 

diastasis and atrial systole.  Neither of these approaches accounts for the nonlinear 

changes in cardiac state duration.  Vembar proposed a delay algorithm that combines the 

R-R percentage and fixed delay approaches, but it is not implemented clinically [3].  

Because of difficulty in identifying a consistent cardiac state, heart rate variability can 

have a significant impact on image quality in multi-beat acquisitions. 

2.7.3 Effects of Aperiodic Heart Motion 

Cardiac gating for multi-beat exams relies on the assumption that heart motion is 

periodic.  Violations of this assumption can have a considerable impact on image quality.  
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The heart center varies slightly from beat to beat.  

Also, heart rate variability can cause changes in the 

cardiac state across multiple beats.  Both of these 

factors cause inconsistencies in the data.  In segmented 

adaptive scanning, data from multiple heartbeats are 

used to reconstruct a single image slice.  If data from 

different heartbeats contain misregistered locations of 

cardiac structures, the image is blurred.  In all gated 

multi-beat acquisitions, slabs of data from different 

heartbeats are collected and stitched together.  

Discontinuities can occur in cardiac structures at slab boundaries (Figure 6).  Reducing 

the number of heartbeats and choosing an accurate reconstruction window are important 

factors in cardiac CT image quality. 

2.8 Coronary CT Angiography 

Coronary CT angiography (CCTA) is a common application of cardiac CT used 

to visualize the coronary arteries.  CCTA is used to screen for CAD because of its high 

negative predictive value (97%-100%) for coronary stenoses [2].  X-ray angiography is 

the gold standard for coronary artery imaging, but is invasive, expensive, and poses 

additional risk for the patient.  CCTA exams require fast temporal resolution and fine 

spatial resolution to visualize the coronaries without motion artifact.  As heart rate 

increases, the duration of the low motion cardiac state decreases.  This requires faster 

Figure 6- Discontinuities occur 

along the right coronary artery 

at slab boundaries due to 

aperiodic heart motion. 
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temporal resolution.  For this reason, many studies have found an inverse correlation 

between heart rate and CCTA image quality[16], [17].  Patients with high heart rates are 

given beta blockers to reduce heart rate before scanning.  Heart rate variability also 

reduces image quality in multi-beat acquisitions due artifacts from gating [18].  To 

overcome these challenges, specialized cardiac CT systems are optimized to have fast 

temporal resolution while maintaining high spatial resolution. 

Some modern CT systems are able to image the heart within a single beat.  These 

systems avoid the challenges of heart rate variability and aperiodic heart motion.  

Prospective and retrospective gating are both used.  Prospective gating selects a wide 

window of data around either end-systole (>85 bpm), mid-diastole (<65 bpm), or both 

(65-85 bpm).  Retrospective gating reconstructs cardiac volumes at several phases of the 

cardiac cycle, and the best phase is chosen either manually or with an automated 

algorithm.  This process produces the best image quality with the lowest dose. 

2.9 Retrospective Best Phase Selection 

 Several approaches are currently used to automatically detect the best phase of the 

cardiac cycle for CCTA reconstruction.  Each approach quantifies a metric of cardiac 

motion and chooses the time of minimal motion as the best phase for reconstruction.  The 

kymogram approach calculates the motion of the center-of-mass of the heart from raw 

projection data, replacing the ECG as a synchronization signal [19].  The volume is 

reconstructed from time points with the lowest center-of-mass motion.  Since this 

approach does not require image reconstruction at multiple phases, it is computationally 
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efficient.  However, a large difference 

(12.5%) is seen between manually and 

automatically chosen reconstruction phases 

[20].  Another approach uses the difference 

between low-resolution heart volumes at 

consecutive phases to estimate the motion of 

the heart [21].  When the heart is stationary, 

consecutive phases will have similar values, 

resulting in small values in the difference 

volume.  Because consecutive phases only 

differ by a few projections of data, motion 

parallel to these projections will not be 

detected (Figure 7).  This causes the metric of heart motion to be coupled with motion 

direction.  The image quality of the coronary arteries has also been estimated and 

optimized for motion correction based on entropy and positivity [22].  This requires 

reconstruction and coronary segmentation at all possible phases, which may be time 

consuming.  The best phase for reconstruction can also be estimated based on the 

patient’s heart rate.  A model of the cardiac cycle can be used to determine the phase 

corresponding to end-systole or mid-diastole.  However, there is a high patient variability 

in the exact location of these states, which may result in the reconstruction of suboptimal 

images [4].  Because of the limitations of current approaches, it is still common for a 

radiologist to review volumes from multiple phases and manually choose volume with 

Figure 7- Consecutive phases only differ by a few 

projections.  With ~180˚ reconstruction, these 

projections are approximately parallel.  Motion 

parallel to the projections cannot be detected by 

the difference between the images. 



21 

 

the best image quality.  A fully automated algorithm is needed that identifies the phase of 

the cardiac cycle with the best image quality for CCTA examinations. 
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3 ALGORITHM DESIGN 

The proposed algorithm considers two types of vessels: through-plane vessels and 

in-plane vessels.  Through-plane vessels travel longitudinally through each axial slice of 

the heart, while in-plane vessels travel along the transverse plane within an axial slice.  

The best phase is found by calculating the image quality of through-plane vessels directly 

and pairing this with a binary metric that determines if image quality of in-plane vessels 

is acceptable. This avoids the dependency on motion direction seen in the phase 

difference approach.  The automatic phase detection algorithm consists of two 

independently-calculated metrics that quantify image quality (IQ): through-plane vessel 

IQ and in-plane vessel IQ. These metrics are evaluated jointly to select the best phase for 

CCTA reconstruction.  

3.1 Through-Plane Metric 

3.1.1 Overview 

The through-plane metric quantifies IQ for vessels travelling longitudinally through the 

volume. Circular cross-sections of the vessel will be visible in axial images. Blurring 

caused by motion artifacts makes vessels appear less circular with softer edges. Because 
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of this, the through-plane metric is based on the circularity and edge strength of the 

vessels.  

A summary of the steps used to calculate the through-plane score is shown in Figure 8.  

CT images reconstructed from all phases of interest at select slices from the CT exam are 

input to the through-plane metric. In each input image, through-plane IQ is calculated for 

the RCA, LAD, and LCX. Next, slices that don't contain through-plane vessels are 

excluded. Through-plane IQ scores from slices that contain through-plane vessels are 

combined to determine a score for the right and left vessels at each phase. The right and 

left scores are then combined to calculate an overall through-plane score for each phase.  

The steps are described in detail in the sections below. 
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Figure 8- Overview of the steps to calculate image quality in through-plane vessels at each cardiac phase in 

a CCTA exam 

 

 

3.1.2 Step 1: Segment cardiac region 

The proposed algorithm does not require a full 3D dataset. Therefore, standard 3D 

cardiac segmentation algorithms cannot be used. A 2D segmentation algorithm for axial 

slices of the heart was developed and is described in detail in Appendix 1. The 

segmentation algorithm takes a single axial slice as input and locates the cardiac region 

based on the contour between the heart and lungs. 
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3.1.3 Step 2: Quantify Through-Plane IQ metric for each image 

3.1.3.1 Threshold calculation 

Once per slice, three thresholds are calculated: a soft tissue threshold, a contrast 

threshold, and a maximum value threshold. The soft tissue and contrast thresholds will be 

used to create the chamber removal mask while the maximum value threshold is used in 

the gamma transform. The soft tissue threshold is the approximate value of the 

background tissue in the heart. The contrast threshold is the approximate value in the 

chambers of the heart. The maximum value threshold is the largest value in the image 

that does not include contrast pooling or calcification. Each threshold is calculated using 

the segmented image histogram divided into bins with a width of 30 HU. The soft tissue 

threshold is the first peak in the segmented image histogram. The contrast threshold is the 

second peak in the histogram (after the soft tissue threshold). The maximum value 

threshold is the highest histogram bin that contains at least 0.05% of the total image 

points. An example of each of these thresholds can be seen in Figure 9.  Figure 10 shows 

the consistency of the soft tissue, contrast, and maximum value thresholds across exams. 

 

 

 



26 

 

(a) (b)  

Figure 9- (a) Original image (b) Image histogram with soft tissue, contrast, and maximum value thresholds 

marked in black, red, and green respectively.  

 

 

 

 

Figure 10- Histogram of median values for each of the three threshold in each exam 

 

 

3.1.3.2 Gamma transform 

The gamma transform attenuates very high values in the image that can overpower the 

results of gradient and filtering operations used to calculate the edge strength score. A 

gamma transform is performed on each image. High values are often due to calcification 

or contrast swirling and will be greater than the maximum value threshold. A gamma 
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transform is performed on values above the maximum value threshold (MVT) to mitigate 

this effect. 

 
                        
                                                   

  Eq. 3 

Lower γ values give more sudden thresholds, removing gradient information above the 

MVT, but better rejecting high values in the image. Values ranging from 0.5-0.8 provide 

similar results. In the current algorithm implementation γ = 0.7.  

3.1.3.3 Top hat transform 

The top hat transform focuses on small, high-valued regions in the image by identifying 

and removing large, constant-valued structures with a grayscale opening operation. This 

step of removing large structures helps to identify vessels. The top hat transform, T(f), is 

applied to the image, f, with structuring element s where   denotes the grayscale opening 

of the image.  

             Eq. 4 

Grayscale opening operations consist of consecutive erosion and dilation operators, 

where erosion chooses the minimum value in the region defined by the structuring 

element and dilation chooses the maximum value. By subtracting the opened image from 

the original image, the top hat transform will include only high-valued details that are 

smaller than the structuring element. 

In the proposed algorithm, the top hat transform is performed on each un-segmented, 

gamma transformed image, because segmentation can partially remove large structures, 

making them appear to be small structures during the top hat transform.  A circular 
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structuring element was chosen that was large enough to completely remove through-

plane vessels during the erosion operation. Therefore, the radius was larger than the 

vessel radius including blurring due to motion and the point spread function in the CT. 

Based on a vessel radius of ~5mm [23] and a spread of ~5mm, a radius of 10mm was 

chosen for the structuring element. This means that structures larger than 20mm in every 

dimension were removed. The image was resized to 128x128 for this operation then 

scaled back to 512x512 using bicubic interpolation for computational efficiency. An 

example of the top hat transform calculation is shown in Figure 11. 

 

 

(a) (b) (c)  

Figure 11- Steps to image top hat transform (a) Original image (b) Segmented grayscale morphological 

open (c) Segmented top hat transform 

 

 

3.1.3.4 Chamber removal mask 

In the next step of the algorithm, a chamber removal mask is created to de-emphasize the 

chambers of the heart as well as any contrast swirling from each image. This helps focus 

on through-plane vessels. As mentioned previously, the morphological open of the image 
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will include large structures, making it a good indicator of heart chamber location. The 

first step in generating the chamber removal mask is to transform the values of the 

morphologically opened image that is generated during the top hat transform. (Figure 

11b). The values are scaled so that the range from the soft tissue threshold to contrast 

threshold in the open image is mapped to a range from one to zero (Figure 12c). 

Contrast swirling can cause inconsistent values in the chamber that may appear as 

small structures during the opening operation. This is why the edges of the right atrium 

are still present in the mask in Figure 12c. To account for this, any values connected to a 

chamber that are greater than the maximum value threshold are marked as regions of 

contrast swirling. Regions of contrast swirling are dilated and given a value of zero in the 

mask (Figure 12d). The initial mask is smoothed with a 5mm x 5mm averaging kernel to 

assure that the edges of the chambers are removed. The resulting mask has zeros in areas 

representing heart chambers and ones in areas where the background is soft tissue. 
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 (a) (b) (c)  

(d) (e)  

Figure 12- Steps in chamber removal mask creation (a) Original image (b) Grayscale morphological open 

(c) Initial mask created from the open (d) Points marked as contrast swirling and removed in the final 

mask (e) Final chamber removal mask 

 

 

3.1.3.5 Edge strength score 

The edge strength score is used along with a circularity score to calculate through-plane 

IQ for each through-plane vessel in each image. The edge strength score is also used by 

the algorithm to identify regions that could be through-plane vessels. The top hat image, 

chamber removal mask, and a match filter are used to calculate the edge-strength score, 

as illustrated in Figure 13. In the first step of the edge-strength score calculation, the 

gradient of the top hat transform is calculated using a Sobel filter and then multiplied by 

the chamber removal mask (Figure 13c). The chamber removal mask is applied after the 

gradient because, otherwise, strong gradients would occur at the edges of the heart and 

heart chambers. Next, a match filter is applied that has a maximum response to circular 
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disks in the gradient image (Figure 14). The match filter is radially symmetric with a 

positive response to values within a 4mm radius of the center (Figure 14). The maximum 

response is at the expected vessel radius of 0.75mm-1.5mm. Gradients outside this range 

are likely due to blurring and therefore elicit a weaker response. The negative lobe of the 

filter at radii of 4mm-7mm reduces the response from structures that are larger than 8mm 

in any direction. The convolution of the match filter with the top hat image gradient gives 

the edge strength score at each point in the image. 

 

 

 

(a)  (b)  

(c)  (d)  

Figure 13- Steps in edge score calculation (a) Original image (b) Top hat transform (c) Top hat transform 

gradient multiplied by the chamber removal mask (d) Final edge score after applying a match filter 
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(a) (b)  

Figure 14- (a) Match filter (b) Match filter value based on distance from the center of the filter 

 

 

3.1.3.6 Candidate point selection 

In this step, candidate points are identified in the edge-strength score image. Pixels with 

the highest edge strength scores are likely to be vessels. However, the edge strength score 

will give a high response to any structure whose longest dimension is less than 8mm, 

even if it is not circular. Therefore, candidate points from each side of the heart with high 

edge strength scores are analyzed further to determine their circularity. For each image, a 

binary mask is created with pixels within the segmented cardiac region set equal to one. 

The centroid of the binary mask is considered as the center point that defines three 

regions of the heart (Figure 15c): the right side contains the RCA, the left anterior 

quadrant contains the LAD, and the left posterior quadrant contains the LCX. Pixels that 

are greater than each of their eight neighbors are found in the edge strength image and 

identified as regional maxima. The three highest valued regional maxima in each of the 

three regions are chosen as candidate vessel center points (Figure 15d). If less than three 
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points are chosen, processing time will decrease, however the algorithm will be less 

likely to correctly identify the vessel. 

 

 

 

 (a) (b)  

(c) (d) 1 

Figure 15- Candidate point selection (a) Original image (b) Edge strength score (c) Regions of the heart 

separated with the centroid (d) Nine candidate points in the top hat image 

 

 

3.1.3.7 Circularity score at candidate points 

The circularity score is a measure of compactness calculated for each candidate point, as 

illustrated in Figure 16. In [24] a measure of compactness is proposed for a binary image 

(Eq. 5) where a value of one is the most compact and higher values are less compact.  

            
          

 

       
 Eq. 5 
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A square 27mm x 27mm ROI around each candidate point in the top hat image is 

considered (Figure 16b/d). First, the center of the vessel is identified as the largest value 

in a 2mm radius of the candidate point. Next, the ROI is thresholded into four levels 

based on a percentage of the vessel center value: >50%, >40%, >30%, and >20%.  A 

value of 50% was chosen so that, in calcified vessels, the highest thresholded image will 

contain the entire vessel region.  If a higher threshold was chosen, only calcified regions 

would be selected.  As the threshold is decreased, a larger portion of the vessel edges and 

any blurring due to motion is included.  Therefore, these four images show the shape of 

the vessel and the magnitude of motion artifact.  Fewer thresholds could be used to 

improve processing time, but there will be more uncertainty in the magnitude of the 

motion artifacts.  This uncertainty will lead to a less accurate circularity metric.  For each 

level, regions above the threshold are labeled with a connected-components algorithm 

using 4-connectivity, and the region that contains the center of the vessel is selected. The 

compactness of each of these four binary regions is calculated (Eq. 5) and compiled into a 

measure of circularity (Eq. 6). 

            
 

   
   

                          

 

   

 Eq. 6 

Compactnessd refers to the compactness of the selected region when the ROI is 

thresholded at d*10% of the center vessel value. Values greater than two for the 

compactness are extremely poor circles that should not be considered. Therefore, 

compactness values are transformed so that the original range of one to two corresponds 

to zero to one. An increased weight is placed on higher thresholds because distortion seen 

at lower thresholds is lower in magnitude and, therefore, should have a lower effect on 
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the circularity metric. The final circularity metric varies from zero (non-circular) to one 

(exactly circular). 

 

 

 

 (a) (b) (c)  

         (d) (e)  

Figure 16- Examples of circularity scoring (a) Original image with two candidate points circled (b) ROI in 

the top hat image near the LAD (c) Threshold decomposition of the LAD region with circularity score 

of 0.518 (d) ROI in the top hat image near the LCX (e) Threshold decomposition of the LCX region 

with circularity score of 0.772 

 

 

3.1.3.8 IQ quantification based on edge strength and circularity scores 

After edge and circularity scores are calculated, they are multiplied together for each 

candidate point to determine the final through-plane IQ metric. Multiplication is chosen 

instead of addition to select regions where both edge strength and circularity are high.  

This approach prevents noncircular regions with strong edges from having high through-
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plane IQ metrics.  The candidate point from each vessel region (Figure 15c) with the 

highest through-plane IQ score is chosen to represent through-plane IQ for the vessel. 

The through-plane IQ calculation is executed for a particular slice at all phases. At this 

point in the algorithm, through-plane IQ for all input phases across a slice can be 

compared for each vessel, as seen in Figure 17. 
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Figure 17- IQ for each vessel is shown as well as images from various phases in the slice. The local 

maxima in the plots match high IQ phases for the RCA, LAD, and LCX. 

 

 

 

3.1.4 Step 3: Select slices with through-plane vessels 

In order to compare phases across the heart volume, the through-plane IQ metrics must 

be aggregated across relevant slices. This step of the algorithm locates slices that contain 
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through-plane vessels. This will allow slices without through-plane vessels to be ignored 

in the aggregate through-plane IQ calculation for each phase. The locations with high 

through-plane IQ for the RCA, LAD, and LCX at each slice and phase (as output by the 

previous step) are used to locate the relevant slices by creating vessel maps as described 

in the following sections.  

3.1.4.1 Vessel map creation 

Vessel maps are created at each phase to identify the location of the RCA, LAD, and 

LCX. Consider a perfectly through-plane vessel for a single phase. In slices that contain 

the vessel, high through-plane IQ points will be in the exact same location in the axial 

plane. In all other slices, high through-plane IQ points will be at random locations 

because the IQ score is based on noise. Therefore, through-plane vessels can be identified 

by a set of slices with high IQ points at the same axial location. In reality, the axial 

location is allowed to vary so that the vessel is travelling at less than a 45⁰ angle from the 

z-axis. Vessel maps are found by recursively searching for points with similar axial 

locations. Each vessel point from slices within 50mm of the center of scan in the z-

direction is used as a starting point for this recursion. The recursion stops when two slices 

in a row cannot find a nearby point (Figure 18). Once this is repeated for all starting 

points, a list of potential vessels is available for a particular phase. Any potential vessels 

that span less than 10mm in the z-direction are discarded. This process is repeated for all 

vessels at all phases. 
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Figure 18- This example shows how the recursive algorithm searches for vessels in a single direction. The 

starting location is in the upper right image. Green lines indicate a vessel was found within the search 

range, while red lines indicate that it was not. When no vessel is found, the search continues for one 

additional slice to make sure the vessel does not pick up again. Note: the recursive algorithm is looking 

through the potential vessel points, not the original images. 

 

 

3.1.4.2 Slice selection 

Vessel maps can be used to determine which slices contain each through-plane vessel. 

The number of phases that found each vessel (RCA, LAD, LCX) at each slice are 

determined based on the vessel maps (Figure 19). High values indicate that many 

different phases found a through-plane vessel in that slice. Ideally, all phases will find the 

through-plane vessels at the exact same slices. This would result in a rectangular function 

in Figure 19. However, poor image quality at some phases causes deviations from a 
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rectangle. All slices with a value over 25% of the maximum for each vessel are 

considered to have through-plane vessels. 

 

 

 

Figure 19- The number of through-plane vessels found for each slice are shown. In the central region of the 

heart, the most through-plane vessels are found for both the right and the left side. The RCA would 

include slices 21-49, the LAD would include slices 18-39, and the LCX would include slices 23-47. 

 

 

 

3.1.5 Step 4: Choose best phase 

This step calculates an aggregate through-plane IQ score for each phase. At this point in 

the algorithm, through-plane IQ has been calculated for each cardiac phase in all slices. 

The slices that contain through-plane vessels for each vessel have been identified. Next, 

the through-plane IQ values (Figure 17) are summed across all slices that contain 

through-plane vessels. This results in an aggregate vessel IQ score for each phase for the 

RCA, LAD, and LCX. The scores for the LAD and LCX are added to give an overall left 
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side score. The best phase for each side is the phase with the largest IQ score on that side 

(Figure 20). The results from the right and left sides are normalized by their mean and 

summed to find the overall IQ.  The phase with the highest through-plane IQ metrics is 

the candidate best phase. 

 

 

 

 

 

 

Figure 20- Overall IQ scores for each phase on the right and left sides of the heart. The best phase for the 

right vessels is 79%, the best phase for the left vessels is 67%, and the best overall phase is 79%. The 

bottom images show sagittal cross-sections of the RCA at 67% and 79%. IQ is similar for the RCA at 

both phases. 

RCA: 67% RCA: 79% 
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Segment heart 

Calculate thresholds 

Accentuate vessels 

•3D top hat transform 

•Chamber removal mask 

Calculate IQ per voxel 

•Top hat gradient 

•Match filter 

Limit to in-plane vessel MIP 

•Select slices 

•Locate in-plane vessel regions 

Calculate IQ per phase 

Convert IQ metric to  
'Acceptable' or 'Unacceptable' 

3.2 In-Plane Metric 

3.2.1 Overview 

 While the through-plane algorithm can assume a circular region with a single 

point per slice, the in-plane vessels may have varying sizes and shapes, including 

bifurcations. Due to the unknown vessel shape, 

the in-plane metric is expected to be less robust 

than the through-plane metric.  Therefore, the 

objective of the in-plane metric is to determine if 

the proximal left and right in-plane vessels are 

acceptable for the candidate best phase. The 

shape of the vessels varies considerably due to 

branches and turns. Blurring due to motion will 

cause the edges of these vessels to be softer.  

Each slice from the superior half of the scan is 

required to ensure that the in-plane vessels are 

present for all phases and to enable 3D image 

processing. Regions that contain in-plane vessels 

are identified in all phases, and a gradient-based 

IQ metric, similar to the edge score metric for the 

Figure 21- Overview of the steps to 

determine if image quality is 

acceptable for right and left 

proximal in-plane vessels at a 

candidate cardiac phase. 



43 

 

through-plane algorithm, is calculated. This metric is compared across phases to 

determine a binary score of ‘Acceptable’ or ‘Unacceptable’ for both the right and left 

vessels. A logical AND of the right and left vessel results gives the final determination of 

whether the in-plane vessels are ‘Acceptable’ at a given phase. A summary of the steps to 

calculate the in-plane score is shown in Figure 21. 

3.2.2 Step1: Segment heart 

 Proximal in-plane vessels originate in the aorta and curve longitudinally as they 

near the edge of the heart. Therefore, only through-plane vessels will be present near the 

edge of the heart. To account for this, using the output of the cardiac segmentation in 

Appendix 1, all pixels within 6mm of the edge of the heart are removed. This process is 

carried out in 2D for each axial slice at each phase. This step produces a mask that can be 

applied to limit the ROI to the heart. 

3.2.3 Step 2: Calculate thresholds 

 Thresholds are calculated in the same manner as for the through-plane metric 

(Section 3.1.3.1). However, the histogram is created using volume data instead of slice 

data. The outputs of this step are a soft tissue threshold, a contrast threshold, and a 

maximum value threshold. 
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3.2.4 Step 3: Accentuate vessels 

 The goal of this step is to process the CT data to provide better contrast between 

the coronary arteries and other tissue. A top hat transform and chamber removal mask, 

similar to those used in the through-plane metric, are applied as described in the 

following sections. This produces a volume of images for each phase that highlights 

small, high-valued regions and a mask that can be used to remove heart chamber 

locations. 

3.2.4.1 3D top hat transform 

 A three dimensional top hat transform is applied. The structuring element is 

spherical with radius based on the average radius of the proximal coronaries, blurring due 

to motion, and the point spread function of the CT system. The proximal left has a 

diameter of 4.5±0.5mm, while the proximal RCA has a diameter of 3.9±0.6mm [23]. 

Allowing for a spread of ~5mm, a radius of 10mm is chosen for the structuring element. 

This means that structures larger than 20mm in every dimension will be removed. A 3D 

transform is advantageous because structures that span many slices but are small in the 

axial plane would be retained with a 2D transform. 
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3.2.4.2 Chamber removal mask 

 The chamber removal mask is a multiplicative mask ranging from 0-1 that will 

remove heart chambers. This mask is calculated for each axial slice as previously 

explained for the through-plane metric (Section 3.1.3.4). However, the method to remove 

contrast swirling is not implemented because it may also remove in-plane vessels 

connecting to the aorta.  

3.2.5 Step 4: Calculate in-plane IQ per voxel 

 A measure of in-plane IQ based on the gradient magnitude of each top hat image 

from Step 3 is calculated. This metric is similar to the edge strength score from the 

through-plane metric without the circularity assumption. A summary is shown in Figure 

22. This step produces a measure of in-plane vessel IQ at each voxel. 

3.2.5.1 Top hat gradient 

 The 2D gradient of each axial slice from Step 3 is calculated using a Sobel filter. 

A 2D gradient is used instead of a 3D gradient because thick slices can cause inaccurate 

gradient measurements in the slice direction. The gradient is then multiplied by the 

chamber removal mask to ignore heart chambers. 
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3.2.5.2 Match filter 

 A 2D match filter is applied to each top hat gradient image. The match filter is 

similar in design to the filter used in the through-plane metric with the negative lobes 

removed. This is because the negative lobes reduce output from non-circular regions. The 

positive lobe is approximately 4.5mm wide to encompass the entire vessel radius. 

Gradients 1.5-2.5mm from the vessel center produce the strongest response because this 

is the expected vessel radius. This filter produces high values in the center of vessels with 

strong gradients. 

 

 

(a) (b)  

(c) (d)   

Figure 22- Steps in in-plane voxel IQ calculation (a) Original image (b) Segmented top hat transform (c) 

Top hat transform gradient multiplied by the chamber removal mask (d) Final edge score after 

applying a match filter 
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(a) (b)  

Figure 23- (a) Match filter (b) Match filter value based on distance from the center of the filter in 

millimeters 

 

 

3.2.6 Step 5: Limit to in-plane vessel MIP 

 A maximum intensity projection (MIP) of in-plane IQ scores is calculated with a 

projection straight down the longitudinal axis using only regions near in-plane vessels. 

Since vessels are in-plane, they should not travel underneath one another. If this were to 

happen, taking a MIP at this projection angle would cause information about the weaker 

overlapping vessel to be lost. Because vessels do not overlap, calculating the MIP 

reduces the dimensionality of the data to 2D without signal loss.  

3.2.6.1 Select slices 

Selecting a small range of slices for MIP calculation reduces noise in the image 

and makes identification of in-plane vessels easier. The slices of interest vary between the 

right and left side, therefore a separate MIP is created for each. The heart center is 

determined in the same manner as it was in the through-plane metric (Section 3.1.3.6). 
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Since the proximal RCA originates from the anterior aorta, only points anterior to the 

heart center are considered for the right side.  

Slices that contain in-plane vessels will have many locations with high in-plane 

IQ scores. Low in-plane IQ scores are removed by automatic thresholding using Otsu's 

method (Figure 24c). MIPs are calculated for the right and left sides from every possible 

slab of five contiguous slices (12.5 mm) for each phase (Figure 24d). A 12.5 mm slab is 

sufficiently thick to contain in-plane vessels at all selected phases. This slab thickness 

must account for slight deviations from in-plane as well as longitudinal movement of the 

vessels across phases. In-plane IQ scores are summed within each MIP and across all 

phases (Figure 24e). This produces one score for each of the left and right sides and for 

each slab. The slabs containing the in-plane vessels will have many locations with high 

scores.  Therefore, the slabs containing the in-plane vessels are identified as the slabs 

with the highest in-plane IQ scores. 

3.2.6.2 Locate in-plane vessel regions 

 Next, a mask is identified that contains the in-plane vessels in all MIPs.   

Since a small range of phases (~16% of the cardiac cycle) is being used, the vessels will 

be in a similar location for all phases. Therefore, a single common mask is identified for 

the in-plane vessels for each side of the heart that will be used in all phases. A connected 

components algorithm with 8-connectivity is applied to locations where the thresholded 

MIP summed across all phases (Figure 24e) is greater than zero. The largest region, 

circled in green in Figure 24f, is selected as the location for the proximal in-plane RCA 
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for all phases. Next, the size of the vessel is estimated for each phase. The number of 

pixels that are greater than zero in the thresholded MIP for each phase (Figure 24d) 

logically ANDed with the estimated vessel location (Figure 24f) is the size of the vessel 

at that phase. The average value across all phases is the estimated vessel size. 

 

 

(a) (b) (c)  

(d) (e) (f)  

Figure 24- (a) Original image near proximal in-plane RCA (b) IQ score limited to the anterior right 

quadrant (c) Thresholded IQ score (d) MIP of thresholded IQ scores for the given phase across five 

slices (12.5mm) surrounding the slice from (a) (e) Sum of MIPs at all phases for this set of slices. The 

sum of this image is calculated for each set of slices to determine which slices contain the in-plane 

vessels. (f) The region identified as the location for proximal right in-plane vessels for all phases. If 

multiple regions are present, the largest one would be selected. 
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3.2.7 Step 6: Calculate in-plane phase IQ 

 The previous step provides slice locations, transverse locations, and the 

approximate size of in-plane vessels. To calculate in-plane phase IQ at each phase, MIPs 

are calculated for each phase using the given slice locations and the voxel IQ scores 

without applying Otsu’s thresholding method. MIPs are limited to the identified 

transverse locations. The average score in each MIP from the top n highest valued points 

is the final in-plane phase IQ score where n is the estimated vessel size. This is repeated 

for each phase and each side of the heart. A summary of these steps is shown in Figure 25 

and the resulting scores are shown in Figure 26. 

 

 

(a)  

(b) (c) (d)  

Figure 25- (a) Original image near proximal in-plane RCA (b) Unthresholded MIP for the given phase 

across five slice (12.5mm) surrounding the slice from (a) (c) Unthresholded MIP limited to proximal 

RCA region from Figure 24f (d) Top points selected to limit to the estimated vessel size 
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3.2.8 Step 7: Convert in-plane phase IQ metric to binary 

 Since the in-plane phase IQ metric is less reliable than the through-plane metric 

(due to the non-circular vessel shape), it is converted to a binary metric of acceptable / 

unacceptable to check if in-plane phase IQ is acceptable for a given phase. This is done 

by comparing the candidate phase score to the scores at nearby phases, therefore the 

acceptability threshold is a relative metric. An  absolute in-plane IQ score threshold 

cannot be used because the magnitude of the score depends on image contrast, including 

the presence of calcifications. Using more nearby phases gives a more accurate binary 

metric but increases processing time. If vessels are not found in most phases for a 

particular side of the heart, the in-plane score is considered unreliable. In this case, the IQ 

of in-plane vessels is unknown for this side of the heart and all phases are considered to 

have ‘Acceptable’ results. Otherwise, IQ scores are normalized by the mean and an 

adjustable acceptability threshold, typically ~0.90, is applied to each side. This 

determines if the results are acceptable at each phase separately for the right and left side. 

A logical AND is used to combine the binary metrics from the right and left sides, 

identifying phases where both sides contain vessels that are ‘Acceptable’. An example of 

in-plane scores and their conversion to a binary metric is shown in Figure 26. 
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Figure 26- The in-plane score (top) and binary metric (bottom) are shown for the proximal right and left in-

plane vessels. The candidate phase was 40% and, since only 8 phases were available for the entire 

exam, they were all investigated. As seen in the axial slices, 34% is a poor phase for the right side and 

48% is a poor phase for the left side. Both of these phases are identified as ‘Unacceptable’ by the 

binary in-plane metric. The candidate phase of 40% is accepted. 
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3.3 Combining Through-plane and in-plane metrics 

A flow chart of how the through-plane and in-plane metrics work together is provided in 

Figure 27. The through-plane metric is calculated for all phases. The best through-plane 

phase is chosen as a candidate best phase. The binary in-plane metric is calculated for the 

candidate best phase and the six nearest phases to ensure that in-plane IQ is acceptable. 

Since the volume was reconstructed every 2% of the cardiac cycle, this covers a range of 

14% of the cardiac cycle. If in-plane IQ is not acceptable, the next best through-plane 

phase is considered. Typically, the phase with the best through-plane score that has 

acceptable in-plane IQ is chosen as the best phase. 

 

 

 

Figure 27- Flow chart of the algorithm for choosing the best cardiac phase for CCTA reconstruction. The 

through-plane algorithm picks potential phases which are checked to ensure that the in-plane vessel 

image quality is acceptable. 
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In the unusual case where the next best through-plane score is below 75% of the 

maximum score and no phase has yielded acceptable in-plane vessels, the acceptability 

threshold of in-plane metric is decreased. The in-plane check is repeated, restarting with 

the best through-plane phase. Calculations will continue in this manner until a phase is 

found with a high through-plane score and acceptable in-plane vessels.  
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4 ALGORITHM EVALUATION 

The proposed algorithm was implemented in MATLAB and evaluated using 

fourteen previously acquired, anonymized, single-beat datasets provided by GE 

Healthcare.  Each exam was acquired using the GE Revolution CT system.  Six cases 

contained only diastolic phases, one case contained only systolic phases, and the 

remaining seven cases contained both systolic and diastolic phases.  A 200x200x160mm 

CT volume was reconstructed with slice thickness of 2.5mm and matrix size 512x512 for 

phases at intervals of 2% of the R-R interval.  Heart rates ranged from 60bpm to 79bpm 

with an average of 70±6.8bpm.   

Two studies were conducted to evaluate the accuracy of the proposed algorithm.  

Since coronary image quality in the clinical setting is evaluated qualitatively, observers 

were used to provide a gold standard metric.  The observer best phase study evaluated the 

phase difference between observers and the algorithm.  The observer IQ study evaluated 

image quality of both observer and algorithm selected best phases.   

4.1 Observer Best Phase Study 

The observer best phase study evaluated the agreement in best phase between the 

algorithm and observers.  The agreement between algorithm and observer was compared 

to the inter-observer agreement to determine if the algorithm can be considered as 
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effective as an observer.  A consensus observer best phase was also identified by the 

observers, who were blinded to the algorithm best phase, and compared to the algorithm 

best phase. 

4.1.1 Methods 

Three observers identified the best systolic and diastolic phases for CCTA 

reconstruction for each dataset.  Next, the three observers worked together to identify a 

consensus best phase for each exam.  Individual reader best phases were analyzed using 

two pairwise statistics that compared reader-algorithm (RA) and reader-reader (RR) 

agreement: mean absolute difference (MAD) and concordance correlation coefficient 

(CCC).  The MAD is the absolute value of the difference in phase.  The CCC is a 

modified version of the Pearson correlation coefficient that fixes the best fit line at 45˚ 

from the origin.  If the results of different measurement techniques are plotted on each 

axis, the metric will represent the reproducibility between techniques.  In this study, each 

measurement technique was either an individual reader or the algorithm.  The CCC is a 

value between -1 and 1 where the deviation from a 45˚ line is represented by a deviation 

of the CCC from a value of 1.  CCC can be calculated using the equation below where 

    is the covariance,    is the mean of measurement technique x, and   
  is the variance 

of measurement technique x [25]. 

    
    

  
    

         
 
 Eq. 7 
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Both metrics were calculated for every possible pair-wise combination of the four 

measurement techniques. This provided three sets of RA metrics and three sets of RR 

metrics.  If the algorithm is as effective as an observer, there will be no difference 

between RA and RR metrics.  The difference between each RR and RA metric was 

calculated to produce a population of nine differences.  A bootstrapping analysis with 

10000 iterations was used to estimate the mean RR and RA difference for each metric.  

The 80% confidence interval was calculated by taking the 1000
th

 smallest and the 1000
th

 

largest estimated mean difference for each metric [26].  The confidence interval was 

analyzed to determine if the RA pair-wise metrics were significantly different than the 

RR pair-wise metrics.  

4.1.2 Results 

Table 1 shows the best phase determined by the algorithm and each reader for 

systole and diastole in each exam.  The algorithm best phase was within 2% of the 

consensus best phase in 15/21 of cases.  The average absolute difference between 

consensus and algorithm best phases was 2.29%±2.47.  The average systolic best phase 

was 42.6±3.2% for consensus and 41.9±3.4% for the algorithm.  The average diastolic 

best phase was 75.8±2.8% for consensus and 77.3±2.7% for the algorithm.   
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    Best Phase (% R-R Interval) 
  Exam ID Reader 1 Reader 2 Reader 3 Consensus Algorithm 

D
ia

st
o

le
 

74 76 72 72 72 74 

64 76 72 72 72 80 

89 74 70 74 74 78 

61 80 80 74 80 78 

94 81 75 73 79 73 

100 78 78 74 78 78 

154 78 76 74 74 76 

71 71 77 75 77 73 

101 75 77 79 79 79 

104 76 74 74 74 76 

156 77 73 73 73 79 

168 82 78 78 78 78 

193 73 75 75 75 81 

Sy
st

o
le

 

64 38 40 40 40 40 

89 48 48 48 48 48 

61 40 44 44 44 44 

100 42 44 42 42 42 

154 40 40 40 40 40 

156 39 45 37 39 37 

168 46 46 40 46 44 

174 38 42 42 42 40 
Table 1- Best phases determined by three observers and the algorithm 

 

 

The RR and RA agreement compared to the ideal 45⁰ line is shown in Figure 28.  There 

were two clusters around 42% and 75% for systolic and diastolic best phases. 
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Figure 28- Reader-reader and reader-algorithm plots compared to an ideal 45⁰ line from the origin. 

 

 

 

The pairwise MAD and CCC metrics are shown in Table 2.  The average RR MAD was 

2.60 which was higher than the average RA MAD of 2.57.  The average RR CCC was 

0.9317 which was also higher than the average RA CCC of 0.9299. 

  

30 

40 

50 

60 

70 

80 

90 

30 40 50 60 70 80 90 

P
h

as
e

 (
%

) 

Phase (%) 

RR Agreement 

R1/R2 

R1/R3 

R2/R3 

Ideal 

30 

40 

50 

60 

70 

80 

90 

30 40 50 60 70 80 90 

P
h

as
e

 (
%

) 

Phase (%) 

RA Agreement 

R1/Algo 

R2/Algo 

R3/Algo 

Ideal 



60 

 

  MAD CCC 

Reader 1 / Reader 2 2.76 0.9321 

Reader 1 / Reader 3 3.24 0.9275 

Reader 2 / Reader 3 1.81 0.9356 

Reader 1 / Algorithm 2.67 0.9327 

Reader 2 / Algorithm 2.76 0.9235 

Reader 3 / Algorithm 2.28 0.9334 

Mean Reader/Reader 2.60 0.9317 

Mean Reader/Algorithm 2.57 0.9299 
Table 2- Both pair wise metrics (MAD and CCC) for each 

combination of measurement techniques 

 

 

 

Bootstrapping results showed no significant difference in RR and RA values for CCC and 

MAD (p>0.2).  The 80% confidence interval of the mean difference in MAD between RR 

and RA metrics was -0.233 to 0.296 with a mean value of 0.032.  Positive values indicate 

that RR variation is greater than RA variation.  The histogram of expected MAD 

differences between RR and RA metrics is shown in Figure 29. 
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Figure 29- Bootstrap histogram of differences between RR and RA mean absolute differences 

 

 

 

The 80% confidence interval of the mean difference in CCC between RR and RA metrics 

was -0.0006 to 0.0042 with a mean value of 0.0018.  Positive values indicate that RA 

variation is greater than RR variation.  The histogram of expected CCC differences 

between RR and RA metrics is shown in Figure 30. 
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Figure 30- Bootstrap histogram of differences between RR and RA concordance correlation coefficients 

 

 

4.2 Observer IQ Study 

The observer IQ study evaluated image quality in cases where the observer 

consensus best phase and the algorithm best phase did not agree.  Subjective observer IQ 

scores were evaluated for each vessel and for the overall study to determine if subjective 

IQ was equivalent for the different observer and algorithm best phases. 

4.2.1 Methods 

In exams where the consensus observer best phase and the algorithm best phase 

differed by more than 2%, three observers evaluated image quality on a five point Likert 
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scale for the RCA, LAD, LCX, and overall where 1 indicated an inevaluable vessel, 2 

indicated significant motion artifact, 3 indicated moderate motion artifact, 4 indicated 

minor motion artifact, and 5 indicated no apparent motion artifact.  The consensus and 

algorithm chosen phases were presented in random order, and readers were blinded to the 

phase of each volume.  The average and standard deviation of scores for each vessel and 

for the overall study were calculated.  Bootstrapping was used to determine if there was a 

significant difference in image quality between algorithm and consensus best phases.  

The difference between IQ scores for algorithm and consensus best phases from each 

reader was used as input to the bootstrapping analysis.  The bootstrapping analysis was 

performed with 10000 iterations, and the 80% confidence interval was calculated by 

taking the 1000
th

 smallest and the 1000
th

 largest estimated mean difference for each 

vessel and overall.  The confidence interval was analyzed to determine if the algorithm 

best phase IQ was significantly different than the consensus best phase IQ. 

4.2.2 Results 

The overall vessel IQ scores from each observer are shown in Table 3 for 

algorithm and consensus best phases.  Average image quality for the algorithm chosen 

best phase was 4.01±0.65 overall, 3.33±1.27 for RCA, 4.50±0.35 for LAD, and 

4.50±0.35 for LCX.  Average image quality for the consensus best phase was 4.11±0.54 

overall, 3.44±1.03 for RCA, 4.39±0.39 for LAD, and 4.50±0.18 for LCX.   
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      Algorithm Best Phase Consensus Best Phase Difference 

Ex
am

 

C
o

n
se

n
su

s 
B

P
 

A
lg

o
ri

th
m

 B
P

 

R
1

 

R
2

 

R
3

 

A
ve

ra
ge

 

R
1

 

R
2

 

R
3

 

A
ve

ra
ge

 

R
1

 

R
2

 

R
3

 

A
ve

ra
ge

 

64 72 80 3 4 4 3.7 3 4 5 4.0 0 0 -1 -0.3 

89 74 80 3 3 3 3.0 3 3 4 3.3 0 0 -1 -0.3 

94 79 73 4 5 4 4.3 3 4 4 3.7 1 1 0 0.7 

71 77 73 5 4 5 4.7 4 5 5 4.7 1 -1 0 0 

156 73 79 4 5 5 4.7 4 5 5 4.7 0 0 0 0 

193 75 81 4 4 4 4.0 4 5 4 4.3 0 -1 0 -0.3 
Table 3- Overall IQ scores for algorithm and consensus best phase for each observer 

 

 

Bootstrapping results showed no significant difference between consensus and algorithm 

IQ for overall IQ or IQ of the RCA, LAD, or LCX.  The 80% confidence interval of the 

mean difference in overall IQ score between algorithm and consensus phases was -0.22 to 

0.11 with a mean value of -0.06.  Negative values indicate that consensus phase had a 

better overall score compared to the algorithm phase.  The histogram of expected overall 

IQ differences between algorithm and consensus phases is shown in Figure 31. 
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Figure 31- Bootstrap histogram of differences between algorithm and consensus overall IQ 

 

 

The 80% confidence interval of the mean difference in RCA IQ score between algorithm 

and consensus phases was -0.39 to 0.11 with a mean value of -0.11.  Negative values 

indicate that consensus phase had a better RCA score compared to the algorithm phase.  

The histogram of expected RCA IQ differences between algorithm and consensus phases 

is shown in Figure 32. 
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Figure 32- Bootstrap histogram of differences between algorithm and consensus RCA IQ 

 

 

The 80% confidence interval of the mean difference in LAD IQ score between algorithm 

and consensus phases was -0.06 to 0.28 with a mean value of 0.11.  Positive values 

indicate that algorithm phase had a better LAD score compared to the consensus phase.  

The histogram of expected RCA IQ differences between algorithm and consensus phases 

is shown in Figure 33. 
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Figure 33- Bootstrap histogram of differences between algorithm and consensus LAD IQ 

 

 

The 80% confidence interval of the mean difference in LCX IQ score between algorithm 

and consensus phases was -0.11 to 0.11 with a mean value of 0.00.  Positive values 

indicate that algorithm phase had a better LCX score compared to the consensus phase.  

The histogram of expected LCX IQ differences between algorithm and consensus phases 

is shown in Figure 34. 
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Figure 34- Bootstrap histogram of differences between algorithm and consensus LCX IQ 

 

 

There were no cases where a reader’s score differed by more than one point from 

algorithm to consensus best phase.  



69 

 

5 DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

The observer best phase study investigated whether intra-reader variation was 

greater than the variation between reader and algorithm.  Bootstrapping results showed 

no significant difference in RR and RA values for CCC and MAD (p>0.2).  This suggests 

that the algorithm was as effective as a reader in selecting the best phase.  In Figure 28, 

both RR and RA plots show clusters around end-systolic and mid-diastolic phases.  This 

is expected because these locations are known low motion stages of the cardiac cycle. 

 All three observers agreed on the best phase in 2/21 cases.  In both cases, the 

algorithm agreed with observers.  This suggests that the algorithm was able to exactly 

identify the best phase when one phase is clearly superior.  The consensus best phase 

agreed closely with the algorithm best phase with a mean difference of 2.29±2.47%.  This 

is an improvement on previous automated retrospective best phase algorithms in 

literature.  The kymogram algorithm demonstrated a mean difference of 12.5% [20].  

Seifarth found that one version of the motion map algorithm (Cardio BestPhase, Siemens 

Medical Solutions) had a mean difference of 6.1±5.9% for systolic phases and 5.0±4.7% 

for diastolic phases.  The phase difference was over 5% in 46% of systolic and 36% of 

diastolic exams compared to a difference of over 2% in just 29% of exams in this study 

[27].  In contrast, Hoffman found that, using a motion map algorithm, the best phase 



70 

 

would be within 6.8% of the consensus best phase 95% of the time [28].  However, 

Hoffman allowed the algorithm to pick up to four phases and observers to pick up to 

three phases.  Only the nearest algorithm and observer phases were considered, which 

may account for the lower variation seen compared to the Seifarth study.  The proposed 

algorithm is unique because the best phase is identified based on vessel image quality 

directly.  Other approaches estimate coronary motion which is then used to determine 

vessel image quality. 

The best phase study quantified results based on a phase difference between 

algorithm and reader best phases.  The phase difference is not always proportional to the 

IQ difference.  A 4% phase difference can have a significant effect on image quality, 

while two phases 6% apart can have similar image quality (Figure 35).  The observer IQ 

study was conducted to ensure that, when the algorithm and consensus phase differed by 

>2%, both phases had equivalent IQ.  
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Figure 35- Significant difference in RCA IQ with 4% phase change (top).  No significant IQ difference 

with 6% phase change. 

 

 

The IQ study found no significant difference in subjective observer IQ between algorithm 

and consensus phases when the phase difference was >2% for overall IQ or IQ of the 

RCA, LAD, or LCX.  Previous IQ studies showed mixed results with the motion map 

algorithm.  Seifarth found a significant difference between algorithm and consensus IQ, 

while Ruzsics did not find a significant difference[29].   

In the current study, difference between algorithm and consensus best phases was 

only >2% in diastolic phases.  This is likely because the low motion period in end-systole 

is typically very short.  Diastasis tends to be longer, especially at low heart rates.  The 

two exams with the lowest heart rates (60bpm) had a phase difference >2%.  Because of 

the longer low motion interval, there is a wider window of phases that yield equivalent 

low motion results.   
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The overall and RCA IQ were slightly better in the consensus best phase (4.11 vs. 

4.01 and 3.44 vs. 3.33, respectively).  The average LCX score was identical for both 

phases (4.5).  Finally, the average LAD IQ score was better in the algorithm best phase 

than the consensus phase (4.50 vs. 4.39).  The RCA IQ was likely lower than the LAD or 

LCX IQ due to higher average velocities in the right coronaries [3].  An axial slice from 

each exam is shown in Figure 36 at both algorithm and consensus best phases.  From 

observation, none of the algorithm selected best phases show significantly worse IQ than 

the consensus phases. 

 

 

 

Figure 36- Algorithm and consensus best phases with >2% difference 

 

 

There was no exam where two readers agreed that the overall IQ of the algorithm 

best phase was worse than the consensus best phase.  However, in exam 94, two out of 

three observers gave the algorithm best phase a better score than the consensus best 
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phase.  This suggests that there was no exam where the algorithm chosen best phase was 

perceived as worse than the consensus best phase. 

 There were several limitations in this study.  Prospective gating was used in all 

exams, which limited the available range of phases.  However, using prospective gating 

significantly reduced patient dose.  A gold standard metric of image quality is not 

available for coronary imaging.  Therefore, image quality had to be assessed by readers 

qualitatively.  The intra-reader variability in IQ scores was reduced by using three 

readers.  Also, when selecting the best phase, readers can exhibit a bias towards typical 

end-systolic and mid-diastolic locations.  This bias was eliminated in the IQ study by 

blinding the readers to the phase of the volume. 

 There are many opportunities for improvement in the algorithm.  Processing time 

can be reduced by using parallel processing and converting the code from MATLAB to 

C.  Also, the algorithm could be generalized for multi-beat cases.  Multi-beat imaging 

poses unique challenges because IQ can vary between slabs.  Furthermore, IQ scores 

could be scaled to allow comparison of IQ across multiple exams.  The scaling factor 

could be based on the contrast in the aorta.  The algorithm will also need to be tested with 

additional single-beat datasets before clinical implementation.  Further studies could also 

compare the algorithm best phase to phases selected by motion map and kymogram 

algorithms. 

 The algorithm can also be better integrated into the CT reconstruction process.  

The left and right scores could be used to determine when separate best phases should be 

selected for each side of the heart.  The in-plane and through-plane IQ metrics could be 

used to determine whether motion correction is worthwhile.  The vessel points from the 
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algorithm could be used as input to the coronary segmentation algorithm, providing seed 

points for each artery.  The segmentation algorithm could then verify that the correct 

points were found for the RCA, LAD, and LCX.  If the vessels were not located 

correctly, the algorithm results could be flagged as unreliable. 

5.2 Conclusions 

There was no significant difference between the proposed algorithm and a reader 

in best phase selection for CCTA exams.  The difference between observer and consensus 

best phase was favorable compared to results of previously published retrospective best 

phase detection algorithms.  In cases where the algorithm-selected and consensus best 

phases differed by >2%, there was no significant difference in overall IQ or IQ of the 

RCA, LAD, or LCX.   
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7 APPENDIX 1: CARDIAC SEGMENTATION 

An algorithm for cardiac segmentation based on an axial slice of the heart was developed 

because full 3D data may not be available. An initial segmentation was performed to 

remove the lungs and spine. The location of the ribs were then determined once per slice 

and removed for images at all phases for the slice. The steps for segmentation are 

summarized in Figure 37.  

7.1 Step 1: Lung removal 

First, the lungs are removed from each image. The lungs are identified by applying a 

threshold at 550HU to the image, where regions of low CT number are identified as 

potential lung regions. Regions above the threshold are labeled with a connected-

components algorithm using 4-connectivity, and the region with the largest area is 

selected. A morphological closing is performed on the region because shading can cause 

values within the cardiac region to fall below the threshold (see Figure 38). 

7.2 Step 2: Heart-region segmentation 

In this step, the heart contour is identified based on the location of the lungs. The 

Euclidian distance, D, from any point on the image to the closest point on the lungs is 
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calculated. The region with distance above a threshold, DThresh, was identified as the 

center of the heart (Figure 37c). DThresh was defined as the product of the maximum 

distance and a scaling factor α. If α is too large, the shape of the heart will not be 

preserved, while too small an α will cause parts of the ribs and spine to be included in the 

heart region. In the current algorithm implementation α = 0.8. 

           
         

  

                  
Eq. 8 

The initial heart segmentation includes all values not in the lungs that are within a 

Euclidian distance of DThresh*(1+β) from the central heart region (Figure 37d). This 

removes any regions that branch off of the center of the heart where β is the tolerance for 

branching regions. Too large a β will include large parts of the ribs and spine while too 

small a β will remove outer edges of the heart. In the current algorithm implementation, 

β= 0.15. 

7.3 Step 3: Rib removal 

 The ribs are removed by finding points on the right and left side of the heart 

where the ribs connect to both the heart and lungs, hereafter referred to as rib connection 

points. This is only done once per slice because the ribs will be in the same location for 

each phase. The ribs are identified as regions in the top half of the image that were 

removed by the initial heart segmentation, are not a part of the lungs, and intersect both 

the initial segmented region and the edge of the field of view. The lowest and most 
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central points on this region are identified for the right and left side of the image and 

labeled as the rib connection points (Figure 37e). If no appropriate points can be found, 

the ribs are not present and the segmentation is complete.  

 Otherwise, a line is automatically drawn between the rib connection points and all 

points above it are removed. This line should not go through bone or the center of the 

heart. Furthermore, it should avoid passing through any chambers of the heart if possible. 

This logic is implemented by drawing the line as a minimum cost path (Figure 37f). The 

initial cost for each pixel in the heart region is equal to the reconstructed CT number. 

This gives additional cost when passing through chambers of the heart. Points outside the 

initial heart segmentation are not considered as possible paths for the line. Values above 

1300 are not considered as possible paths for the line to assure that the path does not 

travel through bone. To discourage the path from going through the center of the heart, an 

image is constructed whose value is equal to 700 in the heart center, defined previously 

as the region where D>DThresh, and decreases linearly to zero halfway between the center 

of the heart and the lungs. A maximum value of 700 is chosen to allow no greater than a 

100% increase in cost, assuming soft tissue values ≥700. This image is added to the 

previously defined cost image. The cost weighted distance is calculated for each rib 

connection point using a geodesic time algorithm[30] where the distance between points 

(x1,y1) and (x2,y2) is calculated using quasi-Euclidian distance, a piecewise variation of 

Euclidian distance. 

                          

   
                        

                      
    

               

         
 

Eq. 9 
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The two cost weighted distance functions are summed and the minimum cost path is 

selected as the pixel with the smallest value for each column between rib connection 

points. The final segmentation is achieved by including the region below this path and 

performing a morphological open to smooth the edges of the segmentation (Figure 37g). 

 

 

(a) (b) (c)  

(d) (e) (f)  

(g)  

Figure 37- Steps in the segmentation process (a) Original image (b) Image after lung removal (c) Distances 

of every point on the image from the lungs. The blue outline shows the central heart region that is 

above the distance threshold. (d) Initial segmentation of the image with ribs still present. The red 

outline shows the expansion from the center of the heart. (e) Mask of the parts of the ribs removed 

during initial segmentation. Red dots show the rib connection points.  (f) Cost function where the 

minimum cost path between rib cutoff points is shown in green.  (g) Final segmentation with ribs 

removed. 
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 (a) (b) (c)  

Figure 38- (a) Original image (b) Lung segmentation before morphological closing.  Note the areas in the 

heart that are below the lung threshold. (c) Lung segmentation after morphological closing.  The holes 

have been removed. 
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