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ABSTRACT
MODELING AND COMPUTATIONAL FRAMEWORK
FOR THE SPECIFICATION AND SIMULATION OF
LARGE-SCALE SPIKING NEURAL NETWORKS

David J. Herzfeld, B.S.

Marquette University, 2011

Recurrently connected neural networks, in which synaptic connections
between neurons can form directed cycles, have been used extensively in the
literature to describe various neurophysiological phenomena, such as coordinate
transformations during sensorimotor integration. Due to the directed cycles that
can exist in recurrent networks, there is no well-known way to a priori specify
synaptic weights to elicit neuron spiking responses to stimuli based on
neurophysiology. Using a common mean field assumption, that synaptic inputs are
uncorrelated for sufficiently large populations of neurons, we show that the
connection topology and a neuron’s response characteristics can be decoupled. This
assumption allows specification of neuron steady-state responses independent of the
connection topology.

Specification of neuron responses necessitates the creation of a novel
computational framework which allows modeling of large populations of connected
spiking neurons. We describe the implementation of a spike-based computational
framework, designed to take advantage of high performance computing architectures
when available. We show that performance of the computational framework is
improved using multiple message passing processes for large populations of neurons,
resulting in a worst-case linear relationship between the number of neurons and the
time required to complete a simulation.

Using the computational framework and the ability to specify neuron
response characteristics independent of synaptic weights, we systematically
investigate the effects of Hebbian-style learning on the hemodynamic response.
Changes in the magnitude of the hemodynamic responses of neural populations are
assessed using a forward model that relates population synaptic currents to the
blood oxygen level dependant (BOLD) response via local field potentials. We show
that the magnitude of the hemodynamic response is not a accurate indicator of
underlying spiking activity for all network topologies. Instead, we note that large
changes in the aggregate response of the population may occur with a decrease in
the overall magnitude of the BOLD signal. We hypothesize that the BOLD
magnitude changed due to fluctuations in the balance of excitatory and inhibitory
inputs in neural subpopulations. These results have important implications for
mean-field models, suggesting that the underlying excitatory/inhibitory neural
dynamics within a population may need to be incorporated to accurately predict
BOLD signals.
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1 INTRODUCTION & SPECIFIC AIMS

1.1 Specific Aims

A fundamental objective of computational neuroscience is to elucidate the neural

processes involved in perception, cognition, and motor control. These processes

involve neurons which produce and relay stereotypical action potentials (Adrian,

1926; Adrian and Zotterman, 1926) or continuous graded signals (Roberts and

Bush, 1981) to other neurons.

The mechanisms underlying construction, transmission, and decoding of

neural activity can be characterized at multiple spatial and temporal scales.

Techniques for modeling neural activity typically focus on a particular

spatiotemporal scale due to the computational cost associated with spanning a large

spatial or temporal range. For example, spiking neural models typically use

differential equations to examine neuronal activity within groups of hundreds of

neurons over millisecond timescales (Noble and Stein, 1966; Hodgkin and Huxley,

1952; Burkitt, 2006). Rate-based models, which estimate neuronal firing rates,

usually simulate physiological responses within populations of thousands of neurons

over tens to hundreds of milliseconds (Hertz et al., 1991; Dayan and Abbott, 2001;

Eliasmith and Anderson, 2002). Mean-field models simulate the aggregate rate

activity of cortical circuits over millimeters of the cortex, encompassing thousands

of neurons, over tens of milliseconds to seconds (Bojak et al., 2010; Touboul and

Ermentrout, 2011). Due in part to computational restrictions and model

assumptions, the emphasis on a particular spatiotemporal scale limits the ability of

current models to make explicit experimental predictions relating functional changes
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in neural processing and structure to large-scale population responses measured

with fMRI, EEG, and MEG.

There are few neural models which explicitly bridge the experimental

responses of individual spiking neurons with physiological measures of neural

activity across large populations. The use of existing models, which typically focus

on a particular spatiotemporal scale, are generally not well-suited for determining

the effect on population dynamics caused by changes at the neuronal level. For

instance, the effects of long-term synaptic plasticity within a neural population on

the neurovascular response cannot be readily determined from existing mean-field

models. We propose a modeling framework, capable of describing arbitrary

connected neural networks, and a computational framework, capable of simulating

these networks, which bridges the gap between spike-based neuron models and

mean-field models to investigate sensorimotor processing and the effects of learning

across spatiotemporal scales.

Here, we seek to develop a modeling and computation framework for the

specification, construction, and simulation of recurrent spiking network models

using neuron steady-state responses to known sensory stimuli typically reported in

neurophysiology literature. The specific aims are:

Aim 1: Develop a modeling framework capable of describing

independent (unconnected) and recurrent network topologies. This

framework will allow specification of well-characterized neuron steady-state

responses based on relevant biological and physiological literature. The modeling

framework will be implemented as a series of programming scripts which specify a

neural network in terms of neuron steady-state responses and synaptic weights.

Aim 2: Create a computational framework that can construct and

simulate arbitrarily large networks of recurrently connection neurons

specified in Aim 1. The computational framework will simulate neural responses
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to user defined inputs and provide neuron parameter outputs (voltage, current,

spike trains, etc.) at millisecond resolution. The computational framework will be

be implemented in C and designed to take advantage of high-performance

computing architectures when available.

Aim 3: Using the modeling and computational frameworks

developed in Aims 1 and 2, implement a spiking model to characterize

the effect of synaptic plasticity on the blood oxygen level dependent

(BOLD) response. Using this model, the effects of synaptic plasticity on the

magnitude of the neurovascular response will be examined, considering each neural

population as a spatial point source.

1.2 Limitations of Existing Frameworks

We propose a modeling framework which explicitly bridges the experimental

responses of individual spiking neurons with physiological measures of neural

activity across large populations. We identify three key issues with existing model

architectures that are addressed by the proposed framework. First, the focus on a

particular spatiotemporal scale limits the ability of models to make predictions

about population dynamics from functional changes in neuronal processing or

connection structure. Second, the maximum and background rate responses of

neurons in existing models are intimately coupled with the synaptic connection

weights. Decoupling the connection topology and the steady-state neuron responses

allows investigation of population effects from changes to either the connection

structure or neuron responses independently. Finally, existing simulator

environments are not explicitly designed to simulate large populations of spiking

neurons with highly-structured connections. In the remainder of this section, we

explore each of these issues in further detail.
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1.2.1 Temporal Scale

Spiking models typically simulate the responses of small groups of connected

neurons at sub-millisecond to millisecond resolution. In contrast, many rate-based

models estimate neuron firing rates over tens to hundreds of milliseconds. The

reduction in temporal resolution when moving from spike to rate-based models is

attractive due to decreased computational demands. The interpretation of

continuous signals associated with neuron firing rates as opposed to the highly

discretized signals associated with spiking responses has facilitated their use in

modeling the visual system (Nowlan and Sejnowski, 1995; Wang, 1995; Beardsley

and Vaina, 1998; Beck and Neumann, 2010; Thielscher and Neumann, 2008),

sensorimotor integration (Deneve et al., 1999; 2001), and the vestibular system,

particularly with regard to the encoding of head position (Xie et al., 2002; Stringer

et al., 2002a;b), among others. Such models implicitly assume that the timing of

individual spikes does not significantly impact the representation of information in

the brain. Recent studies have shown that the occurrence (or absence) of individual

spikes in a neuronal network can impact dynamic and steady state

responses (Izhikevich and Edelman, 2008). Rate-based models also incur

quantization error which may affect population dynamics and decoding accuracy at

the system output as a result of firing rate estimation (Herzfeld and Beardsley,

2010).

Mean-field models provide estimates of neuronal dynamics for large

populations (i.e. those that can be measured using conventional imaging

techniques) (Bojak et al., 2010; Coombes, 2010). The evolution of rate-based to

mean-field models is largely due to the computational demands associated with

evaluating the differential equations associated with each neuron. Many mean-field

models make the assumption that suitably large populations of neurons can be
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described by the evolution of a probability density function, evaluated with respect

to membrane voltage and time (Nykamp and Tranchina, 2001; Deco et al., 2008).

This simplification can significantly reduce the computational complexity of the

simulation from N coupled differential equations (where N is the number of

simulated neurons) to a single equation per population. However, this simplification

limits the ability of the model to describe the effects of changes in neuronal

processing on the population response. For instance, the effects of changing

connection weights between neurons within a population are unclear in existing

mean-field models. In addition, most mean-field models make steady state

assumptions which may not be valid when connections exist within a population,

particularly when synaptic inputs to individual neurons are correlated or when the

network exhibits synchrony (Deco et al., 2008).

1.2.2 Synaptic Weight Structure

In spiking and rate-based modeling approaches, connection topologies are intimately

coupled with steady-state neuron response properties drawn from neurophysiology

literature and published single-unit response characteristics (Albright, 1984;

Albright and Desimone, 1987; Tanaka et al., 1989; Amirikian and Georgopoulos,

2000). These neuron responses (steady-states), such as a neuron’s maximum

response or background rate, are particularly difficult to guarantee if the connection

profile features directed cycles (recurrent connections). There is no well-known way

to a priori specify connection weights to achieve desired neuron response properties;

instead, weighting profiles are either manually tuned (Deneve et al., 2001) to ensure

network stability or learned (Wang, 1995; Beardsley and Vaina, 1998; Beardsley

et al., 2003) until neuron steady-states align with available measures from

neurophysiology studies. Connection profiles which use manually tuned or learned

weights are difficult to generalize to novel stimuli, since the network dynamics may
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violate the initial neuron steady-state assumptions. For instance, the weighting

structure of a neural network can be learned to evoke assigned maximum responses

for a particular preferred stimulus. However, if the weighting structure is not

sufficiently constrained, application of a non-preferred stimulus may result in

network instability due to the topology of the learned connection profile. This

instability may result in firing rates that exceed the prescribed maximum response,

violating the assignment of preferred stimulus to which the neuron is most

responsive. To overcome the inherent history associated with recurrently connected

network topologies, recent studies have imposed constraints on the total input to

neural populations as well as the input to individual neurons via nonlinear

activating functions (Deneve et al., 1999; 2001), in an effort to ensure stability.

We propose a modeling framework to simulate spiking neurons which

specifies model parameters in terms of neuron steady-states, drawn from the

neurophysiology literature. Here, the technique used to achieve neuron steady-states

is largely independent of the chosen connection topology.

1.2.3 Spike-based Neural Simulator

Implementation of this modeling framework necessitates the creation of a novel

simulator (computational framework) which allows construction of large populations

of connected spiking neurons. Existing simulation environments are focused on

specific spatiotemporal scales. For instance, Neuron (Carnevale and Hines, 2006)

can simulate multicompartment models and small populations of connected spiking

neurons, but large-scale network models are intractable. The Genesis simulator has

similar size limitations for models of spiking neurons (Bower and Beeman, 1998).

The Nest simulation environment provides many of the features necessary to

construct the required spiking network, but does not explicitly allow for structured

connection topologies (Diesmann et al., 2002). None of these simulation
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environments allow for specification of neuron background/maximum responses in

populations of connected neurons which feature directed cycles.

1.3 Thesis Layout

The remainder of the thesis is organized into six chapters. Chapter 2 contains

background material describing individual and connected models of neurons as well

as information related to parallel (high performance) computing techniques.

Chapters 3 and 4 outline the modeling and computational frameworks developed to

construct and simulate large populations of connected neurons. Chapter 5

characterizes the effects of network structure and synaptic plasticity on the

neurovascular response in two well-defined models of neuronal processing in a single

area as well as multi-area visual motion processing. Concluding remarks are made in

Chapter 6, providing commentary on the achievement of the specific aims outlined

in Section 1.1. In addition, Chapter 6 describes areas of potential improvement to

both the modeling and computational frameworks. Finally, appendices containing

the details of several referenced models are provided for the reader.
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2 BACKGROUND

We propose a modeling framework which explicitly bridges the experimental

responses of individual spiking neurons with physiological measures of neural

activity across large populations. The modeling framework relies heavily on the

concepts of computational neural modeling. Implementation of the modeling

framework necessitates the creation of a novel simulator (computational framework)

which allows construction and simulation of large populations of connected spiking

neurons. Using this joint modeling and computational framework, we develop a

series of models which relate neuron spiking activity to the hemodynamic BOLD

response.

In this chapter, we focus on the background material necessary for the

creation of the modeling and computational frameworks. In Sections 2.1 and 2.2, we

identify current research in the area of independent and connected neural models.

In Section 2.3, we describe current high performance computing paradigms, required

for the creation of the computational framework which is described in Chapter 4.

Finally, we outline the current state of knowledge regarding the structure and

temporal modeling of the neurovascular response for neural populations without

spatial extent.

2.1 Independent Neural Models

The encoding, decoding, and transmission processes associated with the neural code

are, at the lowest level, performed by individual neurons. Neurophysiology studies

have sought to characterize the performance of both individual neurons and groups
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of neurons (neural networks) for over a century. Adrian (1926) demonstrated that

many neurons relay and produce stereotypical action potentials (spikes). More

recent studies have also provided examples of graded continuous signals in the

nervous system (Roberts and Bush, 1981).

Elucidation of the neural code can occur across multiple spatiotemporal

scales. In general, however, the neural spike remains the smallest unit of

information transmission in the nervous system. Models of individual neurons

typically exist on a continuum spanning temporal scales. At one extreme, the

timing between individual neural spikes has been shown to convey information

about the environment. Studies have suggested that the precise timing of individual

spikes may carry a significant amount of information in the brain (Stein et al., 1993;

Abeles et al., 1994). Modeling at this temporal scale requires fine temporal

resolution, typically sub-millisecond to millisecond. At the opposite extreme, the

average number of spikes per unit time has been shown to contain information

about the environment in the form of a rate code (Mountcastle et al., 1957). These

“rate-based” neuron models can operate at a coarser temporal resolution since spike

averaging can occur over a wide range of temporal scales. Such models implicitly

assume that the timing of individual spikes does not significantly impact the

representation of information in the brain.

Temporal and rate-based encoding exist on a temporal continuum. At the

finest level of temporal resolution exist single or multi-compartment spike-based

models (Hodgkin and Huxley, 1952; Nabi and Moehlis, 2011). These models

typically operate at sub-millisecond to millisecond resolution. Rate-based models

estimate neuron firing rates over tens to hundreds of milliseconds, and can be

constructed by counting the number of generated spikes from a spiking neuron per

time interval. Alternatively, many neuron models are explicitly constructed to avoid

the need to generate individual spike events (Eliasmith and Anderson, 2002). While
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a clear limitation of these inherently rate-based neuron models is that they cannot

provide exact spiking timing information, the reduction in the temporal resolution

can dramatically reduce the computational demands associated with neuron

modeling. As an added benefit, the interpretation of the continuous signals

associated with neuron firing rates as opposed to the discretized action potentials of

spiking neuron models has facilitated their use in numerous computational models,

including models of the visual system (Nowlan and Sejnowski, 1995; Wang, 1995;

Beardsley and Vaina, 1998; Beck and Neumann, 2010; Thielscher and Neumann,

2008), sensorimotor integration (Deneve et al., 1999; 2001), and the vestibular

system, particularly with regard to the encoding of head position (Xie et al., 2002;

Stringer et al., 2002a;b), among others.

In the remainder of this section, we identify the major computational models

associated with spiking neurons. We begin by discussing the representation of

individual action potentials for a single neuron as well as the construction of spike

trains via stimulus encoding.

2.1.1 Stimulus Encoding

Neurons can receive stimuli (input) from other connected neurons or from the

environment, as in the case of sensory neurons. The process of converting stimuli

into the all-or-none action potentials used to transmit information between neurons

is referred to as encoding. Due to similarities between the temporal profiles of

action potentials, these events are typically assumed to be stereotyped. Due to the

relatively short duration of an action potential, approximately 1 millisecond, as

compared to the time between neuron spikes (the interspike interval, typically >10
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ms), the action potential can be modeled as a Dirac delta function,

δ(t) =





1, t = tn

0, otherwise
, (2.1)

where
∫∞
−∞ δ(t− tn) dt = 1. Therefore, a temporal series of action potentials, referred

to as a spike train, a(t), can be defined as

a(t) =
∑
n

δ(t− tn) , (2.2)

where tn corresponds to the time of the n-th spike due to the presentation of a

stimulus. The neuron’s instantaneous firing rate, r̃(tn), can be defined as the

reciprocal of the time between the arrival of two successive action potentials:

r̃(tn) = 1
∆t = 1

tn+1 − tn (2.3)

The number of spikes, n, in a given time interval, T , can be determined by

integration of the spike train, a(t), as

n =
∫ T

0
a(t)dt . (2.4)

Since the time interval between spikes can be highly variable, even to identical

stimuli, the mean firing rate, r, is often used as a measure of neural activity,

r = lim
T→∞

∫ T
0 a(t)dt
T

, (2.5)

where r is expressed in units of spikes/second or Hertz (Hz). In practice, the mean

firing rate is usually obtained by averaging neural responses over a large number of

stimulus presentations. Throughout this document we use the terms mean firing
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rate and rate response interchangeably.

Many neurophysiology studies systematically present different stimuli and

observe their effect on an individual neuron’s mean firing rate. We use the term

“neuron response profile” to describe the relationship between presented stimuli and

the mean firing rate observed in neurophysiology studies. The neuron response

profile encompasses input from one or more of the following sources: (a) sensory

input directly (as in sensory neurons), (b) projections from neurons at earlier stages

of cortical processing, (c) projections from neurons at the same level of cortical

processing, or (d) top-down projections from later stages of cortical processing.

Depending on the cortical area, particular characteristics of the sensory stimulus

may be related to the neuron’s rate response (e.g., direction, velocity, and location)

via a “stimulus response profile.”

A response profile which maps motion direction to mean firing rate for an

idealized neuron is shown in Figure 2.1. In characterizing the neuron response

profile, the preferred stimulus is the external stimulus which elicits the highest mean

firing rate or maximum response. For instance, the neuron in Figure 2.1 fires at its

maximum response when presented with a motion direction stimulus of π radians.

The background response is the mean rate at which the neuron responds when no

stimulus is presented. In Figure 2.1, the anti-preferred stimulus is the external

stimulus which results in the lowest rate response or minimum response of the

neuron. We use the maximum and background responses of a neuron to identify a

set of steady-state responses to sensory stimuli; we refer to this set of steady-states

responses generically as neuronal states.

The stimulus response profile is a modeling technique which may be used to

account for the neural and/or sensory inputs that are external to a simulated neural

population (or if neurons are assumed to be independent). The stimulus response

profile describes the response of a neuron to either a sensory input directly (as in
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Figure 2.1: Idealized neuron response profile, mapping direction of motion from a
sensory stimulus to the mean firing rate in units of spikes/second. The maximum
response to the stimulus is 55 spikes/second (upper horizontal line), when a sustained
motion direction of π radians is supplied to the neuron (vertical line). The neuron’s
mean firing rate at its minimum response (lower horizontal line) is 10 spikes/second
when presented with its anti-preferred stimulus, approximately zero radians. The
neuron responds at its background rate when no sensory stimulus is provided.

the case of sensory neurons) or to bottom-up projections from neurons in earlier

stages of cortical processing not explicitly represented by the current model. The

stimulus response profile does not incorporate the contribution of neurons from the

same or higher levels of cortical processing.

Activating Functions

Rather than map stimuli directly to neuron firing rates, the neuron response profile

may map the stimulus into an intermediate quantity (such as membrane current),

which can then be used to determine the neuron firing rate. This intermediate

result can be useful if the neuron responds to multiple sensory stimuli

simultaneously, whose individual contributions to the overall spiking response may

be nonlinear, exist in different units, or frames of reference.

In the case where the stimulus response profile is used to convert presented

stimuli to an intermediate quantity, an additional relationship which maps this
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intermediate quantity to neuron firing rates is required. We refer to this

intermediate mapping to r(t) as an activating function. Many studies assume the

activation function to be sigmoidal due to the experimentally observed saturation in

the firing rate of neurons for large input currents. Piecewise linear functions are also

frequently used to impose saturation in the firing rate. For instance, a piecewise

linear activating function which maps current into firing rate can be defined as

r(t) =





0, J(t)η < γ

Rmax, J(t)η > Rmax

J(t)η − γ, otherwise

, (2.6)

where J(t) is the input current, η provides a scaling from the units of current to

firing rate (e.g. from nA to Hz), Rmax is the saturated response (maximum

response) of the neuron, and γ is a spiking threshold measured in Hz. Since the

input current of a neuron must be integrated to produce the membrane potential, a

low-pass filtered version of r(t) is sometimes used.

Inhomogeneous (Poisson) Spiking

The generation of spikes in the cortex is highly irregular, even for constant input to

a neuron, which is partly why mean firing rates are often used for cortical modeling.

If one assumes that the mean firing rate is the primary conveyor of information in

the mammalian brain, the stochastic nature of spike times could reflect random

processes occurring at the level of the individual neuron or across cortical networks.

Further assuming that spike-time irregularities are due only to random cortical

processes and not to neuron processes, then the timing of a given spike is

independent of any preceding spike (i.e. there is no history dependence since the

network has not history dependence). In this simplified case, the timing of an
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individual spike can be described by a renewal process (Koyama and Kass, 2008).

Experimental evidence has shown that neuron interspike intervals in response to a

constant input are exponentially distributed, implying that instantaneous firing

rates follow a Poisson process. In the case where stimuli are time-varying, neuron

rate responses follow an inhomogeneous Poisson process, given by

n̂ =
∫ T

0
r(t)dt , (2.7)

where n̂ represents the mean spike count over a given time interval from [0, T ].

We note that the spiking in biological neurons is, to a degree, history

dependent. For instance, following spiking, a neuron enters a refractory period in

which the probability of spiking is extremely low. This is contrary to the strict

interpretation of spike generation as a renewal process (particularly because the

Poisson model has a high likelihood of spikes with short interspike intervals). These

issues are further discussed in Chapter 3.

2.1.2 Spiking Neuron Models

There exists a variety of models designed to replicate the spiking characteristics of

neurons. The primary differences between the various models usually lie in the level

of biological detail incorporated into the mathematical description. In general, the

more biological detail that a neuron model incorporates, the higher the

computational cost. Here, we provide a general overview of several frequently used

spiking neuron models, with a particular emphasis on the relationships between

biological detail and computational cost.
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Hodgkin-Huxley Model

The Hodgkin-Huxley (H-H) model neuron has been used extensively in neural

models since its inception in 1952 (Hodgkin and Huxley, 1952). The H-H model uses

a set of coupled differential equations to represent the spiking behavior observed in

the squid giant axon. Typical implementations of the H-H neuron use two ion

channels, corresponding to the movement of potassium and sodium ions across the

neuron’s cell membrane. An additional leakage current is normally modeled which

defines the aggregate channel dynamics for all ions that are not explicitly described.

In more recent implementations, the original H-H model has been extended to

incorporate additional ion channel dynamics (Meunier and Segev, 2002).

Unlike some other neuron models, action potential generation is incorporated

directly into the neuron’s governing equations. If an external input causes the

neuron’s membrane voltage to rise, the conductance of the sodium channels also

increases. If the positive feedback resulting from the inflow of positive sodium ions

is large enough, an action potential is generated. Following spike generation, the

neuron enters a brief refractory period. We note that this refractory period is

relative; the neuron can spike during this period of hyperpolarization provided the

external voltage/current input is sufficiently large.

Numerous studies have examined the ability of the H-H model neuron to

emulate the spiking of in vivo recordings, generally noting that the H-H model

provides a good representation of the spiking of actual neurons (see Meunier and

Segev (2002) for a review). However, due to the number of coupled differential

equations, the use of the H-H neuron in the simulation of large populations has been

limited. Additional neuron models incorporate ion channel dynamics, such as the

Fitzhugh-Nagumo model, have been proposed which reduce the number of coupled

differential equations in an effort to increase computational tractability (Fitzhugh,

1961).
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Leaky Integrate-and-fire Model

The leaky integrate-and-fire (LIF) model neuron provides a computationally simple

spiking model and has been widely used in neural simulations. Typical LIF neurons

contain both subthreshold and suprathreshold operating regimes. When the

membrane voltage is under a predefined threshold, external input currents are

integrated to produce a change in membrane voltage. An additional leakage current

exists which allows the membrane voltage to decay back to baseline for insufficient

input currents. The subthreshold dynamics of the LIF membrane potential can be

modeled as an RC circuit, as shown Figure 2.2. Each of the passive components

found in the equivalent RC circuit correlates to physiological neuron structures. The

cell membrane (lipid bilayer) acts as a capacitor, separating charges. The resistance

incorporated into the model is analogous to the embedded proteins in the lipid

membrane, which facilitate the passive movement of charge across the membrane.

Given an input current, J in(t), the time-varying voltage, V (t), can be found by

Kirchoff’s current law, resulting in a first order differential equation of the form,

dV (t)
dt

= 1
C

(
J(t)− V (t)

R

)
, (2.8)

where C and R represent the neuron’s membrane capacitance and resistance,

respectively.

When the membrane voltage, V (t), reaches a predefined threshold, V th, a

spike is generated. This stereotypical action potential is modeled as a Dirac delta

function. As described previously, the characterization of the action potential as a

Delta function is valid provided the width of action potentials from in vivo

recordings is suitably small compared to the interspike interval. Following spike

generation, the membrane potential is reset to zero for a time, τ ref , characterized by

the absolute refractory period, during which an action potential cannot be
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Figure 2.2: The RC equivalent circuit for a leaky integrate-and-fire (LIF) neuron
when the voltage, V , is subthreshold. When the voltage is equal to the threshold
voltage, V = V th, the switch is closed, the action potential generator (dashed grey
box) produces an an action potential. The switch remains closed, causing the voltage
to reset (V = 0) until it is opened after some absolute refractory period, τ ref .

generated regardless of the input current. Therefore, the maximum allowable firing

rate for the LIF model is given by the reciprocal of the absolute refractory period.

Since the neuron dynamics are governed solely by a single differential

equation linking the input current and membrane voltage, the LIF model is less

computationally intensive than neuron models which incorporate ion channel

dynamics, such as the Hodgkin-Huxley model. In addition, the LIF model has been

shown to be the limiting case of more complex models (Partridge, 1966).

Canonical Neuron Models

Canonical neuron models seek to reduce an entire family of neurons into a

parameterized model. The benefit of this approach is two fold. First, canonical

models usually have a lower computational cost than their conductance-based

counterparts. Second, by varying parameter values, entire families of neurons can be

examined. Izhikevich (2003) demonstrate that the dynamics of conductance models,
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such as the Hodgkin-Huxley model neuron, can be reduced to canonical models.

Two well-known canonical models include the θ-neuron (Gutkin and Ermentrout,

1998) and a series of models proposed by Izhikevich (see Izhikevich (2003) for a

review).

The θ-neuron models neuronal states using a spike trajectory and θ, a phase

variable. The model can be written as

dθ

dt
= (1− cos θ) + (1 + cos θ)(β + σ) θ ∈ [0, 2π] , (2.9)

where the bias (due to noise) is represented by β and the input to the neuron model

is σ. A spike occurs in the small region where θ ≈ π. Following spike generation, the

neuron enters a refractory period since (1 + cos θ) ≈ 0 when the value of theta is

close to the spiking regime, θ ≈ π. For instance, with a constant input, the θ-neuron

models fires periodically as θ wraps around the [0, 2π] polar space.

Izhikevich (2003) proposed a canonical model of type I neurons whose

spiking dynamics are governed by two coupled differential equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u) , (2.10)

where v and u are dimensionless time-varying signals and a, and b are dimensionless

parameters. When v ≥ 30, the neuron spikes and the value of v is set to the value of

an additional dimensionless parameter, c. At this time, the value of u is set to be the

sum of u and a fourth dimensionless parameter, d. Through parameter exploration,

Izhikevich has identified the values of the dimensionless parameters (a-d) for

“regular spiking” neurons as well as several other subclasses of type I neurons.

While canonical models provide both reduced computational cost, as

compared to conductance based models, as well as the ability to explore entire
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classes of neurons, typically the model parameters do not have equivalent

physiological analogs. For instance, the θ-neuron model does not model the

membrane voltage of biological neurons (although spike timing is modeled).

Similarly, the models proposed by Izhikevich feature a number of dimensionless

quantities whose values do not correspond directly to the physiological properties of

neurons. The ability to relate model parameters to their physiological analogs is

particularly important when investigating how changes in model parameters affect

spiking dynamics. In addition, we note that the computational complexity of these

canonical neuron models is approximately the same as that of the leaky

integrate-and-fire neuron. The θ-neuron uses a single differential equation, identical

to the LIF neuron, while the model proposed by Izhikevich has two coupled

equations.

2.2 Connected Neural Models

The human brain contains more than 1011 neurons and more than 1014 synapses.

Insights into brain function generally exists under the unifying theory that

processing of information is performed by populations of connected neurons (Deco

et al., 2008). Typical neurons in the mammalian CNS receive thousands of incident

synaptic inputs (Dayan and Abbott, 2001). Therefore, investigation of brain

function via models must incorporate both neuron and synaptic units. In this

section, we first provide an overview of the physiology of synapses in the central

nervous system. We then provide terminology used to describe connected

populations of neurons.
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Figure 2.3: Schematic diagram of a synapse, from Dayan and Abbott (2001). The
presynaptic neuron axon (top) contains synaptic vesicles which encapsulate neuro-
transmitter. When an action potential arrives at the axon terminal, neurotransmitter
is released across the synaptic cleft where it later binds to receptor proteins on the
postsynaptic cell. The neurotransmitter can cause excitatory or inhibitory effects on
the membrane voltage of the postsynaptic cell.

2.2.1 Synapse Physiology

The synapse contains a minimum of three structures: the presynaptic neuron axon,

the synaptic cleft, and the postsynaptic neuron dendrite (Figure 2.3). The transient

voltage change due to a presynaptic neuron spike opens voltage-gated ion channels,

allowing calcium ions to move from the extracellular space into the axon. The influx

of Ca2+ ions leads to the release of neurotransmitter into the synaptic cleft.

Following diffusion across the synaptic cleft, the neurotransmitter binds to

receptors on the dendrite of the postsynaptic neuron, causing ion channels to open.

Based on ion flow into/out of the cell, the synapse can have either an excitatory

(depolarizing) or inhibitory (hyperpolarizing) effect on the membrane voltage of the

postsynaptic neuron.
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2.2.2 Post-synaptic Current

The release of neurotransmitter from the presynaptic neuron across the synaptic

cleft may cause either depolarization or hyperpolarization of the postsynaptic

neuron’s membrane voltage. The effect of ion flow through the ligand-sensitive gates

can be modeled by describing the relationship between an excitatory postsynaptic

potential (EPSP) or inhibitory postsynaptic potential (IPSP) and the neuron’s

membrane current. We define the postsynaptic current (PSC) as the change in ionic

current through the cell membrane as a result of a single presynaptic spike.

The form of the PSC is well-characterized by an exponential decay process.

Weber et al. (2003) described the postsynaptic current waveforms for ESPS’s in rat

Purkinje cells. They found that PSC waveforms decay from their peak value back to

baseline within ∼15 milliseconds. Similar results were obtained by Wu et al. (2004)

in a preparation of rat neurons. These results allow us to define a general

mathematical form of the PSC, h(t), as

h(t) = tn exp
(
− t

τPSC

)
, (2.11)

where τPSC is the time constant of the postsynaptic current and n is an integer

value describing the order of the filter. Based on available evidence from in vitro

preparations, the value of the n is typically small (0 or 1) and τPSC usually falls

within the range of [5, 10] ms (Weber et al., 2003; Wu et al., 2004).

2.2.3 Neural Population

A neural population is a useful abstraction for computational models that contain

hundreds to thousands of neural units. We define a population of neurons as a

group of neurons which share a similar function. Based on neurophysiological

evidence, the processing of neural signals in cortex exhibit anatomical and
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functional structure, both among neurons within a local region of cortex and

between separated regions. In sensory systems, the complexity of information tends

to increase as signals progress from primary sensory areas to later stages of

processing in the parietal and frontal cortices. In this case, a neural population

typically reflects a group of neurons that exist at a particular stage of processing.

For instance, in Chapter 5, we outline a computational model for a portion of the

visual processing system. In this model, we define two explicit populations of

neurons in the middle temporal and dorsal medial superior temporal areas, whose

properties are well characterized by neurophysiology literature. In cases where there

is insufficient physiological data to functionally define a neural population, we leave

it up to the modeler to define these relationships explicitly.

2.2.4 Connection Classes

We define several broad types of connection classes which will be used throughout

this document. Due to the synaptic physiology, we note that a synapse is, to a very

good approximation, unidirectional. Therefore, all classes are directed, containing a

source and destination neuron. A group of connections can be classified into a single

connection class based on the populations containing their source and destination

neurons.

Feed-forward connections exists between two distinct populations,

representing the flow of information through a directed network (generally, a

bottom-up connection from an earlier to later stage of processing). Feedback

connections represent the opposite scenario, top-down connections which join neural

populations at later stages of cortical processing to those at earlier stages of

processing. Finally, recurrent connections exist within a population (i.e. the source

and destination neurons are within the same population); this document also refers

to these synapses as lateral connections. Additional connections may exist between
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Population B

Population A Recurrent

Feedforward Feedback

Figure 2.4: Connection classes which exist between and within neural populations.
Population A (bottom) contains two neurons, represented by red circles. Population
B (top) contains a single neural unit. Connections whose source neuron reside in
population A and destination in population B are denoted as feed-forward (red line).
Feedback connections, from population B neurons to A, are shown in green. Recurrent
(lateral) connections exist between the two neurons in population A (blue lines).
The distinction between feed-forward and feedback connections in this diagram is
arbitrary. It is assumed that population B exists at a later stage of cortical processing.

two populations at the same stage of cortical processing. In these cases, the modeler

must define a directed path, allowing classification of these connections as either

feed-forward or feed-back. Figure 2.4 defines these relationships graphically.

2.2.5 Mean-field Models

Mean-field models provide estimates of neuronal dynamics for large populations,

including those that can be measured using conventional imaging techniques (Bojak

et al., 2010; Coombes, 2010). These models are a commonly used analytical

approach for studying the dynamics of complex networks (Barrat et al., 2008). The

evolution from rate-based to mean-field models is largely due to the computational

demands associated with evaluating the differential equations associated with each

neuron. Many mean-field models make the assumption that suitably large

populations of similar neurons can be described by the evolution of a probability
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density function, evaluated with respect to membrane voltage and time (Nykamp

and Tranchina, 2001; Deco et al., 2008). This simplification can significantly reduce

the computational complexity of the simulation from N coupled differential

equations, where N is the number of simulated neurons to a single equation per

population.

Derivations of mean-field models are typically performed using several

assumptions. First, when examining the possible changes to the state of a particular

neuron within a population, it is usually assumed that the state of its neighbors are

independent of one another. This assumption may not be true if synaptic

connections exist between neurons of the same population (i.e. lateral connections

exist). In addition, modelers typically assume that all neurons with similar statistics

can be described by a single “equivalent” neuron. Under these assumptions, the

mean field activity for a population of neurons can be derived by analysis of the

mean neuron response properties of the neurons in the population. In a general

scenario, the mean firing rate, r, of the i-th cortical cell can be derived as

ri = F (S) +
∑

j

wijrj , (2.12)

where F is a function which scales the multiparameter stimulus, S, to units of

spikes/second. The synaptic weight between the i-th and j-th neuron is given by

wij. We implicitly assume that the derivation of rj does not depend on the firing

rate of the i-th neuron. We define r̄ as the averaged firing rate of all of the cortical

cells in a population with N neurons (this is not to be confused with the previous

definition of mean firing rate, r):

r̄ = 1
N

N∑

i

ri . (2.13)

The mean field approximation can then be obtained by replacing rj in the sum in
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Equation 2.12 by its average value,

ri = F (S) + r̄
∑

j

wij . (2.14)

Assuming that the response of the neurons in the population to stimuli is located

between threshold and saturation, the rate response across the population can be

approximated as linear to the stimulus presentation (Cooper and Scofield, 1988),

ri = miS + r̄
∑

j

wij , (2.15)

where mi is the slope of the linearly approximated neuron response function. It

follows that

r̄ = m̄S + r̄w0 = (1− w0)−1m̄S , (2.16)

where

m̄ = 1
N

∑

i

mi (2.17)

and

w0 = 1
N

∑

ij

wij , (2.18)

such that

ri =

mi +


∑

j

wij


 (1− w0)−1m̄


S . (2.19)

It is possible to make an additional assumption that the network is largely

inhibitory, mainly w0 < 0, which ensures that the network is stable.

2.3 High Performance Computing

In recent years, the low price of commercial, off-the-shelf computers has allowed

researchers to assemble distributed clusters with considerable power. The ability to
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harness the computational abilities of computer hardware requires careful

consideration of the algorithms involved as well as the expertise to implement these

algorithms in robust software tools. This section focuses on the background material

necessary for an understanding of the computational framework outlined in

Chapter 4. The simulator described in that chapter is designed to take advantage of

high performance computing (HPC) abilities when available. There are numerous

computational paradigms for exploiting HPC abilities, many of which are tied to the

underlying hardware architecture. We focus here on the message passing paradigm

as other methods for parallelization are not used in the computational model

presented in this document.

2.3.1 Message Passing

The message passing computational paradigm typically assumes a set of discrete

processes (units of execution) which exist on the same or differing physical

machines. Each of these processes have their own local memory, but also posses the

ability to send and receive messages. The message passing paradigm typically

assumes that sending and receiving messages requires operations to be performed by

both the source and destination processes. A specific instance of the message

passing paradigm, the Message Passing Interface (MPI) Standard, was completed in

1994 (Hempel, 1994).

2.3.2 Terminology

We define several terms that are encountered in the remainder of this document

when referring to the message passing paradigm. We use the term “process” to refer

to a unit of execution, with its own local memory (memory that is distinct from all

other MPI processes). MPI applications must contain at least one process. These

processes can be located on the same physical machine or on different machines
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connected via some communication hardware (ethernet, infiniband, myranet, etc.).

Collections of MPI processes form groups with definite size. Each member of a

group is prescribed an integer rank from 0 to n− 1, where n is the size of the group.

MPI contexts are created at run time and are used for matching of messages.

Groups of processes and the underlying context are combined into the concept of a

communicator. Send/receive operations are usually performed between processes

that are members of the same communicator (although some mechanisms exist to

transmit messages between communicators). Interprocess communication can occur

between two processes or by all processes in the communicator (termed collective

communication).

2.4 Neurovascular Response

A common technique for the noninvasive mapping of brain activity during task

execution uses functional magnetic resonance imaging (fMRI) to measure the blood

oxygen level dependant (BOLD) response throughout the brain. BOLD contrast

studies measure the hemodynamic response, which depends on blood oxygenation,

flow, and volume (Nair, 2005). Correlation to neural activity is indirect, reflecting

the energy demands of actively spiking neurons, necessitating the delivery of glucose

and O2 via cerebral blood flow. While studies have demonstrated correlations

between neural activity and BOLD response (Heeger et al., 2000; Rees et al., 2000;

Logothetis et al., 2001), interpretation of the signal in light of the underlying

interconnections among neurons is difficult. This difficultly is partially due to the

BOLD’s dependence on the structure of the underlying vasculature (Nair, 2005) as

well as the connected nature of neural networks. In addition, the temporal

differences between neural activity (which change at a millisecond timescale) and

the BOLD signal, which evolves over tens of seconds can confound the direct
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interpretation of BOLD in terms of neural activity. In the remainder of this section,

we provide a brief review of the neural mechanisms which affect the hemodynamic

BOLD response.

2.4.1 Neurovascular Coupling

Glucose provides the primary energy source in the human brain. Simultaneous

recording of neural activity and fMRI signals has shown that the hemodynamic

response in primates is directly correlated to local field potentials

(LFP’s) (Logothetis et al., 2001), typically associated with the synchronous activity

of neurons within 1-3 millimeters of the measuring electrode (Mitzdorf, 1985;

Juergens et al., 1999). In additional to recording local fields, Logothetis et al. (2001)

also examined the correlation between multi-unit activity, associated with the

spiking of neurons within 300-400 micrometers of the electrode, and the BOLD

response. They found that local field potentials correlate better to the

hemodynamic response than the activity of multi-unit electrode recordings. These

results suggest that the synchronous activity across neural populations is more

closely related to the hemodynamic response than spiking activity alone.

Other studies have compared the activity of single unit electrode recordings

to measured fMRI signals (Heeger et al., 1999; 2000; Rees et al., 2000). These

studies provide evidence that the magnitude of fMRI signals is directly proportional

to neural population rate responses. Rees et al. (2000) demonstrated that the rate

response of neurons in area V5 (MT complex) to the coherence of motion stimuli is

proportional to the amplitude of the hemodynamic response, such that an average

increase of 9 spikes/second across a neural population resulted in a one percent

increase in the BOLD signal. Heeger et al. (2000) also examined the linear

relationship between coherence stimuli and the BOLD response, but focused instead

on area V1. Similar to the results of Rees et al. (2000), the study found a linear
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relationship between the aggregate rate activity and the hemodynamic response,

with a proportionality constant of ∼ 2.5, indicating that an average increase of 0.4

spikes/second in the V1 population resulted in a 1% increase in the magnitude of the

BOLD signal. The disparities between the proportionality constants reported by the

two studies may indicate differences in the underlying methodology or could indicate

differences in the underlying functional connectivity of these two visual areas.

Logothetis (2008) notes that changes in the BOLD signal may be introduced

by neural activity that is not related to aggregate mean firing rate. The

excitatory-inhibitory role of recurrently connected cortical circuits has been shown

to be involved in a variety of cortical activities (Douglas et al., 1995; Shadlen and

Newsome, 1994; Chance et al., 2002). In this context, changes in BOLD activation

could reflect changes in the balance of excitatory and inhibitory connections even

though the aggregate rate activity across a neural population remains constant.

2.4.2 Nonlinear BOLD Responses

Previous studies have shown nonlinearities in the temporal profile of the BOLD

response as a function of stimulus duration (Birn et al., 2001; Boynton et al., 1996;

Dale and Buckner, 1997). These studies have shown a stronger response to short

stimuli (whose length < 4 s), than would be expected given hemodynamic curves for

longer stimuli. There are several hypotheses regarding the source of this

nonlinearity. First, spiking at the level of the individual neuron tends to slow

following an initial peak due to adaptation (Boynton et al., 1996). Second, longer

stimuli may elicit cerebral blood oxygenation which is bound by an upper ceiling.

Liu et al. (2010) combined EEG and fMRI to further discern the timescales

associated with nonlinearities introduced by neural adaptation and the blood flow

ceiling. Their results demonstrate that steady-state neural responses in area V1 are

linear when stimuli are spaced more than 194 milliseconds apart. Nonlinear neuron



31

responses, presumably due to neuron refractory effects, only affect the BOLD signal

when interstimulus intervals were short (< 194 ms). They found that the

nonlinearities introduced by neuron refractory effects depended almost exclusively

on the interstimulus interval. Liu et al. (2010) also identify nonlinear vascular

responses to neural activity when stimuli were spaced less than 4 seconds apart.

They attributed this to a vascular refractory effect that is dependent on both the

interstimulus interval as well as the absolute level of the BOLD response to a single

stimulus.

2.4.3 Temporal Resolution & Functional Connections

The temporal resolution of fMRI analyses is limited by the signal-to-noise ratio

associated with acquisition as well as the temporal characteristics of the

hemodynamic BOLD response (Kim et al., 1997). On a 1.5T scanner, Bandettini

et al. (1993) demonstrated that separable hemodynamic response to a finger tapping

task could be made when the interstimulus interval was 8.0 seconds. When the

interstimulus interval was 4.0 seconds, control versus tapping responses could not be

separated. The resolution can be improved by employing signal averaging

techniques, when the noise is Gaussian. Kim et al. (1997) extended these studies

using a 4T scanner and found that temporal resolution increased to 3.0 seconds

within a single area, confirming that the signal-to-noise ratio increases for high field

scanners.

The temporal resolution within an individual area, which allows separation

of two different stimuli, is significantly different than the temporal resolution

between areas. When BOLD signals evolve in areas with differing time courses, the

changes may not reflect differences in the neural events since, the hemodynamic

response is influenced heavily by the vascular architecture. If the hemodynamic

response time for all areas were equivalent, the order of neural activity could be
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determined from fMRI acquisition unequivocally.

Determining the relative order of neural activity given a stimulus is useful, in

that it can provide an estimate of the topology that connects activated cortical

areas (i.e. functional connectivity). In addition, it provides information regarding

the order in which neural areas are incorporated into and subsequently removed

from the act of neural processing (Nair, 2005). That is, it provides an estimate of

the temporal activity of large populations of neurons.

2.4.4 Effect of Excitatory/Inhibitory Connections

Both excitatory and inhibitory neural activity have been shown to evoke positive

changes in the hemodynamic response (Attwell and Iadecola, 2002; Cauli et al.,

2004; Fergus and Lee, 1997). Somewhat contradictorily, inhibitory connections have

also been shown to induce decreases in the hemodynamic curve (Shmuel et al., 2006;

Stefanovic et al., 2004). Bartels et al. (2008) hypothesizes that these contradictory

results are due to different types of inhibition: either directly or via interneurons.

Logothetis (2008) has proposed that increases in the BOLD signal may result

from changes in the relative balance of excitatory and inhibitory connections in a

network. Balanced changes in inhibitory-excitatory levels, for instance, may result

in increases in spontaneous spiking without a net increase in stimulus-related

spiking activity. Logothetis (2008) also notes that changes in the BOLD response

due to changes in excitatory-inhibitory connections likely depends on the underlying

cortical area and its structure.
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3 MODELING FRAMEWORK

Current research in the area of computational neural modeling has shown that

populations of recurrently connected neurons can provide a maximum likelihood

estimate of encoded signals (Deneve et al., 1999). While recurrently connected

network topologies provide impressive results, the construction of many published

neural models is not based on available neurophysiology. Due to the inherent

history associated with directed cycles of neuron connections, stability of the neural

systems can pose problems for researchers seeking to develop recurrent models. In

addition, the prevalent use of rate-based models in recurrent network simulations

may affect the overall network dynamics as temporal changes in spike patterns in

the millisecond regime are difficult to represent in rate-codes estimated from tens of

milliseconds.

In order to accurately capture the neural dynamics of cortical networks, we

describe a spike-based modeling architecture capable of specifying neural networks

with directed cycles. At a high level, this architecture consists of a single encoding

model, capable of describing neuron responses in connected networks. In section 3.1,

we initially assume that neurons are independent (i.e. their spiking activity does not

contribute to other simulated neurons). Section 3.2 extends the independent

encoding model to incorporate neuronal input due to interneuron connections.

3.1 Independent Neuron Stimulus Encoding

This section describes a biologically plausible neural model capable of encoding a

presented stimulus. This model assumed that each neuron independently encodes
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the presented stimulus (i.e. neuronal spiking does not affect the input of any other

neurons).

3.1.1 Neuron Model

We elected to use leaky integrate-and-fire (LIF) neurons as a convenient encoding

model that provides sufficient biological plausibility while maintaining

computational tractability for large populations. The LIF neuron has a long history

of use in biologically plausible neural models (Arbib, 2002; Koch, 2004). In

addition, the LIF model provides similar results in the limit of more

computationally demanding conductance-based models (Partridge, 1966). Other

spiking models (e.g. Hodgkin-Huxley or Izhikevich) could be used.

Deterministic LIF Firing

The LIF membrane voltage, Vj(t), of the j-th neuron in response to an input

current, Jj(t), can be found by integrating

dVj(t)
dt

= 1
Cj

(
Jj(t)− Vj(t)

Rj

)
, (3.1)

where Cj and Rj represent the neuron’s membrane capacitance and resistance,

respectively. We use the RC time constant, τRCj ≡ RC, to rewrite Equation 3.1 as

dVj(t)
dt

= − 1
τRCj

(Vj(t)− Jj(t)Rj) . (3.2)

Solving Equation 3.2 for the time-varying neuron voltage, Vj(t), yields

Vj(t) = Jj(t)Rj

(
1− exp(−t/τRCj )

)
, (3.3)
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assuming that Jj(t) is approximately constant over the interspike interval. When

Vj(t) in Equation 3.3 crosses a voltage threshold, V th
j , a spike is generated at time

tn. As described in Section 2.1.1, the response of each neuron over time can be

represented by a train of Dirac delta functions, given by

aj(t) =
∑
n

δ(t− tjn) , (3.4)

where tjn corresponds to the time of the n-th spike for the j-th neuron. After

spiking, the neuron enters an absolute refractory period whose length is τ refj . While

in this refractory period, voltage integration does not occur.

As described above, a spike occurs after some time, tthj , by eliciting a neuron

voltage greater than or equal to the threshold voltage. Solving Equation 3.3 for the

temporal location of this spike,

V th
j = Jj(t)Rj

(
1− exp

[
−tthj /τRCj

])

tthj = −τRCj ln
(

1− V th
j

Jj(t)Rj

)
. (3.5)

The instantaneous firing rate, r̃j(tthj ), can then be found by noting that the

interspike interval (ISI) is the reciprocal of the time it takes to reach threshold, tthj ,

and the absolute refractory period, τ refj , such that

r̃j(tthj ) = 1
tthj + τ refj

. (3.6)

As noted by Eliasmith and Anderson (2002), the instantaneous firing rate as a

function of time can be found by substitution of 3.5 into 3.6:

r̃j(t) = 1

τ refj − τRCj ln
(
1− V thj

Jj(t)Rj

) . (3.7)
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By Ohm’s law, we note that J thj = V th
j /Rj, which allows simplification to

r̃j(t) = 1

τ refj − τRCj ln
(
1− Jthj

Jj(t)

) . (3.8)

Poisson LIF Firing

We note that the response of each neuron using Equation 3.3 is deterministic,

varying only as function of the input current, Jj(t). Available neurophysiology

indicates that neuron rate responses elicited by a constant stimulus vary in a

Poisson-like fashion (Koyama and Kass, 2008). We modified the deterministic LIF

model to produce inhomogeneous Poisson distributed spike trains.

Poisson distributed spike trains of encoded stimuli can be rudimentarily

obtained by perturbing the timing of each action potential. When a spike occurs, a

measure of the instantaneous rate, r̃(tth), can be determined using the reciprocal of

the preceding interspike interval. This estimate of the instantaneous rate is then

used as the mean of a Poisson distribution given by

g(r̃, k) = r̃kexp(−r̃)
k! . (3.9)

A new instantaneous rate is randomly drawn from the Poisson distribution and the

current spike’s interspike interval is recalculated as the inverse of the new

instantaneous rate. Figure 3.1 shows a plot of the mean spike rate and variance for

a population of 150 neurons using this modified LIF model, where each neuron was

presented with its preferred stimulus. The red line denotes a Poisson distributed

response in which the mean equals the variance. It is important to note that the

linear regression line associated with the instantaneous firing rates would not

correspond exactly to a Poisson distributed response. This discrepancy is due to the

inability to jitter firing times beyond the next spike (i.e. spike times can only
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Figure 3.1: Mean and variance of the instantaneous firing rates for a population
of 150 neurons with Poisson spike statistics presented with their preferred stimulus.
Maximum firing rates were uniformly distributed between [40, 80] Hz. Instantaneous
firing rates were calculated using the reciprocal of the interspike interval. The line
denotes a Poisson distributed response in which the mean equals the variance. The
figure is reproduced from Herzfeld and Beardsley (2010).

become shorter not longer) since the temporal sequence of action potentials must be

maintained. While the responses are not exactly identical to a Poisson distribution,

they do provide a good analog to Poisson firing using a post hoc method.

In order to elicit Poisson distributed spike trains which do not depend on the

absolute timing of preceding spikes, which may not be available in some

computational frameworks, we derive an additional method for spike generation.

Provided the input current is roughly stationary over the integration interval (∆t),

we use Equation 3.3 to solve for the temporal location, n, of the next spike, tthj .

Therefore, a single spike exists over the interval of duration, tthj + τ refj . With a

sufficiently small timestep, such that r̃j∆t ≤ 1, the probability of observing a

particular spike during this interval is approximately r̃j∆t. The exact position of a

Poisson spike can then determined by evaluating the output of a uniform random

generator from the interval [0, 1]. When the generated random number is less than

or equal to the product of r̃j∆t, a spike is generated.

Additional noise can be introduced into the encoding model by supplying an
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additive noise to the input current. However, it is difficult to guarantee Poisson

distributed instantaneous firing rates using this approach since the current is first

passed through the nonlinear LIF neuron model before spikes are generated.

Therefore, even if Poisson noise were added to the neuron input current, the spiking

output of the neuron model would not be Poisson distributed.

Other Neural Models

We used LIF neurons as the basis for the encoding model. However, the modeling

framework is general enough to incorporate other spiking neuron models, including

multi-compartment and canonical models. A neuron model must posses two

properties for successful inclusion in the modeling framework. First, the neuron

must be capable of describing the instantaneous firing rate in terms of an input

current (refer to Equation 3.3). Second, the neuron model must generate discrete

action potentials.

3.1.2 Stimulus Response Profile

The total input current to a neuron, Jj(t;S), whose value is a function of both time

and a multi-parameter stimulus, S, can be defined as

Jj(t;S) = Jj(t;S) + Jspikej (t) + Jnoise(t) , (3.10)

where Jdj is the driving current due to stimulus presentation, Jspikej accounts for the

contribution of the spiking activity of connected neurons, and Jnoisej (t) reflects

stimulus non-specific input currents that contribute to the neuron’s background

response. In order to define the input currents independent of the chosen neuron

model, we normalized Jdj and Jspikej such that both quantities are less than or equal
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to one. We redefine Equation 3.10 to account for these normalized quantities,

Jj(t;S) = α
[
βJj(t;S) + Jspikej (t)

]
+ Jnoise(t) , (3.11)

where α relates the normalized Jdj and Jspikej quantities to units of current, and the

value of β serves to define the relative contributions of the driving and spiking

currents to the total current. When neurons are unconnected, Jspikej = 0 and β is

assumed to be equal to one.

A stimulus response profile, F (t;S), relates the multiparameter stimulus, S,

to the normalized driving current. This function serves to include neural and/or

sensory inputs from neurons which are not explicitly incorporated into the model

via an equivalent input current. Therefore, the presentation of a stimulus results in

a change of the membrane driving current of a neuron,

Jd(t;S) = F (t;S) , (3.12)

whose amplitude is defined by the neuron-specific stimulus response profile. The

underlying structure of F (t;S) is based on the modeled cortical area.

Since a neuron may respond to multiple dimensions of a stimulus differently,

the stimulus response profile, F (t;S) may also define the functional relationships

between each dimension of the stimulus and the driving current. For instance,

neurons in the primary motor cortex have been shown to response linearly with

respect to the speed of an intended movement (Moran and Schwartz, 1999; Paninski

et al., 2004). The neuron responses to the direction of movement has also been

shown to be well characterized by a von Mises curve (Amirikian and Georgopoulos,

2000). While Equation 3.12 allows for arbitrary transformations between the

multidimensional stimulus and the driving current, we note that the relationship is



40

typically multiplicative. A multiplicative transformation,

Jd(t;S) =
N∏

k=1
Fk(t;Sk) , (3.13)

where k is the index in the N -dimensional stimulus space, provides a simple way to

encode multiple stimuli (or multiple features of the same stimulus). This type of

encoding is seen in primary motor cortex as well as gain fields in the posterior

parietal cortex (Dayan and Abbott, 2001).

In order to define synaptic currents independently of the underlying neuron

model, we have constrained Jd ≤ 1. When the neuron is presented with its preferred

stimulus, Spref , the neuron should fire at its maximum response, Rmax. If we ensure

that F (t;Spref ) = 1, then we can find a scaling factor, α, which relates the input of

the neuron when presented with its preferred stimulus to its maximum response. In

the case of a leaky integrate-and-fire neuron, as presented in Section 3.1.1, α can be

determined explicitly by substitution into Equation 3.3,

αj =
J thj

1− exp
(
τrefj Rmaxj −1
τRCj Rmaxj

) − Jnoisej . (3.14)

When the neuron is not presented with a stimulus, the driving current will be

identically zero, Jdj (t;S) = 0. In the case where neurons are unconnected, Jspikej = 0,

only Jnoisej (t) contributes to the background responses of the neurons.

3.1.3 Validation

We present a case study which seeks to validate the stimulus encoding framework

presented in Section 3.1. We constructed a neural network model featuring 1,000

independent neurons, in which maximum responses, Rmax
j , were assigned randomly

from a uniform distribution between 40 and 100 spikes/sec. Neuron background rate
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responses were assigned at 10% of the neuron’s maximum response. RC integration

time constants were assigned from a uniform distribution between 10 and 30

milliseconds. The absolute refractory period of each neuron was assigned uniformly

from [2, 5] ms. Neuron spiking responses were Poisson distributed using the

methods outlined in Section 3.1.1.

Each of the neurons was assigned a Gaussian stimulus response profile,

Fj(S; t) = exp

−(S − Sprefj )2

2σ2
j


 , (3.15)

where S represented a supplied stimulus in the [0, 2π] polar space and σj represents

the standard deviation of the Gaussian profile. Neuron preferred directions, Sprefj ,

were uniformly distributed within the [0, 2π] polar space. Standard deviations in

the direction tuning profiles were distributed randomly from π/4 to π/2 radians. A

stimulus located at π radians was supplied to all neurons in the population for the

duration of the simulation.

Neuron responses were simulated for a total of 50 seconds with quarter

millisecond temporal resolution. Spike trains were recorded from all neurons in the

simulation to facilitate analysis of spiking statistics in response to the supplied

stimulus. The original source code for this independent model is provided in

Appendix 7.1.

Figure 3.2 shows the normalized firing rate for the unconnected Poisson

simulation plotted against neuron preferred stimulus directions. The figure shows

the total spike count for each of the 1,000 neurons normalized to Rmax
j × T , where T

is the total simulation duration (50 seconds), resulting in a normalized neuron rate

responses from [0, 1]. Neurons whose preferred stimulus was near π radians show

responses near 1, indicating that these neurons are firing near Rmax
j . Neuron

responses at 0 and 2π radians show a range of normalized firing rates. The upper
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Figure 3.2: Normalized firing rates from independent Poisson neurons. Each neuron
was Gaussian tuned to the stimulus defined in a polar space, with maximum responses
ranging from [40, 100] Hz. The spike count of each neuron across the simulation
has been normalized to its maximum response times the simulation duration (i.e.
Rmax
j × T ) to scale responses to the same range.

and lower bounds of this range correspond to Gaussian curves with standard

deviations of π/2 and π/4, respectively.

An additional simulation was constructed with identical parameters to those

described above, except we used the deterministic LIF neuron model described in

Section 3.1.1. The simulation results are provided in Figure 3.3. Figure 3.3 is very

similar to Figure 3.2, which is expected since stimulus response properties and LIF

parameters were matched between the two sets of simulations. Of note, however, is

the response of the neurons near their background firing rate. In the case of the

deterministic LIF neurons, neurons do not response at rates lower than 0.1

(normalized). This value corresponds to the 10% background rate assigned to each

neuron. In the Poisson distributed LIF neurons, neuron rate responses neuron

whose preferred directions were near zero radians do fire at rates less than 0.1

(normalized). This discrepancy between the two populations is due to the

distribution of interspike intervals in the case of Poisson-modified neurons, which,

due to their random nature, allows normalized average firing rates less than 0.1.
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Figure 3.3: Normalized firing rates for a simulation featuring unconnected determinis-
tic leaky integrate-and-fire neurons. Identical to the Figure 3.2, neurons were assigned
Gaussian stimulus response profiles with maximum responses ranging from [40, 100]
spike/sec. The total spike count of each neuron was normalized to its maximum
response times the stimulus duration (i.e. Rmax

j × T ).

(a) (b)

Figure 3.4: Firing rate probability density functions for deterministic and Poisson LIF
unconnected neurons. Neuron parameters were identical to the simulations results
shown in Figures 3.2 and 3.3 except that the simulation time was increased to 1,000
seconds. Firing rate probability density functions are plotted for a representative
neuron with a preferred stimulus near π radians. The neuron’s maximum response,
Rmax, was 95.1 spikes/sec. The red line in each plot shows a Poisson distribution
centered at 95.1 spikes/sec. a) Probability density function for the deterministic LIF
neuron model. b) Probability density function for the Poisson LIF neuron model.
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We performed an additional series of simulations with a maximum time of

1,000 seconds. Once again, a stimulus located at π radians was supplied to all

neurons for the duration of the simulation. We increased the simulation time in

order to obtain an accurate estimate of the probability density function for the

firing rates of the Poisson neurons. The results for both the deterministic and

Poisson LIF neurons are shown in Figure 3.4. The red line in each plot shows a

Poisson distribution centered at 95.1 spikes/sec, corresponding to this representative

neuron’s maximum response. The distribution of firing rates in the deterministic

LIF case is very narrowly distributed about the neuron’s maximum response. In

contrast, the Poisson neuron model shows a distribution of firing rates that is close

to the ideal Poisson distribution (red line).

3.1.4 Conclusions

As previously noted, this encoding model assumes that neurons encode the stimulus

independently. In this simplistic case, the neuron response profile is identical to the

stimulus response profile since lateral (recurrent) and feedback connections are not

included in the network model. While this simplistic case violates a central

motivation of biologically constrained neuron network modeling, mainly that

networks of connected neurons perform computation, the model does provide a basis

for more complicated network topologies. A rigorous extension to this model is

described in Section 3.2 in which lateral and feedback connections are incorporated

into the model architecture.

The independent encoding model, however, can capture numerous aspects of

neurophysiology without recurrent or feedback connections. For instance, gain

modulation, found in several cortical areas, included the primary motor cortex and

the visual cortex can be modeled without including any explicit connections

between simulated neurons. As an example, Pouget et al. (1995) describe gain
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Figure 3.5: Gain modulation of a neuron in the posterior parietal cortex. The neuron’s
normalized response is shown as a function of both retinotopic position as well as the
position of the eye within the orbit. Neuron responses are similar to those described
in Pouget et al. (1995).

modulation of neurons in the posterior parietal cortex. These neurons show

responses that are Gaussian tuned to the retinotopic coordinates of an object and

simultaneously sigmoidally related to the location of the eye within the orbits. Such

a neuron response can be accomplished by defining

Fj(t;S) = exp

−(Sr − Sprefjr )2

2σ2
j




 1

1 + exp(−γj[Se − Sprefje ])


 , (3.16)

where Sr represents the retinotopic coordinates of the object, Se is the position of

the eye within in the orbit, σj describes the standard deviation of the Gaussian

response, and γj describes the width of the sigmoid. The neuron responds

maximally when S = {Sr, Se}. A neuron with this stimulus response profile is shown

in Figure 3.5.

3.2 Stimulus Encoding in Recurrent Networks

In this section, we extend the independent encoding model presented in Section 3.1

to allow synaptic input due to directed connections between neurons. Synaptic
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connections from the i-th to the j-th neuron are assigned a scalar weight, denoted

wij. With the addition of connections between neurons, the value of Jspikej in

Equation 3.10 is no longer constrained to be zero.

Representing the spiking of the i-th neuron at time tn as a Dirac delta

function, the j-th neuron’s input due to the spiking can be written as

Jspikej (t) =
∑

i

∑
n

δ(t− tin) ∗ wijhj(t− T delayij ) , (3.17)

where hj(t) is a post-synaptic current filter and T delayij represents the transmission

delay associated with the synapse. This relationship can also be written in terms of

the action potential train of the i-th neuron, ai(t), as

Jspikej (t) =
∑

i

ai(t)wijhj(t− T delayij ) . (3.18)

The post-synaptic current filter, hj(t), is well characterized as a simple exponential

(Equation 2.11) due to the low-pass filtering effects associated with transmission of

an EPSP/IPSP across the synaptic cleft.

Synaptic weights can be assigned functionally using wij = H(κĳ), which

compares a vector of neuron response properties, κĳ, such as stimulus tuning or

spatial location, specific to the presynaptic and postsynaptic neurons. The function,

H, may be structured (e.g. a difference of Gaussians curve) or unstructured via the

output of a pseudorandom number generator.

Given the definition of mean firing rate from Equation 2.5, the steady state

input at j due the firing of i is directly proportional to the i-th neuron’s

time-varying firing rate, ri(t;S). Therefore, the input current to the j-th neuron is

given by

Jspikej = lim
T→∞

1
T

∫ T

0
wijri(t;S)hj(t)dt . (3.19)
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Table 3.1: Expected behavior of the neural network model to stimulus conditions.
For connected populations of neurons, we make the assumption that the population
is sufficiently large to produce the desired network response. The opposite case, where
neurons are unconnected (i.e. independent), assumes that the conditions are defined
by the independent encoding model, as outlined by Section 3.1.
Stimulus Condition Connections Model Response
No stimulus Independent All neurons fire at the assigned background

rate, Rback, where Rback is related to Jnoise

through the neuron model.
No stimulus Connected All neurons fire at the assigned background

rate, Rback, where Rback is related to Jnoise

through the neuron model.
Spref

j Independent All neurons fire at the assigned maximum re-
sponse rate, Rmax.

Spref
j Connected Neurons perform a maximum likelihood esti-

mate of the stimulus. Maximum population
responses are defined by Rmax

j .

This reduces to Jspikej = wijri(S), provided the area of the post-synaptic current

filter is normalized to one,
hj(t)∫ T

0 hj(t)dt
, (3.20)

and the stimulus is approximately constant over the filter length.

Given conventions in neurophysiology studies as well as other connected

neuron models, we define the behavior of a neural network when presented with

various stimuli, S. The behavior of the network is defined in terms of neuron

steady-state mean rate responses, limT→∞ r(T ;S), where, for convenience, we

restrict S to be constant over time T . These steady-state responses are described in

Table 3.1. In the case where neurons are assumed to be independent, the neuron

behavior is dictated by the independent encoding model, as described in Section 3.1.

The remainder of this section serves to define synaptic weights in order to elicit

these steady-state rate responses.
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3.2.1 Neuron Background Responses

As described in Table 3.1, many models incorporate an estimate of a neuron’s

background response, corresponding to the nominal activity of the neuron,

independent of the presented stimuli. Identical to Section 3.1, it is assumed that

this activity is due to synaptic input that is not accounted for directly by other

modeled neurons. This stimulus-independent activity is incorporated via a nonzero

value of Jnoise in Equation 3.10.

When the network is not presented with a stimulus, the driving input, Jd, is,

by definition zero. However, synaptic connections still exist within the network,

providing input via Jspike. Therefore, when neurons in the network are firing at

their background rates, we must ensure that the spiking input, Jspike(t) ≈ 0 (i.e. the

only contribution to the overall membrane current is due to Jnoise). The mean

spiking input from all other neurons firing at their background rates is given by

bspikej =
∑

i

wijrj(0) , (3.21)

where 0 represents a lack of a stimulus and rj(0) corresponds to the j-th neuron’s

rate response due only to Jnoise. We use this background input to define a constant

offset in the weight profile,

woj =
bspikej

r̄j(0)M , (3.22)

where M is the number of incident synapses and r̄j(0) is the mean background

firing rate of all connected neurons:

r̄j(0) = 1
M

M∑

i=0
ri(0) . (3.23)

This offset effectively balances the network’s excitation and inhibition at

background. The modified weight is given by wij − woj .
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3.2.2 Neuron Maximum Responses

Given the constraint that βJd(t;S) + Jspikej (t) ≤ 1, we note that

βJd(Spref ) + Jspike(Spref ) ≈ 1, when a neuron is presented with its preferred

stimulus. The magnitude of the incident synaptic weights can then be scaled by

evaluating the response of the i-th neuron at the j-th neuron’s preferred stimulus,

wscaledij = wij
1− βJdj (Spref

j )
∑
iwijri(Spref

j )
, (3.24)

where wscaledij represents the normalized synaptic weight.

3.2.3 Neuron Response Profiles

In practice, it may difficult to evaluate ri(Spref
j ), particularly in a recurrent network

where the i-th and j-th neurons may be bidirectionally connected. However,

provided the modeled neural network is sufficiently large (thousands of neurons),

the contribution of the i-th neuron’s response to itself through its interaction with j

is small (i.e. wijwji ≈ 0). Computationally, this is equivalent to a common

assumption of mean field models: for a neural population that is sufficiently large,

incident synaptic activity is not correlated (Deco et al., 2008). This dramatically

simplifies the evaluation of ri(S), for arbitrary stimuli.

The neuron response profile can then be determined explicitly given the

neuron stimulus response and the connection topology among neurons, since the

inputs are decoupled. This allows the specification of spiking neuron responses in

terms of the familiar rate-based neuron response curves typically reported in

neurophysiology studies, Therefore, the overall neuron response curve, typically

measured in neurophysiology studies, can be found by substitution of Equation 3.19
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into Equation 3.10,

rj(S) = αj

(
Fj(S) +

∑

i

wijαi

[
Fi(S) +

∑

k

wikrk(S)
]

+ Jnoisej

)
, (3.25)

or equivalently,

rj(S) = αj

(
Fj(S) +

∑

i

wijri(S) + Jnoisej

)
, (3.26)

The synaptic weights can be computed offline and then be used to obtain response

profiles specified a priori for each neuron.

3.3 Case Studies

We provide examples from two case studies which illustrate how the modeling

framework can be used to derive synaptic weights in order to elicit physiological

responses in recurrent spiking neural networks. Again, we used leaky

integrate-and-fire neurons as a convenient encoding model, however other spiking

models can be used.

3.3.1 Single Layer Model

The first model consisted of a single population of 100,000 neurons featuring

recurrent connections. Each neuron was assigned a Gaussian stimulus response

profile,

Fj(t;S) = exp

−(S − Sprefj )2

2σ2
j


 , (3.27)

where Sprefj was the neuron’s preferred stimulus and σj was the standard deviation

of the response profile in the stimulus space. Preferred stimuli were uniformly

distributed within the [0, 2π] polar space. Standard deviations were randomized

across the population and uniformly distributed between [π/8, π/4] radians.
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Neurons’ maximum response to their preferred stimuli were chosen from a uniform

distribution between 40 and 80 spikes/second. The bias current, Jnoise, was selected

to produce a background firing rate that was 10% of the neuron’s maximum

response.

Recurrent connections among neurons were characterized by a Gaussian

profile whose standard deviation was matched to the neuron’s stimulus response

profile, σj. Each neuron featured 10,000 pseudorandomly selected efferent synapses;

the model, therefore, featured 109 total synapses. The synaptic weights were offset

and scaled using the framework presented in Section 3.2. Figure 3.6(a) provides a

schematic diagram of the neural network structure. The complete simulation

specification code can be found in Appendix 7.2.

Figure 3.6(b-c) shows the results of a three second simulation. During the

first second, no stimulus was supplied, allowing all neurons to spike at their

background rates. A stimulus located at π radians was then supplied to the

population for one second. The neuron shown in Figure 3.6 was assigned a preferred

stimulus close to the presented stimulus, Spref ≈ π, and thus has a response near its

assigned maximum. When the input stimulus was removed during the final second,

neuron responses returned to baseline levels within 20 ms. Responses across the

population show a Gaussian profile; neurons which preferred a stimulus of

approximately π radians feature spike rates near their maximum response.

3.3.2 Cue Integration Model

In a second series of simulations, we used the modeling framework to characterize

the temporal dynamics of cue integration. Using as a basis the rate-based model of

cue integration proposed by Pouget and colleagues (Deneve et al., 2001; Avillac

et al., 2005), we modeled the transformation of an object coded in eye-centered

(retinotopic) coordinates, xr, into head-centered coordinates, xh. Provided the
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Figure 3.6: Neuron and population responses in a single layer recurrent spiking
network. a) Schematic diagram depicting the structure of the network model. All
neurons received an identical external input stimulus. Recurrent (lateral) connections
existed between neurons in the population. b) Mean rate responses across the popula-
tion for 1,000 randomly chosen neurons during presentation of a stimulus at π radians.
Neuron rate responses are normalized to their respective maximum responses. c) In-
stantaneous firing rates, defined as the reciprocal of the interspike interval, plotted
against time for a neuron which prefers a stimulus located at π radians. The stimulus
was supplied from 1 to 2 seconds. The apparent anticipatory response of the neuron
is due to the plotting of the instantaneous firing rates as a continuous function. The
neuron does not actually spike until after the stimulus is supplied at 1 second.

position of the eye within the orbit, xe, is known, the head-center coordinates of the

object can be found by xh = xr + xe.

Three neural populations, each consisting of 5,000 neurons, were used to

encode head, eye, and retinotopic position of an object. Bidirectional connections
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between these populations and an integration layer of 20,000 neurons followed

difference of Gaussian profiles,

wein = Ke
−(Spref

ei
−Sprefen )2

2σ2
n − e

−(Spref
ei

−Sprefen )2

4.5σ2
n

wrjn = Ke

−(Spref
rj

−Sprefrn )2

2σ2
n − e

−(Spref
rj

−Sprefrn )2

4.5σ2
n

whkn = Ke
−(Spref

hk
−Sprefen −Sprefrn )2

2σ2
n − e

−(Spref
hk

−Sprefen −Sprefrn )2

4.5σ2
n , (3.28)

where Sprefei , Sprefrj , and Sprefhk correspond to the preferred eye, retinotopic, and head

position of the i-th, j-th, and k-th neurons in the respective populations, wein

indicates the synaptic weight from the i-th neuron in the eye position layer to the

n-th neuron in the intermediate layer, and σ is the standard deviation of the

connection topology associated with the destination population. Similarly, wrjn

denotes the connection for the j-th retinotopic layer neuron to the n-th intermediate

layer neuron. Connection weights from the head-centered layer, whkn, were

preferentially connected to neurons in the intermediate layer with preferred stimuli

Sprefe +Sprefr . Figure 3.7 shows a schematic diagram of the neural network structure.

To facilitate comparisons with the rate based model from Deneve et al.

(2001), each neuron was assigned a maximum response of 80 spikes/sec. We note,

however, that the modeling framework does not required uniform maximum

responses, as demonstrated by the first case study. Standard deviations in the

stimulus response profile were uniformly distributed from [π/16, π/8] radians across

neurons. Coupled with randomly initialized membrane voltages as well as bias

currents, this resulted in an initial noise that was greater than provided in Deneve

et al. (2001) (Figure 3.8). All other neuron properties, were assigned as in the first

case study. The specification of this simulation can be found in Appendix 7.3.

Neuron responses were simulated for one second, during which the driving

input, Jd, supplied by Gaussian stimulus response profiles, provided a clamped
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Figure 3.7: Schematic diagram of the neural network implemented to perform cue
integration. Three unimodal populations encoded head, eye, and the retinotopic
position of an object. An external stimulus was supplied to both the eye-centered
and eye-position populations. Bidirectional connections existed between the three
unimodal populations and an integration layer. The structure of the network was
similar to a rate-based model of cue integration proposed by Deneve et al. (2001).

input of at most 20% when a neuron was supplied with its preferred stimulus. The

remaining 80% of input at a neuron’s preferred stimulus was supplied by lateral

connections. This ratio of inputs is consistent with those presented in auxiliary

simulations from Deneve et al. (2001) as well as cortical anatomy (Braitenberg and

Schuz, 1991).

Figure 3.8 shows the mean firing rates for each of the neural populations

when inputs to the eye-centered and eye position populations were -20◦ and 20◦.

The network was successfully able to perform cue integration, resulting in smooth

hills of activity that stabilized within 50 ms.

There are two primary differences between the model supplied in Deneve

et al. (2001) and the model implemented here: first, we used spiking neurons as

opposed to rate-based basis function units. Second, the activity in the neural
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Figure 3.8: Neuron steady-state responses for a recurrently connected spiking net-
work performing cue integration. The basic network structure has been described
previously in Deneve et al. (2001). A driving input, Eq. 3.27, supplied a neuron with
at most 20% of its total current at the preferred stimulus. The remaining 80% of the
input at Spref was supplied by recurrent connections. The network was initialized
with noisy rate responses due to randomized initial voltages and a bias current, Jnoise.
Neural responses stabilized to smooth hills of activity in less than 50 milliseconds.
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network described by Deneve et al. (2001) was initialized using a noisy probability

density function and then allowed to relax over three iterations. These iterations

cannot be directly linked to an absolute timescale; the spike-based model explicitly

incorporates time, allowing future characterization of the temporal dynamics

associated with cue integration tasks.

3.3.3 Conclusions

Using numerical simulations, we have developed a framework to specify connection

weights in arbitrarily connected recurrent spiking networks, based on physiologically

defined response characteristics. In particular, the background and stimulus-specific

maximum responses of a neuron can be guaranteed when incident synaptic inputs

are uncorrelated. This technique decouples the steady-state neuron responses from

the connection topology, allowing a priori scaling of weights to elicit physiologic

responses.

The primary assumption which allows us to dissociate neuron stimulus

response profiles from the connection topology is that the neural population is

sufficiently large to decouple incoming synaptic inputs. As the number of efferent

connections per neuron increases, the contributions of secondary recurrent loops

decreases quickly (i.e. wijwjk → 0, for arbitrary i, j, and k). We have found that

population sizes on the order of thousands of neurons with several thousand efferent

connections per neuron provides sufficiently small weights to support this

assumption.

Most mean-field models of aggregate neural population activity assume that

synaptic inputs are not correlated (Deco et al., 2008). Our approach validates this

assumption in steady-state conditions for suitably large populations. More

importantly, if facilitates the use of spike-based neural network models to

characterize the dynamics of neural processing within populations. For example,
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investigation of the temporal dynamics associated with the onset of stimulus

presentation can be examined in an absolute timescale using the presented

framework.

3.4 Modeling Framework Implementation

We implemented the modeling framework as a series of scripts which specify neural

networks in terms of neuron steady-state responses. These scripts define abstract

classes which are necessary for specification of simulation parameters. These classes

include populations (groups of similar neurons), individual neurons, stimulus

response relationships, and stimuli. The scripts provide several specific

implementations of these abstract classes. For instance, the framework provides

neuron models for both the LIF and Poisson distributed LIF neurons. Additional

types of neurons can be specified by extending the abstract “neuron” class for the

new model. The framework typically provides the user with a minimum of three

files which can be later used to construct and simulate the network. First, an XML

file which specifies all of the neuron parameters is required as an input to the

simulator (refer to Section 4.2.1 for more information). In addition, when custom

network connection functions are used (i.e. different F (S; t)), the implemented

modeling framework typically outputs a file listing the weighted synaptic

connections among neurons. Finally, one or more stimuli files are usually used as

neuronal inputs during simulation runs. Examples of the scripts used to generate

these files are provided in the Appendices.
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4 COMPUTATIONAL FRAMEWORK

There are numerous existing neural simulation packages available, however most are

focused on a particular spatial or temporal scale. Therefore, implementation and

evaluation of the modeling framework described in Chapter 3 necessitated the

creation of a novel simulator which allows construction of large populations of

connected spiking neurons across various spatiotemporal regimes. The

implementation of this simulator is intentionally generic, allowing the simulation of

various network topologies using differing neuron models. Therefore, we refer to this

simulation environment generically as a “computational framework.”

Due to the computational demands associated with simulating large

populations of spiking neurons, where each neuron is characterized by one or more

differential equations, the computational framework is designed to take advantage of

high performance computing abilities when available. Incorporation of high

performance computing techniques provides two primary benefits compared with a

single system/process implementation. First, the evaluation of the differential

equations describing each neuron can be divided across multiple processes using

message passing techniques. This can effectively reduce the time required to

perform a simulation. Secondly, the memory requirements of the simulation can be

divided across multiple physical processors or systems. This increases the total

number of neurons that can be simulated. However, the creation of a simulation

environment which uses message passing abilities has several drawbacks. First, the

programming of the underlying simulator may be more complex than a

single-process implementation. In addition, the time required to communicate

messages between processes must be carefully weighted against the advantages of
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performing computations in parallel.

This chapter describes the implementation of a computational framework

which can simulate populations of spiking neurons specified by the modeling

framework. We first describe the general simulation structure and then each of the

components in detail. Particular emphasis is placed upon the portions of the

computational framework which provide advantages in a high performance

computing environment. Finally, we provide a series of benchmarks which evaluate

the simulator for a number of overdriven network models. These benchmarks

provide evidence for the improvements in speed possible using MPI on multiple

processors compared with an identical single processor implementation.

4.1 Simulation Flow

Each simulation can be broken down into two general pieces: initialization and

execution. Both of these pieces can be further subdivided into its constituent

elements which will be described later. Figure 4.1 provides an overview of the basic

steps involved in each simulation. In general, the initialization phase performs any

setup necessary to perform execution of the simulation. This includes reading in a

set of specification files which describe the initial states and characteristics of the

neural populations. During this stage, synaptic connections between neurons are

also constructed. Both the specification and connection files are typically created by

the high level interface described in Section 3.4, as the output of the modeling

framework.

After the neural populations and connection topology have been initialized,

the execution phase begins. The simulation advances using a user-defined fixed

timestep. Each timestep serves to update neuronal inputs and subsequently the

states associated with the differential equations for each neuron. In addition, the
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Figure 4.1: High-level schematic diagram indicating the flow of each simulation.
Each simulation can be divided into two phases: initialization and execution. The
execution phase proceeds using a fixed timestep until the total simulation duration
has been reached. Following execution, there is a brief period of cleanup in which
monitor files are combined.
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spiking outputs for each neuron are distributed to all connected neurons. During

the execution phases, any requested output values, which may include neuron

inputs, states, or time-varying parameters are saved for later offline processing and

review. The execution phase continues until the total simulation time has been

reached. Once the execution phase has completed, a brief clean-up is performed on

the simulation outputs for the convenience of the user.

4.2 Initialization

4.2.1 Simulation Input

The input to the simulation is created by the high-level implementation of the

modeling framework, described in Section 3.4. This specification is stored using the

Extensible Markup Language (XML), version 1.0. The document type definition

(DTD) for the specification of a simulation is shown in Figure 4.2. The DTD is used

to validate the XML specification file prior to parsing. Parsing of the XML

document is performed using the libxml2 parser and toolkit.

4.2.2 Neuron Models

In order to ensure that the computational framework is capable of simulating

different types of neurons, the underlying code was designed to be independent of

the specific neuron model. In Section 3.1.1 we outlined deterministic and Poisson

LIF model neurons. These two neuron models satisfy the general requirements of

inclusion of a neuron model in the computational framework. First, the neuron

model must be capable of accepting synaptic current as its input. Secondly, the

model must be capable of generating events as outputs. Since these events are

assumed to be neuron spikes, which are stereotyped, the temporal profile of these

http://xmlsoft.org/
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Figure 4.2: A graphical representation of the schema used to specify a simulation.
The relationships between each of the DTD elements is provided as arrow labels.
A label of “1” indicates a one-to-one relationship between the parent on the child,
whereas a label of “0..*” indicates a one-to-many relationship. Finally a label of “1..*”
indicates a one-to-many relationship where at least one child is required.

events is unimportant. Rather, the outputs of the neuron model must be capable of

being represented using a single binary event, indicating the presence of absence of a

spike.

4.2.3 Distribution of Neurons

When using multiple processes in a simulation run, the computational framework

attempts to divide the work evenly across all available processes. This is

accomplished primarily by distribution of the neurons across the grid of processes.

Distribution is performed using a round-robin technique, where each neuron is

assigned to a specific process with rank, rank, when rank == i mod N, where i is
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the i-th neuron and N is the total number of processes in the communicator (i.e. the

total number of processes involved in the MPI group). This distribution of neurons

is naïve to the connection topology associated with the neurons as well as the

neuron response properties. However, since the distribution of neurons is known a

priori, construction of the structures required to describe the neural population can

be performed in parallel on all processes in the parallel communicator.

4.2.4 Random Numbers

Many aspects of the computational framework rely on the use of random numbers.

In particular, evaluation of spike times for Poisson LIF neurons (as described in

Section 3.1.1) requires the use of a uniform pseudo-random number generator. In

order to ensure that each of the processes involved in the computation are

sufficiently randomized, a single process is used to define the seeds for every other

process. A benefit of distributing seeds to every process is that it provides

repeatability to the simulations, since only a single random seed need to be

provided. If the user does not supply a random seed, a random seed is determined

automatically using the current system time.

4.2.5 Connection Structure

The simulator contains several built-in connection topologies which can be used by

specifying commandline options. In order to generalize to arbitrary connection

topologies, however, the simulator also provides the ability to read in a connection

structure from a file or pipe. The format of a single connection is shown below:

struct connection {
uint32_t source; /* ID of source neuron */
uint32_t destination; /* ID of destination neuron */
REAL weight;
REAL delay;

};
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where REAL is a 4-byte floating point number and uint32_t is a 32-bit unsigned

integer. Only positive delays are allowed for a connection. This connection structure

allows connections between up to 232 (≈ 1010) neurons. The connection file is

implemented as a binary file due to the file system cost associated with writing an

ASCII equivalent file.

The storage of the connection topology represents a fundamental problem for

the construction of a neural simulator. The problem is two fold: first, the

underlying connection topology may require extensive amounts of memory to store.

Second, since neurons are distributed across processors in a high performance

environment, the connection structure must also be distributed.

In order to reduce the memory requirements associated with storing the

connection topology, we make the assumption that a neural network can be at most

fully connected. This implies that multiple connections with the same source and

destination neurons are not allowed. This is a reasonable assumption given the

duration of the postsynaptic current filters associated with the distribution of spikes

as well as the characterization of neural spike as binary events. In the case where

two connections exist from a single source to destination neuron with equivalent

delays, the weights can be summed to provide equivalent input at the destination

neuron without the cost of storing two connections. If the delays associated with

the two connections are different, the weights of these connections can be summed

as well. However, in this case, the delay associated with the equivalent connection

would be the average of the two original temporal delays, provided each of the

temporal delays is sufficiently smaller than the duration of the PSC filter.

In the case of a simulation which involves the use of multiple processes,

connections are only stored in memory for the process where the destination neuron

resides. Since the connection weight needs to be used to evaluate spiking currents at

the destination neuron, it makes sense that the connection structure would only
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reside with the process which is responsible for the destination neuron. For large

populations, the connection structure represents the largest memory requirement of

the simulation. For instance, a simulation of 100,000 neurons with 10% random

connectivity requires approximately 19 GB of memory to store the connection

topology. However, a simulation of this scale requires approximately 200 MB of

memory to store the neuron parameters. Storage with the process that contains the

destination neuron provides the ability to distribute this large memory requirement

across all processes involved in the simulation.

For large networks, the number of spike events for a simulation can be very

large. Therefore, performing a lookup of the weight associated with particular spike

events for later application to the spiking current represents a potential performance

bottleneck. In order to reduce the computational cost associated with spike

application, the computational framework uses two joint data structures to store the

connection information. First connections are stored in a splay tree, indexed by the

source neuron id. Second, locally connected destination neuron identifiers are stored

within the splay tree as an unrolled list.

A splay tree is a type of binary search tree which adjusts its structure based

on access patterns. Binary search tree operations, such as insertions, removals, and

searches are combined with a splay operation. This operation moves the accessed

element from its original location in the binary search tree to the root of the tree.

Since this splay operation is performed for every access to the splay tree, the more

frequently used nodes will be located near the root of the tree; nodes which are not

frequently access with be located at the leaves of the tree. For non-uniform access to

the nodes, a splay tree can perform insertions, searches, and deletions in amortized

O(log(n)) time, where n is the number of elements in the tree. While the average

time complexity is equivalent to classic binary search trees for these operations, the

splay tree performs better than classic binary search trees for non-uniform access
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patterns. However, since the splay search tree must satisfy the properties of binary

search tree: 1) the left subtree contains nodes with keys that are strictly less than

the node’s key, 2) the right subtree contains nodes with keys that are strictly

greater than the node’s keys, and 3) the left and right subtrees also are also binary

search trees, the performance of a splay tree can deteriorate to O(n) time. This can

occur when access to each of the nodes in the tree are performed in increasing order.

A list of the destination neurons for each source neuron are encapsulated in

an unrolled list, contained in each element of the splay tree. The structure of an

unrolled linked list is similar to a standard linked list, expect that multiple elements

in the list are stored in the same node. A pictorial representation of this data

structure is shown in Figure 4.3. This has several advantages over a standard linked

list implementation. Primarily, the amount of memory required to store the entire

list contents is reduced. In a typical linked list, a pointer to the location of the next

list node in memory must be stored in each node. This pointer may require 4 or 8

bytes. Given the connection structure defined above, this pointer would account for

a minimum of 4 bytes out of 20 total bytes (20% overhead). If the number of

elements in each node is given by M , then an unrolled list need only store a pointer

to the next node in the list N/M times, where N is the total number of elements in

the list. In addition to requiring less overhead to store the connection topology, an

unrolled list provides performance benefits if the total size of the elements in a node

is less than the processor cache size (i.e. this significantly reduces the number of

cache misses associated with a linear traversal of the linked list, since an entire node

can be cached). The primary detriment of an unrolled list, however, is that memory

can be wasted due to unfilled nodes. Given that the connection structure of the

neural network does not change over the course of the simulation, this primary

occurs in the final node of the unrolled list. This fragmentation can significantly

affect memory when the number of neurons is large but the number of connections
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Figure 4.3: A pictorial diagram of an unrolled linked list, used to store synaptic
connections to destination neurons who reside in memory on a particular process.

per neuron is small.

4.3 Execution

4.3.1 Distribution of Spikes

Since neurons may be divide across a number of independent processes, the

communication of events (neural spikes) must occur in lock-step for each process.

Therefore, at the end of every time step, a list of local neurons which posses a spike

event are determined for every process. Each process then communicates the

number of local events to every other process in the communicator. This allows the

allocation of a single array which will eventually contain both the identifiers of the

neurons which had events as well as the temporal location of the spike event relative

to the current timestep. Following allocation of this data structure, a single

collective MPI routine, MPI_Allgratherv, combines the independent list from all

processes.

Once the list of spike events has been obtained, each of the processes must

iterate over every potential source neuron in the event list to determine if there exist

any locally connected destination neurons. Since this search must be performed for

every event, the minimal computational cost associated with evaluating the

distributed spikes is linearly related to the number of spike events. Therefore,

networks which are “more active” (i.e. there is a higher number of spike events) will

require more computational time in the application of the spikes. However, the
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length of this list is limited by the number of neurons in the simulation, which places

an upper bound on the total computational time associated distribution of spikes. If

a connection to a local neuron is found by searching through the splay/unrolled list

data structure, the connection weight is stored with the destination neuron, which

will later be applied to the destination neuron’s spiking current input, Jspike.

4.3.2 Evaluation of Currents

The computational framework calculates values for three separate currents for every

neuron in the simulation. These currents correspond directly to the constituent

elements of the total current, Jj(t;S): the driving current associated with

presentation of a stimulus, Jdj (t;S), spiking currents for modeled connected neurons,

Jspikej (t), and a stimulus non-specific bias current, Jnoisej (t).

Spiking Current

As described in Section 3.2, the post-synaptic current resulting from a spike is the

convolution of a exponential neuron-specific post-synaptic current filter and the

associated connection weight. A circular buffer for each neuron is used to store

intermediate convolution results. In order to ensure that connections with

associated delays are applied at the correct time, a delta queue is used to store this

temporal information. A delta queue is a form of singly linked list in which

successive elements in the list represent spike events that will be applied a given

number of timesteps after the previous link. Insertions into the delta queue require

O(n) time. However, an advancement of the delta queue can be performed in

constant time since only the delay associated with the first item in the queue needs

to be decremented. Since the application of a spike for a particular neuron, in

general, occurs less frequently than a timestep (advancement of the delta queue),
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there is significant computational benefit to using a delta queue as opposed to a

classic queue structure.

Stimulus Response Evaluation

The driving current input to each neuron is determined by evaluating the stimulus

response profile given an input stimulus. The stimulus is most commonly read from

a memory-mapped file. Several built-in stimulus response profiles are provided for

the user, including Gaussian, von Mises, linear, cosine, and sigmoidal. If a leaky

integrate-and-fire neuron in use in the simulation, the user is required to provide

both the values of α and β, where α converts the normalized input to units of

current, and β denotes the relative input of the driving current, Jdj (t;S), to the

spiking current, Jspikej (t).

4.3.3 Monitors

The required output from simulations can differ significantly depending on the

research question which the simulation is used to address. Therefore, numerous

neuron inputs, states, and outputs are capable of being monitored over the course of

the simulation. We refer to these time varying outputs generically as “monitors.”

The cummulative output of the neuron model, corresponding to the number of spike

events generated by that neuron, are always provided to the user. These spike

counts can be used to ensure that the network is performing as expected. For

instance, the number of spikes plotted against the preferred direction of the neurons

in the population can provided an estimate of the population response to a provided

stimulus. The spike counts can also be coarsely compared against available

neurophysiology to ensure that responses are physiologically plausible.

Additional monitors can be used to obtain fine grained information regarding

the dynamics of the underlying neurons in the simulation. These monitors, such as
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the various synaptic current inputs, membrane voltages, and spike trains, provide

information at every time step of the simulation. Therefore, the majority of these

monitors can be represented as a N ×Nt matrix, where N is the number of

monitored neurons and Nt is the total number of timesteps in the simulation

(T/∆t). For simulations in which a large number of neuron parameters must be

monitored or for simulations with a long duration, the size of the monitors can grow

large. Therefore, the monitors are designed to overcome several of the limitations

associated with performing disk I/O on large files.

First, monitors are written in a binary file format. This has the advantage of

significantly reducing the required disk size compared with ASCII text output. In

addition to being written in binary, the structure of the monitors also allows

ordered writes over the duration of the simulation (i.e. binary seeking is not

required to write out the monitors). Second, monitor output is buffered in memory

to reduce the number of disk commits. Third, monitors are written out on a

per-process basis, without the need for an underlying shared file system. The

organization of the monitors allows for combination of per-process monitors into a

global monitor after the simulation has completed. This global monitor can be

created sequentially, without the need to perform binary seeks. Finally, per-process

records can be written using a streaming compression library, since monitor output

is written sequentially.

The global monitor consists of three different pieces. At the very bottom of

the binary file, a binary footer is used to store the size of the binary data types and

the number of records in the file:

struct io_size_footer {
uint32_t num_records; /* Number of records */
uint8_t sizeof_double; /* Size of a double */
uint8_t sizeof_float; /* Size of a float */
uint8_t sizeof_long; /* Size of a long */
uint8_t sizeof_int; /* Size of an integer */
uint8_t sizeof_short; /* Size of a short */
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uint8_t sizeof_char; /* Size of a char */
uint8_t version; /* Revision of the binary footer */
uint8_t checksum; /* File checksum */

};

The majority of the elements in the “size footer” provide the ability to read and

write monitor files on two different machine architectures (i.e. 32 versus 64 bit

systems). Multi-byte elements are always written in little-endian format. Since the

size footer resides at the end of the file and always has a known size, it is

straightforward to obtain the number of records in the file.

Immediately preceding the size footer in the binary file is a series of record

footers. There are as many record footers in the file as there are records, noted by

the num_records field in the size footer. Each record footer notes the location and

matrix dimensions of a record in the file:

struct io_record_footer {
uint64_t offset; /* Record offset from SEEK_SET (in bytes) */
uint64_t length; /* Length (in bytes) of the record */
uint32_t id; /* Record Id */
uint32_t associated_record; /* Associated records */
uint32_t x; /* Length of dimension #1 */
uint32_t y; /* Length of dimension #2 */
uint32_t z; /* Length of dimension #3 */
uint8_t compressed; /* Record is compressed ? */
uint8_t interleaved; /* Third dimension is interleaved with x and y */
uint8_t element_size; /* Size of each element */
uint8_t element_type; /* Float or integer */

};

The offset field provides the location of the start of the record in the preceding

binary file. The length field is used to define the number of bytes in the binary file

occupied by the record in the file. When the file is uncompressed, this number is

equal to x * y * z * element_size. However, if the record is compressed, the length

of the record will be smaller than than this calculated quantity. Compression of the

records is performed during the simulation run on each process by passing the

binary data through the zlib compression library.
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The size/record footer is used rather than a header to allow combination of

per-process monitors using a series of sequential writes. Since a new

io_record_footer needs to be added for every additional record in the file, using a

header is impractical since insertions of this additional record footer would require

the following binary data to shifted.

4.4 Performance Evaluation

The performance of the computational framework was evaluated as the time

required to complete a simulation, measured using the Unix time command. The

framework was run in a high performance environment using one, two, four, eight,

and sixteen processors. Simulation runs which required eight or fewer processors

were performed using a single octcore system. Simulations which used sixteen

processors were divided across two physical systems. The time required to complete

each function call in the computational framework was also determined for each

simulation run using the GNU profiler. All simulations were 10 seconds in duration,

using quarter millisecond timesteps. All reported results represents the mean time

of 5 identical simulations. Input was provided to a single neuron in the network and

synaptic weights were scaled such that a spike of the presynaptic neuron caused the

postsynaptic neuron to spike at the following timestep. This results in an overdriven

network in which the maximum number of spikes occurs given the assigned

connection topology. All neuron characteristic were stereotyped and spiking events

were evaluated using the deterministic LIF neuron model.

Two different network topologies were used to test the performance of the

computational framework (Figure 4.4): ring and randomly connected. The ring

topology has an equal number of neurons and connections. This network features

constant communication overhead since at least one neuron will fire at every
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Figure 4.4: Topologies used to evaluate the performance of the computational frame-
work. a) A ring topology in which neurons with sequential ID’s are connected. b) A
randomly connected network topology with a 100% probability of connection (fully
connected). Neurons are connected to all other simulated neurons, including them-
selves.

timestep. Ring tests were performed for a variety of population/connection sizes

from 100 to one million neurons. We limited the size of the population to one

million neurons so that simulations would complete in a reasonable amout of time

when evaluated using a single processor.

Various randomly connected neural network configurations were used. A

fully connected network, in which all neural units are connected to all other units, is

created when there is a 100% connection probability. This network has periods of

high communication overhead followed by periods of no required communication.

Since all neurons are connected to each other and neuron properties are stereotyped,

the entire network spikes immediately after the first neuron spikes. This requires

distribution of a spike for every neuron in the simulation. However, subsequent

timesteps require no distribution of spikes since the entire network enters the

absolute refractory period.

Additional randomly connected network topologies were used to evaluate the
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performance of the computational framework with respect to the number of neurons

and synapses. A fixed population size of 1,000 neurons was used to determine the

effects of the network topology on the simulation time, where the percentage

connectivity was systematically varied from 1% to 100% (fully connected, one

million synapses). In a separate series of simulations, the number of synapses was

fixed at 500,000 while the number of neurons was varied from 1,000 to one million

neurons.

All of the timing simulations were performed on Marquette’s Père cluster

(NSF awards OCI-0923037 and CBET-0521602). Each node featured two quad-core

Intel Nehalem X5550 processors, resulting in a total of 8 cores for each machine.

The processors are clocked at 2.67GHz with 8MB cache per core. Hyperthreading

on each node was disabled. Processor affinity was disabled. Each node had 24GB of

dedicated system memory. All nodes featured RedHat Enterprise Linux with kernel

2.6.18-128. Communication between processes located on separate nodes used a 4X

DDR infiniband interface, with a theoretical transfer limit of 20 Gbit/s.

4.4.1 Results

The results for the ring topology are shown in Figure 4.5 for population sizes

ranging from one hundred to one million neurons. There is a linear relationship

between the simulation time and population size. This linear relationship is valid for

population sizes that are greater than 10,000 neurons. Populations that are smaller

than 10,000 neurons, particularly in the case of 16 processors, saturate at a lower

bound on the simulation time (<10 seconds). This lower bound is likely due to the

disk I/O requirements involved in setting up the network topology and reading the

provided stimulus from a file (i.e. initialization phase). In addition, there is

communication overhead between two physical systems for the 16 processor cases.

This communication overhead is the likely reason for the greater time required to
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complete simulations between 100 and 500 neurons using 16 processors, compared

with the single node jobs. Profiling of the computational framework for this

topology shows that the majority of the time (75.38%) is spent calculating the

current input (calcSpikingCurrent, calcDrivingCurrent, and calcBiasCurrent)

and spiking output (genLIFSpikes) to the LIF model. The communication

overhead associated with distributing the spikes is small for the ring topology since

the number of spikes is small, accounting for 1.06% of the total simulation time.

The red horizontal line in Figure 4.5(a) denotes realtime performance (10

simulation seconds = 10 wallclock seconds). Simulations that appear below this line

were completed faster than realtime. The results suggest that population sizes up to

50,000 neurons, when simulated using 16 processors, can be completed with faster

than real time performance. The size of the population which can be completed in

realtime can be increased, to a point, by increasing the number of processes devoted

to the computation. However, as the number of processes in the communicator

increases, so does the cost associated with communication as well as the overhead

associated with initially constructing the network.

Timing results for the fully connected network topology are shown in

Figure 4.6. Since the network is fully connected, as the number of neurons increases,

the number of synapses increases with the square of the neurons. Therefore, a

population of 10,000 neurons features one hundred million (100,000,000) synapses.

Population sizes up to 1,000 neurons using 16 processors can be simulated in

realtime. Similar to the ring topology, Figure 4.6(a) shows a linear increase in the

simulation time as the number of neurons increases. This linear trend exists in all

cases except for 16 process simulations at small population sizes. These simulations

are dominated by communication overhead rather than computation.

Unlike the profile of the overdriven ring presented in Figure 4.5(b), the

performance of the fully connected profile is dominated by distribution of the spikes
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Figure 4.5: Performance of the computational framework for an overdriven ring topol-
ogy with population sizes ranging from 100 to one million neurons. a) The time
required to complete the simulation as a function of the neural population size. Sym-
bols refer to the number of processors used for each simulation, ranging from 1 to 16.
Error bars indicate standard deviation. The red horizontal line in the graph indicates
realtime performance. b) A diagram of the simulator functions which contributed
most to the overall simulation time. Percentages refer to the percent of total simu-
lation time spent in the referenced function and its children. The number of times
each function was called is also provided (numbers with a trailing “x”). Profiling was
performed for a population of one million neurons using 16 processors.

at each timestep (accounting for 92.59% of the total simulation time). As noted in

Section 4.3.1, the distribution of spikes involves a collective communication

operation, which places a copy of the neuron ids that spiked on each process in the

communicator. Then, each process must perform a lookup using the connection

splay tree to determine if a connection between the source neuron and any local

neurons exist. Since every neuron in the network spikes at the same timestep

immediately following its refractory period, this overdriven fully connected network

is dominated by the linear processing of all of the spikes that arrive after each
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Figure 4.6: Performance of the computational framework for an overdriven fully
connected topology with population sizes ranging from 50 to 10,000 neurons. a)
Time required to complete the simulation as a function of population size. Symbols
are the same as Figure 4.5. b) Timing profile of the computational framework for a
population of 10,000 fully connected neurons using 16 processes.

refractory period. Increasing the number of processes in the communicator can

reduce this overhead since the length of the connection lists is related to the number

of local neurons. Increasing the number of processes reduces the number of local

neurons and, on average, reduces the time associated with processing spike events

proportionally. For instance, 16 processors can simulate 10 seconds of a fully

connected ring consisting of 10,000 neurons in 595.38±37.17 seconds. An identical

network simulated using 32 processors completes in approximately half the time

(311.67±7.46s). Likewise, a 64 process communicator again reduces the simulation

time by approximately half (165.06±14.32s).
Figure 4.7 shows the effects of varying the number of synapses while keeping

the number of neurons constant. A population size of 1,000 neurons was used to

characterize performance with varying percentages of random connectivity between
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Figure 4.7: Performance of the computational framework for an overdriven network
consisting of 1,000 neurons. The percent connectivity was varied from 1% to 75%.
a) Time required to complete the 10 second simulation as a function of percent random
connectivity. b) Timing profile of the computational framework for a population of
1,000 neurons featuring 75% connectivity using 16 MPI processes.

one and 75%. A random connectivity of 1% consists of approximately 10,000

synapses whereas a 75% connected network has approximately 750,000 synapses.

Figure 4.7 shows that the performance of the simulator is approximately constant

for varying levels of connectivity. Profiling of the computational framework

(Figure 4.7(b)) is very similar to the fully connected case above. Again, the speed of

the computational framework is limited by the distribution and analysis of spike

events (accounting for 89.86% of the total simulation time). Even at 1%

connectivity, it is likely that the network dynamics are comparable to the fully

connected case: all of the neurons in the network spike immediate after leaving their

absolute refractory period.

Figure 4.8 shows the results of varying the number of neurons in the

simulation while maintaining 500,000 synapses for all population sizes. The results
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Figure 4.8: The performance of the computational framework as a function of popu-
lation size. The number of synapses in each simulation was held constant at 500,000.
a) Time required to complete at 10 second simulation as a function of the population
size independent of the number of synapses. b) Timing profile of the computational
framework for a population of five hundred thousand neurons with 500,000 connec-
tions using 16 processes.

show that the total simulation time increases linearly with population size. The

profiling results (Figure 4.8(b)) show that distribution and processing of spike

events constitutes the majority of the simulation time (66.71%). However, unlike

the fully and randomly connected networks presented above, the majority of the

processing time for these events is spent performing the splay function (51.61% of

the total simulation time). These timing results suggest that the splay lookup

(findSplayNode), which determines if a destination neuron exists locally, is the

most costly operation for this network. This is due to the fact that there are a large

number of neurons per process, but the number of connections to each of these

neurons is small (e.g. a population of 100,000 neurons is only 0.005% connected).
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4.4.2 Discussion

The performance of the computational framework in a high performance computing

environment is tied to the dynamics of the underlying network architecture. In all

cases, the majority of the simulation time can be tied to the distribution, analysis,

and subsequent application of spikes. The simulation time is linearly tied to the

number of spike events. However, since the network can be, at most, fully

connected, the upper limit on this relationship is determined by the number of

simulated neurons. For instance, in the case of the randomly connected 1,000 neuron

network presented in Figure 4.7, the time required to complete the simulation

remains constant for all tested connectivity percentages. This constant time is due

to the fact that a 1% connected network and a 75% connected network have

approximately the same network dynamics when synaptic weights are large enough

to evoke a postsynaptic spike whenever the presynaptic neuron spikes. In the case

where the network is not overdriven, there would be a supralinear relationship

between the simulation time and the number of neurons (since the number of spike

events at each timestep will be significantly less than the total number of neurons).

The use of the Message Passing Interface provides several advantages over a

single serial process. Provided the simulated network is large enough to overcome

the communication and setup overhead associated with multiprocess simulations,

the speed of the computational framework increases as additional processes are

added to the communicator. This is most clearly evident in the fully connected

network topology where doubling the number of MPI processes effectively halves the

required simulation time. In addition, the use of multiple processes allows the

distribution of memory costs across a number of physical systems. This is

advantageous when either the number of neurons or synapses is large.
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5 CASE STUDIES

In this chapter, we discuss two different models implemented using the described

modeling and computational frameworks from Chapters 3 and 4. While previous

examples have shown that the computational and modeling frameworks function as

expected, the case studies in this chapter are intended to show the versatility of

these frameworks when attempting to address novel scientific questions.

We first describe a model of the hemodynamic BOLD response for

populations of spiking neurons. This model relates population activity, in the form

of postsynaptic currents, to the BOLD response, which can be measured

experimentally. This extension to the modeling framework proposed in Chapter 3

explicitly bridges the gap between spike-based neuron models and mean-field

models, which have previously been used to investigate hemodynamic

responses (Corchs and Deco, 2002; Bojak et al., 2010). We use the model to make

experimental predictions relating functional changes among the interconnections

between neurons to large-scale population responses capable of being measured via

conventional imaging techniques, specifically fMRI.

Building on the hemodynamic response model, we also describe a model of

visual motion processing, which encapsulates the neurophysiological properties

associated with neurons in the middle temporal and medial superior temporal

cortex. We validate this model by demonstrating that simulation results are

consistent with neurophysiological responses in these areas. Using a Hebbian-style

learning paradigm, we simulate the hemodynamic response changes that would

accompany learning in these areas. Results will provide explicit predictions

regarding changes in the hemodynamic response during perceptual learning, that
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can be used to probe the sites of plasticity during learning (Wakde, 2011). In

addition, this model allows investigation of the temporal dynamics associated with

processing visual motion in areas MT and MST.

Several recent studies have investigated the relationship between the

magnitude of the hemodynamic signal and the population rate activity derived from

single and multi-unit electrode recordings (Heeger et al., 1999; 2000; Rees et al.,

2000). The studies indicate that the magnitude of the BOLD response is directly

proportional to the population rate response. While the constants of proportionality

between the hemodynamic magnitude and the mean firing rate vary between

studies, a positive linear relationship has been reported across studies.

Recently, Logothetis (2008) notes that changes in the magnitude of the

measured fMRI signals may be due to neural activity that is not related to the

mean firing rate across the population. Instead, Logothetis (2008) hypothesized that

changes in the BOLD signal may be the result of changes in the balance of

excitatory and inhibitory activity rather than mean firing rate. Therefore, increases

in the magnitude of the hemodynamic response relative to baseline may be observed

even if the aggregate firing rate of a population remains constant or decreases.

Elucidating the relationship between changes in neural processing and

structure and the hemodyanmic response is required to construct computationally

tractable cortical models. Numerous studies have used mean-field models to

construct forward models of the hemodynamic response across cortical areas (Bojak

et al., 2010; Corchs and Deco, 2002; Coombes, 2010, for a review). Models which

simulate forward hemodynamic properties using the aggregate rate statistics of the

underlying population may not provide accurate results if, as Logothetis (2008)

suggests, hemodynamic responses are tied to the balance of excitation and inhibition

within cortical subpopulations. Both models presented in this chapter seek to

elucidate the relationship between the aggregate mean firing rate across a population
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and the simulated hemodynamic response for large populations of spiking neurons.

5.1 Single-Area Hemodynamic Response Model

In this section, we outline a model for simulating the hemodynamic response of a

cortical area. We model a cortical area using a populations of pyramidal cells and

interneurons as a first order approximation to the processing that occurs within an

area. We first outline background information regarding the link between individual

spiking neurons, local field potentials, and the hemodynamic response. This section

builds on the background information of Section 2.4, providing a quantitative link

between neuron postsynaptic potentials and the hemodynamic response.

5.1.1 Model Background

As noted in Section 2.4, numerous studies have investigated the correlations

between single unit activity (SUA), multi-unit activity (MUA), local field potentials

(LFPs), and the BOLD response. Logothetis et al. (2001) presented rotating

checkerboard patterns to anaesthetized monkeys while simultaneously recording

electrophysiologic and fMRI signals. Single and multi-unit activity was determined

by bandpass filtering the recorded electrode signals using a zero phase filter between

300 and 3,000 Hz and subsequently low pass filtering at 150 Hz to obtain an

envelope of the SUA and MUA. The SUA and MUA are typically associated with

the spiking activity of neurons within 300-400 micrometers of the placed electrode.

The magnitude of the LFP signal is typically associated with the weighted average

of synchronized input signals (postsynaptic currents) of a neurons located within 1-3

millimeters of the electrode tip, and was determined by bandpass filtering the

acquired data between 10 and 130 Hz using a 36 db oct−1 zero phase filter.

Using a least-squares regression approach, Logothetis et al. (2001) found that
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the average LFP response of a spatially localized cortical area gave a better

estimate of the measured BOLD contrast than either SUA or MUA. The greater

correspondence of the LFP to the hemodynamic response is in general agreement

with the theory that a greater percentage of the hemodynamic response is related to

energetically demanding synaptic activity rather than the spiking output of a

population (Pellerin and Magistretti, 1994). Logothetis et al. (2001) also noted that

spiking activity will usually correlate with the pre- and postsynaptic current inputs,

although this may not be the case across all cortical regions.

Lippert et al. (2010) extended the results of Logothetis and colleagues by

investigating the correlation between LFP signal amplitude in distinct frequency

bands and the hemodynamic response. In their study, electrophysical recordings of

area MT were obtained while simultaneously recording the hemodynamic response

to drifting sine-wave gratings. Electrophysiological recordings were first filtering

into low and high frequency regimes, corresponding to LFP (fourth order low pass

filter, 100 Hz) and MUA regions (fourth order high pass filter, 400 Hz). Different

frequency bands in the LFP region where obtained by applying a series of bandpass

finite impulse response (FIR) filters with frequency ranges of 4-8 Hz, 12-40 Hz, and

40-60 Hz. In agreement with Logothetis et al. (2001), Lippert noted that LFP

bands between 12 and 60 Hz provide a better correlation between the hemodynamic

response than did MUA. Using a general linear model which allowed investigation of

the variance accounted for by each frequency band, Lippert and colleagues noted

that the 40 to 60 Hz band most accurately predicated the BOLD signal in areas

with stimulus-specific responses (i.e. regions in which neuronal firing rates were

sensitive to the direction of stimulus presentation).

Together, the results of Lippert et al. (2010) and Logothetis et al. (2001)

suggest that the hemodynamic response for a spatially localized neural population

can be accurately described by convolution of a hemodynamic response function
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with the power of the LFP in the 40-60 Hz band. Several studies have proposed

models which relate the postsynaptic current of spiking neurons to the

LFP (Mazzoni et al., 2008; Rasch et al., 2009; Mattia et al., 2010). Others have

used the average membrane potential of a population of neurons as an estimate of

the LFP (Ursino and La Cara, 2006), although neurophysiological studies generally

note the correspondence between LFPs and the aggregate postsynaptic

currents (Logothetis, 2003).

In multi-compartmental neuron models, the LFP can be determined at every

point in space by computing the weighted sum of extracellular potentials over a

large number of compartments (Pettersen et al., 2008). As a computational

simplification, here we use a point-source neuron model, similar to Mazzoni et al.

(2008), which does not attempt to incorporate the spatial organization of the

underlying cortical areas. Instead, we model LFP generation at a point assuming

that each neuron acts as a spatial point source, contributing equally to the overall

LFP amplitude within a local region (< 3 mm) of cortex. In order to account for

the fact that pyramidal cells account for the majority of the hemodynamic

signal (Leung, 1991), we assume that current flows into a cell through apical

excitatory synapses and flows out through basal inhibitory connections(Mazzoni

et al., 2008). Therefore, the magnitude of the LFP for neurons without spatial

extent can be modeled as the sum of AMPA and GABA currents, which are

incident upon the population of pyramidal cells. Mazzoni et al. (2008) noted that

multiple linear combinations of unsigned AMPA and GABA currents can provide

similar LFP results, therefore we resort to the simplest of these models in which

AMPA and GABA currents contribute equally to the overall magnitude of the LFP.

Figure 5.1 illustrates the extension of the modeling framework proposed in

Chapter 3 to provide an estimate of neurovascular coupling. Using neurons modeled

as a spatial point-source, the magnitude of the local field potential can be estimated
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Figure 5.1: Mathematical model relating the postsynaptic current to the hemody-
namic response. The postsynaptic current is first related to the magnitude of the
local field potential (LFP) by summation of the absolute magnitudes of AMPA and
GABA currents incident on pyramidal neurons. The magnitude of the LFP frequen-
cies between 40 and 60 Hz is then related to the BOLD signal via a gamma response
function.

as the sum of the unsigned AMPA and GABA currents incident on the pyramidal

cells. The AMPA and GABA currents correspond to the excitatory and inhibitory

portions of the spiking input current, respectively,

Jspikej (t) = JAMPA
j + JGABAj . (5.1)

The voltage measured via an electrode probe, V E(t), is then related to sum of the

AMPA and GABA currents,

V E(t) =
N∑

j

RE
j

[
|JAMPA
j |+ |JGABAj |

]
, (5.2)

where RE
j is the extracellular resistance between the j-th neuron and the voltage

measured at the electrode tip.

Consistent with Lippert et al. (2010), we use the magnitude of the LFP in

the 40 to 60 Hz band to predict the magnitude of the BOLD signal for the modeled
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population. We use the hemodyanmic impulse response function, g(t), as described

by Boynton et al. (1996), to relate these two quantities:

g(t− ε) = (t/τ)n−1e−(1/τ)

τ(n− 1)! , (5.3)

where n = 3, τ = 1.25 s, and ε = 2.5 s.

5.1.2 Methods

We implemented a model which consisted of a single generic cortical area.

Conceptually the area was divided into two distinct populations, consisting of

pyramidal and inhibitory interneurons, respectively. The overall structure of the

model, shown in Figure 5.2, is computationally similar to that proposed by Mazzoni

et al. (2008) for LFP generation. Pyramidal neurons projected purely excitatory

(AMPAergic) synaptic connections. These AMPAergic connections existed laterally,

both among neurons in the pyramidal population and in the pyramidal projections

to the inhibitory interneuron population. The interneurons projected purely

inhibitory (GABAergic) synaptic connections to other neurons in the interneuron

population as well as to pyramidal neurons. Together, the pyramidal and inhibitory

interneuron populations composed a single laterally connected cortical area.

The overall model parameters were similar to those described in the

Section 3.3.1. The model consisted of 5,000 pyramidal and 5,000 inhibitory

interneurons. We used LIF neurons with Poisson distributed spike trains as the

encoding model in both neural populations. Each neuron was assigned a Gaussian

stimulus response profile, with preferred directions uniformly distributed throughout

a [0, 2π] polar space. Standard deviations in the Gaussian profile were distributed

from [π/8, π/4] radians for pyramidal cells and [π/4, π/2] for inhibitory neurons.

We simulated a total of 10 seconds of neuron responses, in which no stimulus was
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Figure 5.2: Neural network model used to characterize the hemodynamic response
of a single cortical area. The model was similar in structure to a model of LFP
generation proposed by Mazzoni et al. (2008). External input via a driving current
was supplied to both the interneuron and pyramidal neuron populations. Lateral
connections existed among neurons in both the pyramidal and inhibitory interneuron
populations. Additional connections linked the pyramidal and inhibitory populations.

supplied for the first 5 seconds, allowing neurons to fire at their background firing

rates. The remaining 5 seconds of simulation time featured a stimulus located at π

radians.

Neurons were assigned absolute refractory periods (τ refj ) chosen randomly

from a uniform distribution between 2 and 5 ms, and RC membrane time constants

were assigned randomly from 10 and 30 milliseconds. Neuron background responses

were assigned randomly from 2 to 4 Hz for pyramidal cells and from 4 to 8 Hz for

interneurons. All neurons were assigned maximum responses drawn from a uniform

distribution between 40 and 80 Hz. The time constant associated with the

postsynaptic current filters (Equation 2.11) were assigned randomly from 4 to 6

milliseconds.

A connection between any pair of neurons was established randomly, with a

60% probability of a synapse. Therefore, each neuron featured an average of 6,000

incident connections, with equal percentages of GABAergic and AMPAergic

synapses. Synaptic weighting followed a series of Gaussian distributions, whose

standard deviation was matched to the standard deviation of the destination

neuron’s stimulus response profile. GABAeric connections, in which the i-th source
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neuron resided in the inhibitory interneuron population, were characterized by

wij = −AGABAj exp

−min(Sprefi − Sprefj )2

2σ2
j


 , (5.4)

whose amplitude is characterized by AGABAj . Connections from pyramidal neurons

followed a similar Gaussian profile, with a different amplitude coefficient, AAMPA
j .

Rather than equalizing the background input to each neuron by adding an offset to

each weight, as described in Section 3.2.1, we instead modified the amplitude

coefficients, AAMPA and AGABA. Performing this multiplicative manipulation of the

weight profile ensured that all AMPAergic connections remained positive and

GABAergic connections were assigned a negative weight. The synaptic weights were

then modified to elicit maximum responses as described in Chapter 3. The source

code use to specify model parameters can be found in Appendix 7.4.

Unlike the models described in Chapter 3 where spiking activity of the

presynaptic neurons was “instantly” incorporated into the postsynaptic neuron’s

membrane current at the next time step, the current model incorporated synaptic

delays between neurons. The delays simulated the transmission delay of action

potentials down the presynaptic neuron axon, and were assigned randomly between

0.25 and 1 milliseconds for excitatory connections and between 0.25 and 3

milliseconds for inhibitory connections. While these synaptic delays do not affect

the steady-state responses of the neuron, they may play a role in high frequency

neural network dynamics.

The hemodynamic response for a cortical region, modeled as a spatial

point-source, was found by summing the AMPA and GABA currents for the

pyramidal cells. The resulting signal was bandpass filtered with corner frequencies

at 40 and 60 Hz (zero phase, 36 db oct−1), and squared to obtain the net current

magnitude. The standard deviation of the signal was determined for baseline
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stimulus conditions. Z-scores were computed for every point in the temporal

sequence, such that the resulting waveform related signal intensity in units of

standard deviations (SD) relative to background. The time-varying hemodynamic

response function was found by convolving the z-scored signal with the

hemodynamic impulse response function. The maximum value of the convolved

signal is referred to as the “peak hemodynamic response.”

In order to quantify the level of activation of the neural population due to

the presentation of the stimulus, we define an additional metric: the aggregate mean

firing rate (AMFR), r̄. In many mean-field models, neural populations may be

replaced by an “equivalent neural unit” which describes the mean firing rate activity

for the entire population. The AMFR represents the rate response of this equivalent

neural unit, and can be defined as

r̄ = 1
NT

N∑

j

∫ T

0
aj(t;S)dt , (5.5)

where aj is the spike train of the j-th neuron within a population of N neurons.

Hebbian-style Learning

To determine the effects of synaptic plasticity on the magnitude of the

hemodynamic response, we simulated Hebbian-style learning by post hoc

modification of the synaptic weights. An estimate of each neuron’s rate response to

the stimulus, Rest
j , was determined by twenty successive presentations of a stimulus

located at π radians. Using this stimulus-specific rate estimate, synaptic weights

were modified using a variation of the Hebbian learning rule,

w′ij = wij + ∆wij , (5.6)
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where

∆wij = ζwij
Rest
j Rest

i

Rmax
j Rmax

i

, (5.7)

in which ζ can be interpreted as the learning rate in Hebb’s rule. However, since

weight modification occurs only one and is not tied to a specific time scale, we use

the term “learning coefficient” to avoid confusion. When ζ = 0, no change in the

synaptic weights occurs. If ζ > 0 and the source and destination neurons fire near

their maximum responses, then the synaptic weight is increased.

5.1.3 Results

Figure 5.3 shows the average stimulus-specific response of the pyramidal neurons to

twenty successive presentations of a stimulus at π radians. The average rate

responses of 1,000 randomly chosen pyramidal neurons is shown, normalized to their

respective maximum responses, Rmax
j for three different learning coefficientss

(ζ = 0, 1, 2). In the case where ζ = 0, responses peaked at a value of 1 (Rj = Rmax
j )

for preferred stimuli near π radians. As the value of ζ increased, the peak of the

curve also increased.

Figure 5.4 shows both the aggregate mean firing rate and the magnitude of

the hemodynamic response, relative to baseline BOLD response. The AMFR of the

population increased linearly with the learning coefficient, from a baseline of 22

spikes/sec to 38 spikes/sec when ζ = 2, (r̄ = 7.18ζ + 22.98, R2 = 0.98). The

magnitude of the hemodynamic response (in units of standard deviation) decreased

linearly as a function of the learning coefficient, with a magnitude that was

well-characterized by a linear relationship with a negative slope (−2.36ζ + 4.94,

R2 = 0.72). The decrease in the BOLD response with increased plasticity was

significant, F (1, 39) = 101.37, p < 0.01.

Figure 5.5 shows the change in the standard deviation of the baseline signal
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Figure 5.3: Stimulus-specific neuron responses for a population of pyramidal neurons
as a function of preferred stimulus direction for learning coefficients, ζ, of 0, 1, and
2. One thousand randomly chosen neuron responses are shown, averaged over twenty
stimulus repetitions. The rate response was normalized to the maximum response,
Rmax
j of each neuron.

Figure 5.4: Peak hemodynamic response for a single interconnected neural network
composed of 5,000 pyramidal cells and 5,000 interneuron. The peak hemodynamic
response relative to baseline is plotted on the left axis (solid line) for a range of
learning coefficients, ζ. The aggregate mean firing rate (AMFR) of the pyramidal
population is plotted on the right axis (dashed line). Shaded regions denote ±1
standard error.
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Figure 5.5: Change in the standard deviation of the baseline signal for a single-
area neural network. The percentage change in the standard deviation of the baseline
signal relative to a learning coefficient value of zero is shown as a function of Hebbian-
style learning. The standard deviation of the signal was computed over the first five
seconds of each simulation. Error bars indicate ±1 standard deviation.

as a function of the learning coefficient. The standard deviation of the baseline

response of the population within the 40-60 Hz bandwidth consistently increases as

the learning coefficient increases. In addition, as the learning rate increases, so does

the standard deviation of the measured change in baseline activity (i.e. the

magnitude of the error bars increase as the learning coefficient increases).

5.2 Visual Motion Processing Model

Extending the single-area model described in Section 5.1, we constructed a model of

two prominent visual motion processing areas which we use to investigate the effects

of task-dependent learning on the hemodynamic response. In the following section,

we provide background material relating to, and previous models of the visual

motion processing pathway. Together, this information is used to construct a

spike-based model of visual motion processing for complex motions, whose steady

state responses align well with available neurophysiology and pyschophysical

literature.
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5.2.1 Model Background

The movement of an individual through the environment results in the movement of

the scene on the retina. The apparent movement of these images across the retina

during locomotion of the observer, termed optic flow, is important for interaction

with the environment. Spiking activity in several cortical areas has been shown to

be correlated with components of optic flow as well as the perception of self-motion

by the observer (Ohlendorf et al., 2008; Raffi and Siegel, 2007). While the

processing of optic flow does not necessitate a hierarchical cortical structure, the

numerous intracortical connections between visual areas and the increasingly

complexity of the motion information as signals propogate across areas suggests a

rough hierarchy for the processing of flow information tied to self-motion. In the

remainder of this section, we describe the physiological and psychophysical

characteristics of several cortical areas involved in the processing of self-motion. We

place particular emphasis on the neuron responses to visual motion which are

explicitly incorporated into the model.

Visual Motion Processing

Visual information at the retina is projected via the lateral geniculate nucleus to the

primary visual cortex (V1), located at the occipital pole (Felleman and Van Essen,

1991). Neurons in V1 respond to elementary properties, such as brightness,

contrast, color opponency, spatial and temporal frequency, and are limited in spatial

extent, each sampling 1-3◦ of the visual field. The dorsal stream of visual processing

continues via afferent connections from V1 to the middle temporal (MT) area. In

general, neurons in area MT are constrained to the contralateral visual field and

have larger receptive fields than those in V1 (approximately 10◦), and thus serve to

integrate motion signals over larger areas of the visual field. Various
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neurophysiology studies have shown that neurons in MT are among the first to be

specifically tuned for visual motion, exhibiting preferences for both the speed and

direction of motion (Newsome and Pare, 1988; Movshon and Newsome, 1996;

Andersen, 1997, for review). Neurons in MT, in turn, project to the medial superior

temporal (MST) area. Neurons in MST integrate motion over larger areas of the

visual field (approximately 60◦), which may encompass both the contralateral and

ipsilateral visual fields. The transition from V1 to MT and subsequently to MST

results in changes in the responses of neurons from spatially localized regions of

spatiotemporal frequency, to planar motion, to more complex forms of motion.

Neurons in the dorsal division of the medial superior temporal (MSTd) area respond

preferentially to wide-field patterns of optic flow, including circular, radial, spiral

and planar motions (Tanaka et al., 1989; Duffy and Wurtz, 1991; Graziano et al.,

1994; Paolini et al., 2000).

Existing Models

Computational models have become increasingly important for understanding how

the results of neurophysiological and psychophysical experiments relate to the

integration of visual motion information across cortical areas. Several models of

human visual processing, which examine various components of the hierarchy (V1,

MT, MSTd), have been proposed. Many of the early models focused primarily on

feed-forward computations. For instance, Wang (1995) created a competitive

network which featured hierarchical connections between MT and MST populations.

Using competitive techniques, the authors identified a continuum of preferred

motions in hidden unit layers, which corresponded loosely to MST. Zemel and

Sejnowski (1998) obtained similar results using an unsupervised network using

complex motion stimuli.

Beardsley and Vaina (1998,2003) proposed a feed-forward model of



96

connections between MT and MSTd, whose connections were determined using

back-propagation network training. The training ensured that MT and MSTd

responses remained consistent with experimentally observed responses to complex

motion. As an extension to their earlier work, Beardsley and Vaina (2001) examined

the effect of lateral connections with MSTd. The authors showed that, with lateral

connections that excited neurons with similar preferred motions and inhibited

neurons with opposing preferred motions, the representation of motion patterns

across a population of MST neurons is sufficient to account for human performance

in a task. Most recently, Beardsley and Vaina (2004), explicitly defined a lateral

connection structure for MST whose magnitude varies as a function of distance

between receptive field centers and preferred motion patterns of the neurons. The

inclusion of spatial specificity enabled the extraction of perceptual discrimination

thresholds that were consistent with experimentally observed psychophysical results

across a broader range of tasks.

5.2.2 Methods

We implemented a model of visual motion processing which explicitly incorporated

neuronal populations in the middle temporal and medial superior temporal areas

(Figure 5.6). Similar to the single area model described in Section 5.1, we explicitly

divided each area into two distinct populations. The first population contained

pyramidal neurons with purely excitatory projections (AMPAergic). The second

population was comprised of interneurons that projected purely inhibitory synapses

(GABAergic), and whose neuron response properties matched those in the

pyramidal population. The overall model structure is similar to a two-area model of

LFP generation proposed by Mattia et al. (2010).
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Figure 5.6: Neural network model used to characterize the hemodynamic response
to visual motion stimuli processed in the middle temporal (MT) and medial supe-
rior temporal (MST) areas. The model is similar in structure to a two-area model
of LFP generation proposed by Mattia et al. (2010). External input via a driving
current is supplied to both the interneuron and pyramidal neuron populations of area
MT. Lateral connections exist amongst neurons in both the pyramidal and inhibitory
interneuron populations in both cortical areas. Additional feed-forward connections
link the neural populations in MT and MST.

Middle Temporal Area

We pseudorandomly placed 10,000 MT neurons within a 2D visual field, extending

±30◦ vertically and horizontally. The radius of each neuron’s receptive field was

chosen from a normal distribution with a mean of 5◦ and a standard deviation of

0.67◦, identical to Beardsley and Vaina (1998).

The populations corresponding to area MT featured stimulus response

profiles characterized by

F (S) = 1
X

X∑

m=1
exp


−min(Sm − Sprefj )2

2σ2
j


 , (5.8)

where Sm is the m-th stimulus motion direction vector, min is the minimum angular

distance between the direction vector and the j-th neuron’s preferred direction,

Sprefj , and X is the total number of motion direction vectors in the neuron’s

receptive field. This response function simulates the feed-forward projections of V1

and their subsequent effect on MT responses, and accounts for the effects of motion
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opponency, in which the neuron’s response to its preferred stimulus is significantly

reduced when a second stimulus incorporating the opposite motion direction is

superimposed on the original stimulus. Neuron preferred stimulus directions, Sprefj ,

were chosen randomly from the [0, 2π] polar stimulus space of possible motion

directions.

While there is little available literature which explicitly defines the structure

of lateral connections among MT neurons, the existence of such connections is

highly likely given the significant role of MT in psychophysical studies. Using a

unidirectional motion stimulus, Adini et al. (1997) described a connection structure

whose weighting pattern followed a Gaussian distribution in space. We chose to

implement the recurrent weighting in MT such that it complemented the stimulus

response profile in terms of the relationship between identically placed MT neurons

with differing preferred stimulus directions. Therefore, excitatory lateral

connections among the MT layers followed a Gaussian curve, whose value varied

with the distance between the neuron’s preferred directions . The AMPAergic

lateral connection structure was described by,

wij = AAMPA
j exp


−min(Sprefi − Sprefj )2

2σ2
jd


 exp

(−[(xi − xj)2 + (yi − yj)2]
2σ2

js

)
,

(5.9)

where σjd corresponds to the standard deviation of the destination neuron in

preferred direction of motion, and σjs corresponds to the standard deviation of the

Gaussian curve whose amplitude is a function of the distance between neuron

receptive field centers (x, y), The value of σjd was 24.7◦ for all neurons (Beardsley

and Vaina, 2004). The spatial standard deviation, σjs was matched to the

destination neuron’s receptive field radius.
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Figure 5.7: 2D stimulus space for MST neurons. The magnitude of the vector
represents the mean flow speed across the motion field and the flow angle, θ, de-
fines the type of motion. Off-axis regions correspond to spiral motion. Reproduced
from Beardsley and Vaina (1998), with permission.

Medial Superior Temporal Area

We pseudorandomly placed 8,000 MST neurons within the same visual field as the

MT neurons. The diameter of the receptive field of each MST neuron was assigned

to be 63.0◦, which is in agreement with the values used by Beardsley and Vaina

(1998). Similar to the model of area MT, MST neurons were divided into two

populations: pyramidal and interneurons. All neurons were randomly assigned a

preferred 2D optic flow direction, defined by the angle from [0, 2π] radians within

the optic flow space (Figure 5.7) (Beardsley and Vaina, 1998). Neurons where

pseudorandomly assigned a preferred center of motion (COM) within the visual field

whose coordinates were drawn from a normal distribution centered on the neuron’s

receptive field and whose standard deviation was characterized by the neuron’s

radius.

Extending the modeling framework outlined by Beardsley et al.

(Unpublished), MT neurons which reside in the receptive field of and MST neurons

were connected to the MST neuron using a standard Gaussian function,

wij = Aw(x, y) exp

−[min(θprefj − µij(x, y))]2

2σ2
w(x, y)


+Ow(x, y) , (5.10)
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where Aw(x, y) is the weight amplitude, Ow(x, y) is the weight offset, σw(x, y) is the

standard deviation in the connection weight profile, and µij(x, y) is the mean of the

Gaussian distribution. The mean of the Gaussian distribution, µij(x, y), was

computed using the preferred optic flow direction of the MST unit, φprefi , the spatial

location of the MT neuron’s receptive field, (xi, yi), and the preferred center of

motion of the MST neuron, (cxj , cxj ) such that

µij(x, y) = θs + φprefj

θs = tan−1
(
yi − cyj
xi − cxj

)
. (5.11)

Excitatory recurrent connections, whose source resided in the pyramidal

population of MST, featured synaptic weights whose strength varied using a

Gaussian function,

wij = SR exp
(−[(xj − cxi )2 + (yj − cyi )2]

2σ2
Re

)
, (5.12)

where SR is the amplitude of the Gaussian, assigned to be 0.04, and σRe was

assigned to be 10◦ (Beardsley and Vaina, 2004). This results in a weighting profile

that varied with the distance between the receptive field location of the source

neuron and the COM location of the destination neuron. Inhibitory weights

projected from interneurons were characterized by a difference of Gaussian curve,

wij =

−SR2 exp
(−[(xj − cxi )2 + (yj − cyi )2]

2σ2
Ri

)

−Sφ exp
(−min(φi − φj)2

2σ2
I

)
, (5.13)

where synaptic weight amplitude varied with the distance between the COM of the
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destination neuron and the center of the receptive field of the source neuron as well

as the angular distance between the preferred optic flow directions of the neurons.

The amplitude coefficient, Sφ, was chosen to be 0.055, and the standard deviation of

the Gaussian curves, σRi and σI , were both assigned to be 80◦ (Beardsley and

Vaina, 2004).

Hemodynamic Response

We determined the magnitude of the hemodynamic response for the MT and MST

populations using the process outlined in Section 5.1. Specifically, the AMPA and

GABA currents incident upon MT and MST pyramidal cells were recorded and used

to determined the peak magnitude of the hemodynamic curve in units of standard

deviations. The aggregate mean firing rate of all neurons in both MT and MST due

to stimulus presentation were calculated using Equation 5.5.

Hebbian-Style Learning

We investigated the effects of Hebbian-style weight changes at various stages in the

visual motion processing hierarchy. Specifically, we examined Hebbian-style

synaptic plasticity in the recurrent connections of MT and MST separately, in the

feed-forward synaptic weights between MT and MST, and across the entire

MT-MST visual motion complex. Similar to the procedure described in Section 5.1,

we estimated each neuron’s rate response to an expansion stimulus (i.e. optic flow

direction of zero radians) over twenty successive trials. These response estimates

were then used to perform post hoc weight modifications for a range of learning

coefficients, ζ, according to Equation 5.7.
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5.2.3 Results

All population hemodynamic and AMFR responses were determined for twenty

successive presentations of an identical stimulus. The stimulus featured five seconds

without a supplied stimulus, allowing all neurons to fire near their background

rates. An additional five seconds of simulation time featured an expansion stimulus

(φ = 0 rad). The center of the expansion motion was tied to the center of the visual

field. Unit motion vectors were placed pseudorandomly within the central 35◦ of the

visual field, spanning ±17.5◦ vertically and horizontally, with with an approximate

density of 0.5 dots per square degree. Twenty-five percent of all vectors were

randomly relocated at a frame rate of 60 Hz.

Figure 5.8 shows the average responses of the MT neural population to the

expansion stimulus. The responses of MT show that neurons which preferred the

local motion used to characterize an expansion fired near their assigned maximum

response. Figure 5.8(b) provides the normalized rate response of the MT population

as a function of both the distance from the neuron’s receptive field to the center of

the stimulus motion as well as the difference between the neuron’s preferred

direction and the supplied stimulus direction (∆θ). The plot shows that neurons

whose receptive field centers were near the edge of the supplied stimulus ranges

(-17.5 to 17.5◦ in either direction) and whose ∆θ was close to zero showed responses

near their maximum. Neurons whose receptive field centers were close the center of

motion of the stimulus had lower responses due to the averaging effect of the

stimulus response profile (Equation 5.8).

Figure 5.9 provides the BOLD response (SD units) and the aggregate mean

firing rate of the MT and MST pyramidal populations. In the case where synaptic

learning is limited to the lateral connections among MT neurons, both the AMFRs

of the MT and MST populations increased with the learning coefficient. The AMFR
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Figure 5.8: Response of the MT pyramidal neuron population to an expansion stim-
ulus. a) Spatial location of MT receptive field centers in visual coordinates. The
direction of the arrow corresponds to the preferred motion direction. Vector lengths
correspond to the normalized rate response of each neuron in response to an expan-
sion stimulus centered in the visual field. Only neurons which exceeded a normalized
rate response of 0.75 are shown. b) Surface plot showing the normalized maximum
rate response of the MT neural population as a function of distance from the stimu-
lus center of motion and the minimum angular distance between neurons’ preferred
stimulus motion directions and the presented motion direction (∆θ).

of area MT increased faster slope= 0.93 spikes/sec/ζ, than did MST, slope= 0.17

spikes/sec/ζ. However, the magnitude of the hemodynamic response was not

significantly related to ζ in either MT, F (1, 19) = 0.61, p > 0.05, or MST,

F (1, 19) = 1.07, p > 0.05. When weight changes were limited to the feed-forward

connections between MT and MST, there was no significant relationship between ζ

and the magnitude of the hemodynamic response in MT, F (1, 19) = 1.18, p > 0.05.

The AMFR of MT was also invariant to changes in the learning coefficient, with

firing rates remaining at approximately 15.5 spikes/sec for all values of ζ. However,

both the AMFR and magnitude of the hemodynamic response of the MST

population were significantly affected by the learning coefficient. The hemodynamic

response increased with ζ, F (1, 19) = 14.94, p < 0.01 as did the AMFR.

Hebbian-like changes in the lateral connections within the MST population resulted

in changes to the AMFR for the MST area only. The AMFR and hemodynamic
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response of the MT population remained constant across all values of ζ,

F (1, 19) = 0.21, 0.61, p > 0.05. While the AMFR of the MST population increased

from 20 to 45 spikes/sec, the hemodynamic response remained largely constant,

F (1, 19) = 1.07, p > 0.05. In the case where synaptic changes occurred at all stages

in the model, the aggregate mean firing rate of both the MT and MST populations

increased, and the magnitudes of the hemodynamic responses for both populations

decreased for Hebbian-style changes in the synaptic efficacy of the connection

between neurons (MT: F (1, 19) = 7.83, p < 0.05; MST: F (1, 19) = 15.76, p < 0.01).

5.3 Discussion

Our results indicate that, even in relatively simple single area network topologies,

the aggregate mean firing rate of the population is not necessarily an accurate

indicator of the hemodynamic response. Conversely, the magnitude of the

hemodynamic response relative to baseline may not be an accurate predictor of

underlying population spiking activity. For instance, in the case of a recurrently

connected network representing a single cortical area, large changes in the AMFR

(> 20 spikes/sec) coincided with a significant decrease in the hemodynamic response

(Figure 5.4). In addition, some cases in which synaptic plasticity is constrained to

lateral connections show that AMFR changes may not result in a significant change

in the BOLD response (Figure 5.9(a,c)).

Interestingly, it appears that the location of the learning can be, at least,

partially inferred from hemodynamic changes. For instance, Hebbian-style synaptic

modification in the feed-forward connections between areas resulted in an increase

in the BOLD response of upstream areas (Figure 5.9b). However, Hebbian-style

changes in the efficacy of recurrent connections with learning tended to result in

either a decrease or consistent hemodynamic response when compared with
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(a) (b)

(c) (d)

Figure 5.9: Hemodynamic responses and aggregate mean firing rates for MT and and
MST pyramidal populations after post hoc weight modification due to Hebbian-like
learning. a) Hemodynamic response magnitudes and AMFR values in MT and MST
as a function of the learning coefficient, ζ, for plasticity constrained to the recur-
rent connections in MT. Solid and dashed blue lines correspond to the hemodynamic
magnitude (SD units) and AMFR (spikes/sec) for the MT neural population, respec-
tively. BOLD and AMFR results for MST are shown in green. Shaded regions denote
standard error. b) Hemodynamic and AMFR results for Hebbian-style learning in
the feed-forward connections between MT and MST. c) BOLD and AMFR results
when Hebbian-style weight modification is constrained to recurrent connections within
MST. d) AMFR and BOLD results for simultaneous Hebbian-style weight modifica-
tions across all connections in MT and MST between areas (i.e. recurrent connections
in MT and MST as well as feed-forward connections between areas).
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pre-learning hemodynamic estimates. We hypothesize that learning which occurs in

the lateral connections within an area tends to improve the signal to noise ratio

associated with stimulus estimation (i.e. an improvement in maximum likelihood

estimates). While the spiking output of the population tends to increase in these

situations, the magnitude of the LFP signal within the 40-60 Hz bandwidth

decreases relative to baseline. The decrease in 40-60 Hz oscillations may indicate a

more consistent estimate of the original signal with decreased metabolic cost. In

contrast, when learning is constrained to feed-forward connections between areas,

there is no improvement in the maximum likelihood estimate of the presented

stimulus. In this case, the weight changes act as a gain on the upstream population,

producing increased firing rates without a considerable improvement in the signal to

noise ratio. This would generally lead to increased metabolic demands in upstream

populations and higher BOLD response.

Since the hemodynamic response is determined relative to baseline activity,

it is important to note that changes in baseline population dynamics can have an

impact on interpretation of the magnitude of the hemodynamic response. For

instance, as shown in Figure 5.5, the standard deviation of the baseline signal

within the 40-60 Hz bandwidth consistently increase in response to Hebbian-like

synaptic plasticity. In this case, if the population estimate of the presented stimulus

remains relatively constant (i.e. encoding of the signal is not significantly altered)

but the baseline activity of the population increases, the overall magnitude of the

hemodynamic response relative to baseline would decrease. This suggests that the

change in BOLD magnitude as a result of synaptic plasticity are tied to changes in

the background activity of the population. In this case, plasticity dependent

changes in baseline BOLD activity would need to be taken into account as part of

the fMRI analysis to relate changes in BOLD to underlying neuronal activity.

Our results generally support the hypothesis from Logothetis (2008),
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suggesting that changes in the BOLD response may be tied to the ratio of

excitation/inhibition in neural subpopulations rather than to the aggregate rate

response or MUA/SUA. We extend this hypothesis, noting that improvements in

the maximum likelihood estimates due to Hebbian-style modification of lateral

connections weights will show a systematic decrease in the magnitude of the BOLD

signal with learning, while changes to feed-forward weights will result in increases in

the overall BOLD response of upstream areas. Together, these results have

implications for the use of mean-field based forward models of the BOLD response;

indicating that the inhibitory and excitatory neural dynamics within the modeled

population should be incorporated to accurately predict hemodynamic response

properties.
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6 CONCLUSIONS & FUTURE DIRECTIONS

Recurrent neural networks have been used extensively in the literature to describe

various neurophysiological phenomena (Deneve et al., 1999; 2001). Here, we

presented a modeling framework which allows a priori specification of synaptic

weights to elicit neuron spiking responses to stimuli drawn from available

neurophysiology literature. The specification of synaptic weights is predicated on

the assumption that synaptic inputs are uncorrelated for sufficiently large

populations of neurons. We note that this assumption is common to mean-field

models of cortical populations.

The specification of large populations of connected spiking neurons

necessitated the creation of a novel computational framework. We described how

this framework was designed to take advantage of high performance computational

architectures. In particular, the use of the Message Passing Interface (MPI) allows

the computational work and memory requirements of the simulation to be divided

across a number of independent processors. For large populations of spiking neurons

performance improves as additional processes are added to the MPI communicator.

In addition, we showed that the performance of the simulator is linearly related to

the number of neuron spike events. Since the number of spike events is constrained

by the total number of simulated neurons, this indicates that simulation time in

overdriven network scales with neurons.

Finally, we used the joint computational and modeling frameworks to

investigate the relationship between the magnitude of the hemodynamic BOLD

response and aggregate population firing rates. In a preliminary series of

simulations, we showed that the BOLD response relative to baseline may not be an
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accurate predicator of the underlying population firing rate in recurrently connected

neural networks. Instead, changes in the BOLD response are likely tied to the ratio

of excitatory/inhibitory activity in neural subpopulations. This has implications for

the use of mean-field based forward models of the BOLD response; indicating that

the inhibitory and excitatory neural dynamics within the modeled population should

be incorporated in order to obtain an accurate prediction of the hemodynamic curve.

As demonstrated by the case studies of Chapters 3 and 5, the described

computational and modeling frameworks allows rapid construction and simulation

of neural networks which are based on available neurophysiological responses. We

anticipate that that this framework will allow researchers to quickly test hypotheses

regarding underlying neural dynamics. In addition, the modeling and computational

framework explicitly bridge the experimental responses of spiking neurons with

physiological measures of neural activity across the population. This allows analysis,

for instance, of the underlying neural dynamics associated with mean-field models.

6.1 Future Directions

The speed of the high performance simulation environment, outlined in Chapter 4,

is tied directly to the slowest process in the communicator. This implies that an

overscheduled machine (in terms of neurons or spike events) may severely impact

the overall speed of the simulation environment. Since distribution of neurons across

the ranks are performed in a round-robin fashion, the implemented framework

assumes that available processors in the communicator are homogeneous. Speed

increases could be accomplished by allowing neurons and their associated synapses

to cross process boundaries when an uneven distribution compromises the speed of

the simulation. For instance, a simple algorithm which monitors the time between

the synchronization required for distribution of spike events could be used to
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determine if migration of neurons/synapses is necessary. If the time for an

individual process fell well outside the mean time (e.g. ±2 standard deviations), a

small subset of its assigned neurons and associated synapses would be transferred to

the processor with the shortest time. This rudimentary load-balancing algorithm

could provide dramatic increases in the speed of processing for simulations with long

durations. However, the current scheme to monitor neuron current, voltage, etc.

makes this algorithm difficult to implement due to in-memory buffering of costly

I/O operations.

In addition, the current simulation framework does not inherently handle

learning paradigms. However, a true Hebbian based learning algorithm would be

relatively straight forward to implement. This extension to the existing framework

would allow the user to specify which synapses were allowed to modulate in a

Hebbian fashion, as well as specify the learning rate of change in efficacy associated

with the synapse (i.e. learning rate). There is some danger in implementing such a

learning algorithm in the existing framework, particularly when dealing with a

recurrent network, due to the ability of the weights to grow without bound. Care

would have to be taken when implementing this feature to ensure that Hebbian

learning would not lead to network instability or complete depression.

In all of the models presented here, either deterministic or Poisson leaky

integrate-and-fire neurons were used. However, using the scalar value α, the

computational framework allows various neuron encoding models to be used. The

only stipulations for inclusion of these alternate neuron models in the model

framework are 1) that the neuron’s generate discrete action potentials capable of

being described as binary events and 2) the input to the neuron model is membrane

current. However, rigorous examination of the network dynamics associated with

underlying neuron model has not been performed. In future studies, it would be

beneficial to ensure that network dynamics under steady-state conditions are



111

invariant to the underlying neuron model.

Finally, we note that all of the implemented models specify the functional

structure of the connection topology. The synaptic weights are then normalized to

elicit maximum responses and offset to ensure background firing rates when no

stimulus is supplied. While neuron response profiles can be found by evaluation of

the weight and stimulus response profiles, this can be cumbersome. In addition,

neurophysiology or modeling literature which specifies synaptic weight structures

may be not readily available for some areas. Instead, a modeling framework could

be constructed which specifies weights given neuron response profiles. For instance,

consider a neuron response profile, Gj(S), that is well-defined across all dimensions

of S (to ease nomenclature, we use a unidimensional stimulus, S, for the remainder

or this section). A series of M synaptic connections for every neuron, can be

described by a vector of weights,

wj = [wj1, wj2, ..., wjM ] . (6.1)

If the neuron response function is evaluated at M distinct points for all dimensions,

the neuron response rate R,

Rj = [Gj(S1), Gj(S2), ...Gj(SM)] , (6.2)

can be converted to units of current, Ij(S), through inversion of the chosen neuron

model. If this is done for each connected neuron, an M ×M matrix containing the

evaluation of the M -th connected neuron’s response profile at the j-th neuron’s
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sampled stimuli can be constructed:

Aj =




G1(S1) G1(S2) · · · G1(SM)

G2(S1) G2(S2) · · · G2(SM)
... ... ... ...

GM(S1) GM(S2) · · · GM(SM)




. (6.3)

The weights to elicit steady-state responses can then be found by solving w = IA−1.

This framework would require that both neuron response properties and an inverse

model of neuron dynamics were well-defined. However, the functional structure of

the synaptic weights would not be needed. Given this framework, it would be

interesting to compare the synaptic weight structure used to elicit physiologically

defined neuron response profiles with those used to define the functional network

topologies used in Chapter 5.
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7 APPENDIX

7.1 Unconnected Poisson LIF Neuron Model

#!/usr/bin/env python
import sys
from recurrent import *
from math import pi
import random

def main():
# Create a new simulation
sim = Simulation(T=50, dt=2.5e-4)
N = 1000
max_resp = [40, 100] # Range of maximum responses
tau_ref = [2e-3, 5e-3]
tau_rc = [10e-3, 30e-3] # RC Time constant
pref_stim = [0, 2*pi] # Prefered stimulus
std_stim = [pi/4.0, pi/2.0] # Standard deviation of tuning

# Set the PSC length multiplier
sim.set_psc_length_multiplier(5) # 5x PSC filter length

# Monitors for the population
spike_mon = FileMonitor(’spiketrain’, ’spiketrain’, 4000)
sim.add_sim_monitor(spike_mon)

population = sim.add_population(0) # Initially no neurons
for i in range(0, N):

# Neuron receives all of its input from the stimulus
maximum_rate = random.uniform(*max_resp)
background_rate = 0.10 * maximum_rate
neuron = LIFNeuron(maximum_rate=maximum_rate,

background_rate=background_rate,
beta=1.0, tau_ref=tau_ref, tau_rc=tau_rc,

initial_voltage=[0, 1])
neuron.set_poisson_spiking(True)
population.add_neuron(neuron)



114

population.add_neuron_monitor(spike_mon)

# Generate unique ids
sim.gen_unique_neuron_ids()

# Create a stimulus at pi degrees
stimulus = FileStimulus(’stimulus.bin’, sim.Nt)
sim.add_sim_stimulus(stimulus)
stimulus.add_row([pi for i in range(stimulus.Nt)])

# Add tuning functions
neuron = population.get_neurons()
for i in range(0, N):

neuron[i].add_tuning(tuning=Gaussian(pref_stim=pref_stim,
std_stim=std_stim),

stimulus=stimulus)

# Write the specification file
f = open(’unconnected_poisson.xml’, ’w’)
f.write(sim.write_xml())
f.close()
sys.exit(0) # Done!

if __name__ == ’__main__’:
main()

7.2 Single Layer Connected Model

#!/usr/bin/env python
import sys
from recurrent import *
from math import pi, exp, ceil
import random

# The average connections per neuron
average_connections = 10000

def main():
# Create a new simulation
sim = Simulation(T=3, dt=2.5e-4)
N = 100000
maximum_rate = [40, 80] # Range of maximum responses
background_percent = 0.10
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tau_ref = [2e-3, 5e-3]
tau_rc = [10e-3, 30e-3] # RC Time constant
pref_stim = [0, 2*pi] # Prefered stimulus
std_stim = [pi/8.0, pi/4.0] # Standard deviation of tuning

# Set the PSC length multiplier
sim.set_psc_length_multiplier(5) # 5x PSC filter length

# Monitors for the population
spike_mon = FileMonitor(’spiketrain.bin’, ’spiketrain’, 1000)
sim.add_sim_monitor(spike_mon)

# Create a stimulus at pi radians
stimulus = FileStimulus(’stimulus.bin’, int(ceil(1/sim.dt)),

start_index=ceil(1/sim.dt), end_index=2*ceil(1/sim.dt))
stimulus.add_row([pi for i in range(stimulus.Nt)])
#stimulus = NoStimulus()
sim.add_sim_stimulus(stimulus)

population = sim.add_population(0) # Initially no neurons
for i in range(0, N):

s_pref = random.uniform(*pref_stim)
s_std = random.uniform(*std_stim)
max_resp = random.uniform(*maximum_rate)
background_rate = background_percent * max_resp
# Neuron receives all of its input from the stimulus
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=background_rate, beta=0.5,
tau_ref=tau_ref, tau_rc=tau_rc,

initial_voltage=[0, 1])
# Add Gaussian tuning
neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,

std_stim=s_std),
stimulus=stimulus)

#neuron.set_poisson_spiking(True)
neuron.set_unadvertised_attr(’s_pref’, s_pref)
neuron.set_unadvertised_attr(’s_std’, s_std)
neuron.set_unadvertised_attr(’recurrent_beta’, 0.5)
population.add_neuron(neuron)

# Add the spike train monitor to the entire population
population.add_neuron_monitor(spike_mon)

# Generate unique ids
sim.gen_unique_neuron_ids()
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# Write the specification file
f = open(’connected_single_layer.xml’, ’w’)
f.write(sim.write_xml())
f.close()

# Create the connection file
f = open(’connections.bin’, ’wb’)
gen_recurrent_connections(sim, population.get_neurons(), f)
f.close()

sys.exit(0) # Done!

#-----------------------------------------------------------------------------
# CONNECTIONS
#-----------------------------------------------------------------------------
def gaussian(x, mean, std):

"""Returns a weight from a gaussian profile with the given
‘‘mean’’ and

‘‘std’’."""
return exp(-(x - mean)**2 / (2 * std**2))

def gen_recurrent_connections(sim, neurons, connection_file):
# Connect the neurons using a gaussian connection topology

# Determine the probability of a connection
connection_probability = float(average_connections) / len(neurons)
print connection_probability

for dest_neuron in neurons:
print dest_neuron.id
background_rate = 0 # Sum of all background rates
background_input = 0 # Sum of input at background
connections = [] # Empty list to store connections
for src_neuron in neurons:

if src_neuron is dest_neuron:
continue # No self excitation

if random.uniform(0, 1) > connection_probability:
continue

# Determine the weight
weight = gaussian(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std)
# Determine the input at background
background_rate += src_neuron.background_rate
background_input += src_neuron.background_rate * weight *
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sim.dt
# Determine the activity of the src_neuron at the

dest_neuron’s preferred direction
src_rate_resp = (src_neuron.max_resp) * \

gaussian(dest_neuron.s_pref, src_neuron.s_pref,
src_neuron.s_std) + \

src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])
# Equalize the weights be subtracting off the background

activity
mean_background_rate = background_rate / len(connections) #

r_bar
for connection, src_rate_resp in connections:

connection.weight = connection.weight - (background_input /
\
(sim.dt * mean_background_rate * len(connections)))

# Normalize input
total_input = 0
for connection, src_rate_resp in connections:

total_input += connection.weight * sim.dt * src_rate_resp
assert total_input > 0
for connection, src_rate_resp in connections:

connection.weight *= (dest_neuron.recurrent_beta) /
total_input

# Write the connections to a file
write_connections_list([i[0] for i in connections],

connection_file)
print len(connections)
del connections

if __name__ == ’__main__’:
main()

7.3 Cue Integration Model

#!/usr/bin/env python
import sys
import os
import time
import multiprocessing
import shutil
from recurrent import *
from initialize_new_sim import *
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from math import *
import random

def main():
# Create a new simulation
sim = Simulation(T=sim_time, dt=sim_dt)

# Set the PSC length multiplier
sim.set_psc_length_multiplier(psc_filter_multiplier)

# Create monitors
spiketrain_monitor = FileMonitor(’spiketrains.bin’, "spiketrain",

1000)
sim.add_sim_monitor(spiketrain_monitor)

# Create a stimulus for the ‘‘eye-centered’’ population
eye_centered_pos_stim = FileStimulus(’eye_centered_pos.stim’,

sim.Nt)
sim.add_sim_stimulus(eye_centered_pos_stim)
# -45 degrees
eye_centered_pos_stim.add_row([-20*pi/180 for i in

range(eye_centered_pos_stim.Nt)])
# Create a stimulus for the ‘‘eye position’’ population
eye_pos_stim = FileStimulus(’eye_pos.stim’, sim.Nt)
sim.add_sim_stimulus(eye_pos_stim)
eye_pos_stim.add_row([20*pi/180 for i in range(eye_pos_stim.Nt)])
# Create a (NULL) head centered stimulus
#head_centered_pos_stim = NoStimulus()
head_centered_pos_stim = FileStimulus(’head_centered_pos.stim’,

sim.Nt)
sim.add_sim_stimulus(head_centered_pos_stim)
head_centered_pos_stim.add_row([0*pi/180 for i in

range(head_centered_pos_stim.Nt)])

#---
# Create the ‘‘eye-centered’’ position population
#---
pop_eye_centered_pos = sim.add_population(0)
for i in range(pop_eye_centered_pos_num_neurons):

max_resp = random.uniform(*pop_eye_centered_pos_max_resp)
s_pref = random.uniform(*pop_eye_centered_pos_spref)
s_std = random.uniform(*pop_eye_centered_pos_sdev)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=max_resp *
pop_eye_centered_pos_background_percent,
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tau_ref=tau_ref_range,
tau_rc=tau_rc_range,
v_th=v_th,
r_leak=r_leak,
tau_psc=tau_psc_range,
beta=pop_eye_centered_pos_driving_beta,
initial_voltage=[0, v_th])

neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,
std_stim=s_std),

stimulus=eye_centered_pos_stim,
column=0)

# Neuron’s preferred direction
neuron.set_unadvertised_attr(’s_pref’, s_pref)
neuron.set_unadvertised_attr(’s_std’, s_std)
neuron.set_unadvertised_attr(’recurrent_beta’,

pop_eye_centered_pos_recurrent_beta)
neuron.set_unadvertised_attr(’fb_beta’,

pop_eye_centered_pos_fb_beta)
pop_eye_centered_pos.add_neuron(neuron)

#---
# Create the ‘‘head-centered’’ position population
#---
pop_head_centered_pos = sim.add_population(0)
for i in range(pop_head_centered_pos_num_neurons):

max_resp = random.uniform(*pop_head_centered_pos_max_resp)
s_pref = random.uniform(*pop_head_centered_pos_spref)
s_std = random.uniform(*pop_head_centered_pos_sdev)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=max_resp *
pop_head_centered_pos_background_percent,

tau_ref=tau_ref_range,
tau_rc=tau_rc_range,
v_th=v_th,
r_leak=r_leak,
tau_psc=tau_psc_range,
beta=pop_head_centered_pos_driving_beta,
initial_voltage=[0, v_th])

neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,
std_stim=s_std),

stimulus=head_centered_pos_stim,
column=0)

# Neuron’s preferred direction
neuron.set_unadvertised_attr(’s_pref’, s_pref)
neuron.set_unadvertised_attr(’s_std’, s_std)
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neuron.set_unadvertised_attr(’recurrent_beta’,
pop_head_centered_pos_recurrent_beta)

neuron.set_unadvertised_attr(’fb_beta’,
pop_head_centered_pos_fb_beta)

pop_head_centered_pos.add_neuron(neuron)

#---
# Create the ‘‘eye’’ position population
#---
pop_eye_pos = sim.add_population(0)
for i in range(pop_eye_pos_num_neurons):

max_resp = random.uniform(*pop_eye_pos_max_resp)
s_pref = random.uniform(*pop_eye_pos_spref)
s_std = random.uniform(*pop_eye_pos_sdev)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=max_resp *
pop_eye_pos_background_percent,

tau_ref=tau_ref_range,
tau_rc=tau_rc_range,
v_th=v_th,
r_leak=r_leak,
tau_psc=tau_psc_range,
beta=pop_eye_pos_driving_beta,
initial_voltage=[0, v_th])

neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,
std_stim=s_std),

stimulus=eye_pos_stim,
column=0)

# Neuron’s preferred direction
neuron.set_unadvertised_attr(’s_pref’, s_pref)
neuron.set_unadvertised_attr(’s_std’, s_std)
neuron.set_unadvertised_attr(’recurrent_beta’,

pop_eye_pos_recurrent_beta)
neuron.set_unadvertised_attr(’fb_beta’, pop_eye_pos_fb_beta)
pop_eye_pos.add_neuron(neuron)

#---
# Create the integration population
#---
pop_integration = sim.add_population(0)
for i in range(pop_integration_num_neurons):

max_resp = random.uniform(*pop_integration_max_resp)
x_s_pref = random.uniform(*pop_eye_pos_spref)
y_s_pref = random.uniform(*pop_eye_centered_pos_spref)
x_s_std = random.uniform(*pop_eye_pos_sdev)
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y_s_std = random.uniform(*pop_eye_centered_pos_sdev)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=max_resp *
pop_integration_background_percent,

tau_ref=tau_ref_range,
tau_rc=tau_rc_range,
v_th=v_th,
r_leak=r_leak,
tau_psc=tau_psc_range,
beta=pop_integration_driving_beta,
initial_voltage=[0, v_th])

# Neuron’s preferred direction
neuron.x = x_s_pref
neuron.y = y_s_pref
neuron.set_unadvertised_attr(’x_s_pref’, x_s_pref)
neuron.set_unadvertised_attr(’y_s_pref’, y_s_pref)
neuron.set_unadvertised_attr(’x_s_std’, x_s_std)
neuron.set_unadvertised_attr(’y_s_std’, y_s_std)
neuron.set_unadvertised_attr(’recurrent_beta’,

pop_integration_recurrent_beta)
neuron.set_unadvertised_attr(’ff_beta’,

pop_integration_ff_beta)
pop_integration.add_neuron(neuron)

# Add the spike train monitor to all neurons in the simulation
sim.add_neuron_monitor(spiketrain_monitor)

# Generate a unique ID for all neurons in the simulation
sim.gen_unique_neuron_ids()

# Generate connections
processes = []
connections_file_1 = open("connections1.bin", "wb")
p = multiprocessing.Process(target=gen_ff_connections,

args=(sim, pop_eye_centered_pos, pop_head_centered_pos,
pop_eye_pos,
pop_integration, connections_file_1))

p.daemon = True
p.start()
processes.append(p)

#gen_ff_connections(sim, pop_eye_centered_pos,
pop_head_centered_pos, pop_eye_pos,

# pop_integration, connections_file)
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#gen_fb_connections(sim, pop_eye_centered_pos,
pop_head_centered_pos, pop_eye_pos,

# pop_integration, connections_file)
connections_file_2 = open("connections2.bin", "wb")
p = multiprocessing.Process(target=gen_fb_connections,

args=(sim, pop_eye_centered_pos, pop_head_centered_pos,
pop_eye_pos,
pop_integration, connections_file_2))

p.daemon = True
p.start()
processes.append(p)

connections_file_3 = open("connections3.bin", "wb")
p = multiprocessing.Process(target=gen_lateral_connections,

args=(sim, pop_eye_centered_pos, pop_head_centered_pos,
pop_eye_pos,
pop_integration, connections_file_3))

p.daemon = True
p.start()
processes.append(p)

for i in processes:
while i.pid is None:

time.sleep(0.25)
i.join()

connections_file_1.close()
connections_file_2.close()
# Concatenate the files
connections_file = open(’connections.bin’, ’wb’)
shutil.copyfileobj(open(’connections1.bin’, ’rb’),

connections_file)
shutil.copyfileobj(open(’connections2.bin’, ’rb’),

connections_file)
shutil.copyfileobj(open(’connections3.bin’, ’rb’),

connections_file)
connections_file.close()
os.remove(’connections1.bin’)
os.remove(’connections2.bin’)
os.remove(’connections3.bin’)

# Write the specifications file
f = open("pouget_spiking.xml", "w")
f.write(sim.write_xml())
f.close()
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sys.exit(0) # Done!

#-----------------------------------------------------------------------------
# CONNECTIONS
#-----------------------------------------------------------------------------
def dog_radians(x, mean, std1, std2, a1, a2):

"""Computes the value of a DOG with standard deviations std1 and
std2. The

incomming values are assumed to be in radians. THIS FUNCTION DOES
NOT WRAP

ANGULAR MEASURES! The max value is normalized to 1. The parameters
‘‘a1’’ and ‘‘a2’’ are the gains of the first and second

gaussians"""
assert std1 < std2
assert a1 > a2
return exp(-(x - mean)**2 / (2 * std1**2))
return ((a1) * exp(-(x - mean)**2 / (2 * std1**2)) - \

(a2) * exp(-(x - mean)**2 / (2 * std2**2))) / \
(a1 - a2)

def gaussian(x, mean, std1):
"""Computes the value of a Gaussian with standard deviation std1.
incomming values are assumed to be in radians. THIS FUNCTION DOES

NOT WRAP
ANGULAR MEASURES! The max value is normalized to 1."""
return (exp(-(x - mean)**2 / (2 * std1**2)))

def equalize_and_normalize(total_background_rate, background_input,
connections, dt, beta=1):
"""Equalize and normalize a set of weights"""
mean_background_rate = total_background_rate / len(connections)
for connection, src_rate_resp in connections:

connection.weight = connection.weight - background_input /
(mean_background_rate * dt * len(connections))

total_input = 0
for connection, src_rate_resp in connections:

total_input += connection.weight * src_rate_resp * dt
assert total_input > 0
for connection, src_rate_resp in connections:

connection.weight *= abs(beta / total_input)
return connections

def gen_ff_connections(sim, pop_eye_centered_pos,
pop_head_centered_pos,
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pop_eye_pos, pop_integration, connections_file):
all_src_neurons = pop_eye_centered_pos.get_neurons() + \

pop_eye_pos.get_neurons() + pop_head_centered_pos.get_neurons()

# Generate connections for (destination) neurons in the
integration layer

for dest_neuron in pop_integration.get_neurons():
connection_likelihood =

float(pop_integration_average_connections *
pop_integration_ff_beta) / len(all_src_neurons)

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_eye_centered_pos.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the weight to the eye-centered population
# y_s_pref
weight = dog_radians(src_neuron.s_pref,

dest_neuron.y_s_pref, dest_neuron.y_s_std, 2 *
dest_neuron.y_s_std, 1, 0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction
src_rate_resp = (src_neuron.max_resp) * \

exp(-((src_neuron.s_pref - dest_neuron.y_s_pref)**2) /
(2 * (src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

for src_neuron in pop_eye_pos.get_neurons():
if random.uniform(0, 1) > connection_likelihood:

continue
if dest_neuron is src_neuron:

continue
# Compute the weight to the eye population
# x_s_pref
weight = dog_radians(src_neuron.s_pref,

dest_neuron.x_s_pref, dest_neuron.x_s_std, 2 *



125

dest_neuron.x_s_std, 1, 0.2)
# Get the rate response for the source neuron at the

destination
# neuron’s preferred direction
src_rate_resp = (src_neuron.max_resp) * \

exp(-((src_neuron.s_pref - dest_neuron.x_s_pref)**2) /
(2 * (src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate

*sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

for src_neuron in pop_head_centered_pos.get_neurons():
if random.uniform(0, 1) > connection_likelihood:

continue
if dest_neuron is src_neuron:

continue
# Compute the weight to the head-centered population
# neurons in the source layer are most strongly connected

to the
# y_s_pref - x_s_pref
weight = dog_radians(src_neuron.s_pref,

(dest_neuron.y_s_pref + dest_neuron.x_s_pref),
dest_neuron.x_s_std, 2 * dest_neuron.x_s_std, 1, 0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction
src_rate_resp = (src_neuron.max_resp) * \

exp(-((src_neuron.s_pref - (dest_neuron.y_s_pref +
dest_neuron.x_s_pref))**2) / (2 *
(src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt, dest_neuron.ff_beta)
write_connections_list([i[0] for i in connections],

connections_file)
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del connections

def gen_fb_connections(sim, pop_eye_centered_pos,
pop_head_centered_pos,
pop_eye_pos, pop_integration, connections_file):
# Generate connections for (destination) neurons in the unimodal

layers
for dest_neuron in pop_eye_centered_pos.get_neurons():

connection_likelihood =
float(pop_eye_centered_pos_average_connections *
pop_eye_centered_pos_fb_beta) /
len(pop_integration.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_integration.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the weight to the eye-centered population
# y_s_pref
weight = dog_radians(src_neuron.y_s_pref,

dest_neuron.s_pref, dest_neuron.s_std, 2.0 *
dest_neuron.s_std, 1, 0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction
# The 0.5 scalar is required since neurons in the

intermediate layer have 2 PREFERRED DIRECTIONS.
Therefore,

# evaluation at the destination neuron’s preferred
direction will only provide half of the desired input.

src_rate_resp = 0.5 * (src_neuron.max_resp) * \
exp(-((src_neuron.y_s_pref - dest_neuron.s_pref)**2) /

(2 * (src_neuron.y_s_std)**2)) \
+ src_neuron.background_rate

background_input += weight * src_neuron.background_rate *
sim.dt

background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,
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background_input, connections, sim.dt, dest_neuron.fb_beta)
write_connections_list([i[0] for i in connections],

connections_file)
del connections

for dest_neuron in pop_eye_pos.get_neurons():
connection_likelihood = float(pop_eye_pos_average_connections *

pop_eye_centered_pos_fb_beta) /
len(pop_integration.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_integration.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the weight to the eye-centered population
# y_s_pref
weight = dog_radians(src_neuron.x_s_pref,

dest_neuron.s_pref, dest_neuron.s_std, 2 *
dest_neuron.s_std, 1, 0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction
# The 0.5 scalar is required since neurons in the

intermediate layer have 2 PREFERRED DIRECTIONS.
Therefore,

# evaluation at the destination neuron’s preferred
direction will only provide half of the desired input.

src_rate_resp = 0.5 * (src_neuron.max_resp) * \
exp(-((src_neuron.x_s_pref - dest_neuron.s_pref)**2) /

(2 * (src_neuron.x_s_std)**2)) \
+ src_neuron.background_rate

background_input += weight * src_neuron.background_rate *
sim.dt

background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt, dest_neuron.fb_beta)
write_connections_list([i[0] for i in connections],

connections_file)
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del connections

# Head centered neuron weights
for dest_neuron in pop_head_centered_pos.get_neurons():

connection_likelihood =
float(pop_head_centered_pos_average_connections *
pop_head_centered_pos_fb_beta) /
len(pop_integration.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_integration.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the weight to the eye-centered population
# y_s_pref
weight = dog_radians(src_neuron.x_s_pref +

src_neuron.y_s_pref, dest_neuron.s_pref,
dest_neuron.s_std, 2 * dest_neuron.s_std, 1, 0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction (take the mean of the
standard

# deviations in both directions
# The 0.66 scalar is required since neurons in the

intermediate layer have 2 PREFERRED DIRECTIONS.
Therefore,

# evaluation at the destination neuron’s preferred
direction will only provide 2/3 of the desired input

src_rate_resp = 0.66 * (src_neuron.max_resp) * \
exp(-((dest_neuron.s_pref - (src_neuron.x_s_pref +

src_neuron.y_s_pref))**2) / (2 *
(src_neuron.x_s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt, dest_neuron.fb_beta)
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write_connections_list([i[0] for i in connections],
connections_file)

del connections

def gen_lateral_connections(sim, pop_eye_centered_pos,
pop_head_centered_pos,
pop_eye_pos, pop_integration, connections_file):
# Generate connections for (destination) neurons in the unimodal

layers
for dest_neuron in pop_eye_centered_pos.get_neurons():

connection_likelihood =
float(pop_eye_centered_pos_average_connections *
pop_eye_centered_pos_recurrent_beta) /
len(pop_eye_centered_pos.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_eye_centered_pos.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the lateral weight
#weight = gaussian(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std)
weight = dog_radians(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std, 2 * dest_neuron.s_std, 1, 0.2)
# Get the rate response for the source neuron at the

destination
# neuron’s preferred direction (take the mean of the

standard
# deviations in both directions
src_rate_resp = (src_neuron.max_resp) * \

exp(-((dest_neuron.s_pref - src_neuron.s_pref)**2) / (2
* (src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt,
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dest_neuron.recurrent_beta)
write_connections_list([i[0] for i in connections],

connections_file)
del connections

for dest_neuron in pop_eye_pos.get_neurons():
connection_likelihood = float(pop_eye_pos_average_connections *

pop_eye_pos_recurrent_beta) /
len(pop_eye_pos.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_eye_pos.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the lateral weight
#weight = gaussian(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std)
weight = dog_radians(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std, 2 * dest_neuron.s_std, 1, 0.2)
# Get the rate response for the source neuron at the

destination
# neuron’s preferred direction (take the mean of the

standard
# deviations in both directions
src_rate_resp = (src_neuron.max_resp) * \

exp(-((dest_neuron.s_pref - src_neuron.s_pref)**2) / (2
* (src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt,
dest_neuron.recurrent_beta)

write_connections_list([i[0] for i in connections],
connections_file)

del connections
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for dest_neuron in pop_head_centered_pos.get_neurons():
connection_likelihood =

float(pop_head_centered_pos_average_connections *
pop_head_centered_pos_recurrent_beta) /
len(pop_head_centered_pos.get_neurons())

connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_head_centered_pos.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the lateral weight
#weight = gaussian(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std)
weight = dog_radians(src_neuron.s_pref, dest_neuron.s_pref,

dest_neuron.s_std, 2 * dest_neuron.s_std, 1, 0.2)
# Get the rate response for the source neuron at the

destination
# neuron’s preferred direction (take the mean of the

standard
# deviations in both directions
src_rate_resp = (src_neuron.max_resp) * \

exp(-((dest_neuron.s_pref - src_neuron.s_pref)**2) / (2
* (src_neuron.s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt,
dest_neuron.recurrent_beta)

write_connections_list([i[0] for i in connections],
connections_file)

del connections

for dest_neuron in pop_integration.get_neurons():
connection_likelihood =

float(pop_integration_average_connections *
pop_integration_recurrent_beta) /



132

len(pop_integration.get_neurons())
connections = []
background_rate = 0
background_input = 0
for src_neuron in pop_integration.get_neurons():

if random.uniform(0, 1) > connection_likelihood:
continue

if dest_neuron is src_neuron:
continue

# Compute the lateral weight
#weight = gaussian(src_neuron.y_s_pref,

dest_neuron.y_s_pref, dest_neuron.y_s_std) *
gaussian(src_neuron.x_s_pref, dest_neuron.x_s_pref,
dest_neuron.x_s_std)

weight = dog_radians(src_neuron.y_s_pref,
dest_neuron.y_s_pref, dest_neuron.y_s_std, 2 *
dest_neuron.y_s_std, 1, 0.2) * \
dog_radians(src_neuron.x_s_pref, dest_neuron.x_s_pref,

dest_neuron.x_s_std, 2 * dest_neuron.x_s_std, 1,
0.2)

# Get the rate response for the source neuron at the
destination

# neuron’s preferred direction (take the mean of the
standard

# deviations in both directions
src_rate_resp = (src_neuron.max_resp) * \

exp(-((dest_neuron.x_s_pref - src_neuron.x_s_pref)**2)
/ (2 * (src_neuron.x_s_std)**2)) * \

exp(-((dest_neuron.y_s_pref - src_neuron.y_s_pref)**2)
/ (2 * (src_neuron.y_s_std)**2)) \

+ src_neuron.background_rate
background_input += weight * src_neuron.background_rate *

sim.dt
background_rate += src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight), src_rate_resp])

# Determine the equalized/normalized weights
connections = equalize_and_normalize(background_rate,

background_input, connections, sim.dt,
dest_neuron.recurrent_beta)

write_connections_list([i[0] for i in connections],
connections_file)

del connections
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if __name__ == ’__main__’:
main()

7.3.1 Simulation Parameters

#!/usr/bin/env python
import math

#---
# Simulation-Wide Parameters
#---
# Who many times longer than tau_psc should our filters be ?
psc_filter_multiplier = 5
sim_time = 2.0 # Seconds
sim_dt = 2.5e-4

#---
# Neuron Parameters
#---
tau_psc_range = [0.005, 0.010] # Seconds
tau_ref_range = [0.002, 0.005] # Seconds
tau_rc_range = [0.010, 0.030] # Seconds
v_th = 1
r_leak = 1

#---
# ‘‘Eye-Centered’’ Position Population
#---
pop_eye_centered_pos_num_neurons = 5000
pop_eye_centered_pos_max_resp = [80, 80] # Hz
pop_eye_centered_pos_background_percent = 0.10 # i.e. 10%
pop_eye_centered_pos_average_connections = 10000
pop_eye_centered_pos_driving_beta = 0.20
pop_eye_centered_pos_recurrent_beta = 0.40
pop_eye_centered_pos_fb_beta = 0.40
pop_eye_centered_pos_spref = [-90*math.pi/180, 90*math.pi/180] #

Radians
pop_eye_centered_pos_sdev = [math.pi/12, math.pi/12] # Radians

#---
# ‘‘Head-Centered’’ Position Population
#---
pop_head_centered_pos_num_neurons = 5000
pop_head_centered_pos_max_resp = [80, 80] # Hz
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pop_head_centered_pos_background_percent = 0.10 # i.e. 10%
pop_head_centered_pos_average_connections = 10000
pop_head_centered_pos_driving_beta = 0.20
pop_head_centered_pos_recurrent_beta = 0.40
pop_head_centered_pos_fb_beta = 0.40
pop_head_centered_pos_spref = [-90*math.pi/180, 90*math.pi/180] #

Radians
pop_head_centered_pos_sdev = [math.pi/12, math.pi/12] # Radians

#---
# ‘‘Eye’’ Position Population
#---
pop_eye_pos_num_neurons = 5000
pop_eye_pos_max_resp = [80, 80] # Hz
pop_eye_pos_background_percent = 0.10 # i.e. 10%
pop_eye_pos_average_connections = 10000
pop_eye_pos_driving_beta = 0.20
pop_eye_pos_recurrent_beta = 0.40
pop_eye_pos_fb_beta = 0.40
pop_eye_pos_spref = [-90*math.pi/180, 90*math.pi/180] # Radians
pop_eye_pos_sdev = [math.pi/12, math.pi/12] # Radians

#---
# ‘‘Integration’’ Population
#---
pop_integration_num_neurons = 20000
pop_integration_max_resp = [80, 80] # Hz
pop_integration_background_percent = 0.10 # i.e. 10%
pop_integration_average_connections = 10000
pop_integration_driving_beta = 0.0
pop_integration_recurrent_beta = 0.5
pop_integration_ff_beta = 0.5

7.4 Single Area Pyramidal-Interneuron Model

#!/usr/bin/env python
import sys
from recurrent import *
from initialize_new_sim import *
from math import *
import random

import multiprocessing
import shutil
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from glob import glob

def main():
files = glob(’connections*.bin’)
for f in files:

try:
os.remove(f)

except:
pass

# Create a new simulation
sim = Simulation(T=sim_time, dt=sim_dt)

# Set the PSC length multiplier
sim.set_psc_length_multiplier(psc_filter_multiplier)

# Monitors for the A population

gaba_current_monitor = FileMonitor(’gaba_current’, "gaba_current",
4000, compress=True)

sim.add_sim_monitor(gaba_current_monitor)
# Monitors for population B
ampa_current_monitor = FileMonitor(’ampa_current’, "ampa_current",

4000, compress=True)
sim.add_sim_monitor(ampa_current_monitor)
#voltage_monitor = FileMonitor(’voltage’, "voltage", 4000,

compress=True)
#sim.add_sim_monitor(voltage_monitor)

spike_train_monitor = FileMonitor(’spike_train’, ’spiketrain’,
4000, compress=True)

sim.add_sim_monitor(spike_train_monitor)

# Create the excitatory (pyramidal) population
excitatory = sim.add_population(0)
for i in range(excitatory_num_neurons):

max_resp = random.uniform(*excitatory_max_resp_range)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=random.uniform(*excitatory_background_rate),
tau_ref=excitatory_tau_ref,
tau_rc=excitatory_tau_rc,
v_th=v_th,
r_leak=r_leak,
tau_psc=random.uniform(*excitatory_tau_psc),
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beta=excitatory_driving_beta,
initial_voltage=[0, v_th])

neuron.set_poisson_spiking(True)
neuron.set_unadvertised_attr(’recurrent_beta’,

excitatory_recurrent_beta)
neuron.set_unadvertised_attr(’ff_beta’, excitatory_ff_beta)
neuron.set_unadvertised_attr(’fb_beta’, excitatory_fb_beta)
neuron.is_inhibitory = False
excitatory.add_neuron(neuron)

#excitatory.add_neuron_monitor(gaba_current_monitor)
#excitatory.add_neuron_monitor(ampa_current_monitor)
excitatory.add_neuron_monitor(spike_train_monitor)
#excitatory.add_neuron_monitor(voltage_monitor)

# Create a new "B" population
inhibitory = sim.add_population(0) # No neuron in pop A
for i in range(inhibitory_num_neurons):

max_resp = random.uniform(*inhibitory_max_resp_range)
neuron = LIFNeuron(maximum_rate=max_resp,

background_rate=random.uniform(*inhibitory_background_rate),
tau_ref=inhibitory_tau_ref,
tau_rc=inhibitory_tau_rc,
v_th=v_th,
r_leak=r_leak,
tau_psc=random.uniform(*inhibitory_tau_psc),
beta=inhibitory_driving_beta,
initial_voltage=[0, v_th])

neuron.set_poisson_spiking(True)
neuron.set_unadvertised_attr(’recurrent_beta’,

inhibitory_recurrent_beta)
neuron.set_unadvertised_attr(’ff_beta’, inhibitory_ff_beta)
neuron.set_unadvertised_attr(’fb_beta’, inhibitory_fb_beta)
neuron.is_inhibitory = True
inhibitory.add_neuron(neuron)

#inhibitory.add_neuron_monitor(ampa_current_monitor)
#inhibitory.add_neuron_monitor(gaba_current_monitor)
inhibitory.add_neuron_monitor(spike_train_monitor)

# Generate a unique ID for all neurons in the simulation
sim.gen_unique_neuron_ids()

# Create a new stimulus for population a
# Stimulus is on for times [5, 10] seconds
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injection_stimulus = FileStimulus(’injection.bin’,
int(ceil(5/sim.dt)), start_index=int(ceil(5/sim.dt)),
end_index=int(ceil(10/sim.dt)))

# Add the stimulus to the simulation
sim.add_sim_stimulus(injection_stimulus)
# Generate the stimulus (constant with pi radians)
injection_stimulus.add_row([pi for i in

range(injection_stimulus.Nt)])
# Add Gaussian tuning to all neurons.
for neuron in excitatory.get_neurons():

s_pref = random.uniform(*excitatory_spref_range)
s_std = random.uniform(*excitatory_std_range)
neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,

std_stim=s_std),
stimulus=injection_stimulus,
column=0)

neuron.s_pref = s_pref
neuron.s_std = s_std

for neuron in inhibitory.get_neurons():
s_pref = random.uniform(*inhibitory_spref_range)
s_std = random.uniform(*inhibitory_std_range)
neuron.add_tuning(tuning=Gaussian(pref_stim=s_pref,

std_stim=s_std),
stimulus=injection_stimulus,
column=0)

neuron.s_pref = s_pref
neuron.s_std = s_std

# Create the connections file
gen_connections(sim, inhibitory.get_neurons() +

excitatory.get_neurons(),
inhibitory.get_neurons() + excitatory.get_neurons(),

gen_random_connections)
connections_file = open("connections.bin", "wb")
for i in range(0, multiprocessing.cpu_count()):

shutil.copyfileobj(open(’connections_%d.bin’ % (i), ’rb’),
connections_file)

os.remove(’connections_%d.bin’ % (i))
connections_file.close()

# Write the specifications file
f = open("lfp.xml", "w")
f.write(sim.write_xml())
f.close()
sys.exit(0) # Done!
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#-----------------------------------------------------------------------------
# CONNECTIONS
#-----------------------------------------------------------------------------
def equalize_and_normalize(total_background_rate, background_input,

connections, dt, beta=1):
"""Equalize and normalize a set of weights"""
mean_background_rate = total_background_rate / len(connections)
for connection, src_rate_resp in connections:

connection.weight = connection.weight - background_input /
(mean_background_rate * dt * len(connections))

total_input = 0
for connection, src_rate_resp in connections:

total_input += connection.weight * src_rate_resp * dt
assert total_input > 0
for connection, src_rate_resp in connections:

connection.weight *= abs(beta / total_input)
return connections

def gaussian(x, mean, std):
return exp(-common.angle_mod(x, mean)**2 / (2 * std**2))

def gen_connections(sim, src_neurons, dest_neurons, function):
fp = []
cpus = multiprocessing.cpu_count()
p = []
start = 0
step = int(len(dest_neurons)/float(cpus))
for i in range(0, cpus):

fp.append(open(’connections_%d.bin’ % (i), ’ab’))
end = start + step
if i == cpus - 1:

end = len(dest_neurons)
print start, end
p.append(multiprocessing.Process(target=function,
args=(sim, fp[-1], src_neurons,
[dest_neurons[j] for j in range(start, end)])))
p[-1].start()
start = end

for i in range(0, len(p)):
p[i].join()
if p[i].exitcode != 0:

for j in range(i+1, len(p)):
p[j].terminate()
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sys.exit(1)
fp[i].close()

def gen_random_connections(sim, connections_file, src_neurons,
dest_neurons):
for dest_neuron in dest_neurons:

connections = []
inhibitory_background_rate = 0
inhibitory_background_input = 0
excitatory_background_rate = 0
excitatory_background_input = 0

# Choose 60% of the neurons randomly
indices = [random.randint(0, len(src_neurons)-1) for i in

range(0, int(0.60 * len(src_neurons)))]
for i in indices:

src_neuron = src_neurons[i]
if src_neuron.is_inhibitory:

# Gaussian centered on the antipreferred
weight = -1.0 * gaussian(src_neuron.s_pref,

dest_neuron.s_pref, dest_neuron.s_std)
else: # Src neuron is excitatory

# Gaussian centered on the preferred
weight = gaussian(src_neuron.s_pref,

dest_neuron.s_pref, dest_neuron.s_std)
# Get the rate response of the source neuron at the

destination
# neuron’s preferred direction
src_rate_resp = (src_neuron.max_resp) * \

gaussian(src_neuron.s_pref, dest_neuron.s_pref,
src_neuron.s_std) \

+ src_neuron.background_rate
if src_neuron.is_inhibitory:

inhibitory_background_input += weight *
src_neuron.background_rate * sim.dt

inhibitory_background_rate +=
src_neuron.background_rate

else:
excitatory_background_input += weight *

src_neuron.background_rate * sim.dt
excitatory_background_rate +=

src_neuron.background_rate
connections.append([Connection(src_neuron, dest_neuron,

weight, random.uniform(*excitatory_synaptic_delay) if
weight > 0 else
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random.uniform(*inhibitory_synaptic_delay)),
src_rate_resp])

# NOTE: Since the sign of the weights must be mainted, we scale
the

# inhibitory connection weights to equal the excitatory weights
at background

# (i.e. ‘‘partial’’ normalization rather than equalization
inhibitory_scaling = abs(excitatory_background_input) /

abs(inhibitory_background_input)
total_input = 0
for connection, src_rate_resp in connections:

if connection.weight <= 0:
# This is inhibitory
connection.weight = connection.weight *

inhibitory_scaling
total_input += connection.weight * src_rate_resp * sim.dt

assert total_input > 0
for connection, src_rate_resp in connections:

connection.weight *= abs(dest_neuron.recurrent_beta /
total_input)

write_connections_list([i[0] for i in connections],
connections_file, pruning_constant)

if __name__ == ’__main__’:
main()

7.4.1 Simulation Parameters

#!/usr/bin/env python
from math import pi

#---
# Simulation-Wide Parameters
#---
# Who many times longer than tau_psc should our filters be ?
psc_filter_multiplier = 5
sim_time = 10 # Seconds
sim_dt = 2.5e-4

#---
# Excitatory neuron (Pyramidal neurons)
#---
excitatory_tau_ref = [0.002, 0.005] # Seconds (2 ms)
excitatory_tau_rc = [0.010, 0.030] # Seconds (20 ms)
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excitatory_tau_psc = [0.004, 0.006] # Seconds (5 ms)
excitatory_num_neurons = 5000
excitatory_max_resp_range = [40, 80]
excitatory_background_rate = [2, 4]
excitatory_spref_range = [0, 2*pi]
excitatory_std_range = [pi/8, pi/4]
excitatory_recurrent_beta = 0.5
excitatory_driving_beta = 0.5
excitatory_ff_beta = 0.0
excitatory_fb_beta = 0.0

#---
# Inhibitory interneurons (GABA-type)
#---
inhibitory_tau_ref = [0.002, 0.005] # Seconds (1 ms)
inhibitory_tau_rc = [0.010, 0.030] # Seconds (10 ms)
inhibitory_tau_psc = [0.004, 0.006] # Seconds (5 ms)
inhibitory_num_neurons = 5000
inhibitory_max_resp_range = [40, 80]
inhibitory_background_rate = [4, 8]
inhibitory_spref_range = [0, 2*pi]
inhibitory_std_range = [pi/4, pi/2]
inhibitory_recurrent_beta = 0.5
inhibitory_driving_beta = 0.5
inhibitory_ff_beta = 0.0
inhibitory_fb_beta = 0.0

#---
# Common parameters
#---
v_th = 1
r_leak = 1
# Use synaptic delays from Mattia et al. NeuroImage, 2010
inhibitory_synaptic_delay = [sim_dt, 0.003] # Seconds
excitatory_synaptic_delay = [sim_dt, 0.001] # Seconds

#---
# Trimming Factor
#---
pruning_constant = 1e-5
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