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ABSTRACT

The goal of this thesis is to move a step towards the solution of the bin

picking problem. A novel metamorphic end effector is proposed, tested for proof of

concept and analyzed using standard techniques of degrees of freedom and graph

theory as well as a classical dynamic analysis. Once proof of concept was achieved,

the results from the analysis were formed into an optimization program with the

hope of finding a more stable, predictable mechanism.
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CHAPTER 1

Introduction

1.1 Motivation

Several consumer driven factors, such as the demand for personalized

products and more rapid release of new models, continue to push for improved

manufacturing processes. A competitive manufacturing advantage can be gained by

decreasing time required for line changes. One way to accomplish this is to make

industrial automation more flexible over both the short and long term. This

flexibility will allow the automation to handle more than one specific component.

However, flexibility alone is not enough; the automation must also withstand the

constant punishment sustained within an industrial setting.

Current trends have shown the capability of robotic manipulators to increase

flexibility in some specialized tasks. The automotive industry is one such example;

spot welding and painting have proven to be vastly improved through the use of

robotic manipulators. There has also been growth in the use of robotic

manipulators in the nuclear clean up and food packaging industries. Making use of

parallel manipulators for parts having high degrees of symmetry, some structured

tasks in the food industry have increased throughput. Unfortunately, most assembly

tasks have proven elusive due to the requirement of specific part position and

orientation when presented to the manipulator. While dedicated part orientation

devices (e.g., vibratory bowl feeders) aid in this task, these orientation devices limit

the overall flexibility of the system and increase capital and maintenance costs. If

the time between product introductions is large enough many assembly tasks are

left to dedicated tooling. If flexibility is the governing constraint then manual
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assembly is usually selected.

Eliminating the orientation devices leads to the bin picking problem: picking

parts directly from unorganized bins and placing them into an assembly. The bin

picking problem can be broken into three sections: locating, retrieving and

orientating the part. Robotic vision is continuing to make strides in effectively

locating and identifying the part. Coupling an effective vision system with a six

degree of freedom (DOF) robotic manipulator solves most of the retrieving issues.

However, to manipulate the part without regrasping (dropping the part and picking

it up again), a proper end effector must also be used. With this combination of

vision, six DOF robotic manipulator and end effector, there is the potential for

many more industrial tasks to be automated.

The bin picking problem is not new, but previous research has focused

primarily on the vision aspect of the problem; vision systems identify the part

position and orientation. The robot then uses its end effector to grasp and correctly

orient the part before assembly. When trying to couple the manipulator with the

vision system, the dilemma facing automation designers becomes the robotic end

effector itself. Primarily there exists two groups of end effectors, those with high

dexterity and those with low to no dexterity. The highly dexterous end effectors

(e.g., the Utah/MIT hand [1]), which allow the identified parts to be picked up and

manipulated in-hand (in-hand manipulation) by using finger gaiting (“walking” the

fingers in a controlled manner to move the part), currently are not feasible to be

used in industrial context due to the high number of controlled DOF; this causes

the hand to be too slow and not robust enough for industrial settings. These types

of systems are typically only used when time is not a factor and flexibility is

paramount. Conversely, there exist very fast, simple and robust end effectors like

suction cups and parallel jaw end effectors. These end effectors do not allow in-hand

manipulation of the parts and, therefore, most require regrasping for part

manipulation when used in a bin picking situation. One such example is the

commercially available Pallet Picker 3D [2]. The Pallet Picker 3D uses a camera to

identify discrete parts in a bin where a robotic manipulator equipped with a suction
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cup end effector picks them up. To orient the parts before assembly, the robot must

drop the part and pick it up again. Eliminating this extra task has the ability to

drastically increase speed and throughput while simultaneously decreasing

complexity. This is why most of these simple end effectors are paired with an

orientation device so that no in-hand manipulation is required. With a solution to

the bin picking problem, part feeders can effectively be removed, decreasing

machinery cost by 30% and eliminating 50% of downtime [3].

1.2 Design Paradigm

Many industrial parts for assembly have two axes of symmetry, as defined by

Boothroyd [4]; the α axis runs parallel to the plane of assembly while the β axis is

perpendicular as can be seen in Figure 1.1. Assuming these lines of symmetry exist

and an vision system is in place to determine orientation, a 6 DOF robot is capable

of the β rotation, requiring the end effector to provide the α rotation. It is

hypothesized that if the end effector can be designed that allows rotation of parts

only around the α axis, it will solve many, but not all, of the bin picking end

effector related problems encountered today. If the end effector must come from

directly above the part, Figure 1.2 shows that rotation about the α axis is the only

way to reorient the part without regrasping or finger gaiting.� �
Figure 1.1: α and β Axes As Defined By Boothroyd [4]

To make the end effector as robust as possible, one train of thought is to

minimizing the DOF. This reduces the number of actuators needed and the number
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Figure 1.2: Blocks for Assembly Using α Rotation

of parts that may break. To force the block to rotate as desired a “fixed finger” will

be used. This fixed finger, shown in Figure 1.3, will take the form of a stanchion in

the work space of the six DOF robot allowing the part to be touched

down,constraining the part’s DOF while the manipulator rotates.

If the part can be thought of as an integral link, the end effector becomes a

closed loop chain with the need to manipulate a link but also be able to completely

constrain the same link. Because of the dual configurations required, reconfigurable

mechanisms provided promising solutions.

Mechanism selection will be looked at in greater detail in Chapters 2 and 3.

Design and Testing will be discussed in Chapter 4, analysis and optimization of the

mechanism will be shown in Chapters 5 and 6 followed by the conclusions in

Chapter 7.
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Figure 1.3: Fixed Finger
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CHAPTER 2

Literature Review

Looking at the end effector and part as a linked closed loop mechanism,

created the need for a mechanism with multiple poses in which the constraints on a

link changes. Substituting the part for this link is believed to give the necessary

changes in mobility to fully constrain the part in one pose, yet be able to

manipulate the part in the next. This lead to using a mechanism that would fall

into the reconfigurable mechanisms classification. The term reconfigurable

mechanisms is often used interchangeably with mechanisms with variable topology

(MVT). Not all reconfigurable mechanisms have a change in their topology but

instead have a change in their range of motion. Calling these mechanisms MVT is

wrong. It is thought that by making use of these changes, the desired link (the part)

can go from fully constrained to having the ability to rotate about the desired axis.

To rotate the part without use of an extra actuator, a fixed finger will be placed in

the work space of the robot.

2.1 Metamorphic Mechanisms

Metamorphic mechanisms are one type of reconfigurable mechanism and

have have been loosely defined as, “mechanisms whose number, the total of all

effective links, change as they move from one configuration to another or a

singularity condition in geometry occurs that makes it behave differently” [5].

If the change in mobility is caused by the actuation scheme or an operator

interacting with the mechanism, the mechanism is not a metamorphic mechanism.

Using the approach of locking actuators or manual manipulation the mechanism, all
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mechanisms can become metamorphic mechanisms and the classification becomes

trivial. Furthermore, the governing equations for this approach do not change. It is

proposed that the classification also include mechanisms where the joint changes

form due to the pose or motion of the mechanism. Therefore, the definition of

metamorphic mechanisms should be amended to state:

Definition: A metamorphic mechanism is such that, during operation,

a minimum of one of the following occurs due to the kinematics of the

mechanism:

(a) The number of links changes

(b) The number of joints changes

(c) The type of a joint changes

Example : An example of a unique application of a metamorphic mechanism,

similar to origami, is presented by Dai in [5, 6]. By folding a flat piece of

paper, a mechanism which changes configuration depending on its pose is

created. In this mechanism, a hexahedron starts as a flat piece of paper with

predetermined creases (represented by the dotted lines) and flaps as shown in

Figure 2.1. In this form, it is a serial mechanism where each crease is modeled

as a revolute joint.

Figure 2.1: Flat Creased Card (Adapted From [5])

This is an abstract example of a metamorphic mechanism because it requires
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someone to physically manipulate it due to no actuators being present. If the

creases, shown as dashed lines, represent revolute joints and the flaps

represent mechanical clasps. As the paper is folded along the creases, the flaps

come into contact with the opposing piece. This mimics an actuated revolute

joint and two sides of a clasp closing. This creates a new joint, which now

adds constraint to the system. The number of links remains the same, but the

relations between the links changes. The mechanism is no longer a member of

the class of serial mechanisms. Once all the folds and clasps are completed, it

becomes a structure as shown in Figure 2.2. The “actuated” joints may lose

the ability to move due to the geometry but at no point are any of the them

ever locked.

This mechanism clearly fits into several classifications as it changes from a

serial mechanism to a structure. While not all metamorphic mechanisms will

change classes during operation, it is not uncommon due to the nature of the

class.

Figure 2.2: Hexahedron Formed From The Flat Card In Figure 2.1. (Adapted From
[5])

2.2 Previous Work

To design a functional end effector the fundamentals of gripping must first be

explored. For a good review see [7]. Expanding on the fundamentals and using

grasping to reorient parts is not a new concept. Canny and Goldberg presented

several options for using lower DOF manipulators and simple sensors to determine
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current orientation and for high precision insertion. Carlisle et al. presented an

alternative to vibratory bowls in [3] for orientation. This part feeder consisted of a

high speed robot arm combined with a vision system. The end effector attached to

the arm was intended to allow the part to rotate about the previously defined α axis

on hard finger contacts but never fully constrained the part. Zhang et al. [8] used

compensatory grasping to reorient parts with an undesirable resting position. This

process uses pins at key locations on parallel jaw end effectors to guide the part into

the desired grasp position as the end effector closes in a form of controlled part

tumbling. This method relies heavily on the geometry of the part. If there is any

variation in the part geometry it may not tumble as desired. A six DOF

reconfigurable end effector for fixtureless assembly of automotive body panels was

developed by Yeung [9]. This end effector has three fingers each with two actuated

joints, one revolute and one prismatic and was classified as a reconfigurable

mechanism. By actuating the joints in the hand, “reconfiguring” the end effector,

this end effector can pick up different shaped objects. The end effector is not a

reconfigurable mechanism, but instead is closer to that of a simplified version of an

anthropomorphic hand.

Grasping is not generally associated with reconfigurable mechanisms but for

the purposes of this research the two are directly linked. The first reconfigurable

mechanisms were introduced in 1996 by Wohlhart and termed kinematotropic

mechanisms [10]. Wohlhart’s work presented three mechanisms that have similar

properties: at least two distinct ranges of motion separated by a bifurcation pose,

while in the bifurcation pose each mechanism gains DOF, and the mechanisms have

different DOF in each of the ranges of motion. This work was followed by Galletti’s

attempt to develop some single loop [11] and multi-loop [12] kinematotropic chains.

However, these mechanisms only partially fulfill the definition proposed by

Wohlhart in [10] as they do not pass through a bifurcation point but instead remain

in a singularity.

Arguably, the first attempt to use a reconfigurable mechanism as an end

effector was proposed by Voglewede [13]. When modeled as a closed kinematic
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chain, the mechanism would reach a singularity that allowed large unconstrained

motion (aka self motion). However, it does not function as claimed. As modeled and

analyzed the mechanism successfully completes the task, but unfortunately, the

model lacks a critical nonholonomic rolling constraint. Because of this, the part to

be manipulated is never fully constrained. The part can move in and out of the

plane in one pose, an unintended motion, and can rotate about its center axis in the

other, the desired motion. This is not due to an improper analysis, but due to an

oversight in the proposed model.

In 1999 Dai introduced a group of mechanisms called metamorphic

mechanisms [5]. Dai went on to propose a way to represent each phase of a

metamorphic mechanism by using adjacency matrices as well as a topological graph

[6, 14]. Using elementary matrix operations, a matrix representation of the

topological changes of the matrix was determined. Following in Dai’s work, Lan [15]

proposed a way to use augmented adjacency matrices to represent metamorphic

mechanisms; this would allow for the matrix to remain the same size as the

mechanism changed. However, the metamorphic mechanisms proposed are not

metamorphic due to joints being locked to create the change in the mechanism.

Also, the use of these augmented adjacency matrices does not give meaning to the

change in pose for general metamorphic mechanisms and must be constructed by

inspection for each pose. One feasible way to form a metamorphic mechanism is to

properly implement one or more of the variable joints, as introduced by Yan and

Kuo [16], based on topological representations and able to change the kinematic pair

during operation.

In 2007 Dai and Wang introduced a metamorphic robotic hand [17]. The

claim of metamorphic capabilities relies on the use of locking actuators in the

spherical mechanism of the palm. The number of links and joints remains constant

as well as the type of joints, therefore, this mechanism is not truly metamorphic and

is instead a spherical mechanism.

In 2000 ortho-planar mechanisms were introduced by Parise [18]. The

primary use for these mechanisms is in micro-electro-mechanical systems (MEMS).
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Many of these mechanisms are change point mechanisms which are more closely

related to kinematotropic mechanisms than metamorphic. Ortho-planar mechanisms

were then expanded upon by Lusk et al. with a derivation of the design space of

these mechanisms [19], and then again by Caroll et al. with the development of

some compliant ortho-planar metamorphic mechanisms (COPMM) [20]. These

mechanisms are able to be manufactured in a planar configuration often assuming a

change point pose. After undergoing a “metamorphic process,” the mechanisms no

longer remain planar or have a change point pose. By allowing for manufacturing of

the mechanisms to be planar versus spatial, costs can be reduced. There can also be

a savings seen in packaging and shipping due to the ability to ship flat and be

constructed upon arrival. Because the mechanism is not useful for any task prior to

the “metamorphic process” proposed, this metamorphosis is simply assembly of the

mechanism. Taking the links from the manufacturing process and putting them

together does not meet the criteria of a reconfigurable mechanism.

Currently there is no good way to synthesize metamorphic mechanisms

leaving it solely to designers’ imaginations. In an effort to change that, Zhang et al.

proposed an evolutionary methodology for synthesizing and and designing

metamorphic mechanisms using biological modeling and evolution [21]. This is a

very complex method and not very well refined making it hard, if not impossible, to

guarantee that a mechanism with the desired characteristics will be revealed.

Metamorphic mechanisms are not to be confused with metamorphic robotic

systems. These systems consist of a collection of independently controlled mobile

robots that are identical in structure, computational abilities, and motion

constraints [22]. These robots move over and around each other to reposition

themselves into new configurations.

Calculating the mobility of reconfigurable mechanisms can be difficult due to

the ability to change DOF multiple times during a process. There is also a use of

redundant DOF which are generally ignored in most DOF calculations. Gogu [23]

did a critical review of the calculation of mobility for non-reconfigurable

mechanisms. Several methods using screw systems [24, 25, 26] have been introduced
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to calculate the mobility of reconfigurable mechanisms in their different

configurations that are considered more accurate than the Grübler or Kutzbach

equations. As with any mechanism it is critical to know and understand how many

DOF are present and where actuators can be placed to properly constrain the

mechanism for the desired motion profile.

It appears that the only instance of a reconfigurable mechanism being used

as a end effector was done by Voglewede [13]. Building upon the knowledge gained

in [13] the next iteration can be designed.
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CHAPTER 3

Novel End Effector

The structured environment of the industrial assembly process creates a

situation where a fully anthropomorphic hand is generally not needed to allow for

manipulation of the parts to be assembled, partially due to the fact that the

geometry of the parts is already known. It has also been noted that there generally

exists two axes of symmetry for most industrial assembly parts. Assuming that

symmetry along the α and β axes does exist for a part, this vastly simplifies the

problem. By making use of a six DOF robot, which can provide the necessary β

rotation and to some extent α rotation as well, the end effector only needs to be

able to accommodate the remaining necessary rotation of the part about the α axis.

It is also assumed that a two finger grasp can be made that will fully constrain the

part, and that the necessary vision system is already in place allowing for the

orientation of the part to be determined.

The mechanism introduced here is the next iteration of the design introduced

in [13]. As modeled, the mechanism proposed in [13] would be effective, however,

due to an unforseen rolling constraint, the part is never fully constrained.

Minimizing or eliminating the effects of the rolling constraint will decrease the

complexity of the model required to produce useable results. Also the use of soft

finger contacts necessitated the use of a nonholonomic rolling constraint. This

constraint was also considered negligible in the analysis but has since been shown to

be critical.
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3.1 Mechanism Selection

The objective of the mechanism introduced is to allow for in-hand

manipulation while being robust enough to thrive in an industrial setting. It is

believed that making use of a metamorphic mechanism and a new form of in-hand

manipulation that does not require the end effector to break contact with the part,

the desired kinematic solution can be found. Kinematotropic mechanisms hold

promising solutions as well, but also have distinct disadvantages not necessarily

experienced with metamorphic mechanisms; primarily that they require singularities

in the workspace while metamorphic mechanisms do not. A kinematotropic

mechanism must pass through a singularity when the change in mobility occurs and

seems to require all manipulations to be undone before they are able to pass back

through the singularity. Also, actuation near a singularity poses many problems;

requiring the mechanisms to predictably pass in and out of a singularity on a

regular basis complicates things further. Making use of a metamorphic mechanism

will reduce the likelihood of operating in or around singular positions.

The concept of this new design is based on changing the interface between

the part and the end effector and thus changing the type of contact points between

the part and the end effector. Assuming that the part and end effector never lose

contact and that the normal force at the interface between the end effector and the

part is always sufficient to constrain the part from undesired movement, as is the

goal of in-hand manipulation without finger gaiting, the interface of the part and

end effector can be modeled as joints. Because the end effector-part interface

changes, this can be modeled as the joints changing type during operation classifying

the mechanism as a class (c) metamorphic mechanism as defined in Section 2.1.

3.2 Design Process

A prototype of the proposed end effector is shown in Figures 3.1 though 3.6.

The key to the mechanism is the part-finger interfaces. Modeling the interfaces as
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joints, the end effector and part combine to create a closed loop mechanism, and it

can be seen that as the pose changes so do the part-finger interfaces; they change

between hard finger contacts [27] (spherical joints), as seen in Figure 3.5, and planar

contacts. It is assumed that the frictional forces are great enough to constrain

motion generally associated with planar contacts constraining the part and creating

rigid joints, shown in Figure 3.3.

Figure 3.1: Prototype End Effector In Phase 1

This design was chosen due to the ability to move between poses and

maintain the desired manipulation, as well as, minimizing the effects of the

nonholonomic rolling constraint by using small hard contacts. By minimizing the

nonholonomic rolling constraint, the model of the mechanism will be greatly

simplified. Also, the motion provided is much more intuitive as the distance

traveled while rolling on a soft contact is dependent upon many parameters other

than the arc length traveled. In an ideal design, the fingers would go directly from a

planar contact to a sharp point contact to eliminate any rolling; this is not possible

due to material properties. The sharp point would either dig into the part

damaging it or would have uncontrolled deformation damaging the end effector.

Neither of these options are desirable. To avoid these, the tip of the end effector is a

small ball bearing. Due to the minimal diameter, the rolling is negligible allowing

the contact to be modeled as moving directly from planar joints to spherical joints.

Several other design possibilities were explored but were not feasible
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Figure 3.2: Prototype End Effector In Phase 2

Figure 3.3: Closeup of Planar Contacts

possibilities. Another mechanism considered is shown in Figure 3.7. Concerns about

tolerance stacking, the potential affects on the singular position, and the need for

two actuators, one prismatic and one revolute, quickly eliminated this option.

3.3 Actuation Scheme

The selected end effector can be broken up into three distinct phases. These

phases are: Phase 1: completely open - no part; Phase 2: half open - part

constrained; and Phase 3: completely closed - part rotation. In order to get these

three phases, a three position actuator is required. Since a three position actuator

that meets the needs of this ongoing research is not commercially available, two

two-position actuators were utilized instead.

In Phase 1, shown in Figure 3.1, the part is assumed to be resting in some

configuration ready for assembly. The part has not yet come into contact with the
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Figure 3.4: Prototype End Effector In Phase 3

Figure 3.5: Closeup of Hard Finger Contacts

end effector. The end effector then consists of two open kinematic chains of a

prismatic followed by a revolute (PR) joint. The revolute joint contains a stretched

spring to keep the finger pulled back against a stop, completely constraining the

finger.

In Phase 2, shown in Figure 3.2, the end effector has partially closed onto the

part. Due to the geometry of the finger contacts, the end effector forms two planar

contacts on the part, as shown in Figure 3.3. In this pose the end effector can be

modeled as a simple parallel jaw end effector. Assuming that the coefficient of

friction is high and the normal force is sufficient, the part has complete force closure

[27, 28].

In Phase 3, the jaw closes to the pose shown in Figure 3.4. The fingers on

the end effector rotate against the springs imbedded in the secondary joints due to

the force provided by the linear actuator and place the part onto hard point finger
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Figure 3.6: Prototype End Effector Mid-Rotation

��
Figure 3.7: Alternate End Effector Design

contacts which can be seen in Figure 3.5. Due to the design of the points the actual

rolling that takes places has been minimized such that the motion is negligible. In

this position the part is held between two point contacts and it is again assumed

that friction is enough to prevent the part from sliding. When the part is held

between the hard finger contacts, the entire assembly can be modeled as a closed

kinematic chain with the part picked up connecting the two serial links from Phase
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1. Due to the nature of the point contacts, the part can now be analyzed as a link

with two spherical joints. Such a configuration is a Spherical Spherical (SS) pair

and is referred to as a passive DOF. Due to this passive DOF, force closure cannot

be obtained [27], and the part is able to rotate around the axis between the two

point contacts.

By making use of the fixed finger the part can be rotated when in Phase 3 by

contacting the part with the fixed finger. The full 6 DOF of the robot can be

utilized with an applicable motion planning scheme to rotate the part to a desired

orientation. When reaching this orientation, the end effector will transition back to

Phase 2 to fully constrain the part. When fully constrained, the part can be

assembled at which time the end effector transitions back to Phase 1 to release the

part and the process can be repeated.
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CHAPTER 4

Prototype Manufacturing and Testing

4.1 Prototype Manufacturing

In order to validate the design, a prototype was created. The end effector

body consisted of aluminum plates, separated by plastic spacers. The aluminum

plates provided attachment points for the fingers as well as the springs. The spacers

between the plates provide the required mechanical stops for the fingers. The

revolute joint was created using a simple shoulder bolt passing through the end

effector body and the machined aluminum finger. A commercially available helical

spring was placed inside the end effector body to constrain the moveable fingers. At

the end of the fingers, a .1875 inch diameter ball bearing was press fit into a steel

finger tip. Several different diameter balls were tried to determine the proper

trade-off between indentation into the cube and rotation about the axis as the

highest forces are seen when the cube is held between the point contacts. No special

surface was created on the contacts to increase friction. If necessary a cross hatch

pattern could be machined into the planar contact or a thin layer of material with a

higher coefficient of friction could be used to augment the design. A CAD model of

the end effector body is shown in Figure 4.1. This assembly is bolted to the actuator

assembly. Drawings of all of the components used can be found in Appendix A.

The desired actuation scheme requires a three position linear actuator. A

feasible three position linear actuator was not commercially available. One was

created by mating two Robohand linear actuators (Automation Technology Inc.,

model number DLT-08-L-C-3.5). These double acting pneumatic slides were stacked

on each other in opposing directions to provide the necessary three position linear
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Figure 4.1: End Effector Body and Finger Assembly

Figure 4.2: CAD Model of Linear Actuator Assembly

actuator. Adaptor plates were created to interface between the two actuators and

the robot. Bracketry was also created to interface between the actuators and the

end effector body. Drawings of all of the components used for the actuator assembly

can be found in Appendix B.

To test the prototype the assembly was mounted to a 6 DOF Stäubli robot
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(Model number RX 130 CS7). The pneumatic actuators were powered using the two

auxiliary air lines contained within the robot. Control for the end effector was

completely within the capability of the standard robot controller (VAL II). Thus,

there was no need for additional controls, wires, conduits, or actuators other than

four plastic airlines. The entire assembly is portable to most other robotic

manipulators with standard two air line outputs.

Presentation of the block uses a fixture so that the block was always at the

same location with the same orientation as can be seen in Figure 4.3. This allowed

testing to focus on the mechanical design and eliminated the need for the robot to

be connected to a vision system. The fixed finger used to rotate the block was a

custom stanchion and can be seen in Figure 4.4. This shape was designed so the

block could not only be rotated once in the appropriate phase but could also be

repositioned so that the axis of rotation was exactly as desired. This helped to offset

some of the relative motion between the block and the end effector due to the

undesired dynamic effects encountered when moving between poses. The height and

angle at which the platform was set was chosen to accommodate the workspace of

the robot.

Figure 4.3: Block Starting Point Fixture
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Figure 4.4: Fixed Finger

4.2 Testing

The necessary control protocol was written for the Stäubli robot allowing the

configuration to be run for proof of concept. During the testing, the mechanism has

been shown to effectively rotate the block as desired, but suffers from a lack of

robustness. It preforms as desired kinematically, but is in an unstable equilibrium

that, at times, can cause the block to rotate in the grasp causing the block to not

always end up in the desired position. The change between poses occurs too quickly

to see the details of what is happening with the naked eye. Using a Photron APX

RS high speed video camera, the end effector was filmed at 500 frames per second.

In the video, it was seen that one finger actuates first and actually loses contact

with the block as shown in Figure 4.5. This occurs because the mechanism is
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attempting to go to the crossed configuration, a more stable equilibrium position, as

verified with the model that will be discussed in Section 5.3. Upon hitting the stop,

preventing the first finger from making it to the crossed configuration, the next

finger actuates bringing the block with it. Particle image velocimetry (PIV) was

applied to the high speed footage to obtain the velocity for the linear actuator, ḋ.

Because the end effector is bulk and not particles, the PIV software was unable to

give the true value of the velocity. It did however give insight to the shape of the

velocity curve, Figure 4.6. As expected, it is far from constant or smooth curve.

Figure 4.5: End Effector Loses Contact

One of the unforseen advantages of this design is the built in compliance

during assembly, while the block is placed the grip tightens. As the end effector is

withdrawn the natural motion allows the grip to loosen if the actuation timing is

not perfect. Before these advantages can be taken advantage of and improvements

made, it must first be fully understood why the fingers do not actuate

simultaneously, causing one finger to lose contact with the block, requiring a full

analysis of the mechanism.
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Figure 4.6: Linear Velocity (ḋ) vs. Time
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CHAPTER 5

Analysis

In order to verify the design intent, elucidate opportunities for improvement

and determine new design concepts, the mechanism must be fully understood. First,

the mobility of the mechanism will be determined for each phase. Further analysis

will be conducted using standard approaches from [29] and [30]. Due to the type of

mechanism these methods provide some insight while also elucidating some

confusion in the literature, but falls far short of providing the needed information. A

full dynamic analysis is completed resulting in obtaining the remaining information.

5.1 Mobility

Grübler’s equation [23] was used to verify the hypothesized DOF of the

manipulator. To apply Grübler’s equation, the mechanism must be broken up into

the distinct phases discussed previously. Specifically using Tsai’s formulation of

Grübler’s equation [30], the total degrees of freedom can be estimated by:

M = b(m− p− 1) +

p∑
i=1

fi − fp (5.1)

where M is the total DOF of the mechanism, b is the motion parameter (3 for

planar motion or 6 for spacial motion), m is the total number of links, p is the total

number of joints, fi is the DOF of joint i, and fp is the number of passive DOF, a

degree of freedom that when actuated does not affect the kinematics of the

mechanism. Because the passive DOF are important for this mechanism, as this
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provides motion in Phase 3, a modified version is also used here:

M = b(m− p− 1) +

p∑
i=1

fi (5.2)

Phase 1 consists of two coupled, open, PR chains as seen in Figure 5.1. This

is a trivial case in that the mechanism will have three degrees of freedom. In this

phase, the prismatic joint is coupled and the revolute joints each have springs that

pull the fingers against hard stops to fully constrain them. Thus, the mechanism

has enough actuators (either active or passive) to fully constrain motion.

Figure 5.1: Schematic of Phase 1

In Phase 2 (Figure 5.2), the mechanism is a 5 bar (2R2E1P) mechanism and

can be modeled as five links, two revolute joints, one prismatic joint, two planar

contacts, and no passive DOF. Because of the friction in the planar contacts there

are no available DOF resulting in:

b = 6,m = 5, p = 5,

p∑
i=1

fi = 3, fp = 0

Because there are no passive degrees of freedom in this pose the choice of equation

is less important. Substituting into into Equation 5.1 or 5.2, the number of

independent DOF is found to be negative three denoting that the mechanism is a
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structure.

Figure 5.2: Schematic of Phase 2

In Phase 3 (Figure 5.3), the mechanism is a 5 bar (2R2S1P) mechanisms and

can be modeled with five links, two revolute joints, one prismatic joint, two

spherical joints, and one passive DOF. In this case:

b = 6,m = 5, p = 5,

p∑
i=1

fi = 9, fp = 1

Due to the passive degree of freedom present in this pose the equation choice

becomes critical. By substitution into Equation (5.1), the number of independent

DOF is found to be two. This indicates that constraining the prismatic joint and

one of the revolute joints completely constrains the system. However, when utilizing

Equation (5.2), the passive degree of freedom is not subtracted, and the total DOF

is three. The spring and prismatic joint constrains two of the DOF leaving the

critical passive DOF available.

5.2 Graph Theory

One prominent way to analyze reconfigurable mechanisms is using graph

theory [6, 15, 26]. In graph theory the vertices are numbered 1 through n and

represent the links of the mechanisms while the lines between represent the joints

and are labeled accordingly. Figure 5.4 and 5.5 show the graphical representation of

Phases 2 and 3 respectively. In the graphical representations, the difference between
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Figure 5.3: Schematic of Phase 3

the two phases can be seen as the planar contacts are replaced with spherical joints

in Phase 2.

Figure 5.4: Graph of Phase Two

5.2.1 Adjacency Matrices

The adjacency matrix is a way of putting graph theory into a format that

can easily be handled by computers and mathematical software. As shown in [29],

the adjacency matrix can elucidate the topological changes undergone by

metamorphic mechanisms by showing the relationships between joints and links in a

mechanism. The columns and rows represent a corresponding joint and link number

of the mechanism. When links are connected by a joint, the entry in the matrix is 1.

When it is not, it is 0.



30

Figure 5.5: Graph of Phase Three

The links are numbered 1 to 5 as shown in Figure 5.4. This analysis will

focus only on Phases 2 and 3; Phase 1 is again trivial. When the mechanism is in

Phase 2 (Figure 3.2), the adjacency matrix takes the form:




0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0




(5.3)

As an example the (2,1) element is 1 as the base link is connected to the second link

through a prismatic joint.

When in Phase 3, the adjacency matrix remains the same. Because the

adjacency matrix only detects metamorphic mechanisms that change the number of

links or joints, it does not appear in this analysis. This observation is in direct

contrast to the conclusion of [29]. Adjacency matrices are only relevent for

metamorphic mechanisms of type (a) and (b).
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5.2.2 Incidence Matrices

An incidence matrix is similar to an adjacency matrix in how they are

formed as both come from the mechanism’s graph. Each row of the incidence

matrix corresponds to a joint and each column a link. If joint vi is joined to link li,

a 1 would be placed at (vi, li) in the matrix. The numbering of the links and joints

can be seen in Figure 5.6. As with the adjacency matrix, Phase 1 is also trivial for

�
� �

� �

Figure 5.6: Graph Showing Link and Joint Numbering

the incidence matrix. In Phase 2, shown in Figure 3.2, the incidence matrix is:




1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1




(5.4)

Like adjacency matrices, for this mechanism, the incidence matrix does not

change between Phase 2 and 3 because the same number of links and joints are

retained as well as the same relationships between what links connect to what
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joints. Only the type of joint changes, therefore, this form of analysis is again only

good for metamorphic mechanisms of type (a) and (b).

Graph theory is a standard form of analysis for reconfigurable mechanisms,

but only gives information on how and where things are connected. This does little

to nothing to help with understanding why one finger is actuated before the other

causing it to lose contact with the block. To determine that a standard dynamic

analysis must be done.

5.3 Dynamic Analysis

Before a dynamic analysis can be done some assumptions must be made.

During testing, high speed video revealed that the end effector primarily operates in

the plane with negligible out of the plane motion. It also revealed that there was a

negligible amount of deflection allowing for the bodies to be assumed rigid. With

this in mind, it was decided to model the mechanism while moving between Phases

2 and 3 focusing on the value of θ3. θ3 is defined as the angle between the top of the

block and the x-axis; θ3 in Figure 5.7 is zero. In this phase it is a 5 bar (2R2S1P)

mechanism. Since it had already been shown that the passive degree of freedom

functioned as desired the model was simplified to a 5 bar (4R1P). Imposing this

over the end effector as shown in Figure 5.7 it appears very similar to a fourbar.

Modeling link d as a prismatic joint, such that ḋ is the linear velocity and d̈ is the

linear acceleration of d, effectively creates a “two DOF fourbar.” In this

configuration it is assumed that d stays parallel with the ground and θ1 is therefore

always zero.

Using the dynamic analysis of a fourbar done in [31] as a reference, a

dynamic analysis of the end effector was preformed. The newly derived equations

were checked against those presented in [31] by setting ḋ and d̈ equal to zero.
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Figure 5.7: Fourbar Imposed Over the End Effector

5.3.1 Position Analysis

The first step was to complete the position analysis. The position analysis is

not a continuous analysis; instead it is instantaneous and requires discrete points in

time. Because of this, the fact that d is changing has no affect on the analysis as the

instantaneous value of d is still known at all times. Therefore, this analysis follows

directly from [31]. The same notation will also be used throughout for easier

reference. Using the vectors displayed in Figure 5.7 the vector loop equation must

be formed as shown in Equation 5.5.

−→
R 2 +

−→
R 3 −−→R 4 −−→R 1 = 0 (5.5)

The scalar length of the vectors will be represented by a, b, c and d in reference to

R2, R3, R4 and R1 respectively. Next the vector equation is converted into complex

form becoming:

aejθ2 + bejθ3 − cejθ4 − dejθ1 = 0 (5.6)

Using complex form reduces the number of equations and helps keep the derivation

cleaner. To allow this equation to be separated into real and imaginary components

the Euler equivalents must be used. With this substitution Equation 5.6 becomes
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Equation 5.7.

a(cos θ2+j sin θ2)+b(cos θ3+j sin θ3)−c(cos θ4+j sin θ4)−d(cos θ1+j sin θ1) = 0 (5.7)

Separating into the real (x) and imaginary (y) components gives Equation 5.8 and

5.9.

a cos θ2 + b cos θ3 − c cos θ4 − d cos θ1 = 0 (5.8)

ja sin θ2 + jb sin θ3 − jc sin θ4 − jd sin θ1 = 0 (5.9)

After simplifications and solving for θ3 Equation 5.8 and 5.9 become Equation 5.10

and 5.11.

b cos θ3 = −a cos θ2 + c cos θ4 + d (5.10)

b sin θ3 = −a sin θ2 + c sin θ4 (5.11)

Squaring Equation 5.10 and 5.11 and adding them results in 5.12:

b2(sin2 θ3 + cos2 θ3) = (−a sin θ2 + c sin θ4)
2 + (−a cos θ2 + c cos θ4 + d)2 (5.12)

Simplifying and solving for θ3 and θ4 leads to:

θ3 = 2 tan−1

(−E ±√E2 − 4DF

2D

)
(5.13)

θ4 = 2 tan−1

(−B ±√B2 − 4AC

2A

)
(5.14)
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Such that:

A = cos θ2 − d

a
− d

c
cos θ2 +

a2 − b2 + c2 + d2

2ac
(5.15)

B = −2 sin θ2

C =
d

a
−

(
d

c
+ 1

)
cos θ2 +

a2 − b2 + c2 + d2

2ac

D = cos θ2 − d

a
+

d

b
cos θ2 +

c2 − d2 − a2 − b2

2ab

E = −2 sin θ2

F =
d

a
+

(
d

b
− 1

)
cos θ2 +

c2 − d2 − a2 − b2

2ab

Note that there are two solutions for both θ3 and θ4. This corresponds to the

open and crossed kinematic configurations.

5.3.2 Velocity Analysis

The velocity analysis, like the position analysis, follows Norton [31], but the

velocity analysis done in Norton is only for a one DOF fourbar so this derivation

does not follow directly. As in the position analysis, the velocity analysis starts off

with the vector loop equation shown in Equation 5.5. Equation 5.5 is again

converted into complex form as in Equation 5.6. Taking the derivative of Equation

5.6 with respect to time leads to:

jaejθ2
dθ2

dt
+ jbejθ3

dθ3

dt
− jcejθ4

dθ4

dt
− ḋejθ1 = 0 (5.16)

Substituting the Euler equivalents, ωi for dθi

dt
and multiplying the j’s through:

aω2(j cos θ2−sin θ2)+bω3(j cos θ3−sin θ3)−cω4(j cos θ4−sin θ4)−ḋ(cos θ1+j sin θ1) = 0

(5.17)
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Equation 5.17 is then separated into real (x) and imaginary (y) components

respectively.

−aω2 sin θ2 − bω3 sin θ3 + cω4 sin θ4 − ḋ cos θ1 = 0 (5.18)

jaω2 cos θ2 + jbω3 sin θ3 − jcω4 cos θ4 − jḋ sin θ1 = 0 (5.19)

Solving Equation 5.18 for ω3 and Equation 5.19 for ω4:

ω3 =
−aω2 sin θ2 + cω4 sin θ4 − ḋ cos θ1

b sin θ3

(5.20)

ω4 =
aω2 cos θ2 + bω3 sin θ3 − dotd sin θ1

c cos θ4

(5.21)

Substituting Equation 5.20 back into Equation 5.19, Equation 5.21 into Equation

5.18 and simplifying yields:

ω3 =
aω2 sin(θ4 − θ2)− ḋ cos(θ1 − θ4)

b sin(θ3 − θ4)
(5.22)

ω4 =
aω2 sin(θ2 − θ3) + ḋ cos(θ1 − θ3)

c sin(θ4 − θ3)
(5.23)

As previously stated the newly derived equations were checked against those

from [31]. It can be seen that Equation 5.22 and 5.23 differ from the equations given

by Norton [31] by only one term, the ḋ term. Allowing ḋ = 0 the equations become

exactly the same.

5.3.3 Acceleration Analysis

The acceleration analysis starts at Equation 5.16. Taking the derivative of

Equation 5.16 with respect to time again, the second derivative of the original
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vector loop Equation 5.6 yields:

(
jaα2e

jθ2 + j2aω2
2e

jθ2
)
+

(
jbα3e

jθ3 + j2bω2
3e

jθ3
)−(

jcα4e
jθ4 + j2cω2

4e
jθ4

)−
(
d̈ejθ1

)
= 0

(5.24)

Substituting the Euler equivalents and simplifying:

aα2(− sin θ2 + j cos θ2)− aω2
2(cos θ2 + j sin θ2) + bα3(− sin θ3 + j cos θ3)

− bω2
3(cos θ3 + j sin θ3)− cα4(− sin θ4 + j cos θ4)− aω2

4(cos θ4 + j sin θ4)

− d̈(cos θ1 + j sin θ1) = 0 (5.25)

Separating into real (x) and imaginary (y) components respectively:

− a(α2 sin θ2 + ω2
2 cos θ2)− b(α3 sin θ3 + ω2

3 cos θ3)

+ c(α4 sin θ4 + ω2
4 cos θ4)− d̈ cos θ1 = 0 (5.26)

ja
(
α2 cos θ2 − ω2

2 sin θ2

)
+ jb

(
α3 cos θ3 − ω2

3 sin θ3

)

− jc
(
α4 cos θ4 − ω2

4 sin θ4

)− jd̈ cos θ1 = 0 (5.27)

Solving Equation 5.26 for α3 and Equation 5.27 for α4:

α3 =
−aα2 sin θ2 − aω2

2 cos θ2 − bω2
3 cos θ3 + cα4 sin θ4 + cω2

4 cos θ4 − d̈ cos θ1

b sin θ3

(5.28)

α4 =
aα2 cos θ2 − aω2

2 sin θ2 + bα3 cos θ3 − bω2
3 sin θ3 + cω2

4 sin θ4 − d̈ sin θ1

c cos θ4

(5.29)
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Substituting Equation 5.28 into Equation 5.27 and Equation 5.29 into Equation

5.26 and simplifying leads to:

α4 =
aα2 sin(θ2 + θ3) + aω2

2 cos(θ2 − θ3) + bω2
3 − cω2

4 cos(θ4 − θ3) + d̈ cos(θ1 − θ3)

c sin(θ4 − θ3)
(5.30)

and

α3 =
aα2 sin(θ2 − θ4) + aω2

2 cos(θ2 − θ4) + bω2
3 cos(θ3 − θ4)− cω2

4 + d̈ cos(θ1 − θ4)

b sin(θ4 − θ3)
(5.31)

Like the position and velocity analysis, Equation 5.30 and 5.31 were also

checked against [31]. Setting d̈ equal to zero does not instantly cause the equations

to degrade to those given in [31]. However, with the application of some basic

trigonometric identities the equations can be shown to be the same.

Using just the kinematic analysis (position, velocity and acceleration) a

kinematic model could be made. However, because the block is not actually

attached to the other links this would not be sufficient. The forces at the joints

must be known to ensure that the block remains in contact with the end effector at

all times, as well as, to guarantee a minimal normal force can be maintained.

5.3.4 Force Analysis

It does not matter if a forward or inverse analysis is being performed, the

derivation of the force equations is the same. The difference comes in what values

are known and what values are not. This derivation follows closely what is shown in

Norton [31] but is not the same. In Norton there is a force applied to link b that is

not present in the end effector.

Using the standard equations for planar motion:

ΣF = ma (5.32)
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and

ΣT = IGα (5.33)

the dynamic equations of motion can be developed. Applying Equation 5.32 and

5.33 to links a, b, and c (link d remains in the same orientation at all times and is

attached to ground) results in:

F12x + F32x = m2aG2x
(5.34)

F12y + F32y = m2aG2y

T12 +
(
R12xF12y −R12yF12x

)
+

(
R32xF32y −R32yF32x

)
= IG2α2

F43x − F32x = m3aG3x
(5.35)

F43y − F32y = m3aG3y

(
R43xF43y −R43yF43x

)− (
R23xF23y −R23yF23x

)
= IG3α3

F14x − F43x = m4aG4x
(5.36)

F14y − F43y = m4aG14y

(
R14xF14y −R14yF14x

)− (
R34xF43y −R34yF43x

)
+ T4 = IG4α4

where the R values are defined in Figure 5.8. Reformatting Equation 5.34, 5.35 and
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Figure 5.8: End Effector With R Vectors Displayed

5.36 into matrix form allows them to be solved simultaneously.




1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

−R12y R12x −R32y R32x 0 0 0 0 1

0 0 −1 0 1 0 0 0 0

0 0 0 −1 0 1 0 0 0

0 0 R32y −R32x −R43y R43x 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 −1 0 1 0

0 0 0 0 R32y −R32x −R43y R43x 0







F12x

F12y

F32x

F32y

F43x

F43y

F14x

F14y

T12




=




m2aG2x

m2aG2y

IG2α2

m3aG3x

m3aG3y

IG3α3

m4aG4x

m4aG4y

IG4α4 − T4




(5.37)

Combining the kinematic model with the forces creates a dynamic model.

The dynamic model was verified using Simulink in Matlab and delivered

corroborating results as seen in Figure 5.9. Both Simulink and the model presented

here indicate that the mechanism, as currently designed, is in an unstable
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Figure 5.9: Simulink and Analytical Model Output for θ2

equilibrium position. Given the opportunity the mechanism much prefers the lower

energy state of the crossed configuration as can be seen in in the Simulink model

shown in Figure 5.10.

The geometry of the end effector was not optimized prior to constructing the

prototype as only a proof of concept was desired. Once proof of concept had been

established the equations developed for the dynamic model could be implemented

Figure 5.10: Simulink Output
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into an optimization routine to improve upon the undesirable characteristics of the

mechanism.
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CHAPTER 6

Optimization

The end effector is currently in an unstable equilibrium position in Poses 2

and 3. To determine if there is a stable equilibrium position possible within the

current design parameters that will allow the desired motion, the analytical model

was optimized. The model is not immensely complex as it is not intended to give

the ultimate final design and is limited to the open configuration of a fourbar. The

hopes of this optimization, as with all optimizations, is to find some set of

conditions that would cause the mechanism to work while balancing the

compromises that exist. The results from this optimization will assist in better

understanding what would be required for a mechanism of this design paradigm to

be feasible. Having a better understanding will assist in not only the next design

but also possibly in synthesizing more mechanisms for other tasks.

Due to the correlation found between the Simulink model and the analytical

model, there was no need to use the Simulink model for the optimization. Although

the Simulink model is more robust as it can allow for the crossed configuration, the

increase in required computational time for each iteration was counter productive

for the desired results.
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6.1 Optimization Methodology

The optimization presented is minimizing the angle of rotation for the block

with respect to x where x is defined as:

x =




aa

cc

k spring1

k spring2

a

c

l s10

x s1f

y s1f

l s20

x s2f

y s2f




(6.1)

such that:

• aa = Length Of Leaver Arm On Link a

• cc = Length Of Leaver Arm On Link c

• k spring1 = Spring Rate for Spring 1

• k spring2 = Spring Rate for Spring 2

• a = Length Of Link a
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• c = Length Of Link c

• l s10 = Free Length Of Spring 1

• x s1f = x Position For The Fixed End Of Spring 1

• y s1f = y Position For The Fixed End Of Spring 1

• l s20 = Free Length Of Spring 2

• x s2f = x Position For The Fixed End Of Spring 2

• y s2f = y Position For The Fixed End Of Spring 2

�� �� ���� ��� � ��	
��
�� 	��
��
��������� ��������



Figure 6.1: Simulink Output

as shown in Figure 6.1 by use of Matlab’s fmincon function. fmincon is Matlab’s

built in function used to minimize continuous functions with constraints. With the

ultimate goal as a feasible functioning end effector, minimizing θ2
3, the rotation

angle of the block, is thought to keep the block as level and stable as possible,

resulting in easier assembly and a more predictable final orientation. The

parameters seen in x were selected to give a large enough work space to allow some

freedom but not so large as to become computationally objectionable or to allow

configurations that cannot possibly be manufactured.
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6.1.1 Constraints

There are two types of constraints that can be placed on the minimization,

an equality constraint and an inequality constraint. An inequality constraint

requires that the value returned must be less than or equal to zero. This type was

used to ensure the normal forces at the contact points with the block are greater

than zero. Because a positive force is required, the opposite value of the normal

forces returned by the inverse dynamics function plus the desired minimum force is

placed in the inequality constraint. The lengths of the links are also constrained in

the inequality constraint such that a + b + c− d− 10 ≤ 0. This insures that

a + b + c is a minimum of 10mm longer than d to maintain a safe distance from the

pose where all the links fall on the same line. The values for the upper and lower

bounds of the initial guesses, a special form of inequality constraint, were selected

with the intent of limiting the design space to a useable solution.

If the mechanism encounters a singularity or some other position that cannot

be handled, that iteration will stop prematurely. This causes the contact force

vectors returned to be shorter than desired. Along with the force vectors the

variable time out, the time the simulation actually ran, is also returned. The short

force vectors are the input for the inequality constraints which are returned to

fmincon. fmincon attempts to take the gradient between the newly returned

constraints and the previous values to determine the next set of guesses. Because

the sets of values are not the same length, fmincon mistakenly reads the change as

good. To prevent this, values are appended to the short force vectors to create a

nonzero gradient sending fmincon back in the correct direction.

The other form of constraint, an equality constraint, was also created

requiring time out to be equal to the desired runtime, referred to as time, assisting

in sending fmincon in the correct direction. Putting all of this into standard form

can be seen in Equation 6.2 such that, g1 and g2 represent the complex calculations

required to determine the normal forces at the interfaces between the block and the

end effector.
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min
x

error =

length(time)∑
i=1

(θ3i)
2 (6.2)

subject to length(time)− length(time out) = 0

g1(x) ≤ 0

g2(x) ≤ 0

−(a + b + c) + d + 10 ≤ 0

2mm ≤ aa ≤ 50mm

2mm ≤ cc ≤ 50mm

0 ≤ k spring1 ≤ 50

0 ≤ k spring2 ≤ 50

42.5mm ≤ a ≤ 100mm

42.5mm ≤ c ≤ 100mm

2mm ≤ l s10 ≤ 10mm

−50mm ≤ x s1f ≤ 0

−30 ≤ y s1f ≤ 80

2mm ≤ l s20 ≤ 10mm

5mm ≤ x s2f ≤ 50

−30 ≤ y s2f ≤ 80

(6.3)

6.1.2 Assumptions

Along with the assumptions made in the derivation of the equations used to

develop the analytical model implemented in the optimization, the following

assumptions were also made:

• The springs are ideal
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• No friction

• No gravity

• The lever arms fall in line with a and c

• The end effector is always in contact with the block

• The linear velocity, ḋ, is constant

• The linear acceleration, d̈, is zero

6.2 Program Flow

There are several layers to the optimization program, as seen in Figure 6.2

and 6.3. In these diagrams the program flows from top to bottom and from left to

right. The initial guesses go into an umbrella program along with the initial

conditions and other constants and constraints. The umbrella program then calls

the minimization function fmincon and passes the needed values. As can be seen in

Figure 6.3, fmincon then calls the cost function. The cost function then calls the

forward dynamics function which returns a value to cost function. Cost function

then returns a value to fimincon which calls the non-linear constraints function. The

non-linear constraints function then calls the forward dynamics function which

returns a value to the non-linear constraints function. Then the non-linear

constraints function calls the inverse dynamics function which again returns a value

to the non-linear constraints function. The non-linear constraints function then

calculates the non-linear constraints, hence the function’s name, and returns them

to fmincon. Based on the results, fmincon then chooses the next iteration step and

starts the process again. This process iterates until a local minimum is found. Each

step will be discussed in further detail in Sections 6.2.1 to 6.2.6.
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Figure 6.2: Program Overview
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Figure 6.3: Detailed Program Flowchart

6.2.1 Umbrella Program

The umbrella program is the top layer of the program and contains all the

fixed parameters and initial guesses. It also takes the final optimized values

returned from the minimizing function, fmincon, and outputs them in a graphical

format as well as in text. The code for this program can be found in Appendix C.1.
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6.2.2 Minimization Function

The minimization function (fmincon) requires an initial guess on the inputs,

upper and lower bounds, the cost function (cf) and the non-linear constraint

function (nlcf). To avoid the use of global variables an extra vector is also passed to

fmincon containing constants and initial conditions.

The minimizing function takes the initial guesses and runs them through the

cf and then the nlcf. It then changes the value of the guesses depending on the

feedback results returned from the cf and the nlcf. This cycle is repeated until a

local minimum is found.

6.2.3 Cost Function

The first function called by the minimization function is the cf and varies

from one application to the next. Ultimately the cost function needs to return a

measure of the value being minimized, the cost.

Because several of the variables that fmincon changes for every iteration

affect the torque placed on the fingers by the springs, θ2 must be solved using the

forward dynamics. To do this the cf makes use of Matlab’s ode15i solver which

solves implicit differential equations. One of the required inputs for ode15i is the

forward dynamics function. This setup returns a time vector along with the

corresponding values of θ2 and ω2 for each time step.

Using the previously defined position analysis (Section 5.3.1) θ3 can be

calculated for each time step. The cost is then calculated as:

cost =
n∑

i=0

θ3i
2 (6.4)

such that n is the number of time steps. The cost is then passed back to fmincon.

The code for the cost function can be found in Appendix C.2.
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6.2.4 Forward Dynamics Function

A common approach to solving the second order ordinary differential

equations is to make use of the state space representation. Generally all of the

equations are stated explicitly allowing them to be solved simultaneously relatively

easily.

The forward dynamics function is used to solve for the forward dynamics of

the mechanism. This is a common application for the state space representation.

Due to the complexity of the system of equations for this mechanism, nine coupled

second order ordinary differential equations, it is not feasible to solve for everything

explicitly. ode15i requires the forward dynamics function to return the differential

equations in the state space format in implicit form, as opposed to the standard

explicit form. The implicit form can be seen in Equation 6.5:

f(1) = y1
′ − y2 = 0 (6.5)

f(2) = g(t, y1, y1
′, y2, y2

′) = 0

such that y1
′ = ω2, y2 = ω2 and g(t, y1, y1

′, y2, y2
′) is a function of θ2, ω2 and α2. In

this case these equations are Equation 5.37 found in Section 5.3.4 stated in implicit

form. The physical code can be found in Appendix C.3.

6.2.5 Non-linear Constraint Function

The nlcf is the second function called by the minimizing function, fmincon.

The nlcf in turn calls ode15i which uses forward dynamics function and again

returns θ2 and ω2. α2 is then calculated by taking the numerical derivative of ω2

using the forward difference method for the first point, the backwards difference

method for the last point and the center difference method for all points between.

These three vectors θ2, ω2 and α2 are then passed to the inverse dynamics which

calculates and returns the forces at each joint. The nlcf returns two vectors, one
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containing the inequality constraints and one containing the equality constraints.

This code can be found in Appendix C.4.

6.2.6 Inverse Dynamics

Once α2 is calculated in the nlcf it can be passed into the inverse dynamics

function along with θ2 and ω2. These values are then used to calculate

θ3, θ4, ω3, ω4, α3 and α4. These values are then used directly in Equation 5.37 to

calculate the forces in component form at each joint, as well as, the torques

required. The forces are then returned to the nlcf in component form. This code

can be seen in Appendix C.5.

6.2.7 Optimization Results

Due to the runtime required to do an exhaustive search, it was not feasible.

Therefore, many different initial guess combinations were run varying all of the

values, including ḋ and run time, for extended periods (over 12 hours) without the

optimization coming to a conclusion, the maximum acceptable change for f(x) was

changed and value time was shortened from .054 seconds to .02 seconds, with ḋ of

-507.963 mm/s and 101 time steps resulting in Figure 6.4 and returning the
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following optimized values:

xOptimized =




aa

cc

k spring1

k spring2

a

c

l s10

x s1f

y s1f

l s20

x s2f

y s2f




=




3.3829mm

3.9267mm

29.7689N/mm

34.2676N/mm

87.3532mm

56.4365mm

2.0000mm

−41.4991mm

44.6810mm

2.6123mm

41.2402mm

70.6307mm




(6.6)

When this problem was approached it was assumed to be a symmetrical

problem. Therefore the mechanism was designed with symmetry in mind. As can be

seen from the optimized solution the problem is not symmetrical. One cause for this

is only one side of the mechanism is actuated at a time instead of both actuating

simultaneously as originally intended.

Figure 6.5 shows θ3 with respect to time. In this figure it can be seen that

the longer it is allowed to run the further from zero θ3 becomes. If the finger tips on

the end effector can be designed to allow the change from planar to point contact

with the minimal change in d the value of θ3 will also be minimized.

The torque applied at Joints 1 and 4 from the springs can be seen in Figures
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a c

aa cc

d

b

Figure 6.4: End Effector With Optimized Values In Final Position

Figure 6.5: θ3 vs. Time

6.6 and 6.7 respectively. The torque at Joint 1 can be seen to start with a parabolic

form and becomes nearly linear while the torque in Joint 4 is nearly linear for the

entire run. Also, it appears as if the torque on Joint 1 is increasing while the torque
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on Joint 4 is decreasing. Due to the sign convention, the torque on Joint 1 is

negative resulting in the magnitude of the torque actually decreasing with time.

When looking at the actual values, the torque on Joint 1 only varies by about 0.9

N/mm while the torque on Joint 4 varies by 1400 N/mm. Due to the geometry of

the solution, torsional springs may be a better choice than the currently used linear

springs. Torsional springs would more easily create the required forces and fit

within the size needed to make this mechanism feasible.

Figure 6.6: Torque Applied To Joint 1 In Optimized Configuration

Figure 6.7: Torque Applied To Joint 4 In Optimized Configuration

Because this solution to the optimization was found, analytically there is a
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feasible solution. This solution is based on one set of initial guesses and an increase

in the acceptable variance in f(x) between steps in a twelve dimensional space, the

solution shown here is not likely to be a global minimum. There is no way of

guaranteeing a global minimum, within the set constraints, will ever be found. Even

an exhaustive search can not guarantee a global minimum. If this set of optimized

values is allowed to run for longer than 0.02 seconds, θ3 reaches a maximum and

then returns to zero before continuing along that path and becoming negative. If

the actuation can be set to take advantage of this it may be a better design as θ3

does return to zero, but because of the design of the cost function this would return

a large error and would not be and acceptable solution by this optimization. An

optimization routine will only answer the question asked, which is not necessarily

the answer desired. This one was asked to minimize the sum of θ2
3. If as previously

mentioned the other design paradigm is actually better it would at least require a

different cost function if not an entirely different optimization program. Just adding

or subtracting parameters to the x vector does not assure a better answer in the

selected paradigm either. If the workspace is made to large finding a local minimum

close to the initial guesses may take much longer than expected and will limit the

usefulness of the program but if the space is to small the solution may never be

found.
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CHAPTER 7

Conclusions

This thesis looked at the bin picking problem focusing solely on the end

effector, where most research has been done for the vision systems. Design of the

end effector was approached with the concept that the end effector and part were

one set of links instead of two separate objects. Using this approach made it

possible for the part to be considered a link in the mechanism that needed to be

manipulated. This lead to the use of reconfigurable mechanisms and ultimately a

metamorphic mechanism of type c. A mechanism was designed that was thought to

be able to allow the desired manipulation of the part. During testing it was shown

to successfully complete the task but not as reliably as desired. The geometry of the

mechanism had not been optimized prior to the prototype. To allow for the

optimization a dynamic analysis was completed. Because the part and end effector

were considered as one mechanism it allowed the analysis to be conducted assuming

a closed loop chain and the application of classical dynamics. Using the dynamic

model developed, an optimization program was created. The results of the

optimization showed that a numerical solution exists that will maintain the contact

between the block and the end effector allowing for the assumption that they are

linked to be acceptable.

Due to the geometry of the optimized model, primarily the location of the

spring mounts and the values of the springs, it is infeasible. The spring mounts are

such that a part could not be picked up on a flat surface, let a lone out of a bin of

parts. It may be possible to use torsion springs in place of the extension springs

which may allow for a more reasonable layout as well as more attainable springs

rates. It also seems that minimizing the amount of rotation of the arms would
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reduce the dynamic effects within the mechanism. Both of these issues could be

dealt with by redesigning the fingers so that the degrees the fingers rotate is

minimized when changing between phases 2 and 3 and allowing the fingers to be

closer to parallel with the sides of the part. This would also help minimize the

amount of space required around the part to grasp it. If the actuation could be done

such that both sides of the end effector actuate simultaneously, it is believed that a

more symmetrical solution could be found which would lead to a more elegant and

simpler design.

It was seen that the dynamics involved, caused by the actuation of a single

side rather than the simultaneous actuation of both sides of the end effector, had

undesirable effects. Since it is not feasible to have perfectly simultaneous actuation

of both sides of the end effector another design may be more effective. If the change

in contact (point to planar or planar to point) could be made without the need for

rotation of the arms, allowing the part to remain stationary and avoiding the

dynamic problems, it may be a better option. This is a completely different design

paradigm and was not explored here. The problem of needing access to opposing

parallel sides still needs to be addressed as well as it is a core assumption in this

research.
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APPENDIX A

Gripper Body Components

6.960

22.040

33.630

34.740

45.060

51.200

57.050

64.200

69.950

76.200

5.240

18.180

23.500

28.575

60.442

69.332

75.682

62.658

51.410

2.540
2x 3.180

7x 4.300

Marquette University Dept. of Mech. Eng. Name: Jacob A. Ziesmer

Project: End Effector Scale: 1:2

Part: Main Plate Tolerance: 0.0 +/-0.2

Quantity: 4 0.00 +/-0.02

Material: Aluminum 0.000 +/-0.005

Figure A.1: Side Plate
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52.390

57.150
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7.940
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12.700

3.160

50.800

Marquette University Dept. of Mech. Eng. Name: Jacob A. Ziesmer

Project: End Effector Scale: 1:1

Part: Rotating Arm Tolerance: 0.0 +/-0.2

Quantity: 2 0.00 +/-0.02

Material: Aluminum 0.000 +/-0.005

Figure A.2: Finger
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Marquette University Dept. of Mech. Eng. Name: Jacob A. Ziesmer

Project: End Effector Scale: 1:1

Part: Arm Finger Tolerance: 0.0 +/-0.2

Quantity: 2 0.00 +/-0.02

Material: Steel 0.000 +/-0.005
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7.940

Figure A.3: Finger Tip
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APPENDIX B

Actuator Assembly Components
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Figure B.1: The base plate adaptor between the end effector and the robot.
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Figure B.2: The mating block mates the two linear actuators.



69

Figure B.3: The long end block attaches to the linear actuator closest to the robot.
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Figure B.4: The short end block attaches to the linear actuator furthest from the
robot.



71

Figure B.5: The top plate connects to the end plate and comes just under halfway
back to the center of the end effector.



72

Figure B.6: The top plate rib runs down the center of the top plate providing addi-
tional rigidity as well as a place to mount the side plates.
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APPENDIX C

Optimization Code

C.1 Umbrella Program Code

%% Program to optimize the four bar mechanism spring rates

%

% Phil Voglewede

% 6/22/09

%% Clear the register and screen for debugging purposes

clear all

clc

%% Global Variables

global Counter

%% Initialize Counter

Counter = 1;

%% Define the constants

% Link Lengths (taken from measurements on v2 of end effector).

% Units are in millimeters
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b = 37.16;

initial_length_of_d = 111.10;

% Angles.

t1 = 0;

Block_Size_And_Theta1 = [b; t1;0;0;0;0;0;0;0;0;0;0];

% centroid values - these axes are not the same as the rest of the

% problem.

%x - axis runs along the length of the arm from the

%finger towards the bolt

%y-axis runs width of the arm from the threaded side to the

%conical side

%z-axis runs up the finger starting at the base of the arm

Xcbar=12.686;

Zcbar=15.374;

p=12.7+25.4-Xcbar;

q=Zcbar-(12.7/2);

r=Xcbar-(12.7-3.5);

s=(12.7/2)+20.98;

t=s-q;

Centroid_Calc_Vector = [p; q; r; s; t;0;0;0;0;0;0;0];

% Link Mass
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% Units are in kilograms

m1 = 10; %arbitrary number

m2 = .045473777;

m3 = .02335;

m4 = .045473777;

Mass_Vector = [m1;m2;m3;m4;0;0;0;0;0;0;0;0];

% Inertia

%Parallel axis theorem for arm/finger assembly

Iyc=12.1537; %Inertia from NX6

Izz=Iyc+m2*((((12.7/2)-Zcbar)^2)+(12.7+25.4-Xcbar)^2);

I2 = Izz; %arm/finger assembly

I3 = 5.3739; %wood block

I4 = Izz; %arm/finger assembly

Inertia_Vector = [0; I2; I3; I4; 0;0;0;0;0;0;0;0];

% Time steps

Start_Time = 0;

End_Time = .01; %.054 sec was calculated from high speed camera

Step_Size = End_Time/1000;

Time_Vector = [Start_Time; Step_Size; End_Time; 0;0;0;0;0;0;0;0;0];

time = (Start_Time:Step_Size:End_Time);

%% Define Initail positions, velocities and accelerations

% theta2



76

Initial_Theta2_Dot = 0;

Initial_Theta2_Double_Dot = 0;

Theta_Vector = [0; Initial_Theta2_Dot; ...

Initial_Theta2_Double_Dot;0;0;0;0;0;0;0;0;0];

%The extra 0’s makes the vector the same length as x.

%This is needed to create Passing_Vector in costfunction

% d

Initial_d = initial_length_of_d; %set value above

Initial_d_Dot = -800; % Units are in millimeters per second

%value was determined from average of high speed video data

Initial_d_Double_Dot = 0;

d_Vector = [Initial_d; Initial_d_Dot; Initial_d_Double_Dot; ...

0;0;0;0;0;0;0;0;0];

%The extra 0’s makes the vector the same length as x0. This is needed

%to create Passing_Vector in costfunction

Initial_Conditions = [Theta_Vector d_Vector Time_Vector Mass_Vector ...

Inertia_Vector Centroid_Calc_Vector Block_Size_And_Theta1];

%% Define initial guesses for fmincon

% Spring lever arm
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aa = -42;

cc = -42;

% Spring rate

k_spring1 = 30;

k_spring2 = 45;

% Link Lengths

a = 30;

c = 45;

% Free lengths for the spring on the left (spring 1)

l_s10 = -2;

% Fixed end of spring 1

% (x position, spring1, fixed)

x_s1f = 200;

% (y position, spring1, fixed)

y_s1f = 60;

% Free length of spring 2

l_s20 = 0;

% Fixed end of spring 2

% (x position, spring2, fixed)

x_s2f = -90; %Initial_d - x_s1f;

% (y position, spring2, fixed)

y_s2f = 60;
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% Put into a vector

x0 = [aa; cc; k_spring1; k_spring2; a; c; l_s10; x_s1f; ...

y_s1f; l_s20; x_s2f; y_s2f];

%% fmincon Options

options = optimset(’display’,’iter’,’MaxFunEvals’,1e1000, ...

’MaxIter’,1e100,’TolX’,1e-012);

%% Define the optimization routine

xxx = fmincon(@(x0) costfunction(x0,Initial_Conditions),x0,[],[],[],[], ...

[-42.5;-42.5; 0;0; 41.97;41.97; -5;-50;-30; -5;-50;-30], ...

[50;50; 50;50; 100;100; 10;250;70; 10;161.1;70], ...

@(x0)nonlinear_constraints(x0,Initial_Conditions),options);

%% Plot the results

aa = xxx(1)

cc = xxx(2)

k_spring1 = xxx(3)

k_spring2 = xxx(4)

a = xxx(5)

c = xxx(6)

l_s10 = xxx(7)

x_s1f = xxx(8)

y_s1f = xxx(9)

l_s20 = xxx(10)

x_s2f_From_End_of_d = xxx(11)

y_s2f = xxx(12)
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%% Check the results

% Rerun the solver

%Set the initial values for the optimization

% Theta 2

y0(1) = acos((c^2-a^2-(initial_length_of_d-b)^2)/ ...

(-2*a*(initial_length_of_d-b)));

% Theta 2 dot

y0(2) = Theta_Vector(2);

% Theta 2 dot

yprime0(1) = Theta_Vector(2);

% Theta 2 ddot

yprime0(2) = Theta_Vector(3);

% Creating the vector to pass

Passing_Vector = [xxx, Initial_Conditions];

% Set up routine

[time_out, y] = ode15i(@(input_time,input_y,input_yprime) ...

implicit_derivative_optimization(input_time,input_y,input_yprime, ...

Passing_Vector),time,y0’,yprime0’,Passing_Vector);

% NOTE: Time_out should equal time. This is done here to avoid confusion

% and to allow for future changes if desired

% Theta 2

t2 = y(:,1);

% Loop for the video - Uses same code as the positional kinematics.

for i=1:length(time_out),
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% Units are millimeters

d(i) = Initial_d_Dot*time_out(i)+initial_length_of_d;

%% Calculatingin actual position of x_s2f

x_s2f = d + x_s2f_From_End_of_d;

%% Position analysis - Derived from Norton

% Theta 4 (output link)

% Parameters from Norton - page 176.

k1=d(i)/a;

k2=d(i)/c;

k3=((a^2)-(b^2)+(c^2)+(d(i)^2))/(2*a*c);

A=cos(t2(i))-k1-k2*cos(t2(i))+k3;

B=(-2)*sin(t2(i));

C=k1-(k2+1)*cos(t2(i))+k3;

% Solution for theta 4 from Norton - page 176

% Solution 1

T4(i) = 2*atan((-B+sqrt((B^2)-4*A*C))/(2*A));

% Solution 2

t4(i) = 2*atan((-B-sqrt((B^2)-4*A*C))/(2*A));

% Theta 3 (coupler link)

% Parameters from Norton - page 176.

k4 = d(i)/b;

k5 = ((c^2)-(d(i)^2)-(a^2)-(b^2))/(2*a*b);
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D = cos(t2(i))-k1+k4*cos(t2(i))+k5;

E = (-2)*sin(t2(i));

F = k1+(k4-1)*cos(t2(i))+k5;

% Solution for theta 4 from Norton - page 176

% Solution 1

T3(i) = 2*atan((-E+sqrt((E^2)-4*D*F))/(2*D));

% Solution 2

t3(i) = 2*atan((-E-sqrt((E^2)-4*D*F))/(2*D));

figure(2)

clf

x_axis = [-aa*cos(t2(i))

0

a*cos(t2(i))

a*cos(t2(i))+b*cos(t3(i))

a*cos(t2(i))+b*cos(t3(i))-c*cos(t4(i))

d(i) - cc*cos(t4(i))

a*cos(t2(i))+b*cos(t3(i))-c*cos(t4(i))

a*cos(t2(i))+b*cos(t3(i))-c*cos(t4(i))-d(i)];

y_axis = [-aa*sin(t2(i))

0

a*sin(t2(i))

a*sin(t2(i))+b*sin(t3(i))

a*sin(t2(i))+b*sin(t3(i))-c*sin(t4(i))

-cc*sin(t4(i))

a*sin(t2(i))+b*sin(t3(i))-c*sin(t4(i))

a*sin(t2(i))+b*sin(t3(i))-c*sin(t4(i))];

xs1 = [x_s1f -aa*cos(t2(i))];

ys1 = [y_s1f -aa*sin(t2(i))];
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xs2 = [x_s2f d(i)-cc*cos(t4(i))];

ys2 = [y_s2f -cc*sin(t4(i))];

plot(x_axis,y_axis,xs1,ys1,xs2,ys2)

axis square

axis([-20 140 -40 120])

MyMovie(i) = getframe;

end

movie(MyMovie,3)

C.2 Cost Function Code

function error = costfunction(x,Initial_Conditions)

%% checking step order for debug

%CostFunction = 1

%% Extracting passed Values

% link lengths

a = x(5);

c = x(6);

% Values for d

d_Vector = Initial_Conditions(:,2);
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initial_length_of_d = d_Vector(1);

ddot = d_Vector(2);

Block_Size_And_Theta1 = Initial_Conditions(:,7);

b = Block_Size_And_Theta1(1);

%t1 = Block_Size_And_Theta1(2);

Theta_Vector = Initial_Conditions(:,1);

% Theta 2

y0(1) = acos((c^2-a^2-(initial_length_of_d-b)^2)/ ...

(-2*a*(initial_length_of_d-b)));

% Theta 2 dot

y0(2) = Theta_Vector(2);

% Theta 2 dot

yprime0(1) = Theta_Vector(2);

% Theta 2 ddot

yprime0(2) = Theta_Vector(3);

Time_Vector = Initial_Conditions(:,3);

Start_Time = Time_Vector(1);

Step_Size = Time_Vector(2);

End_Time = Time_Vector(3);

time = (Start_Time:Step_Size:End_Time);

%% Creating the vector to pass

Passing_Vector = [x, Initial_Conditions];
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%% checking step order for debug

%ImplicitDerivative = 1

%% Set up routine

ode15iOptions = odeset(’RelTol’,1e-003,’AbsTol’,1e-006);

[time_out, y] = ode15i(@(input_time,input_y,input_yprime) ...

ForwardDynamicsFunction(input_time,input_y,input_yprime, ...

Passing_Vector),time,y0’,yprime0’,ode15iOptions);

%% Find the theta 3 versus time

t2 = y(:,1);

for i=1:length(time_out),

% Units are millimeters

d(i) = ddot*time(i)+initial_length_of_d;

%% Position analysis - Derived from Norton

% Parameters from Norton - page 176.

k1=d(i)/a;

% Theta 3 (coupler link)

% Parameters from Norton - page 176.

k4 = d(i)/b;

k5 = ((c^2)-(d(i)^2)-(a^2)-(b^2))/(2*a*b);
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D = cos(t2(i))-k1+k4*cos(t2(i))+k5;

E = (-2)*sin(t2(i));

F = k1+(k4-1)*cos(t2(i))+k5;

% Solution for theta 4 from Norton - page 176

% Solution 2

t3(i) = 2*atan((-E-sqrt((E^2)-4*D*F))/(2*D));

end

%% Find the cost function

error = sum(t3.^2);

C.3 Forward Dynamics Function Code

function f = ForwardDynamicsFunction(input_time,input_y, ...

input_yprime,Passing_Vector)

%% Extracting passed Values

x = Passing_Vector(:,1);

%Lever arm lengths

aa = x(1);

cc = x(2);

% Spring rates

k_spring1 = x(3);

k_spring2 = x(4);

% Link Lengths

a = x(5);
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c = x(6);

% Free lengths for the spring on the left (spring 1)

l_s10 = x(7);

% Fixed end of spring 1

% (x position, spring1, fixed)

x_s1f = x(8);

% (y position, spring1, fixed)

y_s1f = x(9);

% Free length of spring 2

l_s20 = x(10);

% Fixed end of spring 2

% (x position, spring2, fixed distance measured from the end of d)

x_s2f_From_End_of_d = x(11);

% (y position, spring2, fixed)

y_s2f = x(12);

Initial_Conditions = [Passing_Vector(:,2) Passing_Vector(:,3) ...

Passing_Vector(:,4) Passing_Vector(:,5) Passing_Vector(:,6) ...

Passing_Vector(:,7) Passing_Vector(:,8)];

% Initial conditions for d

d_Vector = Initial_Conditions(:,2);

initial_length_of_d = d_Vector(1);

ddot = d_Vector(2);

ddoubledot = d_Vector(3);

Mass_Vector = Initial_Conditions(:,4);

m2 = Mass_Vector(2);
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m3 = Mass_Vector(3);

m4 = Mass_Vector(4);

Inertia_Vector = Initial_Conditions(:,5);

I2 = Inertia_Vector(2);

I3 = Inertia_Vector(3);

I4 = Inertia_Vector(4);

Centroid_Calc_Vector = Initial_Conditions(:,6);

p = Centroid_Calc_Vector(1);

q = Centroid_Calc_Vector(2);

r = Centroid_Calc_Vector(3);

s = Centroid_Calc_Vector(4);

t = Centroid_Calc_Vector(5);

Block_Size_And_Theta1 = Initial_Conditions(:,7);

b = Block_Size_And_Theta1(1);

t1 = Block_Size_And_Theta1(2);

% if a+b+c-9.9<initial_length_of_d %for debug

% BAD = 1

% t2 = input_y(1)

% end

%% Specified accelerations or velocities or positions (depending on run).

% Time

time = input_time;

% Acceleration

% Units are radians per second squared
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alpha2 = input_yprime(2);

% Velocity

% Units are radians per second

omega2 = input_y(2);

% Positions

% Units are radians

t2 = input_y(1);

% Units are millimeters

d = ddot*time+initial_length_of_d;

%% Calculatingin actual position of x_s2f

x_s2f = d + x_s2f_From_End_of_d;

%% Position analysis - Derived from Norton

% Theta 4 (output link)

% Parameters from Norton - page 176.

k1=d/a;

k2=d/c;

k3=((a^2)-(b^2)+(c^2)+(d^2))/(2*a*c);

A=cos(t2)-k1-k2*cos(t2)+k3;

B=(-2)*sin(t2);

C=k1-(k2+1)*cos(t2)+k3;

% Solution for theta 4 from Norton - page 176

% Solution 1

T4 = 2*atan((-B+sqrt((B^2)-4*A*C))/(2*A));
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% Solution 2

t4 = 2*atan((-B-sqrt((B^2)-4*A*C))/(2*A));

% Theta 3 (coupler link)

% Parameters from Norton - page 176.

k4 = d/b;

k5 = ((c^2)-(d^2)-(a^2)-(b^2))/(2*a*b);

D = cos(t2)-k1+k4*cos(t2)+k5;

E = (-2)*sin(t2);

F = k1+(k4-1)*cos(t2)+k5 ;

% Solution for theta 4 from Norton - page 176

% Solution 1

T3 = 2*atan((-E+sqrt((E^2)-4*D*F))/(2*D));

% Solution 2

t3 = 2*atan((-E-sqrt((E^2)-4*D*F))/(2*D));

%% Velocity Analysis - Derived from Norton

% Solution for omega 3 from Norton - page 297

omega3 = (a*omega2*sin(t4-t2)-ddot*cos(t1-t4))/(b*sin(t3-t4));

% Solution for omega 3 from Norton - page 297

omega4 = (a*omega2*sin(t2-t3)+ddot*cos(t1-t3))/(c*sin(t4-t3));

%% Acceleration Analysis - Derived from Norton

% Solution for alpha 3

% The same as Norton - page 339 - but uses a substitution

% See hand calculations for more information.
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alpha3 = (a*alpha2*sin(t2-t4)+a*omega2^2*cos(t2-t4)+b* ...

omega3*cos(t3-t4)-c*omega4^2 + ...

ddoubledot*cos(t1-t4))/(b*sin(t4-t3));

% Solution for alpha 4

% The same as Norton - page 339 - but uses a substitution

% See hand calculations for more information.

alpha4 = (a*alpha2*sin(t2-t3)+a*(omega2^2)*cos(t2-t3)+b* ...

(omega3^2)-c*(omega4^2)*cos(t4-t3)+ ...

ddoubledot*cos(t1-t3))/(c*sin(t4-t3));

%% Calculation of Torque

%Torque - Left Spring

% Moving end of spring 1

% (x position, spring1, moving)

x_s1m = -aa*cos(t2);

% (y position, spring1, moving)

y_s1m = -aa*sin(t2);

% Calculate the force

% First, find the magnitude

% Units are milli-Newtons

F12 = k_spring1*(sqrt((x_s1m - x_s1f)^2 + (y_s1m - y_s1f)^2)-l_s10);

% Now find the direction

zeta1 = atan(abs((y_s1f-y_s1m)/(x_s1f-x_s1m)));

% Calculate the moment

% Units are milli-Newtons times millimeters

T12 = - aa*F12*sin(pi-zeta1-t2);

%Torque - Right Spring
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% Moving end of spring 2

% (x position, spring2, moving)

x_s2m = d - cc*cos(t4);

% (y position, spring2, moving)

y_s2m = -cc*sin(t4);

% Calculate the force

% First, find the magnitude

% Units are milli-Newtons

F4 = k_spring2*(sqrt((x_s2m - x_s2f)^2 + (y_s2m - y_s2f)^2)-l_s20);

% Now find the direction

zeta2 = atan(abs((y_s1f-y_s1m)/(x_s1f-x_s1m)));

% Calculate the moment

% Units are milli-Newtons times millimeters

% NOTE: The change in notation (T14 instead of T4) is inconsistent

%with Norton

T14 = cc*F4*sin(t4-zeta2);

%% Force Analysis - Derived from Norton

% Creating alpha vectors

Alpha2_vector = [0,0,alpha2];

Alpha3_vector = [0,0,alpha3];

Alpha4_vector = [0,0,alpha4];

% Creating omega vectors

Omega2_vector = [0,0,omega2];
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Omega3_vector = [0,0,omega3];

Omega4_vector = [0,0,omega4];

% Solving for R vectors

beta=atan(s/(p+r));

psi=atan(q/p);

phi=atan(r/t);

gamma=(pi()/2)-beta-phi;

lambda=pi()-t4;

% Radius to link with respect to CG

R12 = [-sqrt(p^2+q^2)*cos(t2+(beta-psi)), ...

-sqrt(p^2+q^2)*sin(t2+(beta-psi)),0];

R23 = [-(b/2)*cos(t3),-(b/2)*sin(t3),0];

R32 = [sqrt(r^2+t^2)*cos(gamma-t2), ...

-sqrt(r^2+t^2)*sin(gamma-t2),0];

R34 = [-sqrt(r^2+t^2)*cos(gamma-lambda), ...

-sqrt(r^2+t^2)*sin(gamma-lambda),0];

R43 = [(b/2)*cos(t3),(b/2)*sin(t3),0];

R14 = [sqrt(p^2+q^2)*cos(lambda+(beta-psi)), ...

-sqrt(p^2+q^2)*sin(lambda+(beta-psi)),0];

% Radius to CG with respect to CG

R3_2 = [R32(1,1)-R23(1,1),R32(1,2)-R23(1,2),0];

R4_3 = [R43(1,1)-R34(1,1),R43(1,2)-R34(1,2),0];

% Acceleration

a1 = [0,0,0];

a2 = a1+cross(Alpha2_vector,-R12)+ ...

cross(Omega2_vector,cross(Omega2_vector,-R12));
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a3 = a2+cross(Alpha3_vector,R3_2)+ ...

cross(Omega3_vector,cross(Omega3_vector,R3_2));

a4 = a3+cross(Alpha4_vector,R4_3)+ ...

cross(Omega4_vector,cross(Omega4_vector,R4_3));

% Acceleration Decomposed

a2x = a2(1,1);

a2y = a2(1,2);

a3x = a3(1,1);

a3y = a3(1,2);

a4x = a4(1,1);

a4y = a4(1,2);

% Distance to the joint from the center of gravity

% R_jointNumber_linkNumber_Direction as in Norton P.570

R12y = R12(1,2);

R12x = R12(1,1);

R32y = R32(1,2);

R32x = R32(1,1);

R23y = R23(1,2);

R23x = R23(1,1);

R43y = R43(1,2);

R43x = R43(1,1);

R34y = R34(1,2);

R34x = R34(1,1);

R14y = R14(1,2);

R14x = R14(1,1);

big_matrix = [1 0 1 0 0 0 0 0
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0 1 0 1 0 0 0 0

0 0 -1 0 1 0 0 0

0 0 0 -1 0 1 0 0

0 0 R23y -R23x -R43y R43x 0 0

0 0 0 0 -1 0 1 0

0 0 0 0 0 -1 0 1

0 0 0 0 R34y -R34x -R14y R14x ];

small_matrix = [ m2*a2x

m2*a2y

m3*a3x

m3*a3y

I3*alpha3

m4*a4x

m4*a4y

I4*alpha4-T14];

% Find forces using 8 of the 9 equations from Norton

Forces = inv(big_matrix)*small_matrix;

% Establish output as a vector

f = zeros(2,1);

% Implicit function calculation

f(1) = input_yprime(1) - input_y(2);

f(2) = I2*input_yprime(2) - (T12 + R12x*Forces(2) - R12y*Forces(1) ...

+ R32x*Forces(4) - R32y*Forces(3));
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C.4 Non-Linear Constraints Code

function [nonequality_constraint,equality_constraint] = ...

nonlinear_constraints(x,Initial_Conditions)

global Counter

%% checking step order

%nonlinearConstraints = 1

%% Extracting passed Values

% link lengths

a = x(5);

c = x(6);

% Values for d

d_Vector = Initial_Conditions(:,2);

initial_length_of_d = d_Vector(1);

% ddot = d_Vector(2);

Block_Size_And_Theta1 = Initial_Conditions(:,7);

b = Block_Size_And_Theta1(1);

%t1 = Block_Size_And_Theta1(2);

Theta_Vector = Initial_Conditions(:,1);

% Theta 2

y0(1) = acos((c^2-a^2-(initial_length_of_d-b)^2)/ ...

(-2*a*(initial_length_of_d-b)));

% Theta 2 dot
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y0(2) = Theta_Vector(2);

% Theta 2 dot

yprime0(1) = Theta_Vector(2);

% Theta 2 ddot

yprime0(2) = Theta_Vector(3);

Time_Vector = Initial_Conditions(:,3);

Start_Time = Time_Vector(1);

Step_Size = Time_Vector(2);

End_Time = Time_Vector(3);

time = (Start_Time:Step_Size:End_Time);

%% Creating the vector to pass

Passing_Vector = [x, Initial_Conditions];

%% checking step order

%ImplicitDerivative = 1

%% Set up routine

%creating ode15i options

ode15iOptions = odeset(’RelTol’,1e-003,’AbsTol’,1e-006);

[time_out, y] = ode15i(@(input_time,input_y,input_yprime) ...

ForwardDynamicsFunction(input_time,input_y,input_yprime, ...

Passing_Vector),time,y0’,yprime0’,ode15iOptions);

%% Calculating Alpha2 - Numerical derivative of Omega2 to calculate Alpha2

t2 = y(:,1);
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Omega2 = y(:,2);

N = length(Omega2);

% Forward difference

Alpha2(1) = (Omega2(2) - Omega2(1)) / (time_out(2) - time_out(1));

% Central Difference

for i=2:(N - 1)

Alpha2(i) = (Omega2(i+1)-Omega2(i-1))/(time_out(i+1) ...

- time_out(i-1));

end

% Backwards Difference

Alpha2(N) = (Omega2(N) - Omega2(N-1)) / (time_out(N) - time_out(N-1));

%% checking step order for debug

%twoDOF_Function = 1

%% Loop for calculating forces

for i=1:length(time_out),

[dummy,tThree] = inverse_Dynamics(time_out(i),t2(i),Omega2(i), ...

Alpha2(i),Initial_Conditions,x);

Forces(:,i)=dummy;

Theta3(i) = tThree;

end
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Theta3 = Theta3’;

force3 = Forces(1,:); %F12_x

force3 = force3’;

force4 = Forces(2,:); %F12_y

force4 = force4’;

force5 = Forces(3,:); %F32_x

force5 = force5’;

force6 = Forces(4,:); %F32_y

force6 = force6’;

%If a singularity occurs time_out is less than time

if length(time_out)-length(time) < 0

Time_Difference = length(time)-length(time_out);

Counter = Counter+1; %Forces a gradiant in the add values

%The total length of the nonequality constraint must remain the same

%as when time_out = time

add = ones(Time_Difference,1)*500000;

nonequality_constraint = [(force3.*cos(Theta3) ...

+force4.*sin(Theta3));add*Counter; ...

((force5.*cos(Theta3) + force6.*sin(Theta3))); ...

add*Counter; (-(a+b+c)+initial_length_of_d+10)];
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equality_constraint = length(time)-length(time_out);

else

nonequality_constraint = [(force3.*cos(Theta3) ...

+ force4.*sin(Theta3)); ((force5.*cos(Theta3) ...

+ force6.*sin(Theta3))); (-(a+b+c)+initial_length_of_d+10)];

equality_constraint = length(time)-length(time_out);

end

C.5 Inverse Dynamics Code

function [contact_force,t3] = two_DOF_fourbar_forces_function ...

(time,t2,omega2,alpha2,Initial_Conditions,x)

%% Program to compute the forces in a 2DOF four bar mechanism

% Two DOF 4-bar analysis

% Jacob Ziesmer

% 6/19/09

%

% Modified by Phil Voglewede

% 6/22/09

%

% Modified by Jacob Ziesmer

% 7/1/09

%

% Notational conventions:

% -----------------------
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% Use of Norton for link lengths

%

% t# - Angle of theta# in radians (one kinematic solution)

% T# - Angle of theta# in radians (other kinematic solution)

% theta# - Angle of theta# in degrees (one kinematic solution)

% Theta# - Angle of theta# in degrees (other kinematic solution)

%

% All angular velocities and accelerations are in radians (per second or

% second squared). For example, omega2 is the angular velocity of link 2

% in radians per second. alpha2 is the angular acceleration of link 2 in

% radians per second squared.

%% Extracting passed Values

%Lever arm lengths

aa = x(1);

cc = x(2);

% Spring rates

k_spring1 = x(3);

k_spring2 = x(4);

% Link Lengths

a = x(5);

c = x(6);

% Free lengths for the spring on the left (spring 1)

l_s10 = x(7);

% Fixed end of spring 1

% (x position, spring1, fixed)

x_s1f = x(8);
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% (y position, spring1, fixed)

y_s1f = x(9);

% Free length of spring 2

l_s20 = x(10);

% Fixed end of spring 2

% (x position, spring2, fixed distance measured from the end of d)

x_s2f_From_End_of_d = x(11);

% (y position, spring2, fixed)

y_s2f = x(12);

%Bringing in initial conditions and other constants

d_Vector = Initial_Conditions(:,2);

Mass_Vector = Initial_Conditions(:,4);

m2 = Mass_Vector(2);

m3 = Mass_Vector(3);

m4 = Mass_Vector(4);

Inertia_Vector = Initial_Conditions(:,5);

I2 = Inertia_Vector(2);

I3 = Inertia_Vector(3);

I4 = Inertia_Vector(4);

Centroid_Calc_Vector = Initial_Conditions(:,6);

p = Centroid_Calc_Vector(1);

q = Centroid_Calc_Vector(2);

r = Centroid_Calc_Vector(3);
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s = Centroid_Calc_Vector(4);

t = Centroid_Calc_Vector(5);

Block_Size_And_Theta1 = Initial_Conditions(:,7);

b = Block_Size_And_Theta1(1);

t1 = Block_Size_And_Theta1(2);

%% Specified accelerations and velocities of d.

% Acceleration

% Units are millimeters per second squared

ddoubledot = d_Vector(3);

% Velocity

% Units are millimeters per second

ddot = d_Vector(2); %ddoubledot*time;

% Positions

% Units are millimeters

d = .5*ddoubledot*time^2+ddot*time+d_Vector(1);

%% Calculatingin actual position of x_s2f

x_s2f = d + x_s2f_From_End_of_d;

%% Position analysis - Derived from Norton

% Theta 4 (output link)

% Parameters from Norton - page 176.
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k1=d/a;

k2=d/c;

k3=((a^2)-(b^2)+(c^2)+(d^2))/(2*a*c);

A=cos(t2)-k1-k2*cos(t2)+k3;

B=(-2)*sin(t2);

C=k1-(k2+1)*cos(t2)+k3;

% Solution for theta 4 from Norton - page 176

% Solution 1

T4 = 2*atan((-B+sqrt((B^2)-4*A*C))/(2*A));

% Solution 2

t4 = 2*atan((-B-sqrt((B^2)-4*A*C))/(2*A));

% Theta 3 (coupler link)

% Parameters from Norton - page 176.

k4 = d/b;

k5 = ((c^2)-(d^2)-(a^2)-(b^2))/(2*a*b);

D = cos(t2)-k1+k4*cos(t2)+k5;

E = (-2)*sin(t2);

F = k1+(k4-1)*cos(t2)+k5;

% Solution for theta 4 from Norton - page 176

% Solution 1

T3 = 2*atan((-E+sqrt((E^2)-4*D*F))/(2*D));

% Solution 2

t3 = 2*atan((-E-sqrt((E^2)-4*D*F))/(2*D));
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%% Velocity Analysis - Derived from Norton

% Solution for omega 3 from Norton - page 297

omega3 = (a*omega2*sin(t4-t2)-ddot*cos(t1-t4))/(b*sin(t3-t4));

% Solution for omega 3 from Norton - page 297

omega4 = (a*omega2*sin(t2-t3)+ddot*cos(t1-t3))/(c*sin(t4-t3));

%% Acceleration Analysis - Derived from Norton

% Solution for alpha 3

% The same as Norton - page 339 - but uses a substitution

% See hand calculations for more information.

alpha3 = (a*alpha2*sin(t2-t4)+a*omega2^2*cos(t2-t4)+b* ...

omega3*cos(t3-t4)-c*omega4^2+ ...

ddoubledot*cos(t1-t4))/(b*sin(t4-t3));

% Solution for alpha 4

% The same as Norton - page 339 - but uses a substitution

% See hand calculations for more information.

alpha4 = (a*alpha2*sin(t2-t3)+a*(omega2^2)*cos(t2-t3)+b* ...

(omega3^2)-c*(omega4^2)*cos(t4-t3)+ ...

ddoubledot*cos(t1-t3))/(c*sin(t4-t3));

%% Calculation of Torque

%Torque - Left Spring

% Moving end of spring 1

% (x position, spring1, moving)

x_s1m = -aa*cos(t2);

% (y position, spring1, moving)
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y_s1m = -aa*sin(t2);

% Calculate the force

% First, find the magnitude

% Units are milli-Newtons

F12 = k_spring1*(sqrt((x_s1m - x_s1f)^2 + (y_s1m - y_s1f)^2)-l_s10);

% Now find the direction

zeta1 = atan(abs((y_s1f-y_s1m)/(x_s1f-x_s1m)));

% Calculate the moment

% Units are milli-Newtons times millimeters

T12 = - aa*F12*sin(pi-zeta1-t2);

%Torque - Right Spring

% Moving end of spring 2

% (x position, spring2, moving)

x_s2m = d - cc*cos(t4);

% (y position, spring2, moving)

y_s2m = -cc*sin(t4);

% Calculate the force

% First, find the magnitude

% Units are milli-Newtons

F4 = k_spring2*(sqrt((x_s2m - x_s2f)^2 + (y_s2m - y_s2f)^2)-l_s20);

% Now find the direction

zeta2 = atan(abs((y_s1f-y_s1m)/(x_s1f-x_s1m)));

% Calculate the moment

% Units are milli-Newtons times millimeters

% NOTE: The change in notation (T14 instead of T4) is inconsistent

% with Norton

T14 = cc*F4*sin(t4-zeta2);
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%% Force Analysis - Derived from Norton

% Creating alpha vectors

Alpha1_vector = [0,0,0];

Alpha2_vector = [0,0,alpha2];

Alpha3_vector = [0,0,alpha3];

Alpha4_vector = [0,0,alpha4];

% Creating omega vectors

Omega1_vector = [0,0,0];

Omega2_vector = [0,0,omega2];

Omega3_vector = [0,0,omega3];

Omega4_vector = [0,0,omega4];

% Solving for R vectors

beta=asin(s/a);

psi=atan(q/p);

phi=atan(r/t);

gamma=(pi()/2)-beta-phi;

lambda=pi()-t4;

% Radius to link with respect to CG

R12 = [-sqrt(p^2+q^2)*cos(t2+(beta-psi)), ...

-sqrt(p^2+q^2)*sin(t2+(beta-psi)),0];

R32 = [sqrt(r^2+t^2)*cos(gamma-t2),-sqrt(r^2+t^2)*sin(gamma-t2),0];

R23 = [-(b/2)*cos(t3),-(b/2)*sin(t3),0];

R43 = [(b/2)*cos(t3),(b/2)*sin(t3),0];

R34 = [-sqrt(r^2+t^2)*cos(gamma-lambda), ...
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-sqrt(r^2+t^2)*sin(gamma-lambda),0];

R14 = [sqrt(p^2+q^2)*cos(lambda+(beta-psi)), ...

-sqrt(p^2+q^2)*sin(lambda+(beta-psi)),0];

% Radius to CG with respect to CG

R3_2 = [R32(1,1)-R23(1,1),R32(1,2)-R23(1,2),0];

R4_3 = [R43(1,1)-R34(1,1),R43(1,2)-R34(1,2),0];

% Acceleration

a1 = [0,0,0];

a2 = a1+cross(Alpha2_vector,-R12)+ ...

cross(Omega2_vector,cross(Omega2_vector,-R12));

a3 = a2+cross(Alpha3_vector,R3_2)+ ...

cross(Omega3_vector,cross(Omega3_vector,R3_2));

a4 = a3+cross(Alpha4_vector,R4_3)+ ...

cross(Omega4_vector,cross(Omega4_vector,R4_3));

% Acceleration Decomposed

a2x = a2(1,1);

a2y = a2(1,2);

a3x = a3(1,1);

a3y = a3(1,2);

a4x = a4(1,1);

a4y = a4(1,2);

% Distance to the joint from the center of gravity

% R_jointNumber_linkNumber_Direction as in Norton P.570

R12y = R12(1,2);

R12x = R12(1,1);
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R32y = R32(1,2);

R32x = R32(1,1);

R23y = R23(1,2);

R23x = R23(1,1);

R43y = R43(1,2);

R43x = R43(1,1);

R34y = R34(1,2);

R34x = R34(1,1);

R14y = R14(1,2);

R14x = R14(1,1);

big_matrix = [1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

-R12y R12x -R32y R32x 0 0 0 0 1

0 0 -1 0 1 0 0 0 0

0 0 0 -1 0 1 0 0 0

0 0 R23y -R23x -R43y R43x 0 0 0

0 0 0 0 -1 0 1 0 0

0 0 0 0 0 -1 0 1 0

0 0 0 0 R34y -R34x -R14y R14x 0];

small_matrix = [ m2*a2x

m2*a2y

I2*alpha2

m3*a3x

m3*a3y

I3*alpha3

m4*a4x

m4*a4y

I4*alpha4-T14];
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Forces = inv(big_matrix)*small_matrix;

contact_force = [Forces(3)

Forces(4)

Forces(5)

Forces(6)];
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