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ABSTRACT
A VOIP IMPLEMENTATION ON AN EMBEDDED PLATFORM

Zachary D. Lund

Marquette University, 2010

This thesis presents a method of building an open VoIP telephone using
off-the-shelf hardware. VoIP has become an important area of study in computer
science and engineering, but many of the pieces are expensive and proprietary. We
discuss the process of building an open IP telephone, the design decisions and
difficulties, a performance evaluation of the different pieces of the system, and
methods and suggestions for improving the overall system.

The IP telephone is built on the Freescale 68HC12 microcontroller because of
its analog and digital capabilities and the Linksys WRT54GL router for its
embedded simplicity and network capabilities. The lightweight Embedded Xinu
operating system was selected to build up the VoIP capabilities on top of a
functional network stack.

Our results show that building this VoIP device is viable. The completed IP
telephone establishes a call between two routers using UDP network transport and
µ-law companding. The roundtrip latency is less than two milliseconds, and the
phone has a PESQ MOS (voice quality) of 3.13.



i

ACKNOWLEDGEMENTS

Zachary D. Lund

Many thanks to those who have helped me along the way to a completed
thesis:

• Dennis Brylow, my thesis advisor and good friend, for the research
opportunity and assistance.

• George Corliss, my thesis director, for the meticulous proofreading and
continuous pushing to finish.

• Doug Harris and Mike Johnson, my committee members, for providing useful
feedback about networks and signal processing.

• Aaron Gember, Adam Koehler, Adam Mallen, Michael Schultz, and the entire
Systems Laboratory for providing a supportive and entertaining lab
environment.

• Donna Lund, my mother, for never allowing me to think that schooling was
optional.

• Clarissa Kampa, my fiancée, for always supporting me, even when it meant
one more semester in different states.



ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . i

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Voice Over IP Telephony . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Digital Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Pulse-code Modulation . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Audio Filters and Effects . . . . . . . . . . . . . . . . . . . . . 8

2.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Summary of Background . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Voice Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 VoIP Over Wireless and Mobile Networks . . . . . . . . . . . . . . . 11

3.3 Specialized VoIP Protocols . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 VoIP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Embedded VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Summary of Related Works . . . . . . . . . . . . . . . . . . . . . . . 14



iii

CHAPTER 4 Embedded VoIP Framework . . . . . . . . . . . . . . . . 15

4.1 68HC12 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Analog and Digital Conversion . . . . . . . . . . . . . . . . . . 24

4.1.4 Power Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Linksys WRT54GL Router . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Xinu Operating System . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Serial Communication . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Network Transmission . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Desktop Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Summary of Framework . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 5 Performance Analysis . . . . . . . . . . . . . . . . . . . . 36

5.1 Embedded VoIP Latency . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Desktop VoIP Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Embedded VoIP Voice Quality . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Sources of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Sampling and Digitization . . . . . . . . . . . . . . . . . . . . 48

5.4.2 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . 49

5.4.3 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.4 Serial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.5 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Network Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Embedded IP Telephone Cost . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Summary of Performance Analysis . . . . . . . . . . . . . . . . . . . 56



iv

CHAPTER 6 Discussion and Summary . . . . . . . . . . . . . . . . . . 57

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 A Previous Attempt . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.2 From Synchronous to Asynchronous . . . . . . . . . . . . . . . 58

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX A 68HC12 Makefile . . . . . . . . . . . . . . . . . . . . . . 69

APPENDIX B Serial Receive Rate . . . . . . . . . . . . . . . . . . . . . 71



v

LIST OF TABLES

4.1 68HC12 Timer Interrupt Tick Resolution . . . . . . . . . . . . . . . . . . 22

4.2 Effect of µ-Law Compression on a Sine Wave . . . . . . . . . . . . . . . . 33

5.1 Summary of latency measurements from shortest data path to longest data
path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 PESQ MOS test results summary with sample size of 23 . . . . . . . . . 47

5.3 Costs of components to build experimental prototype system . . . . . . . 55

5.4 Costs to build a basic embedded VoIP device . . . . . . . . . . . . . . . 56



vi

LIST OF FIGURES

4.1 Embedded VoIP device connection overview . . . . . . . . . . . . . . . . 15

4.2 68HC12 hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 68HC12 timer interrupt code flow . . . . . . . . . . . . . . . . . . . . . . 20

4.4 ADC microphone circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 DAC speaker circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Microcontroller rebooter circuit . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 1 kHz Sine Wave Sampled at 8 kHz . . . . . . . . . . . . . . . . . . . . . 33

4.8 1 kHz Sine Wave Sampled at 8 kHz After µ-Law Compression . . . . . . 34

5.1 Embedded VoIP device connection and data path flow overview . . . . . 37

5.2 Data path flow for ADC and DAC latency test case . . . . . . . . . . . . 38

5.3 Original 1 kHz sine wave (top) and sine wave delayed 92 µs by ADC and
DAC (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Original 1 kHz sine wave (top) and sine wave delayed 131 µs by ADC,
DAC, and µ-law companding (bottom) . . . . . . . . . . . . . . . . . . . 38

5.5 Original 1 kHz sine wave (top) and sine wave delayed 142 µs by ADC,
DAC, µ-law companding, and 8 kHz sampling interrupts (bottom) . . . . 38

5.6 Data path flow for latency measurement through the serial loopback device
on the microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Original 1 kHz sine wave (top) and sine wave delayed 389 µs by the serial
loopback on the microcontroller (bottom) . . . . . . . . . . . . . . . . . 39

5.8 Data path flow for latency measurement through the serial ports with
loopback on the router . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.9 Original 1 kHz sine wave (top) and sine wave delayed 574 µs by the serial
ports and router loopback (bottom) . . . . . . . . . . . . . . . . . . . . . 39

5.10 Data path flow for latency measurement through the serial ports with
loopback on the router (internal measurement using returned data from
the serial port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



vii

5.11 Square wave representation of the 563 µs delay due to the serial ports and
the router loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.12 Data path flow for latency measurement through the Ethernet loopback
device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.13 Square wave representation of the 891 µs delay due to the addition of the
Ethernet loopback device . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.14 Data flow for roundtrip latency measurement using two microcontrollers,
two routers, and a network . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.15 Square wave representation of the 1.875 ms delay for the round trip latency
test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.16 Desktop VoIP connection and data path flow overview . . . . . . . . . . 44

5.17 Data flow for desktop computer ADC and DAC latency test case . . . . 45

5.18 Distorted square wave representation of the 420 µs delay for ADC and
DAC latency test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.19 Data flow for roundtrip latency test case using two desktop computers and
a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.20 Distorted square wave representation of the 892 µs delay for the roundtrip
latency test case using two desktop computers and a network . . . . . . . 46

5.21 Data flow for embedded speech quality testing . . . . . . . . . . . . . . . 47

5.22 Original sine wave (top) and sampled sine wave with no correction (bottom) 49

5.23 Original sine wave (top) and sampled sine wave after µ-law companding
and 8 kHz sampling interrupts with no correction (bottom) . . . . . . . . 49

5.24 Original sine wave (top) and sampled sine wave after µ-law companding
and 8 kHz sampling interrupts with smoothing capacitor correction (bottom) 49



1

CHAPTER 1

Introduction

1.1 Thesis Statement

Inexpensive off-the-shelf components and a lightweight embedded operating

system can be used to build an open IP telephone.

1.2 Overview

Voice Over IP (VoIP) is the transfer of voice data over a network or the

Internet. Most VoIP solutions require either the use of proprietary software on a

high powered desktop computer or the purchase of a special proprietary adapter or

handset. None of the technologies required for VoIP communication are particularly

specialized or proprietary. Therefore, instead of using an expensive desktop

computer or specialized hardware, we will use an inexpensive off-the-shelf Linksys

router, and instead of a complex, heavyweight operating system, we will use the

lightweight embedded Xinu operating system. First, a microphone records the

audio. Then the microcontroller samples the audio so that a computer can

manipulate it. Once the computer has the digitalized signal, the computer sends the
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signal across a network or the Internet to another computer. The receiving

computer converts it back to an analog signal and plays it through a speaker.

This work focuses on working with the lower bound for system requirements.

Even on the embedded devices market, many of the devices have hardware that is

complete overkill for building an IP telephone. Therefore, we have built our system

around inexpensive devices that can handle IP telephony but do not leave overhead

for a verbose or sloppy implementation. The implementation also uses as little as

possible beyond the hardware available on the Linksys router and the 68HC12

microcontroller.

These design decisions have kept the overall prototype system simple,

inexpensive, and easy to replicate. In addition, it has been neatly integrated into

the existing Marquette University Systems Lab infrastructure. This includes

programmable power cycling and remote console connections, which make it ideal

for use in education. Since one of the other principles of this work was openness, all

embedded VoIP code is part of the Embedded Xinu repository and has been

released as part of Embedded Xinu.

The structure of this thesis is described in the following outline.

• Chapter 1 introduces this thesis and why the work is important and outlines

the contributions.

• Chapter 2 describes background material related to embedded systems, digital

signal processing, and voice over IP telephony.
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• Chapter 3 describes related work in the area of VoIP and its relation to and

dissimilarities from this research.

• Chapter 4 describes the embedded VoIP implementation including hardware

modifications and the code additions.

• Chapter 5 presents results, discusses the performance of the system, and

analyzes sources of error and ways to mitigate those errors.

• Chapter 6 discusses some of the difficulties of the research, summarizes this

work, and presents directions for future research.

1.3 Contributions

This thesis delivers an implementation of voice over IP for a

resource-constrained embedded system, which we refer to as “embedded VoIP.” This

implementation includes the hardware modifications to attach a microphone and

speaker to a 68HC12 microcontroller. It also includes the code that runs on the

68HC12 microcontroller and the Linksys WRT54GL router.

The embedded VoIP performance analysis shows that the IP telephone

establishes a call between two routers. An established call has a latency of less than

two milliseconds, and the phone has a PESQ MOS of 3.13. We also perform an

analysis of sources of error and provide a discussion of mitigation strategies for

those sources of error and the different problems that occurred during the

development of the system, why they happened, and how they were fixed.
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CHAPTER 2

Background

Embedded voice over IP relies on three main areas including embedded

systems, voice over IP telephony, and digital signal processing. Each of these areas is

described below in a context relevant to the work described in the rest of this thesis.

2.1 Embedded Systems

Embedded systems typically are resource-constrained computers that provide

a dedicated function through the use of specialized hardware and software [1] [2].

These embedded devices are usually part of a system that has additional hardware

or that controls other components such as motors or that interacts with the

environment through sensors. Examples of embedded systems include cell phones,

cruise control systems in cars, and traffic lights.

Many of these embedded systems include a real-time element. Real-time

systems have varying degrees of urgency. Soft real-time systems generally degrade

under missed deadlines, for example, dropping frames from a video while it is

playing, while hard real-time systems must adhere to strict deadlines. Medical

devices such as pacemakers are examples of hard real-time systems.
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2.2 Voice Over IP Telephony

Voice Over IP (VoIP) refers to a broad array of technologies and protocols

that transmit human voice over Internet Protocol (IP) networks including the

Internet, some of which use embedded devices [3] [4] [5]. These networks are packet

switched, which means that voice data is turned into packets and transmitted and

routed across a network to a destination. Prior to the beginnings of VoIP in the mid

1990s, all voice conversations took place over the Public Switched Telephone

Network (PSTN). While VoIP is packet switched, the PSTN is circuit switched,

which means that each phone call requires a dedicated line to connect two

individuals at each end of the phone line. VoIP has the advantage of routing

multiple calls over the same circuit.

On a local intranet, quality of service (QoS) can be guaranteed much like on

the traditional PSTN. This means that the packets that make up a VoIP

conversation can be guaranteed to be delivered because of known levels of network

traffic or because of rules that prioritize real-time traffic such as VoIP traffic and

de-prioritize less important network traffic. In contract to an intranet, VoIP

conversations over the Internet can be nothing more than best effort, which means

that VoIP packets are not guaranteed to arrive on time or at all.

There are many different implementations used for IP telephony. Two of the

most common are Session Initiated Protocol (SIP) and H.323. SIP serves strictly as

a signalling protocol to initiate and establish calls [6]. Since it does not define a
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protocol for the actual transport of the voice data, it typically is paired with

Real-time Transport Protocol (RTP) and the RTP Control Protocol (RTCP). RTP

is a standard for transmitting audio and video data over the Internet. It provides

sequence and time-stamp information but does not make any real-time delivery

guarantees [7]. H.323 is an ITU recommendation number that specifies protocols for

audio and video communication over IP networks including a signalling protocol

(like SIP) and a transport protocol (like RTP) [8]. During call setup, both SIP and

H.323 negotiate a codec, which handles the encoding and decoding of the voice data.

2.3 Digital Signal Processing

As some of the VoIP background suggests, quite a bit of digital signal

processing is involved in voice over IP telephony. Analog voice data must be

converted into a digital signal and back again. During the signal’s trip across the

network, it may be compressed and filtered.

2.3.1 Pulse-code Modulation

Pulse-code modulation is the process of representing a signal as a sequence of

coded pulses [9]. Specifically, this allows an analog waveform to be represented as a

binary sequence of data. The process of pulse-code modulation includes sampling,

quantization, and encoding. Sampling and quantization acquires a discrete value of

the waveform at discrete points in time. In our system, sampling and quantizing are
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performed by the analog-to-digital converter.

Analog-to-digital conversion is the process of converting a continuous

waveform into a discrete-time waveform. This can be accomplished by sampling the

voltage level of a waveform at regular intervals in time using an external clock.

According to the Nyquist sampling theorem, the sampling frequency must be twice

the highest frequency in the signal [10]. Therefore, a system sampling at 8 kilohertz

can capture at most a 4 kilohertz signal.

In our system, another layer of quantizing and then encoding are performed

together. There are many algorithms for quantizing/encoding a signal, and they go

by many names. As discussed in VoIP, the algorithm used is often called a codec

(encoder/decoder), and it can also be a compander (compressor/expander). For this

research, we selected the µ-law algorithm for encoding as specified in the ITU G.711

recommendation [11]. This algorithm is used in virtually all telecommunications in

the United States, while A-law is used in most of Europe. Encoders can be linear,

which simply divides the value by some constant, or non-linear, which performs

greater compression for some values of the signal and lesser compression for other

values. This means that human speech can be encoded in as little as 8 bits because

the larger, higher magnitude values which occur less frequently can be more

compressed than the lower magnitude values which occur more frequently.

The µ-law algorithm can be performed on an analog signal, but in this

system, it is performed after the signal has been turned into discrete values. If the

quantizing stage were done in an analog manner, the final step would be to encode
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the value as binary pulses that can be sent over some communication medium. In

our system, the value is already in a binary format, and the serial port transmits it.

2.3.2 Audio Filters and Effects

Before or after the signal has been digitized, it may be filtered to remove

unwanted portions of the signal. For example, a low-pass filter passes the low

frequencies and attenuates the high frequencies, while a high-pass filter does the

opposite. The cutoff frequency is the frequency at which the filter begins

attenuating the signal. A simple first-order low-pass filter can be realized using a

resistor and a capacitor.

In addition to audio filters, which remove portions of the audio, audio effects

can be used to manipulate the audio in other ways. For example an echo effect

records a portion of the audio and stores it in a buffer and then adds it back to the

signal at a later time producing a repeated signal called an echo.

2.4 Tools

The network and serial transmission portions of this research were performed

on Linksys routers which run a modern, embedded port of the Xinu operating

system [12] [13] [14]. Xinu was first developed over 25 years ago by Douglas Comer

as a tool to teach operating systems. It has been ported to numerous architectures

and platforms. The operating system was selected for its current use in the
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Marquette University Systems Lab. It is easy to extend and already provides an IP

and UDP implementation necessary for VoIP communication.

2.5 Summary of Background

The selected embedded systems provide the hardware on which the actual

VoIP protocols run using sampled digital audio received by methods of digital signal

processing. Everything is wrapped together using existing tools in the Marquette

University Systems Laboratory.
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CHAPTER 3

Related Work

Research in VoIP has been concerned primarily with bandwidth usage and

compression, wireless and mobile networks, new transmission protocols, and

security. Many papers have been published discussing ways to decrease bandwidth

to allow more calls on a single Internet connection and decrease latency to decrease

the delay during a conversation. Other papers have discussed making VoIP calls

more reliable over wireless and mobile networks. Several papers describe new

network protocols that have been developed or extensions to existing protocols.

Other research has focused on increasing security to prevent spoofing and

eavesdropping during VoIP conversations. This chapter surveys the current fields of

VoIP research. While all of these fields are important, little research is taking place

in the field of embedded VoIP.

3.1 Voice Data Compression

As more people begin communicating using VoIP technologies, compressing

VoIP traffic to allow for more VoIP conversations and better coexistence with

existing technologies such as transmission control protocol (TCP) continues to
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remain important. Wang et al. focus on decreasing bandwidth usage [15]. They

explain that multiple voice streams and both voice traffic and TCP traffic must

coexist on the same 802.11b wireless network. They propose a method called

multiplex-multicast (M-M) that multiplexes voice packets together at the access

point into one larger packet that is then multicast to all of the client machines in

the wireless network. This decreases the overhead because of the combined packets,

leaving more room for additional conversations and for the TCP traffic.

Gokhale and Lu discuss the amount of time that it takes to set up a VoIP

call [16]. They tested the time it takes for two user agents (UA) to connect to each

other on both the same machine and different machines connected over a LAN. The

connections between different machines were established between 4 and 9

milliseconds faster than those on the same machine. This means for call setup time,

the network connection is insignificant relative to the processing power of the

computer used. This observation could be relevant because the platform for this

research is embedded and could cause a slowdown in setup time for each

conversation.

3.2 VoIP Over Wireless and Mobile Networks

As discussed in Wang et al., mobile and wireless networks have been an

important focus for compression [15]. As mobile broadband and mobile networks

have become more ubiquitous, making VoIP available in the mobile realm is the

next logical step. (Mobile VoIP provides a cheaper alternative to traditional cell
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service, but also does not provide the same level of quality.) Kim proposes

extensions to Resource Reservation Protocol (RSVP) called Split Tunnel Based

Mobile Resource Reservation Protocol (ST-MRSVP) to achieve a Quality of Service

(QoS) guarantee suitable for mobile VoIP [17]. This protocol decreases packet loss

during hand-off between different access points in mobile networks. Belhoul et al.

describe a Mobility Extension to RSVP (RSVP-ME) [18]. Their method works by

allowing end nodes to signal intermediate routers with new nodes and new QoS

information for nodes, thereby making RSVP work on dynamic networks in addition

to static networks.

3.3 Specialized VoIP Protocols

ST-MRSVP and RSVP-ME are two examples of specialized extensions to the

RSVP protocol. Ali et al. list other extensions to RSVP including MRSVP (Mobile

RSVP) and DRSVP (Dynamic RSVP) and explain their disadvantages in mobile ad

hoc networks [19]. RSVP offers a high level of assurance when it is used in a fixed

network environment. It does not scale well and requires quite a bit of processing

power. Most of the extensions have had similar limitations. These protocols also

require the modification of every node in the path to include the proposed protocol.

Huang et al. propose a method that performs congestion and error control to

improve quality [20] and only requires changes to the client and the server. This

method uses UDP and RTP, which are both established protocols.
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3.4 VoIP Security

While compression and delivery guarantees are important, conversation

security is also necessary. Butcher et al. discuss security considerations regarding

VoIP systems [21]. The majority of the security problems are similar to those

present in regular data networks and in traditional phone systems. Some of these

problems include denial of service, eavesdropping, alteration of voice stream, call

redirection, and caller ID impersonation. They discussed several techniques to

mitigate these security problems. Eavesdropping and alteration of voice stream can

be prevented by encrypting the traffic between the systems on the network. Call

redirection and caller ID impersonation can be prevented by properly authenticating

devices on a network using public-private key pairs and by separating the data

portion of the network from the voice portion of the network.

Kim et al. also survey the different security threats present in VoIP

communications [22]. They propose secure communication procedures to replace the

current insecure communications and call negotiations. They also propose secure

proxies to handle calls between diverse providers and networks.

3.5 Embedded VoIP

On the embedded front, Ho et al. developed a low-power embedded VoIP

processor using a System-On-Chip (SOC) processor for a standalone IP telephone

[23]. The standalone IP telephone with its low-power SOC processor consumes less
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power than currently available IP telephones. However, this IP telephone still uses a

specially designed chip and not off-the-shelf hardware like the embedded IP

telephone presented in this document. Hsu et al. implement much of the server-side

functionality of SIP on an embedded 32-bit ARM7 network processor [24]. Despite

their use of an embedded platform, this implementation is very focused on the

software, and the embedded platform only reduces the space, cost, and power

consumption compared to servers or desktop computers. In the future, many of

these protocols and services could be implemented on Xinu. However, the focus of

the current research is the hardware VoIP phone.

3.6 Summary of Related Works

These areas of focus are all important, but they do not cover another

important area, embedded systems with limited resources. Gokhale and Lu used a

2.4 GHz Intel Pentium 4 processor with 1 GB of RAM running Windows XP

Professional [16]. These resources are unnecessary to establish a single phone call.

An embedded platform, namely a Linksys router running the lightweight

educational operating system Xinu, can be used to establish and maintain a VoIP

call over a network or the Internet. This combination uses commodity hardware

that is cheaper than most options available in 2009. The others focus on extending

unused protocols or developing their own.
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CHAPTER 4

Embedded VoIP Framework

This chapter discusses the hardware and code additions for the 68HC12

microcontrollers and the code written for the Linksys WRT54GL routers. Figure 4.1

presents an overview of the pieces involved in the Internet protocol (IP) phone and

how they interact with each other.

Figure 4.1: Embedded VoIP device connection overview

Figure 4.1 shows two separate and symmetrical processes. The diagram can

be divided by a horizontal line through the middle. The top half progresses from

left to right, and the bottom half progresses from right to left. The microcontrollers
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contain analog to digital converters (ADC), which have microphones (to talk) or

function generators (FG) (to test) connected to them. The microcontrollers also

have digital to analog converters (DAC), which have speakers (to listen) or

oscilloscopes (scopes) (to test) connected to them. The microcontroller contains a

serial port to communicate with the router. The router uses its network interface to

transmit the data to another router where the process is repeated in reverse. Voice

from a microphone is sampled by the ADC on the 68HC12. The data then is

transmitted out the serial port to the Linksys router. The router buffers that data

and transmits it over a network to another router. That second router transmits the

data over its serial port to the second microcontroller. The microcontroller passes

the data to the DAC, which reconstructs the voice signal for playback by a speaker.

4.1 68HC12 Microcontroller

The 68HC12 microcontroller was selected because it contains both an ADC

and a DAC to sample and reconstruct voice data, a serial port to communicate with

the Linksys WRT54GL routers in the Systems Lab at Marquette University, and

enough processing power to process and compress an 8 kHz voice signal. As shown

in Figure 4.2, the MC9S12DP256 microcontroller on the DRAGON12 development

board contains two 8-channel, 10-bit analog-to-digital converters [25] [26] and a

LTC1661 chip, which is a dual channel 10-bit serial peripheral interface (SPI)

digital-to-analog converter [27] [28]. The ADC and the DAC components are

required for voice communication, and since the Linksys WRT54GL routers do not
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contain these components, an additional microcontroller is used. The DRAGON12

development board also contains enough breadboard space to build and enough

power to drive the additional circuits for a microphone and a speaker. The

development board also contains two serial ports on a serial communication

interface (SCI). The primary serial port is used as a console to load programs onto

and to interact with the microcontroller. The second serial port is used to transmit

and receive the sampled voice data.

Figure 4.2: 68HC12 hardware overview

4.1.1 Compilation

The GNU Development Chain for the 68HC11 and 68HC12 was used to

compile all C and assembly code run on the 68HC12 microcontroller [29]. The

microcontroller accepts files in the Motorola S-record (SREC or S19) format [30].

Therefore, downloaded files must be compiled, converted into the S19 format, and
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then downloaded onto the board over a serial port. To load both a text segment and

a data segment onto the microcontroller, the makefile generates two separate S19

files. Next, the makefile merges the data and text S19 files along with appropriate

“LOAD” commands into a single load file that can be sent over the serial port to

the microcontroller. The makefile is displayed in Appendix A.

Interrupts on the 68HC12 have posed a problem during both the compilation

and the execution phase. Initially, the return from interrupt (RTI) assembly

instruction was used in an interrupt service routine (ISR) to ensure that the routine

would return properly. The method was simple and compiled without error.

void isr(void)

{

/* Interrupt code */

asm("rti");

}

However, this method of coding interrupts is only sufficient for very simple

ISR functions. It does not work if any functions are called from inside of the ISR

because it does not build and tear down the stack properly, and the RTI instruction

returns too early. To have more complex code inside of an ISR, the makefile was

updated so that the ISR function prototypes could be marked with the interrupt

attribute and could omit the RTI instruction, which is then inserted in the proper

location by the assembler.

void isr(void) __attribute__ (( interrupt));
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4.1.2 Code

The majority of the existing example code for the 68HC12 was written in

assembly. These examples include good examples for many of the peripherals on the

DRAGON12 board but not for the analog-to-digital converter, the digital-to-analog

converter, and the serial ports. This meant that despite its wide use, much of the

basic functionality of the DRAGON12 board needed for the VoIP phone had to be

written in C from the technical manuals for the 68HC12 microcontroller and the

other components. In an attempt to make the code as readable, reusable, and

extendible as possible, the flags for each register were documented, commented, and

used in the code. The code is part of the Marquette University System Laboratory

code repository and will be released as part of Xinu.

The code written for the microcontroller includes initialization routines for

the ADC, the DAC, the timer, and the second serial port. The ADC initialization

routine powers up the ADC, and the DAC initialization routine configures port M

to be used as a load input flag for the DAC. Next, it enables SPI and sets master

mode. Finally, it sets the load input flag high to disable loading on the DAC. The

timer initialization routine enables the timer, sets up timer 7 for output compare,

and enables timer interrupts for timer 7. Next, it sets the timer clock to use the bus

clock. Finally, it associates an interrupt service routine with the timer 7 interrupt.

The SCI initialization routine sets the baud rate to 115.2 kilobaud, sets the

character format to 8-bits with one start and one stop, and enables the transmitter

and receiver.
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Figure 4.3: 68HC12 timer interrupt code flow

The bulk of the 68HC12 code is in the timer interrupt service routine, which

is displayed in Figure 4.3. This sequence of code reads a 10-bit value from the ADC,

compresses it to 8-bits using the µ-law algorithm, and sends the byte out the serial

port. If a byte is available from the serial port, the routine reads it, decompresses it

using the same µ-law algorithm, and writes the 10-bit value to the DAC.

µ-law is a nonuniform quantized compression law [9]. Nonuniform

quantization is beneficial for voice because it protects the quieter amplitudes which

occurs more frequently and applies more compression to the louder less frequent

amplitudes. This makes it possible to encode human voice adequately in as few as 8

bits.

Before the timer interrupt service routine executes the code described above,

it increments the timer 7 output compare register and clears the interrupt flag for

the timer 7. Because the microcontroller is sampling at 8 kilohertz, the sampling

period is 125 microseconds, and because the timer operates at the bus speed which

is 25 megahertz [25], the period of the timer is 40 nanoseconds. Therefore, the
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theoretical value to increment the timer by is

3125 =
125 µs

40 ns
.

However, the overhead of the running code seems to cause the actual value to be

less than the theoretically calculated value. Table 4.1 shows different timer

increment offsets and their corresponding delay. For each offset and delay, the timer

interrupt tick is calculated. For offsets between 1000 and 9000, the ticks stay

constant between 40 and 42 nanoseconds, which is consistent with the calculated

period of 40 nanoseconds. If the period were 42 nanoseconds, then the theoretical

value to increment the timer would be 2976. In the microcontroller code, the output

compare register is incremented by 2937 so that the next timer interrupt will fire

125 microseconds later. This value was arrived at by experimentation, but it

correctly produces 8 kilohertz sampling on two different 68HC12 microcontrollers.

Serial receive rates for output from the router of the sampled signal on the

microcontroller are displayed in Appendix B. The overall average for the receive

rates is 8004.39 bytes per second, which means the sampling rate of the

microcontroller is also 8004.39 Hertz.

The transmit portion of the interrupt code starts by calling adcRead(),

which initiates a right-justified unsigned 10-bit single-channel conversion from the

ADC. Next, it waits until the conversion completes, and then it returns the value

from the conversion. The value returned from adcRead() is converted from an
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Offset Delay (µs) Tick (ns)
16384 700 42.7246
8192 330 40.2832
4096 168 41.0156
4000 164 41
3500 144 41.1429
3038 125 41.1455
2048 84 41.0156
1024 43 41.9922
512 22.5 43.9453
256 12 46.875
128 7 54.6875
64 4.3 67.1875
32 3 93.75
16 2.4 150

Table 4.1: 68HC12 Timer Interrupt Tick Resolution

unsigned 10-bit value to a signed 16-bit value such that the

[16-bit signed value] = ([10-bit unsigned value] − 512) ∗ 64.

Next, the value is passed to linear2ulaw(), which uses the µ-law algorithm to

compress the signed 16-bit value to an unsigned 8-bit value. The algorithm

compresses low magnitude values less than it compresses high magnitude values.

The compressed value then is passed as an argument to putchar(), which reads

from the SCI status register to clear it and then writes the byte of data to the SCI

data register.

After the transmission process is complete, the receive process begins.

getchar() is not so much a function as a check to make sure that a byte of data is

in the buffer. If there is a character, it is removed from the queue and passed to
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ulaw2linear(), which uses the µ-law algorithm to decompress the unsigned 8-bit

value to a signed 16-bit value. The signed 16-bit value then is converted to an

unsigned 10-bit value such that the

[10-bit unsigned value] =
[16-bit signed value]

64
+ 512.

Next, the value is passed to dacWrite(), which waits until the transmitter is empty

and then sends a 4-bit control code to load DAC A and perform a DAC update

along with the first 4 bits of the value. The function waits until the transmitter is

empty and then sends the last 6 bits of the value. The SPI flags are cleared, and the

load bit is set high so the DAC will process and display the value.

The serial communication interfaces on the 68HC12 have no hardware

buffering [31]. Interrupts would be an ideal solution to handle incoming and

outgoing SCI data. However, interrupts do not behave in the expected manner on

the 68HC12 because of a bug in the SCI hardware interrupt structure which causes

the interrupt flags to be added together instead of OR’d together [32]. Therefore, if

the number of interrupts is even, a zero is returned when a one should have been

returned. A software receive buffer must be used to handle the incoming stream of

bytes from the Linksys router. Because bytes are never transmitted at a faster rate

than 115.2 kilobaud, no software transmit buffer is necessary. The receive buffer

greatly reduces the buffer overrun errors that the SCI experienced with no receive

buffering. This is further discussed in Section 6.1.2. The buffer is filled by polling in

a loop in the main program. Bytes are read out of the buffer during each interrupt.
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4.1.3 Analog and Digital Conversion

The 68HC12 microcontroller contains the ADC and DAC components

necessary for sampling and reconstructing voice data. For input into the ADC, an

Apple PlainTalk microphone was used. This microphone has an extra-long,

4-conductor plug which accepts 5 volts at the tip and a ground reference at the base

[33] [34]. The middle connectors are the microphone signal. The PlainTalk

microphone was selected because it outputs a line level signal by using an internal

preamplifier. Therefore, it requires no additional amplification before it is connected

to the ADC. We also hoped that it would be simple to connect another line-level

audio source in place of the microphone, but it turns out that it would require

additional work to match the impedance or build a voltage shifting operational

amplifier circuit.

+5V

680Ω

680Ω
ADC Input Microphone

Figure 4.4: ADC microphone circuit

The PlainTalk microphone output voltage typically ranges between -1 and

+1 volts peak-to-peak. The ADC low and high reference voltages on the
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DRAGON12 board are set initially to 0 volts and 5 volts, respectively. Therefore, a

680 ohm resistor was placed between the ground on the microphone and the ground

on the development board, causing the microphone to see a ground signal of 1 volt.

The circuit is shown in Figure 4.4. The trace was cut between the 5 volt signal and

the high reference voltage for the ADC and was connected instead to a 2 volt signal

using a simple voltage divider circuit. The result was a microphone with a center at

1 volt, and an ADC that ranged between 0 and 2 volts.

−

+

+5V

10Ω

1.5kΩ

390Ω

47pF

10Ω

220µF
0.1µF LM386

DAC Out

Figure 4.5: DAC speaker circuit

A LM386 amplifier was used to connect a speaker to the DAC [35]. This

protects the development board from current overdraw and amplifies the signal

before being sent to the speakers. The final circuit connected to the DAC output

included a simple resistor-capacitor first-order low-pass filter to smooth the edges of

the signal, a voltage divider to step the voltage down before feeding it into the
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amplifier, and a capacitor-resistor circuit to attach the speaker. The circuit is shown

in Figure 4.5.

The simple low-pass filter has a cutoff frequency of 4 kilohertz. From the

Nyquist Sampling Theorem, the sampling frequency must be twice the highest

frequency in the signal [10]. Therefore, since the ADC is sampling at 8 kilohertz,

the maximum frequency in the signal is 4 kilohertz, and the low-pass filter should

eliminate all higher frequencies.

4.1.4 Power Cycling

The remote power control device in the System Laboratory uses a standard

computer power supply and mechanical relays to provide 12 volts to the Linksys

routers. The Xinu power daemon allows students and researchers to power cycle

routers in the pool without needing to plug and unplug them manually. To make

the 68HC12 microcontrollers more useful in the lab, they needed to be able to be

power cycled using the rebooter. However, they require 9 volts and not 12 volts.

Therefore, we built a small board that used the 12 volt line from the rebooter to flip

another mechanical relay that connected the 9 volt wall transformer to the

microcontroller as shown in Figure 4.6.



27

DC 2.1mm Jack
Center Positive (3x)

G5V-2
Relay

To Rebooter

Figure 4.6: Microcontroller rebooter circuit

4.2 Linksys WRT54GL Router

This research began with the idea of building an IP telephone around the

existing Linksys WRT54GL routers that are part of the current Marquette

University Systems Lab infrastructure. The WRT54GL router already has the holes

for headers for two serial ports. Once the serial transceiver and the serial ports are

attached, the primary serial port is used as the console to interact with the firmware

and operating system running on the router. The second serial port is free to be

used for communication with the 68HC12 microcontroller.

4.2.1 Xinu Operating System

The Xinu operating system runs on the Linksys WRT54GL routers. Xinu

provides the necessary operating system and network functionality to send and
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receive data over the serial port and transmit and receive packets over the network.

4.2.2 Serial Communication

The Linksys router runs two threads for serial and network communication.

One reads data from the serial port and transmits it over the network, and the

other reads data from the network and transmits it over the serial port. As

described above in the 68HC12 microcontroller section, the microcontroller

transmits a byte over the serial line to the router. In the thread basic send(), the

router asynchronously reads bytes into a buffer before transmitting the full buffer to

the network destination in a UDP (User Datagram Protocol) packet.

For both sending and receiving, the buffer size has been set to 1024 bytes.

For our private network and network stack, experimentation showed that this was

an appropriate size that was not too small to flood the network with tiny packets

and not too large that the packet did not arrive at its destination in time. Other

networks could produce different results. The read call to the serial device is

blocking, and the thread sleeps while it waits for enough characters to fill the buffer.

thread basic_send(ushort uart , ushort udp)

{

uint len = 0;

uchar buf[BUF_SIZE ];

/* Enable all interrupts */

enable ();

while (TRUE)

{

/* Read from the serial device */



29

len = read(uart , buf , BUF_SIZE);

if (len > 0)

{

/* Write to the UDP device */

write(udp , buf , len);

}

}

}

The thread basic receive() behaves similarly to the send thread. It reads

the data from UDP packets and transmits the bytes over the second serial port to

the microcontroller. The call to read from the UDP device is blocking, so the thread

sleeps while it waits for incoming data from the network.

thread basic_receive(ushort uart , ushort udp)

{

uint len = 0;

uchar buf[BUF_SIZE ];

/* Enable all interrupts */

enable ();

while (TRUE)

{

/* Read from the UDP device */

len = read(udp , buf , BUF_SIZE);

if (len > 0)

{

/* Write to the serial device */

write(uart , buf , len);

}

}

}
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4.2.3 Network Transmission

The basic send and receive threads described in the previous section use a

buffer size of 1024 bytes. Transmitted packets contain no sequence information.

Therefore, the receiving thread makes no attempt to reorder packets or interpolate

for missing packets. Attempts to improve this are discussed in Section 5.5.

4.3 Desktop Tools

While the focus of this research is VoIP on embedded systems,

communication with other devices such as the desktop computer is also important,

particularly for benchmarking and gathering results. Since the Xinu operating

system implements the standard UDP protocol, and the audio on the routers is in a

µ-law compressed raw format, existing tools can be used to decode the audio and

play it on a desktop computer. In much the same manner, audio can be encoded

and transmitted to the router. All of the desktop work was performed on Fedora

Core Linux computers.

aplay was used to decode and play the audio received over the network [36].

Its matching counterpart, arecord was used to record and encode audio and

transmit it over the network. aplay and arecord are command line sound recorder

and player tools that work with the ALSA soundcard driver. The tools are simple,

handle raw audio well, and can handle µ-law compression without any additions or

modifications.
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The nc or netcat utility was used for the actual network transmission over

UDP on the desktop computer [37]. We used netcat to listen for UDP data on a

specified port and then hand it off to aplay. The following command line listens on

UDP port 22020 and plays received data as a raw file in the µ-law format at 8

kilohertz.

nc -u -k -l 22020 | aplay -f MU LAW -t raw -r 8000

We also used netcat to receive data from arecord and transmit the data on

a specified port over UDP. The following command line records audio from a

microphone at 8 kilohertz, compresses it in the µ-law format, and sends it to “host”

on UDP port 22030.

arecord -f MU LAW -t raw -r 8000 | nc -u host 22030

While netcat, aplay, and arecord were used primary to interact with

routers running the Xinu operating system, it is worth noting that it is possible to

use these tools to communicate between two desktop computers. This could be

helpful for establishing a point of comparison and for testing any additional tools

written to run on a desktop computer instead of on a router running Xinu.

Separating the transmission and receiving of data from the playing and

recording of data means that netcat can also be used to send arbitrary data such as

a sine wave and record and analyze incoming data.

During much of the network development and testing, netcat made it

possible to use a single microcontroller and router. netcat turned the desktop
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computer that was receiving the UDP traffic into an echo server that simply piped

the audio back to the router. The following receives UDP traffic on port 22020 and

sends it back to “host” on UDP port 22030.

nc -u -k -l 22020 | nc -u host 22030

In addition to command line tools already available, we wrote several simple

tools for data generation and analysis and benchmarking including sine, ulaw, and

human. sine generates a one kilohertz sine wave that either can be played through

an audio out jack and fed into the ADC on the 68HC12 or compressed using ulaw

and then transmitted over the network to a router. sine can output in either 8-bit

or 16-bit samples. Since these tools all handle data through standard input and

output, 16-bit output is performed by writing two characters. The first character is

the first 8-bits of the sample shifted down, and the second character is the second

8-bits of the sample.

In a similar fashion to sine, the ulaw tool reads data and either compresses

or decompresses it before writing it back out. ulaw either takes a 16-bit

uncompressed sample and outputs an 8-bit compressed sample, or it takes an 8-bit

compressed sample and outputs a 16-bit decompressed sample. It can be used to

process data from sine or data received over the network from netcat.

Because the “sampling” of a digitally generated sine wave is exact, only

particular harmonics are represented by the sampled data as shown in Figure 5.22.

When this data is compressed and decompressed using the µ-law algorithm, it looks
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Figure 4.7: 1 kHz Sine Wave Sampled at 8 kHz

and sounds slightly different because the values of the samples have been altered

slightly but consistently. This is something to keep in mind when using a strictly

digital system where an analog system is traditionally used. The effect of the µ-law

compression is displayed in Figure 4.8. The differences in the values before and after

compression are shown in Table 4.2.

Sample Sine µ-law
1 0 0
2 23164 22908
3 32760 32124
4 23164 22908
5 0 0
6 -23164 -22908
7 -32760 -30076
8 -23164 -22908
9 0 0

Table 4.2: Effect of µ-Law Compression on a Sine Wave
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Figure 4.8: 1 kHz Sine Wave Sampled at 8 kHz After µ-Law Compression

The final tool is called human. It accepts 8-bit or 16-bit input and outputs a

human readable form of the data. This is useful for either looking at the data or

plotting it on a graph.

4.4 Summary of Framework

This chapter describes the assembly of an IP telephone using off-the-shelf

embedded systems, some hardware modifications, and some code additions. The

Linksys routers were selected for their network interfaces and dual serial ports and

because of their existing use in the Marquette University System Laboratory. The

68HC12 microcontroller was selected because of its established use in the field and

because it had serial ports and voice conversion capabilities. After the hardware was
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connected together, software was written to sample and compress voice into bytes

and transmit it over the serial line to the router where it was transmitted over the

network to another router which received the data and transmitted it over the serial

line back to the microcontroller which decompressed it and played it back through a

speaker.
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CHAPTER 5

Performance Analysis

Chapter 4 described how the embedded IP telephone was built. This chapter

describes how we quantified the system’s performance. However, because this is a

voice over IP device, much of the initial testing and analysis was as simple as

listening to the sound from the speakers. After the system began passing the ear

test, we evaluated the latency and the speech quality.

5.1 Embedded VoIP Latency

Latency is one of the most important measurements of a real-time system

such as this IP telephone. In addition to determining the overall latency of the

system and its connections, we decomposed it and determined the latency of each of

the components and connections. Each of the arrows in Figure 5.1 represents a

connection or process that has a latency associated with it.

To begin the testing process, we stripped the microcontroller code back to its

simplest form: reading a value from the ADC and writing it to the DAC, which is

displayed below. This reveals the delay for a signal to get from the input of the

ADC to the output of the DAC including any code delay, which we assume to be
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Figure 5.1: Embedded VoIP device connection and data path flow overview

insignificant.

int main()

{

/* Initialization code */

while (1)

{

dacWrite(adcRead ());

}

}

Figure 5.2 displays the active pieces of the system and the data path for

testing of the ADC and DAC latency. In this arrangement, the function generator

produces a 1 kilohertz sine wave, which is fed into the ADC on the microcontroller.

The signal is sent out the DAC to the oscilloscope, which also has a second line in

directly from the function generator. Figure 5.3 shows a 1 kilohertz sine wave and

the same sine wave after the 92 microsecond delay described by Figure 5.2 and the

code above. After µ-law companding was added, the delay increased to 131
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microseconds as shown in Figure 5.4. Interrupts for 8 kilohertz sampling increase

the delay to 140 microseconds as shown in Figure 5.5.

Figure 5.2: Data path flow for ADC and
DAC latency test case

Figure 5.3: Original 1 kHz sine wave (top)
and sine wave delayed 92 µs by ADC and
DAC (bottom)

Figure 5.4: Original 1 kHz sine wave (top)
and sine wave delayed 131 µs by ADC,
DAC, and µ-law companding (bottom)

Figure 5.5: Original 1 kHz sine wave (top)
and sine wave delayed 142 µs by ADC,
DAC, µ-law companding, and 8 kHz sam-
pling interrupts (bottom)

The next step in the latency testing process was to add the serial port on the

microcontroller. The serial port has a loopback flag that can be turned on. This

data flow arrangement is displayed in Figure 5.6, and the 389 microsecond delay is
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displayed in Figure 5.7.

Figure 5.6: Data path flow for latency
measurement through the serial loopback
device on the microcontroller

Figure 5.7: Original 1 kHz sine wave (top)
and sine wave delayed 389 µs by the serial
loopback on the microcontroller (bottom)

After loopback on the serial port has been tested, we add in the router. The

router has a very simple thread that reads a byte from the serial port and writes it

back out to the serial port effectively creating a “router loopback.” The data flow is

displayed in Figure 5.8, and the 574 microsecond delay is displayed in Figure 5.9.

Figure 5.8: Data path flow for latency
measurement through the serial ports
with loopback on the router

Figure 5.9: Original 1 kHz sine wave (top)
and sine wave delayed 574 µs by the serial
ports and router loopback (bottom)
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Now that the test cases have produced longer latencies, it is important to

make sure that the signal is not “wrapping” around and displaying as a shorter

latency than the actual latency of the system. The “router loopback” test case had

a latency greater than 500 microseconds, which is half of the time before it would

wrap around on the oscilloscope because the 1 kilohertz sine wave has a period of 1

millisecond. Therefore, a new program for the microcontroller was needed. Instead

of reading from the ADC, it generates a character of data on its own, sends it over

the serial port, and then waits for it to return on the serial port. When the

character returns, it sends it out again and toggles the DAC between high and low

values. A simplified version of the code is shown below.

int main()

{

/* Initialization code */

putchar1(’a’);

while (1)

{

if (/* SCI character available */)

{

temp = getchar1 ();

putchar1(temp);

dacWrite(/* toggle between high and low value

*/);

}

if (/* SCI overrun occurred */)

{

/* clear SCI overrun */

}

}

}

We repeated the “router loopback” test case that was described above to
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ensure accurate results and to show that the new code works. The subtly modified

data path is displayed in Figure 5.10, and the square wave that the DAC toggling

produces is displayed in Figure 5.11. The delay is only 563 microseconds, which is

13 microseconds less than the previous measurement because there is now no

overhead for the ADC and the DAC. (Even though the DAC is being used, its use

does not generate any overhead.)

Figure 5.10: Data path flow for latency
measurement through the serial ports
with loopback on the router (internal
measurement using returned data from
the serial port)

Figure 5.11: Square wave representation
of the 563 µs delay due to the serial ports
and the router loopback

Next, we add the Ethernet loopback device to the system. This data path is

displayed in Figure 5.12, and the 891 microsecond delay is displayed in Figure 5.13.

This test case again uses the method described for the second “router loopback”

test.

The final test case was using the entire system of two microcontrollers, two

routers, and the network. The network was a private local network, and both

routers were connected directly to the same switch. Therefore, the delay due to this
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Figure 5.12: Data path flow for latency
measurement through the Ethernet loop-
back device

Figure 5.13: Square wave representation
of the 891 µs delay due to the addition of
the Ethernet loopback device

network is negligible compared with travel across the Internet. The data path is

displayed in Figure 5.14, and the 1.875 millisecond delay is displayed in Figure 5.15.

Because this is the roundtrip latency, the latency of the actual data path is half or

about 938 microseconds. This number seems reasonable since it is slightly greater

than that of the Ethernet loopback test.

At this point in the testing process, we know the entire system works.

Therefore, we replaced the function generator and the oscilloscope with microphones

and speakers. Two individuals were able to carry on a conversation using the two IP

telephones. It is a return to the “ear test,” but it is an important metric to

demonstrate that the system works for its intended purpose.

The results of the different latency tests discussed in this section are

summarized in Table 5.1. From the results in the table, we can conclude that the

overall latency for the system is the ADC, DAC, µ-law companding, and 8 kilohertz
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Figure 5.14: Data flow for roundtrip la-
tency measurement using two microcon-
trollers, two routers, and a network

Figure 5.15: Square wave representation
of the 1.875 ms delay for the round trip
latency test case

sampling latency and half of the roundtrip latency, which is

1.079 ms = 142 µs +
1.875 ms

2
.

Only the two measurements are necessary because the network roundtrip

covers all of the pieces that the different loopback tests cover. The latency

measurements taken from the oscilloscope were averaged to produce the best

measurement. However, the deviations on the last three tests were estimated based

on how the measurements on the oscilloscope fluctuated when not being averaged.

In terms of VoIP, this deviation is better known as jitter.

5.2 Desktop VoIP Latency

In order to make sense of the embedded VoIP latency results in Section 5.1,

they must be compared to something else. This section gathers some basic latency
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Test case
Total

latency (µs)
Deviation

(µs)
Individual

latency (µs)
ADC and DAC 92 92
µ-law companding 131 39
8 kHz sampling 142 11
Serial loopback 389 247
Router loopback 574 185
Router loopback (No
ADC/DAC)

563 ±6 185

Ethernet loopback 891 ±11 328
Network roundtrip 1875 ±15 375

Table 5.1: Summary of latency measurements from shortest data path to longest data
path

results for a similar desktop equivalent. Figure 5.16 provides an overview of how the

desktop testing system was arranged, which nicely mirrors the arrangement for the

embedded system.

Figure 5.16: Desktop VoIP connection and data path flow overview

The first test we performed on the desktop system used only one of the

computers as displayed in Figure 5.17. This test shows the latency for the computer

to sample and reconstruct an audio signal. Using a somewhat distorted sine wave
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provided by a third desktop computer, we were able to determine the latency to be

420 microseconds as displayed in Figure 5.18.

Figure 5.17: Data flow for desktop com-
puter ADC and DAC latency test case

Figure 5.18: Distorted square wave repre-
sentation of the 420 µs delay for ADC and
DAC latency test case

The second and final test is displayed in Figure 5.19 and uses two computers

connected via a network. The second computer has an audio cable that connects the

speaker output to the microphone input effectively creating a loopback. The results

of this test show a roundtrip time of 892 microseconds, which means that one way

time is 446 microseconds.

To summarize, for local processing, our embedded VoIP system has a latency

of 574 microseconds, and the desktop VoIP system has a latency of 420

microseconds. Over a network, our embedded VoIP system has a latency of 1.079

milliseconds, and the desktop VoIP system has a latency of 446 microseconds. This

shows that much of the delay in our embedded system is in the network hardware or

network stack code.
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Figure 5.19: Data flow for roundtrip la-
tency test case using two desktop comput-
ers and a network

Figure 5.20: Distorted square wave rep-
resentation of the 892 µs delay for the
roundtrip latency test case using two
desktop computers and a network

5.3 Embedded VoIP Voice Quality

In addition to latency, voice quality is another important metric of a VoIP

system. Perceptual Evaluation of Speech Quality (PESQ) is an ITU (International

Telecommunication Union) recommendation for a method of objectively assessing

the quality of voice data [38]. As a full-reference algorithm, it analyzes the

difference between the originally transmitted signal and the final received signal.

The analysis is represented as a mean opinion score (MOS). The MOS is a value

between 1 (poor quality) and 5 (excellent quality).

From a qualitative perspective, the sampling portion of the phone performed

adequately well, leaving the reconstruction and output as the performance

bottleneck. Figure 5.21 shows the test setup for evaluating speech quality. The

pre-recorded signals were played through a computer, which transmitted the audio

over the network to the router. The router transmitted the signal to the
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microcontroller which reconstructed it. From there, it was recorded back into

another computer to be compared with the original signal.

Figure 5.21: Data flow for embedded speech quality testing

Our tests revealed a MOS of 3.13, which is considered fair. The test results

are summarized in Table 5.2. A score of 3.13 shows that a simple and inexpensive

first order low-pass filter for reconstruction gets our embedded telephone reasonably

close to 3.8, which is toll quality [39]. Our PESQ MOS of 3.13 is competitive with

Skype (2.988), WinLive (3.149), GTalk (3.278), and Yahoo (3.472) IP telephony

software under similar, ideal network conditions [40].

Mean 3.13
Max 3.33
Min 2.74
Standard Deviation 0.15

Table 5.2: PESQ MOS test results summary with sample size of 23
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5.4 Sources of Error

This section analyzes the different sources of error in the system and how

they have been mitigated or how they could be mitigated. Sources of error include

sampling and digitization, clock synchronization and skew, lossy compression, and

transmission over the serial line and the network.

5.4.1 Sampling and Digitization

After a signal is sampled, some amount of data is lost due to imperfect

reconstruction. Figure 5.22 and Figure 5.23 show such sampling error. In both

figures, the top waveform is the original 1 kilohertz sine wave. In Figure 5.22, the

bottom waveform has been sampled by the ADC and reconstructed by the DAC.

Figure 5.23 adds µ-law companding and interrupts for 8 kilohertz sampling. The

decrease in sampling rate has a noticeable effect on the size of the blocks and the

overall quality of the signal.

While this uncorrected signal may be decipherable, a simple low-pass filter

circuit can decrease the error. This circuit is displayed in Figure 4.5 and described

in Section 4.1.3. Figure 5.24 shows the same sine wave as before but with the

addition of the smoothing circuit attached to the DAC output. As before, the sine

wave has been sampled at 8 kilohertz and had µ-law companding applied to it.
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Figure 5.22: Original sine wave (top)
and sampled sine wave with no correction
(bottom)

Figure 5.23: Original sine wave (top) and
sampled sine wave after µ-law compand-
ing and 8 kHz sampling interrupts with
no correction (bottom)

Figure 5.24: Original sine wave (top) and sampled sine wave after µ-law companding
and 8 kHz sampling interrupts with smoothing capacitor correction (bottom)

5.4.2 Clock Synchronization

The system is composed of four separate clocks, which leaves plenty of room

for clock skew to occur. However, because the routers simply pass the data from the

microcontroller to the network, their clocks become less important, and the

deviation in the clock speed of the microcontrollers becomes the focus.

The crystal that controls the frequency on the microcontroller runs at 25
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MHz and probably has a frequency tolerance of 50 PPM (parts per million).

Therefore, it could vary in either direction by up to

1.25 kHz = 25 MHz ∗ 0.005%.

The scaling factor for 8 kilohertz sampling is

3125 =
25 MHz

8 kHz
.

This means that the 8 kilohertz sampling could vary in either direction by up to

0.4 Hz =
1.25 kHz

3125
.

Therefore, a single sample’s period could vary by

6ns =
1

8000 Hz
−

1

8000.4 Hz
.

Over a second, the sampling could vary by

48 µs/s = 6 ns ∗ 8000 Hz,

which means that after

2.6 s =
125 µs

48 µs/s
,

the two microcontrollers could be one sample out of sync, causing overrun or
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underrun. In a way buffer underrun is self-correcting or self-synchronizing.

However, buffer overrun requires additional efforts to correct. We use a large buffer

to postpone the occurrence of buffer overrun. This is sufficient for “short” phone

calls, which do not completely fill up the buffer. For longer phone calls, a method of

synchronization similar to what is used in RTP and RTCP would need to be used.

5.4.3 Compression

The microcontrollers perform µ-law compression on the voice data before

transmitting it. This is a form of lossy compression because it does not preserve the

original signal during the compression. When the signal is decompressed, it will not

be identical to the original signal before it was compressed.

The µ-law compression algorithm was selected because it is non-linear and

preserves the important ranges for human voice. The µ-law algorithm increases the

signal-to-noise ratio and is used in PSTN phone systems in North America and

Japan [39]. The most common alternative is A-Law, which is used in Europe.

5.4.4 Serial

The connection between the serial ports on the microcontroller and the

router provide another point for data loss and delay. However, unlike an Ethernet

network, which must be shared with other devices, most of the serial overrun,

underrun, loss, and delay can be avoided through the use of proper asynchronous
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calls and interrupts. Some of these coding techniques are discussed in Section 6.1.2.

The serial link can also be affected by interference in the line or under-powered

charge-pump transceivers.

5.4.5 Network

The network that connects the two routers is the most variable segment of

the trip. It is prone to data loss, delay, and duplication. All three of these are

discussed in the next section. Data duplication is easiest to deal with. It is possible

to detect if a packet of data has already been received and simply drop it. Data loss

and delay are more difficult. Delayed data may still be able to be used, but in

real-time systems, there becomes a point at which a delayed packet might as well

have been lost because it simply has arrived too late. Lost data can be dealt with

by repeating data or trying to interpolate between packets. The next section

discusses a basic solution to some of these problems.

5.5 Network Robustness

As discussed in the previous section, networks pose the greatest source of

error, especially as the number of nodes on the network and the number of hops

between the source and the destination increases. This section describes some

simple code changes that attempt to handle data loss, delay, and duplication.

Instead of just sending the buffer of voice data as the UDP packet payload,
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we send a structure that includes a sequence number, the length of the data, and

the data itself, which is described by struct voipPkt.

struct voipPkt

{

uint seq;

uint len;

uchar buf[SEQ_BUF_SIZE ];

};

In Section 4.2.2, we described basic threads for transmitting and receiving

data called basic send() and basic receive(). These basic threads have been

extended to include provisions for sequence number and timing. The new

seq send() thread only needs to keep track of what sequence number it is on and

include it in the packets it sends. A simplified version of the code is below.

thread seq_send(ushort uart , ushort udp)

{

/* Variable declarations and initializations */

while (TRUE)

{

/* Read from the serial device */

voip ->len = read(uart , voip ->buf , SEQ_BUF_SIZE);

if (voip ->len > 0)

{

/* Write to the UDP device */

write(udp , voip , sizeof(struct voipPkt));

voip ->seq++;

}

resched ();

}

}

The code for seq receive() is a bit more complex. This code is best at

detecting and dropping duplicates, and it does a fairly good job of replaying the last
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packet of data when no new data is available. In the future, the code could be used

to do something more complex when a deadline is missed. It is important to note

that for these new threads, the UDP device is put in a non-blocking mode so that

the receiving thread is able to monitor the amount of time that has passed. These

code segments are basically a simplified version of RTP. This code could be further

extended or possibly replaced with RTP itself.

thread seq_receive(ushort uart , ushort udp)

{

/* Variable declarations and initializations */

while (TRUE)

{

/* Read from the UDP device */

len = read(udp , voip , sizeof(struct voipPkt));

if (len > 0)

{

if (seq < voip ->seq)

{

/* Resynchronize the sequence numbers */

/* (We lost at least one packet.) */

seq = voip ->seq;

}

else if (voip ->seq < seq)

{

/* Drop duplicate packets */

continue;

}

seq++;

ticks = clkticks;

time = clktime;

/* Write to the serial device */

write(uart , voip ->buf , voip ->len);

}

else if (timespan(clktime , clkticks , time , ticks)

>

(SEQ_BUF_SIZE / 8))

{

ticks = clkticks;
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time = clktime;

/* Replay the last packet if we missed a

deadline */

write(uart , voip ->buf , voip ->len);

}

}

}

5.6 Embedded IP Telephone Cost

Name Quantity Cost Total
Linksys WRT54GL 1 $54.951 $54.95
Dragon12 Development Board 1 $149.002 $149.00
Total: $203.95

Table 5.3: Costs of components to build experimental prototype system

Table 5.3 lists the basic costs for the prototype system that includes the

router and the 68HC12 development board. The prototype system is rather

expensive at just over $200. Our system uses the router as it is, but it only uses a

few of the components on the 68HC12 development board. Table 5.4 outlines some

of the items and costs necessary to build a basic embedded VoIP microcontroller

board to connect to the router. This table includes an estimate for power

considerations and does not include assembly labor costs. The final cost of a simple

embedded IP telephone should be around $100. This can be compared to a fairly

basic Cisco IP telephone, which costs around $1503. It may be possible to further

1Price acquired from http://www.newegg.com/ on 12/2/2009.
2Price acquired from http://www.evbplus.com/ on 12/2/2009.
3Price acquired from http://www.newegg.com/ for Cisco Small Business SPA504G 4 Line IP

Phone With Display, PoE and PC Port - Retail on 4/9/2010.
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reduce the cost of the hardware needed to attach to the router by using the GPIO

(general purpose I/O) pins on the router for connection instead of the serial port.

Name Quantity Cost Total
68HC12 1 $16.914 $16.91
LM386 Amp 1 $0.65 $0.65
LTC1661 DAC 1 $1.75 $1.75
Female Serial Connector 2 $0.75 $1.50
Serial Transceiver 1 $2.15 $2.15
680 ohm resistor 2 $0.02 $0.04
390 ohm resistor 1 $0.02 $0.02
1.5 kohm resistor 1 $0.02 $0.02
10 ohm resistor 2 $0.02 $0.04
220 uF capacitor 1 $0.10 $0.10
0.1 uF capacitor 3 $0.08 $0.24
0.22 uF capacitor 2 $0.15 $0.30
Power considerations ∼$20.00
Linksys WRT54GL 1 $54.95 $54.95
Total: ∼$98.67

Table 5.4: Costs to build a basic embedded VoIP device

5.7 Summary of Performance Analysis

Qualitatively, our IP telephone works. It passes the “ear test,” and two

individuals can carry on a conversation using it. However, there is much work to be

done to make the IP telephone better. The latency tests show reasonable results

with roundtrip delays of just over 2 milliseconds when connected on an intranet

network (compared with just under 1 millisecond for a desktop VoIP system). The

error analysis shows the different sources of error have been mitigated or deemed

acceptable.

4Prices acquired from http://www.digikey.com/ and http://www.jameco.com/ on 11/12/2009.
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CHAPTER 6

Discussion and Summary

Chapter 4 described the embedded IP telephone implementation, and

Chapter 5 described how well it worked. This chapter discusses some of the

problems that were encountered, some conclusions about the work, and directions

for future work.

6.1 Discussion

This section provides a discussion of some of the problems that were

encountered during the implementation stage of the research. It is a little reminder

that what looks good on paper or on a computer screen does not necessarily work

once it has been implemented in hardware.

6.1.1 A Previous Attempt

Before the 68HC12 microcontroller was selected, the same process was tried

on a Cypress CY8C29466 PSoC (Programmable System on a Chip) microcontroller

[41]. The PSoC chip is designed so that the blocks on the chip can be reconfigured
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dynamically for different functions. The chip is attractive because it was

inexpensive and contained blocks for 14-bit ADCs, 9-bit DACs, gain amplifiers,

filters, timers, and serial ports. The flexibility of the PSoC design would have meant

that the majority of the configuration could have been done on-chip instead of as

additional circuitry on a breadboard. The processor runs at a maximum of 24 MHz,

which should have been sufficiently fast. However, when the ADC, the DAC, the

necessary timers, and the serial port were configured, the overall processing speed

was not fast enough to sample from the ADC at 8 kHz, write the data to the serial

port, receive serial data, and write it to the DAC also at 8 kHz. This limitation did

not become apparent until the PSoC had been configured and programmed.

Therefore, while the flexibility of the PSoC chip would have been very useful,

the external setup of the ADC and DAC on the 25 MHz 68HC12 allows the chip to

be fast enough to handle the signal processing and serial transmission. In addition

to simply not being fast enough, the PSoC chip also can only be programmed using

the PSoC Programmer and PSoC Designer, which require Microsoft Windows XP.

These requirements do not fit well with the rest of the development environment.

6.1.2 From Synchronous to Asynchronous

The following code is an example of what we thought the finished software

might look like for the 68HC12 microcontroller. It turns out that there is a problem

with every single line of that code, and those problems became evident only because

we chose to implement this on a real embedded system.
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int main()

{

/* Variable declarations and initializations */

while (1)

{

value = adcRead ();

putchar(value);

value = getchar ();

dacWrite(value);

for (i = 0; i < DELAY; i++);

}

}

The call to adcRead() initiates an ADC conversion, waits for it to complete,

and then returns the value. The call to putchar() waits until the previous transmit

is complete, transmits the character, and waits until it completes. The call to

getchar() waits until a character is available and then reads it. The call to

dacWrite() waits until the transmitter is free, sends the data, and waits for it to

complete. The for loop delays the while loop the appropriate amount of time to

achieve 8 kilohertz sampling.

There are two cases that cause this code to fail completely:

• No characters arrive across the serial port, and getchar() blocks. No samples

are read from adcRead() or transmitted with putchar().

• Too many characters arrive across the serial port, and getchar() cannot be

called fast enough to read all of them in and pass them to dacWrite().
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A better design uses interrupts and asynchronous calls to these functions. To

start, the for loop delay can be replaced by a timer interrupt that occurs every 125

microseconds (8 kilohertz sampling). This reduces the fluctuation (jitter) in the

sampling and playback. The biggest problem is still the blocking call to getchar().

This can be resolved by doing something like returning -1 when no value is available

and then not calling dacWrite(). That code looks something like the following.

int main()

{

/* Variable declarations and initializations */

while (1); /* Do nothing */

}

void timerInterrupt ()

{

value = adcRead ();

putchar(value);

value = getchar ();

if (value > -1) dacWrite(value);

}

Still, the serial port is overrun because the characters can’t be read fast

enough. One solution would be to slow down the transmission of characters in the

buffer in Xinu on the router. Something similar to the following will work.

for (i = 0; i < len; i++)

{

putchar(buf[i]);

for (j = 0; j < DELAY; j++); /* Busy wait */

}

This is an unacceptable solution because it means there is almost no

additional processing time on the router, and delivery is less guaranteed because of
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the busy wait that serves as a delay. Ideally, we would take advantage of serial

interrupts to resolve this, but since they are unreliable due to a bug in the 68HC12

interrupt structure, we can take advantage of the empty while loop in main().

Additionally, ADC interrupts can be turned on so that instead of having to initiate

the conversion, wait for it to complete, and then return a value, adcRead() can

simply return the value. This looks something like the following.

int main()

{

/* Variable declarations and initializations */

while (1)

{

value = getchar ();

if (value > -1)

{

buf[r] = value;

r++;

}

}

}

void timerInterrupt ()

{

value = adcRead ();

putchar(value);

if (w < r) /* the buffer isn’t empty */

{

dacWrite(buf[w]);

w++;

}

}

void adcInterrupt ()

{

/* Clear the interrupt */

/* Start a new conversion */

}



62

This code greatly decreases the chance of overrun and can handle receiving

data from the router, which is transmitting at the full 115.2 kilobaud.

6.2 Future Work

Currently, all connections are configured statically (ports and IP addresses)

and initiated separately at each end. This method provides no way to signal another

router or VoIP device to initiate a call. This works well in a laboratory environment

but is less useful for anyone who actually wishes to place a VoIP call. Both Session

Initiated Protocol (SIP) and H.323 provide specifications for call signalling and call

setup [6] [8]. In the future, one of these protocols should be selected and written to

run on the Xinu operating system and function with the microcontrollers attached

to the Linksys routers.

UDP does not have any provisions for parity checking, error checking, and

sequence numbering. Therefore, future research and work is necessary in ensuring

that the data delivered is correct and that it is delivered in order. This could

potentially be achieved through a custom means or through an existing protocol

choice. UDP also does not have any provisions for encryption and security.

Currently, nothing would prevent a malicious user from injecting packets into the

voice stream or eavesdropping on a conversation. Therefore, more research must be

done in securing VoIP calls and the initial call connections.

On the hardware side, one limitation on the Systems Lab infrastructure that
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this embedded VoIP research has is the dedicated use of the second serial port on all

routers being used for VoIP. The Systems Lab is equipped with a serial annex which

allows the lab to accommodate all of the serial ports on the fronts of the Linksys

routers. These serial ports can also be used to connect to the 68HC12

microcontrollers, and rather than plugging them directly into a router, they can be

plugged into the serial annex. Some research is required to create a software serial

bridge that would effectively bridge two serial ports on the serial annex together

causing it to look like a microcontroller was connected directly to the second serial

port of a Linksys router.

6.3 Summary

Quite a bit of research has been done in VoIP, but very little has been done

with embedded systems outside of mobile phones. This research provides a solution

for VoIP implemented on hardware with no simulation. Since it is voice over IP, it

only makes sense that it should work with an actual microphone. Previous research

on embedded platforms for VoIP have been proprietary and used custom built chips.

Our implementation uses resource-constrained commodity embedded hardware and

is open and fairly inexpensive.

The VoIP software running on the router is built entirely on top of the

lightweight embedded Xinu operating system and runs on the Linksys WRT54GL.

The code for the 68HC12 microcontroller is written entirely in C and compiled with

GCC. The implementation process showed interrupts and asynchronous calls to be
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necessary to make the transmission of voice across both devices possible. The open

nature of the system makes it possible to extend and change it in many different

ways, such as those discussed in the previous section. Only time was a limit to the

implementation of many of the standard VoIP protocols.

The IP telephone code is available as part of the Xinu repository and releases.

The software runs on Linksys WRT54GL routers and 68HC12 microcontrollers.
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APPENDIX A

68HC12 Makefile

ada test/makefile

all: ada.load

# Include the 68HC12 Makefile

include ../ compile/Makevars

include ../ compile/Makerules

compile/Makevars

INCLUDE = ../ include

HC12_PREFIX = m6811 -elf -

CC = ${HC12_PREFIX}gcc

AR = ${HC12_PREFIX}ar

AS = ${HC12_PREFIX}as

LD = ${HC12_PREFIX}ld

OC = ${HC12_PREFIX}objcopy

# C compilation flags

CFLAGS = -m68hc12 -mshort -Wall -Wmissing -prototypes -g -

O0 -fomit -frame -pointer -msoft -reg -count=1 -c -I${

INCLUDE}

# Assembler flags

ASFLAGS = -m68hc12 --gstabs -al

# Loader flags

LDFLAGS = -m m68hc12elfb --defsym _start =0 --defsym io_reg

=0x0 -defsym interrupt_vectors =0xffd6 --no-gc-sections

-mrelax

# Objcopy flags

OCFLAGS = --output -target=srec

include/Makerules
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clean:

rm -f *.o *.s19 *.bin *.boo *.lst *.load

# This assembly rule produces a listing file:

%.o: %.s

$(AS) $(ASFLAGS) -o $@ $< > $*.lst

# Put the text section in one s19 file.

%.s19 : %.elf

$(OC) $(OCFLAGS) $*.elf $*.s19

# Put the data section in another s19 file and adjust its

# address to 0x3000.

%-data.s19 : %.elf

$(OC) $(OCFLAGS) --only -section =.data --change -section

-address .data=0x3000 $*.elf $*-data.s19

# The load file can be transferred directly over the

# serial port to the 68HC12. It will load both the text

# and data segments and begin executing the program.

%.load : %.s19 %-data.s19

echo -e "LOAD\r\n" > $*.load

cat $*.s19 >> $*.load

echo -e "\r\n" >> $*.load

echo -e "LOAD\r\n" >> $*.load

cat $*-data.s19 >> $*.load

echo -e "\r\n" >> $*.load

grep text memory.x | awk ’{print $$6}’ | sed ’s/0x//;

s/,//; s/^/g /’ >> $*.load

echo -e "\r\n" >> $*.load

# Generate an elf file instead of an s19 file here because

# it lets us split them into a text and data segnments for

# the s19 files later.

%.elf: %.o memory.x ../lib/hc12.a

$(CC) -m68hc12 -mshort -Wl,-m,m68hc12elfb -mrelax -o

$@ $< ../lib/hc12.a

%.s: %.c

$(CC) $(CFLAGS) -S $*.c -o $*.s

../lib/hc12.a :

make -C ../lib/hc12 install
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APPENDIX B

Serial Receive Rate

The following is output from a Linksys router running Xinu. It displays the

number of bytes per second that are being received from a 68HC12 microcontroller

connected to the second serial port of the router.

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec
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Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8000 bytes/sec

Transmit: 0 bytes/sec, Receive: 8032 bytes/sec
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